1 //===-- Implementation of mktime function ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "src/time/time_utils.h" 10 #include "src/__support/common.h" 11 12 #include <limits.h> 13 14 namespace __llvm_libc { 15 namespace time_utils { 16 17 using __llvm_libc::time_utils::TimeConstants; 18 19 static int64_t computeRemainingYears(int64_t daysPerYears, 20 int64_t quotientYears, 21 int64_t *remainingDays) { 22 int64_t years = *remainingDays / daysPerYears; 23 if (years == quotientYears) 24 years--; 25 *remainingDays -= years * daysPerYears; 26 return years; 27 } 28 29 // First, divide "total_seconds" by the number of seconds in a day to get the 30 // number of days since Jan 1 1970. The remainder will be used to calculate the 31 // number of Hours, Minutes and Seconds. 32 // 33 // Then, adjust that number of days by a constant to be the number of days 34 // since Mar 1 2000. Year 2000 is a multiple of 400, the leap year cycle. This 35 // makes it easier to count how many leap years have passed using division. 36 // 37 // While calculating numbers of years in the days, the following algorithm 38 // subdivides the days into the number of 400 years, the number of 100 years and 39 // the number of 4 years. These numbers of cycle years are used in calculating 40 // leap day. This is similar to the algorithm used in getNumOfLeapYearsBefore() 41 // and isLeapYear(). Then compute the total number of years in days from these 42 // subdivided units. 43 // 44 // Compute the number of months from the remaining days. Finally, adjust years 45 // to be 1900 and months to be from January. 46 int64_t update_from_seconds(int64_t total_seconds, struct tm *tm) { 47 // Days in month starting from March in the year 2000. 48 static const char daysInMonth[] = {31 /* Mar */, 30, 31, 30, 31, 31, 49 30, 31, 30, 31, 31, 29}; 50 51 if (sizeof(time_t) == 4) { 52 if (total_seconds < 0x80000000) 53 return time_utils::out_of_range(); 54 if (total_seconds > 0x7FFFFFFF) 55 return time_utils::out_of_range(); 56 } else { 57 if (total_seconds < 58 INT_MIN * static_cast<int64_t>( 59 TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR) || 60 total_seconds > 61 INT_MAX * static_cast<int64_t>( 62 TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR)) 63 return time_utils::out_of_range(); 64 } 65 66 int64_t seconds = 67 total_seconds - TimeConstants::SECONDS_UNTIL2000_MARCH_FIRST; 68 int64_t days = seconds / TimeConstants::SECONDS_PER_DAY; 69 int64_t remainingSeconds = seconds % TimeConstants::SECONDS_PER_DAY; 70 if (remainingSeconds < 0) { 71 remainingSeconds += TimeConstants::SECONDS_PER_DAY; 72 days--; 73 } 74 75 int64_t wday = (TimeConstants::WEEK_DAY_OF2000_MARCH_FIRST + days) % 76 TimeConstants::DAYS_PER_WEEK; 77 if (wday < 0) 78 wday += TimeConstants::DAYS_PER_WEEK; 79 80 // Compute the number of 400 year cycles. 81 int64_t numOfFourHundredYearCycles = days / TimeConstants::DAYS_PER400_YEARS; 82 int64_t remainingDays = days % TimeConstants::DAYS_PER400_YEARS; 83 if (remainingDays < 0) { 84 remainingDays += TimeConstants::DAYS_PER400_YEARS; 85 numOfFourHundredYearCycles--; 86 } 87 88 // The reminder number of years after computing number of 89 // "four hundred year cycles" will be 4 hundred year cycles or less in 400 90 // years. 91 int64_t numOfHundredYearCycles = computeRemainingYears( 92 TimeConstants::DAYS_PER100_YEARS, 4, &remainingDays); 93 94 // The reminder number of years after computing number of 95 // "hundred year cycles" will be 25 four year cycles or less in 100 years. 96 int64_t numOfFourYearCycles = 97 computeRemainingYears(TimeConstants::DAYS_PER4_YEARS, 25, &remainingDays); 98 99 // The reminder number of years after computing number of "four year cycles" 100 // will be 4 one year cycles or less in 4 years. 101 int64_t remainingYears = computeRemainingYears( 102 TimeConstants::DAYS_PER_NON_LEAP_YEAR, 4, &remainingDays); 103 104 // Calculate number of years from year 2000. 105 int64_t years = remainingYears + 4 * numOfFourYearCycles + 106 100 * numOfHundredYearCycles + 107 400LL * numOfFourHundredYearCycles; 108 109 int leapDay = 110 !remainingYears && (numOfFourYearCycles || !numOfHundredYearCycles); 111 112 int64_t yday = remainingDays + 31 + 28 + leapDay; 113 if (yday >= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay) 114 yday -= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay; 115 116 int64_t months = 0; 117 while (daysInMonth[months] <= remainingDays) { 118 remainingDays -= daysInMonth[months]; 119 months++; 120 } 121 122 if (months >= TimeConstants::MONTHS_PER_YEAR - 2) { 123 months -= TimeConstants::MONTHS_PER_YEAR; 124 years++; 125 } 126 127 if (years > INT_MAX || years < INT_MIN) 128 return time_utils::out_of_range(); 129 130 // All the data (years, month and remaining days) was calculated from 131 // March, 2000. Thus adjust the data to be from January, 1900. 132 tm->tm_year = years + 2000 - TimeConstants::TIME_YEAR_BASE; 133 tm->tm_mon = months + 2; 134 tm->tm_mday = remainingDays + 1; 135 tm->tm_wday = wday; 136 tm->tm_yday = yday; 137 138 tm->tm_hour = remainingSeconds / TimeConstants::SECONDS_PER_HOUR; 139 tm->tm_min = remainingSeconds / TimeConstants::SECONDS_PER_MIN % 140 TimeConstants::SECONDS_PER_MIN; 141 tm->tm_sec = remainingSeconds % TimeConstants::SECONDS_PER_MIN; 142 // TODO(rtenneti): Need to handle timezone and update of tm_isdst. 143 tm->tm_isdst = 0; 144 145 return 0; 146 } 147 148 } // namespace time_utils 149 } // namespace __llvm_libc 150