1 //===-- Single-precision log(x) function ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/logf.h"
10 #include "common_constants.h" // Lookup table for (1/f) and log(f)
11 #include "src/__support/FPUtil/BasicOperations.h"
12 #include "src/__support/FPUtil/FEnvImpl.h"
13 #include "src/__support/FPUtil/FMA.h"
14 #include "src/__support/FPUtil/FPBits.h"
15 #include "src/__support/FPUtil/PolyEval.h"
16 #include "src/__support/common.h"
17 
18 // This is an algorithm for log(x) in single precision which is correctly
19 // rounded for all rounding modes, based on the implementation of log(x) from
20 // the RLIBM project at:
21 // https://people.cs.rutgers.edu/~sn349/rlibm
22 
23 // Step 1 - Range reduction:
24 //   For x = 2^m * 1.mant, log(x) = m * log(2) + log(1.m)
25 //   If x is denormal, we normalize it by multiplying x by 2^23 and subtracting
26 //   m by 23.
27 
28 // Step 2 - Another range reduction:
29 //   To compute log(1.mant), let f be the highest 8 bits including the hidden
30 // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the
31 // mantissa. Then we have the following approximation formula:
32 //   log(1.mant) = log(f) + log(1.mant / f)
33 //               = log(f) + log(1 + d/f)
34 //               ~ log(f) + P(d/f)
35 // since d/f is sufficiently small.
36 //   log(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables.
37 
38 // Step 3 - Polynomial approximation:
39 //   To compute P(d/f), we use a single degree-5 polynomial in double precision
40 // which provides correct rounding for all but few exception values.
41 //   For more detail about how this polynomial is obtained, please refer to the
42 // paper:
43 //   Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce
44 // Correctly Rounded Results of an Elementary Function for Multiple
45 // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN
46 // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia,
47 // USA, January 16-22, 2022.
48 // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf
49 
50 namespace __llvm_libc {
51 
52 INLINE_FMA
53 LLVM_LIBC_FUNCTION(float, logf, (float x)) {
54   constexpr double LOG_2 = 0x1.62e42fefa39efp-1;
55   using FPBits = typename fputil::FPBits<float>;
56   FPBits xbits(x);
57 
58   switch (FPBits(x).uintval()) {
59   case 0x41178febU: // x = 0x1.2f1fd6p+3f
60     if (fputil::get_round() == FE_TONEAREST)
61       return 0x1.1fcbcep+1f;
62     break;
63   case 0x4c5d65a5U: // x = 0x1.bacb4ap+25f
64     if (fputil::get_round() == FE_TONEAREST)
65       return 0x1.1e0696p+4f;
66     break;
67   case 0x65d890d3U: // x = 0x1.b121a6p+76f
68     if (fputil::get_round() == FE_TONEAREST)
69       return 0x1.a9a3f2p+5f;
70     break;
71   case 0x6f31a8ecU: // x = 0x1.6351d8p+95f
72     if (fputil::get_round() == FE_TONEAREST)
73       return 0x1.08b512p+6f;
74     break;
75   case 0x3f800001U: // x = 0x1.000002p+0f
76     if (fputil::get_round() == FE_UPWARD)
77       return 0x1p-23f;
78     return 0x1.fffffep-24f;
79   case 0x500ffb03U: // x = 0x1.1ff606p+33f
80     if (fputil::get_round() != FE_UPWARD)
81       return 0x1.6fdd34p+4f;
82     break;
83   case 0x7a17f30aU: // x = 0x1.2fe614p+117f
84     if (fputil::get_round() != FE_UPWARD)
85       return 0x1.451436p+6f;
86     break;
87   case 0x5cd69e88U: // x = 0x1.ad3d1p+58f
88     if (fputil::get_round() != FE_UPWARD)
89       return 0x1.45c146p+5f;
90     break;
91   }
92 
93   int m = 0;
94 
95   if (xbits.uintval() < FPBits::MIN_NORMAL ||
96       xbits.uintval() > FPBits::MAX_NORMAL) {
97     if (xbits.is_zero()) {
98       return static_cast<float>(FPBits::neg_inf());
99     }
100     if (xbits.get_sign() && !xbits.is_nan()) {
101       return FPBits::build_nan(1 << (fputil::MantissaWidth<float>::VALUE - 1));
102     }
103     if (xbits.is_inf_or_nan()) {
104       return x;
105     }
106     // Normalize denormal inputs.
107     xbits.set_val(xbits.get_val() * 0x1.0p23f);
108     m = -23;
109   }
110 
111   m += xbits.get_exponent();
112   // Set bits to 1.m
113   xbits.set_unbiased_exponent(0x7F);
114   int f_index = xbits.get_mantissa() >> 16;
115 
116   FPBits f = xbits;
117   f.bits &= ~0x0000'FFFF;
118 
119   double d = static_cast<float>(xbits) - static_cast<float>(f);
120   d *= ONE_OVER_F[f_index];
121 
122   double extra_factor =
123       fputil::multiply_add(static_cast<double>(m), LOG_2, LOG_F[f_index]);
124 
125   double r = __llvm_libc::fputil::polyeval(
126       d, extra_factor, 0x1.fffffffffffacp-1, -0x1.fffffffef9cb2p-2,
127       0x1.5555513bc679ap-2, -0x1.fff4805ea441p-3, 0x1.930180dbde91ap-3);
128 
129   return static_cast<float>(r);
130 }
131 
132 } // namespace __llvm_libc
133