1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "COFFLinkerContext.h"
11 #include "Chunks.h"
12 #include "Config.h"
13 #include "DebugTypes.h"
14 #include "Driver.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "lld/Common/DWARF.h"
18 #include "lld/Common/ErrorHandler.h"
19 #include "lld/Common/Memory.h"
20 #include "llvm-c/lto.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/BinaryFormat/COFF.h"
25 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
26 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
27 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
28 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
29 #include "llvm/DebugInfo/PDB/Native/NativeSession.h"
30 #include "llvm/DebugInfo/PDB/Native/PDBFile.h"
31 #include "llvm/LTO/LTO.h"
32 #include "llvm/Object/Binary.h"
33 #include "llvm/Object/COFF.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Endian.h"
36 #include "llvm/Support/Error.h"
37 #include "llvm/Support/ErrorOr.h"
38 #include "llvm/Support/FileSystem.h"
39 #include "llvm/Support/Path.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include <cstring>
42 #include <system_error>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace llvm::COFF;
47 using namespace llvm::codeview;
48 using namespace llvm::object;
49 using namespace llvm::support::endian;
50 using namespace lld;
51 using namespace lld::coff;
52 
53 using llvm::Triple;
54 using llvm::support::ulittle32_t;
55 
56 // Returns the last element of a path, which is supposed to be a filename.
57 static StringRef getBasename(StringRef path) {
58   return sys::path::filename(path, sys::path::Style::windows);
59 }
60 
61 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
62 std::string lld::toString(const coff::InputFile *file) {
63   if (!file)
64     return "<internal>";
65   if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind)
66     return std::string(file->getName());
67 
68   return (getBasename(file->parentName) + "(" + getBasename(file->getName()) +
69           ")")
70       .str();
71 }
72 
73 /// Checks that Source is compatible with being a weak alias to Target.
74 /// If Source is Undefined and has no weak alias set, makes it a weak
75 /// alias to Target.
76 static void checkAndSetWeakAlias(SymbolTable *symtab, InputFile *f,
77                                  Symbol *source, Symbol *target) {
78   if (auto *u = dyn_cast<Undefined>(source)) {
79     if (u->weakAlias && u->weakAlias != target) {
80       // Weak aliases as produced by GCC are named in the form
81       // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
82       // of another symbol emitted near the weak symbol.
83       // Just use the definition from the first object file that defined
84       // this weak symbol.
85       if (config->mingw)
86         return;
87       symtab->reportDuplicate(source, f);
88     }
89     u->weakAlias = target;
90   }
91 }
92 
93 static bool ignoredSymbolName(StringRef name) {
94   return name == "@feat.00" || name == "@comp.id";
95 }
96 
97 ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m)
98     : InputFile(ctx, ArchiveKind, m) {}
99 
100 void ArchiveFile::parse() {
101   // Parse a MemoryBufferRef as an archive file.
102   file = CHECK(Archive::create(mb), this);
103 
104   // Read the symbol table to construct Lazy objects.
105   for (const Archive::Symbol &sym : file->symbols())
106     ctx.symtab.addLazyArchive(this, sym);
107 }
108 
109 // Returns a buffer pointing to a member file containing a given symbol.
110 void ArchiveFile::addMember(const Archive::Symbol &sym) {
111   const Archive::Child &c =
112       CHECK(sym.getMember(),
113             "could not get the member for symbol " + toCOFFString(sym));
114 
115   // Return an empty buffer if we have already returned the same buffer.
116   if (!seen.insert(c.getChildOffset()).second)
117     return;
118 
119   driver->enqueueArchiveMember(c, sym, getName());
120 }
121 
122 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) {
123   std::vector<MemoryBufferRef> v;
124   Error err = Error::success();
125   for (const Archive::Child &c : file->children(err)) {
126     MemoryBufferRef mbref =
127         CHECK(c.getMemoryBufferRef(),
128               file->getFileName() +
129                   ": could not get the buffer for a child of the archive");
130     v.push_back(mbref);
131   }
132   if (err)
133     fatal(file->getFileName() +
134           ": Archive::children failed: " + toString(std::move(err)));
135   return v;
136 }
137 
138 void LazyObjFile::fetch() {
139   if (mb.getBuffer().empty())
140     return;
141 
142   InputFile *file;
143   if (isBitcode(mb))
144     file = make<BitcodeFile>(ctx, mb, "", 0, std::move(symbols));
145   else
146     file = make<ObjFile>(ctx, mb, std::move(symbols));
147   mb = {};
148   ctx.symtab.addFile(file);
149 }
150 
151 void LazyObjFile::parse() {
152   if (isBitcode(this->mb)) {
153     // Bitcode file.
154     std::unique_ptr<lto::InputFile> obj =
155         CHECK(lto::InputFile::create(this->mb), this);
156     for (const lto::InputFile::Symbol &sym : obj->symbols()) {
157       if (!sym.isUndefined())
158         ctx.symtab.addLazyObject(this, sym.getName());
159     }
160     return;
161   }
162 
163   // Native object file.
164   std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this);
165   COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get());
166   uint32_t numSymbols = coffObj->getNumberOfSymbols();
167   for (uint32_t i = 0; i < numSymbols; ++i) {
168     COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
169     if (coffSym.isUndefined() || !coffSym.isExternal() ||
170         coffSym.isWeakExternal())
171       continue;
172     StringRef name = check(coffObj->getSymbolName(coffSym));
173     if (coffSym.isAbsolute() && ignoredSymbolName(name))
174       continue;
175     ctx.symtab.addLazyObject(this, name);
176     i += coffSym.getNumberOfAuxSymbols();
177   }
178 }
179 
180 void ObjFile::parse() {
181   // Parse a memory buffer as a COFF file.
182   std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
183 
184   if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
185     bin.release();
186     coffObj.reset(obj);
187   } else {
188     fatal(toString(this) + " is not a COFF file");
189   }
190 
191   // Read section and symbol tables.
192   initializeChunks();
193   initializeSymbols();
194   initializeFlags();
195   initializeDependencies();
196 }
197 
198 const coff_section *ObjFile::getSection(uint32_t i) {
199   auto sec = coffObj->getSection(i);
200   if (!sec)
201     fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError()));
202   return *sec;
203 }
204 
205 // We set SectionChunk pointers in the SparseChunks vector to this value
206 // temporarily to mark comdat sections as having an unknown resolution. As we
207 // walk the object file's symbol table, once we visit either a leader symbol or
208 // an associative section definition together with the parent comdat's leader,
209 // we set the pointer to either nullptr (to mark the section as discarded) or a
210 // valid SectionChunk for that section.
211 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1);
212 
213 void ObjFile::initializeChunks() {
214   uint32_t numSections = coffObj->getNumberOfSections();
215   sparseChunks.resize(numSections + 1);
216   for (uint32_t i = 1; i < numSections + 1; ++i) {
217     const coff_section *sec = getSection(i);
218     if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT)
219       sparseChunks[i] = pendingComdat;
220     else
221       sparseChunks[i] = readSection(i, nullptr, "");
222   }
223 }
224 
225 SectionChunk *ObjFile::readSection(uint32_t sectionNumber,
226                                    const coff_aux_section_definition *def,
227                                    StringRef leaderName) {
228   const coff_section *sec = getSection(sectionNumber);
229 
230   StringRef name;
231   if (Expected<StringRef> e = coffObj->getSectionName(sec))
232     name = *e;
233   else
234     fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " +
235           toString(e.takeError()));
236 
237   if (name == ".drectve") {
238     ArrayRef<uint8_t> data;
239     cantFail(coffObj->getSectionContents(sec, data));
240     directives = StringRef((const char *)data.data(), data.size());
241     return nullptr;
242   }
243 
244   if (name == ".llvm_addrsig") {
245     addrsigSec = sec;
246     return nullptr;
247   }
248 
249   if (name == ".llvm.call-graph-profile") {
250     callgraphSec = sec;
251     return nullptr;
252   }
253 
254   // Object files may have DWARF debug info or MS CodeView debug info
255   // (or both).
256   //
257   // DWARF sections don't need any special handling from the perspective
258   // of the linker; they are just a data section containing relocations.
259   // We can just link them to complete debug info.
260   //
261   // CodeView needs linker support. We need to interpret debug info,
262   // and then write it to a separate .pdb file.
263 
264   // Ignore DWARF debug info unless /debug is given.
265   if (!config->debug && name.startswith(".debug_"))
266     return nullptr;
267 
268   if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
269     return nullptr;
270   auto *c = make<SectionChunk>(this, sec);
271   if (def)
272     c->checksum = def->CheckSum;
273 
274   // CodeView sections are stored to a different vector because they are not
275   // linked in the regular manner.
276   if (c->isCodeView())
277     debugChunks.push_back(c);
278   else if (name == ".gfids$y")
279     guardFidChunks.push_back(c);
280   else if (name == ".giats$y")
281     guardIATChunks.push_back(c);
282   else if (name == ".gljmp$y")
283     guardLJmpChunks.push_back(c);
284   else if (name == ".gehcont$y")
285     guardEHContChunks.push_back(c);
286   else if (name == ".sxdata")
287     sxDataChunks.push_back(c);
288   else if (config->tailMerge && sec->NumberOfRelocations == 0 &&
289            name == ".rdata" && leaderName.startswith("??_C@"))
290     // COFF sections that look like string literal sections (i.e. no
291     // relocations, in .rdata, leader symbol name matches the MSVC name mangling
292     // for string literals) are subject to string tail merging.
293     MergeChunk::addSection(ctx, c);
294   else if (name == ".rsrc" || name.startswith(".rsrc$"))
295     resourceChunks.push_back(c);
296   else
297     chunks.push_back(c);
298 
299   return c;
300 }
301 
302 void ObjFile::includeResourceChunks() {
303   chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end());
304 }
305 
306 void ObjFile::readAssociativeDefinition(
307     COFFSymbolRef sym, const coff_aux_section_definition *def) {
308   readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj()));
309 }
310 
311 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym,
312                                         const coff_aux_section_definition *def,
313                                         uint32_t parentIndex) {
314   SectionChunk *parent = sparseChunks[parentIndex];
315   int32_t sectionNumber = sym.getSectionNumber();
316 
317   auto diag = [&]() {
318     StringRef name = check(coffObj->getSymbolName(sym));
319 
320     StringRef parentName;
321     const coff_section *parentSec = getSection(parentIndex);
322     if (Expected<StringRef> e = coffObj->getSectionName(parentSec))
323       parentName = *e;
324     error(toString(this) + ": associative comdat " + name + " (sec " +
325           Twine(sectionNumber) + ") has invalid reference to section " +
326           parentName + " (sec " + Twine(parentIndex) + ")");
327   };
328 
329   if (parent == pendingComdat) {
330     // This can happen if an associative comdat refers to another associative
331     // comdat that appears after it (invalid per COFF spec) or to a section
332     // without any symbols.
333     diag();
334     return;
335   }
336 
337   // Check whether the parent is prevailing. If it is, so are we, and we read
338   // the section; otherwise mark it as discarded.
339   if (parent) {
340     SectionChunk *c = readSection(sectionNumber, def, "");
341     sparseChunks[sectionNumber] = c;
342     if (c) {
343       c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE;
344       parent->addAssociative(c);
345     }
346   } else {
347     sparseChunks[sectionNumber] = nullptr;
348   }
349 }
350 
351 void ObjFile::recordPrevailingSymbolForMingw(
352     COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
353   // For comdat symbols in executable sections, where this is the copy
354   // of the section chunk we actually include instead of discarding it,
355   // add the symbol to a map to allow using it for implicitly
356   // associating .[px]data$<func> sections to it.
357   // Use the suffix from the .text$<func> instead of the leader symbol
358   // name, for cases where the names differ (i386 mangling/decorations,
359   // cases where the leader is a weak symbol named .weak.func.default*).
360   int32_t sectionNumber = sym.getSectionNumber();
361   SectionChunk *sc = sparseChunks[sectionNumber];
362   if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) {
363     StringRef name = sc->getSectionName().split('$').second;
364     prevailingSectionMap[name] = sectionNumber;
365   }
366 }
367 
368 void ObjFile::maybeAssociateSEHForMingw(
369     COFFSymbolRef sym, const coff_aux_section_definition *def,
370     const DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
371   StringRef name = check(coffObj->getSymbolName(sym));
372   if (name.consume_front(".pdata$") || name.consume_front(".xdata$") ||
373       name.consume_front(".eh_frame$")) {
374     // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
375     // associative to the symbol <func>.
376     auto parentSym = prevailingSectionMap.find(name);
377     if (parentSym != prevailingSectionMap.end())
378       readAssociativeDefinition(sym, def, parentSym->second);
379   }
380 }
381 
382 Symbol *ObjFile::createRegular(COFFSymbolRef sym) {
383   SectionChunk *sc = sparseChunks[sym.getSectionNumber()];
384   if (sym.isExternal()) {
385     StringRef name = check(coffObj->getSymbolName(sym));
386     if (sc)
387       return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc,
388                                    sym.getValue());
389     // For MinGW symbols named .weak.* that point to a discarded section,
390     // don't create an Undefined symbol. If nothing ever refers to the symbol,
391     // everything should be fine. If something actually refers to the symbol
392     // (e.g. the undefined weak alias), linking will fail due to undefined
393     // references at the end.
394     if (config->mingw && name.startswith(".weak."))
395       return nullptr;
396     return ctx.symtab.addUndefined(name, this, false);
397   }
398   if (sc)
399     return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
400                                 /*IsExternal*/ false, sym.getGeneric(), sc);
401   return nullptr;
402 }
403 
404 void ObjFile::initializeSymbols() {
405   uint32_t numSymbols = coffObj->getNumberOfSymbols();
406   symbols.resize(numSymbols);
407 
408   SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases;
409   std::vector<uint32_t> pendingIndexes;
410   pendingIndexes.reserve(numSymbols);
411 
412   DenseMap<StringRef, uint32_t> prevailingSectionMap;
413   std::vector<const coff_aux_section_definition *> comdatDefs(
414       coffObj->getNumberOfSections() + 1);
415 
416   for (uint32_t i = 0; i < numSymbols; ++i) {
417     COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
418     bool prevailingComdat;
419     if (coffSym.isUndefined()) {
420       symbols[i] = createUndefined(coffSym);
421     } else if (coffSym.isWeakExternal()) {
422       symbols[i] = createUndefined(coffSym);
423       uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex;
424       weakAliases.emplace_back(symbols[i], tagIndex);
425     } else if (Optional<Symbol *> optSym =
426                    createDefined(coffSym, comdatDefs, prevailingComdat)) {
427       symbols[i] = *optSym;
428       if (config->mingw && prevailingComdat)
429         recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap);
430     } else {
431       // createDefined() returns None if a symbol belongs to a section that
432       // was pending at the point when the symbol was read. This can happen in
433       // two cases:
434       // 1) section definition symbol for a comdat leader;
435       // 2) symbol belongs to a comdat section associated with another section.
436       // In both of these cases, we can expect the section to be resolved by
437       // the time we finish visiting the remaining symbols in the symbol
438       // table. So we postpone the handling of this symbol until that time.
439       pendingIndexes.push_back(i);
440     }
441     i += coffSym.getNumberOfAuxSymbols();
442   }
443 
444   for (uint32_t i : pendingIndexes) {
445     COFFSymbolRef sym = check(coffObj->getSymbol(i));
446     if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
447       if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE)
448         readAssociativeDefinition(sym, def);
449       else if (config->mingw)
450         maybeAssociateSEHForMingw(sym, def, prevailingSectionMap);
451     }
452     if (sparseChunks[sym.getSectionNumber()] == pendingComdat) {
453       StringRef name = check(coffObj->getSymbolName(sym));
454       log("comdat section " + name +
455           " without leader and unassociated, discarding");
456       continue;
457     }
458     symbols[i] = createRegular(sym);
459   }
460 
461   for (auto &kv : weakAliases) {
462     Symbol *sym = kv.first;
463     uint32_t idx = kv.second;
464     checkAndSetWeakAlias(&ctx.symtab, this, sym, symbols[idx]);
465   }
466 
467   // Free the memory used by sparseChunks now that symbol loading is finished.
468   decltype(sparseChunks)().swap(sparseChunks);
469 }
470 
471 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) {
472   StringRef name = check(coffObj->getSymbolName(sym));
473   return ctx.symtab.addUndefined(name, this, sym.isWeakExternal());
474 }
475 
476 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj,
477                                                          int32_t section) {
478   uint32_t numSymbols = obj->getNumberOfSymbols();
479   for (uint32_t i = 0; i < numSymbols; ++i) {
480     COFFSymbolRef sym = check(obj->getSymbol(i));
481     if (sym.getSectionNumber() != section)
482       continue;
483     if (const coff_aux_section_definition *def = sym.getSectionDefinition())
484       return def;
485   }
486   return nullptr;
487 }
488 
489 void ObjFile::handleComdatSelection(
490     COFFSymbolRef sym, COMDATType &selection, bool &prevailing,
491     DefinedRegular *leader,
492     const llvm::object::coff_aux_section_definition *def) {
493   if (prevailing)
494     return;
495   // There's already an existing comdat for this symbol: `Leader`.
496   // Use the comdats's selection field to determine if the new
497   // symbol in `Sym` should be discarded, produce a duplicate symbol
498   // error, etc.
499 
500   SectionChunk *leaderChunk = leader->getChunk();
501   COMDATType leaderSelection = leaderChunk->selection;
502 
503   assert(leader->data && "Comdat leader without SectionChunk?");
504   if (isa<BitcodeFile>(leader->file)) {
505     // If the leader is only a LTO symbol, we don't know e.g. its final size
506     // yet, so we can't do the full strict comdat selection checking yet.
507     selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY;
508   }
509 
510   if ((selection == IMAGE_COMDAT_SELECT_ANY &&
511        leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) ||
512       (selection == IMAGE_COMDAT_SELECT_LARGEST &&
513        leaderSelection == IMAGE_COMDAT_SELECT_ANY)) {
514     // cl.exe picks "any" for vftables when building with /GR- and
515     // "largest" when building with /GR. To be able to link object files
516     // compiled with each flag, "any" and "largest" are merged as "largest".
517     leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST;
518   }
519 
520   // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
521   // Clang on the other hand picks "any". To be able to link two object files
522   // with a __declspec(selectany) declaration, one compiled with gcc and the
523   // other with clang, we merge them as proper "same size as"
524   if (config->mingw && ((selection == IMAGE_COMDAT_SELECT_ANY &&
525                          leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) ||
526                         (selection == IMAGE_COMDAT_SELECT_SAME_SIZE &&
527                          leaderSelection == IMAGE_COMDAT_SELECT_ANY))) {
528     leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE;
529   }
530 
531   // Other than that, comdat selections must match.  This is a bit more
532   // strict than link.exe which allows merging "any" and "largest" if "any"
533   // is the first symbol the linker sees, and it allows merging "largest"
534   // with everything (!) if "largest" is the first symbol the linker sees.
535   // Making this symmetric independent of which selection is seen first
536   // seems better though.
537   // (This behavior matches ModuleLinker::getComdatResult().)
538   if (selection != leaderSelection) {
539     log(("conflicting comdat type for " + toString(*leader) + ": " +
540          Twine((int)leaderSelection) + " in " + toString(leader->getFile()) +
541          " and " + Twine((int)selection) + " in " + toString(this))
542             .str());
543     ctx.symtab.reportDuplicate(leader, this);
544     return;
545   }
546 
547   switch (selection) {
548   case IMAGE_COMDAT_SELECT_NODUPLICATES:
549     ctx.symtab.reportDuplicate(leader, this);
550     break;
551 
552   case IMAGE_COMDAT_SELECT_ANY:
553     // Nothing to do.
554     break;
555 
556   case IMAGE_COMDAT_SELECT_SAME_SIZE:
557     if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) {
558       if (!config->mingw) {
559         ctx.symtab.reportDuplicate(leader, this);
560       } else {
561         const coff_aux_section_definition *leaderDef = nullptr;
562         if (leaderChunk->file)
563           leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(),
564                                      leaderChunk->getSectionNumber());
565         if (!leaderDef || leaderDef->Length != def->Length)
566           ctx.symtab.reportDuplicate(leader, this);
567       }
568     }
569     break;
570 
571   case IMAGE_COMDAT_SELECT_EXACT_MATCH: {
572     SectionChunk newChunk(this, getSection(sym));
573     // link.exe only compares section contents here and doesn't complain
574     // if the two comdat sections have e.g. different alignment.
575     // Match that.
576     if (leaderChunk->getContents() != newChunk.getContents())
577       ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue());
578     break;
579   }
580 
581   case IMAGE_COMDAT_SELECT_ASSOCIATIVE:
582     // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
583     // (This means lld-link doesn't produce duplicate symbol errors for
584     // associative comdats while link.exe does, but associate comdats
585     // are never extern in practice.)
586     llvm_unreachable("createDefined not called for associative comdats");
587 
588   case IMAGE_COMDAT_SELECT_LARGEST:
589     if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) {
590       // Replace the existing comdat symbol with the new one.
591       StringRef name = check(coffObj->getSymbolName(sym));
592       // FIXME: This is incorrect: With /opt:noref, the previous sections
593       // make it into the final executable as well. Correct handling would
594       // be to undo reading of the whole old section that's being replaced,
595       // or doing one pass that determines what the final largest comdat
596       // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
597       // only the largest one.
598       replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true,
599                                     /*IsExternal*/ true, sym.getGeneric(),
600                                     nullptr);
601       prevailing = true;
602     }
603     break;
604 
605   case IMAGE_COMDAT_SELECT_NEWEST:
606     llvm_unreachable("should have been rejected earlier");
607   }
608 }
609 
610 Optional<Symbol *> ObjFile::createDefined(
611     COFFSymbolRef sym,
612     std::vector<const coff_aux_section_definition *> &comdatDefs,
613     bool &prevailing) {
614   prevailing = false;
615   auto getName = [&]() { return check(coffObj->getSymbolName(sym)); };
616 
617   if (sym.isCommon()) {
618     auto *c = make<CommonChunk>(sym);
619     chunks.push_back(c);
620     return ctx.symtab.addCommon(this, getName(), sym.getValue(),
621                                 sym.getGeneric(), c);
622   }
623 
624   if (sym.isAbsolute()) {
625     StringRef name = getName();
626 
627     if (name == "@feat.00")
628       feat00Flags = sym.getValue();
629     // Skip special symbols.
630     if (ignoredSymbolName(name))
631       return nullptr;
632 
633     if (sym.isExternal())
634       return ctx.symtab.addAbsolute(name, sym);
635     return make<DefinedAbsolute>(name, sym);
636   }
637 
638   int32_t sectionNumber = sym.getSectionNumber();
639   if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
640     return nullptr;
641 
642   if (llvm::COFF::isReservedSectionNumber(sectionNumber))
643     fatal(toString(this) + ": " + getName() +
644           " should not refer to special section " + Twine(sectionNumber));
645 
646   if ((uint32_t)sectionNumber >= sparseChunks.size())
647     fatal(toString(this) + ": " + getName() +
648           " should not refer to non-existent section " + Twine(sectionNumber));
649 
650   // Comdat handling.
651   // A comdat symbol consists of two symbol table entries.
652   // The first symbol entry has the name of the section (e.g. .text), fixed
653   // values for the other fields, and one auxiliary record.
654   // The second symbol entry has the name of the comdat symbol, called the
655   // "comdat leader".
656   // When this function is called for the first symbol entry of a comdat,
657   // it sets comdatDefs and returns None, and when it's called for the second
658   // symbol entry it reads comdatDefs and then sets it back to nullptr.
659 
660   // Handle comdat leader.
661   if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) {
662     comdatDefs[sectionNumber] = nullptr;
663     DefinedRegular *leader;
664 
665     if (sym.isExternal()) {
666       std::tie(leader, prevailing) =
667           ctx.symtab.addComdat(this, getName(), sym.getGeneric());
668     } else {
669       leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
670                                     /*IsExternal*/ false, sym.getGeneric());
671       prevailing = true;
672     }
673 
674     if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES ||
675         // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
676         // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
677         def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) {
678       fatal("unknown comdat type " + std::to_string((int)def->Selection) +
679             " for " + getName() + " in " + toString(this));
680     }
681     COMDATType selection = (COMDATType)def->Selection;
682 
683     if (leader->isCOMDAT)
684       handleComdatSelection(sym, selection, prevailing, leader, def);
685 
686     if (prevailing) {
687       SectionChunk *c = readSection(sectionNumber, def, getName());
688       sparseChunks[sectionNumber] = c;
689       c->sym = cast<DefinedRegular>(leader);
690       c->selection = selection;
691       cast<DefinedRegular>(leader)->data = &c->repl;
692     } else {
693       sparseChunks[sectionNumber] = nullptr;
694     }
695     return leader;
696   }
697 
698   // Prepare to handle the comdat leader symbol by setting the section's
699   // ComdatDefs pointer if we encounter a non-associative comdat.
700   if (sparseChunks[sectionNumber] == pendingComdat) {
701     if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
702       if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE)
703         comdatDefs[sectionNumber] = def;
704     }
705     return None;
706   }
707 
708   return createRegular(sym);
709 }
710 
711 MachineTypes ObjFile::getMachineType() {
712   if (coffObj)
713     return static_cast<MachineTypes>(coffObj->getMachine());
714   return IMAGE_FILE_MACHINE_UNKNOWN;
715 }
716 
717 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) {
718   if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName))
719     return sec->consumeDebugMagic();
720   return {};
721 }
722 
723 // OBJ files systematically store critical information in a .debug$S stream,
724 // even if the TU was compiled with no debug info. At least two records are
725 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
726 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
727 // currently used to initialize the hotPatchable member.
728 void ObjFile::initializeFlags() {
729   ArrayRef<uint8_t> data = getDebugSection(".debug$S");
730   if (data.empty())
731     return;
732 
733   DebugSubsectionArray subsections;
734 
735   BinaryStreamReader reader(data, support::little);
736   ExitOnError exitOnErr;
737   exitOnErr(reader.readArray(subsections, data.size()));
738 
739   for (const DebugSubsectionRecord &ss : subsections) {
740     if (ss.kind() != DebugSubsectionKind::Symbols)
741       continue;
742 
743     unsigned offset = 0;
744 
745     // Only parse the first two records. We are only looking for S_OBJNAME
746     // and S_COMPILE3, and they usually appear at the beginning of the
747     // stream.
748     for (unsigned i = 0; i < 2; ++i) {
749       Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset);
750       if (!sym) {
751         consumeError(sym.takeError());
752         return;
753       }
754       if (sym->kind() == SymbolKind::S_COMPILE3) {
755         auto cs =
756             cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get()));
757         hotPatchable =
758             (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None;
759       }
760       if (sym->kind() == SymbolKind::S_OBJNAME) {
761         auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>(
762             sym.get()));
763         pchSignature = objName.Signature;
764       }
765       offset += sym->length();
766     }
767   }
768 }
769 
770 // Depending on the compilation flags, OBJs can refer to external files,
771 // necessary to merge this OBJ into the final PDB. We currently support two
772 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
773 // And PDB type servers, when compiling with /Zi. This function extracts these
774 // dependencies and makes them available as a TpiSource interface (see
775 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
776 // output even with /Yc and /Yu and with /Zi.
777 void ObjFile::initializeDependencies() {
778   if (!config->debug)
779     return;
780 
781   bool isPCH = false;
782 
783   ArrayRef<uint8_t> data = getDebugSection(".debug$P");
784   if (!data.empty())
785     isPCH = true;
786   else
787     data = getDebugSection(".debug$T");
788 
789   // symbols but no types, make a plain, empty TpiSource anyway, because it
790   // simplifies adding the symbols later.
791   if (data.empty()) {
792     if (!debugChunks.empty())
793       debugTypesObj = makeTpiSource(ctx, this);
794     return;
795   }
796 
797   // Get the first type record. It will indicate if this object uses a type
798   // server (/Zi) or a PCH file (/Yu).
799   CVTypeArray types;
800   BinaryStreamReader reader(data, support::little);
801   cantFail(reader.readArray(types, reader.getLength()));
802   CVTypeArray::Iterator firstType = types.begin();
803   if (firstType == types.end())
804     return;
805 
806   // Remember the .debug$T or .debug$P section.
807   debugTypes = data;
808 
809   // This object file is a PCH file that others will depend on.
810   if (isPCH) {
811     debugTypesObj = makePrecompSource(ctx, this);
812     return;
813   }
814 
815   // This object file was compiled with /Zi. Enqueue the PDB dependency.
816   if (firstType->kind() == LF_TYPESERVER2) {
817     TypeServer2Record ts = cantFail(
818         TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data()));
819     debugTypesObj = makeUseTypeServerSource(ctx, this, ts);
820     enqueuePdbFile(ts.getName(), this);
821     return;
822   }
823 
824   // This object was compiled with /Yu. It uses types from another object file
825   // with a matching signature.
826   if (firstType->kind() == LF_PRECOMP) {
827     PrecompRecord precomp = cantFail(
828         TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data()));
829     debugTypesObj = makeUsePrecompSource(ctx, this, precomp);
830     // Drop the LF_PRECOMP record from the input stream.
831     debugTypes = debugTypes.drop_front(firstType->RecordData.size());
832     return;
833   }
834 
835   // This is a plain old object file.
836   debugTypesObj = makeTpiSource(ctx, this);
837 }
838 
839 // Make a PDB path assuming the PDB is in the same folder as the OBJ
840 static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) {
841   StringRef localPath =
842       !file->parentName.empty() ? file->parentName : file->getName();
843   SmallString<128> path = sys::path::parent_path(localPath);
844 
845   // Currently, type server PDBs are only created by MSVC cl, which only runs
846   // on Windows, so we can assume type server paths are Windows style.
847   sys::path::append(path,
848                     sys::path::filename(tSPath, sys::path::Style::windows));
849   return std::string(path.str());
850 }
851 
852 // The casing of the PDB path stamped in the OBJ can differ from the actual path
853 // on disk. With this, we ensure to always use lowercase as a key for the
854 // pdbInputFileInstances map, at least on Windows.
855 static std::string normalizePdbPath(StringRef path) {
856 #if defined(_WIN32)
857   return path.lower();
858 #else // LINUX
859   return std::string(path);
860 #endif
861 }
862 
863 // If existing, return the actual PDB path on disk.
864 static Optional<std::string> findPdbPath(StringRef pdbPath,
865                                          ObjFile *dependentFile) {
866   // Ensure the file exists before anything else. In some cases, if the path
867   // points to a removable device, Driver::enqueuePath() would fail with an
868   // error (EAGAIN, "resource unavailable try again") which we want to skip
869   // silently.
870   if (llvm::sys::fs::exists(pdbPath))
871     return normalizePdbPath(pdbPath);
872   std::string ret = getPdbBaseName(dependentFile, pdbPath);
873   if (llvm::sys::fs::exists(ret))
874     return normalizePdbPath(ret);
875   return None;
876 }
877 
878 PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m)
879     : InputFile(ctx, PDBKind, m) {}
880 
881 PDBInputFile::~PDBInputFile() = default;
882 
883 PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx,
884                                                StringRef path,
885                                                ObjFile *fromFile) {
886   auto p = findPdbPath(path.str(), fromFile);
887   if (!p)
888     return nullptr;
889   auto it = ctx.pdbInputFileInstances.find(*p);
890   if (it != ctx.pdbInputFileInstances.end())
891     return it->second;
892   return nullptr;
893 }
894 
895 void PDBInputFile::parse() {
896   ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this;
897 
898   std::unique_ptr<pdb::IPDBSession> thisSession;
899   loadErr.emplace(pdb::NativeSession::createFromPdb(
900       MemoryBuffer::getMemBuffer(mb, false), thisSession));
901   if (*loadErr)
902     return; // fail silently at this point - the error will be handled later,
903             // when merging the debug type stream
904 
905   session.reset(static_cast<pdb::NativeSession *>(thisSession.release()));
906 
907   pdb::PDBFile &pdbFile = session->getPDBFile();
908   auto expectedInfo = pdbFile.getPDBInfoStream();
909   // All PDB Files should have an Info stream.
910   if (!expectedInfo) {
911     loadErr.emplace(expectedInfo.takeError());
912     return;
913   }
914   debugTypesObj = makeTypeServerSource(ctx, this);
915 }
916 
917 // Used only for DWARF debug info, which is not common (except in MinGW
918 // environments). This returns an optional pair of file name and line
919 // number for where the variable was defined.
920 Optional<std::pair<StringRef, uint32_t>>
921 ObjFile::getVariableLocation(StringRef var) {
922   if (!dwarf) {
923     dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
924     if (!dwarf)
925       return None;
926   }
927   if (config->machine == I386)
928     var.consume_front("_");
929   Optional<std::pair<std::string, unsigned>> ret = dwarf->getVariableLoc(var);
930   if (!ret)
931     return None;
932   return std::make_pair(saver.save(ret->first), ret->second);
933 }
934 
935 // Used only for DWARF debug info, which is not common (except in MinGW
936 // environments).
937 Optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset,
938                                             uint32_t sectionIndex) {
939   if (!dwarf) {
940     dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
941     if (!dwarf)
942       return None;
943   }
944 
945   return dwarf->getDILineInfo(offset, sectionIndex);
946 }
947 
948 void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) {
949   auto p = findPdbPath(path.str(), fromFile);
950   if (!p)
951     return;
952   auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr);
953   if (!it.second)
954     return; // already scheduled for load
955   driver->enqueuePDB(*p);
956 }
957 
958 void ImportFile::parse() {
959   const char *buf = mb.getBufferStart();
960   const auto *hdr = reinterpret_cast<const coff_import_header *>(buf);
961 
962   // Check if the total size is valid.
963   if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData)
964     fatal("broken import library");
965 
966   // Read names and create an __imp_ symbol.
967   StringRef name = saver.save(StringRef(buf + sizeof(*hdr)));
968   StringRef impName = saver.save("__imp_" + name);
969   const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1;
970   dllName = std::string(StringRef(nameStart));
971   StringRef extName;
972   switch (hdr->getNameType()) {
973   case IMPORT_ORDINAL:
974     extName = "";
975     break;
976   case IMPORT_NAME:
977     extName = name;
978     break;
979   case IMPORT_NAME_NOPREFIX:
980     extName = ltrim1(name, "?@_");
981     break;
982   case IMPORT_NAME_UNDECORATE:
983     extName = ltrim1(name, "?@_");
984     extName = extName.substr(0, extName.find('@'));
985     break;
986   }
987 
988   this->hdr = hdr;
989   externalName = extName;
990 
991   impSym = ctx.symtab.addImportData(impName, this);
992   // If this was a duplicate, we logged an error but may continue;
993   // in this case, impSym is nullptr.
994   if (!impSym)
995     return;
996 
997   if (hdr->getType() == llvm::COFF::IMPORT_CONST)
998     static_cast<void>(ctx.symtab.addImportData(name, this));
999 
1000   // If type is function, we need to create a thunk which jump to an
1001   // address pointed by the __imp_ symbol. (This allows you to call
1002   // DLL functions just like regular non-DLL functions.)
1003   if (hdr->getType() == llvm::COFF::IMPORT_CODE)
1004     thunkSym = ctx.symtab.addImportThunk(
1005         name, cast_or_null<DefinedImportData>(impSym), hdr->Machine);
1006 }
1007 
1008 BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb,
1009                          StringRef archiveName, uint64_t offsetInArchive)
1010     : BitcodeFile(ctx, mb, archiveName, offsetInArchive, {}) {}
1011 
1012 BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb,
1013                          StringRef archiveName, uint64_t offsetInArchive,
1014                          std::vector<Symbol *> &&symbols)
1015     : InputFile(ctx, BitcodeKind, mb), symbols(std::move(symbols)) {
1016   std::string path = mb.getBufferIdentifier().str();
1017   if (config->thinLTOIndexOnly)
1018     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1019 
1020   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1021   // name. If two archives define two members with the same name, this
1022   // causes a collision which result in only one of the objects being taken
1023   // into consideration at LTO time (which very likely causes undefined
1024   // symbols later in the link stage). So we append file offset to make
1025   // filename unique.
1026   MemoryBufferRef mbref(
1027       mb.getBuffer(),
1028       saver.save(archiveName.empty() ? path
1029                                      : archiveName + sys::path::filename(path) +
1030                                            utostr(offsetInArchive)));
1031 
1032   obj = check(lto::InputFile::create(mbref));
1033 }
1034 
1035 BitcodeFile::~BitcodeFile() = default;
1036 
1037 namespace {
1038 // Convenience class for initializing a coff_section with specific flags.
1039 class FakeSection {
1040 public:
1041   FakeSection(int c) { section.Characteristics = c; }
1042 
1043   coff_section section;
1044 };
1045 
1046 // Convenience class for initializing a SectionChunk with specific flags.
1047 class FakeSectionChunk {
1048 public:
1049   FakeSectionChunk(const coff_section *section) : chunk(nullptr, section) {
1050     // Comdats from LTO files can't be fully treated as regular comdats
1051     // at this point; we don't know what size or contents they are going to
1052     // have, so we can't do proper checking of such aspects of them.
1053     chunk.selection = IMAGE_COMDAT_SELECT_ANY;
1054   }
1055 
1056   SectionChunk chunk;
1057 };
1058 
1059 FakeSection ltoTextSection(IMAGE_SCN_MEM_EXECUTE);
1060 FakeSection ltoDataSection(IMAGE_SCN_CNT_INITIALIZED_DATA);
1061 FakeSectionChunk ltoTextSectionChunk(&ltoTextSection.section);
1062 FakeSectionChunk ltoDataSectionChunk(&ltoDataSection.section);
1063 } // namespace
1064 
1065 void BitcodeFile::parse() {
1066   std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size());
1067   for (size_t i = 0; i != obj->getComdatTable().size(); ++i)
1068     // FIXME: Check nodeduplicate
1069     comdat[i] =
1070         ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first));
1071   for (const lto::InputFile::Symbol &objSym : obj->symbols()) {
1072     StringRef symName = saver.save(objSym.getName());
1073     int comdatIndex = objSym.getComdatIndex();
1074     Symbol *sym;
1075     SectionChunk *fakeSC = nullptr;
1076     if (objSym.isExecutable())
1077       fakeSC = &ltoTextSectionChunk.chunk;
1078     else
1079       fakeSC = &ltoDataSectionChunk.chunk;
1080     if (objSym.isUndefined()) {
1081       sym = ctx.symtab.addUndefined(symName, this, false);
1082     } else if (objSym.isCommon()) {
1083       sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize());
1084     } else if (objSym.isWeak() && objSym.isIndirect()) {
1085       // Weak external.
1086       sym = ctx.symtab.addUndefined(symName, this, true);
1087       std::string fallback = std::string(objSym.getCOFFWeakExternalFallback());
1088       Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback));
1089       checkAndSetWeakAlias(&ctx.symtab, this, sym, alias);
1090     } else if (comdatIndex != -1) {
1091       if (symName == obj->getComdatTable()[comdatIndex].first) {
1092         sym = comdat[comdatIndex].first;
1093         if (cast<DefinedRegular>(sym)->data == nullptr)
1094           cast<DefinedRegular>(sym)->data = &fakeSC->repl;
1095       } else if (comdat[comdatIndex].second) {
1096         sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC);
1097       } else {
1098         sym = ctx.symtab.addUndefined(symName, this, false);
1099       }
1100     } else {
1101       sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC);
1102     }
1103     symbols.push_back(sym);
1104     if (objSym.isUsed())
1105       config->gcroot.push_back(sym);
1106   }
1107   directives = obj->getCOFFLinkerOpts();
1108 }
1109 
1110 MachineTypes BitcodeFile::getMachineType() {
1111   switch (Triple(obj->getTargetTriple()).getArch()) {
1112   case Triple::x86_64:
1113     return AMD64;
1114   case Triple::x86:
1115     return I386;
1116   case Triple::arm:
1117     return ARMNT;
1118   case Triple::aarch64:
1119     return ARM64;
1120   default:
1121     return IMAGE_FILE_MACHINE_UNKNOWN;
1122   }
1123 }
1124 
1125 std::string lld::coff::replaceThinLTOSuffix(StringRef path) {
1126   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1127   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1128 
1129   if (path.consume_back(suffix))
1130     return (path + repl).str();
1131   return std::string(path);
1132 }
1133 
1134 static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) {
1135   for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) {
1136     const coff_section *sec = CHECK(coffObj->getSection(i), file);
1137     if (rva >= sec->VirtualAddress &&
1138         rva <= sec->VirtualAddress + sec->VirtualSize) {
1139       return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0;
1140     }
1141   }
1142   return false;
1143 }
1144 
1145 void DLLFile::parse() {
1146   // Parse a memory buffer as a PE-COFF executable.
1147   std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
1148 
1149   if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
1150     bin.release();
1151     coffObj.reset(obj);
1152   } else {
1153     error(toString(this) + " is not a COFF file");
1154     return;
1155   }
1156 
1157   if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) {
1158     error(toString(this) + " is not a PE-COFF executable");
1159     return;
1160   }
1161 
1162   for (const auto &exp : coffObj->export_directories()) {
1163     StringRef dllName, symbolName;
1164     uint32_t exportRVA;
1165     checkError(exp.getDllName(dllName));
1166     checkError(exp.getSymbolName(symbolName));
1167     checkError(exp.getExportRVA(exportRVA));
1168 
1169     if (symbolName.empty())
1170       continue;
1171 
1172     bool code = isRVACode(coffObj.get(), exportRVA, this);
1173 
1174     Symbol *s = make<Symbol>();
1175     s->dllName = dllName;
1176     s->symbolName = symbolName;
1177     s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA;
1178     s->nameType = ImportNameType::IMPORT_NAME;
1179 
1180     if (coffObj->getMachine() == I386) {
1181       s->symbolName = symbolName = saver.save("_" + symbolName);
1182       s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX;
1183     }
1184 
1185     StringRef impName = saver.save("__imp_" + symbolName);
1186     ctx.symtab.addLazyDLLSymbol(this, s, impName);
1187     if (code)
1188       ctx.symtab.addLazyDLLSymbol(this, s, symbolName);
1189   }
1190 }
1191 
1192 MachineTypes DLLFile::getMachineType() {
1193   if (coffObj)
1194     return static_cast<MachineTypes>(coffObj->getMachine());
1195   return IMAGE_FILE_MACHINE_UNKNOWN;
1196 }
1197 
1198 void DLLFile::makeImport(DLLFile::Symbol *s) {
1199   if (!seen.insert(s->symbolName).second)
1200     return;
1201 
1202   size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs
1203   size_t size = sizeof(coff_import_header) + impSize;
1204   char *buf = bAlloc.Allocate<char>(size);
1205   memset(buf, 0, size);
1206   char *p = buf;
1207   auto *imp = reinterpret_cast<coff_import_header *>(p);
1208   p += sizeof(*imp);
1209   imp->Sig2 = 0xFFFF;
1210   imp->Machine = coffObj->getMachine();
1211   imp->SizeOfData = impSize;
1212   imp->OrdinalHint = 0; // Only linking by name
1213   imp->TypeInfo = (s->nameType << 2) | s->importType;
1214 
1215   // Write symbol name and DLL name.
1216   memcpy(p, s->symbolName.data(), s->symbolName.size());
1217   p += s->symbolName.size() + 1;
1218   memcpy(p, s->dllName.data(), s->dllName.size());
1219   MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName);
1220   ImportFile *impFile = make<ImportFile>(ctx, mbref);
1221   ctx.symtab.addFile(impFile);
1222 }
1223