1 //===- CallGraphSort.cpp --------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// Implementation of Call-Chain Clustering from: Optimizing Function Placement 10 /// for Large-Scale Data-Center Applications 11 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf 12 /// 13 /// The goal of this algorithm is to improve runtime performance of the final 14 /// executable by arranging code sections such that page table and i-cache 15 /// misses are minimized. 16 /// 17 /// Definitions: 18 /// * Cluster 19 /// * An ordered list of input sections which are layed out as a unit. At the 20 /// beginning of the algorithm each input section has its own cluster and 21 /// the weight of the cluster is the sum of the weight of all incomming 22 /// edges. 23 /// * Call-Chain Clustering (C³) Heuristic 24 /// * Defines when and how clusters are combined. Pick the highest weighted 25 /// input section then add it to its most likely predecessor if it wouldn't 26 /// penalize it too much. 27 /// * Density 28 /// * The weight of the cluster divided by the size of the cluster. This is a 29 /// proxy for the ammount of execution time spent per byte of the cluster. 30 /// 31 /// It does so given a call graph profile by the following: 32 /// * Build a weighted call graph from the call graph profile 33 /// * Sort input sections by weight 34 /// * For each input section starting with the highest weight 35 /// * Find its most likely predecessor cluster 36 /// * Check if the combined cluster would be too large, or would have too low 37 /// a density. 38 /// * If not, then combine the clusters. 39 /// * Sort non-empty clusters by density 40 /// 41 //===----------------------------------------------------------------------===// 42 43 #include "CallGraphSort.h" 44 #include "OutputSections.h" 45 #include "SymbolTable.h" 46 #include "Symbols.h" 47 48 using namespace llvm; 49 using namespace lld; 50 using namespace lld::elf; 51 52 namespace { 53 struct Edge { 54 int From; 55 uint64_t Weight; 56 }; 57 58 struct Cluster { 59 Cluster(int Sec, size_t S) : Sections{Sec}, Size(S) {} 60 61 double getDensity() const { 62 if (Size == 0) 63 return 0; 64 return double(Weight) / double(Size); 65 } 66 67 std::vector<int> Sections; 68 size_t Size = 0; 69 uint64_t Weight = 0; 70 uint64_t InitialWeight = 0; 71 Edge BestPred = {-1, 0}; 72 }; 73 74 class CallGraphSort { 75 public: 76 CallGraphSort(); 77 78 DenseMap<const InputSectionBase *, int> run(); 79 80 private: 81 std::vector<Cluster> Clusters; 82 std::vector<const InputSectionBase *> Sections; 83 84 void groupClusters(); 85 }; 86 87 // Maximum ammount the combined cluster density can be worse than the original 88 // cluster to consider merging. 89 constexpr int MAX_DENSITY_DEGRADATION = 8; 90 91 // Maximum cluster size in bytes. 92 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; 93 } // end anonymous namespace 94 95 typedef std::pair<const InputSectionBase *, const InputSectionBase *> 96 SectionPair; 97 98 // Take the edge list in Config->CallGraphProfile, resolve symbol names to 99 // Symbols, and generate a graph between InputSections with the provided 100 // weights. 101 CallGraphSort::CallGraphSort() { 102 MapVector<SectionPair, uint64_t> &Profile = Config->CallGraphProfile; 103 DenseMap<const InputSectionBase *, int> SecToCluster; 104 105 auto GetOrCreateNode = [&](const InputSectionBase *IS) -> int { 106 auto Res = SecToCluster.insert(std::make_pair(IS, Clusters.size())); 107 if (Res.second) { 108 Sections.push_back(IS); 109 Clusters.emplace_back(Clusters.size(), IS->getSize()); 110 } 111 return Res.first->second; 112 }; 113 114 // Create the graph. 115 for (std::pair<SectionPair, uint64_t> &C : Profile) { 116 const auto *FromSB = cast<InputSectionBase>(C.first.first->Repl); 117 const auto *ToSB = cast<InputSectionBase>(C.first.second->Repl); 118 uint64_t Weight = C.second; 119 120 // Ignore edges between input sections belonging to different output 121 // sections. This is done because otherwise we would end up with clusters 122 // containing input sections that can't actually be placed adjacently in the 123 // output. This messes with the cluster size and density calculations. We 124 // would also end up moving input sections in other output sections without 125 // moving them closer to what calls them. 126 if (FromSB->getOutputSection() != ToSB->getOutputSection()) 127 continue; 128 129 int From = GetOrCreateNode(FromSB); 130 int To = GetOrCreateNode(ToSB); 131 132 Clusters[To].Weight += Weight; 133 134 if (From == To) 135 continue; 136 137 // Remember the best edge. 138 Cluster &ToC = Clusters[To]; 139 if (ToC.BestPred.From == -1 || ToC.BestPred.Weight < Weight) { 140 ToC.BestPred.From = From; 141 ToC.BestPred.Weight = Weight; 142 } 143 } 144 for (Cluster &C : Clusters) 145 C.InitialWeight = C.Weight; 146 } 147 148 // It's bad to merge clusters which would degrade the density too much. 149 static bool isNewDensityBad(Cluster &A, Cluster &B) { 150 double NewDensity = double(A.Weight + B.Weight) / double(A.Size + B.Size); 151 return NewDensity < A.getDensity() / MAX_DENSITY_DEGRADATION; 152 } 153 154 static void mergeClusters(Cluster &Into, Cluster &From) { 155 Into.Sections.insert(Into.Sections.end(), From.Sections.begin(), 156 From.Sections.end()); 157 Into.Size += From.Size; 158 Into.Weight += From.Weight; 159 From.Sections.clear(); 160 From.Size = 0; 161 From.Weight = 0; 162 } 163 164 // Group InputSections into clusters using the Call-Chain Clustering heuristic 165 // then sort the clusters by density. 166 void CallGraphSort::groupClusters() { 167 std::vector<int> SortedSecs(Clusters.size()); 168 std::vector<Cluster *> SecToCluster(Clusters.size()); 169 170 for (size_t I = 0; I < Clusters.size(); ++I) { 171 SortedSecs[I] = I; 172 SecToCluster[I] = &Clusters[I]; 173 } 174 175 std::stable_sort(SortedSecs.begin(), SortedSecs.end(), [&](int A, int B) { 176 return Clusters[B].getDensity() < Clusters[A].getDensity(); 177 }); 178 179 for (int SI : SortedSecs) { 180 // Clusters[SI] is the same as SecToClusters[SI] here because it has not 181 // been merged into another cluster yet. 182 Cluster &C = Clusters[SI]; 183 184 // Don't consider merging if the edge is unlikely. 185 if (C.BestPred.From == -1 || C.BestPred.Weight * 10 <= C.InitialWeight) 186 continue; 187 188 Cluster *PredC = SecToCluster[C.BestPred.From]; 189 if (PredC == &C) 190 continue; 191 192 if (C.Size + PredC->Size > MAX_CLUSTER_SIZE) 193 continue; 194 195 if (isNewDensityBad(*PredC, C)) 196 continue; 197 198 // NOTE: Consider using a disjoint-set to track section -> cluster mapping 199 // if this is ever slow. 200 for (int SI : C.Sections) 201 SecToCluster[SI] = PredC; 202 203 mergeClusters(*PredC, C); 204 } 205 206 // Remove empty or dead nodes. Invalidates all cluster indices. 207 llvm::erase_if(Clusters, [](const Cluster &C) { 208 return C.Size == 0 || C.Sections.empty(); 209 }); 210 211 // Sort by density. 212 std::stable_sort(Clusters.begin(), Clusters.end(), 213 [](const Cluster &A, const Cluster &B) { 214 return A.getDensity() > B.getDensity(); 215 }); 216 } 217 218 DenseMap<const InputSectionBase *, int> CallGraphSort::run() { 219 groupClusters(); 220 221 // Generate order. 222 DenseMap<const InputSectionBase *, int> OrderMap; 223 ssize_t CurOrder = 1; 224 225 for (const Cluster &C : Clusters) 226 for (int SecIndex : C.Sections) 227 OrderMap[Sections[SecIndex]] = CurOrder++; 228 229 if (!Config->PrintSymbolOrder.empty()) { 230 std::error_code EC; 231 raw_fd_ostream OS(Config->PrintSymbolOrder, EC, sys::fs::F_None); 232 if (EC) { 233 error("cannot open " + Config->PrintSymbolOrder + ": " + EC.message()); 234 return OrderMap; 235 } 236 237 // Print the symbols ordered by C3, in the order of increasing CurOrder 238 // Instead of sorting all the OrderMap, just repeat the loops above. 239 for (const Cluster &C : Clusters) 240 for (int SecIndex : C.Sections) 241 // Search all the symbols in the file of the section 242 // and find out a Defined symbol with name that is within the section. 243 for (Symbol *Sym: Sections[SecIndex]->File->getSymbols()) 244 if (!Sym->isSection()) // Filter out section-type symbols here. 245 if (auto *D = dyn_cast<Defined>(Sym)) 246 if (Sections[SecIndex] == D->Section) 247 OS << Sym->getName() << "\n"; 248 } 249 250 return OrderMap; 251 } 252 253 // Sort sections by the profile data provided by -callgraph-profile-file 254 // 255 // This first builds a call graph based on the profile data then merges sections 256 // according to the C³ huristic. All clusters are then sorted by a density 257 // metric to further improve locality. 258 DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() { 259 return CallGraphSort().run(); 260 } 261