1 //===- CallGraphSort.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// Implementation of Call-Chain Clustering from: Optimizing Function Placement
10 /// for Large-Scale Data-Center Applications
11 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
12 ///
13 /// The goal of this algorithm is to improve runtime performance of the final
14 /// executable by arranging code sections such that page table and i-cache
15 /// misses are minimized.
16 ///
17 /// Definitions:
18 /// * Cluster
19 ///   * An ordered list of input sections which are layed out as a unit. At the
20 ///     beginning of the algorithm each input section has its own cluster and
21 ///     the weight of the cluster is the sum of the weight of all incomming
22 ///     edges.
23 /// * Call-Chain Clustering (C³) Heuristic
24 ///   * Defines when and how clusters are combined. Pick the highest weighted
25 ///     input section then add it to its most likely predecessor if it wouldn't
26 ///     penalize it too much.
27 /// * Density
28 ///   * The weight of the cluster divided by the size of the cluster. This is a
29 ///     proxy for the ammount of execution time spent per byte of the cluster.
30 ///
31 /// It does so given a call graph profile by the following:
32 /// * Build a weighted call graph from the call graph profile
33 /// * Sort input sections by weight
34 /// * For each input section starting with the highest weight
35 ///   * Find its most likely predecessor cluster
36 ///   * Check if the combined cluster would be too large, or would have too low
37 ///     a density.
38 ///   * If not, then combine the clusters.
39 /// * Sort non-empty clusters by density
40 ///
41 //===----------------------------------------------------------------------===//
42 
43 #include "CallGraphSort.h"
44 #include "OutputSections.h"
45 #include "SymbolTable.h"
46 #include "Symbols.h"
47 
48 using namespace llvm;
49 using namespace lld;
50 using namespace lld::elf;
51 
52 namespace {
53 struct Edge {
54   int From;
55   uint64_t Weight;
56 };
57 
58 struct Cluster {
59   Cluster(int Sec, size_t S) : Sections{Sec}, Size(S) {}
60 
61   double getDensity() const {
62     if (Size == 0)
63       return 0;
64     return double(Weight) / double(Size);
65   }
66 
67   std::vector<int> Sections;
68   size_t Size = 0;
69   uint64_t Weight = 0;
70   uint64_t InitialWeight = 0;
71   Edge BestPred = {-1, 0};
72 };
73 
74 class CallGraphSort {
75 public:
76   CallGraphSort();
77 
78   DenseMap<const InputSectionBase *, int> run();
79 
80 private:
81   std::vector<Cluster> Clusters;
82   std::vector<const InputSectionBase *> Sections;
83 
84   void groupClusters();
85 };
86 
87 // Maximum ammount the combined cluster density can be worse than the original
88 // cluster to consider merging.
89 constexpr int MAX_DENSITY_DEGRADATION = 8;
90 
91 // Maximum cluster size in bytes.
92 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
93 } // end anonymous namespace
94 
95 typedef std::pair<const InputSectionBase *, const InputSectionBase *>
96     SectionPair;
97 
98 // Take the edge list in Config->CallGraphProfile, resolve symbol names to
99 // Symbols, and generate a graph between InputSections with the provided
100 // weights.
101 CallGraphSort::CallGraphSort() {
102   MapVector<SectionPair, uint64_t> &Profile = Config->CallGraphProfile;
103   DenseMap<const InputSectionBase *, int> SecToCluster;
104 
105   auto GetOrCreateNode = [&](const InputSectionBase *IS) -> int {
106     auto Res = SecToCluster.insert(std::make_pair(IS, Clusters.size()));
107     if (Res.second) {
108       Sections.push_back(IS);
109       Clusters.emplace_back(Clusters.size(), IS->getSize());
110     }
111     return Res.first->second;
112   };
113 
114   // Create the graph.
115   for (std::pair<SectionPair, uint64_t> &C : Profile) {
116     const auto *FromSB = cast<InputSectionBase>(C.first.first->Repl);
117     const auto *ToSB = cast<InputSectionBase>(C.first.second->Repl);
118     uint64_t Weight = C.second;
119 
120     // Ignore edges between input sections belonging to different output
121     // sections.  This is done because otherwise we would end up with clusters
122     // containing input sections that can't actually be placed adjacently in the
123     // output.  This messes with the cluster size and density calculations.  We
124     // would also end up moving input sections in other output sections without
125     // moving them closer to what calls them.
126     if (FromSB->getOutputSection() != ToSB->getOutputSection())
127       continue;
128 
129     int From = GetOrCreateNode(FromSB);
130     int To = GetOrCreateNode(ToSB);
131 
132     Clusters[To].Weight += Weight;
133 
134     if (From == To)
135       continue;
136 
137     // Remember the best edge.
138     Cluster &ToC = Clusters[To];
139     if (ToC.BestPred.From == -1 || ToC.BestPred.Weight < Weight) {
140       ToC.BestPred.From = From;
141       ToC.BestPred.Weight = Weight;
142     }
143   }
144   for (Cluster &C : Clusters)
145     C.InitialWeight = C.Weight;
146 }
147 
148 // It's bad to merge clusters which would degrade the density too much.
149 static bool isNewDensityBad(Cluster &A, Cluster &B) {
150   double NewDensity = double(A.Weight + B.Weight) / double(A.Size + B.Size);
151   return NewDensity < A.getDensity() / MAX_DENSITY_DEGRADATION;
152 }
153 
154 static void mergeClusters(Cluster &Into, Cluster &From) {
155   Into.Sections.insert(Into.Sections.end(), From.Sections.begin(),
156                        From.Sections.end());
157   Into.Size += From.Size;
158   Into.Weight += From.Weight;
159   From.Sections.clear();
160   From.Size = 0;
161   From.Weight = 0;
162 }
163 
164 // Group InputSections into clusters using the Call-Chain Clustering heuristic
165 // then sort the clusters by density.
166 void CallGraphSort::groupClusters() {
167   std::vector<int> SortedSecs(Clusters.size());
168   std::vector<Cluster *> SecToCluster(Clusters.size());
169 
170   for (size_t I = 0; I < Clusters.size(); ++I) {
171     SortedSecs[I] = I;
172     SecToCluster[I] = &Clusters[I];
173   }
174 
175   std::stable_sort(SortedSecs.begin(), SortedSecs.end(), [&](int A, int B) {
176     return Clusters[B].getDensity() < Clusters[A].getDensity();
177   });
178 
179   for (int SI : SortedSecs) {
180     // Clusters[SI] is the same as SecToClusters[SI] here because it has not
181     // been merged into another cluster yet.
182     Cluster &C = Clusters[SI];
183 
184     // Don't consider merging if the edge is unlikely.
185     if (C.BestPred.From == -1 || C.BestPred.Weight * 10 <= C.InitialWeight)
186       continue;
187 
188     Cluster *PredC = SecToCluster[C.BestPred.From];
189     if (PredC == &C)
190       continue;
191 
192     if (C.Size + PredC->Size > MAX_CLUSTER_SIZE)
193       continue;
194 
195     if (isNewDensityBad(*PredC, C))
196       continue;
197 
198     // NOTE: Consider using a disjoint-set to track section -> cluster mapping
199     // if this is ever slow.
200     for (int SI : C.Sections)
201       SecToCluster[SI] = PredC;
202 
203     mergeClusters(*PredC, C);
204   }
205 
206   // Remove empty or dead nodes. Invalidates all cluster indices.
207   llvm::erase_if(Clusters, [](const Cluster &C) {
208     return C.Size == 0 || C.Sections.empty();
209   });
210 
211   // Sort by density.
212   std::stable_sort(Clusters.begin(), Clusters.end(),
213                    [](const Cluster &A, const Cluster &B) {
214                      return A.getDensity() > B.getDensity();
215                    });
216 }
217 
218 DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
219   groupClusters();
220 
221   // Generate order.
222   DenseMap<const InputSectionBase *, int> OrderMap;
223   ssize_t CurOrder = 1;
224 
225   for (const Cluster &C : Clusters)
226     for (int SecIndex : C.Sections)
227       OrderMap[Sections[SecIndex]] = CurOrder++;
228 
229   if (!Config->PrintSymbolOrder.empty()) {
230     std::error_code EC;
231     raw_fd_ostream OS(Config->PrintSymbolOrder, EC, sys::fs::F_None);
232     if (EC) {
233       error("cannot open " + Config->PrintSymbolOrder + ": " + EC.message());
234       return OrderMap;
235     }
236 
237     // Print the symbols ordered by C3, in the order of increasing CurOrder
238     // Instead of sorting all the OrderMap, just repeat the loops above.
239     for (const Cluster &C : Clusters)
240       for (int SecIndex : C.Sections)
241         // Search all the symbols in the file of the section
242         // and find out a Defined symbol with name that is within the section.
243         for (Symbol *Sym: Sections[SecIndex]->File->getSymbols())
244           if (!Sym->isSection()) // Filter out section-type symbols here.
245             if (auto *D = dyn_cast<Defined>(Sym))
246               if (Sections[SecIndex] == D->Section)
247                 OS << Sym->getName() << "\n";
248   }
249 
250   return OrderMap;
251 }
252 
253 // Sort sections by the profile data provided by -callgraph-profile-file
254 //
255 // This first builds a call graph based on the profile data then merges sections
256 // according to the C³ huristic. All clusters are then sorted by a density
257 // metric to further improve locality.
258 DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() {
259   return CallGraphSort().run();
260 }
261