1 //===-- Single-precision e^x function -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/expf.h"
10 #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
11 #include "src/__support/FPUtil/BasicOperations.h"
12 #include "src/__support/FPUtil/FEnvImpl.h"
13 #include "src/__support/FPUtil/FPBits.h"
14 #include "src/__support/FPUtil/PolyEval.h"
15 #include "src/__support/FPUtil/multiply_add.h"
16 #include "src/__support/FPUtil/nearest_integer.h"
17 #include "src/__support/common.h"
18 
19 #include <errno.h>
20 
21 namespace __llvm_libc {
22 
23 LLVM_LIBC_FUNCTION(float, expf, (float x)) {
24   using FPBits = typename fputil::FPBits<float>;
25   FPBits xbits(x);
26 
27   uint32_t x_u = xbits.uintval();
28   uint32_t x_abs = x_u & 0x7fff'ffffU;
29 
30   // Exceptional values
31   if (unlikely(x_u == 0xc236'bd8cU)) { // x = -0x1.6d7b18p+5f
32     return 0x1.108a58p-66f - x * 0x1.0p-95f;
33   }
34 
35   // When |x| >= 89, |x| < 2^-25, or x is nan
36   if (unlikely(x_abs >= 0x42b2'0000U || x_abs <= 0x3280'0000U)) {
37     // |x| < 2^-25
38     if (xbits.get_unbiased_exponent() <= 101) {
39       return 1.0f + x;
40     }
41 
42     // When x < log(2^-150) or nan
43     if (xbits.uintval() >= 0xc2cf'f1b5U) {
44       // exp(-Inf) = 0
45       if (xbits.is_inf())
46         return 0.0f;
47       // exp(nan) = nan
48       if (xbits.is_nan())
49         return x;
50       if (fputil::get_round() == FE_UPWARD)
51         return static_cast<float>(FPBits(FPBits::MIN_SUBNORMAL));
52       errno = ERANGE;
53       return 0.0f;
54     }
55     // x >= 89 or nan
56     if (!xbits.get_sign() && (xbits.uintval() >= 0x42b2'0000)) {
57       // x is finite
58       if (xbits.uintval() < 0x7f80'0000U) {
59         int rounding = fputil::get_round();
60         if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
61           return static_cast<float>(FPBits(FPBits::MAX_NORMAL));
62 
63         errno = ERANGE;
64       }
65       // x is +inf or nan
66       return x + static_cast<float>(FPBits::inf());
67     }
68   }
69   // For -104 < x < 89, to compute exp(x), we perform the following range
70   // reduction: find hi, mid, lo such that:
71   //   x = hi + mid + lo, in which
72   //     hi is an integer,
73   //     mid * 2^7 is an integer
74   //     -2^(-8) <= lo < 2^-8.
75   // In particular,
76   //   hi + mid = round(x * 2^7) * 2^(-7).
77   // Then,
78   //   exp(x) = exp(hi + mid + lo) = exp(hi) * exp(mid) * exp(lo).
79   // We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2
80   // respectively.  exp(lo) is computed using a degree-4 minimax polynomial
81   // generated by Sollya.
82 
83   // x_hi = (hi + mid) * 2^7 = round(x * 2^7).
84   float kf = fputil::nearest_integer(x * 0x1.0p7f);
85   // Subtract (hi + mid) from x to get lo.
86   double xd = static_cast<double>(fputil::multiply_add(kf, -0x1.0p-7f, x));
87   int x_hi = static_cast<int>(kf);
88   x_hi += 104 << 7;
89   // hi = x_hi >> 7
90   double exp_hi = EXP_M1[x_hi >> 7];
91   // mid * 2^7 = x_hi & 0x0000'007fU;
92   double exp_mid = EXP_M2[x_hi & 0x7f];
93   // Degree-4 minimax polynomial generated by Sollya with the following
94   // commands:
95   //   > display = hexadecimal;
96   //   > Q = fpminimax(expm1(x)/x, 3, [|D...|], [-2^-8, 2^-8]);
97   //   > Q;
98   double exp_lo =
99       fputil::polyeval(xd, 0x1p0, 0x1.ffffffffff777p-1, 0x1.000000000071cp-1,
100                        0x1.555566668e5e7p-3, 0x1.55555555ef243p-5);
101   return static_cast<float>(exp_hi * exp_mid * exp_lo);
102 }
103 
104 } // namespace __llvm_libc
105