1 //===-- Utils which wrap MPFR ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MPFRUtils.h" 10 11 #include "src/__support/CPP/StringView.h" 12 #include "src/__support/FPUtil/FPBits.h" 13 #include "src/__support/FPUtil/PlatformDefs.h" 14 #include "utils/UnitTest/FPMatcher.h" 15 16 #include <cmath> 17 #include <fenv.h> 18 #include <memory> 19 #include <sstream> 20 #include <stdint.h> 21 #include <string> 22 23 #ifdef CUSTOM_MPFR_INCLUDER 24 // Some downstream repos are monoliths carrying MPFR sources in their third 25 // party directory. In such repos, including the MPFR header as 26 // `#include <mpfr.h>` is either disallowed or not possible. If that is the 27 // case, a file named `CustomMPFRIncluder.h` should be added through which the 28 // MPFR header can be included in manner allowed in that repo. 29 #include "CustomMPFRIncluder.h" 30 #else 31 #include <mpfr.h> 32 #endif 33 34 template <typename T> using FPBits = __llvm_libc::fputil::FPBits<T>; 35 36 namespace __llvm_libc { 37 namespace testing { 38 namespace mpfr { 39 40 template <typename T> struct Precision; 41 42 template <> struct Precision<float> { 43 static constexpr unsigned int VALUE = 24; 44 }; 45 46 template <> struct Precision<double> { 47 static constexpr unsigned int VALUE = 53; 48 }; 49 50 #if defined(LONG_DOUBLE_IS_DOUBLE) 51 template <> struct Precision<long double> { 52 static constexpr unsigned int VALUE = 53; 53 }; 54 #elif defined(SPECIAL_X86_LONG_DOUBLE) 55 template <> struct Precision<long double> { 56 static constexpr unsigned int VALUE = 64; 57 }; 58 #else 59 template <> struct Precision<long double> { 60 static constexpr unsigned int VALUE = 113; 61 }; 62 #endif 63 64 // A precision value which allows sufficiently large additional 65 // precision compared to the floating point precision. 66 template <typename T> struct ExtraPrecision; 67 68 template <> struct ExtraPrecision<float> { 69 static constexpr unsigned int VALUE = 128; 70 }; 71 72 template <> struct ExtraPrecision<double> { 73 static constexpr unsigned int VALUE = 256; 74 }; 75 76 template <> struct ExtraPrecision<long double> { 77 static constexpr unsigned int VALUE = 256; 78 }; 79 80 // If the ulp tolerance is less than or equal to 0.5, we would check that the 81 // result is rounded correctly with respect to the rounding mode by using the 82 // same precision as the inputs. 83 template <typename T> 84 static inline unsigned int get_precision(double ulp_tolerance) { 85 if (ulp_tolerance <= 0.5) { 86 return Precision<T>::VALUE; 87 } else { 88 return ExtraPrecision<T>::VALUE; 89 } 90 } 91 92 static inline mpfr_rnd_t get_mpfr_rounding_mode(RoundingMode mode) { 93 switch (mode) { 94 case RoundingMode::Upward: 95 return MPFR_RNDU; 96 break; 97 case RoundingMode::Downward: 98 return MPFR_RNDD; 99 break; 100 case RoundingMode::TowardZero: 101 return MPFR_RNDZ; 102 break; 103 case RoundingMode::Nearest: 104 return MPFR_RNDN; 105 break; 106 } 107 } 108 109 int get_fe_rounding(RoundingMode mode) { 110 switch (mode) { 111 case RoundingMode::Upward: 112 return FE_UPWARD; 113 break; 114 case RoundingMode::Downward: 115 return FE_DOWNWARD; 116 break; 117 case RoundingMode::TowardZero: 118 return FE_TOWARDZERO; 119 break; 120 case RoundingMode::Nearest: 121 return FE_TONEAREST; 122 break; 123 } 124 } 125 126 ForceRoundingMode::ForceRoundingMode(RoundingMode mode) { 127 old_rounding_mode = fegetround(); 128 rounding_mode = get_fe_rounding(mode); 129 if (old_rounding_mode != rounding_mode) 130 fesetround(rounding_mode); 131 } 132 133 ForceRoundingMode::~ForceRoundingMode() { 134 if (old_rounding_mode != rounding_mode) 135 fesetround(old_rounding_mode); 136 } 137 138 class MPFRNumber { 139 unsigned int mpfr_precision; 140 mpfr_rnd_t mpfr_rounding; 141 142 mpfr_t value; 143 144 public: 145 MPFRNumber() : mpfr_precision(256), mpfr_rounding(MPFR_RNDN) { 146 mpfr_init2(value, mpfr_precision); 147 } 148 149 // We use explicit EnableIf specializations to disallow implicit 150 // conversions. Implicit conversions can potentially lead to loss of 151 // precision. 152 template <typename XType, 153 cpp::EnableIfType<cpp::IsSame<float, XType>::Value, int> = 0> 154 explicit MPFRNumber(XType x, int precision = ExtraPrecision<XType>::VALUE, 155 RoundingMode rounding = RoundingMode::Nearest) 156 : mpfr_precision(precision), 157 mpfr_rounding(get_mpfr_rounding_mode(rounding)) { 158 mpfr_init2(value, mpfr_precision); 159 mpfr_set_flt(value, x, mpfr_rounding); 160 } 161 162 template <typename XType, 163 cpp::EnableIfType<cpp::IsSame<double, XType>::Value, int> = 0> 164 explicit MPFRNumber(XType x, int precision = ExtraPrecision<XType>::VALUE, 165 RoundingMode rounding = RoundingMode::Nearest) 166 : mpfr_precision(precision), 167 mpfr_rounding(get_mpfr_rounding_mode(rounding)) { 168 mpfr_init2(value, mpfr_precision); 169 mpfr_set_d(value, x, mpfr_rounding); 170 } 171 172 template <typename XType, 173 cpp::EnableIfType<cpp::IsSame<long double, XType>::Value, int> = 0> 174 explicit MPFRNumber(XType x, int precision = ExtraPrecision<XType>::VALUE, 175 RoundingMode rounding = RoundingMode::Nearest) 176 : mpfr_precision(precision), 177 mpfr_rounding(get_mpfr_rounding_mode(rounding)) { 178 mpfr_init2(value, mpfr_precision); 179 mpfr_set_ld(value, x, mpfr_rounding); 180 } 181 182 template <typename XType, 183 cpp::EnableIfType<cpp::IsIntegral<XType>::Value, int> = 0> 184 explicit MPFRNumber(XType x, int precision = ExtraPrecision<float>::VALUE, 185 RoundingMode rounding = RoundingMode::Nearest) 186 : mpfr_precision(precision), 187 mpfr_rounding(get_mpfr_rounding_mode(rounding)) { 188 mpfr_init2(value, mpfr_precision); 189 mpfr_set_sj(value, x, mpfr_rounding); 190 } 191 192 MPFRNumber(const MPFRNumber &other) 193 : mpfr_precision(other.mpfr_precision), 194 mpfr_rounding(other.mpfr_rounding) { 195 mpfr_init2(value, mpfr_precision); 196 mpfr_set(value, other.value, mpfr_rounding); 197 } 198 199 ~MPFRNumber() { mpfr_clear(value); } 200 201 MPFRNumber &operator=(const MPFRNumber &rhs) { 202 mpfr_precision = rhs.mpfr_precision; 203 mpfr_rounding = rhs.mpfr_rounding; 204 mpfr_set(value, rhs.value, mpfr_rounding); 205 return *this; 206 } 207 208 MPFRNumber abs() const { 209 MPFRNumber result(*this); 210 mpfr_abs(result.value, value, mpfr_rounding); 211 return result; 212 } 213 214 MPFRNumber ceil() const { 215 MPFRNumber result(*this); 216 mpfr_ceil(result.value, value); 217 return result; 218 } 219 220 MPFRNumber cos() const { 221 MPFRNumber result(*this); 222 mpfr_cos(result.value, value, mpfr_rounding); 223 return result; 224 } 225 226 MPFRNumber exp() const { 227 MPFRNumber result(*this); 228 mpfr_exp(result.value, value, mpfr_rounding); 229 return result; 230 } 231 232 MPFRNumber exp2() const { 233 MPFRNumber result(*this); 234 mpfr_exp2(result.value, value, mpfr_rounding); 235 return result; 236 } 237 238 MPFRNumber expm1() const { 239 MPFRNumber result(*this); 240 mpfr_expm1(result.value, value, mpfr_rounding); 241 return result; 242 } 243 244 MPFRNumber floor() const { 245 MPFRNumber result(*this); 246 mpfr_floor(result.value, value); 247 return result; 248 } 249 250 MPFRNumber frexp(int &exp) { 251 MPFRNumber result(*this); 252 mpfr_exp_t resultExp; 253 mpfr_frexp(&resultExp, result.value, value, mpfr_rounding); 254 exp = resultExp; 255 return result; 256 } 257 258 MPFRNumber hypot(const MPFRNumber &b) { 259 MPFRNumber result(*this); 260 mpfr_hypot(result.value, value, b.value, mpfr_rounding); 261 return result; 262 } 263 264 MPFRNumber log() const { 265 MPFRNumber result(*this); 266 mpfr_log(result.value, value, mpfr_rounding); 267 return result; 268 } 269 270 MPFRNumber log2() const { 271 MPFRNumber result(*this); 272 mpfr_log2(result.value, value, mpfr_rounding); 273 return result; 274 } 275 276 MPFRNumber remquo(const MPFRNumber &divisor, int "ient) { 277 MPFRNumber remainder(*this); 278 long q; 279 mpfr_remquo(remainder.value, &q, value, divisor.value, mpfr_rounding); 280 quotient = q; 281 return remainder; 282 } 283 284 MPFRNumber round() const { 285 MPFRNumber result(*this); 286 mpfr_round(result.value, value); 287 return result; 288 } 289 290 bool round_to_long(long &result) const { 291 // We first calculate the rounded value. This way, when converting 292 // to long using mpfr_get_si, the rounding direction of MPFR_RNDN 293 // (or any other rounding mode), does not have an influence. 294 MPFRNumber roundedValue = round(); 295 mpfr_clear_erangeflag(); 296 result = mpfr_get_si(roundedValue.value, MPFR_RNDN); 297 return mpfr_erangeflag_p(); 298 } 299 300 bool round_to_long(mpfr_rnd_t rnd, long &result) const { 301 MPFRNumber rint_result(*this); 302 mpfr_rint(rint_result.value, value, rnd); 303 return rint_result.round_to_long(result); 304 } 305 306 MPFRNumber rint(mpfr_rnd_t rnd) const { 307 MPFRNumber result(*this); 308 mpfr_rint(result.value, value, rnd); 309 return result; 310 } 311 312 MPFRNumber mod_2pi() const { 313 MPFRNumber result(0.0, 1280); 314 MPFRNumber _2pi(0.0, 1280); 315 mpfr_const_pi(_2pi.value, MPFR_RNDN); 316 mpfr_mul_si(_2pi.value, _2pi.value, 2, MPFR_RNDN); 317 mpfr_fmod(result.value, value, _2pi.value, MPFR_RNDN); 318 return result; 319 } 320 321 MPFRNumber mod_pi_over_2() const { 322 MPFRNumber result(0.0, 1280); 323 MPFRNumber pi_over_2(0.0, 1280); 324 mpfr_const_pi(pi_over_2.value, MPFR_RNDN); 325 mpfr_mul_d(pi_over_2.value, pi_over_2.value, 0.5, MPFR_RNDN); 326 mpfr_fmod(result.value, value, pi_over_2.value, MPFR_RNDN); 327 return result; 328 } 329 330 MPFRNumber mod_pi_over_4() const { 331 MPFRNumber result(0.0, 1280); 332 MPFRNumber pi_over_4(0.0, 1280); 333 mpfr_const_pi(pi_over_4.value, MPFR_RNDN); 334 mpfr_mul_d(pi_over_4.value, pi_over_4.value, 0.25, MPFR_RNDN); 335 mpfr_fmod(result.value, value, pi_over_4.value, MPFR_RNDN); 336 return result; 337 } 338 339 MPFRNumber sin() const { 340 MPFRNumber result(*this); 341 mpfr_sin(result.value, value, mpfr_rounding); 342 return result; 343 } 344 345 MPFRNumber sqrt() const { 346 MPFRNumber result(*this); 347 mpfr_sqrt(result.value, value, mpfr_rounding); 348 return result; 349 } 350 351 MPFRNumber tan() const { 352 MPFRNumber result(*this); 353 mpfr_tan(result.value, value, mpfr_rounding); 354 return result; 355 } 356 357 MPFRNumber trunc() const { 358 MPFRNumber result(*this); 359 mpfr_trunc(result.value, value); 360 return result; 361 } 362 363 MPFRNumber fma(const MPFRNumber &b, const MPFRNumber &c) { 364 MPFRNumber result(*this); 365 mpfr_fma(result.value, value, b.value, c.value, mpfr_rounding); 366 return result; 367 } 368 369 std::string str() const { 370 // 200 bytes should be more than sufficient to hold a 100-digit number 371 // plus additional bytes for the decimal point, '-' sign etc. 372 constexpr size_t printBufSize = 200; 373 char buffer[printBufSize]; 374 mpfr_snprintf(buffer, printBufSize, "%100.50Rf", value); 375 cpp::StringView view(buffer); 376 view = view.trim(' '); 377 return std::string(view.data()); 378 } 379 380 // These functions are useful for debugging. 381 template <typename T> T as() const; 382 383 template <> float as<float>() const { 384 return mpfr_get_flt(value, mpfr_rounding); 385 } 386 template <> double as<double>() const { 387 return mpfr_get_d(value, mpfr_rounding); 388 } 389 template <> long double as<long double>() const { 390 return mpfr_get_ld(value, mpfr_rounding); 391 } 392 393 void dump(const char *msg) const { mpfr_printf("%s%.128Rf\n", msg, value); } 394 395 // Return the ULP (units-in-the-last-place) difference between the 396 // stored MPFR and a floating point number. 397 // 398 // We define ULP difference as follows: 399 // If exponents of this value and the |input| are same, then: 400 // ULP(this_value, input) = abs(this_value - input) / eps(input) 401 // else: 402 // max = max(abs(this_value), abs(input)) 403 // min = min(abs(this_value), abs(input)) 404 // maxExponent = exponent(max) 405 // ULP(this_value, input) = (max - 2^maxExponent) / eps(max) + 406 // (2^maxExponent - min) / eps(min) 407 // 408 // Remarks: 409 // 1. A ULP of 0.0 will imply that the value is correctly rounded. 410 // 2. We expect that this value and the value to be compared (the [input] 411 // argument) are reasonable close, and we will provide an upper bound 412 // of ULP value for testing. Morever, most of the fractional parts of 413 // ULP value do not matter much, so using double as the return type 414 // should be good enough. 415 // 3. For close enough values (values which don't diff in their exponent by 416 // not more than 1), a ULP difference of N indicates a bit distance 417 // of N between this number and [input]. 418 // 4. A values of +0.0 and -0.0 are treated as equal. 419 template <typename T> 420 cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, double> ulp(T input) { 421 T thisAsT = as<T>(); 422 if (thisAsT == input) 423 return T(0.0); 424 425 int thisExponent = fputil::FPBits<T>(thisAsT).get_exponent(); 426 int inputExponent = fputil::FPBits<T>(input).get_exponent(); 427 // Adjust the exponents for denormal numbers. 428 if (fputil::FPBits<T>(thisAsT).get_unbiased_exponent() == 0) 429 ++thisExponent; 430 if (fputil::FPBits<T>(input).get_unbiased_exponent() == 0) 431 ++inputExponent; 432 433 if (thisAsT * input < 0 || thisExponent == inputExponent) { 434 MPFRNumber inputMPFR(input); 435 mpfr_sub(inputMPFR.value, value, inputMPFR.value, MPFR_RNDN); 436 mpfr_abs(inputMPFR.value, inputMPFR.value, MPFR_RNDN); 437 mpfr_mul_2si(inputMPFR.value, inputMPFR.value, 438 -thisExponent + int(fputil::MantissaWidth<T>::VALUE), 439 MPFR_RNDN); 440 return inputMPFR.as<double>(); 441 } 442 443 // If the control reaches here, it means that this number and input are 444 // of the same sign but different exponent. In such a case, ULP error is 445 // calculated as sum of two parts. 446 thisAsT = std::abs(thisAsT); 447 input = std::abs(input); 448 T min = thisAsT > input ? input : thisAsT; 449 T max = thisAsT > input ? thisAsT : input; 450 int minExponent = fputil::FPBits<T>(min).get_exponent(); 451 int maxExponent = fputil::FPBits<T>(max).get_exponent(); 452 // Adjust the exponents for denormal numbers. 453 if (fputil::FPBits<T>(min).get_unbiased_exponent() == 0) 454 ++minExponent; 455 if (fputil::FPBits<T>(max).get_unbiased_exponent() == 0) 456 ++maxExponent; 457 458 MPFRNumber minMPFR(min); 459 MPFRNumber maxMPFR(max); 460 461 MPFRNumber pivot(uint32_t(1)); 462 mpfr_mul_2si(pivot.value, pivot.value, maxExponent, MPFR_RNDN); 463 464 mpfr_sub(minMPFR.value, pivot.value, minMPFR.value, MPFR_RNDN); 465 mpfr_mul_2si(minMPFR.value, minMPFR.value, 466 -minExponent + int(fputil::MantissaWidth<T>::VALUE), 467 MPFR_RNDN); 468 469 mpfr_sub(maxMPFR.value, maxMPFR.value, pivot.value, MPFR_RNDN); 470 mpfr_mul_2si(maxMPFR.value, maxMPFR.value, 471 -maxExponent + int(fputil::MantissaWidth<T>::VALUE), 472 MPFR_RNDN); 473 474 mpfr_add(minMPFR.value, minMPFR.value, maxMPFR.value, MPFR_RNDN); 475 return minMPFR.as<double>(); 476 } 477 }; 478 479 namespace internal { 480 481 template <typename InputType> 482 cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber> 483 unary_operation(Operation op, InputType input, unsigned int precision, 484 RoundingMode rounding) { 485 MPFRNumber mpfrInput(input, precision, rounding); 486 switch (op) { 487 case Operation::Abs: 488 return mpfrInput.abs(); 489 case Operation::Ceil: 490 return mpfrInput.ceil(); 491 case Operation::Cos: 492 return mpfrInput.cos(); 493 case Operation::Exp: 494 return mpfrInput.exp(); 495 case Operation::Exp2: 496 return mpfrInput.exp2(); 497 case Operation::Expm1: 498 return mpfrInput.expm1(); 499 case Operation::Floor: 500 return mpfrInput.floor(); 501 case Operation::Log: 502 return mpfrInput.log(); 503 case Operation::Log2: 504 return mpfrInput.log2(); 505 case Operation::Mod2PI: 506 return mpfrInput.mod_2pi(); 507 case Operation::ModPIOver2: 508 return mpfrInput.mod_pi_over_2(); 509 case Operation::ModPIOver4: 510 return mpfrInput.mod_pi_over_4(); 511 case Operation::Round: 512 return mpfrInput.round(); 513 case Operation::Sin: 514 return mpfrInput.sin(); 515 case Operation::Sqrt: 516 return mpfrInput.sqrt(); 517 case Operation::Tan: 518 return mpfrInput.tan(); 519 case Operation::Trunc: 520 return mpfrInput.trunc(); 521 default: 522 __builtin_unreachable(); 523 } 524 } 525 526 template <typename InputType> 527 cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber> 528 unary_operation_two_outputs(Operation op, InputType input, int &output, 529 unsigned int precision, RoundingMode rounding) { 530 MPFRNumber mpfrInput(input, precision, rounding); 531 switch (op) { 532 case Operation::Frexp: 533 return mpfrInput.frexp(output); 534 default: 535 __builtin_unreachable(); 536 } 537 } 538 539 template <typename InputType> 540 cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber> 541 binary_operation_one_output(Operation op, InputType x, InputType y, 542 unsigned int precision, RoundingMode rounding) { 543 MPFRNumber inputX(x, precision, rounding); 544 MPFRNumber inputY(y, precision, rounding); 545 switch (op) { 546 case Operation::Hypot: 547 return inputX.hypot(inputY); 548 default: 549 __builtin_unreachable(); 550 } 551 } 552 553 template <typename InputType> 554 cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber> 555 binary_operation_two_outputs(Operation op, InputType x, InputType y, 556 int &output, unsigned int precision, 557 RoundingMode rounding) { 558 MPFRNumber inputX(x, precision, rounding); 559 MPFRNumber inputY(y, precision, rounding); 560 switch (op) { 561 case Operation::RemQuo: 562 return inputX.remquo(inputY, output); 563 default: 564 __builtin_unreachable(); 565 } 566 } 567 568 template <typename InputType> 569 cpp::EnableIfType<cpp::IsFloatingPointType<InputType>::Value, MPFRNumber> 570 ternary_operation_one_output(Operation op, InputType x, InputType y, 571 InputType z, unsigned int precision, 572 RoundingMode rounding) { 573 // For FMA function, we just need to compare with the mpfr_fma with the same 574 // precision as InputType. Using higher precision as the intermediate results 575 // to compare might incorrectly fail due to double-rounding errors. 576 MPFRNumber inputX(x, precision, rounding); 577 MPFRNumber inputY(y, precision, rounding); 578 MPFRNumber inputZ(z, precision, rounding); 579 switch (op) { 580 case Operation::Fma: 581 return inputX.fma(inputY, inputZ); 582 default: 583 __builtin_unreachable(); 584 } 585 } 586 587 // Remark: For all the explain_*_error functions, we will use std::stringstream 588 // to build the complete error messages before sending it to the outstream `OS` 589 // once at the end. This will stop the error messages from interleaving when 590 // the tests are running concurrently. 591 template <typename T> 592 void explain_unary_operation_single_output_error(Operation op, T input, 593 T matchValue, 594 double ulp_tolerance, 595 RoundingMode rounding, 596 testutils::StreamWrapper &OS) { 597 unsigned int precision = get_precision<T>(ulp_tolerance); 598 MPFRNumber mpfrInput(input, precision); 599 MPFRNumber mpfr_result; 600 mpfr_result = unary_operation(op, input, precision, rounding); 601 MPFRNumber mpfrMatchValue(matchValue); 602 std::stringstream ss; 603 ss << "Match value not within tolerance value of MPFR result:\n" 604 << " Input decimal: " << mpfrInput.str() << '\n'; 605 __llvm_libc::fputil::testing::describeValue(" Input bits: ", input, ss); 606 ss << '\n' << " Match decimal: " << mpfrMatchValue.str() << '\n'; 607 __llvm_libc::fputil::testing::describeValue(" Match bits: ", matchValue, 608 ss); 609 ss << '\n' << " MPFR result: " << mpfr_result.str() << '\n'; 610 __llvm_libc::fputil::testing::describeValue( 611 " MPFR rounded: ", mpfr_result.as<T>(), ss); 612 ss << '\n'; 613 ss << " ULP error: " << std::to_string(mpfr_result.ulp(matchValue)) 614 << '\n'; 615 OS << ss.str(); 616 } 617 618 template void 619 explain_unary_operation_single_output_error<float>(Operation op, float, float, 620 double, RoundingMode, 621 testutils::StreamWrapper &); 622 template void explain_unary_operation_single_output_error<double>( 623 Operation op, double, double, double, RoundingMode, 624 testutils::StreamWrapper &); 625 template void explain_unary_operation_single_output_error<long double>( 626 Operation op, long double, long double, double, RoundingMode, 627 testutils::StreamWrapper &); 628 629 template <typename T> 630 void explain_unary_operation_two_outputs_error( 631 Operation op, T input, const BinaryOutput<T> &libc_result, 632 double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) { 633 unsigned int precision = get_precision<T>(ulp_tolerance); 634 MPFRNumber mpfrInput(input, precision); 635 int mpfrIntResult; 636 MPFRNumber mpfr_result = unary_operation_two_outputs(op, input, mpfrIntResult, 637 precision, rounding); 638 std::stringstream ss; 639 640 if (mpfrIntResult != libc_result.i) { 641 ss << "MPFR integral result: " << mpfrIntResult << '\n' 642 << "Libc integral result: " << libc_result.i << '\n'; 643 } else { 644 ss << "Integral result from libc matches integral result from MPFR.\n"; 645 } 646 647 MPFRNumber mpfrMatchValue(libc_result.f); 648 ss << "Libc floating point result is not within tolerance value of the MPFR " 649 << "result.\n\n"; 650 651 ss << " Input decimal: " << mpfrInput.str() << "\n\n"; 652 653 ss << "Libc floating point value: " << mpfrMatchValue.str() << '\n'; 654 __llvm_libc::fputil::testing::describeValue( 655 " Libc floating point bits: ", libc_result.f, ss); 656 ss << "\n\n"; 657 658 ss << " MPFR result: " << mpfr_result.str() << '\n'; 659 __llvm_libc::fputil::testing::describeValue( 660 " MPFR rounded: ", mpfr_result.as<T>(), ss); 661 ss << '\n' 662 << " ULP error: " 663 << std::to_string(mpfr_result.ulp(libc_result.f)) << '\n'; 664 OS << ss.str(); 665 } 666 667 template void explain_unary_operation_two_outputs_error<float>( 668 Operation, float, const BinaryOutput<float> &, double, RoundingMode, 669 testutils::StreamWrapper &); 670 template void explain_unary_operation_two_outputs_error<double>( 671 Operation, double, const BinaryOutput<double> &, double, RoundingMode, 672 testutils::StreamWrapper &); 673 template void explain_unary_operation_two_outputs_error<long double>( 674 Operation, long double, const BinaryOutput<long double> &, double, 675 RoundingMode, testutils::StreamWrapper &); 676 677 template <typename T> 678 void explain_binary_operation_two_outputs_error( 679 Operation op, const BinaryInput<T> &input, 680 const BinaryOutput<T> &libc_result, double ulp_tolerance, 681 RoundingMode rounding, testutils::StreamWrapper &OS) { 682 unsigned int precision = get_precision<T>(ulp_tolerance); 683 MPFRNumber mpfrX(input.x, precision); 684 MPFRNumber mpfrY(input.y, precision); 685 int mpfrIntResult; 686 MPFRNumber mpfr_result = binary_operation_two_outputs( 687 op, input.x, input.y, mpfrIntResult, precision, rounding); 688 MPFRNumber mpfrMatchValue(libc_result.f); 689 std::stringstream ss; 690 691 ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() << '\n' 692 << "MPFR integral result: " << mpfrIntResult << '\n' 693 << "Libc integral result: " << libc_result.i << '\n' 694 << "Libc floating point result: " << mpfrMatchValue.str() << '\n' 695 << " MPFR result: " << mpfr_result.str() << '\n'; 696 __llvm_libc::fputil::testing::describeValue( 697 "Libc floating point result bits: ", libc_result.f, ss); 698 __llvm_libc::fputil::testing::describeValue( 699 " MPFR rounded bits: ", mpfr_result.as<T>(), ss); 700 ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result.f)) << '\n'; 701 OS << ss.str(); 702 } 703 704 template void explain_binary_operation_two_outputs_error<float>( 705 Operation, const BinaryInput<float> &, const BinaryOutput<float> &, double, 706 RoundingMode, testutils::StreamWrapper &); 707 template void explain_binary_operation_two_outputs_error<double>( 708 Operation, const BinaryInput<double> &, const BinaryOutput<double> &, 709 double, RoundingMode, testutils::StreamWrapper &); 710 template void explain_binary_operation_two_outputs_error<long double>( 711 Operation, const BinaryInput<long double> &, 712 const BinaryOutput<long double> &, double, RoundingMode, 713 testutils::StreamWrapper &); 714 715 template <typename T> 716 void explain_binary_operation_one_output_error( 717 Operation op, const BinaryInput<T> &input, T libc_result, 718 double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) { 719 unsigned int precision = get_precision<T>(ulp_tolerance); 720 MPFRNumber mpfrX(input.x, precision); 721 MPFRNumber mpfrY(input.y, precision); 722 FPBits<T> xbits(input.x); 723 FPBits<T> ybits(input.y); 724 MPFRNumber mpfr_result = 725 binary_operation_one_output(op, input.x, input.y, precision, rounding); 726 MPFRNumber mpfrMatchValue(libc_result); 727 std::stringstream ss; 728 729 ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() << '\n'; 730 __llvm_libc::fputil::testing::describeValue("First input bits: ", input.x, 731 ss); 732 __llvm_libc::fputil::testing::describeValue("Second input bits: ", input.y, 733 ss); 734 735 ss << "Libc result: " << mpfrMatchValue.str() << '\n' 736 << "MPFR result: " << mpfr_result.str() << '\n'; 737 __llvm_libc::fputil::testing::describeValue( 738 "Libc floating point result bits: ", libc_result, ss); 739 __llvm_libc::fputil::testing::describeValue( 740 " MPFR rounded bits: ", mpfr_result.as<T>(), ss); 741 ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result)) << '\n'; 742 OS << ss.str(); 743 } 744 745 template void explain_binary_operation_one_output_error<float>( 746 Operation, const BinaryInput<float> &, float, double, RoundingMode, 747 testutils::StreamWrapper &); 748 template void explain_binary_operation_one_output_error<double>( 749 Operation, const BinaryInput<double> &, double, double, RoundingMode, 750 testutils::StreamWrapper &); 751 template void explain_binary_operation_one_output_error<long double>( 752 Operation, const BinaryInput<long double> &, long double, double, 753 RoundingMode, testutils::StreamWrapper &); 754 755 template <typename T> 756 void explain_ternary_operation_one_output_error( 757 Operation op, const TernaryInput<T> &input, T libc_result, 758 double ulp_tolerance, RoundingMode rounding, testutils::StreamWrapper &OS) { 759 unsigned int precision = get_precision<T>(ulp_tolerance); 760 MPFRNumber mpfrX(input.x, precision); 761 MPFRNumber mpfrY(input.y, precision); 762 MPFRNumber mpfrZ(input.z, precision); 763 FPBits<T> xbits(input.x); 764 FPBits<T> ybits(input.y); 765 FPBits<T> zbits(input.z); 766 MPFRNumber mpfr_result = ternary_operation_one_output( 767 op, input.x, input.y, input.z, precision, rounding); 768 MPFRNumber mpfrMatchValue(libc_result); 769 std::stringstream ss; 770 771 ss << "Input decimal: x: " << mpfrX.str() << " y: " << mpfrY.str() 772 << " z: " << mpfrZ.str() << '\n'; 773 __llvm_libc::fputil::testing::describeValue("First input bits: ", input.x, 774 ss); 775 __llvm_libc::fputil::testing::describeValue("Second input bits: ", input.y, 776 ss); 777 __llvm_libc::fputil::testing::describeValue("Third input bits: ", input.z, 778 ss); 779 780 ss << "Libc result: " << mpfrMatchValue.str() << '\n' 781 << "MPFR result: " << mpfr_result.str() << '\n'; 782 __llvm_libc::fputil::testing::describeValue( 783 "Libc floating point result bits: ", libc_result, ss); 784 __llvm_libc::fputil::testing::describeValue( 785 " MPFR rounded bits: ", mpfr_result.as<T>(), ss); 786 ss << "ULP error: " << std::to_string(mpfr_result.ulp(libc_result)) << '\n'; 787 OS << ss.str(); 788 } 789 790 template void explain_ternary_operation_one_output_error<float>( 791 Operation, const TernaryInput<float> &, float, double, RoundingMode, 792 testutils::StreamWrapper &); 793 template void explain_ternary_operation_one_output_error<double>( 794 Operation, const TernaryInput<double> &, double, double, RoundingMode, 795 testutils::StreamWrapper &); 796 template void explain_ternary_operation_one_output_error<long double>( 797 Operation, const TernaryInput<long double> &, long double, double, 798 RoundingMode, testutils::StreamWrapper &); 799 800 template <typename T> 801 bool compare_unary_operation_single_output(Operation op, T input, T libc_result, 802 double ulp_tolerance, 803 RoundingMode rounding) { 804 unsigned int precision = get_precision<T>(ulp_tolerance); 805 MPFRNumber mpfr_result; 806 mpfr_result = unary_operation(op, input, precision, rounding); 807 double ulp = mpfr_result.ulp(libc_result); 808 return (ulp <= ulp_tolerance); 809 } 810 811 template bool compare_unary_operation_single_output<float>(Operation, float, 812 float, double, 813 RoundingMode); 814 template bool compare_unary_operation_single_output<double>(Operation, double, 815 double, double, 816 RoundingMode); 817 template bool compare_unary_operation_single_output<long double>( 818 Operation, long double, long double, double, RoundingMode); 819 820 template <typename T> 821 bool compare_unary_operation_two_outputs(Operation op, T input, 822 const BinaryOutput<T> &libc_result, 823 double ulp_tolerance, 824 RoundingMode rounding) { 825 int mpfrIntResult; 826 unsigned int precision = get_precision<T>(ulp_tolerance); 827 MPFRNumber mpfr_result = unary_operation_two_outputs(op, input, mpfrIntResult, 828 precision, rounding); 829 double ulp = mpfr_result.ulp(libc_result.f); 830 831 if (mpfrIntResult != libc_result.i) 832 return false; 833 834 return (ulp <= ulp_tolerance); 835 } 836 837 template bool compare_unary_operation_two_outputs<float>( 838 Operation, float, const BinaryOutput<float> &, double, RoundingMode); 839 template bool compare_unary_operation_two_outputs<double>( 840 Operation, double, const BinaryOutput<double> &, double, RoundingMode); 841 template bool compare_unary_operation_two_outputs<long double>( 842 Operation, long double, const BinaryOutput<long double> &, double, 843 RoundingMode); 844 845 template <typename T> 846 bool compare_binary_operation_two_outputs(Operation op, 847 const BinaryInput<T> &input, 848 const BinaryOutput<T> &libc_result, 849 double ulp_tolerance, 850 RoundingMode rounding) { 851 int mpfrIntResult; 852 unsigned int precision = get_precision<T>(ulp_tolerance); 853 MPFRNumber mpfr_result = binary_operation_two_outputs( 854 op, input.x, input.y, mpfrIntResult, precision, rounding); 855 double ulp = mpfr_result.ulp(libc_result.f); 856 857 if (mpfrIntResult != libc_result.i) { 858 if (op == Operation::RemQuo) { 859 if ((0x7 & mpfrIntResult) != (0x7 & libc_result.i)) 860 return false; 861 } else { 862 return false; 863 } 864 } 865 866 return (ulp <= ulp_tolerance); 867 } 868 869 template bool compare_binary_operation_two_outputs<float>( 870 Operation, const BinaryInput<float> &, const BinaryOutput<float> &, double, 871 RoundingMode); 872 template bool compare_binary_operation_two_outputs<double>( 873 Operation, const BinaryInput<double> &, const BinaryOutput<double> &, 874 double, RoundingMode); 875 template bool compare_binary_operation_two_outputs<long double>( 876 Operation, const BinaryInput<long double> &, 877 const BinaryOutput<long double> &, double, RoundingMode); 878 879 template <typename T> 880 bool compare_binary_operation_one_output(Operation op, 881 const BinaryInput<T> &input, 882 T libc_result, double ulp_tolerance, 883 RoundingMode rounding) { 884 unsigned int precision = get_precision<T>(ulp_tolerance); 885 MPFRNumber mpfr_result = 886 binary_operation_one_output(op, input.x, input.y, precision, rounding); 887 double ulp = mpfr_result.ulp(libc_result); 888 889 return (ulp <= ulp_tolerance); 890 } 891 892 template bool compare_binary_operation_one_output<float>( 893 Operation, const BinaryInput<float> &, float, double, RoundingMode); 894 template bool compare_binary_operation_one_output<double>( 895 Operation, const BinaryInput<double> &, double, double, RoundingMode); 896 template bool compare_binary_operation_one_output<long double>( 897 Operation, const BinaryInput<long double> &, long double, double, 898 RoundingMode); 899 900 template <typename T> 901 bool compare_ternary_operation_one_output(Operation op, 902 const TernaryInput<T> &input, 903 T libc_result, double ulp_tolerance, 904 RoundingMode rounding) { 905 unsigned int precision = get_precision<T>(ulp_tolerance); 906 MPFRNumber mpfr_result = ternary_operation_one_output( 907 op, input.x, input.y, input.z, precision, rounding); 908 double ulp = mpfr_result.ulp(libc_result); 909 910 return (ulp <= ulp_tolerance); 911 } 912 913 template bool compare_ternary_operation_one_output<float>( 914 Operation, const TernaryInput<float> &, float, double, RoundingMode); 915 template bool compare_ternary_operation_one_output<double>( 916 Operation, const TernaryInput<double> &, double, double, RoundingMode); 917 template bool compare_ternary_operation_one_output<long double>( 918 Operation, const TernaryInput<long double> &, long double, double, 919 RoundingMode); 920 921 } // namespace internal 922 923 template <typename T> bool round_to_long(T x, long &result) { 924 MPFRNumber mpfr(x); 925 return mpfr.round_to_long(result); 926 } 927 928 template bool round_to_long<float>(float, long &); 929 template bool round_to_long<double>(double, long &); 930 template bool round_to_long<long double>(long double, long &); 931 932 template <typename T> bool round_to_long(T x, RoundingMode mode, long &result) { 933 MPFRNumber mpfr(x); 934 return mpfr.round_to_long(get_mpfr_rounding_mode(mode), result); 935 } 936 937 template bool round_to_long<float>(float, RoundingMode, long &); 938 template bool round_to_long<double>(double, RoundingMode, long &); 939 template bool round_to_long<long double>(long double, RoundingMode, long &); 940 941 template <typename T> T round(T x, RoundingMode mode) { 942 MPFRNumber mpfr(x); 943 MPFRNumber result = mpfr.rint(get_mpfr_rounding_mode(mode)); 944 return result.as<T>(); 945 } 946 947 template float round<float>(float, RoundingMode); 948 template double round<double>(double, RoundingMode); 949 template long double round<long double>(long double, RoundingMode); 950 951 } // namespace mpfr 952 } // namespace testing 953 } // namespace __llvm_libc 954