1 //===- CallGraphSort.cpp --------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// Implementation of Call-Chain Clustering from: Optimizing Function Placement 11 /// for Large-Scale Data-Center Applications 12 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf 13 /// 14 /// The goal of this algorithm is to improve runtime performance of the final 15 /// executable by arranging code sections such that page table and i-cache 16 /// misses are minimized. 17 /// 18 /// Definitions: 19 /// * Cluster 20 /// * An ordered list of input sections which are layed out as a unit. At the 21 /// beginning of the algorithm each input section has its own cluster and 22 /// the weight of the cluster is the sum of the weight of all incomming 23 /// edges. 24 /// * Call-Chain Clustering (C³) Heuristic 25 /// * Defines when and how clusters are combined. Pick the highest weighted 26 /// input section then add it to its most likely predecessor if it wouldn't 27 /// penalize it too much. 28 /// * Density 29 /// * The weight of the cluster divided by the size of the cluster. This is a 30 /// proxy for the ammount of execution time spent per byte of the cluster. 31 /// 32 /// It does so given a call graph profile by the following: 33 /// * Build a weighted call graph from the call graph profile 34 /// * Sort input sections by weight 35 /// * For each input section starting with the highest weight 36 /// * Find its most likely predecessor cluster 37 /// * Check if the combined cluster would be too large, or would have too low 38 /// a density. 39 /// * If not, then combine the clusters. 40 /// * Sort non-empty clusters by density 41 /// 42 //===----------------------------------------------------------------------===// 43 44 #include "CallGraphSort.h" 45 #include "OutputSections.h" 46 #include "SymbolTable.h" 47 #include "Symbols.h" 48 49 using namespace llvm; 50 using namespace lld; 51 using namespace lld::elf; 52 53 namespace { 54 struct Edge { 55 int From; 56 uint64_t Weight; 57 }; 58 59 struct Cluster { 60 Cluster(int Sec, size_t S) { 61 Sections.push_back(Sec); 62 Size = S; 63 } 64 65 double getDensity() const { 66 if (Size == 0) 67 return 0; 68 return double(Weight) / double(Size); 69 } 70 71 std::vector<int> Sections; 72 size_t Size = 0; 73 uint64_t Weight = 0; 74 uint64_t InitialWeight = 0; 75 std::vector<Edge> Preds; 76 }; 77 78 class CallGraphSort { 79 public: 80 CallGraphSort(); 81 82 DenseMap<const InputSectionBase *, int> run(); 83 84 private: 85 std::vector<Cluster> Clusters; 86 std::vector<const InputSectionBase *> Sections; 87 88 void groupClusters(); 89 }; 90 91 // Maximum ammount the combined cluster density can be worse than the original 92 // cluster to consider merging. 93 constexpr int MAX_DENSITY_DEGRADATION = 8; 94 95 // Maximum cluster size in bytes. 96 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; 97 } // end anonymous namespace 98 99 // Take the edge list in Config->CallGraphProfile, resolve symbol names to 100 // Symbols, and generate a graph between InputSections with the provided 101 // weights. 102 CallGraphSort::CallGraphSort() { 103 llvm::MapVector<std::pair<const InputSectionBase *, const InputSectionBase *>, 104 uint64_t> &Profile = Config->CallGraphProfile; 105 DenseMap<const InputSectionBase *, int> SecToCluster; 106 107 auto GetOrCreateNode = [&](const InputSectionBase *IS) -> int { 108 auto Res = SecToCluster.insert(std::make_pair(IS, Clusters.size())); 109 if (Res.second) { 110 Sections.push_back(IS); 111 Clusters.emplace_back(Clusters.size(), IS->getSize()); 112 } 113 return Res.first->second; 114 }; 115 116 // Create the graph. 117 for (const auto &C : Profile) { 118 const auto *FromSB = cast<InputSectionBase>(C.first.first->Repl); 119 const auto *ToSB = cast<InputSectionBase>(C.first.second->Repl); 120 uint64_t Weight = C.second; 121 122 // Ignore edges between input sections belonging to different output 123 // sections. This is done because otherwise we would end up with clusters 124 // containing input sections that can't actually be placed adjacently in the 125 // output. This messes with the cluster size and density calculations. We 126 // would also end up moving input sections in other output sections without 127 // moving them closer to what calls them. 128 if (FromSB->getOutputSection() != ToSB->getOutputSection()) 129 continue; 130 131 int From = GetOrCreateNode(FromSB); 132 int To = GetOrCreateNode(ToSB); 133 134 Clusters[To].Weight += Weight; 135 136 if (From == To) 137 continue; 138 139 // Add an edge 140 Clusters[To].Preds.push_back({From, Weight}); 141 } 142 for (Cluster &C : Clusters) 143 C.InitialWeight = C.Weight; 144 } 145 146 // It's bad to merge clusters which would degrade the density too much. 147 static bool isNewDensityBad(Cluster &A, Cluster &B) { 148 double NewDensity = double(A.Weight + B.Weight) / double(A.Size + B.Size); 149 if (NewDensity < A.getDensity() / MAX_DENSITY_DEGRADATION) 150 return true; 151 return false; 152 } 153 154 static void mergeClusters(Cluster &Into, Cluster &From) { 155 Into.Sections.insert(Into.Sections.end(), From.Sections.begin(), 156 From.Sections.end()); 157 Into.Size += From.Size; 158 Into.Weight += From.Weight; 159 From.Sections.clear(); 160 From.Size = 0; 161 From.Weight = 0; 162 } 163 164 // Group InputSections into clusters using the Call-Chain Clustering heuristic 165 // then sort the clusters by density. 166 void CallGraphSort::groupClusters() { 167 std::vector<int> SortedSecs(Clusters.size()); 168 std::vector<Cluster *> SecToCluster(Clusters.size()); 169 170 for (int SI = 0, SE = Clusters.size(); SI != SE; ++SI) { 171 SortedSecs[SI] = SI; 172 SecToCluster[SI] = &Clusters[SI]; 173 } 174 175 std::stable_sort(SortedSecs.begin(), SortedSecs.end(), [&](int A, int B) { 176 return Clusters[B].getDensity() < Clusters[A].getDensity(); 177 }); 178 179 for (int SI : SortedSecs) { 180 // Clusters[SI] is the same as SecToClusters[SI] here because it has not 181 // been merged into another cluster yet. 182 Cluster &C = Clusters[SI]; 183 184 int BestPred = -1; 185 uint64_t BestWeight = 0; 186 187 for (Edge &E : C.Preds) { 188 if (BestPred == -1 || E.Weight > BestWeight) { 189 BestPred = E.From; 190 BestWeight = E.Weight; 191 } 192 } 193 194 // don't consider merging if the edge is unlikely. 195 if (BestWeight * 10 <= C.InitialWeight) 196 continue; 197 198 Cluster *PredC = SecToCluster[BestPred]; 199 if (PredC == &C) 200 continue; 201 202 if (C.Size + PredC->Size > MAX_CLUSTER_SIZE) 203 continue; 204 205 if (isNewDensityBad(*PredC, C)) 206 continue; 207 208 // NOTE: Consider using a disjoint-set to track section -> cluster mapping 209 // if this is ever slow. 210 for (int SI : C.Sections) 211 SecToCluster[SI] = PredC; 212 213 mergeClusters(*PredC, C); 214 } 215 216 // Remove empty or dead nodes. Invalidates all cluster indices. 217 llvm::erase_if(Clusters, [](const Cluster &C) { 218 return C.Size == 0 || C.Sections.empty(); 219 }); 220 221 // Sort by density. 222 std::sort(Clusters.begin(), Clusters.end(), 223 [](const Cluster &A, const Cluster &B) { 224 return A.getDensity() > B.getDensity(); 225 }); 226 } 227 228 DenseMap<const InputSectionBase *, int> CallGraphSort::run() { 229 groupClusters(); 230 231 // Generate order. 232 llvm::DenseMap<const InputSectionBase *, int> OrderMap; 233 ssize_t CurOrder = 1; 234 235 for (const Cluster &C : Clusters) 236 for (int SecIndex : C.Sections) 237 OrderMap[Sections[SecIndex]] = CurOrder++; 238 239 return OrderMap; 240 } 241 242 // Sort sections by the profile data provided by -callgraph-profile-file 243 // 244 // This first builds a call graph based on the profile data then merges sections 245 // according to the C³ huristic. All clusters are then sorted by a density 246 // metric to further improve locality. 247 DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() { 248 return CallGraphSort().run(); 249 } 250