1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Chunks.h" 11 #include "Config.h" 12 #include "DebugTypes.h" 13 #include "Driver.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm-c/lto.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/BinaryFormat/COFF.h" 24 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" 25 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" 26 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 27 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" 28 #include "llvm/DebugInfo/PDB/Native/NativeSession.h" 29 #include "llvm/DebugInfo/PDB/Native/PDBFile.h" 30 #include "llvm/LTO/LTO.h" 31 #include "llvm/Object/Binary.h" 32 #include "llvm/Object/COFF.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/Endian.h" 35 #include "llvm/Support/Error.h" 36 #include "llvm/Support/ErrorOr.h" 37 #include "llvm/Support/FileSystem.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include <cstring> 41 #include <system_error> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace llvm::COFF; 46 using namespace llvm::codeview; 47 using namespace llvm::object; 48 using namespace llvm::support::endian; 49 using namespace lld; 50 using namespace lld::coff; 51 52 using llvm::Triple; 53 using llvm::support::ulittle32_t; 54 55 // Returns the last element of a path, which is supposed to be a filename. 56 static StringRef getBasename(StringRef path) { 57 return sys::path::filename(path, sys::path::Style::windows); 58 } 59 60 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". 61 std::string lld::toString(const coff::InputFile *file) { 62 if (!file) 63 return "<internal>"; 64 if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind) 65 return std::string(file->getName()); 66 67 return (getBasename(file->parentName) + "(" + getBasename(file->getName()) + 68 ")") 69 .str(); 70 } 71 72 std::vector<ObjFile *> ObjFile::instances; 73 std::map<std::string, PDBInputFile *> PDBInputFile::instances; 74 std::vector<ImportFile *> ImportFile::instances; 75 std::vector<BitcodeFile *> BitcodeFile::instances; 76 77 /// Checks that Source is compatible with being a weak alias to Target. 78 /// If Source is Undefined and has no weak alias set, makes it a weak 79 /// alias to Target. 80 static void checkAndSetWeakAlias(SymbolTable *symtab, InputFile *f, 81 Symbol *source, Symbol *target) { 82 if (auto *u = dyn_cast<Undefined>(source)) { 83 if (u->weakAlias && u->weakAlias != target) { 84 // Weak aliases as produced by GCC are named in the form 85 // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name 86 // of another symbol emitted near the weak symbol. 87 // Just use the definition from the first object file that defined 88 // this weak symbol. 89 if (config->mingw) 90 return; 91 symtab->reportDuplicate(source, f); 92 } 93 u->weakAlias = target; 94 } 95 } 96 97 static bool ignoredSymbolName(StringRef name) { 98 return name == "@feat.00" || name == "@comp.id"; 99 } 100 101 ArchiveFile::ArchiveFile(MemoryBufferRef m) : InputFile(ArchiveKind, m) {} 102 103 void ArchiveFile::parse() { 104 // Parse a MemoryBufferRef as an archive file. 105 file = CHECK(Archive::create(mb), this); 106 107 // Read the symbol table to construct Lazy objects. 108 for (const Archive::Symbol &sym : file->symbols()) 109 symtab->addLazyArchive(this, sym); 110 } 111 112 // Returns a buffer pointing to a member file containing a given symbol. 113 void ArchiveFile::addMember(const Archive::Symbol &sym) { 114 const Archive::Child &c = 115 CHECK(sym.getMember(), 116 "could not get the member for symbol " + toCOFFString(sym)); 117 118 // Return an empty buffer if we have already returned the same buffer. 119 if (!seen.insert(c.getChildOffset()).second) 120 return; 121 122 driver->enqueueArchiveMember(c, sym, getName()); 123 } 124 125 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) { 126 std::vector<MemoryBufferRef> v; 127 Error err = Error::success(); 128 for (const Archive::Child &c : file->children(err)) { 129 MemoryBufferRef mbref = 130 CHECK(c.getMemoryBufferRef(), 131 file->getFileName() + 132 ": could not get the buffer for a child of the archive"); 133 v.push_back(mbref); 134 } 135 if (err) 136 fatal(file->getFileName() + 137 ": Archive::children failed: " + toString(std::move(err))); 138 return v; 139 } 140 141 void LazyObjFile::fetch() { 142 if (mb.getBuffer().empty()) 143 return; 144 145 InputFile *file; 146 if (isBitcode(mb)) 147 file = make<BitcodeFile>(mb, "", 0, std::move(symbols)); 148 else 149 file = make<ObjFile>(mb, std::move(symbols)); 150 mb = {}; 151 symtab->addFile(file); 152 } 153 154 void LazyObjFile::parse() { 155 if (isBitcode(this->mb)) { 156 // Bitcode file. 157 std::unique_ptr<lto::InputFile> obj = 158 CHECK(lto::InputFile::create(this->mb), this); 159 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 160 if (!sym.isUndefined()) 161 symtab->addLazyObject(this, sym.getName()); 162 } 163 return; 164 } 165 166 // Native object file. 167 std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this); 168 COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get()); 169 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 170 for (uint32_t i = 0; i < numSymbols; ++i) { 171 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 172 if (coffSym.isUndefined() || !coffSym.isExternal() || 173 coffSym.isWeakExternal()) 174 continue; 175 StringRef name = check(coffObj->getSymbolName(coffSym)); 176 if (coffSym.isAbsolute() && ignoredSymbolName(name)) 177 continue; 178 symtab->addLazyObject(this, name); 179 i += coffSym.getNumberOfAuxSymbols(); 180 } 181 } 182 183 void ObjFile::parse() { 184 // Parse a memory buffer as a COFF file. 185 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); 186 187 if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { 188 bin.release(); 189 coffObj.reset(obj); 190 } else { 191 fatal(toString(this) + " is not a COFF file"); 192 } 193 194 // Read section and symbol tables. 195 initializeChunks(); 196 initializeSymbols(); 197 initializeFlags(); 198 initializeDependencies(); 199 } 200 201 const coff_section *ObjFile::getSection(uint32_t i) { 202 auto sec = coffObj->getSection(i); 203 if (!sec) 204 fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError())); 205 return *sec; 206 } 207 208 // We set SectionChunk pointers in the SparseChunks vector to this value 209 // temporarily to mark comdat sections as having an unknown resolution. As we 210 // walk the object file's symbol table, once we visit either a leader symbol or 211 // an associative section definition together with the parent comdat's leader, 212 // we set the pointer to either nullptr (to mark the section as discarded) or a 213 // valid SectionChunk for that section. 214 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1); 215 216 void ObjFile::initializeChunks() { 217 uint32_t numSections = coffObj->getNumberOfSections(); 218 sparseChunks.resize(numSections + 1); 219 for (uint32_t i = 1; i < numSections + 1; ++i) { 220 const coff_section *sec = getSection(i); 221 if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) 222 sparseChunks[i] = pendingComdat; 223 else 224 sparseChunks[i] = readSection(i, nullptr, ""); 225 } 226 } 227 228 SectionChunk *ObjFile::readSection(uint32_t sectionNumber, 229 const coff_aux_section_definition *def, 230 StringRef leaderName) { 231 const coff_section *sec = getSection(sectionNumber); 232 233 StringRef name; 234 if (Expected<StringRef> e = coffObj->getSectionName(sec)) 235 name = *e; 236 else 237 fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " + 238 toString(e.takeError())); 239 240 if (name == ".drectve") { 241 ArrayRef<uint8_t> data; 242 cantFail(coffObj->getSectionContents(sec, data)); 243 directives = StringRef((const char *)data.data(), data.size()); 244 return nullptr; 245 } 246 247 if (name == ".llvm_addrsig") { 248 addrsigSec = sec; 249 return nullptr; 250 } 251 252 if (name == ".llvm.call-graph-profile") { 253 callgraphSec = sec; 254 return nullptr; 255 } 256 257 // Object files may have DWARF debug info or MS CodeView debug info 258 // (or both). 259 // 260 // DWARF sections don't need any special handling from the perspective 261 // of the linker; they are just a data section containing relocations. 262 // We can just link them to complete debug info. 263 // 264 // CodeView needs linker support. We need to interpret debug info, 265 // and then write it to a separate .pdb file. 266 267 // Ignore DWARF debug info unless /debug is given. 268 if (!config->debug && name.startswith(".debug_")) 269 return nullptr; 270 271 if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) 272 return nullptr; 273 auto *c = make<SectionChunk>(this, sec); 274 if (def) 275 c->checksum = def->CheckSum; 276 277 // CodeView sections are stored to a different vector because they are not 278 // linked in the regular manner. 279 if (c->isCodeView()) 280 debugChunks.push_back(c); 281 else if (name == ".gfids$y") 282 guardFidChunks.push_back(c); 283 else if (name == ".gljmp$y") 284 guardLJmpChunks.push_back(c); 285 else if (name == ".sxdata") 286 sxDataChunks.push_back(c); 287 else if (config->tailMerge && sec->NumberOfRelocations == 0 && 288 name == ".rdata" && leaderName.startswith("??_C@")) 289 // COFF sections that look like string literal sections (i.e. no 290 // relocations, in .rdata, leader symbol name matches the MSVC name mangling 291 // for string literals) are subject to string tail merging. 292 MergeChunk::addSection(c); 293 else if (name == ".rsrc" || name.startswith(".rsrc$")) 294 resourceChunks.push_back(c); 295 else 296 chunks.push_back(c); 297 298 return c; 299 } 300 301 void ObjFile::includeResourceChunks() { 302 chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end()); 303 } 304 305 void ObjFile::readAssociativeDefinition( 306 COFFSymbolRef sym, const coff_aux_section_definition *def) { 307 readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj())); 308 } 309 310 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, 311 const coff_aux_section_definition *def, 312 uint32_t parentIndex) { 313 SectionChunk *parent = sparseChunks[parentIndex]; 314 int32_t sectionNumber = sym.getSectionNumber(); 315 316 auto diag = [&]() { 317 StringRef name = check(coffObj->getSymbolName(sym)); 318 319 StringRef parentName; 320 const coff_section *parentSec = getSection(parentIndex); 321 if (Expected<StringRef> e = coffObj->getSectionName(parentSec)) 322 parentName = *e; 323 error(toString(this) + ": associative comdat " + name + " (sec " + 324 Twine(sectionNumber) + ") has invalid reference to section " + 325 parentName + " (sec " + Twine(parentIndex) + ")"); 326 }; 327 328 if (parent == pendingComdat) { 329 // This can happen if an associative comdat refers to another associative 330 // comdat that appears after it (invalid per COFF spec) or to a section 331 // without any symbols. 332 diag(); 333 return; 334 } 335 336 // Check whether the parent is prevailing. If it is, so are we, and we read 337 // the section; otherwise mark it as discarded. 338 if (parent) { 339 SectionChunk *c = readSection(sectionNumber, def, ""); 340 sparseChunks[sectionNumber] = c; 341 if (c) { 342 c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; 343 parent->addAssociative(c); 344 } 345 } else { 346 sparseChunks[sectionNumber] = nullptr; 347 } 348 } 349 350 void ObjFile::recordPrevailingSymbolForMingw( 351 COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 352 // For comdat symbols in executable sections, where this is the copy 353 // of the section chunk we actually include instead of discarding it, 354 // add the symbol to a map to allow using it for implicitly 355 // associating .[px]data$<func> sections to it. 356 // Use the suffix from the .text$<func> instead of the leader symbol 357 // name, for cases where the names differ (i386 mangling/decorations, 358 // cases where the leader is a weak symbol named .weak.func.default*). 359 int32_t sectionNumber = sym.getSectionNumber(); 360 SectionChunk *sc = sparseChunks[sectionNumber]; 361 if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { 362 StringRef name = sc->getSectionName().split('$').second; 363 prevailingSectionMap[name] = sectionNumber; 364 } 365 } 366 367 void ObjFile::maybeAssociateSEHForMingw( 368 COFFSymbolRef sym, const coff_aux_section_definition *def, 369 const DenseMap<StringRef, uint32_t> &prevailingSectionMap) { 370 StringRef name = check(coffObj->getSymbolName(sym)); 371 if (name.consume_front(".pdata$") || name.consume_front(".xdata$") || 372 name.consume_front(".eh_frame$")) { 373 // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly 374 // associative to the symbol <func>. 375 auto parentSym = prevailingSectionMap.find(name); 376 if (parentSym != prevailingSectionMap.end()) 377 readAssociativeDefinition(sym, def, parentSym->second); 378 } 379 } 380 381 Symbol *ObjFile::createRegular(COFFSymbolRef sym) { 382 SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; 383 if (sym.isExternal()) { 384 StringRef name = check(coffObj->getSymbolName(sym)); 385 if (sc) 386 return symtab->addRegular(this, name, sym.getGeneric(), sc, 387 sym.getValue()); 388 // For MinGW symbols named .weak.* that point to a discarded section, 389 // don't create an Undefined symbol. If nothing ever refers to the symbol, 390 // everything should be fine. If something actually refers to the symbol 391 // (e.g. the undefined weak alias), linking will fail due to undefined 392 // references at the end. 393 if (config->mingw && name.startswith(".weak.")) 394 return nullptr; 395 return symtab->addUndefined(name, this, false); 396 } 397 if (sc) 398 return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 399 /*IsExternal*/ false, sym.getGeneric(), sc); 400 return nullptr; 401 } 402 403 void ObjFile::initializeSymbols() { 404 uint32_t numSymbols = coffObj->getNumberOfSymbols(); 405 symbols.resize(numSymbols); 406 407 SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases; 408 std::vector<uint32_t> pendingIndexes; 409 pendingIndexes.reserve(numSymbols); 410 411 DenseMap<StringRef, uint32_t> prevailingSectionMap; 412 std::vector<const coff_aux_section_definition *> comdatDefs( 413 coffObj->getNumberOfSections() + 1); 414 415 for (uint32_t i = 0; i < numSymbols; ++i) { 416 COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); 417 bool prevailingComdat; 418 if (coffSym.isUndefined()) { 419 symbols[i] = createUndefined(coffSym); 420 } else if (coffSym.isWeakExternal()) { 421 symbols[i] = createUndefined(coffSym); 422 uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex; 423 weakAliases.emplace_back(symbols[i], tagIndex); 424 } else if (Optional<Symbol *> optSym = 425 createDefined(coffSym, comdatDefs, prevailingComdat)) { 426 symbols[i] = *optSym; 427 if (config->mingw && prevailingComdat) 428 recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap); 429 } else { 430 // createDefined() returns None if a symbol belongs to a section that 431 // was pending at the point when the symbol was read. This can happen in 432 // two cases: 433 // 1) section definition symbol for a comdat leader; 434 // 2) symbol belongs to a comdat section associated with another section. 435 // In both of these cases, we can expect the section to be resolved by 436 // the time we finish visiting the remaining symbols in the symbol 437 // table. So we postpone the handling of this symbol until that time. 438 pendingIndexes.push_back(i); 439 } 440 i += coffSym.getNumberOfAuxSymbols(); 441 } 442 443 for (uint32_t i : pendingIndexes) { 444 COFFSymbolRef sym = check(coffObj->getSymbol(i)); 445 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 446 if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) 447 readAssociativeDefinition(sym, def); 448 else if (config->mingw) 449 maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); 450 } 451 if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { 452 StringRef name = check(coffObj->getSymbolName(sym)); 453 log("comdat section " + name + 454 " without leader and unassociated, discarding"); 455 continue; 456 } 457 symbols[i] = createRegular(sym); 458 } 459 460 for (auto &kv : weakAliases) { 461 Symbol *sym = kv.first; 462 uint32_t idx = kv.second; 463 checkAndSetWeakAlias(symtab, this, sym, symbols[idx]); 464 } 465 466 // Free the memory used by sparseChunks now that symbol loading is finished. 467 decltype(sparseChunks)().swap(sparseChunks); 468 } 469 470 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) { 471 StringRef name = check(coffObj->getSymbolName(sym)); 472 return symtab->addUndefined(name, this, sym.isWeakExternal()); 473 } 474 475 void ObjFile::handleComdatSelection(COFFSymbolRef sym, COMDATType &selection, 476 bool &prevailing, DefinedRegular *leader) { 477 if (prevailing) 478 return; 479 // There's already an existing comdat for this symbol: `Leader`. 480 // Use the comdats's selection field to determine if the new 481 // symbol in `Sym` should be discarded, produce a duplicate symbol 482 // error, etc. 483 484 SectionChunk *leaderChunk = nullptr; 485 COMDATType leaderSelection = IMAGE_COMDAT_SELECT_ANY; 486 487 if (leader->data) { 488 leaderChunk = leader->getChunk(); 489 leaderSelection = leaderChunk->selection; 490 } else { 491 // FIXME: comdats from LTO files don't know their selection; treat them 492 // as "any". 493 selection = leaderSelection; 494 } 495 496 if ((selection == IMAGE_COMDAT_SELECT_ANY && 497 leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || 498 (selection == IMAGE_COMDAT_SELECT_LARGEST && 499 leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { 500 // cl.exe picks "any" for vftables when building with /GR- and 501 // "largest" when building with /GR. To be able to link object files 502 // compiled with each flag, "any" and "largest" are merged as "largest". 503 leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; 504 } 505 506 // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". 507 // Clang on the other hand picks "any". To be able to link two object files 508 // with a __declspec(selectany) declaration, one compiled with gcc and the 509 // other with clang, we merge them as proper "same size as" 510 if (config->mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && 511 leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || 512 (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && 513 leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { 514 leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; 515 } 516 517 // Other than that, comdat selections must match. This is a bit more 518 // strict than link.exe which allows merging "any" and "largest" if "any" 519 // is the first symbol the linker sees, and it allows merging "largest" 520 // with everything (!) if "largest" is the first symbol the linker sees. 521 // Making this symmetric independent of which selection is seen first 522 // seems better though. 523 // (This behavior matches ModuleLinker::getComdatResult().) 524 if (selection != leaderSelection) { 525 log(("conflicting comdat type for " + toString(*leader) + ": " + 526 Twine((int)leaderSelection) + " in " + toString(leader->getFile()) + 527 " and " + Twine((int)selection) + " in " + toString(this)) 528 .str()); 529 symtab->reportDuplicate(leader, this); 530 return; 531 } 532 533 switch (selection) { 534 case IMAGE_COMDAT_SELECT_NODUPLICATES: 535 symtab->reportDuplicate(leader, this); 536 break; 537 538 case IMAGE_COMDAT_SELECT_ANY: 539 // Nothing to do. 540 break; 541 542 case IMAGE_COMDAT_SELECT_SAME_SIZE: 543 if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) 544 symtab->reportDuplicate(leader, this); 545 break; 546 547 case IMAGE_COMDAT_SELECT_EXACT_MATCH: { 548 SectionChunk newChunk(this, getSection(sym)); 549 // link.exe only compares section contents here and doesn't complain 550 // if the two comdat sections have e.g. different alignment. 551 // Match that. 552 if (leaderChunk->getContents() != newChunk.getContents()) 553 symtab->reportDuplicate(leader, this, &newChunk, sym.getValue()); 554 break; 555 } 556 557 case IMAGE_COMDAT_SELECT_ASSOCIATIVE: 558 // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. 559 // (This means lld-link doesn't produce duplicate symbol errors for 560 // associative comdats while link.exe does, but associate comdats 561 // are never extern in practice.) 562 llvm_unreachable("createDefined not called for associative comdats"); 563 564 case IMAGE_COMDAT_SELECT_LARGEST: 565 if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { 566 // Replace the existing comdat symbol with the new one. 567 StringRef name = check(coffObj->getSymbolName(sym)); 568 // FIXME: This is incorrect: With /opt:noref, the previous sections 569 // make it into the final executable as well. Correct handling would 570 // be to undo reading of the whole old section that's being replaced, 571 // or doing one pass that determines what the final largest comdat 572 // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading 573 // only the largest one. 574 replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true, 575 /*IsExternal*/ true, sym.getGeneric(), 576 nullptr); 577 prevailing = true; 578 } 579 break; 580 581 case IMAGE_COMDAT_SELECT_NEWEST: 582 llvm_unreachable("should have been rejected earlier"); 583 } 584 } 585 586 Optional<Symbol *> ObjFile::createDefined( 587 COFFSymbolRef sym, 588 std::vector<const coff_aux_section_definition *> &comdatDefs, 589 bool &prevailing) { 590 prevailing = false; 591 auto getName = [&]() { return check(coffObj->getSymbolName(sym)); }; 592 593 if (sym.isCommon()) { 594 auto *c = make<CommonChunk>(sym); 595 chunks.push_back(c); 596 return symtab->addCommon(this, getName(), sym.getValue(), sym.getGeneric(), 597 c); 598 } 599 600 if (sym.isAbsolute()) { 601 StringRef name = getName(); 602 603 if (name == "@feat.00") 604 feat00Flags = sym.getValue(); 605 // Skip special symbols. 606 if (ignoredSymbolName(name)) 607 return nullptr; 608 609 if (sym.isExternal()) 610 return symtab->addAbsolute(name, sym); 611 return make<DefinedAbsolute>(name, sym); 612 } 613 614 int32_t sectionNumber = sym.getSectionNumber(); 615 if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) 616 return nullptr; 617 618 if (llvm::COFF::isReservedSectionNumber(sectionNumber)) 619 fatal(toString(this) + ": " + getName() + 620 " should not refer to special section " + Twine(sectionNumber)); 621 622 if ((uint32_t)sectionNumber >= sparseChunks.size()) 623 fatal(toString(this) + ": " + getName() + 624 " should not refer to non-existent section " + Twine(sectionNumber)); 625 626 // Comdat handling. 627 // A comdat symbol consists of two symbol table entries. 628 // The first symbol entry has the name of the section (e.g. .text), fixed 629 // values for the other fields, and one auxiliary record. 630 // The second symbol entry has the name of the comdat symbol, called the 631 // "comdat leader". 632 // When this function is called for the first symbol entry of a comdat, 633 // it sets comdatDefs and returns None, and when it's called for the second 634 // symbol entry it reads comdatDefs and then sets it back to nullptr. 635 636 // Handle comdat leader. 637 if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { 638 comdatDefs[sectionNumber] = nullptr; 639 DefinedRegular *leader; 640 641 if (sym.isExternal()) { 642 std::tie(leader, prevailing) = 643 symtab->addComdat(this, getName(), sym.getGeneric()); 644 } else { 645 leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, 646 /*IsExternal*/ false, sym.getGeneric()); 647 prevailing = true; 648 } 649 650 if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || 651 // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe 652 // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. 653 def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { 654 fatal("unknown comdat type " + std::to_string((int)def->Selection) + 655 " for " + getName() + " in " + toString(this)); 656 } 657 COMDATType selection = (COMDATType)def->Selection; 658 659 if (leader->isCOMDAT) 660 handleComdatSelection(sym, selection, prevailing, leader); 661 662 if (prevailing) { 663 SectionChunk *c = readSection(sectionNumber, def, getName()); 664 sparseChunks[sectionNumber] = c; 665 c->sym = cast<DefinedRegular>(leader); 666 c->selection = selection; 667 cast<DefinedRegular>(leader)->data = &c->repl; 668 } else { 669 sparseChunks[sectionNumber] = nullptr; 670 } 671 return leader; 672 } 673 674 // Prepare to handle the comdat leader symbol by setting the section's 675 // ComdatDefs pointer if we encounter a non-associative comdat. 676 if (sparseChunks[sectionNumber] == pendingComdat) { 677 if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { 678 if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) 679 comdatDefs[sectionNumber] = def; 680 } 681 return None; 682 } 683 684 return createRegular(sym); 685 } 686 687 MachineTypes ObjFile::getMachineType() { 688 if (coffObj) 689 return static_cast<MachineTypes>(coffObj->getMachine()); 690 return IMAGE_FILE_MACHINE_UNKNOWN; 691 } 692 693 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) { 694 if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName)) 695 return sec->consumeDebugMagic(); 696 return {}; 697 } 698 699 // OBJ files systematically store critical information in a .debug$S stream, 700 // even if the TU was compiled with no debug info. At least two records are 701 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the 702 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is 703 // currently used to initialize the hotPatchable member. 704 void ObjFile::initializeFlags() { 705 ArrayRef<uint8_t> data = getDebugSection(".debug$S"); 706 if (data.empty()) 707 return; 708 709 DebugSubsectionArray subsections; 710 711 BinaryStreamReader reader(data, support::little); 712 ExitOnError exitOnErr; 713 exitOnErr(reader.readArray(subsections, data.size())); 714 715 for (const DebugSubsectionRecord &ss : subsections) { 716 if (ss.kind() != DebugSubsectionKind::Symbols) 717 continue; 718 719 unsigned offset = 0; 720 721 // Only parse the first two records. We are only looking for S_OBJNAME 722 // and S_COMPILE3, and they usually appear at the beginning of the 723 // stream. 724 for (unsigned i = 0; i < 2; ++i) { 725 Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset); 726 if (!sym) { 727 consumeError(sym.takeError()); 728 return; 729 } 730 if (sym->kind() == SymbolKind::S_COMPILE3) { 731 auto cs = 732 cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get())); 733 hotPatchable = 734 (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; 735 } 736 if (sym->kind() == SymbolKind::S_OBJNAME) { 737 auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>( 738 sym.get())); 739 pchSignature = objName.Signature; 740 } 741 offset += sym->length(); 742 } 743 } 744 } 745 746 // Depending on the compilation flags, OBJs can refer to external files, 747 // necessary to merge this OBJ into the final PDB. We currently support two 748 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. 749 // And PDB type servers, when compiling with /Zi. This function extracts these 750 // dependencies and makes them available as a TpiSource interface (see 751 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular 752 // output even with /Yc and /Yu and with /Zi. 753 void ObjFile::initializeDependencies() { 754 if (!config->debug) 755 return; 756 757 bool isPCH = false; 758 759 ArrayRef<uint8_t> data = getDebugSection(".debug$P"); 760 if (!data.empty()) 761 isPCH = true; 762 else 763 data = getDebugSection(".debug$T"); 764 765 if (data.empty()) 766 return; 767 768 // Get the first type record. It will indicate if this object uses a type 769 // server (/Zi) or a PCH file (/Yu). 770 CVTypeArray types; 771 BinaryStreamReader reader(data, support::little); 772 cantFail(reader.readArray(types, reader.getLength())); 773 CVTypeArray::Iterator firstType = types.begin(); 774 if (firstType == types.end()) 775 return; 776 777 // Remember the .debug$T or .debug$P section. 778 debugTypes = data; 779 780 // This object file is a PCH file that others will depend on. 781 if (isPCH) { 782 debugTypesObj = makePrecompSource(this); 783 return; 784 } 785 786 // This object file was compiled with /Zi. Enqueue the PDB dependency. 787 if (firstType->kind() == LF_TYPESERVER2) { 788 TypeServer2Record ts = cantFail( 789 TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data())); 790 debugTypesObj = makeUseTypeServerSource(this, ts); 791 PDBInputFile::enqueue(ts.getName(), this); 792 return; 793 } 794 795 // This object was compiled with /Yu. It uses types from another object file 796 // with a matching signature. 797 if (firstType->kind() == LF_PRECOMP) { 798 PrecompRecord precomp = cantFail( 799 TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data())); 800 debugTypesObj = makeUsePrecompSource(this, precomp); 801 return; 802 } 803 804 // This is a plain old object file. 805 debugTypesObj = makeTpiSource(this); 806 } 807 808 // Make a PDB path assuming the PDB is in the same folder as the OBJ 809 static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) { 810 StringRef localPath = 811 !file->parentName.empty() ? file->parentName : file->getName(); 812 SmallString<128> path = sys::path::parent_path(localPath); 813 814 // Currently, type server PDBs are only created by MSVC cl, which only runs 815 // on Windows, so we can assume type server paths are Windows style. 816 sys::path::append(path, 817 sys::path::filename(tSPath, sys::path::Style::windows)); 818 return std::string(path.str()); 819 } 820 821 // The casing of the PDB path stamped in the OBJ can differ from the actual path 822 // on disk. With this, we ensure to always use lowercase as a key for the 823 // PDBInputFile::instances map, at least on Windows. 824 static std::string normalizePdbPath(StringRef path) { 825 #if defined(_WIN32) 826 return path.lower(); 827 #else // LINUX 828 return std::string(path); 829 #endif 830 } 831 832 // If existing, return the actual PDB path on disk. 833 static Optional<std::string> findPdbPath(StringRef pdbPath, 834 ObjFile *dependentFile) { 835 // Ensure the file exists before anything else. In some cases, if the path 836 // points to a removable device, Driver::enqueuePath() would fail with an 837 // error (EAGAIN, "resource unavailable try again") which we want to skip 838 // silently. 839 if (llvm::sys::fs::exists(pdbPath)) 840 return normalizePdbPath(pdbPath); 841 std::string ret = getPdbBaseName(dependentFile, pdbPath); 842 if (llvm::sys::fs::exists(ret)) 843 return normalizePdbPath(ret); 844 return None; 845 } 846 847 PDBInputFile::PDBInputFile(MemoryBufferRef m) : InputFile(PDBKind, m) {} 848 849 PDBInputFile::~PDBInputFile() = default; 850 851 PDBInputFile *PDBInputFile::findFromRecordPath(StringRef path, 852 ObjFile *fromFile) { 853 auto p = findPdbPath(path.str(), fromFile); 854 if (!p) 855 return nullptr; 856 auto it = PDBInputFile::instances.find(*p); 857 if (it != PDBInputFile::instances.end()) 858 return it->second; 859 return nullptr; 860 } 861 862 void PDBInputFile::enqueue(StringRef path, ObjFile *fromFile) { 863 auto p = findPdbPath(path.str(), fromFile); 864 if (!p) 865 return; 866 auto it = PDBInputFile::instances.emplace(*p, nullptr); 867 if (!it.second) 868 return; // already scheduled for load 869 driver->enqueuePDB(*p); 870 } 871 872 void PDBInputFile::parse() { 873 PDBInputFile::instances[mb.getBufferIdentifier().str()] = this; 874 875 std::unique_ptr<pdb::IPDBSession> thisSession; 876 loadErr.emplace(pdb::NativeSession::createFromPdb( 877 MemoryBuffer::getMemBuffer(mb, false), thisSession)); 878 if (*loadErr) 879 return; // fail silently at this point - the error will be handled later, 880 // when merging the debug type stream 881 882 session.reset(static_cast<pdb::NativeSession *>(thisSession.release())); 883 884 pdb::PDBFile &pdbFile = session->getPDBFile(); 885 auto expectedInfo = pdbFile.getPDBInfoStream(); 886 // All PDB Files should have an Info stream. 887 if (!expectedInfo) { 888 loadErr.emplace(expectedInfo.takeError()); 889 return; 890 } 891 debugTypesObj = makeTypeServerSource(this); 892 } 893 894 // Used only for DWARF debug info, which is not common (except in MinGW 895 // environments). This returns an optional pair of file name and line 896 // number for where the variable was defined. 897 Optional<std::pair<StringRef, uint32_t>> 898 ObjFile::getVariableLocation(StringRef var) { 899 if (!dwarf) { 900 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 901 if (!dwarf) 902 return None; 903 } 904 if (config->machine == I386) 905 var.consume_front("_"); 906 Optional<std::pair<std::string, unsigned>> ret = dwarf->getVariableLoc(var); 907 if (!ret) 908 return None; 909 return std::make_pair(saver.save(ret->first), ret->second); 910 } 911 912 // Used only for DWARF debug info, which is not common (except in MinGW 913 // environments). 914 Optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset, 915 uint32_t sectionIndex) { 916 if (!dwarf) { 917 dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); 918 if (!dwarf) 919 return None; 920 } 921 922 return dwarf->getDILineInfo(offset, sectionIndex); 923 } 924 925 static StringRef ltrim1(StringRef s, const char *chars) { 926 if (!s.empty() && strchr(chars, s[0])) 927 return s.substr(1); 928 return s; 929 } 930 931 void ImportFile::parse() { 932 const char *buf = mb.getBufferStart(); 933 const auto *hdr = reinterpret_cast<const coff_import_header *>(buf); 934 935 // Check if the total size is valid. 936 if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) 937 fatal("broken import library"); 938 939 // Read names and create an __imp_ symbol. 940 StringRef name = saver.save(StringRef(buf + sizeof(*hdr))); 941 StringRef impName = saver.save("__imp_" + name); 942 const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1; 943 dllName = std::string(StringRef(nameStart)); 944 StringRef extName; 945 switch (hdr->getNameType()) { 946 case IMPORT_ORDINAL: 947 extName = ""; 948 break; 949 case IMPORT_NAME: 950 extName = name; 951 break; 952 case IMPORT_NAME_NOPREFIX: 953 extName = ltrim1(name, "?@_"); 954 break; 955 case IMPORT_NAME_UNDECORATE: 956 extName = ltrim1(name, "?@_"); 957 extName = extName.substr(0, extName.find('@')); 958 break; 959 } 960 961 this->hdr = hdr; 962 externalName = extName; 963 964 impSym = symtab->addImportData(impName, this); 965 // If this was a duplicate, we logged an error but may continue; 966 // in this case, impSym is nullptr. 967 if (!impSym) 968 return; 969 970 if (hdr->getType() == llvm::COFF::IMPORT_CONST) 971 static_cast<void>(symtab->addImportData(name, this)); 972 973 // If type is function, we need to create a thunk which jump to an 974 // address pointed by the __imp_ symbol. (This allows you to call 975 // DLL functions just like regular non-DLL functions.) 976 if (hdr->getType() == llvm::COFF::IMPORT_CODE) 977 thunkSym = symtab->addImportThunk( 978 name, cast_or_null<DefinedImportData>(impSym), hdr->Machine); 979 } 980 981 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 982 uint64_t offsetInArchive) 983 : BitcodeFile(mb, archiveName, offsetInArchive, {}) {} 984 985 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 986 uint64_t offsetInArchive, 987 std::vector<Symbol *> &&symbols) 988 : InputFile(BitcodeKind, mb), symbols(std::move(symbols)) { 989 std::string path = mb.getBufferIdentifier().str(); 990 if (config->thinLTOIndexOnly) 991 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 992 993 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 994 // name. If two archives define two members with the same name, this 995 // causes a collision which result in only one of the objects being taken 996 // into consideration at LTO time (which very likely causes undefined 997 // symbols later in the link stage). So we append file offset to make 998 // filename unique. 999 MemoryBufferRef mbref( 1000 mb.getBuffer(), 1001 saver.save(archiveName.empty() ? path 1002 : archiveName + sys::path::filename(path) + 1003 utostr(offsetInArchive))); 1004 1005 obj = check(lto::InputFile::create(mbref)); 1006 } 1007 1008 BitcodeFile::~BitcodeFile() = default; 1009 1010 void BitcodeFile::parse() { 1011 std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size()); 1012 for (size_t i = 0; i != obj->getComdatTable().size(); ++i) 1013 // FIXME: lto::InputFile doesn't keep enough data to do correct comdat 1014 // selection handling. 1015 comdat[i] = symtab->addComdat(this, saver.save(obj->getComdatTable()[i])); 1016 for (const lto::InputFile::Symbol &objSym : obj->symbols()) { 1017 StringRef symName = saver.save(objSym.getName()); 1018 int comdatIndex = objSym.getComdatIndex(); 1019 Symbol *sym; 1020 if (objSym.isUndefined()) { 1021 sym = symtab->addUndefined(symName, this, false); 1022 } else if (objSym.isCommon()) { 1023 sym = symtab->addCommon(this, symName, objSym.getCommonSize()); 1024 } else if (objSym.isWeak() && objSym.isIndirect()) { 1025 // Weak external. 1026 sym = symtab->addUndefined(symName, this, true); 1027 std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); 1028 Symbol *alias = symtab->addUndefined(saver.save(fallback)); 1029 checkAndSetWeakAlias(symtab, this, sym, alias); 1030 } else if (comdatIndex != -1) { 1031 if (symName == obj->getComdatTable()[comdatIndex]) 1032 sym = comdat[comdatIndex].first; 1033 else if (comdat[comdatIndex].second) 1034 sym = symtab->addRegular(this, symName); 1035 else 1036 sym = symtab->addUndefined(symName, this, false); 1037 } else { 1038 sym = symtab->addRegular(this, symName); 1039 } 1040 symbols.push_back(sym); 1041 if (objSym.isUsed()) 1042 config->gcroot.push_back(sym); 1043 } 1044 directives = obj->getCOFFLinkerOpts(); 1045 } 1046 1047 MachineTypes BitcodeFile::getMachineType() { 1048 switch (Triple(obj->getTargetTriple()).getArch()) { 1049 case Triple::x86_64: 1050 return AMD64; 1051 case Triple::x86: 1052 return I386; 1053 case Triple::arm: 1054 return ARMNT; 1055 case Triple::aarch64: 1056 return ARM64; 1057 default: 1058 return IMAGE_FILE_MACHINE_UNKNOWN; 1059 } 1060 } 1061 1062 std::string lld::coff::replaceThinLTOSuffix(StringRef path) { 1063 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1064 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1065 1066 if (path.consume_back(suffix)) 1067 return (path + repl).str(); 1068 return std::string(path); 1069 } 1070