1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/ErrorHandler.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Path.h"
29 #include "llvm/Support/TarWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace llvm;
33 using namespace llvm::ELF;
34 using namespace llvm::object;
35 using namespace llvm::sys;
36 using namespace llvm::sys::fs;
37 
38 using namespace lld;
39 using namespace lld::elf;
40 
41 std::vector<BinaryFile *> elf::BinaryFiles;
42 std::vector<BitcodeFile *> elf::BitcodeFiles;
43 std::vector<InputFile *> elf::ObjectFiles;
44 std::vector<InputFile *> elf::SharedFiles;
45 
46 TarWriter *elf::Tar;
47 
48 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {}
49 
50 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
51   // The --chroot option changes our virtual root directory.
52   // This is useful when you are dealing with files created by --reproduce.
53   if (!Config->Chroot.empty() && Path.startswith("/"))
54     Path = Saver.save(Config->Chroot + Path);
55 
56   log(Path);
57 
58   auto MBOrErr = MemoryBuffer::getFile(Path);
59   if (auto EC = MBOrErr.getError()) {
60     error("cannot open " + Path + ": " + EC.message());
61     return None;
62   }
63 
64   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
65   MemoryBufferRef MBRef = MB->getMemBufferRef();
66   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
67 
68   if (Tar)
69     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
70   return MBRef;
71 }
72 
73 // Concatenates arguments to construct a string representing an error location.
74 static std::string createFileLineMsg(StringRef Path, unsigned Line) {
75   std::string Filename = path::filename(Path);
76   std::string Lineno = ":" + std::to_string(Line);
77   if (Filename == Path)
78     return Filename + Lineno;
79   return Filename + Lineno + " (" + Path.str() + Lineno + ")";
80 }
81 
82 template <class ELFT>
83 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym,
84                                 InputSectionBase &Sec, uint64_t Offset) {
85   // In DWARF, functions and variables are stored to different places.
86   // First, lookup a function for a given offset.
87   if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset))
88     return createFileLineMsg(Info->FileName, Info->Line);
89 
90   // If it failed, lookup again as a variable.
91   if (Optional<std::pair<std::string, unsigned>> FileLine =
92           File.getVariableLoc(Sym.getName()))
93     return createFileLineMsg(FileLine->first, FileLine->second);
94 
95   // File.SourceFile contains STT_FILE symbol, and that is a last resort.
96   return File.SourceFile;
97 }
98 
99 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec,
100                                  uint64_t Offset) {
101   if (kind() != ObjKind)
102     return "";
103   switch (Config->EKind) {
104   default:
105     llvm_unreachable("Invalid kind");
106   case ELF32LEKind:
107     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset);
108   case ELF32BEKind:
109     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset);
110   case ELF64LEKind:
111     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset);
112   case ELF64BEKind:
113     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset);
114   }
115 }
116 
117 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
118   DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this));
119   const DWARFObject &Obj = Dwarf.getDWARFObj();
120   DwarfLine.reset(new DWARFDebugLine);
121   DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE,
122                               Config->Wordsize);
123 
124   // The second parameter is offset in .debug_line section
125   // for compilation unit (CU) of interest. We have only one
126   // CU (object file), so offset is always 0.
127   const DWARFDebugLine::LineTable *LT =
128       DwarfLine->getOrParseLineTable(LineData, 0, Dwarf, nullptr);
129   if (!LT)
130     return;
131 
132   // Return if there is no debug information about CU available.
133   if (!Dwarf.getNumCompileUnits())
134     return;
135 
136   // Loop over variable records and insert them to VariableLoc.
137   DWARFCompileUnit *CU = Dwarf.getCompileUnitAtIndex(0);
138   for (const auto &Entry : CU->dies()) {
139     DWARFDie Die(CU, &Entry);
140     // Skip all tags that are not variables.
141     if (Die.getTag() != dwarf::DW_TAG_variable)
142       continue;
143 
144     // Skip if a local variable because we don't need them for generating error
145     // messages. In general, only non-local symbols can fail to be linked.
146     if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0))
147       continue;
148 
149     // Get the source filename index for the variable.
150     unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0);
151     if (!LT->hasFileAtIndex(File))
152       continue;
153 
154     // Get the line number on which the variable is declared.
155     unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0);
156 
157     // Get the name of the variable and add the collected information to
158     // VariableLoc. Usually Name is non-empty, but it can be empty if the input
159     // object file lacks some debug info.
160     StringRef Name = dwarf::toString(Die.find(dwarf::DW_AT_name), "");
161     if (!Name.empty())
162       VariableLoc.insert({Name, {File, Line}});
163   }
164 }
165 
166 // Returns the pair of file name and line number describing location of data
167 // object (variable, array, etc) definition.
168 template <class ELFT>
169 Optional<std::pair<std::string, unsigned>>
170 ObjFile<ELFT>::getVariableLoc(StringRef Name) {
171   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
172 
173   // There is always only one CU so it's offset is 0.
174   const DWARFDebugLine::LineTable *LT = DwarfLine->getLineTable(0);
175   if (!LT)
176     return None;
177 
178   // Return if we have no debug information about data object.
179   auto It = VariableLoc.find(Name);
180   if (It == VariableLoc.end())
181     return None;
182 
183   // Take file name string from line table.
184   std::string FileName;
185   if (!LT->getFileNameByIndex(
186           It->second.first /* File */, nullptr,
187           DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName))
188     return None;
189 
190   return std::make_pair(FileName, It->second.second /*Line*/);
191 }
192 
193 // Returns source line information for a given offset
194 // using DWARF debug info.
195 template <class ELFT>
196 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S,
197                                                   uint64_t Offset) {
198   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
199 
200   // The offset to CU is 0.
201   const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0);
202   if (!Tbl)
203     return None;
204 
205   // Use fake address calcuated by adding section file offset and offset in
206   // section. See comments for ObjectInfo class.
207   DILineInfo Info;
208   Tbl->getFileLineInfoForAddress(
209       S->getOffsetInFile() + Offset, nullptr,
210       DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info);
211   if (Info.Line == 0)
212     return None;
213   return Info;
214 }
215 
216 // Returns source line information for a given offset
217 // using DWARF debug info.
218 template <class ELFT>
219 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) {
220   if (Optional<DILineInfo> Info = getDILineInfo(S, Offset))
221     return Info->FileName + ":" + std::to_string(Info->Line);
222   return "";
223 }
224 
225 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
226 std::string lld::toString(const InputFile *F) {
227   if (!F)
228     return "<internal>";
229 
230   if (F->ToStringCache.empty()) {
231     if (F->ArchiveName.empty())
232       F->ToStringCache = F->getName();
233     else
234       F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
235   }
236   return F->ToStringCache;
237 }
238 
239 template <class ELFT>
240 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
241   if (ELFT::TargetEndianness == support::little)
242     EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
243   else
244     EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
245 
246   EMachine = getObj().getHeader()->e_machine;
247   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
248 }
249 
250 template <class ELFT>
251 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() {
252   return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end());
253 }
254 
255 template <class ELFT>
256 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
257   return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this);
258 }
259 
260 template <class ELFT>
261 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
262                                    const Elf_Shdr *Symtab) {
263   FirstNonLocal = Symtab->sh_info;
264   ELFSyms = CHECK(getObj().symbols(Symtab), this);
265   if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size())
266     fatal(toString(this) + ": invalid sh_info in symbol table");
267 
268   StringTable =
269       CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this);
270 }
271 
272 template <class ELFT>
273 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName)
274     : ELFFileBase<ELFT>(Base::ObjKind, M) {
275   this->ArchiveName = ArchiveName;
276 }
277 
278 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
279   if (this->Symbols.empty())
280     return {};
281   return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1);
282 }
283 
284 template <class ELFT>
285 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
286   // Read section and symbol tables.
287   initializeSections(ComdatGroups);
288   initializeSymbols();
289 }
290 
291 // Sections with SHT_GROUP and comdat bits define comdat section groups.
292 // They are identified and deduplicated by group name. This function
293 // returns a group name.
294 template <class ELFT>
295 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
296                                               const Elf_Shdr &Sec) {
297   // Group signatures are stored as symbol names in object files.
298   // sh_info contains a symbol index, so we fetch a symbol and read its name.
299   if (this->ELFSyms.empty())
300     this->initSymtab(
301         Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this));
302 
303   const Elf_Sym *Sym =
304       CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this);
305   StringRef Signature = CHECK(Sym->getName(this->StringTable), this);
306 
307   // As a special case, if a symbol is a section symbol and has no name,
308   // we use a section name as a signature.
309   //
310   // Such SHT_GROUP sections are invalid from the perspective of the ELF
311   // standard, but GNU gold 1.14 (the neweset version as of July 2017) or
312   // older produce such sections as outputs for the -r option, so we need
313   // a bug-compatibility.
314   if (Signature.empty() && Sym->getType() == STT_SECTION)
315     return getSectionName(Sec);
316   return Signature;
317 }
318 
319 template <class ELFT>
320 ArrayRef<typename ObjFile<ELFT>::Elf_Word>
321 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
322   const ELFFile<ELFT> &Obj = this->getObj();
323   ArrayRef<Elf_Word> Entries =
324       CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this);
325   if (Entries.empty() || Entries[0] != GRP_COMDAT)
326     fatal(toString(this) + ": unsupported SHT_GROUP format");
327   return Entries.slice(1);
328 }
329 
330 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
331   // We don't merge sections if -O0 (default is -O1). This makes sometimes
332   // the linker significantly faster, although the output will be bigger.
333   if (Config->Optimize == 0)
334     return false;
335 
336   // A mergeable section with size 0 is useless because they don't have
337   // any data to merge. A mergeable string section with size 0 can be
338   // argued as invalid because it doesn't end with a null character.
339   // We'll avoid a mess by handling them as if they were non-mergeable.
340   if (Sec.sh_size == 0)
341     return false;
342 
343   // Check for sh_entsize. The ELF spec is not clear about the zero
344   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
345   // the section does not hold a table of fixed-size entries". We know
346   // that Rust 1.13 produces a string mergeable section with a zero
347   // sh_entsize. Here we just accept it rather than being picky about it.
348   uint64_t EntSize = Sec.sh_entsize;
349   if (EntSize == 0)
350     return false;
351   if (Sec.sh_size % EntSize)
352     fatal(toString(this) +
353           ": SHF_MERGE section size must be a multiple of sh_entsize");
354 
355   uint64_t Flags = Sec.sh_flags;
356   if (!(Flags & SHF_MERGE))
357     return false;
358   if (Flags & SHF_WRITE)
359     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
360 
361   return true;
362 }
363 
364 template <class ELFT>
365 void ObjFile<ELFT>::initializeSections(
366     DenseSet<CachedHashStringRef> &ComdatGroups) {
367   const ELFFile<ELFT> &Obj = this->getObj();
368 
369   ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this);
370   uint64_t Size = ObjSections.size();
371   this->Sections.resize(Size);
372   this->SectionStringTable =
373       CHECK(Obj.getSectionStringTable(ObjSections), this);
374 
375   for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
376     if (this->Sections[I] == &InputSection::Discarded)
377       continue;
378     const Elf_Shdr &Sec = ObjSections[I];
379 
380     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
381     // if -r is given, we'll let the final link discard such sections.
382     // This is compatible with GNU.
383     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
384       this->Sections[I] = &InputSection::Discarded;
385       continue;
386     }
387 
388     switch (Sec.sh_type) {
389     case SHT_GROUP: {
390       // De-duplicate section groups by their signatures.
391       StringRef Signature = getShtGroupSignature(ObjSections, Sec);
392       bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second;
393       this->Sections[I] = &InputSection::Discarded;
394 
395       // If it is a new section group, we want to keep group members.
396       // Group leader sections, which contain indices of group members, are
397       // discarded because they are useless beyond this point. The only
398       // exception is the -r option because in order to produce re-linkable
399       // object files, we want to pass through basically everything.
400       if (IsNew) {
401         if (Config->Relocatable)
402           this->Sections[I] = createInputSection(Sec);
403         continue;
404       }
405 
406       // Otherwise, discard group members.
407       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
408         if (SecIndex >= Size)
409           fatal(toString(this) +
410                 ": invalid section index in group: " + Twine(SecIndex));
411         this->Sections[SecIndex] = &InputSection::Discarded;
412       }
413       break;
414     }
415     case SHT_SYMTAB:
416       this->initSymtab(ObjSections, &Sec);
417       break;
418     case SHT_SYMTAB_SHNDX:
419       this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this);
420       break;
421     case SHT_STRTAB:
422     case SHT_NULL:
423       break;
424     default:
425       this->Sections[I] = createInputSection(Sec);
426     }
427 
428     // .ARM.exidx sections have a reverse dependency on the InputSection they
429     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
430     if (Sec.sh_flags & SHF_LINK_ORDER) {
431       if (Sec.sh_link >= this->Sections.size())
432         fatal(toString(this) +
433               ": invalid sh_link index: " + Twine(Sec.sh_link));
434 
435       InputSectionBase *LinkSec = this->Sections[Sec.sh_link];
436       InputSection *IS = cast<InputSection>(this->Sections[I]);
437       LinkSec->DependentSections.push_back(IS);
438       if (!isa<InputSection>(LinkSec))
439         error("a section " + IS->Name +
440               " with SHF_LINK_ORDER should not refer a non-regular "
441               "section: " +
442               toString(LinkSec));
443     }
444   }
445 }
446 
447 // The ARM support in lld makes some use of instructions that are not available
448 // on all ARM architectures. Namely:
449 // - Use of BLX instruction for interworking between ARM and Thumb state.
450 // - Use of the extended Thumb branch encoding in relocation.
451 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
452 // The ARM Attributes section contains information about the architecture chosen
453 // at compile time. We follow the convention that if at least one input object
454 // is compiled with an architecture that supports these features then lld is
455 // permitted to use them.
456 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) {
457   if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
458     return;
459   auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
460   switch (Arch) {
461   case ARMBuildAttrs::Pre_v4:
462   case ARMBuildAttrs::v4:
463   case ARMBuildAttrs::v4T:
464     // Architectures prior to v5 do not support BLX instruction
465     break;
466   case ARMBuildAttrs::v5T:
467   case ARMBuildAttrs::v5TE:
468   case ARMBuildAttrs::v5TEJ:
469   case ARMBuildAttrs::v6:
470   case ARMBuildAttrs::v6KZ:
471   case ARMBuildAttrs::v6K:
472     Config->ARMHasBlx = true;
473     // Architectures used in pre-Cortex processors do not support
474     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
475     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
476     break;
477   default:
478     // All other Architectures have BLX and extended branch encoding
479     Config->ARMHasBlx = true;
480     Config->ARMJ1J2BranchEncoding = true;
481     if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M)
482       // All Architectures used in Cortex processors with the exception
483       // of v6-M and v6S-M have the MOVT and MOVW instructions.
484       Config->ARMHasMovtMovw = true;
485     break;
486   }
487 }
488 
489 template <class ELFT>
490 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
491   uint32_t Idx = Sec.sh_info;
492   if (Idx >= this->Sections.size())
493     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
494   InputSectionBase *Target = this->Sections[Idx];
495 
496   // Strictly speaking, a relocation section must be included in the
497   // group of the section it relocates. However, LLVM 3.3 and earlier
498   // would fail to do so, so we gracefully handle that case.
499   if (Target == &InputSection::Discarded)
500     return nullptr;
501 
502   if (!Target)
503     fatal(toString(this) + ": unsupported relocation reference");
504   return Target;
505 }
506 
507 // Create a regular InputSection class that has the same contents
508 // as a given section.
509 static InputSection *toRegularSection(MergeInputSection *Sec) {
510   return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment,
511                             Sec->Data, Sec->Name);
512 }
513 
514 template <class ELFT>
515 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
516   StringRef Name = getSectionName(Sec);
517 
518   switch (Sec.sh_type) {
519   case SHT_ARM_ATTRIBUTES: {
520     if (Config->EMachine != EM_ARM)
521       break;
522     ARMAttributeParser Attributes;
523     ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec));
524     Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind);
525     updateSupportedARMFeatures(Attributes);
526     // FIXME: Retain the first attribute section we see. The eglibc ARM
527     // dynamic loaders require the presence of an attribute section for dlopen
528     // to work. In a full implementation we would merge all attribute sections.
529     if (InX::ARMAttributes == nullptr) {
530       InX::ARMAttributes = make<InputSection>(*this, Sec, Name);
531       return InX::ARMAttributes;
532     }
533     return &InputSection::Discarded;
534   }
535   case SHT_RELA:
536   case SHT_REL: {
537     // Find the relocation target section and associate this
538     // section with it. Target can be discarded, for example
539     // if it is a duplicated member of SHT_GROUP section, we
540     // do not create or proccess relocatable sections then.
541     InputSectionBase *Target = getRelocTarget(Sec);
542     if (!Target)
543       return nullptr;
544 
545     // This section contains relocation information.
546     // If -r is given, we do not interpret or apply relocation
547     // but just copy relocation sections to output.
548     if (Config->Relocatable)
549       return make<InputSection>(*this, Sec, Name);
550 
551     if (Target->FirstRelocation)
552       fatal(toString(this) +
553             ": multiple relocation sections to one section are not supported");
554 
555     // Mergeable sections with relocations are tricky because relocations
556     // need to be taken into account when comparing section contents for
557     // merging. It's not worth supporting such mergeable sections because
558     // they are rare and it'd complicates the internal design (we usually
559     // have to determine if two sections are mergeable early in the link
560     // process much before applying relocations). We simply handle mergeable
561     // sections with relocations as non-mergeable.
562     if (auto *MS = dyn_cast<MergeInputSection>(Target)) {
563       Target = toRegularSection(MS);
564       this->Sections[Sec.sh_info] = Target;
565     }
566 
567     size_t NumRelocations;
568     if (Sec.sh_type == SHT_RELA) {
569       ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this);
570       Target->FirstRelocation = Rels.begin();
571       NumRelocations = Rels.size();
572       Target->AreRelocsRela = true;
573     } else {
574       ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this);
575       Target->FirstRelocation = Rels.begin();
576       NumRelocations = Rels.size();
577       Target->AreRelocsRela = false;
578     }
579     assert(isUInt<31>(NumRelocations));
580     Target->NumRelocations = NumRelocations;
581 
582     // Relocation sections processed by the linker are usually removed
583     // from the output, so returning `nullptr` for the normal case.
584     // However, if -emit-relocs is given, we need to leave them in the output.
585     // (Some post link analysis tools need this information.)
586     if (Config->EmitRelocs) {
587       InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
588       // We will not emit relocation section if target was discarded.
589       Target->DependentSections.push_back(RelocSec);
590       return RelocSec;
591     }
592     return nullptr;
593   }
594   }
595 
596   // The GNU linker uses .note.GNU-stack section as a marker indicating
597   // that the code in the object file does not expect that the stack is
598   // executable (in terms of NX bit). If all input files have the marker,
599   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
600   // make the stack non-executable. Most object files have this section as
601   // of 2017.
602   //
603   // But making the stack non-executable is a norm today for security
604   // reasons. Failure to do so may result in a serious security issue.
605   // Therefore, we make LLD always add PT_GNU_STACK unless it is
606   // explicitly told to do otherwise (by -z execstack). Because the stack
607   // executable-ness is controlled solely by command line options,
608   // .note.GNU-stack sections are simply ignored.
609   if (Name == ".note.GNU-stack")
610     return &InputSection::Discarded;
611 
612   // Split stacks is a feature to support a discontiguous stack. At least
613   // as of 2017, it seems that the feature is not being used widely.
614   // Only GNU gold supports that. We don't. For the details about that,
615   // see https://gcc.gnu.org/wiki/SplitStacks
616   if (Name == ".note.GNU-split-stack") {
617     error(toString(this) +
618           ": object file compiled with -fsplit-stack is not supported");
619     return &InputSection::Discarded;
620   }
621 
622   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
623   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
624   // sections. Drop those sections to avoid duplicate symbol errors.
625   // FIXME: This is glibc PR20543, we should remove this hack once that has been
626   // fixed for a while.
627   if (Name.startswith(".gnu.linkonce."))
628     return &InputSection::Discarded;
629 
630   // If we are creating a new .build-id section, strip existing .build-id
631   // sections so that the output won't have more than one .build-id.
632   // This is not usually a problem because input object files normally don't
633   // have .build-id sections, but you can create such files by
634   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
635   if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None)
636     return &InputSection::Discarded;
637 
638   // The linker merges EH (exception handling) frames and creates a
639   // .eh_frame_hdr section for runtime. So we handle them with a special
640   // class. For relocatable outputs, they are just passed through.
641   if (Name == ".eh_frame" && !Config->Relocatable)
642     return make<EhInputSection>(*this, Sec, Name);
643 
644   if (shouldMerge(Sec))
645     return make<MergeInputSection>(*this, Sec, Name);
646   return make<InputSection>(*this, Sec, Name);
647 }
648 
649 template <class ELFT>
650 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
651   return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this);
652 }
653 
654 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
655   this->Symbols.reserve(this->ELFSyms.size());
656   for (const Elf_Sym &Sym : this->ELFSyms)
657     this->Symbols.push_back(createSymbol(&Sym));
658 }
659 
660 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) {
661   int Binding = Sym->getBinding();
662 
663   uint32_t SecIdx = this->getSectionIndex(*Sym);
664   if (SecIdx >= this->Sections.size())
665     fatal(toString(this) + ": invalid section index: " + Twine(SecIdx));
666 
667   InputSectionBase *Sec = this->Sections[SecIdx];
668   uint8_t StOther = Sym->st_other;
669   uint8_t Type = Sym->getType();
670   uint64_t Value = Sym->st_value;
671   uint64_t Size = Sym->st_size;
672 
673   if (Binding == STB_LOCAL) {
674     if (Sym->getType() == STT_FILE)
675       SourceFile = CHECK(Sym->getName(this->StringTable), this);
676 
677     if (this->StringTable.size() <= Sym->st_name)
678       fatal(toString(this) + ": invalid symbol name offset");
679 
680     StringRefZ Name = this->StringTable.data() + Sym->st_name;
681     if (Sym->st_shndx == SHN_UNDEF)
682       return make<Undefined>(this, Name, Binding, StOther, Type);
683 
684     return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec);
685   }
686 
687   StringRef Name = CHECK(Sym->getName(this->StringTable), this);
688 
689   switch (Sym->st_shndx) {
690   case SHN_UNDEF:
691     return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
692                                       /*CanOmitFromDynSym=*/false, this);
693   case SHN_COMMON:
694     if (Value == 0 || Value >= UINT32_MAX)
695       fatal(toString(this) + ": common symbol '" + Name +
696             "' has invalid alignment: " + Twine(Value));
697     return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this);
698   }
699 
700   switch (Binding) {
701   default:
702     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
703   case STB_GLOBAL:
704   case STB_WEAK:
705   case STB_GNU_UNIQUE:
706     if (Sec == &InputSection::Discarded)
707       return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
708                                         /*CanOmitFromDynSym=*/false, this);
709     return Symtab->addRegular(Name, StOther, Type, Value, Size, Binding, Sec,
710                               this);
711   }
712 }
713 
714 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File)
715     : InputFile(ArchiveKind, File->getMemoryBufferRef()),
716       File(std::move(File)) {}
717 
718 template <class ELFT> void ArchiveFile::parse() {
719   for (const Archive::Symbol &Sym : File->symbols())
720     Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym);
721 }
722 
723 // Returns a buffer pointing to a member file containing a given symbol.
724 std::pair<MemoryBufferRef, uint64_t>
725 ArchiveFile::getMember(const Archive::Symbol *Sym) {
726   Archive::Child C =
727       CHECK(Sym->getMember(), toString(this) +
728                                   ": could not get the member for symbol " +
729                                   Sym->getName());
730 
731   if (!Seen.insert(C.getChildOffset()).second)
732     return {MemoryBufferRef(), 0};
733 
734   MemoryBufferRef Ret =
735       CHECK(C.getMemoryBufferRef(),
736             toString(this) +
737                 ": could not get the buffer for the member defining symbol " +
738                 Sym->getName());
739 
740   if (C.getParent()->isThin() && Tar)
741     Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), Ret.getBuffer());
742   if (C.getParent()->isThin())
743     return {Ret, 0};
744   return {Ret, C.getChildOffset()};
745 }
746 
747 template <class ELFT>
748 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName)
749     : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName),
750       IsNeeded(!Config->AsNeeded) {}
751 
752 // Partially parse the shared object file so that we can call
753 // getSoName on this object.
754 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
755   const Elf_Shdr *DynamicSec = nullptr;
756   const ELFFile<ELFT> Obj = this->getObj();
757   ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this);
758 
759   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
760   for (const Elf_Shdr &Sec : Sections) {
761     switch (Sec.sh_type) {
762     default:
763       continue;
764     case SHT_DYNSYM:
765       this->initSymtab(Sections, &Sec);
766       break;
767     case SHT_DYNAMIC:
768       DynamicSec = &Sec;
769       break;
770     case SHT_SYMTAB_SHNDX:
771       this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this);
772       break;
773     case SHT_GNU_versym:
774       this->VersymSec = &Sec;
775       break;
776     case SHT_GNU_verdef:
777       this->VerdefSec = &Sec;
778       break;
779     }
780   }
781 
782   if (this->VersymSec && this->ELFSyms.empty())
783     error("SHT_GNU_versym should be associated with symbol table");
784 
785   // Search for a DT_SONAME tag to initialize this->SoName.
786   if (!DynamicSec)
787     return;
788   ArrayRef<Elf_Dyn> Arr =
789       CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this);
790   for (const Elf_Dyn &Dyn : Arr) {
791     if (Dyn.d_tag == DT_SONAME) {
792       uint64_t Val = Dyn.getVal();
793       if (Val >= this->StringTable.size())
794         fatal(toString(this) + ": invalid DT_SONAME entry");
795       SoName = this->StringTable.data() + Val;
796       return;
797     }
798   }
799 }
800 
801 // Parse the version definitions in the object file if present. Returns a vector
802 // whose nth element contains a pointer to the Elf_Verdef for version identifier
803 // n. Version identifiers that are not definitions map to nullptr. The array
804 // always has at least length 1.
805 template <class ELFT>
806 std::vector<const typename ELFT::Verdef *>
807 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
808   std::vector<const Elf_Verdef *> Verdefs(1);
809   // We only need to process symbol versions for this DSO if it has both a
810   // versym and a verdef section, which indicates that the DSO contains symbol
811   // version definitions.
812   if (!VersymSec || !VerdefSec)
813     return Verdefs;
814 
815   // The location of the first global versym entry.
816   const char *Base = this->MB.getBuffer().data();
817   Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
818            this->FirstNonLocal;
819 
820   // We cannot determine the largest verdef identifier without inspecting
821   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
822   // sequentially starting from 1, so we predict that the largest identifier
823   // will be VerdefCount.
824   unsigned VerdefCount = VerdefSec->sh_info;
825   Verdefs.resize(VerdefCount + 1);
826 
827   // Build the Verdefs array by following the chain of Elf_Verdef objects
828   // from the start of the .gnu.version_d section.
829   const char *Verdef = Base + VerdefSec->sh_offset;
830   for (unsigned I = 0; I != VerdefCount; ++I) {
831     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
832     Verdef += CurVerdef->vd_next;
833     unsigned VerdefIndex = CurVerdef->vd_ndx;
834     if (Verdefs.size() <= VerdefIndex)
835       Verdefs.resize(VerdefIndex + 1);
836     Verdefs[VerdefIndex] = CurVerdef;
837   }
838 
839   return Verdefs;
840 }
841 
842 // Fully parse the shared object file. This must be called after parseSoName().
843 template <class ELFT> void SharedFile<ELFT>::parseRest() {
844   // Create mapping from version identifiers to Elf_Verdef entries.
845   const Elf_Versym *Versym = nullptr;
846   Verdefs = parseVerdefs(Versym);
847 
848   ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this);
849 
850   // Add symbols to the symbol table.
851   Elf_Sym_Range Syms = this->getGlobalELFSyms();
852   for (const Elf_Sym &Sym : Syms) {
853     unsigned VersymIndex = VER_NDX_GLOBAL;
854     if (Versym) {
855       VersymIndex = Versym->vs_index;
856       ++Versym;
857     }
858     bool Hidden = VersymIndex & VERSYM_HIDDEN;
859     VersymIndex = VersymIndex & ~VERSYM_HIDDEN;
860 
861     StringRef Name = CHECK(Sym.getName(this->StringTable), this);
862     if (Sym.isUndefined()) {
863       Symbol *S = Symtab->addUndefined<ELFT>(Name, Sym.getBinding(),
864                                              Sym.st_other, Sym.getType(),
865                                              /*CanOmitFromDynSym=*/false, this);
866       S->ExportDynamic = true;
867       continue;
868     }
869 
870     if (Sym.getBinding() == STB_LOCAL) {
871       warn("found local symbol '" + Name +
872            "' in global part of symbol table in file " + toString(this));
873       continue;
874     }
875 
876     if (Config->EMachine == EM_MIPS) {
877       // FIXME: MIPS BFD linker puts _gp_disp symbol into DSO files
878       // and incorrectly assigns VER_NDX_LOCAL to this section global
879       // symbol. Here is a workaround for this bug.
880       if (Versym && VersymIndex == VER_NDX_LOCAL && Name == "_gp_disp")
881         continue;
882     }
883 
884     const Elf_Verdef *Ver = nullptr;
885     if (VersymIndex != VER_NDX_GLOBAL) {
886       if (VersymIndex >= Verdefs.size() || VersymIndex == VER_NDX_LOCAL) {
887         error("corrupt input file: version definition index " +
888               Twine(VersymIndex) + " for symbol " + Name +
889               " is out of bounds\n>>> defined in " + toString(this));
890         continue;
891       }
892       Ver = Verdefs[VersymIndex];
893     } else {
894       VersymIndex = 0;
895     }
896 
897     // We do not usually care about alignments of data in shared object
898     // files because the loader takes care of it. However, if we promote a
899     // DSO symbol to point to .bss due to copy relocation, we need to keep
900     // the original alignment requirements. We infer it here.
901     uint64_t Alignment = 1;
902     if (Sym.st_value)
903       Alignment = 1ULL << countTrailingZeros((uint64_t)Sym.st_value);
904     if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) {
905       uint64_t SecAlign = Sections[Sym.st_shndx].sh_addralign;
906       Alignment = std::min(Alignment, SecAlign);
907     }
908     if (Alignment > UINT32_MAX)
909       error(toString(this) + ": alignment too large: " + Name);
910 
911     if (!Hidden)
912       Symtab->addShared(Name, *this, Sym, Alignment, VersymIndex);
913 
914     // Also add the symbol with the versioned name to handle undefined symbols
915     // with explicit versions.
916     if (Ver) {
917       StringRef VerName = this->StringTable.data() + Ver->getAux()->vda_name;
918       Name = Saver.save(Name + "@" + VerName);
919       Symtab->addShared(Name, *this, Sym, Alignment, VersymIndex);
920     }
921   }
922 }
923 
924 static ELFKind getBitcodeELFKind(const Triple &T) {
925   if (T.isLittleEndian())
926     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
927   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
928 }
929 
930 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
931   switch (T.getArch()) {
932   case Triple::aarch64:
933     return EM_AARCH64;
934   case Triple::arm:
935   case Triple::thumb:
936     return EM_ARM;
937   case Triple::avr:
938     return EM_AVR;
939   case Triple::mips:
940   case Triple::mipsel:
941   case Triple::mips64:
942   case Triple::mips64el:
943     return EM_MIPS;
944   case Triple::ppc:
945     return EM_PPC;
946   case Triple::ppc64:
947     return EM_PPC64;
948   case Triple::x86:
949     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
950   case Triple::x86_64:
951     return EM_X86_64;
952   default:
953     fatal(Path + ": could not infer e_machine from bitcode target triple " +
954           T.str());
955   }
956 }
957 
958 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName,
959                          uint64_t OffsetInArchive)
960     : InputFile(BitcodeKind, MB) {
961   this->ArchiveName = ArchiveName;
962 
963   // Here we pass a new MemoryBufferRef which is identified by ArchiveName
964   // (the fully resolved path of the archive) + member name + offset of the
965   // member in the archive.
966   // ThinLTO uses the MemoryBufferRef identifier to access its internal
967   // data structures and if two archives define two members with the same name,
968   // this causes a collision which result in only one of the objects being
969   // taken into consideration at LTO time (which very likely causes undefined
970   // symbols later in the link stage).
971   MemoryBufferRef MBRef(MB.getBuffer(),
972                         Saver.save(ArchiveName + MB.getBufferIdentifier() +
973                                    utostr(OffsetInArchive)));
974   Obj = CHECK(lto::InputFile::create(MBRef), this);
975 
976   Triple T(Obj->getTargetTriple());
977   EKind = getBitcodeELFKind(T);
978   EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T);
979 }
980 
981 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
982   switch (GvVisibility) {
983   case GlobalValue::DefaultVisibility:
984     return STV_DEFAULT;
985   case GlobalValue::HiddenVisibility:
986     return STV_HIDDEN;
987   case GlobalValue::ProtectedVisibility:
988     return STV_PROTECTED;
989   }
990   llvm_unreachable("unknown visibility");
991 }
992 
993 template <class ELFT>
994 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
995                                    const lto::InputFile::Symbol &ObjSym,
996                                    BitcodeFile &F) {
997   StringRef NameRef = Saver.save(ObjSym.getName());
998   uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
999 
1000   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
1001   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
1002   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
1003 
1004   int C = ObjSym.getComdatIndex();
1005   if (C != -1 && !KeptComdats[C])
1006     return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type,
1007                                       CanOmitFromDynSym, &F);
1008 
1009   if (ObjSym.isUndefined())
1010     return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type,
1011                                       CanOmitFromDynSym, &F);
1012 
1013   if (ObjSym.isCommon())
1014     return Symtab->addCommon(NameRef, ObjSym.getCommonSize(),
1015                              ObjSym.getCommonAlignment(), Binding, Visibility,
1016                              STT_OBJECT, F);
1017 
1018   return Symtab->addBitcode(NameRef, Binding, Visibility, Type,
1019                             CanOmitFromDynSym, F);
1020 }
1021 
1022 template <class ELFT>
1023 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
1024   std::vector<bool> KeptComdats;
1025   for (StringRef S : Obj->getComdatTable())
1026     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second);
1027 
1028   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
1029     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this));
1030 }
1031 
1032 static ELFKind getELFKind(MemoryBufferRef MB) {
1033   unsigned char Size;
1034   unsigned char Endian;
1035   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
1036 
1037   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
1038     fatal(MB.getBufferIdentifier() + ": invalid data encoding");
1039   if (Size != ELFCLASS32 && Size != ELFCLASS64)
1040     fatal(MB.getBufferIdentifier() + ": invalid file class");
1041 
1042   size_t BufSize = MB.getBuffer().size();
1043   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
1044       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
1045     fatal(MB.getBufferIdentifier() + ": file is too short");
1046 
1047   if (Size == ELFCLASS32)
1048     return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
1049   return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
1050 }
1051 
1052 void BinaryFile::parse() {
1053   ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer());
1054   auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1055                                      8, Data, ".data");
1056   Sections.push_back(Section);
1057 
1058   // For each input file foo that is embedded to a result as a binary
1059   // blob, we define _binary_foo_{start,end,size} symbols, so that
1060   // user programs can access blobs by name. Non-alphanumeric
1061   // characters in a filename are replaced with underscore.
1062   std::string S = "_binary_" + MB.getBufferIdentifier().str();
1063   for (size_t I = 0; I < S.size(); ++I)
1064     if (!isAlnum(S[I]))
1065       S[I] = '_';
1066 
1067   Symtab->addRegular(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0,
1068                      STB_GLOBAL, Section, nullptr);
1069   Symtab->addRegular(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT,
1070                      Data.size(), 0, STB_GLOBAL, Section, nullptr);
1071   Symtab->addRegular(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT,
1072                      Data.size(), 0, STB_GLOBAL, nullptr, nullptr);
1073 }
1074 
1075 static bool isBitcode(MemoryBufferRef MB) {
1076   using namespace sys::fs;
1077   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
1078 }
1079 
1080 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
1081                                  uint64_t OffsetInArchive) {
1082   if (isBitcode(MB))
1083     return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive);
1084 
1085   switch (getELFKind(MB)) {
1086   case ELF32LEKind:
1087     return make<ObjFile<ELF32LE>>(MB, ArchiveName);
1088   case ELF32BEKind:
1089     return make<ObjFile<ELF32BE>>(MB, ArchiveName);
1090   case ELF64LEKind:
1091     return make<ObjFile<ELF64LE>>(MB, ArchiveName);
1092   case ELF64BEKind:
1093     return make<ObjFile<ELF64BE>>(MB, ArchiveName);
1094   default:
1095     llvm_unreachable("getELFKind");
1096   }
1097 }
1098 
1099 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) {
1100   switch (getELFKind(MB)) {
1101   case ELF32LEKind:
1102     return make<SharedFile<ELF32LE>>(MB, DefaultSoName);
1103   case ELF32BEKind:
1104     return make<SharedFile<ELF32BE>>(MB, DefaultSoName);
1105   case ELF64LEKind:
1106     return make<SharedFile<ELF64LE>>(MB, DefaultSoName);
1107   case ELF64BEKind:
1108     return make<SharedFile<ELF64BE>>(MB, DefaultSoName);
1109   default:
1110     llvm_unreachable("getELFKind");
1111   }
1112 }
1113 
1114 MemoryBufferRef LazyObjFile::getBuffer() {
1115   if (Seen)
1116     return MemoryBufferRef();
1117   Seen = true;
1118   return MB;
1119 }
1120 
1121 InputFile *LazyObjFile::fetch() {
1122   MemoryBufferRef MBRef = getBuffer();
1123   if (MBRef.getBuffer().empty())
1124     return nullptr;
1125   return createObjectFile(MBRef, ArchiveName, OffsetInArchive);
1126 }
1127 
1128 template <class ELFT> void LazyObjFile::parse() {
1129   // A lazy object file wraps either a bitcode file or an ELF file.
1130   if (isBitcode(this->MB)) {
1131     std::unique_ptr<lto::InputFile> Obj =
1132         CHECK(lto::InputFile::create(this->MB), this);
1133     for (const lto::InputFile::Symbol &Sym : Obj->symbols())
1134       if (!Sym.isUndefined())
1135         Symtab->addLazyObject<ELFT>(Saver.save(Sym.getName()), *this);
1136     return;
1137   }
1138 
1139   switch (getELFKind(this->MB)) {
1140   case ELF32LEKind:
1141     addElfSymbols<ELF32LE>();
1142     return;
1143   case ELF32BEKind:
1144     addElfSymbols<ELF32BE>();
1145     return;
1146   case ELF64LEKind:
1147     addElfSymbols<ELF64LE>();
1148     return;
1149   case ELF64BEKind:
1150     addElfSymbols<ELF64BE>();
1151     return;
1152   default:
1153     llvm_unreachable("getELFKind");
1154   }
1155 }
1156 
1157 template <class ELFT> void LazyObjFile::addElfSymbols() {
1158   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer()));
1159   ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this);
1160 
1161   for (const typename ELFT::Shdr &Sec : Sections) {
1162     if (Sec.sh_type != SHT_SYMTAB)
1163       continue;
1164 
1165     typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this);
1166     uint32_t FirstNonLocal = Sec.sh_info;
1167     StringRef StringTable =
1168         CHECK(Obj.getStringTableForSymtab(Sec, Sections), this);
1169 
1170     for (const typename ELFT::Sym &Sym : Syms.slice(FirstNonLocal))
1171       if (Sym.st_shndx != SHN_UNDEF)
1172         Symtab->addLazyObject<ELFT>(CHECK(Sym.getName(StringTable), this),
1173                                     *this);
1174     return;
1175   }
1176 }
1177 
1178 // This is for --just-symbols.
1179 //
1180 // This option allows you to link your output against other existing
1181 // program, so that if you load both your program and the other program
1182 // into memory, your output can use program's symbols.
1183 //
1184 // What we are doing here is to read defined symbols from a given ELF
1185 // file and add them as absolute symbols.
1186 template <class ELFT> void elf::readJustSymbolsFile(MemoryBufferRef MB) {
1187   typedef typename ELFT::Shdr Elf_Shdr;
1188   typedef typename ELFT::Sym Elf_Sym;
1189   typedef typename ELFT::SymRange Elf_Sym_Range;
1190 
1191   StringRef ObjName = MB.getBufferIdentifier();
1192   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer()));
1193   ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), ObjName);
1194 
1195   for (const Elf_Shdr &Sec : Sections) {
1196     if (Sec.sh_type != SHT_SYMTAB)
1197       continue;
1198 
1199     Elf_Sym_Range Syms = CHECK(Obj.symbols(&Sec), ObjName);
1200     uint32_t FirstNonLocal = Sec.sh_info;
1201     StringRef StringTable =
1202         CHECK(Obj.getStringTableForSymtab(Sec, Sections), ObjName);
1203 
1204     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
1205       if (Sym.st_shndx != SHN_UNDEF)
1206         Symtab->addRegular(CHECK(Sym.getName(StringTable), ObjName),
1207                            Sym.st_other, Sym.getType(), Sym.st_value,
1208                            Sym.st_size, Sym.getBinding(), nullptr, nullptr);
1209     return;
1210   }
1211 }
1212 
1213 template void ArchiveFile::parse<ELF32LE>();
1214 template void ArchiveFile::parse<ELF32BE>();
1215 template void ArchiveFile::parse<ELF64LE>();
1216 template void ArchiveFile::parse<ELF64BE>();
1217 
1218 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
1219 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
1220 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
1221 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
1222 
1223 template void LazyObjFile::parse<ELF32LE>();
1224 template void LazyObjFile::parse<ELF32BE>();
1225 template void LazyObjFile::parse<ELF64LE>();
1226 template void LazyObjFile::parse<ELF64BE>();
1227 
1228 template class elf::ELFFileBase<ELF32LE>;
1229 template class elf::ELFFileBase<ELF32BE>;
1230 template class elf::ELFFileBase<ELF64LE>;
1231 template class elf::ELFFileBase<ELF64BE>;
1232 
1233 template class elf::ObjFile<ELF32LE>;
1234 template class elf::ObjFile<ELF32BE>;
1235 template class elf::ObjFile<ELF64LE>;
1236 template class elf::ObjFile<ELF64BE>;
1237 
1238 template class elf::SharedFile<ELF32LE>;
1239 template class elf::SharedFile<ELF32BE>;
1240 template class elf::SharedFile<ELF64LE>;
1241 template class elf::SharedFile<ELF64BE>;
1242 
1243 template void elf::readJustSymbolsFile<ELF32LE>(MemoryBufferRef);
1244 template void elf::readJustSymbolsFile<ELF32BE>(MemoryBufferRef);
1245 template void elf::readJustSymbolsFile<ELF64LE>(MemoryBufferRef);
1246 template void elf::readJustSymbolsFile<ELF64BE>(MemoryBufferRef);
1247