1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "InputSection.h" 11 #include "LinkerScript.h" 12 #include "SymbolTable.h" 13 #include "Symbols.h" 14 #include "SyntheticSections.h" 15 #include "lld/Common/ErrorHandler.h" 16 #include "lld/Common/Memory.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/LTO/LTO.h" 23 #include "llvm/MC/StringTableBuilder.h" 24 #include "llvm/Object/ELFObjectFile.h" 25 #include "llvm/Support/ARMAttributeParser.h" 26 #include "llvm/Support/ARMBuildAttributes.h" 27 #include "llvm/Support/Path.h" 28 #include "llvm/Support/TarWriter.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 using namespace llvm::ELF; 33 using namespace llvm::object; 34 using namespace llvm::sys; 35 using namespace llvm::sys::fs; 36 37 using namespace lld; 38 using namespace lld::elf; 39 40 bool InputFile::IsInGroup; 41 uint32_t InputFile::NextGroupId; 42 std::vector<BinaryFile *> elf::BinaryFiles; 43 std::vector<BitcodeFile *> elf::BitcodeFiles; 44 std::vector<LazyObjFile *> elf::LazyObjFiles; 45 std::vector<InputFile *> elf::ObjectFiles; 46 std::vector<InputFile *> elf::SharedFiles; 47 48 std::unique_ptr<TarWriter> elf::Tar; 49 50 InputFile::InputFile(Kind K, MemoryBufferRef M) 51 : MB(M), GroupId(NextGroupId), FileKind(K) { 52 // All files within the same --{start,end}-group get the same group ID. 53 // Otherwise, a new file will get a new group ID. 54 if (!IsInGroup) 55 ++NextGroupId; 56 } 57 58 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 59 // The --chroot option changes our virtual root directory. 60 // This is useful when you are dealing with files created by --reproduce. 61 if (!Config->Chroot.empty() && Path.startswith("/")) 62 Path = Saver.save(Config->Chroot + Path); 63 64 log(Path); 65 66 auto MBOrErr = MemoryBuffer::getFile(Path, -1, false); 67 if (auto EC = MBOrErr.getError()) { 68 error("cannot open " + Path + ": " + EC.message()); 69 return None; 70 } 71 72 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 73 MemoryBufferRef MBRef = MB->getMemBufferRef(); 74 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 75 76 if (Tar) 77 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 78 return MBRef; 79 } 80 81 // Concatenates arguments to construct a string representing an error location. 82 static std::string createFileLineMsg(StringRef Path, unsigned Line) { 83 std::string Filename = path::filename(Path); 84 std::string Lineno = ":" + std::to_string(Line); 85 if (Filename == Path) 86 return Filename + Lineno; 87 return Filename + Lineno + " (" + Path.str() + Lineno + ")"; 88 } 89 90 template <class ELFT> 91 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym, 92 InputSectionBase &Sec, uint64_t Offset) { 93 // In DWARF, functions and variables are stored to different places. 94 // First, lookup a function for a given offset. 95 if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset)) 96 return createFileLineMsg(Info->FileName, Info->Line); 97 98 // If it failed, lookup again as a variable. 99 if (Optional<std::pair<std::string, unsigned>> FileLine = 100 File.getVariableLoc(Sym.getName())) 101 return createFileLineMsg(FileLine->first, FileLine->second); 102 103 // File.SourceFile contains STT_FILE symbol, and that is a last resort. 104 return File.SourceFile; 105 } 106 107 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec, 108 uint64_t Offset) { 109 if (kind() != ObjKind) 110 return ""; 111 switch (Config->EKind) { 112 default: 113 llvm_unreachable("Invalid kind"); 114 case ELF32LEKind: 115 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset); 116 case ELF32BEKind: 117 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset); 118 case ELF64LEKind: 119 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset); 120 case ELF64BEKind: 121 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset); 122 } 123 } 124 125 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 126 Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this)); 127 for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) { 128 auto Report = [](Error Err) { 129 handleAllErrors(std::move(Err), 130 [](ErrorInfoBase &Info) { warn(Info.message()); }); 131 }; 132 Expected<const DWARFDebugLine::LineTable *> ExpectedLT = 133 Dwarf->getLineTableForUnit(CU.get(), Report); 134 const DWARFDebugLine::LineTable *LT = nullptr; 135 if (ExpectedLT) 136 LT = *ExpectedLT; 137 else 138 Report(ExpectedLT.takeError()); 139 if (!LT) 140 continue; 141 LineTables.push_back(LT); 142 143 // Loop over variable records and insert them to VariableLoc. 144 for (const auto &Entry : CU->dies()) { 145 DWARFDie Die(CU.get(), &Entry); 146 // Skip all tags that are not variables. 147 if (Die.getTag() != dwarf::DW_TAG_variable) 148 continue; 149 150 // Skip if a local variable because we don't need them for generating 151 // error messages. In general, only non-local symbols can fail to be 152 // linked. 153 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 154 continue; 155 156 // Get the source filename index for the variable. 157 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 158 if (!LT->hasFileAtIndex(File)) 159 continue; 160 161 // Get the line number on which the variable is declared. 162 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 163 164 // Here we want to take the variable name to add it into VariableLoc. 165 // Variable can have regular and linkage name associated. At first, we try 166 // to get linkage name as it can be different, for example when we have 167 // two variables in different namespaces of the same object. Use common 168 // name otherwise, but handle the case when it also absent in case if the 169 // input object file lacks some debug info. 170 StringRef Name = 171 dwarf::toString(Die.find(dwarf::DW_AT_linkage_name), 172 dwarf::toString(Die.find(dwarf::DW_AT_name), "")); 173 if (!Name.empty()) 174 VariableLoc.insert({Name, {LT, File, Line}}); 175 } 176 } 177 } 178 179 // Returns the pair of file name and line number describing location of data 180 // object (variable, array, etc) definition. 181 template <class ELFT> 182 Optional<std::pair<std::string, unsigned>> 183 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 184 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 185 186 // Return if we have no debug information about data object. 187 auto It = VariableLoc.find(Name); 188 if (It == VariableLoc.end()) 189 return None; 190 191 // Take file name string from line table. 192 std::string FileName; 193 if (!It->second.LT->getFileNameByIndex( 194 It->second.File, nullptr, 195 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 196 return None; 197 198 return std::make_pair(FileName, It->second.Line); 199 } 200 201 // Returns source line information for a given offset 202 // using DWARF debug info. 203 template <class ELFT> 204 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 205 uint64_t Offset) { 206 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 207 208 // Use fake address calcuated by adding section file offset and offset in 209 // section. See comments for ObjectInfo class. 210 DILineInfo Info; 211 for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) 212 if (LT->getFileLineInfoForAddress( 213 S->getOffsetInFile() + Offset, nullptr, 214 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info)) 215 return Info; 216 return None; 217 } 218 219 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 220 std::string lld::toString(const InputFile *F) { 221 if (!F) 222 return "<internal>"; 223 224 if (F->ToStringCache.empty()) { 225 if (F->ArchiveName.empty()) 226 F->ToStringCache = F->getName(); 227 else 228 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 229 } 230 return F->ToStringCache; 231 } 232 233 template <class ELFT> 234 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 235 if (ELFT::TargetEndianness == support::little) 236 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 237 else 238 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 239 240 EMachine = getObj().getHeader()->e_machine; 241 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 242 ABIVersion = getObj().getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 243 } 244 245 template <class ELFT> 246 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() { 247 return makeArrayRef(ELFSyms.begin() + FirstGlobal, ELFSyms.end()); 248 } 249 250 template <class ELFT> 251 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 252 return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this); 253 } 254 255 template <class ELFT> 256 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 257 const Elf_Shdr *Symtab) { 258 FirstGlobal = Symtab->sh_info; 259 ELFSyms = CHECK(getObj().symbols(Symtab), this); 260 if (FirstGlobal == 0 || FirstGlobal > ELFSyms.size()) 261 fatal(toString(this) + ": invalid sh_info in symbol table"); 262 263 StringTable = 264 CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this); 265 } 266 267 template <class ELFT> 268 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 269 : ELFFileBase<ELFT>(Base::ObjKind, M) { 270 this->ArchiveName = ArchiveName; 271 } 272 273 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 274 if (this->Symbols.empty()) 275 return {}; 276 return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1); 277 } 278 279 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 280 return makeArrayRef(this->Symbols).slice(this->FirstGlobal); 281 } 282 283 template <class ELFT> 284 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 285 // Read a section table. JustSymbols is usually false. 286 if (this->JustSymbols) 287 initializeJustSymbols(); 288 else 289 initializeSections(ComdatGroups); 290 291 // Read a symbol table. 292 initializeSymbols(); 293 } 294 295 // Sections with SHT_GROUP and comdat bits define comdat section groups. 296 // They are identified and deduplicated by group name. This function 297 // returns a group name. 298 template <class ELFT> 299 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 300 const Elf_Shdr &Sec) { 301 // Group signatures are stored as symbol names in object files. 302 // sh_info contains a symbol index, so we fetch a symbol and read its name. 303 if (this->ELFSyms.empty()) 304 this->initSymtab( 305 Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this)); 306 307 const Elf_Sym *Sym = 308 CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this); 309 StringRef Signature = CHECK(Sym->getName(this->StringTable), this); 310 311 // As a special case, if a symbol is a section symbol and has no name, 312 // we use a section name as a signature. 313 // 314 // Such SHT_GROUP sections are invalid from the perspective of the ELF 315 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 316 // older produce such sections as outputs for the -r option, so we need 317 // a bug-compatibility. 318 if (Signature.empty() && Sym->getType() == STT_SECTION) 319 return getSectionName(Sec); 320 return Signature; 321 } 322 323 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 324 // On a regular link we don't merge sections if -O0 (default is -O1). This 325 // sometimes makes the linker significantly faster, although the output will 326 // be bigger. 327 // 328 // Doing the same for -r would create a problem as it would combine sections 329 // with different sh_entsize. One option would be to just copy every SHF_MERGE 330 // section as is to the output. While this would produce a valid ELF file with 331 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 332 // they see two .debug_str. We could have separate logic for combining 333 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 334 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 335 // logic for -r. 336 if (Config->Optimize == 0 && !Config->Relocatable) 337 return false; 338 339 // A mergeable section with size 0 is useless because they don't have 340 // any data to merge. A mergeable string section with size 0 can be 341 // argued as invalid because it doesn't end with a null character. 342 // We'll avoid a mess by handling them as if they were non-mergeable. 343 if (Sec.sh_size == 0) 344 return false; 345 346 // Check for sh_entsize. The ELF spec is not clear about the zero 347 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 348 // the section does not hold a table of fixed-size entries". We know 349 // that Rust 1.13 produces a string mergeable section with a zero 350 // sh_entsize. Here we just accept it rather than being picky about it. 351 uint64_t EntSize = Sec.sh_entsize; 352 if (EntSize == 0) 353 return false; 354 if (Sec.sh_size % EntSize) 355 fatal(toString(this) + 356 ": SHF_MERGE section size must be a multiple of sh_entsize"); 357 358 uint64_t Flags = Sec.sh_flags; 359 if (!(Flags & SHF_MERGE)) 360 return false; 361 if (Flags & SHF_WRITE) 362 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 363 364 return true; 365 } 366 367 // This is for --just-symbols. 368 // 369 // --just-symbols is a very minor feature that allows you to link your 370 // output against other existing program, so that if you load both your 371 // program and the other program into memory, your output can refer the 372 // other program's symbols. 373 // 374 // When the option is given, we link "just symbols". The section table is 375 // initialized with null pointers. 376 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 377 ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this); 378 this->Sections.resize(ObjSections.size()); 379 380 for (const Elf_Shdr &Sec : ObjSections) { 381 if (Sec.sh_type != SHT_SYMTAB) 382 continue; 383 this->initSymtab(ObjSections, &Sec); 384 return; 385 } 386 } 387 388 template <class ELFT> 389 void ObjFile<ELFT>::initializeSections( 390 DenseSet<CachedHashStringRef> &ComdatGroups) { 391 const ELFFile<ELFT> &Obj = this->getObj(); 392 393 ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this); 394 uint64_t Size = ObjSections.size(); 395 this->Sections.resize(Size); 396 this->SectionStringTable = 397 CHECK(Obj.getSectionStringTable(ObjSections), this); 398 399 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 400 if (this->Sections[I] == &InputSection::Discarded) 401 continue; 402 const Elf_Shdr &Sec = ObjSections[I]; 403 404 if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 405 CGProfile = 406 check(Obj.template getSectionContentsAsArray<Elf_CGProfile>(&Sec)); 407 408 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 409 // if -r is given, we'll let the final link discard such sections. 410 // This is compatible with GNU. 411 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 412 if (Sec.sh_type == SHT_LLVM_ADDRSIG) { 413 // We ignore the address-significance table if we know that the object 414 // file was created by objcopy or ld -r. This is because these tools 415 // will reorder the symbols in the symbol table, invalidating the data 416 // in the address-significance table, which refers to symbols by index. 417 if (Sec.sh_link != 0) 418 this->AddrsigSec = &Sec; 419 else if (Config->ICF == ICFLevel::Safe) 420 warn(toString(this) + ": --icf=safe is incompatible with object " 421 "files created using objcopy or ld -r"); 422 } 423 this->Sections[I] = &InputSection::Discarded; 424 continue; 425 } 426 427 switch (Sec.sh_type) { 428 case SHT_GROUP: { 429 // De-duplicate section groups by their signatures. 430 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 431 this->Sections[I] = &InputSection::Discarded; 432 433 434 ArrayRef<Elf_Word> Entries = 435 CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this); 436 if (Entries.empty()) 437 fatal(toString(this) + ": empty SHT_GROUP"); 438 439 // The first word of a SHT_GROUP section contains flags. Currently, 440 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 441 // An group with the empty flag doesn't define anything; such sections 442 // are just skipped. 443 if (Entries[0] == 0) 444 continue; 445 446 if (Entries[0] != GRP_COMDAT) 447 fatal(toString(this) + ": unsupported SHT_GROUP format"); 448 449 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 450 if (IsNew) { 451 if (Config->Relocatable) 452 this->Sections[I] = createInputSection(Sec); 453 continue; 454 } 455 456 // Otherwise, discard group members. 457 for (uint32_t SecIndex : Entries.slice(1)) { 458 if (SecIndex >= Size) 459 fatal(toString(this) + 460 ": invalid section index in group: " + Twine(SecIndex)); 461 this->Sections[SecIndex] = &InputSection::Discarded; 462 } 463 break; 464 } 465 case SHT_SYMTAB: 466 this->initSymtab(ObjSections, &Sec); 467 break; 468 case SHT_SYMTAB_SHNDX: 469 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); 470 break; 471 case SHT_STRTAB: 472 case SHT_NULL: 473 break; 474 default: 475 this->Sections[I] = createInputSection(Sec); 476 } 477 478 // .ARM.exidx sections have a reverse dependency on the InputSection they 479 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 480 if (Sec.sh_flags & SHF_LINK_ORDER) { 481 InputSectionBase *LinkSec = nullptr; 482 if (Sec.sh_link < this->Sections.size()) 483 LinkSec = this->Sections[Sec.sh_link]; 484 if (!LinkSec) 485 fatal(toString(this) + 486 ": invalid sh_link index: " + Twine(Sec.sh_link)); 487 488 InputSection *IS = cast<InputSection>(this->Sections[I]); 489 LinkSec->DependentSections.push_back(IS); 490 if (!isa<InputSection>(LinkSec)) 491 error("a section " + IS->Name + 492 " with SHF_LINK_ORDER should not refer a non-regular " 493 "section: " + 494 toString(LinkSec)); 495 } 496 } 497 } 498 499 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 500 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 501 // the input objects have been compiled. 502 static void updateARMVFPArgs(const ARMAttributeParser &Attributes, 503 const InputFile *F) { 504 if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 505 // If an ABI tag isn't present then it is implicitly given the value of 0 506 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 507 // including some in glibc that don't use FP args (and should have value 3) 508 // don't have the attribute so we do not consider an implicit value of 0 509 // as a clash. 510 return; 511 512 unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 513 ARMVFPArgKind Arg; 514 switch (VFPArgs) { 515 case ARMBuildAttrs::BaseAAPCS: 516 Arg = ARMVFPArgKind::Base; 517 break; 518 case ARMBuildAttrs::HardFPAAPCS: 519 Arg = ARMVFPArgKind::VFP; 520 break; 521 case ARMBuildAttrs::ToolChainFPPCS: 522 // Tool chain specific convention that conforms to neither AAPCS variant. 523 Arg = ARMVFPArgKind::ToolChain; 524 break; 525 case ARMBuildAttrs::CompatibleFPAAPCS: 526 // Object compatible with all conventions. 527 return; 528 default: 529 error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs)); 530 return; 531 } 532 // Follow ld.bfd and error if there is a mix of calling conventions. 533 if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default) 534 error(toString(F) + ": incompatible Tag_ABI_VFP_args"); 535 else 536 Config->ARMVFPArgs = Arg; 537 } 538 539 // The ARM support in lld makes some use of instructions that are not available 540 // on all ARM architectures. Namely: 541 // - Use of BLX instruction for interworking between ARM and Thumb state. 542 // - Use of the extended Thumb branch encoding in relocation. 543 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 544 // The ARM Attributes section contains information about the architecture chosen 545 // at compile time. We follow the convention that if at least one input object 546 // is compiled with an architecture that supports these features then lld is 547 // permitted to use them. 548 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { 549 if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 550 return; 551 auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 552 switch (Arch) { 553 case ARMBuildAttrs::Pre_v4: 554 case ARMBuildAttrs::v4: 555 case ARMBuildAttrs::v4T: 556 // Architectures prior to v5 do not support BLX instruction 557 break; 558 case ARMBuildAttrs::v5T: 559 case ARMBuildAttrs::v5TE: 560 case ARMBuildAttrs::v5TEJ: 561 case ARMBuildAttrs::v6: 562 case ARMBuildAttrs::v6KZ: 563 case ARMBuildAttrs::v6K: 564 Config->ARMHasBlx = true; 565 // Architectures used in pre-Cortex processors do not support 566 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 567 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 568 break; 569 default: 570 // All other Architectures have BLX and extended branch encoding 571 Config->ARMHasBlx = true; 572 Config->ARMJ1J2BranchEncoding = true; 573 if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) 574 // All Architectures used in Cortex processors with the exception 575 // of v6-M and v6S-M have the MOVT and MOVW instructions. 576 Config->ARMHasMovtMovw = true; 577 break; 578 } 579 } 580 581 template <class ELFT> 582 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 583 uint32_t Idx = Sec.sh_info; 584 if (Idx >= this->Sections.size()) 585 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 586 InputSectionBase *Target = this->Sections[Idx]; 587 588 // Strictly speaking, a relocation section must be included in the 589 // group of the section it relocates. However, LLVM 3.3 and earlier 590 // would fail to do so, so we gracefully handle that case. 591 if (Target == &InputSection::Discarded) 592 return nullptr; 593 594 if (!Target) 595 fatal(toString(this) + ": unsupported relocation reference"); 596 return Target; 597 } 598 599 // Create a regular InputSection class that has the same contents 600 // as a given section. 601 static InputSection *toRegularSection(MergeInputSection *Sec) { 602 return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment, 603 Sec->data(), Sec->Name); 604 } 605 606 template <class ELFT> 607 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 608 StringRef Name = getSectionName(Sec); 609 610 switch (Sec.sh_type) { 611 case SHT_ARM_ATTRIBUTES: { 612 if (Config->EMachine != EM_ARM) 613 break; 614 ARMAttributeParser Attributes; 615 ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); 616 Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind); 617 updateSupportedARMFeatures(Attributes); 618 updateARMVFPArgs(Attributes, this); 619 620 // FIXME: Retain the first attribute section we see. The eglibc ARM 621 // dynamic loaders require the presence of an attribute section for dlopen 622 // to work. In a full implementation we would merge all attribute sections. 623 if (In.ARMAttributes == nullptr) { 624 In.ARMAttributes = make<InputSection>(*this, Sec, Name); 625 return In.ARMAttributes; 626 } 627 return &InputSection::Discarded; 628 } 629 case SHT_RELA: 630 case SHT_REL: { 631 // Find a relocation target section and associate this section with that. 632 // Target may have been discarded if it is in a different section group 633 // and the group is discarded, even though it's a violation of the 634 // spec. We handle that situation gracefully by discarding dangling 635 // relocation sections. 636 InputSectionBase *Target = getRelocTarget(Sec); 637 if (!Target) 638 return nullptr; 639 640 // This section contains relocation information. 641 // If -r is given, we do not interpret or apply relocation 642 // but just copy relocation sections to output. 643 if (Config->Relocatable) { 644 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 645 // We want to add a dependency to target, similar like we do for 646 // -emit-relocs below. This is useful for the case when linker script 647 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 648 // -r, but we faced it in the Linux kernel and have to handle such case 649 // and not to crash. 650 Target->DependentSections.push_back(RelocSec); 651 return RelocSec; 652 } 653 654 if (Target->FirstRelocation) 655 fatal(toString(this) + 656 ": multiple relocation sections to one section are not supported"); 657 658 // ELF spec allows mergeable sections with relocations, but they are 659 // rare, and it is in practice hard to merge such sections by contents, 660 // because applying relocations at end of linking changes section 661 // contents. So, we simply handle such sections as non-mergeable ones. 662 // Degrading like this is acceptable because section merging is optional. 663 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 664 Target = toRegularSection(MS); 665 this->Sections[Sec.sh_info] = Target; 666 } 667 668 if (Sec.sh_type == SHT_RELA) { 669 ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this); 670 Target->FirstRelocation = Rels.begin(); 671 Target->NumRelocations = Rels.size(); 672 Target->AreRelocsRela = true; 673 } else { 674 ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this); 675 Target->FirstRelocation = Rels.begin(); 676 Target->NumRelocations = Rels.size(); 677 Target->AreRelocsRela = false; 678 } 679 assert(isUInt<31>(Target->NumRelocations)); 680 681 // Relocation sections processed by the linker are usually removed 682 // from the output, so returning `nullptr` for the normal case. 683 // However, if -emit-relocs is given, we need to leave them in the output. 684 // (Some post link analysis tools need this information.) 685 if (Config->EmitRelocs) { 686 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 687 // We will not emit relocation section if target was discarded. 688 Target->DependentSections.push_back(RelocSec); 689 return RelocSec; 690 } 691 return nullptr; 692 } 693 } 694 695 // The GNU linker uses .note.GNU-stack section as a marker indicating 696 // that the code in the object file does not expect that the stack is 697 // executable (in terms of NX bit). If all input files have the marker, 698 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 699 // make the stack non-executable. Most object files have this section as 700 // of 2017. 701 // 702 // But making the stack non-executable is a norm today for security 703 // reasons. Failure to do so may result in a serious security issue. 704 // Therefore, we make LLD always add PT_GNU_STACK unless it is 705 // explicitly told to do otherwise (by -z execstack). Because the stack 706 // executable-ness is controlled solely by command line options, 707 // .note.GNU-stack sections are simply ignored. 708 if (Name == ".note.GNU-stack") 709 return &InputSection::Discarded; 710 711 // Split stacks is a feature to support a discontiguous stack, 712 // commonly used in the programming language Go. For the details, 713 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 714 // for split stack will include a .note.GNU-split-stack section. 715 if (Name == ".note.GNU-split-stack") { 716 if (Config->Relocatable) { 717 error("cannot mix split-stack and non-split-stack in a relocatable link"); 718 return &InputSection::Discarded; 719 } 720 this->SplitStack = true; 721 return &InputSection::Discarded; 722 } 723 724 // An object file cmpiled for split stack, but where some of the 725 // functions were compiled with the no_split_stack_attribute will 726 // include a .note.GNU-no-split-stack section. 727 if (Name == ".note.GNU-no-split-stack") { 728 this->SomeNoSplitStack = true; 729 return &InputSection::Discarded; 730 } 731 732 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 733 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 734 // sections. Drop those sections to avoid duplicate symbol errors. 735 // FIXME: This is glibc PR20543, we should remove this hack once that has been 736 // fixed for a while. 737 if (Name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 738 Name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 739 return &InputSection::Discarded; 740 741 // If we are creating a new .build-id section, strip existing .build-id 742 // sections so that the output won't have more than one .build-id. 743 // This is not usually a problem because input object files normally don't 744 // have .build-id sections, but you can create such files by 745 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 746 if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None) 747 return &InputSection::Discarded; 748 749 // The linker merges EH (exception handling) frames and creates a 750 // .eh_frame_hdr section for runtime. So we handle them with a special 751 // class. For relocatable outputs, they are just passed through. 752 if (Name == ".eh_frame" && !Config->Relocatable) 753 return make<EhInputSection>(*this, Sec, Name); 754 755 if (shouldMerge(Sec)) 756 return make<MergeInputSection>(*this, Sec, Name); 757 return make<InputSection>(*this, Sec, Name); 758 } 759 760 template <class ELFT> 761 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 762 return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this); 763 } 764 765 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 766 this->Symbols.reserve(this->ELFSyms.size()); 767 for (const Elf_Sym &Sym : this->ELFSyms) 768 this->Symbols.push_back(createSymbol(&Sym)); 769 } 770 771 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { 772 int Binding = Sym->getBinding(); 773 774 uint32_t SecIdx = this->getSectionIndex(*Sym); 775 if (SecIdx >= this->Sections.size()) 776 fatal(toString(this) + ": invalid section index: " + Twine(SecIdx)); 777 778 InputSectionBase *Sec = this->Sections[SecIdx]; 779 uint8_t StOther = Sym->st_other; 780 uint8_t Type = Sym->getType(); 781 uint64_t Value = Sym->st_value; 782 uint64_t Size = Sym->st_size; 783 784 if (Binding == STB_LOCAL) { 785 if (Sym->getType() == STT_FILE) 786 SourceFile = CHECK(Sym->getName(this->StringTable), this); 787 788 if (this->StringTable.size() <= Sym->st_name) 789 fatal(toString(this) + ": invalid symbol name offset"); 790 791 StringRefZ Name = this->StringTable.data() + Sym->st_name; 792 if (Sym->st_shndx == SHN_UNDEF) 793 return make<Undefined>(this, Name, Binding, StOther, Type); 794 795 return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); 796 } 797 798 StringRef Name = CHECK(Sym->getName(this->StringTable), this); 799 800 switch (Sym->st_shndx) { 801 case SHN_UNDEF: 802 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 803 /*CanOmitFromDynSym=*/false, this); 804 case SHN_COMMON: 805 if (Value == 0 || Value >= UINT32_MAX) 806 fatal(toString(this) + ": common symbol '" + Name + 807 "' has invalid alignment: " + Twine(Value)); 808 return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this); 809 } 810 811 switch (Binding) { 812 default: 813 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 814 case STB_GLOBAL: 815 case STB_WEAK: 816 case STB_GNU_UNIQUE: 817 if (Sec == &InputSection::Discarded) 818 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 819 /*CanOmitFromDynSym=*/false, this); 820 return Symtab->addDefined(Name, StOther, Type, Value, Size, Binding, Sec, 821 this); 822 } 823 } 824 825 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 826 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 827 File(std::move(File)) {} 828 829 template <class ELFT> void ArchiveFile::parse() { 830 for (const Archive::Symbol &Sym : File->symbols()) 831 Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym); 832 } 833 834 // Returns a buffer pointing to a member file containing a given symbol. 835 InputFile *ArchiveFile::fetch(const Archive::Symbol &Sym) { 836 Archive::Child C = 837 CHECK(Sym.getMember(), toString(this) + 838 ": could not get the member for symbol " + 839 Sym.getName()); 840 841 if (!Seen.insert(C.getChildOffset()).second) 842 return nullptr; 843 844 MemoryBufferRef MB = 845 CHECK(C.getMemoryBufferRef(), 846 toString(this) + 847 ": could not get the buffer for the member defining symbol " + 848 Sym.getName()); 849 850 if (Tar && C.getParent()->isThin()) 851 Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer()); 852 853 InputFile *File = createObjectFile( 854 MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset()); 855 File->GroupId = GroupId; 856 return File; 857 } 858 859 template <class ELFT> 860 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 861 : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), 862 IsNeeded(!Config->AsNeeded) {} 863 864 // Partially parse the shared object file so that we can call 865 // getSoName on this object. 866 template <class ELFT> void SharedFile<ELFT>::parseDynamic() { 867 const Elf_Shdr *DynamicSec = nullptr; 868 const ELFFile<ELFT> Obj = this->getObj(); 869 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 870 871 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 872 for (const Elf_Shdr &Sec : Sections) { 873 switch (Sec.sh_type) { 874 default: 875 continue; 876 case SHT_DYNSYM: 877 this->initSymtab(Sections, &Sec); 878 break; 879 case SHT_DYNAMIC: 880 DynamicSec = &Sec; 881 break; 882 case SHT_SYMTAB_SHNDX: 883 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this); 884 break; 885 case SHT_GNU_versym: 886 this->VersymSec = &Sec; 887 break; 888 case SHT_GNU_verdef: 889 this->VerdefSec = &Sec; 890 break; 891 } 892 } 893 894 if (this->VersymSec && this->ELFSyms.empty()) 895 error("SHT_GNU_versym should be associated with symbol table"); 896 897 // Search for a DT_SONAME tag to initialize this->SoName. 898 if (!DynamicSec) 899 return; 900 ArrayRef<Elf_Dyn> Arr = 901 CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this); 902 for (const Elf_Dyn &Dyn : Arr) { 903 if (Dyn.d_tag == DT_NEEDED) { 904 uint64_t Val = Dyn.getVal(); 905 if (Val >= this->StringTable.size()) 906 fatal(toString(this) + ": invalid DT_NEEDED entry"); 907 DtNeeded.push_back(this->StringTable.data() + Val); 908 } else if (Dyn.d_tag == DT_SONAME) { 909 uint64_t Val = Dyn.getVal(); 910 if (Val >= this->StringTable.size()) 911 fatal(toString(this) + ": invalid DT_SONAME entry"); 912 SoName = this->StringTable.data() + Val; 913 } 914 } 915 } 916 917 // Parses ".gnu.version" section which is a parallel array for the symbol table. 918 // If a given file doesn't have ".gnu.version" section, returns VER_NDX_GLOBAL. 919 template <class ELFT> std::vector<uint32_t> SharedFile<ELFT>::parseVersyms() { 920 size_t Size = this->ELFSyms.size() - this->FirstGlobal; 921 if (!VersymSec) 922 return std::vector<uint32_t>(Size, VER_NDX_GLOBAL); 923 924 const char *Base = this->MB.getBuffer().data(); 925 const Elf_Versym *Versym = 926 reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 927 this->FirstGlobal; 928 929 std::vector<uint32_t> Ret(Size); 930 for (size_t I = 0; I < Size; ++I) 931 Ret[I] = Versym[I].vs_index; 932 return Ret; 933 } 934 935 // Parse the version definitions in the object file if present. Returns a vector 936 // whose nth element contains a pointer to the Elf_Verdef for version identifier 937 // n. Version identifiers that are not definitions map to nullptr. 938 template <class ELFT> 939 std::vector<const typename ELFT::Verdef *> SharedFile<ELFT>::parseVerdefs() { 940 if (!VerdefSec) 941 return {}; 942 943 // We cannot determine the largest verdef identifier without inspecting 944 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 945 // sequentially starting from 1, so we predict that the largest identifier 946 // will be VerdefCount. 947 unsigned VerdefCount = VerdefSec->sh_info; 948 std::vector<const Elf_Verdef *> Verdefs(VerdefCount + 1); 949 950 // Build the Verdefs array by following the chain of Elf_Verdef objects 951 // from the start of the .gnu.version_d section. 952 const char *Base = this->MB.getBuffer().data(); 953 const char *Verdef = Base + VerdefSec->sh_offset; 954 for (unsigned I = 0; I != VerdefCount; ++I) { 955 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 956 Verdef += CurVerdef->vd_next; 957 unsigned VerdefIndex = CurVerdef->vd_ndx; 958 Verdefs.resize(VerdefIndex + 1); 959 Verdefs[VerdefIndex] = CurVerdef; 960 } 961 962 return Verdefs; 963 } 964 965 // We do not usually care about alignments of data in shared object 966 // files because the loader takes care of it. However, if we promote a 967 // DSO symbol to point to .bss due to copy relocation, we need to keep 968 // the original alignment requirements. We infer it in this function. 969 template <class ELFT> 970 uint32_t SharedFile<ELFT>::getAlignment(ArrayRef<Elf_Shdr> Sections, 971 const Elf_Sym &Sym) { 972 uint64_t Ret = UINT64_MAX; 973 if (Sym.st_value) 974 Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 975 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) 976 Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign); 977 return (Ret > UINT32_MAX) ? 0 : Ret; 978 } 979 980 // Fully parse the shared object file. This must be called after parseDynamic(). 981 // 982 // This function parses symbol versions. If a DSO has version information, 983 // the file has a ".gnu.version_d" section which contains symbol version 984 // definitions. Each symbol is associated to one version through a table in 985 // ".gnu.version" section. That table is a parallel array for the symbol 986 // table, and each table entry contains an index in ".gnu.version_d". 987 // 988 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 989 // VER_NDX_GLOBAL. There's no table entry for these special versions in 990 // ".gnu.version_d". 991 // 992 // The file format for symbol versioning is perhaps a bit more complicated 993 // than necessary, but you can easily understand the code if you wrap your 994 // head around the data structure described above. 995 template <class ELFT> void SharedFile<ELFT>::parseRest() { 996 Verdefs = parseVerdefs(); // parse .gnu.version_d 997 std::vector<uint32_t> Versyms = parseVersyms(); // parse .gnu.version 998 ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this); 999 1000 // System libraries can have a lot of symbols with versions. Using a 1001 // fixed buffer for computing the versions name (foo@ver) can save a 1002 // lot of allocations. 1003 SmallString<0> VersionedNameBuffer; 1004 1005 // Add symbols to the symbol table. 1006 ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms(); 1007 for (size_t I = 0; I < Syms.size(); ++I) { 1008 const Elf_Sym &Sym = Syms[I]; 1009 1010 // ELF spec requires that all local symbols precede weak or global 1011 // symbols in each symbol table, and the index of first non-local symbol 1012 // is stored to sh_info. If a local symbol appears after some non-local 1013 // symbol, that's a violation of the spec. 1014 StringRef Name = CHECK(Sym.getName(this->StringTable), this); 1015 if (Sym.getBinding() == STB_LOCAL) { 1016 warn("found local symbol '" + Name + 1017 "' in global part of symbol table in file " + toString(this)); 1018 continue; 1019 } 1020 1021 if (Sym.isUndefined()) { 1022 Symbol *S = Symtab->addUndefined<ELFT>(Name, Sym.getBinding(), 1023 Sym.st_other, Sym.getType(), 1024 /*CanOmitFromDynSym=*/false, this); 1025 S->ExportDynamic = true; 1026 continue; 1027 } 1028 1029 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1030 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1031 // workaround for this bug. 1032 uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN; 1033 if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL && 1034 Name == "_gp_disp") 1035 continue; 1036 1037 uint64_t Alignment = getAlignment(Sections, Sym); 1038 if (!(Versyms[I] & VERSYM_HIDDEN)) 1039 Symtab->addShared(Name, *this, Sym, Alignment, Idx); 1040 1041 // Also add the symbol with the versioned name to handle undefined symbols 1042 // with explicit versions. 1043 if (Idx == VER_NDX_GLOBAL) 1044 continue; 1045 1046 if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) { 1047 error("corrupt input file: version definition index " + Twine(Idx) + 1048 " for symbol " + Name + " is out of bounds\n>>> defined in " + 1049 toString(this)); 1050 continue; 1051 } 1052 1053 StringRef VerName = 1054 this->StringTable.data() + Verdefs[Idx]->getAux()->vda_name; 1055 VersionedNameBuffer.clear(); 1056 Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer); 1057 Symtab->addShared(Saver.save(Name), *this, Sym, Alignment, Idx); 1058 } 1059 } 1060 1061 static ELFKind getBitcodeELFKind(const Triple &T) { 1062 if (T.isLittleEndian()) 1063 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1064 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1065 } 1066 1067 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 1068 switch (T.getArch()) { 1069 case Triple::aarch64: 1070 return EM_AARCH64; 1071 case Triple::amdgcn: 1072 case Triple::r600: 1073 return EM_AMDGPU; 1074 case Triple::arm: 1075 case Triple::thumb: 1076 return EM_ARM; 1077 case Triple::avr: 1078 return EM_AVR; 1079 case Triple::mips: 1080 case Triple::mipsel: 1081 case Triple::mips64: 1082 case Triple::mips64el: 1083 return EM_MIPS; 1084 case Triple::msp430: 1085 return EM_MSP430; 1086 case Triple::ppc: 1087 return EM_PPC; 1088 case Triple::ppc64: 1089 case Triple::ppc64le: 1090 return EM_PPC64; 1091 case Triple::x86: 1092 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 1093 case Triple::x86_64: 1094 return EM_X86_64; 1095 default: 1096 error(Path + ": could not infer e_machine from bitcode target triple " + 1097 T.str()); 1098 return EM_NONE; 1099 } 1100 } 1101 1102 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 1103 uint64_t OffsetInArchive) 1104 : InputFile(BitcodeKind, MB) { 1105 this->ArchiveName = ArchiveName; 1106 1107 std::string Path = MB.getBufferIdentifier().str(); 1108 if (Config->ThinLTOIndexOnly) 1109 Path = replaceThinLTOSuffix(MB.getBufferIdentifier()); 1110 1111 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1112 // name. If two archives define two members with the same name, this 1113 // causes a collision which result in only one of the objects being taken 1114 // into consideration at LTO time (which very likely causes undefined 1115 // symbols later in the link stage). So we append file offset to make 1116 // filename unique. 1117 MemoryBufferRef MBRef( 1118 MB.getBuffer(), 1119 Saver.save(ArchiveName + Path + 1120 (ArchiveName.empty() ? "" : utostr(OffsetInArchive)))); 1121 1122 Obj = CHECK(lto::InputFile::create(MBRef), this); 1123 1124 Triple T(Obj->getTargetTriple()); 1125 EKind = getBitcodeELFKind(T); 1126 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 1127 } 1128 1129 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 1130 switch (GvVisibility) { 1131 case GlobalValue::DefaultVisibility: 1132 return STV_DEFAULT; 1133 case GlobalValue::HiddenVisibility: 1134 return STV_HIDDEN; 1135 case GlobalValue::ProtectedVisibility: 1136 return STV_PROTECTED; 1137 } 1138 llvm_unreachable("unknown visibility"); 1139 } 1140 1141 template <class ELFT> 1142 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 1143 const lto::InputFile::Symbol &ObjSym, 1144 BitcodeFile &F) { 1145 StringRef Name = Saver.save(ObjSym.getName()); 1146 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1147 1148 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 1149 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 1150 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 1151 1152 int C = ObjSym.getComdatIndex(); 1153 if (C != -1 && !KeptComdats[C]) 1154 return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type, 1155 CanOmitFromDynSym, &F); 1156 1157 if (ObjSym.isUndefined()) 1158 return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type, 1159 CanOmitFromDynSym, &F); 1160 1161 if (ObjSym.isCommon()) 1162 return Symtab->addCommon(Name, ObjSym.getCommonSize(), 1163 ObjSym.getCommonAlignment(), Binding, Visibility, 1164 STT_OBJECT, F); 1165 1166 return Symtab->addBitcode(Name, Binding, Visibility, Type, CanOmitFromDynSym, 1167 F); 1168 } 1169 1170 template <class ELFT> 1171 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 1172 std::vector<bool> KeptComdats; 1173 for (StringRef S : Obj->getComdatTable()) 1174 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 1175 1176 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 1177 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this)); 1178 } 1179 1180 static ELFKind getELFKind(MemoryBufferRef MB) { 1181 unsigned char Size; 1182 unsigned char Endian; 1183 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 1184 1185 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 1186 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 1187 if (Size != ELFCLASS32 && Size != ELFCLASS64) 1188 fatal(MB.getBufferIdentifier() + ": invalid file class"); 1189 1190 size_t BufSize = MB.getBuffer().size(); 1191 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 1192 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 1193 fatal(MB.getBufferIdentifier() + ": file is too short"); 1194 1195 if (Size == ELFCLASS32) 1196 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 1197 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 1198 } 1199 1200 void BinaryFile::parse() { 1201 ArrayRef<uint8_t> Data = arrayRefFromStringRef(MB.getBuffer()); 1202 auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1203 8, Data, ".data"); 1204 Sections.push_back(Section); 1205 1206 // For each input file foo that is embedded to a result as a binary 1207 // blob, we define _binary_foo_{start,end,size} symbols, so that 1208 // user programs can access blobs by name. Non-alphanumeric 1209 // characters in a filename are replaced with underscore. 1210 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 1211 for (size_t I = 0; I < S.size(); ++I) 1212 if (!isAlnum(S[I])) 1213 S[I] = '_'; 1214 1215 Symtab->addDefined(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0, 1216 STB_GLOBAL, Section, nullptr); 1217 Symtab->addDefined(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, 1218 Data.size(), 0, STB_GLOBAL, Section, nullptr); 1219 Symtab->addDefined(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, 1220 Data.size(), 0, STB_GLOBAL, nullptr, nullptr); 1221 } 1222 1223 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 1224 uint64_t OffsetInArchive) { 1225 if (isBitcode(MB)) 1226 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 1227 1228 switch (getELFKind(MB)) { 1229 case ELF32LEKind: 1230 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 1231 case ELF32BEKind: 1232 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 1233 case ELF64LEKind: 1234 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 1235 case ELF64BEKind: 1236 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 1237 default: 1238 llvm_unreachable("getELFKind"); 1239 } 1240 } 1241 1242 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 1243 switch (getELFKind(MB)) { 1244 case ELF32LEKind: 1245 return make<SharedFile<ELF32LE>>(MB, DefaultSoName); 1246 case ELF32BEKind: 1247 return make<SharedFile<ELF32BE>>(MB, DefaultSoName); 1248 case ELF64LEKind: 1249 return make<SharedFile<ELF64LE>>(MB, DefaultSoName); 1250 case ELF64BEKind: 1251 return make<SharedFile<ELF64BE>>(MB, DefaultSoName); 1252 default: 1253 llvm_unreachable("getELFKind"); 1254 } 1255 } 1256 1257 MemoryBufferRef LazyObjFile::getBuffer() { 1258 if (AddedToLink) 1259 return MemoryBufferRef(); 1260 AddedToLink = true; 1261 return MB; 1262 } 1263 1264 InputFile *LazyObjFile::fetch() { 1265 MemoryBufferRef MBRef = getBuffer(); 1266 if (MBRef.getBuffer().empty()) 1267 return nullptr; 1268 1269 InputFile *File = createObjectFile(MBRef, ArchiveName, OffsetInArchive); 1270 File->GroupId = GroupId; 1271 return File; 1272 } 1273 1274 template <class ELFT> void LazyObjFile::parse() { 1275 // A lazy object file wraps either a bitcode file or an ELF file. 1276 if (isBitcode(this->MB)) { 1277 std::unique_ptr<lto::InputFile> Obj = 1278 CHECK(lto::InputFile::create(this->MB), this); 1279 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 1280 if (!Sym.isUndefined()) 1281 Symtab->addLazyObject<ELFT>(Saver.save(Sym.getName()), *this); 1282 return; 1283 } 1284 1285 if (getELFKind(this->MB) != Config->EKind) { 1286 error("incompatible file: " + this->MB.getBufferIdentifier()); 1287 return; 1288 } 1289 1290 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer())); 1291 ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this); 1292 1293 for (const typename ELFT::Shdr &Sec : Sections) { 1294 if (Sec.sh_type != SHT_SYMTAB) 1295 continue; 1296 1297 typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this); 1298 uint32_t FirstGlobal = Sec.sh_info; 1299 StringRef StringTable = 1300 CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); 1301 1302 for (const typename ELFT::Sym &Sym : Syms.slice(FirstGlobal)) 1303 if (Sym.st_shndx != SHN_UNDEF) 1304 Symtab->addLazyObject<ELFT>(CHECK(Sym.getName(StringTable), this), 1305 *this); 1306 return; 1307 } 1308 } 1309 1310 std::string elf::replaceThinLTOSuffix(StringRef Path) { 1311 StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first; 1312 StringRef Repl = Config->ThinLTOObjectSuffixReplace.second; 1313 1314 if (Path.consume_back(Suffix)) 1315 return (Path + Repl).str(); 1316 return Path; 1317 } 1318 1319 template void ArchiveFile::parse<ELF32LE>(); 1320 template void ArchiveFile::parse<ELF32BE>(); 1321 template void ArchiveFile::parse<ELF64LE>(); 1322 template void ArchiveFile::parse<ELF64BE>(); 1323 1324 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1325 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1326 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1327 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1328 1329 template void LazyObjFile::parse<ELF32LE>(); 1330 template void LazyObjFile::parse<ELF32BE>(); 1331 template void LazyObjFile::parse<ELF64LE>(); 1332 template void LazyObjFile::parse<ELF64BE>(); 1333 1334 template class elf::ELFFileBase<ELF32LE>; 1335 template class elf::ELFFileBase<ELF32BE>; 1336 template class elf::ELFFileBase<ELF64LE>; 1337 template class elf::ELFFileBase<ELF64BE>; 1338 1339 template class elf::ObjFile<ELF32LE>; 1340 template class elf::ObjFile<ELF32BE>; 1341 template class elf::ObjFile<ELF64LE>; 1342 template class elf::ObjFile<ELF64BE>; 1343 1344 template class elf::SharedFile<ELF32LE>; 1345 template class elf::SharedFile<ELF32BE>; 1346 template class elf::SharedFile<ELF64LE>; 1347 template class elf::SharedFile<ELF64BE>; 1348