xref: /llvm-project-15.0.7/lld/ELF/ICF.cpp (revision f489e2bf)
1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // ICF is short for Identical Code Folding. This is a size optimization to
11 // identify and merge two or more read-only sections (typically functions)
12 // that happened to have the same contents. It usually reduces output size
13 // by a few percent.
14 //
15 // In ICF, two sections are considered identical if they have the same
16 // section flags, section data, and relocations. Relocations are tricky,
17 // because two relocations are considered the same if they have the same
18 // relocation types, values, and if they point to the same sections *in
19 // terms of ICF*.
20 //
21 // Here is an example. If foo and bar defined below are compiled to the
22 // same machine instructions, ICF can and should merge the two, although
23 // their relocations point to each other.
24 //
25 //   void foo() { bar(); }
26 //   void bar() { foo(); }
27 //
28 // If you merge the two, their relocations point to the same section and
29 // thus you know they are mergeable, but how do you know they are
30 // mergeable in the first place? This is not an easy problem to solve.
31 //
32 // What we are doing in LLD is to partition sections into equivalence
33 // classes. Sections in the same equivalence class when the algorithm
34 // terminates are considered identical. Here are details:
35 //
36 // 1. First, we partition sections using their hash values as keys. Hash
37 //    values contain section types, section contents and numbers of
38 //    relocations. During this step, relocation targets are not taken into
39 //    account. We just put sections that apparently differ into different
40 //    equivalence classes.
41 //
42 // 2. Next, for each equivalence class, we visit sections to compare
43 //    relocation targets. Relocation targets are considered equivalent if
44 //    their targets are in the same equivalence class. Sections with
45 //    different relocation targets are put into different equivalence
46 //    clases.
47 //
48 // 3. If we split an equivalence class in step 2, two relocations
49 //    previously target the same equivalence class may now target
50 //    different equivalence classes. Therefore, we repeat step 2 until a
51 //    convergence is obtained.
52 //
53 // 4. For each equivalence class C, pick an arbitrary section in C, and
54 //    merge all the other sections in C with it.
55 //
56 // For small programs, this algorithm needs 3-5 iterations. For large
57 // programs such as Chromium, it takes more than 20 iterations.
58 //
59 // This algorithm was mentioned as an "optimistic algorithm" in [1],
60 // though gold implements a different algorithm than this.
61 //
62 // We parallelize each step so that multiple threads can work on different
63 // equivalence classes concurrently. That gave us a large performance
64 // boost when applying ICF on large programs. For example, MSVC link.exe
65 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
66 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
67 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
68 // faster than MSVC or gold though.
69 //
70 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
71 // in the Gold Linker
72 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "ICF.h"
77 #include "Config.h"
78 #include "SymbolTable.h"
79 #include "Symbols.h"
80 #include "SyntheticSections.h"
81 #include "lld/Common/Threads.h"
82 #include "llvm/ADT/Hashing.h"
83 #include "llvm/BinaryFormat/ELF.h"
84 #include "llvm/Object/ELF.h"
85 #include <algorithm>
86 #include <atomic>
87 
88 using namespace lld;
89 using namespace lld::elf;
90 using namespace llvm;
91 using namespace llvm::ELF;
92 using namespace llvm::object;
93 
94 namespace {
95 template <class ELFT> class ICF {
96 public:
97   void run();
98 
99 private:
100   void segregate(size_t Begin, size_t End, bool Constant);
101 
102   template <class RelTy>
103   bool constantEq(const InputSection *A, ArrayRef<RelTy> RelsA,
104                   const InputSection *B, ArrayRef<RelTy> RelsB);
105 
106   template <class RelTy>
107   bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
108                   const InputSection *B, ArrayRef<RelTy> RelsB);
109 
110   bool equalsConstant(const InputSection *A, const InputSection *B);
111   bool equalsVariable(const InputSection *A, const InputSection *B);
112 
113   size_t findBoundary(size_t Begin, size_t End);
114 
115   void forEachClassRange(size_t Begin, size_t End,
116                          std::function<void(size_t, size_t)> Fn);
117 
118   void forEachClass(std::function<void(size_t, size_t)> Fn);
119 
120   std::vector<InputSection *> Sections;
121 
122   // We repeat the main loop while `Repeat` is true.
123   std::atomic<bool> Repeat;
124 
125   // The main loop counter.
126   int Cnt = 0;
127 
128   // We have two locations for equivalence classes. On the first iteration
129   // of the main loop, Class[0] has a valid value, and Class[1] contains
130   // garbage. We read equivalence classes from slot 0 and write to slot 1.
131   // So, Class[0] represents the current class, and Class[1] represents
132   // the next class. On each iteration, we switch their roles and use them
133   // alternately.
134   //
135   // Why are we doing this? Recall that other threads may be working on
136   // other equivalence classes in parallel. They may read sections that we
137   // are updating. We cannot update equivalence classes in place because
138   // it breaks the invariance that all possibly-identical sections must be
139   // in the same equivalence class at any moment. In other words, the for
140   // loop to update equivalence classes is not atomic, and that is
141   // observable from other threads. By writing new classes to other
142   // places, we can keep the invariance.
143   //
144   // Below, `Current` has the index of the current class, and `Next` has
145   // the index of the next class. If threading is enabled, they are either
146   // (0, 1) or (1, 0).
147   //
148   // Note on single-thread: if that's the case, they are always (0, 0)
149   // because we can safely read the next class without worrying about race
150   // conditions. Using the same location makes this algorithm converge
151   // faster because it uses results of the same iteration earlier.
152   int Current = 0;
153   int Next = 0;
154 };
155 }
156 
157 // Returns a hash value for S. Note that the information about
158 // relocation targets is not included in the hash value.
159 template <class ELFT> static uint32_t getHash(InputSection *S) {
160   return hash_combine(S->Flags, S->getSize(), S->NumRelocations, S->Data);
161 }
162 
163 // Returns true if section S is subject of ICF.
164 static bool isEligible(InputSection *S) {
165   if (!S->Live || !(S->Flags & SHF_ALLOC) || (S->Flags & SHF_WRITE))
166     return false;
167 
168   // Don't merge read only data sections unless
169   // --ignore-data-address-equality was passed.
170   if (!(S->Flags & SHF_EXECINSTR) && !Config->IgnoreDataAddressEquality)
171     return false;
172 
173   // Don't merge synthetic sections as their Data member is not valid and empty.
174   // The Data member needs to be valid for ICF as it is used by ICF to determine
175   // the equality of section contents.
176   if (isa<SyntheticSection>(S))
177     return false;
178 
179   // .init and .fini contains instructions that must be executed to initialize
180   // and finalize the process. They cannot and should not be merged.
181   if (S->Name == ".init" || S->Name == ".fini")
182     return false;
183 
184   return true;
185 }
186 
187 // Split an equivalence class into smaller classes.
188 template <class ELFT>
189 void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
190   // This loop rearranges sections in [Begin, End) so that all sections
191   // that are equal in terms of equals{Constant,Variable} are contiguous
192   // in [Begin, End).
193   //
194   // The algorithm is quadratic in the worst case, but that is not an
195   // issue in practice because the number of the distinct sections in
196   // each range is usually very small.
197 
198   while (Begin < End) {
199     // Divide [Begin, End) into two. Let Mid be the start index of the
200     // second group.
201     auto Bound =
202         std::stable_partition(Sections.begin() + Begin + 1,
203                               Sections.begin() + End, [&](InputSection *S) {
204                                 if (Constant)
205                                   return equalsConstant(Sections[Begin], S);
206                                 return equalsVariable(Sections[Begin], S);
207                               });
208     size_t Mid = Bound - Sections.begin();
209 
210     // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
211     // updating the sections in [Begin, Mid). We use Mid as an equivalence
212     // class ID because every group ends with a unique index.
213     for (size_t I = Begin; I < Mid; ++I)
214       Sections[I]->Class[Next] = Mid;
215 
216     // If we created a group, we need to iterate the main loop again.
217     if (Mid != End)
218       Repeat = true;
219 
220     Begin = Mid;
221   }
222 }
223 
224 // Compare two lists of relocations.
225 template <class ELFT>
226 template <class RelTy>
227 bool ICF<ELFT>::constantEq(const InputSection *SecA, ArrayRef<RelTy> RA,
228                            const InputSection *SecB, ArrayRef<RelTy> RB) {
229   if (RA.size() != RB.size())
230     return false;
231 
232   for (size_t I = 0; I < RA.size(); ++I) {
233     if (RA[I].r_offset != RB[I].r_offset ||
234         RA[I].getType(Config->IsMips64EL) != RB[I].getType(Config->IsMips64EL))
235       return false;
236 
237     uint64_t AddA = getAddend<ELFT>(RA[I]);
238     uint64_t AddB = getAddend<ELFT>(RB[I]);
239 
240     Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
241     Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
242     if (&SA == &SB) {
243       if (AddA == AddB)
244         continue;
245       return false;
246     }
247 
248     auto *DA = dyn_cast<Defined>(&SA);
249     auto *DB = dyn_cast<Defined>(&SB);
250     if (!DA || !DB)
251       return false;
252 
253     // Relocations referring to absolute symbols are constant-equal if their
254     // values are equal.
255     if (!DA->Section && !DB->Section && DA->Value + AddA == DB->Value + AddB)
256       continue;
257     if (!DA->Section || !DB->Section)
258       return false;
259 
260     if (DA->Section->kind() != DB->Section->kind())
261       return false;
262 
263     // Relocations referring to InputSections are constant-equal if their
264     // section offsets are equal.
265     if (isa<InputSection>(DA->Section)) {
266       if (DA->Value + AddA == DB->Value + AddB)
267         continue;
268       return false;
269     }
270 
271     // Relocations referring to MergeInputSections are constant-equal if their
272     // offsets in the output section are equal.
273     auto *X = dyn_cast<MergeInputSection>(DA->Section);
274     if (!X)
275       return false;
276     auto *Y = cast<MergeInputSection>(DB->Section);
277     if (X->getParent() != Y->getParent())
278       return false;
279 
280     uint64_t OffsetA =
281         SA.isSection() ? X->getOffset(AddA) : X->getOffset(DA->Value) + AddA;
282     uint64_t OffsetB =
283         SB.isSection() ? Y->getOffset(AddB) : Y->getOffset(DB->Value) + AddB;
284     if (OffsetA != OffsetB)
285       return false;
286   }
287 
288   return true;
289 }
290 
291 // Compare "non-moving" part of two InputSections, namely everything
292 // except relocation targets.
293 template <class ELFT>
294 bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) {
295   if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
296       A->getSize() != B->getSize() || A->Data != B->Data)
297     return false;
298 
299   if (A->AreRelocsRela)
300     return constantEq(A, A->template relas<ELFT>(), B,
301                       B->template relas<ELFT>());
302   return constantEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
303 }
304 
305 // Compare two lists of relocations. Returns true if all pairs of
306 // relocations point to the same section in terms of ICF.
307 template <class ELFT>
308 template <class RelTy>
309 bool ICF<ELFT>::variableEq(const InputSection *SecA, ArrayRef<RelTy> RA,
310                            const InputSection *SecB, ArrayRef<RelTy> RB) {
311   assert(RA.size() == RB.size());
312 
313   for (size_t I = 0; I < RA.size(); ++I) {
314     // The two sections must be identical.
315     Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
316     Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
317     if (&SA == &SB)
318       continue;
319 
320     auto *DA = cast<Defined>(&SA);
321     auto *DB = cast<Defined>(&SB);
322 
323     // We already dealt with absolute and non-InputSection symbols in
324     // constantEq, and for InputSections we have already checked everything
325     // except the equivalence class.
326     if (!DA->Section)
327       continue;
328     auto *X = dyn_cast<InputSection>(DA->Section);
329     if (!X)
330       continue;
331     auto *Y = cast<InputSection>(DB->Section);
332 
333     // Ineligible sections are in the special equivalence class 0.
334     // They can never be the same in terms of the equivalence class.
335     if (X->Class[Current] == 0)
336       return false;
337     if (X->Class[Current] != Y->Class[Current])
338       return false;
339   };
340 
341   return true;
342 }
343 
344 // Compare "moving" part of two InputSections, namely relocation targets.
345 template <class ELFT>
346 bool ICF<ELFT>::equalsVariable(const InputSection *A, const InputSection *B) {
347   if (A->AreRelocsRela)
348     return variableEq(A, A->template relas<ELFT>(), B,
349                       B->template relas<ELFT>());
350   return variableEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
351 }
352 
353 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
354   uint32_t Class = Sections[Begin]->Class[Current];
355   for (size_t I = Begin + 1; I < End; ++I)
356     if (Class != Sections[I]->Class[Current])
357       return I;
358   return End;
359 }
360 
361 // Sections in the same equivalence class are contiguous in Sections
362 // vector. Therefore, Sections vector can be considered as contiguous
363 // groups of sections, grouped by the class.
364 //
365 // This function calls Fn on every group within [Begin, End).
366 template <class ELFT>
367 void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End,
368                                   std::function<void(size_t, size_t)> Fn) {
369   while (Begin < End) {
370     size_t Mid = findBoundary(Begin, End);
371     Fn(Begin, Mid);
372     Begin = Mid;
373   }
374 }
375 
376 // Call Fn on each equivalence class.
377 template <class ELFT>
378 void ICF<ELFT>::forEachClass(std::function<void(size_t, size_t)> Fn) {
379   // If threading is disabled or the number of sections are
380   // too small to use threading, call Fn sequentially.
381   if (!ThreadsEnabled || Sections.size() < 1024) {
382     forEachClassRange(0, Sections.size(), Fn);
383     ++Cnt;
384     return;
385   }
386 
387   Current = Cnt % 2;
388   Next = (Cnt + 1) % 2;
389 
390   // Shard into non-overlapping intervals, and call Fn in parallel.
391   // The sharding must be completed before any calls to Fn are made
392   // so that Fn can modify the Chunks in its shard without causing data
393   // races.
394   const size_t NumShards = 256;
395   size_t Step = Sections.size() / NumShards;
396   size_t Boundaries[NumShards + 1];
397   Boundaries[0] = 0;
398   Boundaries[NumShards] = Sections.size();
399 
400   parallelForEachN(1, NumShards, [&](size_t I) {
401     Boundaries[I] = findBoundary((I - 1) * Step, Sections.size());
402   });
403 
404   parallelForEachN(1, NumShards + 1, [&](size_t I) {
405     if (Boundaries[I - 1] < Boundaries[I])
406       forEachClassRange(Boundaries[I - 1], Boundaries[I], Fn);
407   });
408   ++Cnt;
409 }
410 
411 static void print(const Twine &S) {
412   if (Config->PrintIcfSections)
413     message(S);
414 }
415 
416 // The main function of ICF.
417 template <class ELFT> void ICF<ELFT>::run() {
418   // Collect sections to merge.
419   for (InputSectionBase *Sec : InputSections)
420     if (auto *S = dyn_cast<InputSection>(Sec))
421       if (isEligible(S))
422         Sections.push_back(S);
423 
424   // Initially, we use hash values to partition sections.
425   parallelForEach(Sections, [&](InputSection *S) {
426     // Set MSB to 1 to avoid collisions with non-hash IDs.
427     S->Class[0] = getHash<ELFT>(S) | (1 << 31);
428   });
429 
430   // From now on, sections in Sections vector are ordered so that sections
431   // in the same equivalence class are consecutive in the vector.
432   std::stable_sort(Sections.begin(), Sections.end(),
433                    [](InputSection *A, InputSection *B) {
434                      return A->Class[0] < B->Class[0];
435                    });
436 
437   // Compare static contents and assign unique IDs for each static content.
438   forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
439 
440   // Split groups by comparing relocations until convergence is obtained.
441   do {
442     Repeat = false;
443     forEachClass(
444         [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
445   } while (Repeat);
446 
447   log("ICF needed " + Twine(Cnt) + " iterations");
448 
449   // Merge sections by the equivalence class.
450   forEachClassRange(0, Sections.size(), [&](size_t Begin, size_t End) {
451     if (End - Begin == 1)
452       return;
453     print("selected section " + toString(Sections[Begin]));
454     for (size_t I = Begin + 1; I < End; ++I) {
455       print("  removing identical section " + toString(Sections[I]));
456       Sections[Begin]->replace(Sections[I]);
457 
458       // At this point we know sections merged are fully identical and hence
459       // we want to remove duplicate implicit dependencies such as link order
460       // and relocation sections.
461       for (InputSection *IS : Sections[I]->DependentSections)
462         IS->Live = false;
463     }
464   });
465 }
466 
467 // ICF entry point function.
468 template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
469 
470 template void elf::doIcf<ELF32LE>();
471 template void elf::doIcf<ELF32BE>();
472 template void elf::doIcf<ELF64LE>();
473 template void elf::doIcf<ELF64BE>();
474