1 //===- ICF.cpp ------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // ICF is short for Identical Code Folding. This is a size optimization to 10 // identify and merge two or more read-only sections (typically functions) 11 // that happened to have the same contents. It usually reduces output size 12 // by a few percent. 13 // 14 // In ICF, two sections are considered identical if they have the same 15 // section flags, section data, and relocations. Relocations are tricky, 16 // because two relocations are considered the same if they have the same 17 // relocation types, values, and if they point to the same sections *in 18 // terms of ICF*. 19 // 20 // Here is an example. If foo and bar defined below are compiled to the 21 // same machine instructions, ICF can and should merge the two, although 22 // their relocations point to each other. 23 // 24 // void foo() { bar(); } 25 // void bar() { foo(); } 26 // 27 // If you merge the two, their relocations point to the same section and 28 // thus you know they are mergeable, but how do you know they are 29 // mergeable in the first place? This is not an easy problem to solve. 30 // 31 // What we are doing in LLD is to partition sections into equivalence 32 // classes. Sections in the same equivalence class when the algorithm 33 // terminates are considered identical. Here are details: 34 // 35 // 1. First, we partition sections using their hash values as keys. Hash 36 // values contain section types, section contents and numbers of 37 // relocations. During this step, relocation targets are not taken into 38 // account. We just put sections that apparently differ into different 39 // equivalence classes. 40 // 41 // 2. Next, for each equivalence class, we visit sections to compare 42 // relocation targets. Relocation targets are considered equivalent if 43 // their targets are in the same equivalence class. Sections with 44 // different relocation targets are put into different equivalence 45 // clases. 46 // 47 // 3. If we split an equivalence class in step 2, two relocations 48 // previously target the same equivalence class may now target 49 // different equivalence classes. Therefore, we repeat step 2 until a 50 // convergence is obtained. 51 // 52 // 4. For each equivalence class C, pick an arbitrary section in C, and 53 // merge all the other sections in C with it. 54 // 55 // For small programs, this algorithm needs 3-5 iterations. For large 56 // programs such as Chromium, it takes more than 20 iterations. 57 // 58 // This algorithm was mentioned as an "optimistic algorithm" in [1], 59 // though gold implements a different algorithm than this. 60 // 61 // We parallelize each step so that multiple threads can work on different 62 // equivalence classes concurrently. That gave us a large performance 63 // boost when applying ICF on large programs. For example, MSVC link.exe 64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output 65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a 66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still 67 // faster than MSVC or gold though. 68 // 69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding 70 // in the Gold Linker 71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf 72 // 73 //===----------------------------------------------------------------------===// 74 75 #include "ICF.h" 76 #include "Config.h" 77 #include "SymbolTable.h" 78 #include "Symbols.h" 79 #include "SyntheticSections.h" 80 #include "Writer.h" 81 #include "lld/Common/Threads.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/BinaryFormat/ELF.h" 84 #include "llvm/Object/ELF.h" 85 #include "llvm/Support/xxhash.h" 86 #include <algorithm> 87 #include <atomic> 88 89 using namespace lld; 90 using namespace lld::elf; 91 using namespace llvm; 92 using namespace llvm::ELF; 93 using namespace llvm::object; 94 95 namespace { 96 template <class ELFT> class ICF { 97 public: 98 void run(); 99 100 private: 101 void segregate(size_t Begin, size_t End, bool Constant); 102 103 template <class RelTy> 104 bool constantEq(const InputSection *A, ArrayRef<RelTy> RelsA, 105 const InputSection *B, ArrayRef<RelTy> RelsB); 106 107 template <class RelTy> 108 bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA, 109 const InputSection *B, ArrayRef<RelTy> RelsB); 110 111 bool equalsConstant(const InputSection *A, const InputSection *B); 112 bool equalsVariable(const InputSection *A, const InputSection *B); 113 114 size_t findBoundary(size_t Begin, size_t End); 115 116 void forEachClassRange(size_t Begin, size_t End, 117 llvm::function_ref<void(size_t, size_t)> Fn); 118 119 void forEachClass(llvm::function_ref<void(size_t, size_t)> Fn); 120 121 std::vector<InputSection *> Sections; 122 123 // We repeat the main loop while `Repeat` is true. 124 std::atomic<bool> Repeat; 125 126 // The main loop counter. 127 int Cnt = 0; 128 129 // We have two locations for equivalence classes. On the first iteration 130 // of the main loop, Class[0] has a valid value, and Class[1] contains 131 // garbage. We read equivalence classes from slot 0 and write to slot 1. 132 // So, Class[0] represents the current class, and Class[1] represents 133 // the next class. On each iteration, we switch their roles and use them 134 // alternately. 135 // 136 // Why are we doing this? Recall that other threads may be working on 137 // other equivalence classes in parallel. They may read sections that we 138 // are updating. We cannot update equivalence classes in place because 139 // it breaks the invariance that all possibly-identical sections must be 140 // in the same equivalence class at any moment. In other words, the for 141 // loop to update equivalence classes is not atomic, and that is 142 // observable from other threads. By writing new classes to other 143 // places, we can keep the invariance. 144 // 145 // Below, `Current` has the index of the current class, and `Next` has 146 // the index of the next class. If threading is enabled, they are either 147 // (0, 1) or (1, 0). 148 // 149 // Note on single-thread: if that's the case, they are always (0, 0) 150 // because we can safely read the next class without worrying about race 151 // conditions. Using the same location makes this algorithm converge 152 // faster because it uses results of the same iteration earlier. 153 int Current = 0; 154 int Next = 0; 155 }; 156 } 157 158 // Returns true if section S is subject of ICF. 159 static bool isEligible(InputSection *S) { 160 if (!S->Live || S->KeepUnique || !(S->Flags & SHF_ALLOC)) 161 return false; 162 163 // Don't merge writable sections. .data.rel.ro sections are marked as writable 164 // but are semantically read-only. 165 if ((S->Flags & SHF_WRITE) && S->Name != ".data.rel.ro" && 166 !S->Name.startswith(".data.rel.ro.")) 167 return false; 168 169 // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections, 170 // so we don't consider them for ICF individually. 171 if (S->Flags & SHF_LINK_ORDER) 172 return false; 173 174 // Don't merge synthetic sections as their Data member is not valid and empty. 175 // The Data member needs to be valid for ICF as it is used by ICF to determine 176 // the equality of section contents. 177 if (isa<SyntheticSection>(S)) 178 return false; 179 180 // .init and .fini contains instructions that must be executed to initialize 181 // and finalize the process. They cannot and should not be merged. 182 if (S->Name == ".init" || S->Name == ".fini") 183 return false; 184 185 // A user program may enumerate sections named with a C identifier using 186 // __start_* and __stop_* symbols. We cannot ICF any such sections because 187 // that could change program semantics. 188 if (isValidCIdentifier(S->Name)) 189 return false; 190 191 return true; 192 } 193 194 // Split an equivalence class into smaller classes. 195 template <class ELFT> 196 void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) { 197 // This loop rearranges sections in [Begin, End) so that all sections 198 // that are equal in terms of equals{Constant,Variable} are contiguous 199 // in [Begin, End). 200 // 201 // The algorithm is quadratic in the worst case, but that is not an 202 // issue in practice because the number of the distinct sections in 203 // each range is usually very small. 204 205 while (Begin < End) { 206 // Divide [Begin, End) into two. Let Mid be the start index of the 207 // second group. 208 auto Bound = 209 std::stable_partition(Sections.begin() + Begin + 1, 210 Sections.begin() + End, [&](InputSection *S) { 211 if (Constant) 212 return equalsConstant(Sections[Begin], S); 213 return equalsVariable(Sections[Begin], S); 214 }); 215 size_t Mid = Bound - Sections.begin(); 216 217 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by 218 // updating the sections in [Begin, Mid). We use Mid as an equivalence 219 // class ID because every group ends with a unique index. 220 for (size_t I = Begin; I < Mid; ++I) 221 Sections[I]->Class[Next] = Mid; 222 223 // If we created a group, we need to iterate the main loop again. 224 if (Mid != End) 225 Repeat = true; 226 227 Begin = Mid; 228 } 229 } 230 231 // Compare two lists of relocations. 232 template <class ELFT> 233 template <class RelTy> 234 bool ICF<ELFT>::constantEq(const InputSection *SecA, ArrayRef<RelTy> RA, 235 const InputSection *SecB, ArrayRef<RelTy> RB) { 236 for (size_t I = 0; I < RA.size(); ++I) { 237 if (RA[I].r_offset != RB[I].r_offset || 238 RA[I].getType(Config->IsMips64EL) != RB[I].getType(Config->IsMips64EL)) 239 return false; 240 241 uint64_t AddA = getAddend<ELFT>(RA[I]); 242 uint64_t AddB = getAddend<ELFT>(RB[I]); 243 244 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]); 245 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]); 246 if (&SA == &SB) { 247 if (AddA == AddB) 248 continue; 249 return false; 250 } 251 252 auto *DA = dyn_cast<Defined>(&SA); 253 auto *DB = dyn_cast<Defined>(&SB); 254 255 // Placeholder symbols generated by linker scripts look the same now but 256 // may have different values later. 257 if (!DA || !DB || DA->ScriptDefined || DB->ScriptDefined) 258 return false; 259 260 // Relocations referring to absolute symbols are constant-equal if their 261 // values are equal. 262 if (!DA->Section && !DB->Section && DA->Value + AddA == DB->Value + AddB) 263 continue; 264 if (!DA->Section || !DB->Section) 265 return false; 266 267 if (DA->Section->kind() != DB->Section->kind()) 268 return false; 269 270 // Relocations referring to InputSections are constant-equal if their 271 // section offsets are equal. 272 if (isa<InputSection>(DA->Section)) { 273 if (DA->Value + AddA == DB->Value + AddB) 274 continue; 275 return false; 276 } 277 278 // Relocations referring to MergeInputSections are constant-equal if their 279 // offsets in the output section are equal. 280 auto *X = dyn_cast<MergeInputSection>(DA->Section); 281 if (!X) 282 return false; 283 auto *Y = cast<MergeInputSection>(DB->Section); 284 if (X->getParent() != Y->getParent()) 285 return false; 286 287 uint64_t OffsetA = 288 SA.isSection() ? X->getOffset(AddA) : X->getOffset(DA->Value) + AddA; 289 uint64_t OffsetB = 290 SB.isSection() ? Y->getOffset(AddB) : Y->getOffset(DB->Value) + AddB; 291 if (OffsetA != OffsetB) 292 return false; 293 } 294 295 return true; 296 } 297 298 // Compare "non-moving" part of two InputSections, namely everything 299 // except relocation targets. 300 template <class ELFT> 301 bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) { 302 if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags || 303 A->getSize() != B->getSize() || A->data() != B->data()) 304 return false; 305 306 // If two sections have different output sections, we cannot merge them. 307 // FIXME: This doesn't do the right thing in the case where there is a linker 308 // script. We probably need to move output section assignment before ICF to 309 // get the correct behaviour here. 310 if (getOutputSectionName(A) != getOutputSectionName(B)) 311 return false; 312 313 if (A->AreRelocsRela) 314 return constantEq(A, A->template relas<ELFT>(), B, 315 B->template relas<ELFT>()); 316 return constantEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>()); 317 } 318 319 // Compare two lists of relocations. Returns true if all pairs of 320 // relocations point to the same section in terms of ICF. 321 template <class ELFT> 322 template <class RelTy> 323 bool ICF<ELFT>::variableEq(const InputSection *SecA, ArrayRef<RelTy> RA, 324 const InputSection *SecB, ArrayRef<RelTy> RB) { 325 assert(RA.size() == RB.size()); 326 327 for (size_t I = 0; I < RA.size(); ++I) { 328 // The two sections must be identical. 329 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]); 330 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]); 331 if (&SA == &SB) 332 continue; 333 334 auto *DA = cast<Defined>(&SA); 335 auto *DB = cast<Defined>(&SB); 336 337 // We already dealt with absolute and non-InputSection symbols in 338 // constantEq, and for InputSections we have already checked everything 339 // except the equivalence class. 340 if (!DA->Section) 341 continue; 342 auto *X = dyn_cast<InputSection>(DA->Section); 343 if (!X) 344 continue; 345 auto *Y = cast<InputSection>(DB->Section); 346 347 // Ineligible sections are in the special equivalence class 0. 348 // They can never be the same in terms of the equivalence class. 349 if (X->Class[Current] == 0) 350 return false; 351 if (X->Class[Current] != Y->Class[Current]) 352 return false; 353 }; 354 355 return true; 356 } 357 358 // Compare "moving" part of two InputSections, namely relocation targets. 359 template <class ELFT> 360 bool ICF<ELFT>::equalsVariable(const InputSection *A, const InputSection *B) { 361 if (A->AreRelocsRela) 362 return variableEq(A, A->template relas<ELFT>(), B, 363 B->template relas<ELFT>()); 364 return variableEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>()); 365 } 366 367 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) { 368 uint32_t Class = Sections[Begin]->Class[Current]; 369 for (size_t I = Begin + 1; I < End; ++I) 370 if (Class != Sections[I]->Class[Current]) 371 return I; 372 return End; 373 } 374 375 // Sections in the same equivalence class are contiguous in Sections 376 // vector. Therefore, Sections vector can be considered as contiguous 377 // groups of sections, grouped by the class. 378 // 379 // This function calls Fn on every group within [Begin, End). 380 template <class ELFT> 381 void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End, 382 llvm::function_ref<void(size_t, size_t)> Fn) { 383 while (Begin < End) { 384 size_t Mid = findBoundary(Begin, End); 385 Fn(Begin, Mid); 386 Begin = Mid; 387 } 388 } 389 390 // Call Fn on each equivalence class. 391 template <class ELFT> 392 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> Fn) { 393 // If threading is disabled or the number of sections are 394 // too small to use threading, call Fn sequentially. 395 if (!ThreadsEnabled || Sections.size() < 1024) { 396 forEachClassRange(0, Sections.size(), Fn); 397 ++Cnt; 398 return; 399 } 400 401 Current = Cnt % 2; 402 Next = (Cnt + 1) % 2; 403 404 // Shard into non-overlapping intervals, and call Fn in parallel. 405 // The sharding must be completed before any calls to Fn are made 406 // so that Fn can modify the Chunks in its shard without causing data 407 // races. 408 const size_t NumShards = 256; 409 size_t Step = Sections.size() / NumShards; 410 size_t Boundaries[NumShards + 1]; 411 Boundaries[0] = 0; 412 Boundaries[NumShards] = Sections.size(); 413 414 parallelForEachN(1, NumShards, [&](size_t I) { 415 Boundaries[I] = findBoundary((I - 1) * Step, Sections.size()); 416 }); 417 418 parallelForEachN(1, NumShards + 1, [&](size_t I) { 419 if (Boundaries[I - 1] < Boundaries[I]) 420 forEachClassRange(Boundaries[I - 1], Boundaries[I], Fn); 421 }); 422 ++Cnt; 423 } 424 425 // Combine the hashes of the sections referenced by the given section into its 426 // hash. 427 template <class ELFT, class RelTy> 428 static void combineRelocHashes(unsigned Cnt, InputSection *IS, 429 ArrayRef<RelTy> Rels) { 430 uint32_t Hash = IS->Class[Cnt % 2]; 431 for (RelTy Rel : Rels) { 432 Symbol &S = IS->template getFile<ELFT>()->getRelocTargetSym(Rel); 433 if (auto *D = dyn_cast<Defined>(&S)) 434 if (auto *RelSec = dyn_cast_or_null<InputSection>(D->Section)) 435 Hash += RelSec->Class[Cnt % 2]; 436 } 437 // Set MSB to 1 to avoid collisions with non-hash IDs. 438 IS->Class[(Cnt + 1) % 2] = Hash | (1U << 31); 439 } 440 441 static void print(const Twine &S) { 442 if (Config->PrintIcfSections) 443 message(S); 444 } 445 446 // The main function of ICF. 447 template <class ELFT> void ICF<ELFT>::run() { 448 // Collect sections to merge. 449 for (InputSectionBase *Sec : InputSections) 450 if (auto *S = dyn_cast<InputSection>(Sec)) 451 if (isEligible(S)) 452 Sections.push_back(S); 453 454 // Initially, we use hash values to partition sections. 455 parallelForEach(Sections, [&](InputSection *S) { 456 S->Class[0] = xxHash64(S->data()); 457 }); 458 459 for (unsigned Cnt = 0; Cnt != 2; ++Cnt) { 460 parallelForEach(Sections, [&](InputSection *S) { 461 if (S->AreRelocsRela) 462 combineRelocHashes<ELFT>(Cnt, S, S->template relas<ELFT>()); 463 else 464 combineRelocHashes<ELFT>(Cnt, S, S->template rels<ELFT>()); 465 }); 466 } 467 468 // From now on, sections in Sections vector are ordered so that sections 469 // in the same equivalence class are consecutive in the vector. 470 llvm::stable_sort(Sections, [](const InputSection *A, const InputSection *B) { 471 return A->Class[0] < B->Class[0]; 472 }); 473 474 // Compare static contents and assign unique IDs for each static content. 475 forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); }); 476 477 // Split groups by comparing relocations until convergence is obtained. 478 do { 479 Repeat = false; 480 forEachClass( 481 [&](size_t Begin, size_t End) { segregate(Begin, End, false); }); 482 } while (Repeat); 483 484 log("ICF needed " + Twine(Cnt) + " iterations"); 485 486 // Merge sections by the equivalence class. 487 forEachClassRange(0, Sections.size(), [&](size_t Begin, size_t End) { 488 if (End - Begin == 1) 489 return; 490 print("selected section " + toString(Sections[Begin])); 491 for (size_t I = Begin + 1; I < End; ++I) { 492 print(" removing identical section " + toString(Sections[I])); 493 Sections[Begin]->replace(Sections[I]); 494 495 // At this point we know sections merged are fully identical and hence 496 // we want to remove duplicate implicit dependencies such as link order 497 // and relocation sections. 498 for (InputSection *IS : Sections[I]->DependentSections) 499 IS->Live = false; 500 } 501 }); 502 } 503 504 // ICF entry point function. 505 template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); } 506 507 template void elf::doIcf<ELF32LE>(); 508 template void elf::doIcf<ELF32BE>(); 509 template void elf::doIcf<ELF64LE>(); 510 template void elf::doIcf<ELF64BE>(); 511