1b842725cSMichael J. Spencer //===- CallGraphSort.cpp --------------------------------------------------===// 2b842725cSMichael J. Spencer // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6b842725cSMichael J. Spencer // 7b842725cSMichael J. Spencer //===----------------------------------------------------------------------===// 8b842725cSMichael J. Spencer /// 9b842725cSMichael J. Spencer /// Implementation of Call-Chain Clustering from: Optimizing Function Placement 10b842725cSMichael J. Spencer /// for Large-Scale Data-Center Applications 11b842725cSMichael J. Spencer /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf 12b842725cSMichael J. Spencer /// 13b842725cSMichael J. Spencer /// The goal of this algorithm is to improve runtime performance of the final 14b842725cSMichael J. Spencer /// executable by arranging code sections such that page table and i-cache 15b842725cSMichael J. Spencer /// misses are minimized. 16b842725cSMichael J. Spencer /// 17b842725cSMichael J. Spencer /// Definitions: 18b842725cSMichael J. Spencer /// * Cluster 195976a3f5SNico Weber /// * An ordered list of input sections which are laid out as a unit. At the 20b842725cSMichael J. Spencer /// beginning of the algorithm each input section has its own cluster and 215976a3f5SNico Weber /// the weight of the cluster is the sum of the weight of all incoming 22b842725cSMichael J. Spencer /// edges. 23b842725cSMichael J. Spencer /// * Call-Chain Clustering (C³) Heuristic 24b842725cSMichael J. Spencer /// * Defines when and how clusters are combined. Pick the highest weighted 25b842725cSMichael J. Spencer /// input section then add it to its most likely predecessor if it wouldn't 26b842725cSMichael J. Spencer /// penalize it too much. 27b842725cSMichael J. Spencer /// * Density 28b842725cSMichael J. Spencer /// * The weight of the cluster divided by the size of the cluster. This is a 295976a3f5SNico Weber /// proxy for the amount of execution time spent per byte of the cluster. 30b842725cSMichael J. Spencer /// 31b842725cSMichael J. Spencer /// It does so given a call graph profile by the following: 32b842725cSMichael J. Spencer /// * Build a weighted call graph from the call graph profile 33b842725cSMichael J. Spencer /// * Sort input sections by weight 34b842725cSMichael J. Spencer /// * For each input section starting with the highest weight 35b842725cSMichael J. Spencer /// * Find its most likely predecessor cluster 36b842725cSMichael J. Spencer /// * Check if the combined cluster would be too large, or would have too low 37b842725cSMichael J. Spencer /// a density. 38b842725cSMichael J. Spencer /// * If not, then combine the clusters. 39b842725cSMichael J. Spencer /// * Sort non-empty clusters by density 40b842725cSMichael J. Spencer /// 41b842725cSMichael J. Spencer //===----------------------------------------------------------------------===// 42b842725cSMichael J. Spencer 43b842725cSMichael J. Spencer #include "CallGraphSort.h" 44b842725cSMichael J. Spencer #include "OutputSections.h" 45b842725cSMichael J. Spencer #include "SymbolTable.h" 46b842725cSMichael J. Spencer #include "Symbols.h" 47b842725cSMichael J. Spencer 487588cf09SFangrui Song #include <numeric> 497588cf09SFangrui Song 50b842725cSMichael J. Spencer using namespace llvm; 5107837b8fSFangrui Song using namespace lld; 5207837b8fSFangrui Song using namespace lld::elf; 53b842725cSMichael J. Spencer 54b842725cSMichael J. Spencer namespace { 55b842725cSMichael J. Spencer struct Edge { 563837f427SRui Ueyama int from; 573837f427SRui Ueyama uint64_t weight; 58b842725cSMichael J. Spencer }; 59b842725cSMichael J. Spencer 60b842725cSMichael J. Spencer struct Cluster { 617588cf09SFangrui Song Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {} 62b842725cSMichael J. Spencer 63b842725cSMichael J. Spencer double getDensity() const { 643837f427SRui Ueyama if (size == 0) 65b842725cSMichael J. Spencer return 0; 663837f427SRui Ueyama return double(weight) / double(size); 67b842725cSMichael J. Spencer } 68b842725cSMichael J. Spencer 697588cf09SFangrui Song int next; 707588cf09SFangrui Song int prev; 71763671f3SZequan Wu uint64_t size; 723837f427SRui Ueyama uint64_t weight = 0; 733837f427SRui Ueyama uint64_t initialWeight = 0; 743837f427SRui Ueyama Edge bestPred = {-1, 0}; 75b842725cSMichael J. Spencer }; 76b842725cSMichael J. Spencer 77b842725cSMichael J. Spencer class CallGraphSort { 78b842725cSMichael J. Spencer public: 79b842725cSMichael J. Spencer CallGraphSort(); 80b842725cSMichael J. Spencer 81b842725cSMichael J. Spencer DenseMap<const InputSectionBase *, int> run(); 82b842725cSMichael J. Spencer 83b842725cSMichael J. Spencer private: 843837f427SRui Ueyama std::vector<Cluster> clusters; 853837f427SRui Ueyama std::vector<const InputSectionBase *> sections; 86b842725cSMichael J. Spencer }; 87b842725cSMichael J. Spencer 885976a3f5SNico Weber // Maximum amount the combined cluster density can be worse than the original 89b842725cSMichael J. Spencer // cluster to consider merging. 90b842725cSMichael J. Spencer constexpr int MAX_DENSITY_DEGRADATION = 8; 91b842725cSMichael J. Spencer 92b842725cSMichael J. Spencer // Maximum cluster size in bytes. 93b842725cSMichael J. Spencer constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; 94b842725cSMichael J. Spencer } // end anonymous namespace 95b842725cSMichael J. Spencer 9668b9f45fSRui Ueyama using SectionPair = 9768b9f45fSRui Ueyama std::pair<const InputSectionBase *, const InputSectionBase *>; 983d354081SRui Ueyama 99b842725cSMichael J. Spencer // Take the edge list in Config->CallGraphProfile, resolve symbol names to 100b842725cSMichael J. Spencer // Symbols, and generate a graph between InputSections with the provided 101b842725cSMichael J. Spencer // weights. 102b842725cSMichael J. Spencer CallGraphSort::CallGraphSort() { 1033837f427SRui Ueyama MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile; 1043837f427SRui Ueyama DenseMap<const InputSectionBase *, int> secToCluster; 105b842725cSMichael J. Spencer 1063837f427SRui Ueyama auto getOrCreateNode = [&](const InputSectionBase *isec) -> int { 1077588cf09SFangrui Song auto res = secToCluster.try_emplace(isec, clusters.size()); 1083837f427SRui Ueyama if (res.second) { 1093837f427SRui Ueyama sections.push_back(isec); 1103837f427SRui Ueyama clusters.emplace_back(clusters.size(), isec->getSize()); 111b842725cSMichael J. Spencer } 1123837f427SRui Ueyama return res.first->second; 113b842725cSMichael J. Spencer }; 114b842725cSMichael J. Spencer 115b842725cSMichael J. Spencer // Create the graph. 1163837f427SRui Ueyama for (std::pair<SectionPair, uint64_t> &c : profile) { 1173837f427SRui Ueyama const auto *fromSB = cast<InputSectionBase>(c.first.first->repl); 1183837f427SRui Ueyama const auto *toSB = cast<InputSectionBase>(c.first.second->repl); 1193837f427SRui Ueyama uint64_t weight = c.second; 120b842725cSMichael J. Spencer 121b842725cSMichael J. Spencer // Ignore edges between input sections belonging to different output 122b842725cSMichael J. Spencer // sections. This is done because otherwise we would end up with clusters 123b842725cSMichael J. Spencer // containing input sections that can't actually be placed adjacently in the 124b842725cSMichael J. Spencer // output. This messes with the cluster size and density calculations. We 125b842725cSMichael J. Spencer // would also end up moving input sections in other output sections without 126b842725cSMichael J. Spencer // moving them closer to what calls them. 1273837f427SRui Ueyama if (fromSB->getOutputSection() != toSB->getOutputSection()) 128b842725cSMichael J. Spencer continue; 129b842725cSMichael J. Spencer 1303837f427SRui Ueyama int from = getOrCreateNode(fromSB); 1313837f427SRui Ueyama int to = getOrCreateNode(toSB); 132b842725cSMichael J. Spencer 1333837f427SRui Ueyama clusters[to].weight += weight; 134b842725cSMichael J. Spencer 1353837f427SRui Ueyama if (from == to) 136b842725cSMichael J. Spencer continue; 137b842725cSMichael J. Spencer 138f0eedbceSGeorge Rimar // Remember the best edge. 1393837f427SRui Ueyama Cluster &toC = clusters[to]; 1403837f427SRui Ueyama if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) { 1413837f427SRui Ueyama toC.bestPred.from = from; 1423837f427SRui Ueyama toC.bestPred.weight = weight; 143f0eedbceSGeorge Rimar } 144b842725cSMichael J. Spencer } 1453837f427SRui Ueyama for (Cluster &c : clusters) 1463837f427SRui Ueyama c.initialWeight = c.weight; 147b842725cSMichael J. Spencer } 148b842725cSMichael J. Spencer 149b842725cSMichael J. Spencer // It's bad to merge clusters which would degrade the density too much. 1503837f427SRui Ueyama static bool isNewDensityBad(Cluster &a, Cluster &b) { 1513837f427SRui Ueyama double newDensity = double(a.weight + b.weight) / double(a.size + b.size); 1523837f427SRui Ueyama return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION; 153b842725cSMichael J. Spencer } 154b842725cSMichael J. Spencer 1557588cf09SFangrui Song // Find the leader of V's belonged cluster (represented as an equivalence 1567588cf09SFangrui Song // class). We apply union-find path-halving technique (simple to implement) in 1577588cf09SFangrui Song // the meantime as it decreases depths and the time complexity. 1587588cf09SFangrui Song static int getLeader(std::vector<int> &leaders, int v) { 1597588cf09SFangrui Song while (leaders[v] != v) { 1607588cf09SFangrui Song leaders[v] = leaders[leaders[v]]; 1617588cf09SFangrui Song v = leaders[v]; 1627588cf09SFangrui Song } 1637588cf09SFangrui Song return v; 1647588cf09SFangrui Song } 1657588cf09SFangrui Song 1667588cf09SFangrui Song static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx, 1677588cf09SFangrui Song Cluster &from, int fromIdx) { 1687588cf09SFangrui Song int tail1 = into.prev, tail2 = from.prev; 1697588cf09SFangrui Song into.prev = tail2; 1707588cf09SFangrui Song cs[tail2].next = intoIdx; 1717588cf09SFangrui Song from.prev = tail1; 1727588cf09SFangrui Song cs[tail1].next = fromIdx; 1733837f427SRui Ueyama into.size += from.size; 1743837f427SRui Ueyama into.weight += from.weight; 1753837f427SRui Ueyama from.size = 0; 1763837f427SRui Ueyama from.weight = 0; 177b842725cSMichael J. Spencer } 178b842725cSMichael J. Spencer 179b842725cSMichael J. Spencer // Group InputSections into clusters using the Call-Chain Clustering heuristic 180b842725cSMichael J. Spencer // then sort the clusters by density. 1817588cf09SFangrui Song DenseMap<const InputSectionBase *, int> CallGraphSort::run() { 1827588cf09SFangrui Song std::vector<int> sorted(clusters.size()); 1837588cf09SFangrui Song std::vector<int> leaders(clusters.size()); 184b842725cSMichael J. Spencer 1857588cf09SFangrui Song std::iota(leaders.begin(), leaders.end(), 0); 1867588cf09SFangrui Song std::iota(sorted.begin(), sorted.end(), 0); 1877588cf09SFangrui Song llvm::stable_sort(sorted, [&](int a, int b) { 1883837f427SRui Ueyama return clusters[a].getDensity() > clusters[b].getDensity(); 189b842725cSMichael J. Spencer }); 190b842725cSMichael J. Spencer 1917588cf09SFangrui Song for (int l : sorted) { 1927588cf09SFangrui Song // The cluster index is the same as the index of its leader here because 1937588cf09SFangrui Song // clusters[L] has not been merged into another cluster yet. 1947588cf09SFangrui Song Cluster &c = clusters[l]; 195b842725cSMichael J. Spencer 196f0eedbceSGeorge Rimar // Don't consider merging if the edge is unlikely. 1973837f427SRui Ueyama if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight) 198b842725cSMichael J. Spencer continue; 199b842725cSMichael J. Spencer 2007588cf09SFangrui Song int predL = getLeader(leaders, c.bestPred.from); 2017588cf09SFangrui Song if (l == predL) 202b842725cSMichael J. Spencer continue; 203b842725cSMichael J. Spencer 2047588cf09SFangrui Song Cluster *predC = &clusters[predL]; 2053837f427SRui Ueyama if (c.size + predC->size > MAX_CLUSTER_SIZE) 206b842725cSMichael J. Spencer continue; 207b842725cSMichael J. Spencer 2083837f427SRui Ueyama if (isNewDensityBad(*predC, c)) 209b842725cSMichael J. Spencer continue; 210b842725cSMichael J. Spencer 2117588cf09SFangrui Song leaders[l] = predL; 2127588cf09SFangrui Song mergeClusters(clusters, *predC, predL, c, l); 213b842725cSMichael J. Spencer } 214b842725cSMichael J. Spencer 2157588cf09SFangrui Song // Sort remaining non-empty clusters by density. 2167588cf09SFangrui Song sorted.clear(); 2177588cf09SFangrui Song for (int i = 0, e = (int)clusters.size(); i != e; ++i) 2187588cf09SFangrui Song if (clusters[i].size > 0) 2197588cf09SFangrui Song sorted.push_back(i); 2207588cf09SFangrui Song llvm::stable_sort(sorted, [&](int a, int b) { 2217588cf09SFangrui Song return clusters[a].getDensity() > clusters[b].getDensity(); 22297df22f1SGeorge Rimar }); 223b842725cSMichael J. Spencer 2243837f427SRui Ueyama DenseMap<const InputSectionBase *, int> orderMap; 2257588cf09SFangrui Song int curOrder = 1; 226763671f3SZequan Wu for (int leader : sorted) { 2277588cf09SFangrui Song for (int i = leader;;) { 2287588cf09SFangrui Song orderMap[sections[i]] = curOrder++; 2297588cf09SFangrui Song i = clusters[i].next; 2307588cf09SFangrui Song if (i == leader) 2317588cf09SFangrui Song break; 2327588cf09SFangrui Song } 233763671f3SZequan Wu } 2343837f427SRui Ueyama if (!config->printSymbolOrder.empty()) { 2353837f427SRui Ueyama std::error_code ec; 236d9b948b6SFangrui Song raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None); 2373837f427SRui Ueyama if (ec) { 2383837f427SRui Ueyama error("cannot open " + config->printSymbolOrder + ": " + ec.message()); 2393837f427SRui Ueyama return orderMap; 240432030e8SRui Ueyama } 241432030e8SRui Ueyama 24247cfe8f3SFangrui Song // Print the symbols ordered by C3, in the order of increasing curOrder 24347cfe8f3SFangrui Song // Instead of sorting all the orderMap, just repeat the loops above. 2447588cf09SFangrui Song for (int leader : sorted) 2457588cf09SFangrui Song for (int i = leader;;) { 246432030e8SRui Ueyama // Search all the symbols in the file of the section 247432030e8SRui Ueyama // and find out a Defined symbol with name that is within the section. 2487588cf09SFangrui Song for (Symbol *sym : sections[i]->file->getSymbols()) 2493837f427SRui Ueyama if (!sym->isSection()) // Filter out section-type symbols here. 2503837f427SRui Ueyama if (auto *d = dyn_cast<Defined>(sym)) 2517588cf09SFangrui Song if (sections[i] == d->section) 2523837f427SRui Ueyama os << sym->getName() << "\n"; 2537588cf09SFangrui Song i = clusters[i].next; 2547588cf09SFangrui Song if (i == leader) 2557588cf09SFangrui Song break; 2567588cf09SFangrui Song } 257432030e8SRui Ueyama } 258432030e8SRui Ueyama 2593837f427SRui Ueyama return orderMap; 260b842725cSMichael J. Spencer } 261b842725cSMichael J. Spencer 262*bf6e259bSFangrui Song // Sort sections by the profile data provided by --callgraph-profile-file. 263b842725cSMichael J. Spencer // 264b842725cSMichael J. Spencer // This first builds a call graph based on the profile data then merges sections 2657c5fcb35SKazuaki Ishizaki // according to the C³ heuristic. All clusters are then sorted by a density 266b842725cSMichael J. Spencer // metric to further improve locality. 26707837b8fSFangrui Song DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() { 268b842725cSMichael J. Spencer return CallGraphSort().run(); 269b842725cSMichael J. Spencer } 270