1 //===- CallGraphSort.cpp --------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// Implementation of Call-Chain Clustering from: Optimizing Function Placement 11 /// for Large-Scale Data-Center Applications 12 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf 13 /// 14 /// The goal of this algorithm is to improve runtime performance of the final 15 /// executable by arranging code sections such that page table and i-cache 16 /// misses are minimized. 17 /// 18 /// Definitions: 19 /// * Cluster 20 /// * An ordered list of input sections which are layed out as a unit. At the 21 /// beginning of the algorithm each input section has its own cluster and 22 /// the weight of the cluster is the sum of the weight of all incomming 23 /// edges. 24 /// * Call-Chain Clustering (C³) Heuristic 25 /// * Defines when and how clusters are combined. Pick the highest weighted 26 /// input section then add it to its most likely predecessor if it wouldn't 27 /// penalize it too much. 28 /// * Density 29 /// * The weight of the cluster divided by the size of the cluster. This is a 30 /// proxy for the ammount of execution time spent per byte of the cluster. 31 /// 32 /// It does so given a call graph profile by the following: 33 /// * Build a weighted call graph from the call graph profile 34 /// * Sort input sections by weight 35 /// * For each input section starting with the highest weight 36 /// * Find its most likely predecessor cluster 37 /// * Check if the combined cluster would be too large, or would have too low 38 /// a density. 39 /// * If not, then combine the clusters. 40 /// * Sort non-empty clusters by density 41 /// 42 //===----------------------------------------------------------------------===// 43 44 #include "CallGraphSort.h" 45 #include "OutputSections.h" 46 #include "SymbolTable.h" 47 #include "Symbols.h" 48 49 using namespace llvm; 50 using namespace lld; 51 using namespace lld::elf; 52 53 namespace { 54 struct Edge { 55 int From; 56 uint64_t Weight; 57 }; 58 59 struct Cluster { 60 Cluster(int Sec, size_t S) : Sections{Sec}, Size(S) {} 61 62 double getDensity() const { 63 if (Size == 0) 64 return 0; 65 return double(Weight) / double(Size); 66 } 67 68 std::vector<int> Sections; 69 size_t Size = 0; 70 uint64_t Weight = 0; 71 uint64_t InitialWeight = 0; 72 Edge BestPred = {-1, 0}; 73 }; 74 75 class CallGraphSort { 76 public: 77 CallGraphSort(); 78 79 DenseMap<const InputSectionBase *, int> run(); 80 81 private: 82 std::vector<Cluster> Clusters; 83 std::vector<const InputSectionBase *> Sections; 84 85 void groupClusters(); 86 }; 87 88 // Maximum ammount the combined cluster density can be worse than the original 89 // cluster to consider merging. 90 constexpr int MAX_DENSITY_DEGRADATION = 8; 91 92 // Maximum cluster size in bytes. 93 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; 94 } // end anonymous namespace 95 96 typedef std::pair<const InputSectionBase *, const InputSectionBase *> 97 SectionPair; 98 99 // Take the edge list in Config->CallGraphProfile, resolve symbol names to 100 // Symbols, and generate a graph between InputSections with the provided 101 // weights. 102 CallGraphSort::CallGraphSort() { 103 MapVector<SectionPair, uint64_t> &Profile = Config->CallGraphProfile; 104 DenseMap<const InputSectionBase *, int> SecToCluster; 105 106 auto GetOrCreateNode = [&](const InputSectionBase *IS) -> int { 107 auto Res = SecToCluster.insert(std::make_pair(IS, Clusters.size())); 108 if (Res.second) { 109 Sections.push_back(IS); 110 Clusters.emplace_back(Clusters.size(), IS->getSize()); 111 } 112 return Res.first->second; 113 }; 114 115 // Create the graph. 116 for (std::pair<SectionPair, uint64_t> &C : Profile) { 117 const auto *FromSB = cast<InputSectionBase>(C.first.first->Repl); 118 const auto *ToSB = cast<InputSectionBase>(C.first.second->Repl); 119 uint64_t Weight = C.second; 120 121 // Ignore edges between input sections belonging to different output 122 // sections. This is done because otherwise we would end up with clusters 123 // containing input sections that can't actually be placed adjacently in the 124 // output. This messes with the cluster size and density calculations. We 125 // would also end up moving input sections in other output sections without 126 // moving them closer to what calls them. 127 if (FromSB->getOutputSection() != ToSB->getOutputSection()) 128 continue; 129 130 int From = GetOrCreateNode(FromSB); 131 int To = GetOrCreateNode(ToSB); 132 133 Clusters[To].Weight += Weight; 134 135 if (From == To) 136 continue; 137 138 // Remember the best edge. 139 Cluster &ToC = Clusters[To]; 140 if (ToC.BestPred.From == -1 || ToC.BestPred.Weight < Weight) { 141 ToC.BestPred.From = From; 142 ToC.BestPred.Weight = Weight; 143 } 144 } 145 for (Cluster &C : Clusters) 146 C.InitialWeight = C.Weight; 147 } 148 149 // It's bad to merge clusters which would degrade the density too much. 150 static bool isNewDensityBad(Cluster &A, Cluster &B) { 151 double NewDensity = double(A.Weight + B.Weight) / double(A.Size + B.Size); 152 return NewDensity < A.getDensity() / MAX_DENSITY_DEGRADATION; 153 } 154 155 static void mergeClusters(Cluster &Into, Cluster &From) { 156 Into.Sections.insert(Into.Sections.end(), From.Sections.begin(), 157 From.Sections.end()); 158 Into.Size += From.Size; 159 Into.Weight += From.Weight; 160 From.Sections.clear(); 161 From.Size = 0; 162 From.Weight = 0; 163 } 164 165 // Group InputSections into clusters using the Call-Chain Clustering heuristic 166 // then sort the clusters by density. 167 void CallGraphSort::groupClusters() { 168 std::vector<int> SortedSecs(Clusters.size()); 169 std::vector<Cluster *> SecToCluster(Clusters.size()); 170 171 for (size_t I = 0; I < Clusters.size(); ++I) { 172 SortedSecs[I] = I; 173 SecToCluster[I] = &Clusters[I]; 174 } 175 176 std::stable_sort(SortedSecs.begin(), SortedSecs.end(), [&](int A, int B) { 177 return Clusters[B].getDensity() < Clusters[A].getDensity(); 178 }); 179 180 for (int SI : SortedSecs) { 181 // Clusters[SI] is the same as SecToClusters[SI] here because it has not 182 // been merged into another cluster yet. 183 Cluster &C = Clusters[SI]; 184 185 // Don't consider merging if the edge is unlikely. 186 if (C.BestPred.From == -1 || C.BestPred.Weight * 10 <= C.InitialWeight) 187 continue; 188 189 Cluster *PredC = SecToCluster[C.BestPred.From]; 190 if (PredC == &C) 191 continue; 192 193 if (C.Size + PredC->Size > MAX_CLUSTER_SIZE) 194 continue; 195 196 if (isNewDensityBad(*PredC, C)) 197 continue; 198 199 // NOTE: Consider using a disjoint-set to track section -> cluster mapping 200 // if this is ever slow. 201 for (int SI : C.Sections) 202 SecToCluster[SI] = PredC; 203 204 mergeClusters(*PredC, C); 205 } 206 207 // Remove empty or dead nodes. Invalidates all cluster indices. 208 llvm::erase_if(Clusters, [](const Cluster &C) { 209 return C.Size == 0 || C.Sections.empty(); 210 }); 211 212 // Sort by density. 213 std::stable_sort(Clusters.begin(), Clusters.end(), 214 [](const Cluster &A, const Cluster &B) { 215 return A.getDensity() > B.getDensity(); 216 }); 217 } 218 219 DenseMap<const InputSectionBase *, int> CallGraphSort::run() { 220 groupClusters(); 221 222 // Generate order. 223 DenseMap<const InputSectionBase *, int> OrderMap; 224 ssize_t CurOrder = 1; 225 226 for (const Cluster &C : Clusters) 227 for (int SecIndex : C.Sections) 228 OrderMap[Sections[SecIndex]] = CurOrder++; 229 230 return OrderMap; 231 } 232 233 // Sort sections by the profile data provided by -callgraph-profile-file 234 // 235 // This first builds a call graph based on the profile data then merges sections 236 // according to the C³ huristic. All clusters are then sorted by a density 237 // metric to further improve locality. 238 DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() { 239 return CallGraphSort().run(); 240 } 241