1 //===- Driver.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The driver drives the entire linking process. It is responsible for 10 // parsing command line options and doing whatever it is instructed to do. 11 // 12 // One notable thing in the LLD's driver when compared to other linkers is 13 // that the LLD's driver is agnostic on the host operating system. 14 // Other linkers usually have implicit default values (such as a dynamic 15 // linker path or library paths) for each host OS. 16 // 17 // I don't think implicit default values are useful because they are 18 // usually explicitly specified by the compiler driver. They can even 19 // be harmful when you are doing cross-linking. Therefore, in LLD, we 20 // simply trust the compiler driver to pass all required options and 21 // don't try to make effort on our side. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "Driver.h" 26 #include "Config.h" 27 #include "ICF.h" 28 #include "InputFiles.h" 29 #include "InputSection.h" 30 #include "LinkerScript.h" 31 #include "MarkLive.h" 32 #include "OutputSections.h" 33 #include "ScriptParser.h" 34 #include "SymbolTable.h" 35 #include "Symbols.h" 36 #include "SyntheticSections.h" 37 #include "Target.h" 38 #include "Writer.h" 39 #include "lld/Common/Args.h" 40 #include "lld/Common/Driver.h" 41 #include "lld/Common/ErrorHandler.h" 42 #include "lld/Common/Filesystem.h" 43 #include "lld/Common/Memory.h" 44 #include "lld/Common/Strings.h" 45 #include "lld/Common/TargetOptionsCommandFlags.h" 46 #include "lld/Common/Threads.h" 47 #include "lld/Common/Version.h" 48 #include "llvm/ADT/SetVector.h" 49 #include "llvm/ADT/StringExtras.h" 50 #include "llvm/ADT/StringSwitch.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compression.h" 53 #include "llvm/Support/GlobPattern.h" 54 #include "llvm/Support/LEB128.h" 55 #include "llvm/Support/Path.h" 56 #include "llvm/Support/TarWriter.h" 57 #include "llvm/Support/TargetSelect.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <cstdlib> 60 #include <utility> 61 62 using namespace llvm; 63 using namespace llvm::ELF; 64 using namespace llvm::object; 65 using namespace llvm::sys; 66 using namespace llvm::support; 67 68 using namespace lld; 69 using namespace lld::elf; 70 71 Configuration *elf::Config; 72 LinkerDriver *elf::Driver; 73 74 static void setConfigs(opt::InputArgList &Args); 75 static void readConfigs(opt::InputArgList &Args); 76 77 bool elf::link(ArrayRef<const char *> Args, bool CanExitEarly, 78 raw_ostream &Error) { 79 errorHandler().LogName = args::getFilenameWithoutExe(Args[0]); 80 errorHandler().ErrorLimitExceededMsg = 81 "too many errors emitted, stopping now (use " 82 "-error-limit=0 to see all errors)"; 83 errorHandler().ErrorOS = &Error; 84 errorHandler().ExitEarly = CanExitEarly; 85 errorHandler().ColorDiagnostics = Error.has_colors(); 86 87 InputSections.clear(); 88 OutputSections.clear(); 89 BinaryFiles.clear(); 90 BitcodeFiles.clear(); 91 ObjectFiles.clear(); 92 SharedFiles.clear(); 93 94 Config = make<Configuration>(); 95 Driver = make<LinkerDriver>(); 96 Script = make<LinkerScript>(); 97 Symtab = make<SymbolTable>(); 98 99 Tar = nullptr; 100 memset(&In, 0, sizeof(In)); 101 102 Partitions = {Partition()}; 103 104 SharedFile::VernauxNum = 0; 105 106 Config->ProgName = Args[0]; 107 108 Driver->main(Args); 109 110 // Exit immediately if we don't need to return to the caller. 111 // This saves time because the overhead of calling destructors 112 // for all globally-allocated objects is not negligible. 113 if (CanExitEarly) 114 exitLld(errorCount() ? 1 : 0); 115 116 freeArena(); 117 return !errorCount(); 118 } 119 120 // Parses a linker -m option. 121 static std::tuple<ELFKind, uint16_t, uint8_t> parseEmulation(StringRef Emul) { 122 uint8_t OSABI = 0; 123 StringRef S = Emul; 124 if (S.endswith("_fbsd")) { 125 S = S.drop_back(5); 126 OSABI = ELFOSABI_FREEBSD; 127 } 128 129 std::pair<ELFKind, uint16_t> Ret = 130 StringSwitch<std::pair<ELFKind, uint16_t>>(S) 131 .Cases("aarch64elf", "aarch64linux", "aarch64_elf64_le_vec", 132 {ELF64LEKind, EM_AARCH64}) 133 .Cases("armelf", "armelf_linux_eabi", {ELF32LEKind, EM_ARM}) 134 .Case("elf32_x86_64", {ELF32LEKind, EM_X86_64}) 135 .Cases("elf32btsmip", "elf32btsmipn32", {ELF32BEKind, EM_MIPS}) 136 .Cases("elf32ltsmip", "elf32ltsmipn32", {ELF32LEKind, EM_MIPS}) 137 .Case("elf32lriscv", {ELF32LEKind, EM_RISCV}) 138 .Cases("elf32ppc", "elf32ppclinux", {ELF32BEKind, EM_PPC}) 139 .Case("elf64btsmip", {ELF64BEKind, EM_MIPS}) 140 .Case("elf64ltsmip", {ELF64LEKind, EM_MIPS}) 141 .Case("elf64lriscv", {ELF64LEKind, EM_RISCV}) 142 .Case("elf64ppc", {ELF64BEKind, EM_PPC64}) 143 .Case("elf64lppc", {ELF64LEKind, EM_PPC64}) 144 .Cases("elf_amd64", "elf_x86_64", {ELF64LEKind, EM_X86_64}) 145 .Case("elf_i386", {ELF32LEKind, EM_386}) 146 .Case("elf_iamcu", {ELF32LEKind, EM_IAMCU}) 147 .Default({ELFNoneKind, EM_NONE}); 148 149 if (Ret.first == ELFNoneKind) 150 error("unknown emulation: " + Emul); 151 return std::make_tuple(Ret.first, Ret.second, OSABI); 152 } 153 154 // Returns slices of MB by parsing MB as an archive file. 155 // Each slice consists of a member file in the archive. 156 std::vector<std::pair<MemoryBufferRef, uint64_t>> static getArchiveMembers( 157 MemoryBufferRef MB) { 158 std::unique_ptr<Archive> File = 159 CHECK(Archive::create(MB), 160 MB.getBufferIdentifier() + ": failed to parse archive"); 161 162 std::vector<std::pair<MemoryBufferRef, uint64_t>> V; 163 Error Err = Error::success(); 164 bool AddToTar = File->isThin() && Tar; 165 for (const ErrorOr<Archive::Child> &COrErr : File->children(Err)) { 166 Archive::Child C = 167 CHECK(COrErr, MB.getBufferIdentifier() + 168 ": could not get the child of the archive"); 169 MemoryBufferRef MBRef = 170 CHECK(C.getMemoryBufferRef(), 171 MB.getBufferIdentifier() + 172 ": could not get the buffer for a child of the archive"); 173 if (AddToTar) 174 Tar->append(relativeToRoot(check(C.getFullName())), MBRef.getBuffer()); 175 V.push_back(std::make_pair(MBRef, C.getChildOffset())); 176 } 177 if (Err) 178 fatal(MB.getBufferIdentifier() + ": Archive::children failed: " + 179 toString(std::move(Err))); 180 181 // Take ownership of memory buffers created for members of thin archives. 182 for (std::unique_ptr<MemoryBuffer> &MB : File->takeThinBuffers()) 183 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); 184 185 return V; 186 } 187 188 // Opens a file and create a file object. Path has to be resolved already. 189 void LinkerDriver::addFile(StringRef Path, bool WithLOption) { 190 using namespace sys::fs; 191 192 Optional<MemoryBufferRef> Buffer = readFile(Path); 193 if (!Buffer.hasValue()) 194 return; 195 MemoryBufferRef MBRef = *Buffer; 196 197 if (Config->FormatBinary) { 198 Files.push_back(make<BinaryFile>(MBRef)); 199 return; 200 } 201 202 switch (identify_magic(MBRef.getBuffer())) { 203 case file_magic::unknown: 204 readLinkerScript(MBRef); 205 return; 206 case file_magic::archive: { 207 // Handle -whole-archive. 208 if (InWholeArchive) { 209 for (const auto &P : getArchiveMembers(MBRef)) 210 Files.push_back(createObjectFile(P.first, Path, P.second)); 211 return; 212 } 213 214 std::unique_ptr<Archive> File = 215 CHECK(Archive::create(MBRef), Path + ": failed to parse archive"); 216 217 // If an archive file has no symbol table, it is likely that a user 218 // is attempting LTO and using a default ar command that doesn't 219 // understand the LLVM bitcode file. It is a pretty common error, so 220 // we'll handle it as if it had a symbol table. 221 if (!File->isEmpty() && !File->hasSymbolTable()) { 222 // Check if all members are bitcode files. If not, ignore, which is the 223 // default action without the LTO hack described above. 224 for (const std::pair<MemoryBufferRef, uint64_t> &P : 225 getArchiveMembers(MBRef)) 226 if (identify_magic(P.first.getBuffer()) != file_magic::bitcode) { 227 error(Path + ": archive has no index; run ranlib to add one"); 228 return; 229 } 230 231 for (const std::pair<MemoryBufferRef, uint64_t> &P : 232 getArchiveMembers(MBRef)) 233 Files.push_back(make<LazyObjFile>(P.first, Path, P.second)); 234 return; 235 } 236 237 // Handle the regular case. 238 Files.push_back(make<ArchiveFile>(std::move(File))); 239 return; 240 } 241 case file_magic::elf_shared_object: 242 if (Config->Static || Config->Relocatable) { 243 error("attempted static link of dynamic object " + Path); 244 return; 245 } 246 247 // DSOs usually have DT_SONAME tags in their ELF headers, and the 248 // sonames are used to identify DSOs. But if they are missing, 249 // they are identified by filenames. We don't know whether the new 250 // file has a DT_SONAME or not because we haven't parsed it yet. 251 // Here, we set the default soname for the file because we might 252 // need it later. 253 // 254 // If a file was specified by -lfoo, the directory part is not 255 // significant, as a user did not specify it. This behavior is 256 // compatible with GNU. 257 Files.push_back( 258 make<SharedFile>(MBRef, WithLOption ? path::filename(Path) : Path)); 259 return; 260 case file_magic::bitcode: 261 case file_magic::elf_relocatable: 262 if (InLib) 263 Files.push_back(make<LazyObjFile>(MBRef, "", 0)); 264 else 265 Files.push_back(createObjectFile(MBRef)); 266 break; 267 default: 268 error(Path + ": unknown file type"); 269 } 270 } 271 272 // Add a given library by searching it from input search paths. 273 void LinkerDriver::addLibrary(StringRef Name) { 274 if (Optional<std::string> Path = searchLibrary(Name)) 275 addFile(*Path, /*WithLOption=*/true); 276 else 277 error("unable to find library -l" + Name); 278 } 279 280 // This function is called on startup. We need this for LTO since 281 // LTO calls LLVM functions to compile bitcode files to native code. 282 // Technically this can be delayed until we read bitcode files, but 283 // we don't bother to do lazily because the initialization is fast. 284 static void initLLVM() { 285 InitializeAllTargets(); 286 InitializeAllTargetMCs(); 287 InitializeAllAsmPrinters(); 288 InitializeAllAsmParsers(); 289 } 290 291 // Some command line options or some combinations of them are not allowed. 292 // This function checks for such errors. 293 static void checkOptions() { 294 // The MIPS ABI as of 2016 does not support the GNU-style symbol lookup 295 // table which is a relatively new feature. 296 if (Config->EMachine == EM_MIPS && Config->GnuHash) 297 error("the .gnu.hash section is not compatible with the MIPS target"); 298 299 if (Config->FixCortexA53Errata843419 && Config->EMachine != EM_AARCH64) 300 error("--fix-cortex-a53-843419 is only supported on AArch64 targets"); 301 302 if (Config->TocOptimize && Config->EMachine != EM_PPC64) 303 error("--toc-optimize is only supported on the PowerPC64 target"); 304 305 if (Config->Pie && Config->Shared) 306 error("-shared and -pie may not be used together"); 307 308 if (!Config->Shared && !Config->FilterList.empty()) 309 error("-F may not be used without -shared"); 310 311 if (!Config->Shared && !Config->AuxiliaryList.empty()) 312 error("-f may not be used without -shared"); 313 314 if (!Config->Relocatable && !Config->DefineCommon) 315 error("-no-define-common not supported in non relocatable output"); 316 317 if (Config->ZText && Config->ZIfuncNoplt) 318 error("-z text and -z ifunc-noplt may not be used together"); 319 320 if (Config->Relocatable) { 321 if (Config->Shared) 322 error("-r and -shared may not be used together"); 323 if (Config->GcSections) 324 error("-r and --gc-sections may not be used together"); 325 if (Config->GdbIndex) 326 error("-r and --gdb-index may not be used together"); 327 if (Config->ICF != ICFLevel::None) 328 error("-r and --icf may not be used together"); 329 if (Config->Pie) 330 error("-r and -pie may not be used together"); 331 } 332 333 if (Config->ExecuteOnly) { 334 if (Config->EMachine != EM_AARCH64) 335 error("-execute-only is only supported on AArch64 targets"); 336 337 if (Config->SingleRoRx && !Script->HasSectionsCommand) 338 error("-execute-only and -no-rosegment cannot be used together"); 339 } 340 341 if (Config->ZRetpolineplt && Config->RequireCET) 342 error("--require-cet may not be used with -z retpolineplt"); 343 344 if (Config->EMachine != EM_AARCH64) { 345 if (Config->PacPlt) 346 error("--pac-plt only supported on AArch64"); 347 if (Config->ForceBTI) 348 error("--force-bti only supported on AArch64"); 349 } 350 } 351 352 static const char *getReproduceOption(opt::InputArgList &Args) { 353 if (auto *Arg = Args.getLastArg(OPT_reproduce)) 354 return Arg->getValue(); 355 return getenv("LLD_REPRODUCE"); 356 } 357 358 static bool hasZOption(opt::InputArgList &Args, StringRef Key) { 359 for (auto *Arg : Args.filtered(OPT_z)) 360 if (Key == Arg->getValue()) 361 return true; 362 return false; 363 } 364 365 static bool getZFlag(opt::InputArgList &Args, StringRef K1, StringRef K2, 366 bool Default) { 367 for (auto *Arg : Args.filtered_reverse(OPT_z)) { 368 if (K1 == Arg->getValue()) 369 return true; 370 if (K2 == Arg->getValue()) 371 return false; 372 } 373 return Default; 374 } 375 376 static bool isKnownZFlag(StringRef S) { 377 return S == "combreloc" || S == "copyreloc" || S == "defs" || 378 S == "execstack" || S == "global" || S == "hazardplt" || 379 S == "ifunc-noplt" || S == "initfirst" || S == "interpose" || 380 S == "keep-text-section-prefix" || S == "lazy" || S == "muldefs" || 381 S == "nocombreloc" || S == "nocopyreloc" || S == "nodefaultlib" || 382 S == "nodelete" || S == "nodlopen" || S == "noexecstack" || 383 S == "nokeep-text-section-prefix" || S == "norelro" || S == "notext" || 384 S == "now" || S == "origin" || S == "relro" || S == "retpolineplt" || 385 S == "rodynamic" || S == "text" || S == "wxneeded" || 386 S.startswith("common-page-size") || S.startswith("max-page-size=") || 387 S.startswith("stack-size="); 388 } 389 390 // Report an error for an unknown -z option. 391 static void checkZOptions(opt::InputArgList &Args) { 392 for (auto *Arg : Args.filtered(OPT_z)) 393 if (!isKnownZFlag(Arg->getValue())) 394 error("unknown -z value: " + StringRef(Arg->getValue())); 395 } 396 397 void LinkerDriver::main(ArrayRef<const char *> ArgsArr) { 398 ELFOptTable Parser; 399 opt::InputArgList Args = Parser.parse(ArgsArr.slice(1)); 400 401 // Interpret this flag early because error() depends on them. 402 errorHandler().ErrorLimit = args::getInteger(Args, OPT_error_limit, 20); 403 checkZOptions(Args); 404 405 // Handle -help 406 if (Args.hasArg(OPT_help)) { 407 printHelp(); 408 return; 409 } 410 411 // Handle -v or -version. 412 // 413 // A note about "compatible with GNU linkers" message: this is a hack for 414 // scripts generated by GNU Libtool 2.4.6 (released in February 2014 and 415 // still the newest version in March 2017) or earlier to recognize LLD as 416 // a GNU compatible linker. As long as an output for the -v option 417 // contains "GNU" or "with BFD", they recognize us as GNU-compatible. 418 // 419 // This is somewhat ugly hack, but in reality, we had no choice other 420 // than doing this. Considering the very long release cycle of Libtool, 421 // it is not easy to improve it to recognize LLD as a GNU compatible 422 // linker in a timely manner. Even if we can make it, there are still a 423 // lot of "configure" scripts out there that are generated by old version 424 // of Libtool. We cannot convince every software developer to migrate to 425 // the latest version and re-generate scripts. So we have this hack. 426 if (Args.hasArg(OPT_v) || Args.hasArg(OPT_version)) 427 message(getLLDVersion() + " (compatible with GNU linkers)"); 428 429 if (const char *Path = getReproduceOption(Args)) { 430 // Note that --reproduce is a debug option so you can ignore it 431 // if you are trying to understand the whole picture of the code. 432 Expected<std::unique_ptr<TarWriter>> ErrOrWriter = 433 TarWriter::create(Path, path::stem(Path)); 434 if (ErrOrWriter) { 435 Tar = std::move(*ErrOrWriter); 436 Tar->append("response.txt", createResponseFile(Args)); 437 Tar->append("version.txt", getLLDVersion() + "\n"); 438 } else { 439 error("--reproduce: " + toString(ErrOrWriter.takeError())); 440 } 441 } 442 443 readConfigs(Args); 444 445 // The behavior of -v or --version is a bit strange, but this is 446 // needed for compatibility with GNU linkers. 447 if (Args.hasArg(OPT_v) && !Args.hasArg(OPT_INPUT)) 448 return; 449 if (Args.hasArg(OPT_version)) 450 return; 451 452 initLLVM(); 453 createFiles(Args); 454 if (errorCount()) 455 return; 456 457 inferMachineType(); 458 setConfigs(Args); 459 checkOptions(); 460 if (errorCount()) 461 return; 462 463 // The Target instance handles target-specific stuff, such as applying 464 // relocations or writing a PLT section. It also contains target-dependent 465 // values such as a default image base address. 466 Target = getTarget(); 467 468 switch (Config->EKind) { 469 case ELF32LEKind: 470 link<ELF32LE>(Args); 471 return; 472 case ELF32BEKind: 473 link<ELF32BE>(Args); 474 return; 475 case ELF64LEKind: 476 link<ELF64LE>(Args); 477 return; 478 case ELF64BEKind: 479 link<ELF64BE>(Args); 480 return; 481 default: 482 llvm_unreachable("unknown Config->EKind"); 483 } 484 } 485 486 static std::string getRpath(opt::InputArgList &Args) { 487 std::vector<StringRef> V = args::getStrings(Args, OPT_rpath); 488 return llvm::join(V.begin(), V.end(), ":"); 489 } 490 491 // Determines what we should do if there are remaining unresolved 492 // symbols after the name resolution. 493 static UnresolvedPolicy getUnresolvedSymbolPolicy(opt::InputArgList &Args) { 494 UnresolvedPolicy ErrorOrWarn = Args.hasFlag(OPT_error_unresolved_symbols, 495 OPT_warn_unresolved_symbols, true) 496 ? UnresolvedPolicy::ReportError 497 : UnresolvedPolicy::Warn; 498 499 // Process the last of -unresolved-symbols, -no-undefined or -z defs. 500 for (auto *Arg : llvm::reverse(Args)) { 501 switch (Arg->getOption().getID()) { 502 case OPT_unresolved_symbols: { 503 StringRef S = Arg->getValue(); 504 if (S == "ignore-all" || S == "ignore-in-object-files") 505 return UnresolvedPolicy::Ignore; 506 if (S == "ignore-in-shared-libs" || S == "report-all") 507 return ErrorOrWarn; 508 error("unknown --unresolved-symbols value: " + S); 509 continue; 510 } 511 case OPT_no_undefined: 512 return ErrorOrWarn; 513 case OPT_z: 514 if (StringRef(Arg->getValue()) == "defs") 515 return ErrorOrWarn; 516 continue; 517 } 518 } 519 520 // -shared implies -unresolved-symbols=ignore-all because missing 521 // symbols are likely to be resolved at runtime using other DSOs. 522 if (Config->Shared) 523 return UnresolvedPolicy::Ignore; 524 return ErrorOrWarn; 525 } 526 527 static Target2Policy getTarget2(opt::InputArgList &Args) { 528 StringRef S = Args.getLastArgValue(OPT_target2, "got-rel"); 529 if (S == "rel") 530 return Target2Policy::Rel; 531 if (S == "abs") 532 return Target2Policy::Abs; 533 if (S == "got-rel") 534 return Target2Policy::GotRel; 535 error("unknown --target2 option: " + S); 536 return Target2Policy::GotRel; 537 } 538 539 static bool isOutputFormatBinary(opt::InputArgList &Args) { 540 StringRef S = Args.getLastArgValue(OPT_oformat, "elf"); 541 if (S == "binary") 542 return true; 543 if (!S.startswith("elf")) 544 error("unknown --oformat value: " + S); 545 return false; 546 } 547 548 static DiscardPolicy getDiscard(opt::InputArgList &Args) { 549 if (Args.hasArg(OPT_relocatable)) 550 return DiscardPolicy::None; 551 552 auto *Arg = 553 Args.getLastArg(OPT_discard_all, OPT_discard_locals, OPT_discard_none); 554 if (!Arg) 555 return DiscardPolicy::Default; 556 if (Arg->getOption().getID() == OPT_discard_all) 557 return DiscardPolicy::All; 558 if (Arg->getOption().getID() == OPT_discard_locals) 559 return DiscardPolicy::Locals; 560 return DiscardPolicy::None; 561 } 562 563 static StringRef getDynamicLinker(opt::InputArgList &Args) { 564 auto *Arg = Args.getLastArg(OPT_dynamic_linker, OPT_no_dynamic_linker); 565 if (!Arg || Arg->getOption().getID() == OPT_no_dynamic_linker) 566 return ""; 567 return Arg->getValue(); 568 } 569 570 static ICFLevel getICF(opt::InputArgList &Args) { 571 auto *Arg = Args.getLastArg(OPT_icf_none, OPT_icf_safe, OPT_icf_all); 572 if (!Arg || Arg->getOption().getID() == OPT_icf_none) 573 return ICFLevel::None; 574 if (Arg->getOption().getID() == OPT_icf_safe) 575 return ICFLevel::Safe; 576 return ICFLevel::All; 577 } 578 579 static StripPolicy getStrip(opt::InputArgList &Args) { 580 if (Args.hasArg(OPT_relocatable)) 581 return StripPolicy::None; 582 583 auto *Arg = Args.getLastArg(OPT_strip_all, OPT_strip_debug); 584 if (!Arg) 585 return StripPolicy::None; 586 if (Arg->getOption().getID() == OPT_strip_all) 587 return StripPolicy::All; 588 return StripPolicy::Debug; 589 } 590 591 static uint64_t parseSectionAddress(StringRef S, const opt::Arg &Arg) { 592 uint64_t VA = 0; 593 if (S.startswith("0x")) 594 S = S.drop_front(2); 595 if (!to_integer(S, VA, 16)) 596 error("invalid argument: " + toString(Arg)); 597 return VA; 598 } 599 600 static StringMap<uint64_t> getSectionStartMap(opt::InputArgList &Args) { 601 StringMap<uint64_t> Ret; 602 for (auto *Arg : Args.filtered(OPT_section_start)) { 603 StringRef Name; 604 StringRef Addr; 605 std::tie(Name, Addr) = StringRef(Arg->getValue()).split('='); 606 Ret[Name] = parseSectionAddress(Addr, *Arg); 607 } 608 609 if (auto *Arg = Args.getLastArg(OPT_Ttext)) 610 Ret[".text"] = parseSectionAddress(Arg->getValue(), *Arg); 611 if (auto *Arg = Args.getLastArg(OPT_Tdata)) 612 Ret[".data"] = parseSectionAddress(Arg->getValue(), *Arg); 613 if (auto *Arg = Args.getLastArg(OPT_Tbss)) 614 Ret[".bss"] = parseSectionAddress(Arg->getValue(), *Arg); 615 return Ret; 616 } 617 618 static SortSectionPolicy getSortSection(opt::InputArgList &Args) { 619 StringRef S = Args.getLastArgValue(OPT_sort_section); 620 if (S == "alignment") 621 return SortSectionPolicy::Alignment; 622 if (S == "name") 623 return SortSectionPolicy::Name; 624 if (!S.empty()) 625 error("unknown --sort-section rule: " + S); 626 return SortSectionPolicy::Default; 627 } 628 629 static OrphanHandlingPolicy getOrphanHandling(opt::InputArgList &Args) { 630 StringRef S = Args.getLastArgValue(OPT_orphan_handling, "place"); 631 if (S == "warn") 632 return OrphanHandlingPolicy::Warn; 633 if (S == "error") 634 return OrphanHandlingPolicy::Error; 635 if (S != "place") 636 error("unknown --orphan-handling mode: " + S); 637 return OrphanHandlingPolicy::Place; 638 } 639 640 // Parse --build-id or --build-id=<style>. We handle "tree" as a 641 // synonym for "sha1" because all our hash functions including 642 // -build-id=sha1 are actually tree hashes for performance reasons. 643 static std::pair<BuildIdKind, std::vector<uint8_t>> 644 getBuildId(opt::InputArgList &Args) { 645 auto *Arg = Args.getLastArg(OPT_build_id, OPT_build_id_eq); 646 if (!Arg) 647 return {BuildIdKind::None, {}}; 648 649 if (Arg->getOption().getID() == OPT_build_id) 650 return {BuildIdKind::Fast, {}}; 651 652 StringRef S = Arg->getValue(); 653 if (S == "fast") 654 return {BuildIdKind::Fast, {}}; 655 if (S == "md5") 656 return {BuildIdKind::Md5, {}}; 657 if (S == "sha1" || S == "tree") 658 return {BuildIdKind::Sha1, {}}; 659 if (S == "uuid") 660 return {BuildIdKind::Uuid, {}}; 661 if (S.startswith("0x")) 662 return {BuildIdKind::Hexstring, parseHex(S.substr(2))}; 663 664 if (S != "none") 665 error("unknown --build-id style: " + S); 666 return {BuildIdKind::None, {}}; 667 } 668 669 static std::pair<bool, bool> getPackDynRelocs(opt::InputArgList &Args) { 670 StringRef S = Args.getLastArgValue(OPT_pack_dyn_relocs, "none"); 671 if (S == "android") 672 return {true, false}; 673 if (S == "relr") 674 return {false, true}; 675 if (S == "android+relr") 676 return {true, true}; 677 678 if (S != "none") 679 error("unknown -pack-dyn-relocs format: " + S); 680 return {false, false}; 681 } 682 683 static void readCallGraph(MemoryBufferRef MB) { 684 // Build a map from symbol name to section 685 DenseMap<StringRef, Symbol *> Map; 686 for (InputFile *File : ObjectFiles) 687 for (Symbol *Sym : File->getSymbols()) 688 Map[Sym->getName()] = Sym; 689 690 auto FindSection = [&](StringRef Name) -> InputSectionBase * { 691 Symbol *Sym = Map.lookup(Name); 692 if (!Sym) { 693 if (Config->WarnSymbolOrdering) 694 warn(MB.getBufferIdentifier() + ": no such symbol: " + Name); 695 return nullptr; 696 } 697 maybeWarnUnorderableSymbol(Sym); 698 699 if (Defined *DR = dyn_cast_or_null<Defined>(Sym)) 700 return dyn_cast_or_null<InputSectionBase>(DR->Section); 701 return nullptr; 702 }; 703 704 for (StringRef Line : args::getLines(MB)) { 705 SmallVector<StringRef, 3> Fields; 706 Line.split(Fields, ' '); 707 uint64_t Count; 708 709 if (Fields.size() != 3 || !to_integer(Fields[2], Count)) { 710 error(MB.getBufferIdentifier() + ": parse error"); 711 return; 712 } 713 714 if (InputSectionBase *From = FindSection(Fields[0])) 715 if (InputSectionBase *To = FindSection(Fields[1])) 716 Config->CallGraphProfile[std::make_pair(From, To)] += Count; 717 } 718 } 719 720 template <class ELFT> static void readCallGraphsFromObjectFiles() { 721 for (auto File : ObjectFiles) { 722 auto *Obj = cast<ObjFile<ELFT>>(File); 723 724 for (const Elf_CGProfile_Impl<ELFT> &CGPE : Obj->CGProfile) { 725 auto *FromSym = dyn_cast<Defined>(&Obj->getSymbol(CGPE.cgp_from)); 726 auto *ToSym = dyn_cast<Defined>(&Obj->getSymbol(CGPE.cgp_to)); 727 if (!FromSym || !ToSym) 728 continue; 729 730 auto *From = dyn_cast_or_null<InputSectionBase>(FromSym->Section); 731 auto *To = dyn_cast_or_null<InputSectionBase>(ToSym->Section); 732 if (From && To) 733 Config->CallGraphProfile[{From, To}] += CGPE.cgp_weight; 734 } 735 } 736 } 737 738 static bool getCompressDebugSections(opt::InputArgList &Args) { 739 StringRef S = Args.getLastArgValue(OPT_compress_debug_sections, "none"); 740 if (S == "none") 741 return false; 742 if (S != "zlib") 743 error("unknown --compress-debug-sections value: " + S); 744 if (!zlib::isAvailable()) 745 error("--compress-debug-sections: zlib is not available"); 746 return true; 747 } 748 749 static std::pair<StringRef, StringRef> getOldNewOptions(opt::InputArgList &Args, 750 unsigned Id) { 751 auto *Arg = Args.getLastArg(Id); 752 if (!Arg) 753 return {"", ""}; 754 755 StringRef S = Arg->getValue(); 756 std::pair<StringRef, StringRef> Ret = S.split(';'); 757 if (Ret.second.empty()) 758 error(Arg->getSpelling() + " expects 'old;new' format, but got " + S); 759 return Ret; 760 } 761 762 // Parse the symbol ordering file and warn for any duplicate entries. 763 static std::vector<StringRef> getSymbolOrderingFile(MemoryBufferRef MB) { 764 SetVector<StringRef> Names; 765 for (StringRef S : args::getLines(MB)) 766 if (!Names.insert(S) && Config->WarnSymbolOrdering) 767 warn(MB.getBufferIdentifier() + ": duplicate ordered symbol: " + S); 768 769 return Names.takeVector(); 770 } 771 772 static void parseClangOption(StringRef Opt, const Twine &Msg) { 773 std::string Err; 774 raw_string_ostream OS(Err); 775 776 const char *Argv[] = {Config->ProgName.data(), Opt.data()}; 777 if (cl::ParseCommandLineOptions(2, Argv, "", &OS)) 778 return; 779 OS.flush(); 780 error(Msg + ": " + StringRef(Err).trim()); 781 } 782 783 // Initializes Config members by the command line options. 784 static void readConfigs(opt::InputArgList &Args) { 785 errorHandler().Verbose = Args.hasArg(OPT_verbose); 786 errorHandler().FatalWarnings = 787 Args.hasFlag(OPT_fatal_warnings, OPT_no_fatal_warnings, false); 788 ThreadsEnabled = Args.hasFlag(OPT_threads, OPT_no_threads, true); 789 790 Config->AllowMultipleDefinition = 791 Args.hasFlag(OPT_allow_multiple_definition, 792 OPT_no_allow_multiple_definition, false) || 793 hasZOption(Args, "muldefs"); 794 Config->AllowShlibUndefined = 795 Args.hasFlag(OPT_allow_shlib_undefined, OPT_no_allow_shlib_undefined, 796 Args.hasArg(OPT_shared)); 797 Config->AuxiliaryList = args::getStrings(Args, OPT_auxiliary); 798 Config->Bsymbolic = Args.hasArg(OPT_Bsymbolic); 799 Config->BsymbolicFunctions = Args.hasArg(OPT_Bsymbolic_functions); 800 Config->CheckSections = 801 Args.hasFlag(OPT_check_sections, OPT_no_check_sections, true); 802 Config->Chroot = Args.getLastArgValue(OPT_chroot); 803 Config->CompressDebugSections = getCompressDebugSections(Args); 804 Config->Cref = Args.hasFlag(OPT_cref, OPT_no_cref, false); 805 Config->DefineCommon = Args.hasFlag(OPT_define_common, OPT_no_define_common, 806 !Args.hasArg(OPT_relocatable)); 807 Config->Demangle = Args.hasFlag(OPT_demangle, OPT_no_demangle, true); 808 Config->DependentLibraries = Args.hasFlag(OPT_dependent_libraries, OPT_no_dependent_libraries, true); 809 Config->DisableVerify = Args.hasArg(OPT_disable_verify); 810 Config->Discard = getDiscard(Args); 811 Config->DwoDir = Args.getLastArgValue(OPT_plugin_opt_dwo_dir_eq); 812 Config->DynamicLinker = getDynamicLinker(Args); 813 Config->EhFrameHdr = 814 Args.hasFlag(OPT_eh_frame_hdr, OPT_no_eh_frame_hdr, false); 815 Config->EmitLLVM = Args.hasArg(OPT_plugin_opt_emit_llvm, false); 816 Config->EmitRelocs = Args.hasArg(OPT_emit_relocs); 817 Config->CallGraphProfileSort = Args.hasFlag( 818 OPT_call_graph_profile_sort, OPT_no_call_graph_profile_sort, true); 819 Config->EnableNewDtags = 820 Args.hasFlag(OPT_enable_new_dtags, OPT_disable_new_dtags, true); 821 Config->Entry = Args.getLastArgValue(OPT_entry); 822 Config->ExecuteOnly = 823 Args.hasFlag(OPT_execute_only, OPT_no_execute_only, false); 824 Config->ExportDynamic = 825 Args.hasFlag(OPT_export_dynamic, OPT_no_export_dynamic, false); 826 Config->FilterList = args::getStrings(Args, OPT_filter); 827 Config->Fini = Args.getLastArgValue(OPT_fini, "_fini"); 828 Config->FixCortexA53Errata843419 = Args.hasArg(OPT_fix_cortex_a53_843419); 829 Config->ForceBTI = Args.hasArg(OPT_force_bti); 830 Config->RequireCET = Args.hasArg(OPT_require_cet); 831 Config->GcSections = Args.hasFlag(OPT_gc_sections, OPT_no_gc_sections, false); 832 Config->GnuUnique = Args.hasFlag(OPT_gnu_unique, OPT_no_gnu_unique, true); 833 Config->GdbIndex = Args.hasFlag(OPT_gdb_index, OPT_no_gdb_index, false); 834 Config->ICF = getICF(Args); 835 Config->IgnoreDataAddressEquality = 836 Args.hasArg(OPT_ignore_data_address_equality); 837 Config->IgnoreFunctionAddressEquality = 838 Args.hasArg(OPT_ignore_function_address_equality); 839 Config->Init = Args.getLastArgValue(OPT_init, "_init"); 840 Config->LTOAAPipeline = Args.getLastArgValue(OPT_lto_aa_pipeline); 841 Config->LTOCSProfileGenerate = Args.hasArg(OPT_lto_cs_profile_generate); 842 Config->LTOCSProfileFile = Args.getLastArgValue(OPT_lto_cs_profile_file); 843 Config->LTODebugPassManager = Args.hasArg(OPT_lto_debug_pass_manager); 844 Config->LTONewPassManager = Args.hasArg(OPT_lto_new_pass_manager); 845 Config->LTONewPmPasses = Args.getLastArgValue(OPT_lto_newpm_passes); 846 Config->LTOO = args::getInteger(Args, OPT_lto_O, 2); 847 Config->LTOObjPath = Args.getLastArgValue(OPT_plugin_opt_obj_path_eq); 848 Config->LTOPartitions = args::getInteger(Args, OPT_lto_partitions, 1); 849 Config->LTOSampleProfile = Args.getLastArgValue(OPT_lto_sample_profile); 850 Config->MapFile = Args.getLastArgValue(OPT_Map); 851 Config->MipsGotSize = args::getInteger(Args, OPT_mips_got_size, 0xfff0); 852 Config->MergeArmExidx = 853 Args.hasFlag(OPT_merge_exidx_entries, OPT_no_merge_exidx_entries, true); 854 Config->Nmagic = Args.hasFlag(OPT_nmagic, OPT_no_nmagic, false); 855 Config->NoinhibitExec = Args.hasArg(OPT_noinhibit_exec); 856 Config->Nostdlib = Args.hasArg(OPT_nostdlib); 857 Config->OFormatBinary = isOutputFormatBinary(Args); 858 Config->Omagic = Args.hasFlag(OPT_omagic, OPT_no_omagic, false); 859 Config->OptRemarksFilename = Args.getLastArgValue(OPT_opt_remarks_filename); 860 Config->OptRemarksPasses = Args.getLastArgValue(OPT_opt_remarks_passes); 861 Config->OptRemarksWithHotness = Args.hasArg(OPT_opt_remarks_with_hotness); 862 Config->OptRemarksFormat = Args.getLastArgValue(OPT_opt_remarks_format); 863 Config->Optimize = args::getInteger(Args, OPT_O, 1); 864 Config->OrphanHandling = getOrphanHandling(Args); 865 Config->OutputFile = Args.getLastArgValue(OPT_o); 866 Config->PacPlt = Args.hasArg(OPT_pac_plt); 867 Config->Pie = Args.hasFlag(OPT_pie, OPT_no_pie, false); 868 Config->PrintIcfSections = 869 Args.hasFlag(OPT_print_icf_sections, OPT_no_print_icf_sections, false); 870 Config->PrintGcSections = 871 Args.hasFlag(OPT_print_gc_sections, OPT_no_print_gc_sections, false); 872 Config->PrintSymbolOrder = 873 Args.getLastArgValue(OPT_print_symbol_order); 874 Config->Rpath = getRpath(Args); 875 Config->Relocatable = Args.hasArg(OPT_relocatable); 876 Config->SaveTemps = Args.hasArg(OPT_save_temps); 877 Config->SearchPaths = args::getStrings(Args, OPT_library_path); 878 Config->SectionStartMap = getSectionStartMap(Args); 879 Config->Shared = Args.hasArg(OPT_shared); 880 Config->SingleRoRx = Args.hasArg(OPT_no_rosegment); 881 Config->SoName = Args.getLastArgValue(OPT_soname); 882 Config->SortSection = getSortSection(Args); 883 Config->SplitStackAdjustSize = args::getInteger(Args, OPT_split_stack_adjust_size, 16384); 884 Config->Strip = getStrip(Args); 885 Config->Sysroot = Args.getLastArgValue(OPT_sysroot); 886 Config->Target1Rel = Args.hasFlag(OPT_target1_rel, OPT_target1_abs, false); 887 Config->Target2 = getTarget2(Args); 888 Config->ThinLTOCacheDir = Args.getLastArgValue(OPT_thinlto_cache_dir); 889 Config->ThinLTOCachePolicy = CHECK( 890 parseCachePruningPolicy(Args.getLastArgValue(OPT_thinlto_cache_policy)), 891 "--thinlto-cache-policy: invalid cache policy"); 892 Config->ThinLTOEmitImportsFiles = 893 Args.hasArg(OPT_plugin_opt_thinlto_emit_imports_files); 894 Config->ThinLTOIndexOnly = Args.hasArg(OPT_plugin_opt_thinlto_index_only) || 895 Args.hasArg(OPT_plugin_opt_thinlto_index_only_eq); 896 Config->ThinLTOIndexOnlyArg = 897 Args.getLastArgValue(OPT_plugin_opt_thinlto_index_only_eq); 898 Config->ThinLTOJobs = args::getInteger(Args, OPT_thinlto_jobs, -1u); 899 Config->ThinLTOObjectSuffixReplace = 900 getOldNewOptions(Args, OPT_plugin_opt_thinlto_object_suffix_replace_eq); 901 Config->ThinLTOPrefixReplace = 902 getOldNewOptions(Args, OPT_plugin_opt_thinlto_prefix_replace_eq); 903 Config->Trace = Args.hasArg(OPT_trace); 904 Config->Undefined = args::getStrings(Args, OPT_undefined); 905 Config->UndefinedVersion = 906 Args.hasFlag(OPT_undefined_version, OPT_no_undefined_version, true); 907 Config->UseAndroidRelrTags = Args.hasFlag( 908 OPT_use_android_relr_tags, OPT_no_use_android_relr_tags, false); 909 Config->UnresolvedSymbols = getUnresolvedSymbolPolicy(Args); 910 Config->WarnBackrefs = 911 Args.hasFlag(OPT_warn_backrefs, OPT_no_warn_backrefs, false); 912 Config->WarnCommon = Args.hasFlag(OPT_warn_common, OPT_no_warn_common, false); 913 Config->WarnIfuncTextrel = 914 Args.hasFlag(OPT_warn_ifunc_textrel, OPT_no_warn_ifunc_textrel, false); 915 Config->WarnSymbolOrdering = 916 Args.hasFlag(OPT_warn_symbol_ordering, OPT_no_warn_symbol_ordering, true); 917 Config->ZCombreloc = getZFlag(Args, "combreloc", "nocombreloc", true); 918 Config->ZCopyreloc = getZFlag(Args, "copyreloc", "nocopyreloc", true); 919 Config->ZExecstack = getZFlag(Args, "execstack", "noexecstack", false); 920 Config->ZGlobal = hasZOption(Args, "global"); 921 Config->ZHazardplt = hasZOption(Args, "hazardplt"); 922 Config->ZIfuncNoplt = hasZOption(Args, "ifunc-noplt"); 923 Config->ZInitfirst = hasZOption(Args, "initfirst"); 924 Config->ZInterpose = hasZOption(Args, "interpose"); 925 Config->ZKeepTextSectionPrefix = getZFlag( 926 Args, "keep-text-section-prefix", "nokeep-text-section-prefix", false); 927 Config->ZNodefaultlib = hasZOption(Args, "nodefaultlib"); 928 Config->ZNodelete = hasZOption(Args, "nodelete"); 929 Config->ZNodlopen = hasZOption(Args, "nodlopen"); 930 Config->ZNow = getZFlag(Args, "now", "lazy", false); 931 Config->ZOrigin = hasZOption(Args, "origin"); 932 Config->ZRelro = getZFlag(Args, "relro", "norelro", true); 933 Config->ZRetpolineplt = hasZOption(Args, "retpolineplt"); 934 Config->ZRodynamic = hasZOption(Args, "rodynamic"); 935 Config->ZStackSize = args::getZOptionValue(Args, OPT_z, "stack-size", 0); 936 Config->ZText = getZFlag(Args, "text", "notext", true); 937 Config->ZWxneeded = hasZOption(Args, "wxneeded"); 938 939 // Parse LTO options. 940 if (auto *Arg = Args.getLastArg(OPT_plugin_opt_mcpu_eq)) 941 parseClangOption(Saver.save("-mcpu=" + StringRef(Arg->getValue())), 942 Arg->getSpelling()); 943 944 for (auto *Arg : Args.filtered(OPT_plugin_opt)) 945 parseClangOption(Arg->getValue(), Arg->getSpelling()); 946 947 // Parse -mllvm options. 948 for (auto *Arg : Args.filtered(OPT_mllvm)) 949 parseClangOption(Arg->getValue(), Arg->getSpelling()); 950 951 if (Config->LTOO > 3) 952 error("invalid optimization level for LTO: " + Twine(Config->LTOO)); 953 if (Config->LTOPartitions == 0) 954 error("--lto-partitions: number of threads must be > 0"); 955 if (Config->ThinLTOJobs == 0) 956 error("--thinlto-jobs: number of threads must be > 0"); 957 958 if (Config->SplitStackAdjustSize < 0) 959 error("--split-stack-adjust-size: size must be >= 0"); 960 961 // Parse ELF{32,64}{LE,BE} and CPU type. 962 if (auto *Arg = Args.getLastArg(OPT_m)) { 963 StringRef S = Arg->getValue(); 964 std::tie(Config->EKind, Config->EMachine, Config->OSABI) = 965 parseEmulation(S); 966 Config->MipsN32Abi = (S == "elf32btsmipn32" || S == "elf32ltsmipn32"); 967 Config->Emulation = S; 968 } 969 970 // Parse -hash-style={sysv,gnu,both}. 971 if (auto *Arg = Args.getLastArg(OPT_hash_style)) { 972 StringRef S = Arg->getValue(); 973 if (S == "sysv") 974 Config->SysvHash = true; 975 else if (S == "gnu") 976 Config->GnuHash = true; 977 else if (S == "both") 978 Config->SysvHash = Config->GnuHash = true; 979 else 980 error("unknown -hash-style: " + S); 981 } 982 983 if (Args.hasArg(OPT_print_map)) 984 Config->MapFile = "-"; 985 986 // Page alignment can be disabled by the -n (--nmagic) and -N (--omagic). 987 // As PT_GNU_RELRO relies on Paging, do not create it when we have disabled 988 // it. 989 if (Config->Nmagic || Config->Omagic) 990 Config->ZRelro = false; 991 992 std::tie(Config->BuildId, Config->BuildIdVector) = getBuildId(Args); 993 994 std::tie(Config->AndroidPackDynRelocs, Config->RelrPackDynRelocs) = 995 getPackDynRelocs(Args); 996 997 if (auto *Arg = Args.getLastArg(OPT_symbol_ordering_file)){ 998 if (Args.hasArg(OPT_call_graph_ordering_file)) 999 error("--symbol-ordering-file and --call-graph-order-file " 1000 "may not be used together"); 1001 if (Optional<MemoryBufferRef> Buffer = readFile(Arg->getValue())){ 1002 Config->SymbolOrderingFile = getSymbolOrderingFile(*Buffer); 1003 // Also need to disable CallGraphProfileSort to prevent 1004 // LLD order symbols with CGProfile 1005 Config->CallGraphProfileSort = false; 1006 } 1007 } 1008 1009 // If --retain-symbol-file is used, we'll keep only the symbols listed in 1010 // the file and discard all others. 1011 if (auto *Arg = Args.getLastArg(OPT_retain_symbols_file)) { 1012 Config->DefaultSymbolVersion = VER_NDX_LOCAL; 1013 if (Optional<MemoryBufferRef> Buffer = readFile(Arg->getValue())) 1014 for (StringRef S : args::getLines(*Buffer)) 1015 Config->VersionScriptGlobals.push_back( 1016 {S, /*IsExternCpp*/ false, /*HasWildcard*/ false}); 1017 } 1018 1019 bool HasExportDynamic = 1020 Args.hasFlag(OPT_export_dynamic, OPT_no_export_dynamic, false); 1021 1022 // Parses -dynamic-list and -export-dynamic-symbol. They make some 1023 // symbols private. Note that -export-dynamic takes precedence over them 1024 // as it says all symbols should be exported. 1025 if (!HasExportDynamic) { 1026 for (auto *Arg : Args.filtered(OPT_dynamic_list)) 1027 if (Optional<MemoryBufferRef> Buffer = readFile(Arg->getValue())) 1028 readDynamicList(*Buffer); 1029 1030 for (auto *Arg : Args.filtered(OPT_export_dynamic_symbol)) 1031 Config->DynamicList.push_back( 1032 {Arg->getValue(), /*IsExternCpp*/ false, /*HasWildcard*/ false}); 1033 } 1034 1035 // If --export-dynamic-symbol=foo is given and symbol foo is defined in 1036 // an object file in an archive file, that object file should be pulled 1037 // out and linked. (It doesn't have to behave like that from technical 1038 // point of view, but this is needed for compatibility with GNU.) 1039 for (auto *Arg : Args.filtered(OPT_export_dynamic_symbol)) 1040 Config->Undefined.push_back(Arg->getValue()); 1041 1042 for (auto *Arg : Args.filtered(OPT_version_script)) 1043 if (Optional<std::string> Path = searchScript(Arg->getValue())) { 1044 if (Optional<MemoryBufferRef> Buffer = readFile(*Path)) 1045 readVersionScript(*Buffer); 1046 } else { 1047 error(Twine("cannot find version script ") + Arg->getValue()); 1048 } 1049 } 1050 1051 // Some Config members do not directly correspond to any particular 1052 // command line options, but computed based on other Config values. 1053 // This function initialize such members. See Config.h for the details 1054 // of these values. 1055 static void setConfigs(opt::InputArgList &Args) { 1056 ELFKind K = Config->EKind; 1057 uint16_t M = Config->EMachine; 1058 1059 Config->CopyRelocs = (Config->Relocatable || Config->EmitRelocs); 1060 Config->Is64 = (K == ELF64LEKind || K == ELF64BEKind); 1061 Config->IsLE = (K == ELF32LEKind || K == ELF64LEKind); 1062 Config->Endianness = Config->IsLE ? endianness::little : endianness::big; 1063 Config->IsMips64EL = (K == ELF64LEKind && M == EM_MIPS); 1064 Config->Pic = Config->Pie || Config->Shared; 1065 Config->PicThunk = Args.hasArg(OPT_pic_veneer, Config->Pic); 1066 Config->Wordsize = Config->Is64 ? 8 : 4; 1067 1068 // ELF defines two different ways to store relocation addends as shown below: 1069 // 1070 // Rel: Addends are stored to the location where relocations are applied. 1071 // Rela: Addends are stored as part of relocation entry. 1072 // 1073 // In other words, Rela makes it easy to read addends at the price of extra 1074 // 4 or 8 byte for each relocation entry. We don't know why ELF defined two 1075 // different mechanisms in the first place, but this is how the spec is 1076 // defined. 1077 // 1078 // You cannot choose which one, Rel or Rela, you want to use. Instead each 1079 // ABI defines which one you need to use. The following expression expresses 1080 // that. 1081 Config->IsRela = M == EM_AARCH64 || M == EM_AMDGPU || M == EM_HEXAGON || 1082 M == EM_PPC || M == EM_PPC64 || M == EM_RISCV || 1083 M == EM_X86_64; 1084 1085 // If the output uses REL relocations we must store the dynamic relocation 1086 // addends to the output sections. We also store addends for RELA relocations 1087 // if --apply-dynamic-relocs is used. 1088 // We default to not writing the addends when using RELA relocations since 1089 // any standard conforming tool can find it in r_addend. 1090 Config->WriteAddends = Args.hasFlag(OPT_apply_dynamic_relocs, 1091 OPT_no_apply_dynamic_relocs, false) || 1092 !Config->IsRela; 1093 1094 Config->TocOptimize = 1095 Args.hasFlag(OPT_toc_optimize, OPT_no_toc_optimize, M == EM_PPC64); 1096 } 1097 1098 // Returns a value of "-format" option. 1099 static bool isFormatBinary(StringRef S) { 1100 if (S == "binary") 1101 return true; 1102 if (S == "elf" || S == "default") 1103 return false; 1104 error("unknown -format value: " + S + 1105 " (supported formats: elf, default, binary)"); 1106 return false; 1107 } 1108 1109 void LinkerDriver::createFiles(opt::InputArgList &Args) { 1110 // For --{push,pop}-state. 1111 std::vector<std::tuple<bool, bool, bool>> Stack; 1112 1113 // Iterate over argv to process input files and positional arguments. 1114 for (auto *Arg : Args) { 1115 switch (Arg->getOption().getUnaliasedOption().getID()) { 1116 case OPT_library: 1117 addLibrary(Arg->getValue()); 1118 break; 1119 case OPT_INPUT: 1120 addFile(Arg->getValue(), /*WithLOption=*/false); 1121 break; 1122 case OPT_defsym: { 1123 StringRef From; 1124 StringRef To; 1125 std::tie(From, To) = StringRef(Arg->getValue()).split('='); 1126 if (From.empty() || To.empty()) 1127 error("-defsym: syntax error: " + StringRef(Arg->getValue())); 1128 else 1129 readDefsym(From, MemoryBufferRef(To, "-defsym")); 1130 break; 1131 } 1132 case OPT_script: 1133 if (Optional<std::string> Path = searchScript(Arg->getValue())) { 1134 if (Optional<MemoryBufferRef> MB = readFile(*Path)) 1135 readLinkerScript(*MB); 1136 break; 1137 } 1138 error(Twine("cannot find linker script ") + Arg->getValue()); 1139 break; 1140 case OPT_as_needed: 1141 Config->AsNeeded = true; 1142 break; 1143 case OPT_format: 1144 Config->FormatBinary = isFormatBinary(Arg->getValue()); 1145 break; 1146 case OPT_no_as_needed: 1147 Config->AsNeeded = false; 1148 break; 1149 case OPT_Bstatic: 1150 case OPT_omagic: 1151 case OPT_nmagic: 1152 Config->Static = true; 1153 break; 1154 case OPT_Bdynamic: 1155 Config->Static = false; 1156 break; 1157 case OPT_whole_archive: 1158 InWholeArchive = true; 1159 break; 1160 case OPT_no_whole_archive: 1161 InWholeArchive = false; 1162 break; 1163 case OPT_just_symbols: 1164 if (Optional<MemoryBufferRef> MB = readFile(Arg->getValue())) { 1165 Files.push_back(createObjectFile(*MB)); 1166 Files.back()->JustSymbols = true; 1167 } 1168 break; 1169 case OPT_start_group: 1170 if (InputFile::IsInGroup) 1171 error("nested --start-group"); 1172 InputFile::IsInGroup = true; 1173 break; 1174 case OPT_end_group: 1175 if (!InputFile::IsInGroup) 1176 error("stray --end-group"); 1177 InputFile::IsInGroup = false; 1178 ++InputFile::NextGroupId; 1179 break; 1180 case OPT_start_lib: 1181 if (InLib) 1182 error("nested --start-lib"); 1183 if (InputFile::IsInGroup) 1184 error("may not nest --start-lib in --start-group"); 1185 InLib = true; 1186 InputFile::IsInGroup = true; 1187 break; 1188 case OPT_end_lib: 1189 if (!InLib) 1190 error("stray --end-lib"); 1191 InLib = false; 1192 InputFile::IsInGroup = false; 1193 ++InputFile::NextGroupId; 1194 break; 1195 case OPT_push_state: 1196 Stack.emplace_back(Config->AsNeeded, Config->Static, InWholeArchive); 1197 break; 1198 case OPT_pop_state: 1199 if (Stack.empty()) { 1200 error("unbalanced --push-state/--pop-state"); 1201 break; 1202 } 1203 std::tie(Config->AsNeeded, Config->Static, InWholeArchive) = Stack.back(); 1204 Stack.pop_back(); 1205 break; 1206 } 1207 } 1208 1209 if (Files.empty() && errorCount() == 0) 1210 error("no input files"); 1211 } 1212 1213 // If -m <machine_type> was not given, infer it from object files. 1214 void LinkerDriver::inferMachineType() { 1215 if (Config->EKind != ELFNoneKind) 1216 return; 1217 1218 for (InputFile *F : Files) { 1219 if (F->EKind == ELFNoneKind) 1220 continue; 1221 Config->EKind = F->EKind; 1222 Config->EMachine = F->EMachine; 1223 Config->OSABI = F->OSABI; 1224 Config->MipsN32Abi = Config->EMachine == EM_MIPS && isMipsN32Abi(F); 1225 return; 1226 } 1227 error("target emulation unknown: -m or at least one .o file required"); 1228 } 1229 1230 // Parse -z max-page-size=<value>. The default value is defined by 1231 // each target. 1232 static uint64_t getMaxPageSize(opt::InputArgList &Args) { 1233 uint64_t Val = args::getZOptionValue(Args, OPT_z, "max-page-size", 1234 Target->DefaultMaxPageSize); 1235 if (!isPowerOf2_64(Val)) 1236 error("max-page-size: value isn't a power of 2"); 1237 if (Config->Nmagic || Config->Omagic) { 1238 if (Val != Target->DefaultMaxPageSize) 1239 warn("-z max-page-size set, but paging disabled by omagic or nmagic"); 1240 return 1; 1241 } 1242 return Val; 1243 } 1244 1245 // Parse -z common-page-size=<value>. The default value is defined by 1246 // each target. 1247 static uint64_t getCommonPageSize(opt::InputArgList &Args) { 1248 uint64_t Val = args::getZOptionValue(Args, OPT_z, "common-page-size", 1249 Target->DefaultCommonPageSize); 1250 if (!isPowerOf2_64(Val)) 1251 error("common-page-size: value isn't a power of 2"); 1252 if (Config->Nmagic || Config->Omagic) { 1253 if (Val != Target->DefaultCommonPageSize) 1254 warn("-z common-page-size set, but paging disabled by omagic or nmagic"); 1255 return 1; 1256 } 1257 // CommonPageSize can't be larger than MaxPageSize. 1258 if (Val > Config->MaxPageSize) 1259 Val = Config->MaxPageSize; 1260 return Val; 1261 } 1262 1263 // Parses -image-base option. 1264 static Optional<uint64_t> getImageBase(opt::InputArgList &Args) { 1265 // Because we are using "Config->MaxPageSize" here, this function has to be 1266 // called after the variable is initialized. 1267 auto *Arg = Args.getLastArg(OPT_image_base); 1268 if (!Arg) 1269 return None; 1270 1271 StringRef S = Arg->getValue(); 1272 uint64_t V; 1273 if (!to_integer(S, V)) { 1274 error("-image-base: number expected, but got " + S); 1275 return 0; 1276 } 1277 if ((V % Config->MaxPageSize) != 0) 1278 warn("-image-base: address isn't multiple of page size: " + S); 1279 return V; 1280 } 1281 1282 // Parses `--exclude-libs=lib,lib,...`. 1283 // The library names may be delimited by commas or colons. 1284 static DenseSet<StringRef> getExcludeLibs(opt::InputArgList &Args) { 1285 DenseSet<StringRef> Ret; 1286 for (auto *Arg : Args.filtered(OPT_exclude_libs)) { 1287 StringRef S = Arg->getValue(); 1288 for (;;) { 1289 size_t Pos = S.find_first_of(",:"); 1290 if (Pos == StringRef::npos) 1291 break; 1292 Ret.insert(S.substr(0, Pos)); 1293 S = S.substr(Pos + 1); 1294 } 1295 Ret.insert(S); 1296 } 1297 return Ret; 1298 } 1299 1300 // Handles the -exclude-libs option. If a static library file is specified 1301 // by the -exclude-libs option, all public symbols from the archive become 1302 // private unless otherwise specified by version scripts or something. 1303 // A special library name "ALL" means all archive files. 1304 // 1305 // This is not a popular option, but some programs such as bionic libc use it. 1306 static void excludeLibs(opt::InputArgList &Args) { 1307 DenseSet<StringRef> Libs = getExcludeLibs(Args); 1308 bool All = Libs.count("ALL"); 1309 1310 auto Visit = [&](InputFile *File) { 1311 if (!File->ArchiveName.empty()) 1312 if (All || Libs.count(path::filename(File->ArchiveName))) 1313 for (Symbol *Sym : File->getSymbols()) 1314 if (!Sym->isLocal() && Sym->File == File) 1315 Sym->VersionId = VER_NDX_LOCAL; 1316 }; 1317 1318 for (InputFile *File : ObjectFiles) 1319 Visit(File); 1320 1321 for (BitcodeFile *File : BitcodeFiles) 1322 Visit(File); 1323 } 1324 1325 // Force Sym to be entered in the output. Used for -u or equivalent. 1326 static void handleUndefined(Symbol *Sym) { 1327 // Since a symbol may not be used inside the program, LTO may 1328 // eliminate it. Mark the symbol as "used" to prevent it. 1329 Sym->IsUsedInRegularObj = true; 1330 1331 if (Sym->isLazy()) 1332 Sym->fetch(); 1333 } 1334 1335 // As an extention to GNU linkers, lld supports a variant of `-u` 1336 // which accepts wildcard patterns. All symbols that match a given 1337 // pattern are handled as if they were given by `-u`. 1338 static void handleUndefinedGlob(StringRef Arg) { 1339 Expected<GlobPattern> Pat = GlobPattern::create(Arg); 1340 if (!Pat) { 1341 error("--undefined-glob: " + toString(Pat.takeError())); 1342 return; 1343 } 1344 1345 std::vector<Symbol *> Syms; 1346 Symtab->forEachSymbol([&](Symbol *Sym) { 1347 // Calling Sym->fetch() from here is not safe because it may 1348 // add new symbols to the symbol table, invalidating the 1349 // current iterator. So we just keep a note. 1350 if (Pat->match(Sym->getName())) 1351 Syms.push_back(Sym); 1352 }); 1353 1354 for (Symbol *Sym : Syms) 1355 handleUndefined(Sym); 1356 } 1357 1358 static void handleLibcall(StringRef Name) { 1359 Symbol *Sym = Symtab->find(Name); 1360 if (!Sym || !Sym->isLazy()) 1361 return; 1362 1363 MemoryBufferRef MB; 1364 if (auto *LO = dyn_cast<LazyObject>(Sym)) 1365 MB = LO->File->MB; 1366 else 1367 MB = cast<LazyArchive>(Sym)->getMemberBuffer(); 1368 1369 if (isBitcode(MB)) 1370 Sym->fetch(); 1371 } 1372 1373 // Replaces common symbols with defined symbols reside in .bss sections. 1374 // This function is called after all symbol names are resolved. As a 1375 // result, the passes after the symbol resolution won't see any 1376 // symbols of type CommonSymbol. 1377 static void replaceCommonSymbols() { 1378 Symtab->forEachSymbol([](Symbol *Sym) { 1379 auto *S = dyn_cast<CommonSymbol>(Sym); 1380 if (!S) 1381 return; 1382 1383 auto *Bss = make<BssSection>("COMMON", S->Size, S->Alignment); 1384 Bss->File = S->File; 1385 Bss->markDead(); 1386 InputSections.push_back(Bss); 1387 S->replace(Defined{S->File, S->getName(), S->Binding, S->StOther, S->Type, 1388 /*Value=*/0, S->Size, Bss}); 1389 }); 1390 } 1391 1392 // If all references to a DSO happen to be weak, the DSO is not added 1393 // to DT_NEEDED. If that happens, we need to eliminate shared symbols 1394 // created from the DSO. Otherwise, they become dangling references 1395 // that point to a non-existent DSO. 1396 static void demoteSharedSymbols() { 1397 Symtab->forEachSymbol([](Symbol *Sym) { 1398 auto *S = dyn_cast<SharedSymbol>(Sym); 1399 if (!S || S->getFile().IsNeeded) 1400 return; 1401 1402 bool Used = S->Used; 1403 S->replace(Undefined{nullptr, S->getName(), STB_WEAK, S->StOther, S->Type}); 1404 S->Used = Used; 1405 }); 1406 } 1407 1408 // The section referred to by S is considered address-significant. Set the 1409 // KeepUnique flag on the section if appropriate. 1410 static void markAddrsig(Symbol *S) { 1411 if (auto *D = dyn_cast_or_null<Defined>(S)) 1412 if (D->Section) 1413 // We don't need to keep text sections unique under --icf=all even if they 1414 // are address-significant. 1415 if (Config->ICF == ICFLevel::Safe || !(D->Section->Flags & SHF_EXECINSTR)) 1416 D->Section->KeepUnique = true; 1417 } 1418 1419 // Record sections that define symbols mentioned in --keep-unique <symbol> 1420 // and symbols referred to by address-significance tables. These sections are 1421 // ineligible for ICF. 1422 template <class ELFT> 1423 static void findKeepUniqueSections(opt::InputArgList &Args) { 1424 for (auto *Arg : Args.filtered(OPT_keep_unique)) { 1425 StringRef Name = Arg->getValue(); 1426 auto *D = dyn_cast_or_null<Defined>(Symtab->find(Name)); 1427 if (!D || !D->Section) { 1428 warn("could not find symbol " + Name + " to keep unique"); 1429 continue; 1430 } 1431 D->Section->KeepUnique = true; 1432 } 1433 1434 // --icf=all --ignore-data-address-equality means that we can ignore 1435 // the dynsym and address-significance tables entirely. 1436 if (Config->ICF == ICFLevel::All && Config->IgnoreDataAddressEquality) 1437 return; 1438 1439 // Symbols in the dynsym could be address-significant in other executables 1440 // or DSOs, so we conservatively mark them as address-significant. 1441 Symtab->forEachSymbol([&](Symbol *Sym) { 1442 if (Sym->includeInDynsym()) 1443 markAddrsig(Sym); 1444 }); 1445 1446 // Visit the address-significance table in each object file and mark each 1447 // referenced symbol as address-significant. 1448 for (InputFile *F : ObjectFiles) { 1449 auto *Obj = cast<ObjFile<ELFT>>(F); 1450 ArrayRef<Symbol *> Syms = Obj->getSymbols(); 1451 if (Obj->AddrsigSec) { 1452 ArrayRef<uint8_t> Contents = 1453 check(Obj->getObj().getSectionContents(Obj->AddrsigSec)); 1454 const uint8_t *Cur = Contents.begin(); 1455 while (Cur != Contents.end()) { 1456 unsigned Size; 1457 const char *Err; 1458 uint64_t SymIndex = decodeULEB128(Cur, &Size, Contents.end(), &Err); 1459 if (Err) 1460 fatal(toString(F) + ": could not decode addrsig section: " + Err); 1461 markAddrsig(Syms[SymIndex]); 1462 Cur += Size; 1463 } 1464 } else { 1465 // If an object file does not have an address-significance table, 1466 // conservatively mark all of its symbols as address-significant. 1467 for (Symbol *S : Syms) 1468 markAddrsig(S); 1469 } 1470 } 1471 } 1472 1473 // This function reads a symbol partition specification section. These sections 1474 // are used to control which partition a symbol is allocated to. See 1475 // https://lld.llvm.org/Partitions.html for more details on partitions. 1476 template <typename ELFT> 1477 static void readSymbolPartitionSection(InputSectionBase *S) { 1478 // Read the relocation that refers to the partition's entry point symbol. 1479 Symbol *Sym; 1480 if (S->AreRelocsRela) 1481 Sym = &S->getFile<ELFT>()->getRelocTargetSym(S->template relas<ELFT>()[0]); 1482 else 1483 Sym = &S->getFile<ELFT>()->getRelocTargetSym(S->template rels<ELFT>()[0]); 1484 if (!isa<Defined>(Sym) || !Sym->includeInDynsym()) 1485 return; 1486 1487 StringRef PartName = reinterpret_cast<const char *>(S->data().data()); 1488 for (Partition &Part : Partitions) { 1489 if (Part.Name == PartName) { 1490 Sym->Partition = Part.getNumber(); 1491 return; 1492 } 1493 } 1494 1495 // Forbid partitions from being used on incompatible targets, and forbid them 1496 // from being used together with various linker features that assume a single 1497 // set of output sections. 1498 if (Script->HasSectionsCommand) 1499 error(toString(S->File) + 1500 ": partitions cannot be used with the SECTIONS command"); 1501 if (Script->hasPhdrsCommands()) 1502 error(toString(S->File) + 1503 ": partitions cannot be used with the PHDRS command"); 1504 if (!Config->SectionStartMap.empty()) 1505 error(toString(S->File) + ": partitions cannot be used with " 1506 "--section-start, -Ttext, -Tdata or -Tbss"); 1507 if (Config->EMachine == EM_MIPS) 1508 error(toString(S->File) + ": partitions cannot be used on this target"); 1509 1510 // Impose a limit of no more than 254 partitions. This limit comes from the 1511 // sizes of the Partition fields in InputSectionBase and Symbol, as well as 1512 // the amount of space devoted to the partition number in RankFlags. 1513 if (Partitions.size() == 254) 1514 fatal("may not have more than 254 partitions"); 1515 1516 Partitions.emplace_back(); 1517 Partition &NewPart = Partitions.back(); 1518 NewPart.Name = PartName; 1519 Sym->Partition = NewPart.getNumber(); 1520 } 1521 1522 static Symbol *addUndefined(StringRef Name) { 1523 return Symtab->addSymbol( 1524 Undefined{nullptr, Name, STB_GLOBAL, STV_DEFAULT, 0}); 1525 } 1526 1527 // This function is where all the optimizations of link-time 1528 // optimization takes place. When LTO is in use, some input files are 1529 // not in native object file format but in the LLVM bitcode format. 1530 // This function compiles bitcode files into a few big native files 1531 // using LLVM functions and replaces bitcode symbols with the results. 1532 // Because all bitcode files that the program consists of are passed to 1533 // the compiler at once, it can do a whole-program optimization. 1534 template <class ELFT> void LinkerDriver::compileBitcodeFiles() { 1535 // Compile bitcode files and replace bitcode symbols. 1536 LTO.reset(new BitcodeCompiler); 1537 for (BitcodeFile *File : BitcodeFiles) 1538 LTO->add(*File); 1539 1540 for (InputFile *File : LTO->compile()) { 1541 auto *Obj = cast<ObjFile<ELFT>>(File); 1542 Obj->parse(/*IgnoreComdats=*/true); 1543 for (Symbol *Sym : Obj->getGlobalSymbols()) 1544 Sym->parseSymbolVersion(); 1545 ObjectFiles.push_back(File); 1546 } 1547 } 1548 1549 // The --wrap option is a feature to rename symbols so that you can write 1550 // wrappers for existing functions. If you pass `-wrap=foo`, all 1551 // occurrences of symbol `foo` are resolved to `wrap_foo` (so, you are 1552 // expected to write `wrap_foo` function as a wrapper). The original 1553 // symbol becomes accessible as `real_foo`, so you can call that from your 1554 // wrapper. 1555 // 1556 // This data structure is instantiated for each -wrap option. 1557 struct WrappedSymbol { 1558 Symbol *Sym; 1559 Symbol *Real; 1560 Symbol *Wrap; 1561 }; 1562 1563 // Handles -wrap option. 1564 // 1565 // This function instantiates wrapper symbols. At this point, they seem 1566 // like they are not being used at all, so we explicitly set some flags so 1567 // that LTO won't eliminate them. 1568 static std::vector<WrappedSymbol> addWrappedSymbols(opt::InputArgList &Args) { 1569 std::vector<WrappedSymbol> V; 1570 DenseSet<StringRef> Seen; 1571 1572 for (auto *Arg : Args.filtered(OPT_wrap)) { 1573 StringRef Name = Arg->getValue(); 1574 if (!Seen.insert(Name).second) 1575 continue; 1576 1577 Symbol *Sym = Symtab->find(Name); 1578 if (!Sym) 1579 continue; 1580 1581 Symbol *Real = addUndefined(Saver.save("__real_" + Name)); 1582 Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name)); 1583 V.push_back({Sym, Real, Wrap}); 1584 1585 // We want to tell LTO not to inline symbols to be overwritten 1586 // because LTO doesn't know the final symbol contents after renaming. 1587 Real->CanInline = false; 1588 Sym->CanInline = false; 1589 1590 // Tell LTO not to eliminate these symbols. 1591 Sym->IsUsedInRegularObj = true; 1592 Wrap->IsUsedInRegularObj = true; 1593 } 1594 return V; 1595 } 1596 1597 // Do renaming for -wrap by updating pointers to symbols. 1598 // 1599 // When this function is executed, only InputFiles and symbol table 1600 // contain pointers to symbol objects. We visit them to replace pointers, 1601 // so that wrapped symbols are swapped as instructed by the command line. 1602 static void wrapSymbols(ArrayRef<WrappedSymbol> Wrapped) { 1603 DenseMap<Symbol *, Symbol *> Map; 1604 for (const WrappedSymbol &W : Wrapped) { 1605 Map[W.Sym] = W.Wrap; 1606 Map[W.Real] = W.Sym; 1607 } 1608 1609 // Update pointers in input files. 1610 parallelForEach(ObjectFiles, [&](InputFile *File) { 1611 MutableArrayRef<Symbol *> Syms = File->getMutableSymbols(); 1612 for (size_t I = 0, E = Syms.size(); I != E; ++I) 1613 if (Symbol *S = Map.lookup(Syms[I])) 1614 Syms[I] = S; 1615 }); 1616 1617 // Update pointers in the symbol table. 1618 for (const WrappedSymbol &W : Wrapped) 1619 Symtab->wrap(W.Sym, W.Real, W.Wrap); 1620 } 1621 1622 // To enable CET (x86's hardware-assited control flow enforcement), each 1623 // source file must be compiled with -fcf-protection. Object files compiled 1624 // with the flag contain feature flags indicating that they are compatible 1625 // with CET. We enable the feature only when all object files are compatible 1626 // with CET. 1627 // 1628 // This function returns the merged feature flags. If 0, we cannot enable CET. 1629 // This is also the case with AARCH64's BTI and PAC which use the similar 1630 // GNU_PROPERTY_AARCH64_FEATURE_1_AND mechanism. 1631 // 1632 // Note that the CET-aware PLT is not implemented yet. We do error 1633 // check only. 1634 template <class ELFT> static uint32_t getAndFeatures() { 1635 if (Config->EMachine != EM_386 && Config->EMachine != EM_X86_64 && 1636 Config->EMachine != EM_AARCH64) 1637 return 0; 1638 1639 uint32_t Ret = -1; 1640 for (InputFile *F : ObjectFiles) { 1641 uint32_t Features = cast<ObjFile<ELFT>>(F)->AndFeatures; 1642 if (Config->ForceBTI && !(Features & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)) { 1643 warn(toString(F) + ": --force-bti: file does not have BTI property"); 1644 Features |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI; 1645 } else if (!Features && Config->RequireCET) 1646 error(toString(F) + ": --require-cet: file is not compatible with CET"); 1647 Ret &= Features; 1648 } 1649 1650 // Force enable pointer authentication Plt, we don't warn in this case as 1651 // this does not require support in the object for correctness. 1652 if (Config->PacPlt) 1653 Ret |= GNU_PROPERTY_AARCH64_FEATURE_1_PAC; 1654 1655 return Ret; 1656 } 1657 1658 static const char *LibcallRoutineNames[] = { 1659 #define HANDLE_LIBCALL(code, name) name, 1660 #include "llvm/IR/RuntimeLibcalls.def" 1661 #undef HANDLE_LIBCALL 1662 }; 1663 1664 // Do actual linking. Note that when this function is called, 1665 // all linker scripts have already been parsed. 1666 template <class ELFT> void LinkerDriver::link(opt::InputArgList &Args) { 1667 // If a -hash-style option was not given, set to a default value, 1668 // which varies depending on the target. 1669 if (!Args.hasArg(OPT_hash_style)) { 1670 if (Config->EMachine == EM_MIPS) 1671 Config->SysvHash = true; 1672 else 1673 Config->SysvHash = Config->GnuHash = true; 1674 } 1675 1676 // Default output filename is "a.out" by the Unix tradition. 1677 if (Config->OutputFile.empty()) 1678 Config->OutputFile = "a.out"; 1679 1680 // Fail early if the output file or map file is not writable. If a user has a 1681 // long link, e.g. due to a large LTO link, they do not wish to run it and 1682 // find that it failed because there was a mistake in their command-line. 1683 if (auto E = tryCreateFile(Config->OutputFile)) 1684 error("cannot open output file " + Config->OutputFile + ": " + E.message()); 1685 if (auto E = tryCreateFile(Config->MapFile)) 1686 error("cannot open map file " + Config->MapFile + ": " + E.message()); 1687 if (errorCount()) 1688 return; 1689 1690 // Use default entry point name if no name was given via the command 1691 // line nor linker scripts. For some reason, MIPS entry point name is 1692 // different from others. 1693 Config->WarnMissingEntry = 1694 (!Config->Entry.empty() || (!Config->Shared && !Config->Relocatable)); 1695 if (Config->Entry.empty() && !Config->Relocatable) 1696 Config->Entry = (Config->EMachine == EM_MIPS) ? "__start" : "_start"; 1697 1698 // Handle --trace-symbol. 1699 for (auto *Arg : Args.filtered(OPT_trace_symbol)) 1700 Symtab->insert(Arg->getValue())->Traced = true; 1701 1702 // Add all files to the symbol table. This will add almost all 1703 // symbols that we need to the symbol table. This process might 1704 // add files to the link, via autolinking, these files are always 1705 // appended to the Files vector. 1706 for (size_t I = 0; I < Files.size(); ++I) 1707 parseFile(Files[I]); 1708 1709 // Now that we have every file, we can decide if we will need a 1710 // dynamic symbol table. 1711 // We need one if we were asked to export dynamic symbols or if we are 1712 // producing a shared library. 1713 // We also need one if any shared libraries are used and for pie executables 1714 // (probably because the dynamic linker needs it). 1715 Config->HasDynSymTab = 1716 !SharedFiles.empty() || Config->Pic || Config->ExportDynamic; 1717 1718 // Some symbols (such as __ehdr_start) are defined lazily only when there 1719 // are undefined symbols for them, so we add these to trigger that logic. 1720 for (StringRef Name : Script->ReferencedSymbols) 1721 addUndefined(Name); 1722 1723 // Handle the `--undefined <sym>` options. 1724 for (StringRef Arg : Config->Undefined) 1725 if (Symbol *Sym = Symtab->find(Arg)) 1726 handleUndefined(Sym); 1727 1728 // If an entry symbol is in a static archive, pull out that file now. 1729 if (Symbol *Sym = Symtab->find(Config->Entry)) 1730 handleUndefined(Sym); 1731 1732 // Handle the `--undefined-glob <pattern>` options. 1733 for (StringRef Pat : args::getStrings(Args, OPT_undefined_glob)) 1734 handleUndefinedGlob(Pat); 1735 1736 // If any of our inputs are bitcode files, the LTO code generator may create 1737 // references to certain library functions that might not be explicit in the 1738 // bitcode file's symbol table. If any of those library functions are defined 1739 // in a bitcode file in an archive member, we need to arrange to use LTO to 1740 // compile those archive members by adding them to the link beforehand. 1741 // 1742 // However, adding all libcall symbols to the link can have undesired 1743 // consequences. For example, the libgcc implementation of 1744 // __sync_val_compare_and_swap_8 on 32-bit ARM pulls in an .init_array entry 1745 // that aborts the program if the Linux kernel does not support 64-bit 1746 // atomics, which would prevent the program from running even if it does not 1747 // use 64-bit atomics. 1748 // 1749 // Therefore, we only add libcall symbols to the link before LTO if we have 1750 // to, i.e. if the symbol's definition is in bitcode. Any other required 1751 // libcall symbols will be added to the link after LTO when we add the LTO 1752 // object file to the link. 1753 if (!BitcodeFiles.empty()) 1754 for (const char *S : LibcallRoutineNames) 1755 handleLibcall(S); 1756 1757 // Return if there were name resolution errors. 1758 if (errorCount()) 1759 return; 1760 1761 // Now when we read all script files, we want to finalize order of linker 1762 // script commands, which can be not yet final because of INSERT commands. 1763 Script->processInsertCommands(); 1764 1765 // We want to declare linker script's symbols early, 1766 // so that we can version them. 1767 // They also might be exported if referenced by DSOs. 1768 Script->declareSymbols(); 1769 1770 // Handle the -exclude-libs option. 1771 if (Args.hasArg(OPT_exclude_libs)) 1772 excludeLibs(Args); 1773 1774 // Create ElfHeader early. We need a dummy section in 1775 // addReservedSymbols to mark the created symbols as not absolute. 1776 Out::ElfHeader = make<OutputSection>("", 0, SHF_ALLOC); 1777 Out::ElfHeader->Size = sizeof(typename ELFT::Ehdr); 1778 1779 // Create wrapped symbols for -wrap option. 1780 std::vector<WrappedSymbol> Wrapped = addWrappedSymbols(Args); 1781 1782 // We need to create some reserved symbols such as _end. Create them. 1783 if (!Config->Relocatable) 1784 addReservedSymbols(); 1785 1786 // Apply version scripts. 1787 // 1788 // For a relocatable output, version scripts don't make sense, and 1789 // parsing a symbol version string (e.g. dropping "@ver1" from a symbol 1790 // name "foo@ver1") rather do harm, so we don't call this if -r is given. 1791 if (!Config->Relocatable) 1792 Symtab->scanVersionScript(); 1793 1794 // Do link-time optimization if given files are LLVM bitcode files. 1795 // This compiles bitcode files into real object files. 1796 // 1797 // With this the symbol table should be complete. After this, no new names 1798 // except a few linker-synthesized ones will be added to the symbol table. 1799 compileBitcodeFiles<ELFT>(); 1800 if (errorCount()) 1801 return; 1802 1803 // If -thinlto-index-only is given, we should create only "index 1804 // files" and not object files. Index file creation is already done 1805 // in addCombinedLTOObject, so we are done if that's the case. 1806 if (Config->ThinLTOIndexOnly) 1807 return; 1808 1809 // Likewise, --plugin-opt=emit-llvm is an option to make LTO create 1810 // an output file in bitcode and exit, so that you can just get a 1811 // combined bitcode file. 1812 if (Config->EmitLLVM) 1813 return; 1814 1815 // Apply symbol renames for -wrap. 1816 if (!Wrapped.empty()) 1817 wrapSymbols(Wrapped); 1818 1819 // Now that we have a complete list of input files. 1820 // Beyond this point, no new files are added. 1821 // Aggregate all input sections into one place. 1822 for (InputFile *F : ObjectFiles) 1823 for (InputSectionBase *S : F->getSections()) 1824 if (S && S != &InputSection::Discarded) 1825 InputSections.push_back(S); 1826 for (BinaryFile *F : BinaryFiles) 1827 for (InputSectionBase *S : F->getSections()) 1828 InputSections.push_back(cast<InputSection>(S)); 1829 1830 llvm::erase_if(InputSections, [](InputSectionBase *S) { 1831 if (S->Type == SHT_LLVM_SYMPART) { 1832 readSymbolPartitionSection<ELFT>(S); 1833 return true; 1834 } 1835 1836 // We do not want to emit debug sections if --strip-all 1837 // or -strip-debug are given. 1838 return Config->Strip != StripPolicy::None && 1839 (S->Name.startswith(".debug") || S->Name.startswith(".zdebug")); 1840 }); 1841 1842 // Now that the number of partitions is fixed, save a pointer to the main 1843 // partition. 1844 Main = &Partitions[0]; 1845 1846 // Read .note.gnu.property sections from input object files which 1847 // contain a hint to tweak linker's and loader's behaviors. 1848 Config->AndFeatures = getAndFeatures<ELFT>(); 1849 1850 // The Target instance handles target-specific stuff, such as applying 1851 // relocations or writing a PLT section. It also contains target-dependent 1852 // values such as a default image base address. 1853 Target = getTarget(); 1854 1855 Config->EFlags = Target->calcEFlags(); 1856 // MaxPageSize (sometimes called abi page size) is the maximum page size that 1857 // the output can be run on. For example if the OS can use 4k or 64k page 1858 // sizes then MaxPageSize must be 64 for the output to be useable on both. 1859 // All important alignment decisions must use this value. 1860 Config->MaxPageSize = getMaxPageSize(Args); 1861 // CommonPageSize is the most common page size that the output will be run on. 1862 // For example if an OS can use 4k or 64k page sizes and 4k is more common 1863 // than 64k then CommonPageSize is set to 4k. CommonPageSize can be used for 1864 // optimizations such as DATA_SEGMENT_ALIGN in linker scripts. LLD's use of it 1865 // is limited to writing trap instructions on the last executable segment. 1866 Config->CommonPageSize = getCommonPageSize(Args); 1867 1868 Config->ImageBase = getImageBase(Args); 1869 1870 if (Config->EMachine == EM_ARM) { 1871 // FIXME: These warnings can be removed when lld only uses these features 1872 // when the input objects have been compiled with an architecture that 1873 // supports them. 1874 if (Config->ARMHasBlx == false) 1875 warn("lld uses blx instruction, no object with architecture supporting " 1876 "feature detected"); 1877 } 1878 1879 // This adds a .comment section containing a version string. We have to add it 1880 // before mergeSections because the .comment section is a mergeable section. 1881 if (!Config->Relocatable) 1882 InputSections.push_back(createCommentSection()); 1883 1884 // Replace common symbols with regular symbols. 1885 replaceCommonSymbols(); 1886 1887 // Do size optimizations: garbage collection, merging of SHF_MERGE sections 1888 // and identical code folding. 1889 splitSections<ELFT>(); 1890 markLive<ELFT>(); 1891 demoteSharedSymbols(); 1892 mergeSections(); 1893 if (Config->ICF != ICFLevel::None) { 1894 findKeepUniqueSections<ELFT>(Args); 1895 doIcf<ELFT>(); 1896 } 1897 1898 // Read the callgraph now that we know what was gced or icfed 1899 if (Config->CallGraphProfileSort) { 1900 if (auto *Arg = Args.getLastArg(OPT_call_graph_ordering_file)) 1901 if (Optional<MemoryBufferRef> Buffer = readFile(Arg->getValue())) 1902 readCallGraph(*Buffer); 1903 readCallGraphsFromObjectFiles<ELFT>(); 1904 } 1905 1906 // Write the result to the file. 1907 writeResult<ELFT>(); 1908 } 1909