1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "COFFLinkerContext.h" 11 #include "Chunks.h" 12 #include "Config.h" 13 #include "DebugTypes.h" 14 #include "Driver.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "lld/Common/DWARF.h" 18 #include "lld/Common/ErrorHandler.h" 19 #include "lld/Common/Memory.h" 20 #include "llvm-c/lto.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/COFF.h" 25 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" 26 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" 27 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 28 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" 29 #include "llvm/DebugInfo/PDB/Native/NativeSession.h" 30 #include "llvm/DebugInfo/PDB/Native/PDBFile.h" 31 #include "llvm/LTO/LTO.h" 32 #include "llvm/Object/Binary.h" 33 #include "llvm/Object/COFF.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Endian.h" 36 #include "llvm/Support/Error.h" 37 #include "llvm/Support/ErrorOr.h" 38 #include "llvm/Support/FileSystem.h" 39 #include "llvm/Support/Path.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include <cstring> 42 #include <system_error> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace llvm::COFF; 47 using namespace llvm::codeview; 48 using namespace llvm::object; 49 using namespace llvm::support::endian; 50 using namespace lld; 51 using namespace lld::coff; 52 53 using llvm::Triple; 54 using llvm::support::ulittle32_t; 55 56 // Returns the last element of a path, which is supposed to be a filename. 57 static StringRef getBasename(StringRef path) { 58 return sys::path::filename(path, sys::path::Style::windows); 59 } 60 61 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". 62 std::string lld::toString(const coff::InputFile *file) { 63 if (!file) 64 return "<internal>"; 65 if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind) 66 return std::string(file->getName()); 67 68 return (getBasename(file->parentName) + "(" + getBasename(file->getName()) + 69 ")") 70 .str(); 71 } 72 73 /// Checks that Source is compatible with being a weak alias to Target. 74 /// If Source is Undefined and has no weak alias set, makes it a weak 75 /// alias to Target. 76 static void checkAndSetWeakAlias(SymbolTable *symtab, InputFile *f, 77 Symbol *source, Symbol *target) { 78 if (auto *u = dyn_cast<Undefined>(source)) { 79 if (u->weakAlias && u->weakAlias != target) { 80 // Weak aliases as produced by GCC are named in the form 81 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name 82 // of another symbol emitted near the weak symbol. 83 // Just use the definition from the first object file that defined 84 // this weak symbol. 85 if (config->mingw) 86 return; 87 symtab->reportDuplicate(source, f); 88 } 89 u->weakAlias = target; 90 } 91 } 92 93 static bool ignoredSymbolName(StringRef name) { 94 return name == "@feat.00" || name == "@comp.id"; 95 } 96 97 ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m) 98 : InputFile(ctx, ArchiveKind, m) {} 99 100 void ArchiveFile::parse() { 101 // Parse a MemoryBufferRef as an archive file. 102 file = CHECK(Archive::create(mb), this); 103 104 // Read the symbol table to construct Lazy objects. 105 for (const Archive::Symbol &sym : file->symbols()) 106 ctx.symtab.addLazyArchive(this, sym); 107 } 108 109 // Returns a buffer pointing to a member file containing a given symbol. 110 void ArchiveFile::addMember(const Archive::Symbol &sym) { 111 const Archive::Child &c = 112 CHECK(sym.getMember(), 113 "could not get the member for symbol " + toCOFFString(sym)); 114 115 // Return an empty buffer if we have already returned the same buffer. 116 if (!seen.insert(c.getChildOffset()).second) 117 return; 118 119 driver->enqueueArchiveMember(c, sym, getName()); 120 } 121 122 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) { 123 std::vector<MemoryBufferRef> v; 124 Error err = Error::success(); 125 for (const Archive::Child &c : file->children(err)) { 126 MemoryBufferRef mbref = 127 CHECK(c.getMemoryBufferRef(), 128 file->getFileName() + 129 ": could not get the buffer for a child of the archive"); 130 v.push_back(mbref); 131 } 132 if (err) 133 fatal(file->getFileName() + 134 ": Archive::children failed: " + toString(std::move(err))); 135 return v; 136 } 137 138 void ObjFile::parseLazy() { 139 // Native object file. 140 std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this); 141 COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get()); 142 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 143 for (uint32_t i = 0; i < numSymbols; ++i) { 144 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 145 if (coffSym.isUndefined() || !coffSym.isExternal() || 146 coffSym.isWeakExternal()) 147 continue; 148 StringRef name = check(coffObj->getSymbolName(coffSym)); 149 if (coffSym.isAbsolute() && ignoredSymbolName(name)) 150 continue; 151 ctx.symtab.addLazyObject(this, name); 152 i += coffSym.getNumberOfAuxSymbols(); 153 } 154 } 155 156 void ObjFile::parse() { 157 // Parse a memory buffer as a COFF file. 158 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 159 160 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 161 bin.release(); 162 coffObj.reset(obj); 163 } else { 164 fatal(toString(this) + " is not a COFF file"); 165 } 166 167 // Read section and symbol tables. 168 initializeChunks(); 169 initializeSymbols(); 170 initializeFlags(); 171 initializeDependencies(); 172 } 173 174 const coff_section *ObjFile::getSection(uint32_t i) { 175 auto sec = coffObj->getSection(i); 176 if (!sec) 177 fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError())); 178 return *sec; 179 } 180 181 // We set SectionChunk pointers in the SparseChunks vector to this value 182 // temporarily to mark comdat sections as having an unknown resolution. As we 183 // walk the object file's symbol table, once we visit either a leader symbol or 184 // an associative section definition together with the parent comdat's leader, 185 // we set the pointer to either nullptr (to mark the section as discarded) or a 186 // valid SectionChunk for that section. 187 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1); 188 189 void ObjFile::initializeChunks() { 190 uint32_t numSections = coffObj->getNumberOfSections(); 191 sparseChunks.resize(numSections + 1); 192 for (uint32_t i = 1; i < numSections + 1; ++i) { 193 const coff_section *sec = getSection(i); 194 if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) 195 sparseChunks[i] = pendingComdat; 196 else 197 sparseChunks[i] = readSection(i, nullptr, ""); 198 } 199 } 200 201 SectionChunk *ObjFile::readSection(uint32_t sectionNumber, 202 const coff_aux_section_definition *def, 203 StringRef leaderName) { 204 const coff_section *sec = getSection(sectionNumber); 205 206 StringRef name; 207 if (Expected<StringRef> e = coffObj->getSectionName(sec)) 208 name = *e; 209 else 210 fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " + 211 toString(e.takeError())); 212 213 if (name == ".drectve") { 214 ArrayRef<uint8_t> data; 215 cantFail(coffObj->getSectionContents(sec, data)); 216 directives = StringRef((const char *)data.data(), data.size()); 217 return nullptr; 218 } 219 220 if (name == ".llvm_addrsig") { 221 addrsigSec = sec; 222 return nullptr; 223 } 224 225 if (name == ".llvm.call-graph-profile") { 226 callgraphSec = sec; 227 return nullptr; 228 } 229 230 // Object files may have DWARF debug info or MS CodeView debug info 231 // (or both). 232 // 233 // DWARF sections don't need any special handling from the perspective 234 // of the linker; they are just a data section containing relocations. 235 // We can just link them to complete debug info. 236 // 237 // CodeView needs linker support. We need to interpret debug info, 238 // and then write it to a separate .pdb file. 239 240 // Ignore DWARF debug info unless /debug is given. 241 if (!config->debug && name.startswith(".debug_")) 242 return nullptr; 243 244 if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) 245 return nullptr; 246 auto *c = make<SectionChunk>(this, sec); 247 if (def) 248 c->checksum = def->CheckSum; 249 250 // CodeView sections are stored to a different vector because they are not 251 // linked in the regular manner. 252 if (c->isCodeView()) 253 debugChunks.push_back(c); 254 else if (name == ".gfids$y") 255 guardFidChunks.push_back(c); 256 else if (name == ".giats$y") 257 guardIATChunks.push_back(c); 258 else if (name == ".gljmp$y") 259 guardLJmpChunks.push_back(c); 260 else if (name == ".gehcont$y") 261 guardEHContChunks.push_back(c); 262 else if (name == ".sxdata") 263 sxDataChunks.push_back(c); 264 else if (config->tailMerge && sec->NumberOfRelocations == 0 && 265 name == ".rdata" && leaderName.startswith("??_C@")) 266 // COFF sections that look like string literal sections (i.e. no 267 // relocations, in .rdata, leader symbol name matches the MSVC name mangling 268 // for string literals) are subject to string tail merging. 269 MergeChunk::addSection(ctx, c); 270 else if (name == ".rsrc" || name.startswith(".rsrc$")) 271 resourceChunks.push_back(c); 272 else 273 chunks.push_back(c); 274 275 return c; 276 } 277 278 void ObjFile::includeResourceChunks() { 279 chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end()); 280 } 281 282 void ObjFile::readAssociativeDefinition( 283 COFFSymbolRef sym, const coff_aux_section_definition *def) { 284 readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj())); 285 } 286 287 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, 288 const coff_aux_section_definition *def, 289 uint32_t parentIndex) { 290 SectionChunk *parent = sparseChunks[parentIndex]; 291 int32_t sectionNumber = sym.getSectionNumber(); 292 293 auto diag = [&]() { 294 StringRef name = check(coffObj->getSymbolName(sym)); 295 296 StringRef parentName; 297 const coff_section *parentSec = getSection(parentIndex); 298 if (Expected<StringRef> e = coffObj->getSectionName(parentSec)) 299 parentName = *e; 300 error(toString(this) + ": associative comdat " + name + " (sec " + 301 Twine(sectionNumber) + ") has invalid reference to section " + 302 parentName + " (sec " + Twine(parentIndex) + ")"); 303 }; 304 305 if (parent == pendingComdat) { 306 // This can happen if an associative comdat refers to another associative 307 // comdat that appears after it (invalid per COFF spec) or to a section 308 // without any symbols. 309 diag(); 310 return; 311 } 312 313 // Check whether the parent is prevailing. If it is, so are we, and we read 314 // the section; otherwise mark it as discarded. 315 if (parent) { 316 SectionChunk *c = readSection(sectionNumber, def, ""); 317 sparseChunks[sectionNumber] = c; 318 if (c) { 319 c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; 320 parent->addAssociative(c); 321 } 322 } else { 323 sparseChunks[sectionNumber] = nullptr; 324 } 325 } 326 327 void ObjFile::recordPrevailingSymbolForMingw( 328 COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 329 // For comdat symbols in executable sections, where this is the copy 330 // of the section chunk we actually include instead of discarding it, 331 // add the symbol to a map to allow using it for implicitly 332 // associating .[px]data$<func> sections to it. 333 // Use the suffix from the .text$<func> instead of the leader symbol 334 // name, for cases where the names differ (i386 mangling/decorations, 335 // cases where the leader is a weak symbol named .weak.func.default*). 336 int32_t sectionNumber = sym.getSectionNumber(); 337 SectionChunk *sc = sparseChunks[sectionNumber]; 338 if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { 339 StringRef name = sc->getSectionName().split('$').second; 340 prevailingSectionMap[name] = sectionNumber; 341 } 342 } 343 344 void ObjFile::maybeAssociateSEHForMingw( 345 COFFSymbolRef sym, const coff_aux_section_definition *def, 346 const DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 347 StringRef name = check(coffObj->getSymbolName(sym)); 348 if (name.consume_front(".pdata$") || name.consume_front(".xdata$") || 349 name.consume_front(".eh_frame$")) { 350 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly 351 // associative to the symbol <func>. 352 auto parentSym = prevailingSectionMap.find(name); 353 if (parentSym != prevailingSectionMap.end()) 354 readAssociativeDefinition(sym, def, parentSym->second); 355 } 356 } 357 358 Symbol *ObjFile::createRegular(COFFSymbolRef sym) { 359 SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; 360 if (sym.isExternal()) { 361 StringRef name = check(coffObj->getSymbolName(sym)); 362 if (sc) 363 return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc, 364 sym.getValue()); 365 // For MinGW symbols named .weak.* that point to a discarded section, 366 // don't create an Undefined symbol. If nothing ever refers to the symbol, 367 // everything should be fine. If something actually refers to the symbol 368 // (e.g. the undefined weak alias), linking will fail due to undefined 369 // references at the end. 370 if (config->mingw && name.startswith(".weak.")) 371 return nullptr; 372 return ctx.symtab.addUndefined(name, this, false); 373 } 374 if (sc) 375 return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 376 /*IsExternal*/ false, sym.getGeneric(), sc); 377 return nullptr; 378 } 379 380 void ObjFile::initializeSymbols() { 381 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 382 symbols.resize(numSymbols); 383 384 SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases; 385 std::vector<uint32_t> pendingIndexes; 386 pendingIndexes.reserve(numSymbols); 387 388 DenseMap<StringRef, uint32_t> prevailingSectionMap; 389 std::vector<const coff_aux_section_definition *> comdatDefs( 390 coffObj->getNumberOfSections() + 1); 391 392 for (uint32_t i = 0; i < numSymbols; ++i) { 393 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 394 bool prevailingComdat; 395 if (coffSym.isUndefined()) { 396 symbols[i] = createUndefined(coffSym); 397 } else if (coffSym.isWeakExternal()) { 398 symbols[i] = createUndefined(coffSym); 399 uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex; 400 weakAliases.emplace_back(symbols[i], tagIndex); 401 } else if (Optional<Symbol *> optSym = 402 createDefined(coffSym, comdatDefs, prevailingComdat)) { 403 symbols[i] = *optSym; 404 if (config->mingw && prevailingComdat) 405 recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap); 406 } else { 407 // createDefined() returns None if a symbol belongs to a section that 408 // was pending at the point when the symbol was read. This can happen in 409 // two cases: 410 // 1) section definition symbol for a comdat leader; 411 // 2) symbol belongs to a comdat section associated with another section. 412 // In both of these cases, we can expect the section to be resolved by 413 // the time we finish visiting the remaining symbols in the symbol 414 // table. So we postpone the handling of this symbol until that time. 415 pendingIndexes.push_back(i); 416 } 417 i += coffSym.getNumberOfAuxSymbols(); 418 } 419 420 for (uint32_t i : pendingIndexes) { 421 COFFSymbolRef sym = check(coffObj->getSymbol(i)); 422 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 423 if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) 424 readAssociativeDefinition(sym, def); 425 else if (config->mingw) 426 maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); 427 } 428 if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { 429 StringRef name = check(coffObj->getSymbolName(sym)); 430 log("comdat section " + name + 431 " without leader and unassociated, discarding"); 432 continue; 433 } 434 symbols[i] = createRegular(sym); 435 } 436 437 for (auto &kv : weakAliases) { 438 Symbol *sym = kv.first; 439 uint32_t idx = kv.second; 440 checkAndSetWeakAlias(&ctx.symtab, this, sym, symbols[idx]); 441 } 442 443 // Free the memory used by sparseChunks now that symbol loading is finished. 444 decltype(sparseChunks)().swap(sparseChunks); 445 } 446 447 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) { 448 StringRef name = check(coffObj->getSymbolName(sym)); 449 return ctx.symtab.addUndefined(name, this, sym.isWeakExternal()); 450 } 451 452 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj, 453 int32_t section) { 454 uint32_t numSymbols = obj->getNumberOfSymbols(); 455 for (uint32_t i = 0; i < numSymbols; ++i) { 456 COFFSymbolRef sym = check(obj->getSymbol(i)); 457 if (sym.getSectionNumber() != section) 458 continue; 459 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) 460 return def; 461 } 462 return nullptr; 463 } 464 465 void ObjFile::handleComdatSelection( 466 COFFSymbolRef sym, COMDATType &selection, bool &prevailing, 467 DefinedRegular *leader, 468 const llvm::object::coff_aux_section_definition *def) { 469 if (prevailing) 470 return; 471 // There's already an existing comdat for this symbol: `Leader`. 472 // Use the comdats's selection field to determine if the new 473 // symbol in `Sym` should be discarded, produce a duplicate symbol 474 // error, etc. 475 476 SectionChunk *leaderChunk = leader->getChunk(); 477 COMDATType leaderSelection = leaderChunk->selection; 478 479 assert(leader->data && "Comdat leader without SectionChunk?"); 480 if (isa<BitcodeFile>(leader->file)) { 481 // If the leader is only a LTO symbol, we don't know e.g. its final size 482 // yet, so we can't do the full strict comdat selection checking yet. 483 selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY; 484 } 485 486 if ((selection == IMAGE_COMDAT_SELECT_ANY && 487 leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || 488 (selection == IMAGE_COMDAT_SELECT_LARGEST && 489 leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { 490 // cl.exe picks "any" for vftables when building with /GR- and 491 // "largest" when building with /GR. To be able to link object files 492 // compiled with each flag, "any" and "largest" are merged as "largest". 493 leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; 494 } 495 496 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". 497 // Clang on the other hand picks "any". To be able to link two object files 498 // with a __declspec(selectany) declaration, one compiled with gcc and the 499 // other with clang, we merge them as proper "same size as" 500 if (config->mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && 501 leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || 502 (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && 503 leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { 504 leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; 505 } 506 507 // Other than that, comdat selections must match. This is a bit more 508 // strict than link.exe which allows merging "any" and "largest" if "any" 509 // is the first symbol the linker sees, and it allows merging "largest" 510 // with everything (!) if "largest" is the first symbol the linker sees. 511 // Making this symmetric independent of which selection is seen first 512 // seems better though. 513 // (This behavior matches ModuleLinker::getComdatResult().) 514 if (selection != leaderSelection) { 515 log(("conflicting comdat type for " + toString(*leader) + ": " + 516 Twine((int)leaderSelection) + " in " + toString(leader->getFile()) + 517 " and " + Twine((int)selection) + " in " + toString(this)) 518 .str()); 519 ctx.symtab.reportDuplicate(leader, this); 520 return; 521 } 522 523 switch (selection) { 524 case IMAGE_COMDAT_SELECT_NODUPLICATES: 525 ctx.symtab.reportDuplicate(leader, this); 526 break; 527 528 case IMAGE_COMDAT_SELECT_ANY: 529 // Nothing to do. 530 break; 531 532 case IMAGE_COMDAT_SELECT_SAME_SIZE: 533 if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) { 534 if (!config->mingw) { 535 ctx.symtab.reportDuplicate(leader, this); 536 } else { 537 const coff_aux_section_definition *leaderDef = nullptr; 538 if (leaderChunk->file) 539 leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(), 540 leaderChunk->getSectionNumber()); 541 if (!leaderDef || leaderDef->Length != def->Length) 542 ctx.symtab.reportDuplicate(leader, this); 543 } 544 } 545 break; 546 547 case IMAGE_COMDAT_SELECT_EXACT_MATCH: { 548 SectionChunk newChunk(this, getSection(sym)); 549 // link.exe only compares section contents here and doesn't complain 550 // if the two comdat sections have e.g. different alignment. 551 // Match that. 552 if (leaderChunk->getContents() != newChunk.getContents()) 553 ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue()); 554 break; 555 } 556 557 case IMAGE_COMDAT_SELECT_ASSOCIATIVE: 558 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. 559 // (This means lld-link doesn't produce duplicate symbol errors for 560 // associative comdats while link.exe does, but associate comdats 561 // are never extern in practice.) 562 llvm_unreachable("createDefined not called for associative comdats"); 563 564 case IMAGE_COMDAT_SELECT_LARGEST: 565 if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { 566 // Replace the existing comdat symbol with the new one. 567 StringRef name = check(coffObj->getSymbolName(sym)); 568 // FIXME: This is incorrect: With /opt:noref, the previous sections 569 // make it into the final executable as well. Correct handling would 570 // be to undo reading of the whole old section that's being replaced, 571 // or doing one pass that determines what the final largest comdat 572 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading 573 // only the largest one. 574 replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true, 575 /*IsExternal*/ true, sym.getGeneric(), 576 nullptr); 577 prevailing = true; 578 } 579 break; 580 581 case IMAGE_COMDAT_SELECT_NEWEST: 582 llvm_unreachable("should have been rejected earlier"); 583 } 584 } 585 586 Optional<Symbol *> ObjFile::createDefined( 587 COFFSymbolRef sym, 588 std::vector<const coff_aux_section_definition *> &comdatDefs, 589 bool &prevailing) { 590 prevailing = false; 591 auto getName = [&]() { return check(coffObj->getSymbolName(sym)); }; 592 593 if (sym.isCommon()) { 594 auto *c = make<CommonChunk>(sym); 595 chunks.push_back(c); 596 return ctx.symtab.addCommon(this, getName(), sym.getValue(), 597 sym.getGeneric(), c); 598 } 599 600 if (sym.isAbsolute()) { 601 StringRef name = getName(); 602 603 if (name == "@feat.00") 604 feat00Flags = sym.getValue(); 605 // Skip special symbols. 606 if (ignoredSymbolName(name)) 607 return nullptr; 608 609 if (sym.isExternal()) 610 return ctx.symtab.addAbsolute(name, sym); 611 return make<DefinedAbsolute>(name, sym); 612 } 613 614 int32_t sectionNumber = sym.getSectionNumber(); 615 if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) 616 return nullptr; 617 618 if (llvm::COFF::isReservedSectionNumber(sectionNumber)) 619 fatal(toString(this) + ": " + getName() + 620 " should not refer to special section " + Twine(sectionNumber)); 621 622 if ((uint32_t)sectionNumber >= sparseChunks.size()) 623 fatal(toString(this) + ": " + getName() + 624 " should not refer to non-existent section " + Twine(sectionNumber)); 625 626 // Comdat handling. 627 // A comdat symbol consists of two symbol table entries. 628 // The first symbol entry has the name of the section (e.g. .text), fixed 629 // values for the other fields, and one auxiliary record. 630 // The second symbol entry has the name of the comdat symbol, called the 631 // "comdat leader". 632 // When this function is called for the first symbol entry of a comdat, 633 // it sets comdatDefs and returns None, and when it's called for the second 634 // symbol entry it reads comdatDefs and then sets it back to nullptr. 635 636 // Handle comdat leader. 637 if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { 638 comdatDefs[sectionNumber] = nullptr; 639 DefinedRegular *leader; 640 641 if (sym.isExternal()) { 642 std::tie(leader, prevailing) = 643 ctx.symtab.addComdat(this, getName(), sym.getGeneric()); 644 } else { 645 leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 646 /*IsExternal*/ false, sym.getGeneric()); 647 prevailing = true; 648 } 649 650 if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || 651 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe 652 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. 653 def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { 654 fatal("unknown comdat type " + std::to_string((int)def->Selection) + 655 " for " + getName() + " in " + toString(this)); 656 } 657 COMDATType selection = (COMDATType)def->Selection; 658 659 if (leader->isCOMDAT) 660 handleComdatSelection(sym, selection, prevailing, leader, def); 661 662 if (prevailing) { 663 SectionChunk *c = readSection(sectionNumber, def, getName()); 664 sparseChunks[sectionNumber] = c; 665 c->sym = cast<DefinedRegular>(leader); 666 c->selection = selection; 667 cast<DefinedRegular>(leader)->data = &c->repl; 668 } else { 669 sparseChunks[sectionNumber] = nullptr; 670 } 671 return leader; 672 } 673 674 // Prepare to handle the comdat leader symbol by setting the section's 675 // ComdatDefs pointer if we encounter a non-associative comdat. 676 if (sparseChunks[sectionNumber] == pendingComdat) { 677 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 678 if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) 679 comdatDefs[sectionNumber] = def; 680 } 681 return None; 682 } 683 684 return createRegular(sym); 685 } 686 687 MachineTypes ObjFile::getMachineType() { 688 if (coffObj) 689 return static_cast<MachineTypes>(coffObj->getMachine()); 690 return IMAGE_FILE_MACHINE_UNKNOWN; 691 } 692 693 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) { 694 if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName)) 695 return sec->consumeDebugMagic(); 696 return {}; 697 } 698 699 // OBJ files systematically store critical information in a .debug$S stream, 700 // even if the TU was compiled with no debug info. At least two records are 701 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the 702 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is 703 // currently used to initialize the hotPatchable member. 704 void ObjFile::initializeFlags() { 705 ArrayRef<uint8_t> data = getDebugSection(".debug$S"); 706 if (data.empty()) 707 return; 708 709 DebugSubsectionArray subsections; 710 711 BinaryStreamReader reader(data, support::little); 712 ExitOnError exitOnErr; 713 exitOnErr(reader.readArray(subsections, data.size())); 714 715 for (const DebugSubsectionRecord &ss : subsections) { 716 if (ss.kind() != DebugSubsectionKind::Symbols) 717 continue; 718 719 unsigned offset = 0; 720 721 // Only parse the first two records. We are only looking for S_OBJNAME 722 // and S_COMPILE3, and they usually appear at the beginning of the 723 // stream. 724 for (unsigned i = 0; i < 2; ++i) { 725 Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset); 726 if (!sym) { 727 consumeError(sym.takeError()); 728 return; 729 } 730 if (sym->kind() == SymbolKind::S_COMPILE3) { 731 auto cs = 732 cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get())); 733 hotPatchable = 734 (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; 735 } 736 if (sym->kind() == SymbolKind::S_OBJNAME) { 737 auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>( 738 sym.get())); 739 pchSignature = objName.Signature; 740 } 741 offset += sym->length(); 742 } 743 } 744 } 745 746 // Depending on the compilation flags, OBJs can refer to external files, 747 // necessary to merge this OBJ into the final PDB. We currently support two 748 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. 749 // And PDB type servers, when compiling with /Zi. This function extracts these 750 // dependencies and makes them available as a TpiSource interface (see 751 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular 752 // output even with /Yc and /Yu and with /Zi. 753 void ObjFile::initializeDependencies() { 754 if (!config->debug) 755 return; 756 757 bool isPCH = false; 758 759 ArrayRef<uint8_t> data = getDebugSection(".debug$P"); 760 if (!data.empty()) 761 isPCH = true; 762 else 763 data = getDebugSection(".debug$T"); 764 765 // symbols but no types, make a plain, empty TpiSource anyway, because it 766 // simplifies adding the symbols later. 767 if (data.empty()) { 768 if (!debugChunks.empty()) 769 debugTypesObj = makeTpiSource(ctx, this); 770 return; 771 } 772 773 // Get the first type record. It will indicate if this object uses a type 774 // server (/Zi) or a PCH file (/Yu). 775 CVTypeArray types; 776 BinaryStreamReader reader(data, support::little); 777 cantFail(reader.readArray(types, reader.getLength())); 778 CVTypeArray::Iterator firstType = types.begin(); 779 if (firstType == types.end()) 780 return; 781 782 // Remember the .debug$T or .debug$P section. 783 debugTypes = data; 784 785 // This object file is a PCH file that others will depend on. 786 if (isPCH) { 787 debugTypesObj = makePrecompSource(ctx, this); 788 return; 789 } 790 791 // This object file was compiled with /Zi. Enqueue the PDB dependency. 792 if (firstType->kind() == LF_TYPESERVER2) { 793 TypeServer2Record ts = cantFail( 794 TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data())); 795 debugTypesObj = makeUseTypeServerSource(ctx, this, ts); 796 enqueuePdbFile(ts.getName(), this); 797 return; 798 } 799 800 // This object was compiled with /Yu. It uses types from another object file 801 // with a matching signature. 802 if (firstType->kind() == LF_PRECOMP) { 803 PrecompRecord precomp = cantFail( 804 TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data())); 805 debugTypesObj = makeUsePrecompSource(ctx, this, precomp); 806 // Drop the LF_PRECOMP record from the input stream. 807 debugTypes = debugTypes.drop_front(firstType->RecordData.size()); 808 return; 809 } 810 811 // This is a plain old object file. 812 debugTypesObj = makeTpiSource(ctx, this); 813 } 814 815 // Make a PDB path assuming the PDB is in the same folder as the OBJ 816 static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) { 817 StringRef localPath = 818 !file->parentName.empty() ? file->parentName : file->getName(); 819 SmallString<128> path = sys::path::parent_path(localPath); 820 821 // Currently, type server PDBs are only created by MSVC cl, which only runs 822 // on Windows, so we can assume type server paths are Windows style. 823 sys::path::append(path, 824 sys::path::filename(tSPath, sys::path::Style::windows)); 825 return std::string(path.str()); 826 } 827 828 // The casing of the PDB path stamped in the OBJ can differ from the actual path 829 // on disk. With this, we ensure to always use lowercase as a key for the 830 // pdbInputFileInstances map, at least on Windows. 831 static std::string normalizePdbPath(StringRef path) { 832 #if defined(_WIN32) 833 return path.lower(); 834 #else // LINUX 835 return std::string(path); 836 #endif 837 } 838 839 // If existing, return the actual PDB path on disk. 840 static Optional<std::string> findPdbPath(StringRef pdbPath, 841 ObjFile *dependentFile) { 842 // Ensure the file exists before anything else. In some cases, if the path 843 // points to a removable device, Driver::enqueuePath() would fail with an 844 // error (EAGAIN, "resource unavailable try again") which we want to skip 845 // silently. 846 if (llvm::sys::fs::exists(pdbPath)) 847 return normalizePdbPath(pdbPath); 848 std::string ret = getPdbBaseName(dependentFile, pdbPath); 849 if (llvm::sys::fs::exists(ret)) 850 return normalizePdbPath(ret); 851 return None; 852 } 853 854 PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m) 855 : InputFile(ctx, PDBKind, m) {} 856 857 PDBInputFile::~PDBInputFile() = default; 858 859 PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx, 860 StringRef path, 861 ObjFile *fromFile) { 862 auto p = findPdbPath(path.str(), fromFile); 863 if (!p) 864 return nullptr; 865 auto it = ctx.pdbInputFileInstances.find(*p); 866 if (it != ctx.pdbInputFileInstances.end()) 867 return it->second; 868 return nullptr; 869 } 870 871 void PDBInputFile::parse() { 872 ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this; 873 874 std::unique_ptr<pdb::IPDBSession> thisSession; 875 loadErr.emplace(pdb::NativeSession::createFromPdb( 876 MemoryBuffer::getMemBuffer(mb, false), thisSession)); 877 if (*loadErr) 878 return; // fail silently at this point - the error will be handled later, 879 // when merging the debug type stream 880 881 session.reset(static_cast<pdb::NativeSession *>(thisSession.release())); 882 883 pdb::PDBFile &pdbFile = session->getPDBFile(); 884 auto expectedInfo = pdbFile.getPDBInfoStream(); 885 // All PDB Files should have an Info stream. 886 if (!expectedInfo) { 887 loadErr.emplace(expectedInfo.takeError()); 888 return; 889 } 890 debugTypesObj = makeTypeServerSource(ctx, this); 891 } 892 893 // Used only for DWARF debug info, which is not common (except in MinGW 894 // environments). This returns an optional pair of file name and line 895 // number for where the variable was defined. 896 Optional<std::pair<StringRef, uint32_t>> 897 ObjFile::getVariableLocation(StringRef var) { 898 if (!dwarf) { 899 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 900 if (!dwarf) 901 return None; 902 } 903 if (config->machine == I386) 904 var.consume_front("_"); 905 Optional<std::pair<std::string, unsigned>> ret = dwarf->getVariableLoc(var); 906 if (!ret) 907 return None; 908 return std::make_pair(saver.save(ret->first), ret->second); 909 } 910 911 // Used only for DWARF debug info, which is not common (except in MinGW 912 // environments). 913 Optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset, 914 uint32_t sectionIndex) { 915 if (!dwarf) { 916 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 917 if (!dwarf) 918 return None; 919 } 920 921 return dwarf->getDILineInfo(offset, sectionIndex); 922 } 923 924 void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) { 925 auto p = findPdbPath(path.str(), fromFile); 926 if (!p) 927 return; 928 auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr); 929 if (!it.second) 930 return; // already scheduled for load 931 driver->enqueuePDB(*p); 932 } 933 934 void ImportFile::parse() { 935 const char *buf = mb.getBufferStart(); 936 const auto *hdr = reinterpret_cast<const coff_import_header *>(buf); 937 938 // Check if the total size is valid. 939 if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) 940 fatal("broken import library"); 941 942 // Read names and create an __imp_ symbol. 943 StringRef name = saver.save(StringRef(buf + sizeof(*hdr))); 944 StringRef impName = saver.save("__imp_" + name); 945 const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1; 946 dllName = std::string(StringRef(nameStart)); 947 StringRef extName; 948 switch (hdr->getNameType()) { 949 case IMPORT_ORDINAL: 950 extName = ""; 951 break; 952 case IMPORT_NAME: 953 extName = name; 954 break; 955 case IMPORT_NAME_NOPREFIX: 956 extName = ltrim1(name, "?@_"); 957 break; 958 case IMPORT_NAME_UNDECORATE: 959 extName = ltrim1(name, "?@_"); 960 extName = extName.substr(0, extName.find('@')); 961 break; 962 } 963 964 this->hdr = hdr; 965 externalName = extName; 966 967 impSym = ctx.symtab.addImportData(impName, this); 968 // If this was a duplicate, we logged an error but may continue; 969 // in this case, impSym is nullptr. 970 if (!impSym) 971 return; 972 973 if (hdr->getType() == llvm::COFF::IMPORT_CONST) 974 static_cast<void>(ctx.symtab.addImportData(name, this)); 975 976 // If type is function, we need to create a thunk which jump to an 977 // address pointed by the __imp_ symbol. (This allows you to call 978 // DLL functions just like regular non-DLL functions.) 979 if (hdr->getType() == llvm::COFF::IMPORT_CODE) 980 thunkSym = ctx.symtab.addImportThunk( 981 name, cast_or_null<DefinedImportData>(impSym), hdr->Machine); 982 } 983 984 BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb, 985 StringRef archiveName, uint64_t offsetInArchive, 986 bool lazy) 987 : InputFile(ctx, BitcodeKind, mb, lazy) { 988 std::string path = mb.getBufferIdentifier().str(); 989 if (config->thinLTOIndexOnly) 990 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 991 992 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 993 // name. If two archives define two members with the same name, this 994 // causes a collision which result in only one of the objects being taken 995 // into consideration at LTO time (which very likely causes undefined 996 // symbols later in the link stage). So we append file offset to make 997 // filename unique. 998 MemoryBufferRef mbref( 999 mb.getBuffer(), 1000 saver.save(archiveName.empty() ? path 1001 : archiveName + sys::path::filename(path) + 1002 utostr(offsetInArchive))); 1003 1004 obj = check(lto::InputFile::create(mbref)); 1005 } 1006 1007 BitcodeFile::~BitcodeFile() = default; 1008 1009 namespace { 1010 // Convenience class for initializing a coff_section with specific flags. 1011 class FakeSection { 1012 public: 1013 FakeSection(int c) { section.Characteristics = c; } 1014 1015 coff_section section; 1016 }; 1017 1018 // Convenience class for initializing a SectionChunk with specific flags. 1019 class FakeSectionChunk { 1020 public: 1021 FakeSectionChunk(const coff_section *section) : chunk(nullptr, section) { 1022 // Comdats from LTO files can't be fully treated as regular comdats 1023 // at this point; we don't know what size or contents they are going to 1024 // have, so we can't do proper checking of such aspects of them. 1025 chunk.selection = IMAGE_COMDAT_SELECT_ANY; 1026 } 1027 1028 SectionChunk chunk; 1029 }; 1030 1031 FakeSection ltoTextSection(IMAGE_SCN_MEM_EXECUTE); 1032 FakeSection ltoDataSection(IMAGE_SCN_CNT_INITIALIZED_DATA); 1033 FakeSectionChunk ltoTextSectionChunk(<oTextSection.section); 1034 FakeSectionChunk ltoDataSectionChunk(<oDataSection.section); 1035 } // namespace 1036 1037 void BitcodeFile::parse() { 1038 std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size()); 1039 for (size_t i = 0; i != obj->getComdatTable().size(); ++i) 1040 // FIXME: Check nodeduplicate 1041 comdat[i] = 1042 ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first)); 1043 for (const lto::InputFile::Symbol &objSym : obj->symbols()) { 1044 StringRef symName = saver.save(objSym.getName()); 1045 int comdatIndex = objSym.getComdatIndex(); 1046 Symbol *sym; 1047 SectionChunk *fakeSC = nullptr; 1048 if (objSym.isExecutable()) 1049 fakeSC = <oTextSectionChunk.chunk; 1050 else 1051 fakeSC = <oDataSectionChunk.chunk; 1052 if (objSym.isUndefined()) { 1053 sym = ctx.symtab.addUndefined(symName, this, false); 1054 } else if (objSym.isCommon()) { 1055 sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize()); 1056 } else if (objSym.isWeak() && objSym.isIndirect()) { 1057 // Weak external. 1058 sym = ctx.symtab.addUndefined(symName, this, true); 1059 std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); 1060 Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback)); 1061 checkAndSetWeakAlias(&ctx.symtab, this, sym, alias); 1062 } else if (comdatIndex != -1) { 1063 if (symName == obj->getComdatTable()[comdatIndex].first) { 1064 sym = comdat[comdatIndex].first; 1065 if (cast<DefinedRegular>(sym)->data == nullptr) 1066 cast<DefinedRegular>(sym)->data = &fakeSC->repl; 1067 } else if (comdat[comdatIndex].second) { 1068 sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC); 1069 } else { 1070 sym = ctx.symtab.addUndefined(symName, this, false); 1071 } 1072 } else { 1073 sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC); 1074 } 1075 symbols.push_back(sym); 1076 if (objSym.isUsed()) 1077 config->gcroot.push_back(sym); 1078 } 1079 directives = obj->getCOFFLinkerOpts(); 1080 } 1081 1082 void BitcodeFile::parseLazy() { 1083 for (const lto::InputFile::Symbol &sym : obj->symbols()) 1084 if (!sym.isUndefined()) 1085 ctx.symtab.addLazyObject(this, sym.getName()); 1086 } 1087 1088 MachineTypes BitcodeFile::getMachineType() { 1089 switch (Triple(obj->getTargetTriple()).getArch()) { 1090 case Triple::x86_64: 1091 return AMD64; 1092 case Triple::x86: 1093 return I386; 1094 case Triple::arm: 1095 return ARMNT; 1096 case Triple::aarch64: 1097 return ARM64; 1098 default: 1099 return IMAGE_FILE_MACHINE_UNKNOWN; 1100 } 1101 } 1102 1103 std::string lld::coff::replaceThinLTOSuffix(StringRef path) { 1104 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1105 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1106 1107 if (path.consume_back(suffix)) 1108 return (path + repl).str(); 1109 return std::string(path); 1110 } 1111 1112 static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) { 1113 for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) { 1114 const coff_section *sec = CHECK(coffObj->getSection(i), file); 1115 if (rva >= sec->VirtualAddress && 1116 rva <= sec->VirtualAddress + sec->VirtualSize) { 1117 return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0; 1118 } 1119 } 1120 return false; 1121 } 1122 1123 void DLLFile::parse() { 1124 // Parse a memory buffer as a PE-COFF executable. 1125 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 1126 1127 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 1128 bin.release(); 1129 coffObj.reset(obj); 1130 } else { 1131 error(toString(this) + " is not a COFF file"); 1132 return; 1133 } 1134 1135 if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) { 1136 error(toString(this) + " is not a PE-COFF executable"); 1137 return; 1138 } 1139 1140 for (const auto &exp : coffObj->export_directories()) { 1141 StringRef dllName, symbolName; 1142 uint32_t exportRVA; 1143 checkError(exp.getDllName(dllName)); 1144 checkError(exp.getSymbolName(symbolName)); 1145 checkError(exp.getExportRVA(exportRVA)); 1146 1147 if (symbolName.empty()) 1148 continue; 1149 1150 bool code = isRVACode(coffObj.get(), exportRVA, this); 1151 1152 Symbol *s = make<Symbol>(); 1153 s->dllName = dllName; 1154 s->symbolName = symbolName; 1155 s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA; 1156 s->nameType = ImportNameType::IMPORT_NAME; 1157 1158 if (coffObj->getMachine() == I386) { 1159 s->symbolName = symbolName = saver.save("_" + symbolName); 1160 s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX; 1161 } 1162 1163 StringRef impName = saver.save("__imp_" + symbolName); 1164 ctx.symtab.addLazyDLLSymbol(this, s, impName); 1165 if (code) 1166 ctx.symtab.addLazyDLLSymbol(this, s, symbolName); 1167 } 1168 } 1169 1170 MachineTypes DLLFile::getMachineType() { 1171 if (coffObj) 1172 return static_cast<MachineTypes>(coffObj->getMachine()); 1173 return IMAGE_FILE_MACHINE_UNKNOWN; 1174 } 1175 1176 void DLLFile::makeImport(DLLFile::Symbol *s) { 1177 if (!seen.insert(s->symbolName).second) 1178 return; 1179 1180 size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs 1181 size_t size = sizeof(coff_import_header) + impSize; 1182 char *buf = bAlloc.Allocate<char>(size); 1183 memset(buf, 0, size); 1184 char *p = buf; 1185 auto *imp = reinterpret_cast<coff_import_header *>(p); 1186 p += sizeof(*imp); 1187 imp->Sig2 = 0xFFFF; 1188 imp->Machine = coffObj->getMachine(); 1189 imp->SizeOfData = impSize; 1190 imp->OrdinalHint = 0; // Only linking by name 1191 imp->TypeInfo = (s->nameType << 2) | s->importType; 1192 1193 // Write symbol name and DLL name. 1194 memcpy(p, s->symbolName.data(), s->symbolName.size()); 1195 p += s->symbolName.size() + 1; 1196 memcpy(p, s->dllName.data(), s->dllName.size()); 1197 MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName); 1198 ImportFile *impFile = make<ImportFile>(ctx, mbref); 1199 ctx.symtab.addFile(impFile); 1200 } 1201