1 //===-- lib/Semantics/tools.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Parser/tools.h" 10 #include "flang/Common/Fortran.h" 11 #include "flang/Common/indirection.h" 12 #include "flang/Parser/dump-parse-tree.h" 13 #include "flang/Parser/message.h" 14 #include "flang/Parser/parse-tree.h" 15 #include "flang/Semantics/scope.h" 16 #include "flang/Semantics/semantics.h" 17 #include "flang/Semantics/symbol.h" 18 #include "flang/Semantics/tools.h" 19 #include "flang/Semantics/type.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <algorithm> 22 #include <set> 23 #include <variant> 24 25 namespace Fortran::semantics { 26 27 // Find this or containing scope that matches predicate 28 static const Scope *FindScopeContaining( 29 const Scope &start, std::function<bool(const Scope &)> predicate) { 30 for (const Scope *scope{&start};; scope = &scope->parent()) { 31 if (predicate(*scope)) { 32 return scope; 33 } 34 if (scope->IsTopLevel()) { 35 return nullptr; 36 } 37 } 38 } 39 40 const Scope &GetTopLevelUnitContaining(const Scope &start) { 41 CHECK(!start.IsTopLevel()); 42 return DEREF(FindScopeContaining( 43 start, [](const Scope &scope) { return scope.parent().IsTopLevel(); })); 44 } 45 46 const Scope &GetTopLevelUnitContaining(const Symbol &symbol) { 47 return GetTopLevelUnitContaining(symbol.owner()); 48 } 49 50 const Scope *FindModuleContaining(const Scope &start) { 51 return FindScopeContaining( 52 start, [](const Scope &scope) { return scope.IsModule(); }); 53 } 54 55 const Scope *FindModuleFileContaining(const Scope &start) { 56 return FindScopeContaining( 57 start, [](const Scope &scope) { return scope.IsModuleFile(); }); 58 } 59 60 const Scope &GetProgramUnitContaining(const Scope &start) { 61 CHECK(!start.IsTopLevel()); 62 return DEREF(FindScopeContaining(start, [](const Scope &scope) { 63 switch (scope.kind()) { 64 case Scope::Kind::Module: 65 case Scope::Kind::MainProgram: 66 case Scope::Kind::Subprogram: 67 case Scope::Kind::BlockData: 68 return true; 69 default: 70 return false; 71 } 72 })); 73 } 74 75 const Scope &GetProgramUnitContaining(const Symbol &symbol) { 76 return GetProgramUnitContaining(symbol.owner()); 77 } 78 79 const Scope *FindPureProcedureContaining(const Scope &start) { 80 // N.B. We only need to examine the innermost containing program unit 81 // because an internal subprogram of a pure subprogram must also 82 // be pure (C1592). 83 if (start.IsTopLevel()) { 84 return nullptr; 85 } else { 86 const Scope &scope{GetProgramUnitContaining(start)}; 87 return IsPureProcedure(scope) ? &scope : nullptr; 88 } 89 } 90 91 // 7.5.2.4 "same derived type" test -- rely on IsTkCompatibleWith() and its 92 // infrastructure to detect and handle comparisons on distinct (but "same") 93 // sequence/bind(C) derived types 94 static bool MightBeSameDerivedType( 95 const std::optional<evaluate::DynamicType> &lhsType, 96 const std::optional<evaluate::DynamicType> &rhsType) { 97 return lhsType && rhsType && rhsType->IsTkCompatibleWith(*lhsType); 98 } 99 100 Tristate IsDefinedAssignment( 101 const std::optional<evaluate::DynamicType> &lhsType, int lhsRank, 102 const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) { 103 if (!lhsType || !rhsType) { 104 return Tristate::No; // error or rhs is untyped 105 } 106 if (lhsType->IsUnlimitedPolymorphic() || rhsType->IsUnlimitedPolymorphic()) { 107 return Tristate::No; 108 } 109 TypeCategory lhsCat{lhsType->category()}; 110 TypeCategory rhsCat{rhsType->category()}; 111 if (rhsRank > 0 && lhsRank != rhsRank) { 112 return Tristate::Yes; 113 } else if (lhsCat != TypeCategory::Derived) { 114 return ToTristate(lhsCat != rhsCat && 115 (!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat))); 116 } else if (MightBeSameDerivedType(lhsType, rhsType)) { 117 return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or intrinsic 118 } else { 119 return Tristate::Yes; 120 } 121 } 122 123 bool IsIntrinsicRelational(common::RelationalOperator opr, 124 const evaluate::DynamicType &type0, int rank0, 125 const evaluate::DynamicType &type1, int rank1) { 126 if (!evaluate::AreConformable(rank0, rank1)) { 127 return false; 128 } else { 129 auto cat0{type0.category()}; 130 auto cat1{type1.category()}; 131 if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) { 132 // numeric types: EQ/NE always ok, others ok for non-complex 133 return opr == common::RelationalOperator::EQ || 134 opr == common::RelationalOperator::NE || 135 (cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex); 136 } else { 137 // not both numeric: only Character is ok 138 return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character; 139 } 140 } 141 } 142 143 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) { 144 return IsNumericTypeCategory(type0.category()); 145 } 146 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0, 147 const evaluate::DynamicType &type1, int rank1) { 148 return evaluate::AreConformable(rank0, rank1) && 149 IsNumericTypeCategory(type0.category()) && 150 IsNumericTypeCategory(type1.category()); 151 } 152 153 bool IsIntrinsicLogical(const evaluate::DynamicType &type0) { 154 return type0.category() == TypeCategory::Logical; 155 } 156 bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0, 157 const evaluate::DynamicType &type1, int rank1) { 158 return evaluate::AreConformable(rank0, rank1) && 159 type0.category() == TypeCategory::Logical && 160 type1.category() == TypeCategory::Logical; 161 } 162 163 bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0, 164 const evaluate::DynamicType &type1, int rank1) { 165 return evaluate::AreConformable(rank0, rank1) && 166 type0.category() == TypeCategory::Character && 167 type1.category() == TypeCategory::Character && 168 type0.kind() == type1.kind(); 169 } 170 171 bool IsGenericDefinedOp(const Symbol &symbol) { 172 const Symbol &ultimate{symbol.GetUltimate()}; 173 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 174 return generic->kind().IsDefinedOperator(); 175 } else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) { 176 return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp; 177 } else { 178 return false; 179 } 180 } 181 182 bool IsDefinedOperator(SourceName name) { 183 const char *begin{name.begin()}; 184 const char *end{name.end()}; 185 return begin != end && begin[0] == '.' && end[-1] == '.'; 186 } 187 188 std::string MakeOpName(SourceName name) { 189 std::string result{name.ToString()}; 190 return IsDefinedOperator(name) ? "OPERATOR(" + result + ")" 191 : result.find("operator(", 0) == 0 ? parser::ToUpperCaseLetters(result) 192 : result; 193 } 194 195 bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) { 196 const auto &objects{block.get<CommonBlockDetails>().objects()}; 197 auto found{std::find(objects.begin(), objects.end(), object)}; 198 return found != objects.end(); 199 } 200 201 bool IsUseAssociated(const Symbol &symbol, const Scope &scope) { 202 const Scope &owner{GetProgramUnitContaining(symbol.GetUltimate().owner())}; 203 return owner.kind() == Scope::Kind::Module && 204 owner != GetProgramUnitContaining(scope); 205 } 206 207 bool DoesScopeContain( 208 const Scope *maybeAncestor, const Scope &maybeDescendent) { 209 return maybeAncestor && !maybeDescendent.IsTopLevel() && 210 FindScopeContaining(maybeDescendent.parent(), 211 [&](const Scope &scope) { return &scope == maybeAncestor; }); 212 } 213 214 bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) { 215 return DoesScopeContain(maybeAncestor, symbol.owner()); 216 } 217 218 static const Symbol &FollowHostAssoc(const Symbol &symbol) { 219 for (const Symbol *s{&symbol};;) { 220 const auto *details{s->detailsIf<HostAssocDetails>()}; 221 if (!details) { 222 return *s; 223 } 224 s = &details->symbol(); 225 } 226 } 227 228 bool IsHostAssociated(const Symbol &symbol, const Scope &scope) { 229 const Scope &subprogram{GetProgramUnitContaining(scope)}; 230 return DoesScopeContain( 231 &GetProgramUnitContaining(FollowHostAssoc(symbol)), subprogram); 232 } 233 234 bool IsInStmtFunction(const Symbol &symbol) { 235 if (const Symbol * function{symbol.owner().symbol()}) { 236 return IsStmtFunction(*function); 237 } 238 return false; 239 } 240 241 bool IsStmtFunctionDummy(const Symbol &symbol) { 242 return IsDummy(symbol) && IsInStmtFunction(symbol); 243 } 244 245 bool IsStmtFunctionResult(const Symbol &symbol) { 246 return IsFunctionResult(symbol) && IsInStmtFunction(symbol); 247 } 248 249 bool IsPointerDummy(const Symbol &symbol) { 250 return IsPointer(symbol) && IsDummy(symbol); 251 } 252 253 // proc-name 254 bool IsProcName(const Symbol &symbol) { 255 return symbol.GetUltimate().has<ProcEntityDetails>(); 256 } 257 258 bool IsBindCProcedure(const Symbol &symbol) { 259 if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) { 260 if (const Symbol * procInterface{procDetails->interface().symbol()}) { 261 // procedure component with a BIND(C) interface 262 return IsBindCProcedure(*procInterface); 263 } 264 } 265 return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol); 266 } 267 268 bool IsBindCProcedure(const Scope &scope) { 269 if (const Symbol * symbol{scope.GetSymbol()}) { 270 return IsBindCProcedure(*symbol); 271 } else { 272 return false; 273 } 274 } 275 276 static const Symbol *FindPointerComponent( 277 const Scope &scope, std::set<const Scope *> &visited) { 278 if (!scope.IsDerivedType()) { 279 return nullptr; 280 } 281 if (!visited.insert(&scope).second) { 282 return nullptr; 283 } 284 // If there's a top-level pointer component, return it for clearer error 285 // messaging. 286 for (const auto &pair : scope) { 287 const Symbol &symbol{*pair.second}; 288 if (IsPointer(symbol)) { 289 return &symbol; 290 } 291 } 292 for (const auto &pair : scope) { 293 const Symbol &symbol{*pair.second}; 294 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 295 if (const DeclTypeSpec * type{details->type()}) { 296 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 297 if (const Scope * nested{derived->scope()}) { 298 if (const Symbol * 299 pointer{FindPointerComponent(*nested, visited)}) { 300 return pointer; 301 } 302 } 303 } 304 } 305 } 306 } 307 return nullptr; 308 } 309 310 const Symbol *FindPointerComponent(const Scope &scope) { 311 std::set<const Scope *> visited; 312 return FindPointerComponent(scope, visited); 313 } 314 315 const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) { 316 if (const Scope * scope{derived.scope()}) { 317 return FindPointerComponent(*scope); 318 } else { 319 return nullptr; 320 } 321 } 322 323 const Symbol *FindPointerComponent(const DeclTypeSpec &type) { 324 if (const DerivedTypeSpec * derived{type.AsDerived()}) { 325 return FindPointerComponent(*derived); 326 } else { 327 return nullptr; 328 } 329 } 330 331 const Symbol *FindPointerComponent(const DeclTypeSpec *type) { 332 return type ? FindPointerComponent(*type) : nullptr; 333 } 334 335 const Symbol *FindPointerComponent(const Symbol &symbol) { 336 return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType()); 337 } 338 339 // C1594 specifies several ways by which an object might be globally visible. 340 const Symbol *FindExternallyVisibleObject( 341 const Symbol &object, const Scope &scope) { 342 // TODO: Storage association with any object for which this predicate holds, 343 // once EQUIVALENCE is supported. 344 const Symbol &ultimate{GetAssociationRoot(object)}; 345 if (IsDummy(ultimate)) { 346 if (IsIntentIn(ultimate)) { 347 return &ultimate; 348 } 349 if (IsPointer(ultimate) && IsPureProcedure(ultimate.owner()) && 350 IsFunction(ultimate.owner())) { 351 return &ultimate; 352 } 353 } else if (&GetProgramUnitContaining(ultimate) != 354 &GetProgramUnitContaining(scope)) { 355 return &object; 356 } else if (const Symbol * block{FindCommonBlockContaining(ultimate)}) { 357 return block; 358 } 359 return nullptr; 360 } 361 362 const Symbol &BypassGeneric(const Symbol &symbol) { 363 const Symbol &ultimate{symbol.GetUltimate()}; 364 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 365 if (const Symbol * specific{generic->specific()}) { 366 return *specific; 367 } 368 } 369 return symbol; 370 } 371 372 bool ExprHasTypeCategory( 373 const SomeExpr &expr, const common::TypeCategory &type) { 374 auto dynamicType{expr.GetType()}; 375 return dynamicType && dynamicType->category() == type; 376 } 377 378 bool ExprTypeKindIsDefault( 379 const SomeExpr &expr, const SemanticsContext &context) { 380 auto dynamicType{expr.GetType()}; 381 return dynamicType && 382 dynamicType->category() != common::TypeCategory::Derived && 383 dynamicType->kind() == context.GetDefaultKind(dynamicType->category()); 384 } 385 386 // If an analyzed expr or assignment is missing, dump the node and die. 387 template <typename T> 388 static void CheckMissingAnalysis(bool absent, const T &x) { 389 if (absent) { 390 std::string buf; 391 llvm::raw_string_ostream ss{buf}; 392 ss << "node has not been analyzed:\n"; 393 parser::DumpTree(ss, x); 394 common::die(ss.str().c_str()); 395 } 396 } 397 398 template <typename T> static const SomeExpr *GetTypedExpr(const T &x) { 399 CheckMissingAnalysis(!x.typedExpr, x); 400 return common::GetPtrFromOptional(x.typedExpr->v); 401 } 402 const SomeExpr *GetExprHelper::Get(const parser::Expr &x) { 403 return GetTypedExpr(x); 404 } 405 const SomeExpr *GetExprHelper::Get(const parser::Variable &x) { 406 return GetTypedExpr(x); 407 } 408 const SomeExpr *GetExprHelper::Get(const parser::DataStmtConstant &x) { 409 return GetTypedExpr(x); 410 } 411 const SomeExpr *GetExprHelper::Get(const parser::AllocateObject &x) { 412 return GetTypedExpr(x); 413 } 414 const SomeExpr *GetExprHelper::Get(const parser::PointerObject &x) { 415 return GetTypedExpr(x); 416 } 417 418 const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) { 419 CheckMissingAnalysis(!x.typedAssignment, x); 420 return common::GetPtrFromOptional(x.typedAssignment->v); 421 } 422 const evaluate::Assignment *GetAssignment( 423 const parser::PointerAssignmentStmt &x) { 424 CheckMissingAnalysis(!x.typedAssignment, x); 425 return common::GetPtrFromOptional(x.typedAssignment->v); 426 } 427 428 const Symbol *FindInterface(const Symbol &symbol) { 429 return std::visit( 430 common::visitors{ 431 [](const ProcEntityDetails &details) { 432 return details.interface().symbol(); 433 }, 434 [](const ProcBindingDetails &details) { return &details.symbol(); }, 435 [](const auto &) -> const Symbol * { return nullptr; }, 436 }, 437 symbol.details()); 438 } 439 440 const Symbol *FindSubprogram(const Symbol &symbol) { 441 return std::visit( 442 common::visitors{ 443 [&](const ProcEntityDetails &details) -> const Symbol * { 444 if (const Symbol * interface{details.interface().symbol()}) { 445 return FindSubprogram(*interface); 446 } else { 447 return &symbol; 448 } 449 }, 450 [](const ProcBindingDetails &details) { 451 return FindSubprogram(details.symbol()); 452 }, 453 [&](const SubprogramDetails &) { return &symbol; }, 454 [](const UseDetails &details) { 455 return FindSubprogram(details.symbol()); 456 }, 457 [](const HostAssocDetails &details) { 458 return FindSubprogram(details.symbol()); 459 }, 460 [](const auto &) -> const Symbol * { return nullptr; }, 461 }, 462 symbol.details()); 463 } 464 465 const Symbol *FindOverriddenBinding(const Symbol &symbol) { 466 if (symbol.has<ProcBindingDetails>()) { 467 if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) { 468 if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) { 469 if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) { 470 return parentScope->FindComponent(symbol.name()); 471 } 472 } 473 } 474 } 475 return nullptr; 476 } 477 478 const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) { 479 return FindParentTypeSpec(derived.typeSymbol()); 480 } 481 482 const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) { 483 if (const DerivedTypeSpec * derived{decl.AsDerived()}) { 484 return FindParentTypeSpec(*derived); 485 } else { 486 return nullptr; 487 } 488 } 489 490 const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) { 491 if (scope.kind() == Scope::Kind::DerivedType) { 492 if (const auto *symbol{scope.symbol()}) { 493 return FindParentTypeSpec(*symbol); 494 } 495 } 496 return nullptr; 497 } 498 499 const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) { 500 if (const Scope * scope{symbol.scope()}) { 501 if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) { 502 if (const Symbol * parent{details->GetParentComponent(*scope)}) { 503 return parent->GetType(); 504 } 505 } 506 } 507 return nullptr; 508 } 509 510 const EquivalenceSet *FindEquivalenceSet(const Symbol &symbol) { 511 const Symbol &ultimate{symbol.GetUltimate()}; 512 for (const EquivalenceSet &set : ultimate.owner().equivalenceSets()) { 513 for (const EquivalenceObject &object : set) { 514 if (object.symbol == ultimate) { 515 return &set; 516 } 517 } 518 } 519 return nullptr; 520 } 521 522 bool IsOrContainsEventOrLockComponent(const Symbol &original) { 523 const Symbol &symbol{ResolveAssociations(original)}; 524 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 525 if (const DeclTypeSpec * type{details->type()}) { 526 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 527 return IsEventTypeOrLockType(derived) || 528 FindEventOrLockPotentialComponent(*derived); 529 } 530 } 531 } 532 return false; 533 } 534 535 // Check this symbol suitable as a type-bound procedure - C769 536 bool CanBeTypeBoundProc(const Symbol *symbol) { 537 if (!symbol || IsDummy(*symbol) || IsProcedurePointer(*symbol)) { 538 return false; 539 } else if (symbol->has<SubprogramNameDetails>()) { 540 return symbol->owner().kind() == Scope::Kind::Module; 541 } else if (auto *details{symbol->detailsIf<SubprogramDetails>()}) { 542 return symbol->owner().kind() == Scope::Kind::Module || 543 details->isInterface(); 544 } else if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) { 545 return !symbol->attrs().test(Attr::INTRINSIC) && 546 proc->HasExplicitInterface(); 547 } else { 548 return false; 549 } 550 } 551 552 bool HasDeclarationInitializer(const Symbol &symbol) { 553 if (IsNamedConstant(symbol)) { 554 return false; 555 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 556 return object->init().has_value(); 557 } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) { 558 return proc->init().has_value(); 559 } else { 560 return false; 561 } 562 } 563 564 bool IsInitialized( 565 const Symbol &symbol, bool ignoreDataStatements, bool ignoreAllocatable) { 566 if (!ignoreAllocatable && IsAllocatable(symbol)) { 567 return true; 568 } else if (!ignoreDataStatements && symbol.test(Symbol::Flag::InDataStmt)) { 569 return true; 570 } else if (HasDeclarationInitializer(symbol)) { 571 return true; 572 } else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) || 573 IsPointer(symbol)) { 574 return false; 575 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 576 if (!object->isDummy() && object->type()) { 577 if (const auto *derived{object->type()->AsDerived()}) { 578 return derived->HasDefaultInitialization(ignoreAllocatable); 579 } 580 } 581 } 582 return false; 583 } 584 585 bool IsDestructible(const Symbol &symbol, const Symbol *derivedTypeSymbol) { 586 if (IsAllocatable(symbol) || IsAutomatic(symbol)) { 587 return true; 588 } else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) || 589 IsPointer(symbol)) { 590 return false; 591 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 592 if (!object->isDummy() && object->type()) { 593 if (const auto *derived{object->type()->AsDerived()}) { 594 return &derived->typeSymbol() != derivedTypeSymbol && 595 derived->HasDestruction(); 596 } 597 } 598 } 599 return false; 600 } 601 602 bool HasIntrinsicTypeName(const Symbol &symbol) { 603 std::string name{symbol.name().ToString()}; 604 if (name == "doubleprecision") { 605 return true; 606 } else if (name == "derived") { 607 return false; 608 } else { 609 for (int i{0}; i != common::TypeCategory_enumSize; ++i) { 610 if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) { 611 return true; 612 } 613 } 614 return false; 615 } 616 } 617 618 bool IsSeparateModuleProcedureInterface(const Symbol *symbol) { 619 if (symbol && symbol->attrs().test(Attr::MODULE)) { 620 if (auto *details{symbol->detailsIf<SubprogramDetails>()}) { 621 return details->isInterface(); 622 } 623 } 624 return false; 625 } 626 627 bool IsFinalizable( 628 const Symbol &symbol, std::set<const DerivedTypeSpec *> *inProgress) { 629 if (IsPointer(symbol)) { 630 return false; 631 } 632 if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 633 if (object->isDummy() && !IsIntentOut(symbol)) { 634 return false; 635 } 636 const DeclTypeSpec *type{object->type()}; 637 const DerivedTypeSpec *typeSpec{type ? type->AsDerived() : nullptr}; 638 return typeSpec && IsFinalizable(*typeSpec, inProgress); 639 } 640 return false; 641 } 642 643 bool IsFinalizable(const DerivedTypeSpec &derived, 644 std::set<const DerivedTypeSpec *> *inProgress) { 645 if (!derived.typeSymbol().get<DerivedTypeDetails>().finals().empty()) { 646 return true; 647 } 648 std::set<const DerivedTypeSpec *> basis; 649 if (inProgress) { 650 if (inProgress->find(&derived) != inProgress->end()) { 651 return false; // don't loop on recursive type 652 } 653 } else { 654 inProgress = &basis; 655 } 656 auto iterator{inProgress->insert(&derived).first}; 657 PotentialComponentIterator components{derived}; 658 bool result{bool{std::find_if( 659 components.begin(), components.end(), [=](const Symbol &component) { 660 return IsFinalizable(component, inProgress); 661 })}}; 662 inProgress->erase(iterator); 663 return result; 664 } 665 666 bool HasImpureFinal(const DerivedTypeSpec &derived) { 667 if (const auto *details{ 668 derived.typeSymbol().detailsIf<DerivedTypeDetails>()}) { 669 const auto &finals{details->finals()}; 670 return std::any_of(finals.begin(), finals.end(), 671 [](const auto &x) { return !x.second->attrs().test(Attr::PURE); }); 672 } else { 673 return false; 674 } 675 } 676 677 bool IsAssumedLengthCharacter(const Symbol &symbol) { 678 if (const DeclTypeSpec * type{symbol.GetType()}) { 679 return type->category() == DeclTypeSpec::Character && 680 type->characterTypeSpec().length().isAssumed(); 681 } else { 682 return false; 683 } 684 } 685 686 bool IsInBlankCommon(const Symbol &symbol) { 687 const Symbol *block{FindCommonBlockContaining(symbol)}; 688 return block && block->name().empty(); 689 } 690 691 // C722 and C723: For a function to be assumed length, it must be external and 692 // of CHARACTER type 693 bool IsExternal(const Symbol &symbol) { 694 return ClassifyProcedure(symbol) == ProcedureDefinitionClass::External; 695 } 696 697 // Most scopes have no EQUIVALENCE, and this function is a fast no-op for them. 698 std::list<std::list<SymbolRef>> GetStorageAssociations(const Scope &scope) { 699 UnorderedSymbolSet distinct; 700 for (const EquivalenceSet &set : scope.equivalenceSets()) { 701 for (const EquivalenceObject &object : set) { 702 distinct.emplace(object.symbol); 703 } 704 } 705 // This set is ordered by ascending offsets, with ties broken by greatest 706 // size. A multiset is used here because multiple symbols may have the 707 // same offset and size; the symbols in the set, however, are distinct. 708 std::multiset<SymbolRef, SymbolOffsetCompare> associated; 709 for (SymbolRef ref : distinct) { 710 associated.emplace(*ref); 711 } 712 std::list<std::list<SymbolRef>> result; 713 std::size_t limit{0}; 714 const Symbol *currentCommon{nullptr}; 715 for (const Symbol &symbol : associated) { 716 const Symbol *thisCommon{FindCommonBlockContaining(symbol)}; 717 if (result.empty() || symbol.offset() >= limit || 718 thisCommon != currentCommon) { 719 // Start a new group 720 result.emplace_back(std::list<SymbolRef>{}); 721 limit = 0; 722 currentCommon = thisCommon; 723 } 724 result.back().emplace_back(symbol); 725 limit = std::max(limit, symbol.offset() + symbol.size()); 726 } 727 return result; 728 } 729 730 bool IsModuleProcedure(const Symbol &symbol) { 731 return ClassifyProcedure(symbol) == ProcedureDefinitionClass::Module; 732 } 733 const Symbol *IsExternalInPureContext( 734 const Symbol &symbol, const Scope &scope) { 735 if (const auto *pureProc{FindPureProcedureContaining(scope)}) { 736 return FindExternallyVisibleObject(symbol.GetUltimate(), *pureProc); 737 } 738 return nullptr; 739 } 740 741 PotentialComponentIterator::const_iterator FindPolymorphicPotentialComponent( 742 const DerivedTypeSpec &derived) { 743 PotentialComponentIterator potentials{derived}; 744 return std::find_if( 745 potentials.begin(), potentials.end(), [](const Symbol &component) { 746 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) { 747 const DeclTypeSpec *type{details->type()}; 748 return type && type->IsPolymorphic(); 749 } 750 return false; 751 }); 752 } 753 754 bool IsOrContainsPolymorphicComponent(const Symbol &original) { 755 const Symbol &symbol{ResolveAssociations(original)}; 756 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 757 if (const DeclTypeSpec * type{details->type()}) { 758 if (type->IsPolymorphic()) { 759 return true; 760 } 761 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 762 return (bool)FindPolymorphicPotentialComponent(*derived); 763 } 764 } 765 } 766 return false; 767 } 768 769 bool InProtectedContext(const Symbol &symbol, const Scope ¤tScope) { 770 return IsProtected(symbol) && !IsHostAssociated(symbol, currentScope); 771 } 772 773 // C1101 and C1158 774 // Modifiability checks on the leftmost symbol ("base object") 775 // of a data-ref 776 std::optional<parser::MessageFixedText> WhyNotModifiableFirst( 777 const Symbol &symbol, const Scope &scope) { 778 if (symbol.has<AssocEntityDetails>()) { 779 return "'%s' is construct associated with an expression"_en_US; 780 } else if (IsExternalInPureContext(symbol, scope)) { 781 return "'%s' is externally visible and referenced in a pure" 782 " procedure"_en_US; 783 } else if (!IsVariableName(symbol)) { 784 return "'%s' is not a variable"_en_US; 785 } else { 786 return std::nullopt; 787 } 788 } 789 790 // Modifiability checks on the rightmost symbol of a data-ref 791 std::optional<parser::MessageFixedText> WhyNotModifiableLast( 792 const Symbol &symbol, const Scope &scope) { 793 if (IsOrContainsEventOrLockComponent(symbol)) { 794 return "'%s' is an entity with either an EVENT_TYPE or LOCK_TYPE"_en_US; 795 } else { 796 return std::nullopt; 797 } 798 } 799 800 // Modifiability checks on the leftmost (base) symbol of a data-ref 801 // that apply only when there are no pointer components or a base 802 // that is a pointer. 803 std::optional<parser::MessageFixedText> WhyNotModifiableIfNoPtr( 804 const Symbol &symbol, const Scope &scope) { 805 if (InProtectedContext(symbol, scope)) { 806 return "'%s' is protected in this scope"_en_US; 807 } else if (IsIntentIn(symbol)) { 808 return "'%s' is an INTENT(IN) dummy argument"_en_US; 809 } else { 810 return std::nullopt; 811 } 812 } 813 814 // Apply all modifiability checks to a single symbol 815 std::optional<parser::MessageFixedText> WhyNotModifiable( 816 const Symbol &original, const Scope &scope) { 817 const Symbol &symbol{GetAssociationRoot(original)}; 818 if (auto first{WhyNotModifiableFirst(symbol, scope)}) { 819 return first; 820 } else if (auto last{WhyNotModifiableLast(symbol, scope)}) { 821 return last; 822 } else if (!IsPointer(symbol)) { 823 return WhyNotModifiableIfNoPtr(symbol, scope); 824 } else { 825 return std::nullopt; 826 } 827 } 828 829 // Modifiability checks for a data-ref 830 std::optional<parser::Message> WhyNotModifiable(parser::CharBlock at, 831 const SomeExpr &expr, const Scope &scope, bool vectorSubscriptIsOk) { 832 if (auto dataRef{evaluate::ExtractDataRef(expr, true)}) { 833 if (!vectorSubscriptIsOk && evaluate::HasVectorSubscript(expr)) { 834 return parser::Message{at, "Variable has a vector subscript"_en_US}; 835 } 836 const Symbol &first{GetAssociationRoot(dataRef->GetFirstSymbol())}; 837 if (auto maybeWhyFirst{WhyNotModifiableFirst(first, scope)}) { 838 return parser::Message{first.name(), 839 parser::MessageFormattedText{ 840 std::move(*maybeWhyFirst), first.name()}}; 841 } 842 const Symbol &last{dataRef->GetLastSymbol()}; 843 if (auto maybeWhyLast{WhyNotModifiableLast(last, scope)}) { 844 return parser::Message{last.name(), 845 parser::MessageFormattedText{std::move(*maybeWhyLast), last.name()}}; 846 } 847 if (!GetLastPointerSymbol(*dataRef)) { 848 if (auto maybeWhyFirst{WhyNotModifiableIfNoPtr(first, scope)}) { 849 return parser::Message{first.name(), 850 parser::MessageFormattedText{ 851 std::move(*maybeWhyFirst), first.name()}}; 852 } 853 } 854 } else if (!evaluate::IsVariable(expr)) { 855 return parser::Message{ 856 at, "'%s' is not a variable"_en_US, expr.AsFortran()}; 857 } else { 858 // reference to function returning POINTER 859 } 860 return std::nullopt; 861 } 862 863 class ImageControlStmtHelper { 864 using ImageControlStmts = std::variant<parser::ChangeTeamConstruct, 865 parser::CriticalConstruct, parser::EventPostStmt, parser::EventWaitStmt, 866 parser::FormTeamStmt, parser::LockStmt, parser::StopStmt, 867 parser::SyncAllStmt, parser::SyncImagesStmt, parser::SyncMemoryStmt, 868 parser::SyncTeamStmt, parser::UnlockStmt>; 869 870 public: 871 template <typename T> bool operator()(const T &) { 872 return common::HasMember<T, ImageControlStmts>; 873 } 874 template <typename T> bool operator()(const common::Indirection<T> &x) { 875 return (*this)(x.value()); 876 } 877 bool operator()(const parser::AllocateStmt &stmt) { 878 const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)}; 879 for (const auto &allocation : allocationList) { 880 const auto &allocateObject{ 881 std::get<parser::AllocateObject>(allocation.t)}; 882 if (IsCoarrayObject(allocateObject)) { 883 return true; 884 } 885 } 886 return false; 887 } 888 bool operator()(const parser::DeallocateStmt &stmt) { 889 const auto &allocateObjectList{ 890 std::get<std::list<parser::AllocateObject>>(stmt.t)}; 891 for (const auto &allocateObject : allocateObjectList) { 892 if (IsCoarrayObject(allocateObject)) { 893 return true; 894 } 895 } 896 return false; 897 } 898 bool operator()(const parser::CallStmt &stmt) { 899 const auto &procedureDesignator{ 900 std::get<parser::ProcedureDesignator>(stmt.v.t)}; 901 if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) { 902 // TODO: also ensure that the procedure is, in fact, an intrinsic 903 if (name->source == "move_alloc") { 904 const auto &args{std::get<std::list<parser::ActualArgSpec>>(stmt.v.t)}; 905 if (!args.empty()) { 906 const parser::ActualArg &actualArg{ 907 std::get<parser::ActualArg>(args.front().t)}; 908 if (const auto *argExpr{ 909 std::get_if<common::Indirection<parser::Expr>>( 910 &actualArg.u)}) { 911 return HasCoarray(argExpr->value()); 912 } 913 } 914 } 915 } 916 return false; 917 } 918 bool operator()(const parser::Statement<parser::ActionStmt> &stmt) { 919 return std::visit(*this, stmt.statement.u); 920 } 921 922 private: 923 bool IsCoarrayObject(const parser::AllocateObject &allocateObject) { 924 const parser::Name &name{GetLastName(allocateObject)}; 925 return name.symbol && evaluate::IsCoarray(*name.symbol); 926 } 927 }; 928 929 bool IsImageControlStmt(const parser::ExecutableConstruct &construct) { 930 return std::visit(ImageControlStmtHelper{}, construct.u); 931 } 932 933 std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg( 934 const parser::ExecutableConstruct &construct) { 935 if (const auto *actionStmt{ 936 std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) { 937 return std::visit( 938 common::visitors{ 939 [](const common::Indirection<parser::AllocateStmt> &) 940 -> std::optional<parser::MessageFixedText> { 941 return "ALLOCATE of a coarray is an image control" 942 " statement"_en_US; 943 }, 944 [](const common::Indirection<parser::DeallocateStmt> &) 945 -> std::optional<parser::MessageFixedText> { 946 return "DEALLOCATE of a coarray is an image control" 947 " statement"_en_US; 948 }, 949 [](const common::Indirection<parser::CallStmt> &) 950 -> std::optional<parser::MessageFixedText> { 951 return "MOVE_ALLOC of a coarray is an image control" 952 " statement "_en_US; 953 }, 954 [](const auto &) -> std::optional<parser::MessageFixedText> { 955 return std::nullopt; 956 }, 957 }, 958 actionStmt->statement.u); 959 } 960 return std::nullopt; 961 } 962 963 parser::CharBlock GetImageControlStmtLocation( 964 const parser::ExecutableConstruct &executableConstruct) { 965 return std::visit( 966 common::visitors{ 967 [](const common::Indirection<parser::ChangeTeamConstruct> 968 &construct) { 969 return std::get<parser::Statement<parser::ChangeTeamStmt>>( 970 construct.value().t) 971 .source; 972 }, 973 [](const common::Indirection<parser::CriticalConstruct> &construct) { 974 return std::get<parser::Statement<parser::CriticalStmt>>( 975 construct.value().t) 976 .source; 977 }, 978 [](const parser::Statement<parser::ActionStmt> &actionStmt) { 979 return actionStmt.source; 980 }, 981 [](const auto &) { return parser::CharBlock{}; }, 982 }, 983 executableConstruct.u); 984 } 985 986 bool HasCoarray(const parser::Expr &expression) { 987 if (const auto *expr{GetExpr(expression)}) { 988 for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) { 989 if (evaluate::IsCoarray(symbol)) { 990 return true; 991 } 992 } 993 } 994 return false; 995 } 996 997 bool IsPolymorphic(const Symbol &symbol) { 998 if (const DeclTypeSpec * type{symbol.GetType()}) { 999 return type->IsPolymorphic(); 1000 } 1001 return false; 1002 } 1003 1004 bool IsPolymorphicAllocatable(const Symbol &symbol) { 1005 return IsAllocatable(symbol) && IsPolymorphic(symbol); 1006 } 1007 1008 std::optional<parser::MessageFormattedText> CheckAccessibleComponent( 1009 const Scope &scope, const Symbol &symbol) { 1010 CHECK(symbol.owner().IsDerivedType()); // symbol must be a component 1011 if (symbol.attrs().test(Attr::PRIVATE)) { 1012 if (FindModuleFileContaining(scope)) { 1013 // Don't enforce component accessibility checks in module files; 1014 // there may be forward-substituted named constants of derived type 1015 // whose structure constructors reference private components. 1016 } else if (const Scope * 1017 moduleScope{FindModuleContaining(symbol.owner())}) { 1018 if (!moduleScope->Contains(scope)) { 1019 return parser::MessageFormattedText{ 1020 "PRIVATE component '%s' is only accessible within module '%s'"_err_en_US, 1021 symbol.name(), moduleScope->GetName().value()}; 1022 } 1023 } 1024 } 1025 return std::nullopt; 1026 } 1027 1028 std::list<SourceName> OrderParameterNames(const Symbol &typeSymbol) { 1029 std::list<SourceName> result; 1030 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { 1031 result = OrderParameterNames(spec->typeSymbol()); 1032 } 1033 const auto ¶mNames{typeSymbol.get<DerivedTypeDetails>().paramNames()}; 1034 result.insert(result.end(), paramNames.begin(), paramNames.end()); 1035 return result; 1036 } 1037 1038 SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) { 1039 SymbolVector result; 1040 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { 1041 result = OrderParameterDeclarations(spec->typeSymbol()); 1042 } 1043 const auto ¶mDecls{typeSymbol.get<DerivedTypeDetails>().paramDecls()}; 1044 result.insert(result.end(), paramDecls.begin(), paramDecls.end()); 1045 return result; 1046 } 1047 1048 const DeclTypeSpec &FindOrInstantiateDerivedType( 1049 Scope &scope, DerivedTypeSpec &&spec, DeclTypeSpec::Category category) { 1050 spec.EvaluateParameters(scope.context()); 1051 if (const DeclTypeSpec * 1052 type{scope.FindInstantiatedDerivedType(spec, category)}) { 1053 return *type; 1054 } 1055 // Create a new instantiation of this parameterized derived type 1056 // for this particular distinct set of actual parameter values. 1057 DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))}; 1058 type.derivedTypeSpec().Instantiate(scope); 1059 return type; 1060 } 1061 1062 const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) { 1063 if (proc) { 1064 if (const auto *subprogram{proc->detailsIf<SubprogramDetails>()}) { 1065 if (const Symbol * iface{subprogram->moduleInterface()}) { 1066 return iface; 1067 } 1068 } 1069 } 1070 return nullptr; 1071 } 1072 1073 ProcedureDefinitionClass ClassifyProcedure(const Symbol &symbol) { // 15.2.2 1074 const Symbol &ultimate{symbol.GetUltimate()}; 1075 if (ultimate.attrs().test(Attr::INTRINSIC)) { 1076 return ProcedureDefinitionClass::Intrinsic; 1077 } else if (ultimate.attrs().test(Attr::EXTERNAL)) { 1078 return ProcedureDefinitionClass::External; 1079 } else if (const auto *procDetails{ultimate.detailsIf<ProcEntityDetails>()}) { 1080 if (procDetails->isDummy()) { 1081 return ProcedureDefinitionClass::Dummy; 1082 } else if (IsPointer(ultimate)) { 1083 return ProcedureDefinitionClass::Pointer; 1084 } 1085 } else if (const Symbol * subp{FindSubprogram(symbol)}) { 1086 if (const auto *subpDetails{subp->detailsIf<SubprogramDetails>()}) { 1087 if (subpDetails->stmtFunction()) { 1088 return ProcedureDefinitionClass::StatementFunction; 1089 } 1090 } 1091 switch (ultimate.owner().kind()) { 1092 case Scope::Kind::Global: 1093 case Scope::Kind::IntrinsicModules: 1094 return ProcedureDefinitionClass::External; 1095 case Scope::Kind::Module: 1096 return ProcedureDefinitionClass::Module; 1097 case Scope::Kind::MainProgram: 1098 case Scope::Kind::Subprogram: 1099 return ProcedureDefinitionClass::Internal; 1100 default: 1101 break; 1102 } 1103 } 1104 return ProcedureDefinitionClass::None; 1105 } 1106 1107 // ComponentIterator implementation 1108 1109 template <ComponentKind componentKind> 1110 typename ComponentIterator<componentKind>::const_iterator 1111 ComponentIterator<componentKind>::const_iterator::Create( 1112 const DerivedTypeSpec &derived) { 1113 const_iterator it{}; 1114 it.componentPath_.emplace_back(derived); 1115 it.Increment(); // cue up first relevant component, if any 1116 return it; 1117 } 1118 1119 template <ComponentKind componentKind> 1120 const DerivedTypeSpec * 1121 ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal( 1122 const Symbol &component) const { 1123 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) { 1124 if (const DeclTypeSpec * type{details->type()}) { 1125 if (const auto *derived{type->AsDerived()}) { 1126 bool traverse{false}; 1127 if constexpr (componentKind == ComponentKind::Ordered) { 1128 // Order Component (only visit parents) 1129 traverse = component.test(Symbol::Flag::ParentComp); 1130 } else if constexpr (componentKind == ComponentKind::Direct) { 1131 traverse = !IsAllocatableOrPointer(component); 1132 } else if constexpr (componentKind == ComponentKind::Ultimate) { 1133 traverse = !IsAllocatableOrPointer(component); 1134 } else if constexpr (componentKind == ComponentKind::Potential) { 1135 traverse = !IsPointer(component); 1136 } else if constexpr (componentKind == ComponentKind::Scope) { 1137 traverse = !IsAllocatableOrPointer(component); 1138 } 1139 if (traverse) { 1140 const Symbol &newTypeSymbol{derived->typeSymbol()}; 1141 // Avoid infinite loop if the type is already part of the types 1142 // being visited. It is possible to have "loops in type" because 1143 // C744 does not forbid to use not yet declared type for 1144 // ALLOCATABLE or POINTER components. 1145 for (const auto &node : componentPath_) { 1146 if (&newTypeSymbol == &node.GetTypeSymbol()) { 1147 return nullptr; 1148 } 1149 } 1150 return derived; 1151 } 1152 } 1153 } // intrinsic & unlimited polymorphic not traversable 1154 } 1155 return nullptr; 1156 } 1157 1158 template <ComponentKind componentKind> 1159 static bool StopAtComponentPre(const Symbol &component) { 1160 if constexpr (componentKind == ComponentKind::Ordered) { 1161 // Parent components need to be iterated upon after their 1162 // sub-components in structure constructor analysis. 1163 return !component.test(Symbol::Flag::ParentComp); 1164 } else if constexpr (componentKind == ComponentKind::Direct) { 1165 return true; 1166 } else if constexpr (componentKind == ComponentKind::Ultimate) { 1167 return component.has<ProcEntityDetails>() || 1168 IsAllocatableOrPointer(component) || 1169 (component.get<ObjectEntityDetails>().type() && 1170 component.get<ObjectEntityDetails>().type()->AsIntrinsic()); 1171 } else if constexpr (componentKind == ComponentKind::Potential) { 1172 return !IsPointer(component); 1173 } 1174 } 1175 1176 template <ComponentKind componentKind> 1177 static bool StopAtComponentPost(const Symbol &component) { 1178 return componentKind == ComponentKind::Ordered && 1179 component.test(Symbol::Flag::ParentComp); 1180 } 1181 1182 template <ComponentKind componentKind> 1183 void ComponentIterator<componentKind>::const_iterator::Increment() { 1184 while (!componentPath_.empty()) { 1185 ComponentPathNode &deepest{componentPath_.back()}; 1186 if (deepest.component()) { 1187 if (!deepest.descended()) { 1188 deepest.set_descended(true); 1189 if (const DerivedTypeSpec * 1190 derived{PlanComponentTraversal(*deepest.component())}) { 1191 componentPath_.emplace_back(*derived); 1192 continue; 1193 } 1194 } else if (!deepest.visited()) { 1195 deepest.set_visited(true); 1196 return; // this is the next component to visit, after descending 1197 } 1198 } 1199 auto &nameIterator{deepest.nameIterator()}; 1200 if (nameIterator == deepest.nameEnd()) { 1201 componentPath_.pop_back(); 1202 } else if constexpr (componentKind == ComponentKind::Scope) { 1203 deepest.set_component(*nameIterator++->second); 1204 deepest.set_descended(false); 1205 deepest.set_visited(true); 1206 return; // this is the next component to visit, before descending 1207 } else { 1208 const Scope &scope{deepest.GetScope()}; 1209 auto scopeIter{scope.find(*nameIterator++)}; 1210 if (scopeIter != scope.cend()) { 1211 const Symbol &component{*scopeIter->second}; 1212 deepest.set_component(component); 1213 deepest.set_descended(false); 1214 if (StopAtComponentPre<componentKind>(component)) { 1215 deepest.set_visited(true); 1216 return; // this is the next component to visit, before descending 1217 } else { 1218 deepest.set_visited(!StopAtComponentPost<componentKind>(component)); 1219 } 1220 } 1221 } 1222 } 1223 } 1224 1225 template <ComponentKind componentKind> 1226 std::string 1227 ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName() 1228 const { 1229 std::string designator{""}; 1230 for (const auto &node : componentPath_) { 1231 designator += "%" + DEREF(node.component()).name().ToString(); 1232 } 1233 return designator; 1234 } 1235 1236 template class ComponentIterator<ComponentKind::Ordered>; 1237 template class ComponentIterator<ComponentKind::Direct>; 1238 template class ComponentIterator<ComponentKind::Ultimate>; 1239 template class ComponentIterator<ComponentKind::Potential>; 1240 template class ComponentIterator<ComponentKind::Scope>; 1241 1242 UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent( 1243 const DerivedTypeSpec &derived) { 1244 UltimateComponentIterator ultimates{derived}; 1245 return std::find_if(ultimates.begin(), ultimates.end(), 1246 [](const Symbol &symbol) { return evaluate::IsCoarray(symbol); }); 1247 } 1248 1249 UltimateComponentIterator::const_iterator FindPointerUltimateComponent( 1250 const DerivedTypeSpec &derived) { 1251 UltimateComponentIterator ultimates{derived}; 1252 return std::find_if(ultimates.begin(), ultimates.end(), IsPointer); 1253 } 1254 1255 PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent( 1256 const DerivedTypeSpec &derived) { 1257 PotentialComponentIterator potentials{derived}; 1258 return std::find_if( 1259 potentials.begin(), potentials.end(), [](const Symbol &component) { 1260 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) { 1261 const DeclTypeSpec *type{details->type()}; 1262 return type && IsEventTypeOrLockType(type->AsDerived()); 1263 } 1264 return false; 1265 }); 1266 } 1267 1268 UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent( 1269 const DerivedTypeSpec &derived) { 1270 UltimateComponentIterator ultimates{derived}; 1271 return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable); 1272 } 1273 1274 DirectComponentIterator::const_iterator FindAllocatableOrPointerDirectComponent( 1275 const DerivedTypeSpec &derived) { 1276 DirectComponentIterator directs{derived}; 1277 return std::find_if(directs.begin(), directs.end(), IsAllocatableOrPointer); 1278 } 1279 1280 UltimateComponentIterator::const_iterator 1281 FindPolymorphicAllocatableUltimateComponent(const DerivedTypeSpec &derived) { 1282 UltimateComponentIterator ultimates{derived}; 1283 return std::find_if( 1284 ultimates.begin(), ultimates.end(), IsPolymorphicAllocatable); 1285 } 1286 1287 UltimateComponentIterator::const_iterator 1288 FindPolymorphicAllocatableNonCoarrayUltimateComponent( 1289 const DerivedTypeSpec &derived) { 1290 UltimateComponentIterator ultimates{derived}; 1291 return std::find_if(ultimates.begin(), ultimates.end(), [](const Symbol &x) { 1292 return IsPolymorphicAllocatable(x) && !evaluate::IsCoarray(x); 1293 }); 1294 } 1295 1296 const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived, 1297 const std::function<bool(const Symbol &)> &predicate) { 1298 UltimateComponentIterator ultimates{derived}; 1299 if (auto it{std::find_if(ultimates.begin(), ultimates.end(), 1300 [&predicate](const Symbol &component) -> bool { 1301 return predicate(component); 1302 })}) { 1303 return &*it; 1304 } 1305 return nullptr; 1306 } 1307 1308 const Symbol *FindUltimateComponent(const Symbol &symbol, 1309 const std::function<bool(const Symbol &)> &predicate) { 1310 if (predicate(symbol)) { 1311 return &symbol; 1312 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 1313 if (const auto *type{object->type()}) { 1314 if (const auto *derived{type->AsDerived()}) { 1315 return FindUltimateComponent(*derived, predicate); 1316 } 1317 } 1318 } 1319 return nullptr; 1320 } 1321 1322 const Symbol *FindImmediateComponent(const DerivedTypeSpec &type, 1323 const std::function<bool(const Symbol &)> &predicate) { 1324 if (const Scope * scope{type.scope()}) { 1325 const Symbol *parent{nullptr}; 1326 for (const auto &pair : *scope) { 1327 const Symbol *symbol{&*pair.second}; 1328 if (predicate(*symbol)) { 1329 return symbol; 1330 } 1331 if (symbol->test(Symbol::Flag::ParentComp)) { 1332 parent = symbol; 1333 } 1334 } 1335 if (parent) { 1336 if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) { 1337 if (const auto *type{object->type()}) { 1338 if (const auto *derived{type->AsDerived()}) { 1339 return FindImmediateComponent(*derived, predicate); 1340 } 1341 } 1342 } 1343 } 1344 } 1345 return nullptr; 1346 } 1347 1348 const Symbol *IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) { 1349 if (IsFunctionResult(symbol)) { 1350 if (const Symbol * function{symbol.owner().symbol()}) { 1351 if (symbol.name() == function->name()) { 1352 return function; 1353 } 1354 } 1355 } 1356 return nullptr; 1357 } 1358 1359 void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) { 1360 checkLabelUse(gotoStmt.v); 1361 } 1362 void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) { 1363 for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) { 1364 checkLabelUse(i); 1365 } 1366 } 1367 1368 void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) { 1369 checkLabelUse(std::get<1>(arithmeticIfStmt.t)); 1370 checkLabelUse(std::get<2>(arithmeticIfStmt.t)); 1371 checkLabelUse(std::get<3>(arithmeticIfStmt.t)); 1372 } 1373 1374 void LabelEnforce::Post(const parser::AssignStmt &assignStmt) { 1375 checkLabelUse(std::get<parser::Label>(assignStmt.t)); 1376 } 1377 1378 void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) { 1379 for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) { 1380 checkLabelUse(i); 1381 } 1382 } 1383 1384 void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) { 1385 checkLabelUse(altReturnSpec.v); 1386 } 1387 1388 void LabelEnforce::Post(const parser::ErrLabel &errLabel) { 1389 checkLabelUse(errLabel.v); 1390 } 1391 void LabelEnforce::Post(const parser::EndLabel &endLabel) { 1392 checkLabelUse(endLabel.v); 1393 } 1394 void LabelEnforce::Post(const parser::EorLabel &eorLabel) { 1395 checkLabelUse(eorLabel.v); 1396 } 1397 1398 void LabelEnforce::checkLabelUse(const parser::Label &labelUsed) { 1399 if (labels_.find(labelUsed) == labels_.end()) { 1400 SayWithConstruct(context_, currentStatementSourcePosition_, 1401 parser::MessageFormattedText{ 1402 "Control flow escapes from %s"_err_en_US, construct_}, 1403 constructSourcePosition_); 1404 } 1405 } 1406 1407 parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() { 1408 return {"Enclosing %s statement"_en_US, construct_}; 1409 } 1410 1411 void LabelEnforce::SayWithConstruct(SemanticsContext &context, 1412 parser::CharBlock stmtLocation, parser::MessageFormattedText &&message, 1413 parser::CharBlock constructLocation) { 1414 context.Say(stmtLocation, message) 1415 .Attach(constructLocation, GetEnclosingConstructMsg()); 1416 } 1417 1418 bool HasAlternateReturns(const Symbol &subprogram) { 1419 for (const auto *dummyArg : subprogram.get<SubprogramDetails>().dummyArgs()) { 1420 if (!dummyArg) { 1421 return true; 1422 } 1423 } 1424 return false; 1425 } 1426 1427 bool InCommonBlock(const Symbol &symbol) { 1428 const auto *details{symbol.detailsIf<ObjectEntityDetails>()}; 1429 return details && details->commonBlock(); 1430 } 1431 1432 const std::optional<parser::Name> &MaybeGetNodeName( 1433 const ConstructNode &construct) { 1434 return std::visit( 1435 common::visitors{ 1436 [&](const parser::BlockConstruct *blockConstruct) 1437 -> const std::optional<parser::Name> & { 1438 return std::get<0>(blockConstruct->t).statement.v; 1439 }, 1440 [&](const auto *a) -> const std::optional<parser::Name> & { 1441 return std::get<0>(std::get<0>(a->t).statement.t); 1442 }, 1443 }, 1444 construct); 1445 } 1446 1447 std::optional<ArraySpec> ToArraySpec( 1448 evaluate::FoldingContext &context, const evaluate::Shape &shape) { 1449 if (auto extents{evaluate::AsConstantExtents(context, shape)}) { 1450 ArraySpec result; 1451 for (const auto &extent : *extents) { 1452 result.emplace_back(ShapeSpec::MakeExplicit(Bound{extent})); 1453 } 1454 return {std::move(result)}; 1455 } else { 1456 return std::nullopt; 1457 } 1458 } 1459 1460 std::optional<ArraySpec> ToArraySpec(evaluate::FoldingContext &context, 1461 const std::optional<evaluate::Shape> &shape) { 1462 return shape ? ToArraySpec(context, *shape) : std::nullopt; 1463 } 1464 1465 bool HasDefinedIo(GenericKind::DefinedIo which, const DerivedTypeSpec &derived, 1466 const Scope *scope) { 1467 if (const Scope * dtScope{derived.scope()}) { 1468 for (const auto &pair : *dtScope) { 1469 const Symbol &symbol{*pair.second}; 1470 if (const auto *generic{symbol.detailsIf<GenericDetails>()}) { 1471 GenericKind kind{generic->kind()}; 1472 if (const auto *io{std::get_if<GenericKind::DefinedIo>(&kind.u)}) { 1473 if (*io == which) { 1474 return true; // type-bound GENERIC exists 1475 } 1476 } 1477 } 1478 } 1479 } 1480 if (scope) { 1481 SourceName name{GenericKind::AsFortran(which)}; 1482 evaluate::DynamicType dyDerived{derived}; 1483 for (; scope && !scope->IsGlobal(); scope = &scope->parent()) { 1484 auto iter{scope->find(name)}; 1485 if (iter != scope->end()) { 1486 const auto &generic{iter->second->GetUltimate().get<GenericDetails>()}; 1487 for (auto ref : generic.specificProcs()) { 1488 const Symbol &procSym{ref->GetUltimate()}; 1489 if (const auto *subp{procSym.detailsIf<SubprogramDetails>()}) { 1490 if (!subp->dummyArgs().empty()) { 1491 if (const Symbol * first{subp->dummyArgs().at(0)}) { 1492 if (const DeclTypeSpec * dtSpec{first->GetType()}) { 1493 if (auto dyDummy{evaluate::DynamicType::From(*dtSpec)}) { 1494 if (dyDummy->IsTkCompatibleWith(dyDerived)) { 1495 return true; // GENERIC or INTERFACE not in type 1496 } 1497 } 1498 } 1499 } 1500 } 1501 } 1502 } 1503 } 1504 } 1505 } 1506 return false; 1507 } 1508 1509 const Symbol *FindUnsafeIoDirectComponent(GenericKind::DefinedIo which, 1510 const DerivedTypeSpec &derived, const Scope *scope) { 1511 if (HasDefinedIo(which, derived, scope)) { 1512 return nullptr; 1513 } 1514 if (const Scope * dtScope{derived.scope()}) { 1515 for (const auto &pair : *dtScope) { 1516 const Symbol &symbol{*pair.second}; 1517 if (IsAllocatableOrPointer(symbol)) { 1518 return &symbol; 1519 } 1520 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 1521 if (const DeclTypeSpec * type{details->type()}) { 1522 if (type->category() == DeclTypeSpec::Category::TypeDerived) { 1523 if (const Symbol * 1524 bad{FindUnsafeIoDirectComponent( 1525 which, type->derivedTypeSpec(), scope)}) { 1526 return bad; 1527 } 1528 } 1529 } 1530 } 1531 } 1532 } 1533 return nullptr; 1534 } 1535 1536 } // namespace Fortran::semantics 1537