163d2df00STue Ly //===-- Single-precision log2(x) function ---------------------------------===// 263d2df00STue Ly // 363d2df00STue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 463d2df00STue Ly // See https://llvm.org/LICENSE.txt for license information. 563d2df00STue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 663d2df00STue Ly // 763d2df00STue Ly //===----------------------------------------------------------------------===// 863d2df00STue Ly 963d2df00STue Ly #include "src/math/log2f.h" 1063d2df00STue Ly #include "common_constants.h" // Lookup table for (1/f) 1163d2df00STue Ly #include "src/__support/FPUtil/BasicOperations.h" 12*76ec69a9STue Ly #include "src/__support/FPUtil/FEnvImpl.h" 1363d2df00STue Ly #include "src/__support/FPUtil/FMA.h" 1463d2df00STue Ly #include "src/__support/FPUtil/FPBits.h" 1563d2df00STue Ly #include "src/__support/FPUtil/PolyEval.h" 1663d2df00STue Ly #include "src/__support/common.h" 1763d2df00STue Ly 1863d2df00STue Ly // This is a correctly-rounded algorithm for log2(x) in single precision with 1963d2df00STue Ly // round-to-nearest, tie-to-even mode from the RLIBM project at: 2063d2df00STue Ly // https://people.cs.rutgers.edu/~sn349/rlibm 2163d2df00STue Ly 2263d2df00STue Ly // Step 1 - Range reduction: 2363d2df00STue Ly // For x = 2^m * 1.mant, log2(x) = m + log2(1.m) 2463d2df00STue Ly // If x is denormal, we normalize it by multiplying x by 2^23 and subtracting 2563d2df00STue Ly // m by 23. 2663d2df00STue Ly 2763d2df00STue Ly // Step 2 - Another range reduction: 2863d2df00STue Ly // To compute log(1.mant), let f be the highest 8 bits including the hidden 2963d2df00STue Ly // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the 3063d2df00STue Ly // mantissa. Then we have the following approximation formula: 3163d2df00STue Ly // log2(1.mant) = log2(f) + log2(1.mant / f) 3263d2df00STue Ly // = log2(f) + log2(1 + d/f) 3363d2df00STue Ly // ~ log2(f) + P(d/f) 3463d2df00STue Ly // since d/f is sufficiently small. 3563d2df00STue Ly // log2(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables. 3663d2df00STue Ly 3763d2df00STue Ly // Step 3 - Polynomial approximation: 3863d2df00STue Ly // To compute P(d/f), we use a single degree-5 polynomial in double precision 3963d2df00STue Ly // which provides correct rounding for all but few exception values. 4063d2df00STue Ly // For more detail about how this polynomial is obtained, please refer to the 4163d2df00STue Ly // papers: 4263d2df00STue Ly // Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce 4363d2df00STue Ly // Correctly Rounded Results of an Elementary Function for Multiple 4463d2df00STue Ly // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN 4563d2df00STue Ly // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia, 4663d2df00STue Ly // USA, Jan. 16-22, 2022. 4763d2df00STue Ly // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf 4863d2df00STue Ly // Aanjaneya, M., Lim, J., and Nagarakatte, S., "RLibm-Prog: Progressive 4963d2df00STue Ly // Polynomial Approximations for Fast Correctly Rounded Math Libraries", 5063d2df00STue Ly // Dept. of Comp. Sci., Rutgets U., Technical Report DCS-TR-758, Nov. 2021. 5163d2df00STue Ly // https://arxiv.org/pdf/2111.12852.pdf. 5263d2df00STue Ly 5363d2df00STue Ly namespace __llvm_libc { 5463d2df00STue Ly 5563d2df00STue Ly // Lookup table for log2(f) = log2(1 + n*2^(-7)) where n = 0..127. 5663d2df00STue Ly static constexpr double LOG2_F[128] = { 5763d2df00STue Ly 0x0.0000000000000p+0, 0x1.6fe50b6ef0851p-7, 0x1.6e79685c2d22ap-6, 5863d2df00STue Ly 0x1.11cd1d5133413p-5, 0x1.6bad3758efd87p-5, 0x1.c4dfab90aab5fp-5, 5963d2df00STue Ly 0x1.0eb389fa29f9bp-4, 0x1.3aa2fdd27f1c3p-4, 0x1.663f6fac91316p-4, 6063d2df00STue Ly 0x1.918a16e46335bp-4, 0x1.bc84240adabbap-4, 0x1.e72ec117fa5b2p-4, 6163d2df00STue Ly 0x1.08c588cda79e4p-3, 0x1.1dcd197552b7bp-3, 0x1.32ae9e278ae1ap-3, 6263d2df00STue Ly 0x1.476a9f983f74dp-3, 0x1.5c01a39fbd688p-3, 0x1.70742d4ef027fp-3, 6363d2df00STue Ly 0x1.84c2bd02f03b3p-3, 0x1.98edd077e70dfp-3, 0x1.acf5e2db4ec94p-3, 6463d2df00STue Ly 0x1.c0db6cdd94deep-3, 0x1.d49ee4c325970p-3, 0x1.e840be74e6a4dp-3, 6563d2df00STue Ly 0x1.fbc16b902680ap-3, 0x1.0790adbb03009p-2, 0x1.11307dad30b76p-2, 6663d2df00STue Ly 0x1.1ac05b291f070p-2, 0x1.24407ab0e073ap-2, 0x1.2db10fc4d9aafp-2, 6763d2df00STue Ly 0x1.37124cea4cdedp-2, 0x1.406463b1b0449p-2, 0x1.49a784bcd1b8bp-2, 6863d2df00STue Ly 0x1.52dbdfc4c96b3p-2, 0x1.5c01a39fbd688p-2, 0x1.6518fe4677ba7p-2, 6963d2df00STue Ly 0x1.6e221cd9d0cdep-2, 0x1.771d2ba7efb3cp-2, 0x1.800a563161c54p-2, 7063d2df00STue Ly 0x1.88e9c72e0b226p-2, 0x1.91bba891f1709p-2, 0x1.9a802391e232fp-2, 7163d2df00STue Ly 0x1.a33760a7f6051p-2, 0x1.abe18797f1f49p-2, 0x1.b47ebf73882a1p-2, 7263d2df00STue Ly 0x1.bd0f2e9e79031p-2, 0x1.c592fad295b56p-2, 0x1.ce0a4923a587dp-2, 7363d2df00STue Ly 0x1.d6753e032ea0fp-2, 0x1.ded3fd442364cp-2, 0x1.e726aa1e754d2p-2, 7463d2df00STue Ly 0x1.ef6d67328e220p-2, 0x1.f7a8568cb06cfp-2, 0x1.ffd799a83ff9bp-2, 7563d2df00STue Ly 0x1.03fda8b97997fp-1, 0x1.0809cf27f703dp-1, 0x1.0c10500d63aa6p-1, 7663d2df00STue Ly 0x1.10113b153c8eap-1, 0x1.140c9faa1e544p-1, 0x1.18028cf72976ap-1, 7763d2df00STue Ly 0x1.1bf311e95d00ep-1, 0x1.1fde3d30e8126p-1, 0x1.23c41d42727c8p-1, 7863d2df00STue Ly 0x1.27a4c0585cbf8p-1, 0x1.2b803473f7ad1p-1, 0x1.2f56875eb3f26p-1, 7963d2df00STue Ly 0x1.3327c6ab49ca7p-1, 0x1.36f3ffb6d9162p-1, 0x1.3abb3faa02167p-1, 8063d2df00STue Ly 0x1.3e7d9379f7016p-1, 0x1.423b07e986aa9p-1, 0x1.45f3a98a20739p-1, 8163d2df00STue Ly 0x1.49a784bcd1b8bp-1, 0x1.4d56a5b33cec4p-1, 0x1.510118708a8f9p-1, 8263d2df00STue Ly 0x1.54a6e8ca5438ep-1, 0x1.5848226989d34p-1, 0x1.5be4d0cb51435p-1, 8363d2df00STue Ly 0x1.5f7cff41e09afp-1, 0x1.6310b8f553048p-1, 0x1.66a008e4788ccp-1, 8463d2df00STue Ly 0x1.6a2af9e5a0f0ap-1, 0x1.6db196a76194ap-1, 0x1.7133e9b156c7cp-1, 8563d2df00STue Ly 0x1.74b1fd64e0754p-1, 0x1.782bdbfdda657p-1, 0x1.7ba18f93502e4p-1, 8663d2df00STue Ly 0x1.7f1322182cf16p-1, 0x1.82809d5be7073p-1, 0x1.85ea0b0b27b26p-1, 8763d2df00STue Ly 0x1.894f74b06ef8bp-1, 0x1.8cb0e3b4b3bbep-1, 0x1.900e6160002cdp-1, 8863d2df00STue Ly 0x1.9367f6da0ab2fp-1, 0x1.96bdad2acb5f6p-1, 0x1.9a0f8d3b0e050p-1, 8963d2df00STue Ly 0x1.9d5d9fd5010b3p-1, 0x1.a0a7eda4c112dp-1, 0x1.a3ee7f38e181fp-1, 9063d2df00STue Ly 0x1.a7315d02f20c8p-1, 0x1.aa708f58014d3p-1, 0x1.adac1e711c833p-1, 9163d2df00STue Ly 0x1.b0e4126bcc86cp-1, 0x1.b418734a9008cp-1, 0x1.b74948f5532dap-1, 9263d2df00STue Ly 0x1.ba769b39e4964p-1, 0x1.bda071cc67e6ep-1, 0x1.c0c6d447c5dd3p-1, 9363d2df00STue Ly 0x1.c3e9ca2e1a055p-1, 0x1.c7095ae91e1c7p-1, 0x1.ca258dca93316p-1, 9463d2df00STue Ly 0x1.cd3e6a0ca8907p-1, 0x1.d053f6d260896p-1, 0x1.d3663b27f31d5p-1, 9563d2df00STue Ly 0x1.d6753e032ea0fp-1, 0x1.d9810643d6615p-1, 0x1.dc899ab3ff56cp-1, 9663d2df00STue Ly 0x1.df8f02086af2cp-1, 0x1.e29142e0e0140p-1, 0x1.e59063c8822cep-1, 9763d2df00STue Ly 0x1.e88c6b3626a73p-1, 0x1.eb855f8ca88fbp-1, 0x1.ee7b471b3a950p-1, 9863d2df00STue Ly 0x1.f16e281db7630p-1, 0x1.f45e08bcf0655p-1, 0x1.f74aef0efafaep-1, 9963d2df00STue Ly 0x1.fa34e1177c233p-1, 0x1.fd1be4c7f2af9p-1}; 10063d2df00STue Ly 10163d2df00STue Ly LLVM_LIBC_FUNCTION(float, log2f, (float x)) { 10263d2df00STue Ly using FPBits = typename fputil::FPBits<float>; 10363d2df00STue Ly FPBits xbits(x); 10463d2df00STue Ly int m = 0; 10563d2df00STue Ly 10663d2df00STue Ly // Hard to round value(s). 1071f3f90abSTue Ly switch (FPBits(x).uintval()) { 1081f3f90abSTue Ly case 0x3f81d0b5U: { 10963d2df00STue Ly int rounding_mode = fputil::get_round(); 11063d2df00STue Ly if (rounding_mode == FE_DOWNWARD || rounding_mode == FE_TOWARDZERO) { 11163d2df00STue Ly return 0x1.4cdc4cp-6f; 11263d2df00STue Ly } 1131f3f90abSTue Ly break; 1141f3f90abSTue Ly } 1151f3f90abSTue Ly case 0x3f7e3274U: 1161f3f90abSTue Ly if (fputil::get_round() == FE_TONEAREST) { 1171f3f90abSTue Ly return -0x1.4e1d16p-7f; 1181f3f90abSTue Ly } 1191f3f90abSTue Ly break; 1201f3f90abSTue Ly case 0x3f7d57f5U: 1211f3f90abSTue Ly if (fputil::get_round() == FE_TOWARDZERO) { 1221f3f90abSTue Ly return -0x1.ed1c32p-7f; 1231f3f90abSTue Ly } 1241f3f90abSTue Ly break; 12563d2df00STue Ly } 12663d2df00STue Ly 12763d2df00STue Ly // Exceptional inputs. 12863d2df00STue Ly if (xbits.uintval() < FPBits::MIN_NORMAL || 12963d2df00STue Ly xbits.uintval() > FPBits::MAX_NORMAL) { 13063d2df00STue Ly if (xbits.is_zero()) { 13163d2df00STue Ly return static_cast<float>(FPBits::neg_inf()); 13263d2df00STue Ly } 13363d2df00STue Ly if (xbits.get_sign() && !xbits.is_nan()) { 13463d2df00STue Ly return FPBits::build_nan(1 << (fputil::MantissaWidth<float>::VALUE - 1)); 13563d2df00STue Ly } 13663d2df00STue Ly if (xbits.is_inf_or_nan()) { 13763d2df00STue Ly return x; 13863d2df00STue Ly } 13963d2df00STue Ly // Normalize denormal inputs. 1407e7ecef9SGuillaume Chatelet xbits.set_val(xbits.get_val() * 0x1.0p23f); 14163d2df00STue Ly m = -23; 14263d2df00STue Ly } 14363d2df00STue Ly 14463d2df00STue Ly m += xbits.get_exponent(); 14563d2df00STue Ly // Set bits to 1.m 14663d2df00STue Ly xbits.set_unbiased_exponent(0x7F); 14763d2df00STue Ly // Get the 8 highest bits, use 7 bits (excluding the implicit hidden bit) for 14863d2df00STue Ly // lookup tables. 14963d2df00STue Ly int f_index = xbits.get_mantissa() >> 16; 15063d2df00STue Ly 1517e7ecef9SGuillaume Chatelet FPBits f = xbits; 15263d2df00STue Ly // Clear the lowest 16 bits. 15363d2df00STue Ly f.bits &= ~0x0000'FFFF; 15463d2df00STue Ly 15563d2df00STue Ly double d = static_cast<float>(xbits) - static_cast<float>(f); 15663d2df00STue Ly d *= ONE_OVER_F[f_index]; 15763d2df00STue Ly 15863d2df00STue Ly double extra_factor = static_cast<double>(m) + LOG2_F[f_index]; 15963d2df00STue Ly double r = __llvm_libc::fputil::polyeval( 16063d2df00STue Ly d, extra_factor, 0x1.71547652bd4fp+0, -0x1.7154769b978c7p-1, 16163d2df00STue Ly 0x1.ec71a99e349c8p-2, -0x1.720d90e6aac6cp-2, 0x1.5132da3583dap-2); 16263d2df00STue Ly 16363d2df00STue Ly return static_cast<float>(r); 16463d2df00STue Ly } 16563d2df00STue Ly 16663d2df00STue Ly } // namespace __llvm_libc 167