1 //===-- Utils which wrap MPFR ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MPFRUtils.h" 10 11 #include "src/__support/CPP/StringView.h" 12 #include "src/__support/FPUtil/FPBits.h" 13 #include "src/__support/FPUtil/PlatformDefs.h" 14 #include "utils/UnitTest/FPMatcher.h" 15 16 #include <cmath> 17 #include <fenv.h> 18 #include <memory> 19 #include <sstream> 20 #include <stdint.h> 21 #include <string> 22 23 #ifdef CUSTOM_MPFR_INCLUDER 24 // Some downstream repos are monoliths carrying MPFR sources in their third 25 // party directory. In such repos, including the MPFR header as 26 // `#include <mpfr.h>` is either disallowed or not possible. If that is the 27 // case, a file named `CustomMPFRIncluder.h` should be added through which the 28 // MPFR header can be included in manner allowed in that repo. 29 #include "CustomMPFRIncluder.h" 30 #else 31 #include <mpfr.h> 32 #endif 33 34 template <typename T> using FPBits = __llvm_libc::fputil::FPBits<T>; 35 36 namespace __llvm_libc { 37 namespace testing { 38 namespace mpfr { 39 40 template <typename T> struct Precision; 41 42 template <> struct Precision<float> { 43 static constexpr unsigned int VALUE = 24; 44 }; 45 46 template <> struct Precision<double> { 47 static constexpr unsigned int VALUE = 53; 48 }; 49 50 #if defined(LONG_DOUBLE_IS_DOUBLE) 51 template <> struct Precision<long double> { 52 static constexpr unsigned int VALUE = 53; 53 }; 54 #elif defined(SPECIAL_X86_LONG_DOUBLE) 55 template <> struct Precision<long double> { 56 static constexpr unsigned int VALUE = 64; 57 }; 58 #else 59 template <> struct Precision<long double> { 60 static constexpr unsigned int VALUE = 113; 61 }; 62 #endif 63 64 // A precision value which allows sufficiently large additional 65 // precision compared to the floating point precision. 66 template <typename T> struct ExtraPrecision; 67 68 template <> struct ExtraPrecision<float> { 69 static constexpr unsigned int VALUE = 128; 70 }; 71 72 template <> struct ExtraPrecision<double> { 73 static constexpr unsigned int VALUE = 256; 74 }; 75 76 template <> struct ExtraPrecision<long double> { 77 static constexpr unsigned int VALUE = 256; 78 }; 79 80 // If the ulp tolerance is less than or equal to 0.5, we would check that the 81 // result is rounded correctly with respect to the rounding mode by using the 82 // same precision as the inputs. 83 template <typename T> 84 static inline unsigned int get_precision(double ulp_tolerance) { 85 if (ulp_tolerance <= 0.5) { 86 return Precision<T>::VALUE; 87 } else { 88 return ExtraPrecision<T>::VALUE; 89 } 90 } 91 92 static inline mpfr_rnd_t get_mpfr_rounding_mode(RoundingMode mode) { 93 switch (mode) { 94 case RoundingMode::Upward: 95 return MPFR_RNDU; 96 break; 97 case RoundingMode::Downward: 98 return MPFR_RNDD; 99 break; 100 case RoundingMode::TowardZero: 101 return MPFR_RNDZ; 102 break; 103 case RoundingMode::Nearest: 104 return MPFR_RNDN; 105 break; 106 } 107 } 108 109 int get_fe_rounding(RoundingMode mode) { 110 switch (mode) { 111 case RoundingMode::Upward: 112 return FE_UPWARD; 113 break; 114 case RoundingMode::Downward: 115 return FE_DOWNWARD; 116 break; 117 case RoundingMode::TowardZero: 118 return FE_TOWARDZERO; 119 break; 120 case RoundingMode::Nearest: 121 return FE_TONEAREST; 122 break; 123 } 124 } 125 126 ForceRoundingMode::ForceRoundingMode(RoundingMode mode) { 127 old_rounding_mode = fegetround(); 128 rounding_mode = get_fe_rounding(mode); 129 if (old_rounding_mode != rounding_mode) 130 fesetround(rounding_mode); 131 } 132 133 ForceRoundingMode::~ForceRoundingMode() { 134 if (old_rounding_mode != rounding_mode) 135 fesetround(old_rounding_mode); 136 } 137 138 class MPFRNumber { 139 unsigned int mpfr_precision; 140 mpfr_rnd_t mpfr_rounding; 141 142 mpfr_t value; 143 144 public: 145 MPFRNumber() : mpfr_precision(256), mpfr_rounding(MPFR_RNDN) { 146 mpfr_init2(value, mpfr_precision); 147 } 148 149 // We use explicit EnableIf specializations to disallow implicit 150 // conversions. Implicit conversions can potentially lead to loss of 151 // precision. 152 template <typename XType, 153 cpp::EnableIfType<cpp::IsSame<float, XType>::Value, int> = 0> 154 explicit MPFRNumber(XType x, int precision = ExtraPrecision<XType>::VALUE, 155 RoundingMode rounding = RoundingMode::Nearest) 156 : mpfr_precision(precision), 157 mpfr_rounding(get_mpfr_rounding_mode(rounding)) { 158 mpfr_init2(value, mpfr_precision); 159 mpfr_set_flt(value, x, mpfr_rounding); 160 } 161 162 template <typename XType, 163 cpp::EnableIfType<cpp::IsSame<double, XType>::Value, int> = 0> 164 explicit MPFRNumber(XType x, int precision = ExtraPrecision<XType>::VALUE, 165 RoundingMode rounding = RoundingMode::Nearest) 166 : mpfr_precision(precision), 167 mpfr_rounding(get_mpfr_rounding_mode(rounding)) { 168 mpfr_init2(value, mpfr_precision); 169 mpfr_set_d(value, x, mpfr_rounding); 170 } 171 172 template <typename XType, 173 cpp::EnableIfType<cpp::IsSame<long double, XType>::Value, int> = 0> 174 explicit MPFRNumber(XType x, int precision = ExtraPrecision<XType>::VALUE, 175 RoundingMode rounding = RoundingMode::Nearest) 176 : mpfr_precision(precision), 177 mpfr_rounding(get_mpfr_rounding_mode(rounding)) { 178 mpfr_init2(value, mpfr_precision); 179 mpfr_set_ld(value, x, mpfr_rounding); 180 } 181 182 template <typename XType, 183 cpp::EnableIfType<cpp::IsIntegral<XType>::Value, int> = 0> 184 explicit MPFRNumber(XType x, int precision = ExtraPrecision<float>::VALUE, 185 RoundingMode rounding = RoundingMode::Nearest) 186 : mpfr_precision(precision), 187 mpfr_rounding(get_mpfr_rounding_mode(rounding)) { 188 mpfr_init2(value, mpfr_precision); 189 mpfr_set_sj(value, x, mpfr_rounding); 190 } 191 192 MPFRNumber(const MPFRNumber &other) 193 : mpfr_precision(other.mpfr_precision), 194 mpfr_rounding(other.mpfr_rounding) { 195 mpfr_init2(value, mpfr_precision); 196 mpfr_set(value, other.value, mpfr_rounding); 197 } 198 199 ~MPFRNumber() { mpfr_clear(value); } 200 201 MPFRNumber &operator=(const MPFRNumber &rhs) { 202 mpfr_precision = rhs.mpfr_precision; 203 mpfr_rounding = rhs.mpfr_rounding; 204 mpfr_set(value, rhs.value, mpfr_rounding); 205 return *this; 206 } 207 208 MPFRNumber abs() const { 209 MPFRNumber result(*this); 210 mpfr_abs(result.value, value, mpfr_rounding); 211 return result; 212 } 213 214 MPFRNumber ceil() const { 215 MPFRNumber result(*this); 216 mpfr_ceil(result.value, value); 217 return result; 218 } 219 220 MPFRNumber cos() const { 221 MPFRNumber result(*this); 222 mpfr_cos(result.value, value, mpfr_rounding); 223 return result; 224 } 225 226 MPFRNumber exp() const { 227 MPFRNumber result(*this); 228 mpfr_exp(result.value, value, mpfr_rounding); 229 return result; 230 } 231 232 MPFRNumber exp2() const { 233 MPFRNumber result(*this); 234 mpfr_exp2(result.value, value, mpfr_rounding); 235 return result; 236 } 237 238 MPFRNumber expm1() const { 239 MPFRNumber result(*this); 240 mpfr_expm1(result.value, value, mpfr_rounding); 241 return result; 242 } 243 244 MPFRNumber floor() const { 245 MPFRNumber result(*this); 246 mpfr_floor(result.value, value); 247 return result; 248 } 249 250 MPFRNumber frexp(int &exp) { 251 MPFRNumber result(*this); 252 mpfr_exp_t resultExp; 253 mpfr_frexp(&resultExp, result.value, value, mpfr_rounding); 254 exp = resultExp; 255 return result; 256 } 257 258 MPFRNumber hypot(const MPFRNumber &b) { 259 MPFRNumber result(*this); 260 mpfr_hypot(result.value, value, b.value, mpfr_rounding); 261 return result; 262 } 263 264 MPFRNumber log() const { 265 MPFRNumber result(*this); 266 mpfr_log(result.value, value, mpfr_rounding); 267 return result; 268 } 269 270 MPFRNumber remquo(const MPFRNumber &divisor, int "ient) { 271 MPFRNumber remainder(*this); 272 long q; 273 mpfr_remquo(remainder.value, &q, value, divisor.value, mpfr_rounding); 274 quotient = q; 275 return remainder; 276 } 277 278 MPFRNumber round() const { 279 MPFRNumber result(*this); 280 mpfr_round(result.value, value); 281 return result; 282 } 283 284 bool round_to_long(long &result) const { 285 // We first calculate the rounded value. This way, when converting 286 // to long using mpfr_get_si, the rounding direction of MPFR_RNDN 287 // (or any other rounding mode), does not have an influence. 288 MPFRNumber roundedValue = round(); 289 mpfr_clear_erangeflag(); 290 result = mpfr_get_si(roundedValue.value, MPFR_RNDN); 291 return mpfr_erangeflag_p(); 292 } 293 294 bool round_to_long(mpfr_rnd_t rnd, long &result) const { 295 MPFRNumber rint_result(*this); 296 mpfr_rint(rint_result.value, value, rnd); 297 return rint_result.round_to_long(result); 298 } 299 300 MPFRNumber rint(mpfr_rnd_t rnd) const { 301 MPFRNumber result(*this); 302 mpfr_rint(result.value, value, rnd); 303 return result; 304 } 305 306 MPFRNumber mod_2pi() const { 307 MPFRNumber result(0.0, 1280); 308 MPFRNumber _2pi(0.0, 1280); 309 mpfr_const_pi(_2pi.value, MPFR_RNDN); 310 mpfr_mul_si(_2pi.value, _2pi.value, 2, MPFR_RNDN); 311 mpfr_fmod(result.value, value, _2pi.value, MPFR_RNDN); 312 return result; 313 } 314 315 MPFRNumber mod_pi_over_2() const { 316 MPFRNumber result(0.0, 1280); 317 MPFRNumber pi_over_2(0.0, 1280); 318 mpfr_const_pi(pi_over_2.value, MPFR_RNDN); 319 mpfr_mul_d(pi_over_2.value, pi_over_2.value, 0.5, MPFR_RNDN); 320 mpfr_fmod(result.value, value, pi_over_2.value, MPFR_RNDN); 321 return result; 322 } 323 324 MPFRNumber mod_pi_over_4() const { 325 MPFRNumber result(0.0, 1280); 326 MPFRNumber pi_over_4(0.0, 1280); 327 mpfr_const_pi(pi_over_4.value, MPFR_RNDN); 328 mpfr_mul_d(pi_over_4.value, pi_over_4.value, 0.25, MPFR_RNDN); 329 mpfr_fmod(result.value, value, pi_over_4.value, MPFR_RNDN); 330 return result; 331 } 332 333 MPFRNumber sin() const { 334 MPFRNumber result(*this); 335 mpfr_sin(result.value, value, mpfr_rounding); 336 return result; 337 } 338 339 MPFRNumber sqrt() const { 340 MPFRNumber result(*this); 341 mpfr_sqrt(result.value, value, mpfr_rounding); 342 return result; 343 } 344 345 MPFRNumber tan() const { 346 MPFRNumber result(*this); 347 mpfr_tan(result.value, value, mpfr_rounding); 348 return result; 349 } 350 351 MPFRNumber trunc() const { 352 MPFRNumber result(*this); 353 mpfr_trunc(result.value, value); 354 return result; 355 } 356 357 MPFRNumber fma(const MPFRNumber &b, const MPFRNumber &c) { 358 MPFRNumber result(*this); 359 mpfr_fma(result.value, value, b.value, c.value, mpfr_rounding); 360 return result; 361 } 362 363 std::string str() const { 364 // 200 bytes should be more than sufficient to hold a 100-digit number 365 // plus additional bytes for the decimal point, '-' sign etc. 366 constexpr size_t printBufSize = 200; 367 char buffer[printBufSize]; 368 mpfr_snprintf(buffer, printBufSize, "%100.50Rf", value); 369 cpp::StringView view(buffer); 370 view = view.trim(' '); 371 return std::string(view.data()); 372 } 373 374 // These functions are useful for debugging. 375 template <typename T> T as() const; 376 377 template <> float as<float>() const { 378 return mpfr_get_flt(value, mpfr_rounding); 379 } 380 template <> double as<double>() const { 381 return mpfr_get_d(value, mpfr_rounding); 382 } 383 template <> long double as<long double>() const { 384 return mpfr_get_ld(value, mpfr_rounding); 385 } 386 387 void dump(const char *msg) const { mpfr_printf("%s%.128Rf\n", msg, value); } 388 389 // Return the ULP (units-in-the-last-place) difference between the 390 // stored MPFR and a floating point number. 391 // 392 // We define ULP difference as follows: 393 // If exponents of this value and the |input| are same, then: 394 // ULP(this_value, input) = abs(this_value - input) / eps(input) 395 // else: 396 // max = max(abs(this_value), abs(input)) 397 // min = min(abs(this_value), abs(input)) 398 // maxExponent = exponent(max) 399 // ULP(this_value, input) = (max - 2^maxExponent) / eps(max) + 400 // (2^maxExponent - min) / eps(min) 401 // 402 // Remarks: 403 // 1. A ULP of 0.0 will imply that the value is correctly rounded. 404 // 2. We expect that this value and the value to be compared (the [input] 405 // argument) are reasonable close, and we will provide an upper bound 406 // of ULP value for testing. Morever, most of the fractional parts of 407 // ULP value do not matter much, so using double as the return type 408 // should be good enough. 409 // 3. For close enough values (values which don't diff in their exponent by 410 // not more than 1), a ULP difference of N indicates a bit distance 411 // of N between this number and [input]. 412 // 4. A values of +0.0 and -0.0 are treated as equal. 413 template <typename T> 414 cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, double> ulp(T input) { 415 T thisAsT = as<T>(); 416 if (thisAsT == input) 417 return T(0.0); 418 419 int thisExponent = fputil::FPBits<T>(thisAsT).get_exponent(); 420 int inputExponent = fputil::FPBits<T>(input).get_exponent(); 421 // Adjust the exponents for denormal numbers. 422 if (fputil::FPBits<T>(thisAsT).get_unbiased_exponent() == 0) 423 ++thisExponent; 424 if (fputil::FPBits<T>(input).get_unbiased_exponent() == 0) 425 ++inputExponent; 426 427 if (thisAsT * input < 0 || thisExponent == inputExponent) { 428 MPFRNumber inputMPFR(input); 429 mpfr_sub(inputMPFR.value, value, inputMPFR.value, MPFR_RNDN); 430 mpfr_abs(inputMPFR.value, inputMPFR.value, MPFR_RNDN); 431 mpfr_mul_2si(inputMPFR.value, inputMPFR.value, 432 -thisExponent + int(fputil::MantissaWidth<T>::VALUE), 433 MPFR_RNDN); 434 return inputMPFR.as<double>(); 435 } 436 437 // If the control reaches here, it means that this number and input are 438 // of the same sign but different exponent. In such a case, ULP error is 439 // calculated as sum of two parts. 440 thisAsT = std::abs(thisAsT); 441 input = std::abs(input); 442 T min = thisAsT > input ? input : thisAsT; 443 T max = thisAsT > input ? thisAsT : input; 444 int minExponent = fputil::FPBits<T>(min).get_exponent(); 445 int maxExponent = fputil::FPBits<T>(max).get_exponent(); 446 // Adjust the exponents for denormal numbers. 447 if (fputil::FPBits<T>(min).get_unbiased_exponent() == 0) 448 ++minExponent; 449 if (fputil::FPBits<T>(max).get_unbiased_exponent() == 0) 450 ++maxExponent; 451 452 MPFRNumber minMPFR(min); 453 MPFRNumber maxMPFR(max); 454 455 MPFRNumber pivot(uint32_t(1)); 456 mpfr_mul_2si(pivot.value, pivot.value, maxExponent, MPFR_RNDN); 457 458 mpfr_sub(minMPFR.value, pivot.value, minMPFR.value, MPFR_RNDN); 459 mpfr_mul_2si(minMPFR.value, minMPFR.value, 460 -minExponent + int(fputil::MantissaWidth<T>::VALUE), 461 MPFR_RNDN); 462 463 mpfr_sub(maxMPFR.value, maxMPFR.value, pivot.value, MPFR_RNDN); 464 mpfr_mul_2si(maxMPFR.value, maxMPFR.value, 465 -maxExponent + int(fputil::MantissaWidth<T>::VALUE), 466 MPFR_RNDN); 467 468 mpfr_add(minMPFR.value, minMPFR.value, maxMPFR.value, MPFR_RNDN); 469 return minMPFR.as<double>(); 470 } 471 }; 472 473 namespace internal { 474 475 template <typename InputType> 476 cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber> 477 unary_operation(Operation op, InputType input, unsigned int precision, 478 RoundingMode rounding) { 479 MPFRNumber mpfrInput(input, precision, rounding); 480 switch (op) { 481 case Operation::Abs: 482 return mpfrInput.abs(); 483 case Operation::Ceil: 484 return mpfrInput.ceil(); 485 case Operation::Cos: 486 return mpfrInput.cos(); 487 case Operation::Exp: 488 return mpfrInput.exp(); 489 case Operation::Exp2: 490 return mpfrInput.exp2(); 491 case Operation::Expm1: 492 return mpfrInput.expm1(); 493 case Operation::Floor: 494 return mpfrInput.floor(); 495 case Operation::Log: 496 return mpfrInput.log(); 497 case Operation::Mod2PI: 498 return mpfrInput.mod_2pi(); 499 case Operation::ModPIOver2: 500 return mpfrInput.mod_pi_over_2(); 501 case Operation::ModPIOver4: 502 return mpfrInput.mod_pi_over_4(); 503 case Operation::Round: 504 return mpfrInput.round(); 505 case Operation::Sin: 506 return mpfrInput.sin(); 507 case Operation::Sqrt: 508 return mpfrInput.sqrt(); 509 case Operation::Tan: 510 return mpfrInput.tan(); 511 case Operation::Trunc: 512 return mpfrInput.trunc(); 513 default: 514 __builtin_unreachable(); 515 } 516 } 517 518 template <typename InputType> 519 cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber> 520 unary_operation_two_outputs(Operation op, InputType input, int &output, 521 unsigned int precision, RoundingMode rounding) { 522 MPFRNumber mpfrInput(input, precision, rounding); 523 switch (op) { 524 case Operation::Frexp: 525 return mpfrInput.frexp(output); 526 default: 527 __builtin_unreachable(); 528 } 529 } 530 531 template <typename InputType> 532 cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber> 533 binary_operation_one_output(Operation op, InputType x, InputType y, 534 unsigned int precision, RoundingMode rounding) { 535 MPFRNumber inputX(x, precision, rounding); 536 MPFRNumber inputY(y, precision, rounding); 537 switch (op) { 538 case Operation::Hypot: 539 return inputX.hypot(inputY); 540 default: 541 __builtin_unreachable(); 542 } 543 } 544 545 template <typename InputType> 546 cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber> 547 binary_operation_two_outputs(Operation op, InputType x, InputType y, 548 int &output, unsigned int precision, 549 RoundingMode rounding) { 550 MPFRNumber inputX(x, precision, rounding); 551 MPFRNumber inputY(y, precision, rounding); 552 switch (op) { 553 case Operation::RemQuo: 554 return inputX.remquo(inputY, output); 555 default: 556 __builtin_unreachable(); 557 } 558 } 559 560 template <typename InputType> 561 cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber> 562 ternary_operation_one_output(Operation op, InputType x, InputType y, 563 InputType z, unsigned int precision, 564 RoundingMode rounding) { 565 // For FMA function, we just need to compare with the mpfr_fma with the same 566 // precision as InputType. Using higher precision as the intermediate results 567 // to compare might incorrectly fail due to double-rounding errors. 568 MPFRNumber inputX(x, precision, rounding); 569 MPFRNumber inputY(y, precision, rounding); 570 MPFRNumber inputZ(z, precision, rounding); 571 switch (op) { 572 case Operation::Fma: 573 return inputX.fma(inputY, inputZ); 574 default: 575 __builtin_unreachable(); 576 } 577 } 578 579 // Remark: For all the explain_*_error functions, we will use std::stringstream 580 // to build the complete error messages before sending it to the outstream `OS` 581 // once at the end. This will stop the error messages from interleaving when 582 // the tests are running concurrently. 583 template <typename T> 584 void explain_unary_operation_single_output_error(Operation op, T input, 585 T matchValue, 586 double ulp_tolerance, 587 RoundingMode rounding, 588 testutils::StreamWrapper &OS) { 589 unsigned int precision = get_precision<T>(ulp_tolerance); 590 MPFRNumber mpfrInput(input, precision); 591 MPFRNumber mpfr_result; 592 mpfr_result = unary_operation(op, input, precision, rounding); 593 MPFRNumber mpfrMatchValue(matchValue); 594 std::stringstream ss; 595 ss << "Match value not within tolerance value of MPFR result:\n" 596 << " Input decimal: " << mpfrInput.str() << '\n'; 597 __llvm_libc::fputil::testing::describeValue(" Input bits: ", input, ss); 598 ss << '\n' << " Match decimal: " << mpfrMatchValue.str() << '\n'; 599 __llvm_libc::fputil::testing::describeValue(" Match bits: ", matchValue, 600 ss); 601 ss << '\n' << " MPFR result: " << mpfr_result.str() << '\n'; 602 __llvm_libc::fputil::testing::describeValue( 603 " MPFR rounded: ", mpfr_result.as<T>(), ss); 604 ss << '\n'; 605 ss << " ULP error: " << std::to_string(mpfr_result.ulp(matchValue)) 606 << '\n'; 607 OS << ss.str(); 608 } 609 610 template void 611 explain_unary_operation_single_output_error<float>(Operation op, float, float, 612 double, RoundingMode, 613 testutils::StreamWrapper &); 614 template void explain_unary_operation_single_output_error<double>( 615 Operation op, double, double, double, RoundingMode, 616 testutils::StreamWrapper &); 617 template void explain_unary_operation_single_output_error<long double>( 618 Operation op, long double, long double, double, RoundingMode, 619 testutils::StreamWrapper &); 620 621 template <typename T> 622 void explain_unary_operation_two_outputs_error( 623 Operation op, T input, const BinaryOutput<T> &libc_result, 624 double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) { 625 unsigned int precision = get_precision<T>(ulp_tolerance); 626 MPFRNumber mpfrInput(input, precision); 627 int mpfrIntResult; 628 MPFRNumber mpfr_result = unary_operation_two_outputs(op, input, mpfrIntResult, 629 precision, rounding); 630 std::stringstream ss; 631 632 if (mpfrIntResult != libc_result.i) { 633 ss << "MPFR integral result: " << mpfrIntResult << '\n' 634 << "Libc integral result: " << libc_result.i << '\n'; 635 } else { 636 ss << "Integral result from libc matches integral result from MPFR.\n"; 637 } 638 639 MPFRNumber mpfrMatchValue(libc_result.f); 640 ss << "Libc floating point result is not within tolerance value of the MPFR " 641 << "result.\n\n"; 642 643 ss << " Input decimal: " << mpfrInput.str() << "\n\n"; 644 645 ss << "Libc floating point value: " << mpfrMatchValue.str() << '\n'; 646 __llvm_libc::fputil::testing::describeValue( 647 " Libc floating point bits: ", libc_result.f, ss); 648 ss << "\n\n"; 649 650 ss << " MPFR result: " << mpfr_result.str() << '\n'; 651 __llvm_libc::fputil::testing::describeValue( 652 " MPFR rounded: ", mpfr_result.as<T>(), ss); 653 ss << '\n' 654 << " ULP error: " 655 << std::to_string(mpfr_result.ulp(libc_result.f)) << '\n'; 656 OS << ss.str(); 657 } 658 659 template void explain_unary_operation_two_outputs_error<float>( 660 Operation, float, const BinaryOutput<float> &, double, RoundingMode, 661 testutils::StreamWrapper &); 662 template void explain_unary_operation_two_outputs_error<double>( 663 Operation, double, const BinaryOutput<double> &, double, RoundingMode, 664 testutils::StreamWrapper &); 665 template void explain_unary_operation_two_outputs_error<long double>( 666 Operation, long double, const BinaryOutput<long double> &, double, 667 RoundingMode, testutils::StreamWrapper &); 668 669 template <typename T> 670 void explain_binary_operation_two_outputs_error( 671 Operation op, const BinaryInput<T> &input, 672 const BinaryOutput<T> &libc_result, double ulp_tolerance, 673 RoundingMode rounding, testutils::StreamWrapper &OS) { 674 unsigned int precision = get_precision<T>(ulp_tolerance); 675 MPFRNumber mpfrX(input.x, precision); 676 MPFRNumber mpfrY(input.y, precision); 677 int mpfrIntResult; 678 MPFRNumber mpfr_result = binary_operation_two_outputs( 679 op, input.x, input.y, mpfrIntResult, precision, rounding); 680 MPFRNumber mpfrMatchValue(libc_result.f); 681 std::stringstream ss; 682 683 ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() << '\n' 684 << "MPFR integral result: " << mpfrIntResult << '\n' 685 << "Libc integral result: " << libc_result.i << '\n' 686 << "Libc floating point result: " << mpfrMatchValue.str() << '\n' 687 << " MPFR result: " << mpfr_result.str() << '\n'; 688 __llvm_libc::fputil::testing::describeValue( 689 "Libc floating point result bits: ", libc_result.f, ss); 690 __llvm_libc::fputil::testing::describeValue( 691 " MPFR rounded bits: ", mpfr_result.as<T>(), ss); 692 ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result.f)) << '\n'; 693 OS << ss.str(); 694 } 695 696 template void explain_binary_operation_two_outputs_error<float>( 697 Operation, const BinaryInput<float> &, const BinaryOutput<float> &, double, 698 RoundingMode, testutils::StreamWrapper &); 699 template void explain_binary_operation_two_outputs_error<double>( 700 Operation, const BinaryInput<double> &, const BinaryOutput<double> &, 701 double, RoundingMode, testutils::StreamWrapper &); 702 template void explain_binary_operation_two_outputs_error<long double>( 703 Operation, const BinaryInput<long double> &, 704 const BinaryOutput<long double> &, double, RoundingMode, 705 testutils::StreamWrapper &); 706 707 template <typename T> 708 void explain_binary_operation_one_output_error( 709 Operation op, const BinaryInput<T> &input, T libc_result, 710 double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) { 711 unsigned int precision = get_precision<T>(ulp_tolerance); 712 MPFRNumber mpfrX(input.x, precision); 713 MPFRNumber mpfrY(input.y, precision); 714 FPBits<T> xbits(input.x); 715 FPBits<T> ybits(input.y); 716 MPFRNumber mpfr_result = 717 binary_operation_one_output(op, input.x, input.y, precision, rounding); 718 MPFRNumber mpfrMatchValue(libc_result); 719 std::stringstream ss; 720 721 ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() << '\n'; 722 __llvm_libc::fputil::testing::describeValue("First input bits: ", input.x, 723 ss); 724 __llvm_libc::fputil::testing::describeValue("Second input bits: ", input.y, 725 ss); 726 727 ss << "Libc result: " << mpfrMatchValue.str() << '\n' 728 << "MPFR result: " << mpfr_result.str() << '\n'; 729 __llvm_libc::fputil::testing::describeValue( 730 "Libc floating point result bits: ", libc_result, ss); 731 __llvm_libc::fputil::testing::describeValue( 732 " MPFR rounded bits: ", mpfr_result.as<T>(), ss); 733 ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result)) << '\n'; 734 OS << ss.str(); 735 } 736 737 template void explain_binary_operation_one_output_error<float>( 738 Operation, const BinaryInput<float> &, float, double, RoundingMode, 739 testutils::StreamWrapper &); 740 template void explain_binary_operation_one_output_error<double>( 741 Operation, const BinaryInput<double> &, double, double, RoundingMode, 742 testutils::StreamWrapper &); 743 template void explain_binary_operation_one_output_error<long double>( 744 Operation, const BinaryInput<long double> &, long double, double, 745 RoundingMode, testutils::StreamWrapper &); 746 747 template <typename T> 748 void explain_ternary_operation_one_output_error( 749 Operation op, const TernaryInput<T> &input, T libc_result, 750 double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) { 751 unsigned int precision = get_precision<T>(ulp_tolerance); 752 MPFRNumber mpfrX(input.x, precision); 753 MPFRNumber mpfrY(input.y, precision); 754 MPFRNumber mpfrZ(input.z, precision); 755 FPBits<T> xbits(input.x); 756 FPBits<T> ybits(input.y); 757 FPBits<T> zbits(input.z); 758 MPFRNumber mpfr_result = ternary_operation_one_output( 759 op, input.x, input.y, input.z, precision, rounding); 760 MPFRNumber mpfrMatchValue(libc_result); 761 std::stringstream ss; 762 763 ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() 764 << " z: " << mpfrZ.str() << '\n'; 765 __llvm_libc::fputil::testing::describeValue("First input bits: ", input.x, 766 ss); 767 __llvm_libc::fputil::testing::describeValue("Second input bits: ", input.y, 768 ss); 769 __llvm_libc::fputil::testing::describeValue("Third input bits: ", input.z, 770 ss); 771 772 ss << "Libc result: " << mpfrMatchValue.str() << '\n' 773 << "MPFR result: " << mpfr_result.str() << '\n'; 774 __llvm_libc::fputil::testing::describeValue( 775 "Libc floating point result bits: ", libc_result, ss); 776 __llvm_libc::fputil::testing::describeValue( 777 " MPFR rounded bits: ", mpfr_result.as<T>(), ss); 778 ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result)) << '\n'; 779 OS << ss.str(); 780 } 781 782 template void explain_ternary_operation_one_output_error<float>( 783 Operation, const TernaryInput<float> &, float, double, RoundingMode, 784 testutils::StreamWrapper &); 785 template void explain_ternary_operation_one_output_error<double>( 786 Operation, const TernaryInput<double> &, double, double, RoundingMode, 787 testutils::StreamWrapper &); 788 template void explain_ternary_operation_one_output_error<long double>( 789 Operation, const TernaryInput<long double> &, long double, double, 790 RoundingMode, testutils::StreamWrapper &); 791 792 template <typename T> 793 bool compare_unary_operation_single_output(Operation op, T input, T libc_result, 794 double ulp_tolerance, 795 RoundingMode rounding) { 796 unsigned int precision = get_precision<T>(ulp_tolerance); 797 MPFRNumber mpfr_result; 798 mpfr_result = unary_operation(op, input, precision, rounding); 799 double ulp = mpfr_result.ulp(libc_result); 800 return (ulp <= ulp_tolerance); 801 } 802 803 template bool compare_unary_operation_single_output<float>(Operation, float, 804 float, double, 805 RoundingMode); 806 template bool compare_unary_operation_single_output<double>(Operation, double, 807 double, double, 808 RoundingMode); 809 template bool compare_unary_operation_single_output<long double>( 810 Operation, long double, long double, double, RoundingMode); 811 812 template <typename T> 813 bool compare_unary_operation_two_outputs(Operation op, T input, 814 const BinaryOutput<T> &libc_result, 815 double ulp_tolerance, 816 RoundingMode rounding) { 817 int mpfrIntResult; 818 unsigned int precision = get_precision<T>(ulp_tolerance); 819 MPFRNumber mpfr_result = unary_operation_two_outputs(op, input, mpfrIntResult, 820 precision, rounding); 821 double ulp = mpfr_result.ulp(libc_result.f); 822 823 if (mpfrIntResult != libc_result.i) 824 return false; 825 826 return (ulp <= ulp_tolerance); 827 } 828 829 template bool compare_unary_operation_two_outputs<float>( 830 Operation, float, const BinaryOutput<float> &, double, RoundingMode); 831 template bool compare_unary_operation_two_outputs<double>( 832 Operation, double, const BinaryOutput<double> &, double, RoundingMode); 833 template bool compare_unary_operation_two_outputs<long double>( 834 Operation, long double, const BinaryOutput<long double> &, double, 835 RoundingMode); 836 837 template <typename T> 838 bool compare_binary_operation_two_outputs(Operation op, 839 const BinaryInput<T> &input, 840 const BinaryOutput<T> &libc_result, 841 double ulp_tolerance, 842 RoundingMode rounding) { 843 int mpfrIntResult; 844 unsigned int precision = get_precision<T>(ulp_tolerance); 845 MPFRNumber mpfr_result = binary_operation_two_outputs( 846 op, input.x, input.y, mpfrIntResult, precision, rounding); 847 double ulp = mpfr_result.ulp(libc_result.f); 848 849 if (mpfrIntResult != libc_result.i) { 850 if (op == Operation::RemQuo) { 851 if ((0x7 & mpfrIntResult) != (0x7 & libc_result.i)) 852 return false; 853 } else { 854 return false; 855 } 856 } 857 858 return (ulp <= ulp_tolerance); 859 } 860 861 template bool compare_binary_operation_two_outputs<float>( 862 Operation, const BinaryInput<float> &, const BinaryOutput<float> &, double, 863 RoundingMode); 864 template bool compare_binary_operation_two_outputs<double>( 865 Operation, const BinaryInput<double> &, const BinaryOutput<double> &, 866 double, RoundingMode); 867 template bool compare_binary_operation_two_outputs<long double>( 868 Operation, const BinaryInput<long double> &, 869 const BinaryOutput<long double> &, double, RoundingMode); 870 871 template <typename T> 872 bool compare_binary_operation_one_output(Operation op, 873 const BinaryInput<T> &input, 874 T libc_result, double ulp_tolerance, 875 RoundingMode rounding) { 876 unsigned int precision = get_precision<T>(ulp_tolerance); 877 MPFRNumber mpfr_result = 878 binary_operation_one_output(op, input.x, input.y, precision, rounding); 879 double ulp = mpfr_result.ulp(libc_result); 880 881 return (ulp <= ulp_tolerance); 882 } 883 884 template bool compare_binary_operation_one_output<float>( 885 Operation, const BinaryInput<float> &, float, double, RoundingMode); 886 template bool compare_binary_operation_one_output<double>( 887 Operation, const BinaryInput<double> &, double, double, RoundingMode); 888 template bool compare_binary_operation_one_output<long double>( 889 Operation, const BinaryInput<long double> &, long double, double, 890 RoundingMode); 891 892 template <typename T> 893 bool compare_ternary_operation_one_output(Operation op, 894 const TernaryInput<T> &input, 895 T libc_result, double ulp_tolerance, 896 RoundingMode rounding) { 897 unsigned int precision = get_precision<T>(ulp_tolerance); 898 MPFRNumber mpfr_result = ternary_operation_one_output( 899 op, input.x, input.y, input.z, precision, rounding); 900 double ulp = mpfr_result.ulp(libc_result); 901 902 return (ulp <= ulp_tolerance); 903 } 904 905 template bool compare_ternary_operation_one_output<float>( 906 Operation, const TernaryInput<float> &, float, double, RoundingMode); 907 template bool compare_ternary_operation_one_output<double>( 908 Operation, const TernaryInput<double> &, double, double, RoundingMode); 909 template bool compare_ternary_operation_one_output<long double>( 910 Operation, const TernaryInput<long double> &, long double, double, 911 RoundingMode); 912 913 } // namespace internal 914 915 template <typename T> bool round_to_long(T x, long &result) { 916 MPFRNumber mpfr(x); 917 return mpfr.round_to_long(result); 918 } 919 920 template bool round_to_long<float>(float, long &); 921 template bool round_to_long<double>(double, long &); 922 template bool round_to_long<long double>(long double, long &); 923 924 template <typename T> bool round_to_long(T x, RoundingMode mode, long &result) { 925 MPFRNumber mpfr(x); 926 return mpfr.round_to_long(get_mpfr_rounding_mode(mode), result); 927 } 928 929 template bool round_to_long<float>(float, RoundingMode, long &); 930 template bool round_to_long<double>(double, RoundingMode, long &); 931 template bool round_to_long<long double>(long double, RoundingMode, long &); 932 933 template <typename T> T round(T x, RoundingMode mode) { 934 MPFRNumber mpfr(x); 935 MPFRNumber result = mpfr.rint(get_mpfr_rounding_mode(mode)); 936 return result.as<T>(); 937 } 938 939 template float round<float>(float, RoundingMode); 940 template double round<double>(double, RoundingMode); 941 template long double round<long double>(long double, RoundingMode); 942 943 } // namespace mpfr 944 } // namespace testing 945 } // namespace __llvm_libc 946