1 //===- ICF.cpp ------------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // ICF is short for Identical Code Folding. This is a size optimization to 11 // identify and merge two or more read-only sections (typically functions) 12 // that happened to have the same contents. It usually reduces output size 13 // by a few percent. 14 // 15 // In ICF, two sections are considered identical if they have the same 16 // section flags, section data, and relocations. Relocations are tricky, 17 // because two relocations are considered the same if they have the same 18 // relocation types, values, and if they point to the same sections *in 19 // terms of ICF*. 20 // 21 // Here is an example. If foo and bar defined below are compiled to the 22 // same machine instructions, ICF can and should merge the two, although 23 // their relocations point to each other. 24 // 25 // void foo() { bar(); } 26 // void bar() { foo(); } 27 // 28 // If you merge the two, their relocations point to the same section and 29 // thus you know they are mergeable, but how do you know they are 30 // mergeable in the first place? This is not an easy problem to solve. 31 // 32 // What we are doing in LLD is to partition sections into equivalence 33 // classes. Sections in the same equivalence class when the algorithm 34 // terminates are considered identical. Here are details: 35 // 36 // 1. First, we partition sections using their hash values as keys. Hash 37 // values contain section types, section contents and numbers of 38 // relocations. During this step, relocation targets are not taken into 39 // account. We just put sections that apparently differ into different 40 // equivalence classes. 41 // 42 // 2. Next, for each equivalence class, we visit sections to compare 43 // relocation targets. Relocation targets are considered equivalent if 44 // their targets are in the same equivalence class. Sections with 45 // different relocation targets are put into different equivalence 46 // clases. 47 // 48 // 3. If we split an equivalence class in step 2, two relocations 49 // previously target the same equivalence class may now target 50 // different equivalence classes. Therefore, we repeat step 2 until a 51 // convergence is obtained. 52 // 53 // 4. For each equivalence class C, pick an arbitrary section in C, and 54 // merge all the other sections in C with it. 55 // 56 // For small programs, this algorithm needs 3-5 iterations. For large 57 // programs such as Chromium, it takes more than 20 iterations. 58 // 59 // This algorithm was mentioned as an "optimistic algorithm" in [1], 60 // though gold implements a different algorithm than this. 61 // 62 // We parallelize each step so that multiple threads can work on different 63 // equivalence classes concurrently. That gave us a large performance 64 // boost when applying ICF on large programs. For example, MSVC link.exe 65 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output 66 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a 67 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still 68 // faster than MSVC or gold though. 69 // 70 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding 71 // in the Gold Linker 72 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf 73 // 74 //===----------------------------------------------------------------------===// 75 76 #include "ICF.h" 77 #include "Config.h" 78 #include "SymbolTable.h" 79 #include "Symbols.h" 80 #include "SyntheticSections.h" 81 #include "lld/Common/Threads.h" 82 #include "llvm/ADT/Hashing.h" 83 #include "llvm/BinaryFormat/ELF.h" 84 #include "llvm/Object/ELF.h" 85 #include <algorithm> 86 #include <atomic> 87 88 using namespace lld; 89 using namespace lld::elf; 90 using namespace llvm; 91 using namespace llvm::ELF; 92 using namespace llvm::object; 93 94 namespace { 95 template <class ELFT> class ICF { 96 public: 97 void run(); 98 99 private: 100 void segregate(size_t Begin, size_t End, bool Constant); 101 102 template <class RelTy> 103 bool constantEq(const InputSection *A, ArrayRef<RelTy> RelsA, 104 const InputSection *B, ArrayRef<RelTy> RelsB); 105 106 template <class RelTy> 107 bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA, 108 const InputSection *B, ArrayRef<RelTy> RelsB); 109 110 bool equalsConstant(const InputSection *A, const InputSection *B); 111 bool equalsVariable(const InputSection *A, const InputSection *B); 112 113 size_t findBoundary(size_t Begin, size_t End); 114 115 void forEachClassRange(size_t Begin, size_t End, 116 std::function<void(size_t, size_t)> Fn); 117 118 void forEachClass(std::function<void(size_t, size_t)> Fn); 119 120 std::vector<InputSection *> Sections; 121 122 // We repeat the main loop while `Repeat` is true. 123 std::atomic<bool> Repeat; 124 125 // The main loop counter. 126 int Cnt = 0; 127 128 // We have two locations for equivalence classes. On the first iteration 129 // of the main loop, Class[0] has a valid value, and Class[1] contains 130 // garbage. We read equivalence classes from slot 0 and write to slot 1. 131 // So, Class[0] represents the current class, and Class[1] represents 132 // the next class. On each iteration, we switch their roles and use them 133 // alternately. 134 // 135 // Why are we doing this? Recall that other threads may be working on 136 // other equivalence classes in parallel. They may read sections that we 137 // are updating. We cannot update equivalence classes in place because 138 // it breaks the invariance that all possibly-identical sections must be 139 // in the same equivalence class at any moment. In other words, the for 140 // loop to update equivalence classes is not atomic, and that is 141 // observable from other threads. By writing new classes to other 142 // places, we can keep the invariance. 143 // 144 // Below, `Current` has the index of the current class, and `Next` has 145 // the index of the next class. If threading is enabled, they are either 146 // (0, 1) or (1, 0). 147 // 148 // Note on single-thread: if that's the case, they are always (0, 0) 149 // because we can safely read the next class without worrying about race 150 // conditions. Using the same location makes this algorithm converge 151 // faster because it uses results of the same iteration earlier. 152 int Current = 0; 153 int Next = 0; 154 }; 155 } 156 157 // Returns a hash value for S. Note that the information about 158 // relocation targets is not included in the hash value. 159 template <class ELFT> static uint32_t getHash(InputSection *S) { 160 return hash_combine(S->Flags, S->getSize(), S->NumRelocations, S->Data); 161 } 162 163 // Returns true if section S is subject of ICF. 164 static bool isEligible(InputSection *S) { 165 if (!S->Live || !(S->Flags & SHF_ALLOC) || (S->Flags & SHF_WRITE)) 166 return false; 167 168 // Don't merge read only data sections unless 169 // --ignore-data-address-equality was passed. 170 if (!(S->Flags & SHF_EXECINSTR) && !Config->IgnoreDataAddressEquality) 171 return false; 172 173 // Don't merge synthetic sections as their Data member is not valid and empty. 174 // The Data member needs to be valid for ICF as it is used by ICF to determine 175 // the equality of section contents. 176 if (isa<SyntheticSection>(S)) 177 return false; 178 179 // .init and .fini contains instructions that must be executed to initialize 180 // and finalize the process. They cannot and should not be merged. 181 if (S->Name == ".init" || S->Name == ".fini") 182 return false; 183 184 return true; 185 } 186 187 // Split an equivalence class into smaller classes. 188 template <class ELFT> 189 void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) { 190 // This loop rearranges sections in [Begin, End) so that all sections 191 // that are equal in terms of equals{Constant,Variable} are contiguous 192 // in [Begin, End). 193 // 194 // The algorithm is quadratic in the worst case, but that is not an 195 // issue in practice because the number of the distinct sections in 196 // each range is usually very small. 197 198 while (Begin < End) { 199 // Divide [Begin, End) into two. Let Mid be the start index of the 200 // second group. 201 auto Bound = 202 std::stable_partition(Sections.begin() + Begin + 1, 203 Sections.begin() + End, [&](InputSection *S) { 204 if (Constant) 205 return equalsConstant(Sections[Begin], S); 206 return equalsVariable(Sections[Begin], S); 207 }); 208 size_t Mid = Bound - Sections.begin(); 209 210 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by 211 // updating the sections in [Begin, Mid). We use Mid as an equivalence 212 // class ID because every group ends with a unique index. 213 for (size_t I = Begin; I < Mid; ++I) 214 Sections[I]->Class[Next] = Mid; 215 216 // If we created a group, we need to iterate the main loop again. 217 if (Mid != End) 218 Repeat = true; 219 220 Begin = Mid; 221 } 222 } 223 224 // Compare two lists of relocations. 225 template <class ELFT> 226 template <class RelTy> 227 bool ICF<ELFT>::constantEq(const InputSection *SecA, ArrayRef<RelTy> RA, 228 const InputSection *SecB, ArrayRef<RelTy> RB) { 229 if (RA.size() != RB.size()) 230 return false; 231 232 for (size_t I = 0; I < RA.size(); ++I) { 233 if (RA[I].r_offset != RB[I].r_offset || 234 RA[I].getType(Config->IsMips64EL) != RB[I].getType(Config->IsMips64EL)) 235 return false; 236 237 uint64_t AddA = getAddend<ELFT>(RA[I]); 238 uint64_t AddB = getAddend<ELFT>(RB[I]); 239 240 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]); 241 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]); 242 if (&SA == &SB) { 243 if (AddA == AddB) 244 continue; 245 return false; 246 } 247 248 auto *DA = dyn_cast<Defined>(&SA); 249 auto *DB = dyn_cast<Defined>(&SB); 250 if (!DA || !DB) 251 return false; 252 253 // Relocations referring to absolute symbols are constant-equal if their 254 // values are equal. 255 if (!DA->Section && !DB->Section && DA->Value + AddA == DB->Value + AddB) 256 continue; 257 if (!DA->Section || !DB->Section) 258 return false; 259 260 if (DA->Section->kind() != DB->Section->kind()) 261 return false; 262 263 // Relocations referring to InputSections are constant-equal if their 264 // section offsets are equal. 265 if (isa<InputSection>(DA->Section)) { 266 if (DA->Value + AddA == DB->Value + AddB) 267 continue; 268 return false; 269 } 270 271 // Relocations referring to MergeInputSections are constant-equal if their 272 // offsets in the output section are equal. 273 auto *X = dyn_cast<MergeInputSection>(DA->Section); 274 if (!X) 275 return false; 276 auto *Y = cast<MergeInputSection>(DB->Section); 277 if (X->getParent() != Y->getParent()) 278 return false; 279 280 uint64_t OffsetA = 281 SA.isSection() ? X->getOffset(AddA) : X->getOffset(DA->Value) + AddA; 282 uint64_t OffsetB = 283 SB.isSection() ? Y->getOffset(AddB) : Y->getOffset(DB->Value) + AddB; 284 if (OffsetA != OffsetB) 285 return false; 286 } 287 288 return true; 289 } 290 291 // Compare "non-moving" part of two InputSections, namely everything 292 // except relocation targets. 293 template <class ELFT> 294 bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) { 295 if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags || 296 A->getSize() != B->getSize() || A->Data != B->Data) 297 return false; 298 299 if (A->AreRelocsRela) 300 return constantEq(A, A->template relas<ELFT>(), B, 301 B->template relas<ELFT>()); 302 return constantEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>()); 303 } 304 305 // Compare two lists of relocations. Returns true if all pairs of 306 // relocations point to the same section in terms of ICF. 307 template <class ELFT> 308 template <class RelTy> 309 bool ICF<ELFT>::variableEq(const InputSection *SecA, ArrayRef<RelTy> RA, 310 const InputSection *SecB, ArrayRef<RelTy> RB) { 311 assert(RA.size() == RB.size()); 312 313 for (size_t I = 0; I < RA.size(); ++I) { 314 // The two sections must be identical. 315 Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]); 316 Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]); 317 if (&SA == &SB) 318 continue; 319 320 auto *DA = cast<Defined>(&SA); 321 auto *DB = cast<Defined>(&SB); 322 323 // We already dealt with absolute and non-InputSection symbols in 324 // constantEq, and for InputSections we have already checked everything 325 // except the equivalence class. 326 if (!DA->Section) 327 continue; 328 auto *X = dyn_cast<InputSection>(DA->Section); 329 if (!X) 330 continue; 331 auto *Y = cast<InputSection>(DB->Section); 332 333 // Ineligible sections are in the special equivalence class 0. 334 // They can never be the same in terms of the equivalence class. 335 if (X->Class[Current] == 0) 336 return false; 337 if (X->Class[Current] != Y->Class[Current]) 338 return false; 339 }; 340 341 return true; 342 } 343 344 // Compare "moving" part of two InputSections, namely relocation targets. 345 template <class ELFT> 346 bool ICF<ELFT>::equalsVariable(const InputSection *A, const InputSection *B) { 347 if (A->AreRelocsRela) 348 return variableEq(A, A->template relas<ELFT>(), B, 349 B->template relas<ELFT>()); 350 return variableEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>()); 351 } 352 353 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) { 354 uint32_t Class = Sections[Begin]->Class[Current]; 355 for (size_t I = Begin + 1; I < End; ++I) 356 if (Class != Sections[I]->Class[Current]) 357 return I; 358 return End; 359 } 360 361 // Sections in the same equivalence class are contiguous in Sections 362 // vector. Therefore, Sections vector can be considered as contiguous 363 // groups of sections, grouped by the class. 364 // 365 // This function calls Fn on every group within [Begin, End). 366 template <class ELFT> 367 void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End, 368 std::function<void(size_t, size_t)> Fn) { 369 while (Begin < End) { 370 size_t Mid = findBoundary(Begin, End); 371 Fn(Begin, Mid); 372 Begin = Mid; 373 } 374 } 375 376 // Call Fn on each equivalence class. 377 template <class ELFT> 378 void ICF<ELFT>::forEachClass(std::function<void(size_t, size_t)> Fn) { 379 // If threading is disabled or the number of sections are 380 // too small to use threading, call Fn sequentially. 381 if (!ThreadsEnabled || Sections.size() < 1024) { 382 forEachClassRange(0, Sections.size(), Fn); 383 ++Cnt; 384 return; 385 } 386 387 Current = Cnt % 2; 388 Next = (Cnt + 1) % 2; 389 390 // Shard into non-overlapping intervals, and call Fn in parallel. 391 // The sharding must be completed before any calls to Fn are made 392 // so that Fn can modify the Chunks in its shard without causing data 393 // races. 394 const size_t NumShards = 256; 395 size_t Step = Sections.size() / NumShards; 396 size_t Boundaries[NumShards + 1]; 397 Boundaries[0] = 0; 398 Boundaries[NumShards] = Sections.size(); 399 400 parallelForEachN(1, NumShards, [&](size_t I) { 401 Boundaries[I] = findBoundary((I - 1) * Step, Sections.size()); 402 }); 403 404 parallelForEachN(1, NumShards + 1, [&](size_t I) { 405 if (Boundaries[I - 1] < Boundaries[I]) 406 forEachClassRange(Boundaries[I - 1], Boundaries[I], Fn); 407 }); 408 ++Cnt; 409 } 410 411 static void print(const Twine &S) { 412 if (Config->PrintIcfSections) 413 message(S); 414 } 415 416 // The main function of ICF. 417 template <class ELFT> void ICF<ELFT>::run() { 418 // Collect sections to merge. 419 for (InputSectionBase *Sec : InputSections) 420 if (auto *S = dyn_cast<InputSection>(Sec)) 421 if (isEligible(S)) 422 Sections.push_back(S); 423 424 // Initially, we use hash values to partition sections. 425 parallelForEach(Sections, [&](InputSection *S) { 426 // Set MSB to 1 to avoid collisions with non-hash IDs. 427 S->Class[0] = getHash<ELFT>(S) | (1 << 31); 428 }); 429 430 // From now on, sections in Sections vector are ordered so that sections 431 // in the same equivalence class are consecutive in the vector. 432 std::stable_sort(Sections.begin(), Sections.end(), 433 [](InputSection *A, InputSection *B) { 434 return A->Class[0] < B->Class[0]; 435 }); 436 437 // Compare static contents and assign unique IDs for each static content. 438 forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); }); 439 440 // Split groups by comparing relocations until convergence is obtained. 441 do { 442 Repeat = false; 443 forEachClass( 444 [&](size_t Begin, size_t End) { segregate(Begin, End, false); }); 445 } while (Repeat); 446 447 log("ICF needed " + Twine(Cnt) + " iterations"); 448 449 // Merge sections by the equivalence class. 450 forEachClassRange(0, Sections.size(), [&](size_t Begin, size_t End) { 451 if (End - Begin == 1) 452 return; 453 print("selected section " + toString(Sections[Begin])); 454 for (size_t I = Begin + 1; I < End; ++I) { 455 print(" removing identical section " + toString(Sections[I])); 456 Sections[Begin]->replace(Sections[I]); 457 458 // At this point we know sections merged are fully identical and hence 459 // we want to remove duplicate implicit dependencies such as link order 460 // and relocation sections. 461 for (InputSection *IS : Sections[I]->DependentSections) 462 IS->Live = false; 463 } 464 }); 465 } 466 467 // ICF entry point function. 468 template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); } 469 470 template void elf::doIcf<ELF32LE>(); 471 template void elf::doIcf<ELF32BE>(); 472 template void elf::doIcf<ELF64LE>(); 473 template void elf::doIcf<ELF64BE>(); 474