1 //===-- lib/Semantics/tools.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Parser/tools.h" 10 #include "flang/Common/Fortran.h" 11 #include "flang/Common/indirection.h" 12 #include "flang/Parser/dump-parse-tree.h" 13 #include "flang/Parser/message.h" 14 #include "flang/Parser/parse-tree.h" 15 #include "flang/Semantics/scope.h" 16 #include "flang/Semantics/semantics.h" 17 #include "flang/Semantics/symbol.h" 18 #include "flang/Semantics/tools.h" 19 #include "flang/Semantics/type.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <algorithm> 22 #include <set> 23 #include <variant> 24 25 namespace Fortran::semantics { 26 27 // Find this or containing scope that matches predicate 28 static const Scope *FindScopeContaining( 29 const Scope &start, std::function<bool(const Scope &)> predicate) { 30 for (const Scope *scope{&start};; scope = &scope->parent()) { 31 if (predicate(*scope)) { 32 return scope; 33 } 34 if (scope->IsGlobal()) { 35 return nullptr; 36 } 37 } 38 } 39 40 const Scope *FindModuleContaining(const Scope &start) { 41 return FindScopeContaining( 42 start, [](const Scope &scope) { return scope.IsModule(); }); 43 } 44 45 const Scope *FindProgramUnitContaining(const Scope &start) { 46 return FindScopeContaining(start, [](const Scope &scope) { 47 switch (scope.kind()) { 48 case Scope::Kind::Module: 49 case Scope::Kind::MainProgram: 50 case Scope::Kind::Subprogram: 51 case Scope::Kind::BlockData: 52 return true; 53 default: 54 return false; 55 } 56 }); 57 } 58 59 const Scope *FindProgramUnitContaining(const Symbol &symbol) { 60 return FindProgramUnitContaining(symbol.owner()); 61 } 62 63 const Scope *FindPureProcedureContaining(const Scope &start) { 64 // N.B. We only need to examine the innermost containing program unit 65 // because an internal subprogram of a pure subprogram must also 66 // be pure (C1592). 67 if (const Scope * scope{FindProgramUnitContaining(start)}) { 68 if (IsPureProcedure(*scope)) { 69 return scope; 70 } 71 } 72 return nullptr; 73 } 74 75 Tristate IsDefinedAssignment( 76 const std::optional<evaluate::DynamicType> &lhsType, int lhsRank, 77 const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) { 78 if (!lhsType || !rhsType) { 79 return Tristate::No; // error or rhs is untyped 80 } 81 TypeCategory lhsCat{lhsType->category()}; 82 TypeCategory rhsCat{rhsType->category()}; 83 if (rhsRank > 0 && lhsRank != rhsRank) { 84 return Tristate::Yes; 85 } else if (lhsCat != TypeCategory::Derived) { 86 return ToTristate(lhsCat != rhsCat && 87 (!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat))); 88 } else { 89 const auto *lhsDerived{evaluate::GetDerivedTypeSpec(lhsType)}; 90 const auto *rhsDerived{evaluate::GetDerivedTypeSpec(rhsType)}; 91 if (lhsDerived && rhsDerived && *lhsDerived == *rhsDerived) { 92 return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or 93 // intrinsic 94 } else { 95 return Tristate::Yes; 96 } 97 } 98 } 99 100 bool IsIntrinsicRelational(common::RelationalOperator opr, 101 const evaluate::DynamicType &type0, int rank0, 102 const evaluate::DynamicType &type1, int rank1) { 103 if (!evaluate::AreConformable(rank0, rank1)) { 104 return false; 105 } else { 106 auto cat0{type0.category()}; 107 auto cat1{type1.category()}; 108 if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) { 109 // numeric types: EQ/NE always ok, others ok for non-complex 110 return opr == common::RelationalOperator::EQ || 111 opr == common::RelationalOperator::NE || 112 (cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex); 113 } else { 114 // not both numeric: only Character is ok 115 return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character; 116 } 117 } 118 } 119 120 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) { 121 return IsNumericTypeCategory(type0.category()); 122 } 123 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0, 124 const evaluate::DynamicType &type1, int rank1) { 125 return evaluate::AreConformable(rank0, rank1) && 126 IsNumericTypeCategory(type0.category()) && 127 IsNumericTypeCategory(type1.category()); 128 } 129 130 bool IsIntrinsicLogical(const evaluate::DynamicType &type0) { 131 return type0.category() == TypeCategory::Logical; 132 } 133 bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0, 134 const evaluate::DynamicType &type1, int rank1) { 135 return evaluate::AreConformable(rank0, rank1) && 136 type0.category() == TypeCategory::Logical && 137 type1.category() == TypeCategory::Logical; 138 } 139 140 bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0, 141 const evaluate::DynamicType &type1, int rank1) { 142 return evaluate::AreConformable(rank0, rank1) && 143 type0.category() == TypeCategory::Character && 144 type1.category() == TypeCategory::Character && 145 type0.kind() == type1.kind(); 146 } 147 148 bool IsGenericDefinedOp(const Symbol &symbol) { 149 const Symbol &ultimate{symbol.GetUltimate()}; 150 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 151 return generic->kind().IsDefinedOperator(); 152 } else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) { 153 return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp; 154 } else { 155 return false; 156 } 157 } 158 159 bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) { 160 const auto &objects{block.get<CommonBlockDetails>().objects()}; 161 auto found{std::find(objects.begin(), objects.end(), object)}; 162 return found != objects.end(); 163 } 164 165 bool IsUseAssociated(const Symbol &symbol, const Scope &scope) { 166 const Scope *owner{FindProgramUnitContaining(symbol.GetUltimate().owner())}; 167 return owner && owner->kind() == Scope::Kind::Module && 168 owner != FindProgramUnitContaining(scope); 169 } 170 171 bool DoesScopeContain( 172 const Scope *maybeAncestor, const Scope &maybeDescendent) { 173 return maybeAncestor && !maybeDescendent.IsGlobal() && 174 FindScopeContaining(maybeDescendent.parent(), 175 [&](const Scope &scope) { return &scope == maybeAncestor; }); 176 } 177 178 bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) { 179 return DoesScopeContain(maybeAncestor, symbol.owner()); 180 } 181 182 bool IsHostAssociated(const Symbol &symbol, const Scope &scope) { 183 const Scope *subprogram{FindProgramUnitContaining(scope)}; 184 return subprogram && 185 DoesScopeContain(FindProgramUnitContaining(symbol), *subprogram); 186 } 187 188 bool IsInStmtFunction(const Symbol &symbol) { 189 if (const Symbol * function{symbol.owner().symbol()}) { 190 return IsStmtFunction(*function); 191 } 192 return false; 193 } 194 195 bool IsStmtFunctionDummy(const Symbol &symbol) { 196 return IsDummy(symbol) && IsInStmtFunction(symbol); 197 } 198 199 bool IsStmtFunctionResult(const Symbol &symbol) { 200 return IsFunctionResult(symbol) && IsInStmtFunction(symbol); 201 } 202 203 bool IsPointerDummy(const Symbol &symbol) { 204 return IsPointer(symbol) && IsDummy(symbol); 205 } 206 207 // proc-name 208 bool IsProcName(const Symbol &symbol) { 209 return symbol.GetUltimate().has<ProcEntityDetails>(); 210 } 211 212 bool IsBindCProcedure(const Symbol &symbol) { 213 if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) { 214 if (const Symbol * procInterface{procDetails->interface().symbol()}) { 215 // procedure component with a BIND(C) interface 216 return IsBindCProcedure(*procInterface); 217 } 218 } 219 return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol); 220 } 221 222 bool IsBindCProcedure(const Scope &scope) { 223 if (const Symbol * symbol{scope.GetSymbol()}) { 224 return IsBindCProcedure(*symbol); 225 } else { 226 return false; 227 } 228 } 229 230 static const Symbol *FindPointerComponent( 231 const Scope &scope, std::set<const Scope *> &visited) { 232 if (!scope.IsDerivedType()) { 233 return nullptr; 234 } 235 if (!visited.insert(&scope).second) { 236 return nullptr; 237 } 238 // If there's a top-level pointer component, return it for clearer error 239 // messaging. 240 for (const auto &pair : scope) { 241 const Symbol &symbol{*pair.second}; 242 if (IsPointer(symbol)) { 243 return &symbol; 244 } 245 } 246 for (const auto &pair : scope) { 247 const Symbol &symbol{*pair.second}; 248 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 249 if (const DeclTypeSpec * type{details->type()}) { 250 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 251 if (const Scope * nested{derived->scope()}) { 252 if (const Symbol * 253 pointer{FindPointerComponent(*nested, visited)}) { 254 return pointer; 255 } 256 } 257 } 258 } 259 } 260 } 261 return nullptr; 262 } 263 264 const Symbol *FindPointerComponent(const Scope &scope) { 265 std::set<const Scope *> visited; 266 return FindPointerComponent(scope, visited); 267 } 268 269 const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) { 270 if (const Scope * scope{derived.scope()}) { 271 return FindPointerComponent(*scope); 272 } else { 273 return nullptr; 274 } 275 } 276 277 const Symbol *FindPointerComponent(const DeclTypeSpec &type) { 278 if (const DerivedTypeSpec * derived{type.AsDerived()}) { 279 return FindPointerComponent(*derived); 280 } else { 281 return nullptr; 282 } 283 } 284 285 const Symbol *FindPointerComponent(const DeclTypeSpec *type) { 286 return type ? FindPointerComponent(*type) : nullptr; 287 } 288 289 const Symbol *FindPointerComponent(const Symbol &symbol) { 290 return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType()); 291 } 292 293 // C1594 specifies several ways by which an object might be globally visible. 294 const Symbol *FindExternallyVisibleObject( 295 const Symbol &object, const Scope &scope) { 296 // TODO: Storage association with any object for which this predicate holds, 297 // once EQUIVALENCE is supported. 298 if (IsUseAssociated(object, scope) || IsHostAssociated(object, scope) || 299 (IsPureProcedure(scope) && IsPointerDummy(object)) || 300 (IsIntentIn(object) && IsDummy(object))) { 301 return &object; 302 } else if (const Symbol * block{FindCommonBlockContaining(object)}) { 303 return block; 304 } else { 305 return nullptr; 306 } 307 } 308 309 bool ExprHasTypeCategory( 310 const SomeExpr &expr, const common::TypeCategory &type) { 311 auto dynamicType{expr.GetType()}; 312 return dynamicType && dynamicType->category() == type; 313 } 314 315 bool ExprTypeKindIsDefault( 316 const SomeExpr &expr, const SemanticsContext &context) { 317 auto dynamicType{expr.GetType()}; 318 return dynamicType && 319 dynamicType->category() != common::TypeCategory::Derived && 320 dynamicType->kind() == context.GetDefaultKind(dynamicType->category()); 321 } 322 323 // If an analyzed expr or assignment is missing, dump the node and die. 324 template <typename T> 325 static void CheckMissingAnalysis(bool absent, const T &x) { 326 if (absent) { 327 std::string buf; 328 llvm::raw_string_ostream ss{buf}; 329 ss << "node has not been analyzed:\n"; 330 parser::DumpTree(ss, x); 331 common::die(ss.str().c_str()); 332 } 333 } 334 335 const SomeExpr *GetExprHelper::Get(const parser::Expr &x) { 336 CheckMissingAnalysis(!x.typedExpr, x); 337 return common::GetPtrFromOptional(x.typedExpr->v); 338 } 339 const SomeExpr *GetExprHelper::Get(const parser::Variable &x) { 340 CheckMissingAnalysis(!x.typedExpr, x); 341 return common::GetPtrFromOptional(x.typedExpr->v); 342 } 343 344 const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) { 345 CheckMissingAnalysis(!x.typedAssignment, x); 346 return common::GetPtrFromOptional(x.typedAssignment->v); 347 } 348 const evaluate::Assignment *GetAssignment( 349 const parser::PointerAssignmentStmt &x) { 350 CheckMissingAnalysis(!x.typedAssignment, x); 351 return common::GetPtrFromOptional(x.typedAssignment->v); 352 } 353 354 const Symbol *FindInterface(const Symbol &symbol) { 355 return std::visit( 356 common::visitors{ 357 [](const ProcEntityDetails &details) { 358 return details.interface().symbol(); 359 }, 360 [](const ProcBindingDetails &details) { return &details.symbol(); }, 361 [](const auto &) -> const Symbol * { return nullptr; }, 362 }, 363 symbol.details()); 364 } 365 366 const Symbol *FindSubprogram(const Symbol &symbol) { 367 return std::visit( 368 common::visitors{ 369 [&](const ProcEntityDetails &details) -> const Symbol * { 370 if (const Symbol * interface{details.interface().symbol()}) { 371 return FindSubprogram(*interface); 372 } else { 373 return &symbol; 374 } 375 }, 376 [](const ProcBindingDetails &details) { 377 return FindSubprogram(details.symbol()); 378 }, 379 [&](const SubprogramDetails &) { return &symbol; }, 380 [](const UseDetails &details) { 381 return FindSubprogram(details.symbol()); 382 }, 383 [](const HostAssocDetails &details) { 384 return FindSubprogram(details.symbol()); 385 }, 386 [](const auto &) -> const Symbol * { return nullptr; }, 387 }, 388 symbol.details()); 389 } 390 391 const Symbol *FindFunctionResult(const Symbol &symbol) { 392 if (const Symbol * subp{FindSubprogram(symbol)}) { 393 if (const auto &subpDetails{subp->detailsIf<SubprogramDetails>()}) { 394 if (subpDetails->isFunction()) { 395 return &subpDetails->result(); 396 } 397 } 398 } 399 return nullptr; 400 } 401 402 const Symbol *FindOverriddenBinding(const Symbol &symbol) { 403 if (symbol.has<ProcBindingDetails>()) { 404 if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) { 405 if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) { 406 if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) { 407 return parentScope->FindComponent(symbol.name()); 408 } 409 } 410 } 411 } 412 return nullptr; 413 } 414 415 const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) { 416 return FindParentTypeSpec(derived.typeSymbol()); 417 } 418 419 const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) { 420 if (const DerivedTypeSpec * derived{decl.AsDerived()}) { 421 return FindParentTypeSpec(*derived); 422 } else { 423 return nullptr; 424 } 425 } 426 427 const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) { 428 if (scope.kind() == Scope::Kind::DerivedType) { 429 if (const auto *symbol{scope.symbol()}) { 430 return FindParentTypeSpec(*symbol); 431 } 432 } 433 return nullptr; 434 } 435 436 const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) { 437 if (const Scope * scope{symbol.scope()}) { 438 if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) { 439 if (const Symbol * parent{details->GetParentComponent(*scope)}) { 440 return parent->GetType(); 441 } 442 } 443 } 444 return nullptr; 445 } 446 447 bool IsExtensibleType(const DerivedTypeSpec *derived) { 448 return derived && !IsIsoCType(derived) && 449 !derived->typeSymbol().attrs().test(Attr::BIND_C) && 450 !derived->typeSymbol().get<DerivedTypeDetails>().sequence(); 451 } 452 453 bool IsBuiltinDerivedType(const DerivedTypeSpec *derived, const char *name) { 454 if (!derived) { 455 return false; 456 } else { 457 const auto &symbol{derived->typeSymbol()}; 458 return symbol.owner().IsModule() && 459 symbol.owner().GetName().value() == "__fortran_builtins" && 460 symbol.name() == "__builtin_"s + name; 461 } 462 } 463 464 bool IsIsoCType(const DerivedTypeSpec *derived) { 465 return IsBuiltinDerivedType(derived, "c_ptr") || 466 IsBuiltinDerivedType(derived, "c_funptr"); 467 } 468 469 bool IsTeamType(const DerivedTypeSpec *derived) { 470 return IsBuiltinDerivedType(derived, "team_type"); 471 } 472 473 bool IsEventTypeOrLockType(const DerivedTypeSpec *derivedTypeSpec) { 474 return IsBuiltinDerivedType(derivedTypeSpec, "event_type") || 475 IsBuiltinDerivedType(derivedTypeSpec, "lock_type"); 476 } 477 478 bool IsOrContainsEventOrLockComponent(const Symbol &symbol) { 479 if (const Symbol * root{GetAssociationRoot(symbol)}) { 480 if (const auto *details{root->detailsIf<ObjectEntityDetails>()}) { 481 if (const DeclTypeSpec * type{details->type()}) { 482 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 483 return IsEventTypeOrLockType(derived) || 484 FindEventOrLockPotentialComponent(*derived); 485 } 486 } 487 } 488 } 489 return false; 490 } 491 492 // Check this symbol suitable as a type-bound procedure - C769 493 bool CanBeTypeBoundProc(const Symbol *symbol) { 494 if (!symbol || IsDummy(*symbol) || IsProcedurePointer(*symbol)) { 495 return false; 496 } else if (symbol->has<SubprogramNameDetails>()) { 497 return symbol->owner().kind() == Scope::Kind::Module; 498 } else if (auto *details{symbol->detailsIf<SubprogramDetails>()}) { 499 return symbol->owner().kind() == Scope::Kind::Module || 500 details->isInterface(); 501 } else if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) { 502 return !symbol->attrs().test(Attr::INTRINSIC) && 503 proc->HasExplicitInterface(); 504 } else { 505 return false; 506 } 507 } 508 509 bool IsInitialized(const Symbol &symbol) { 510 if (symbol.test(Symbol::Flag::InDataStmt)) { 511 return true; 512 } else if (IsNamedConstant(symbol)) { 513 return false; 514 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 515 if (IsAllocatable(symbol) || object->init()) { 516 return true; 517 } 518 if (!IsPointer(symbol) && object->type()) { 519 if (const auto *derived{object->type()->AsDerived()}) { 520 if (derived->HasDefaultInitialization()) { 521 return true; 522 } 523 } 524 } 525 } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) { 526 return proc->init().has_value(); 527 } 528 return false; 529 } 530 531 bool HasIntrinsicTypeName(const Symbol &symbol) { 532 std::string name{symbol.name().ToString()}; 533 if (name == "doubleprecision") { 534 return true; 535 } else if (name == "derived") { 536 return false; 537 } else { 538 for (int i{0}; i != common::TypeCategory_enumSize; ++i) { 539 if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) { 540 return true; 541 } 542 } 543 return false; 544 } 545 } 546 547 bool IsSeparateModuleProcedureInterface(const Symbol *symbol) { 548 if (symbol && symbol->attrs().test(Attr::MODULE)) { 549 if (auto *details{symbol->detailsIf<SubprogramDetails>()}) { 550 return details->isInterface(); 551 } 552 } 553 return false; 554 } 555 556 bool IsFinalizable(const Symbol &symbol) { 557 if (const DeclTypeSpec * type{symbol.GetType()}) { 558 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 559 return IsFinalizable(*derived); 560 } 561 } 562 return false; 563 } 564 565 bool IsFinalizable(const DerivedTypeSpec &derived) { 566 ScopeComponentIterator components{derived}; 567 return std::find_if(components.begin(), components.end(), 568 [](const Symbol &x) { return x.has<FinalProcDetails>(); }) != 569 components.end(); 570 } 571 572 // TODO The following function returns true for all types with FINAL procedures 573 // This is because we don't yet fill in the data for FinalProcDetails 574 bool HasImpureFinal(const DerivedTypeSpec &derived) { 575 ScopeComponentIterator components{derived}; 576 return std::find_if( 577 components.begin(), components.end(), [](const Symbol &x) { 578 return x.has<FinalProcDetails>() && !x.attrs().test(Attr::PURE); 579 }) != components.end(); 580 } 581 582 bool IsCoarray(const Symbol &symbol) { return symbol.Corank() > 0; } 583 584 bool IsAutomaticObject(const Symbol &symbol) { 585 if (IsDummy(symbol) || IsPointer(symbol) || IsAllocatable(symbol)) { 586 return false; 587 } 588 if (const DeclTypeSpec * type{symbol.GetType()}) { 589 if (type->category() == DeclTypeSpec::Character) { 590 ParamValue length{type->characterTypeSpec().length()}; 591 if (length.isExplicit()) { 592 if (MaybeIntExpr lengthExpr{length.GetExplicit()}) { 593 if (!ToInt64(lengthExpr)) { 594 return true; 595 } 596 } 597 } 598 } 599 } 600 if (symbol.IsObjectArray()) { 601 for (const ShapeSpec &spec : symbol.get<ObjectEntityDetails>().shape()) { 602 auto &lbound{spec.lbound().GetExplicit()}; 603 auto &ubound{spec.ubound().GetExplicit()}; 604 if ((lbound && !evaluate::ToInt64(*lbound)) || 605 (ubound && !evaluate::ToInt64(*ubound))) { 606 return true; 607 } 608 } 609 } 610 return false; 611 } 612 613 bool IsAssumedLengthCharacter(const Symbol &symbol) { 614 if (const DeclTypeSpec * type{symbol.GetType()}) { 615 return type->category() == DeclTypeSpec::Character && 616 type->characterTypeSpec().length().isAssumed(); 617 } else { 618 return false; 619 } 620 } 621 622 bool IsInBlankCommon(const Symbol &symbol) { 623 if (FindCommonBlockContaining(symbol)) { 624 if (const auto *details{ 625 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 626 if (details->commonBlock()) { 627 if (details->commonBlock()->name().empty()) { 628 return true; 629 } 630 } 631 } 632 } 633 return false; 634 } 635 636 // C722 and C723: For a function to be assumed length, it must be external and 637 // of CHARACTER type 638 bool IsExternal(const Symbol &symbol) { 639 return (symbol.has<SubprogramDetails>() && symbol.owner().IsGlobal()) || 640 symbol.attrs().test(Attr::EXTERNAL); 641 } 642 643 const Symbol *IsExternalInPureContext( 644 const Symbol &symbol, const Scope &scope) { 645 if (const auto *pureProc{FindPureProcedureContaining(scope)}) { 646 if (const Symbol * root{GetAssociationRoot(symbol)}) { 647 if (const Symbol * 648 visible{FindExternallyVisibleObject(*root, *pureProc)}) { 649 return visible; 650 } 651 } 652 } 653 return nullptr; 654 } 655 656 PotentialComponentIterator::const_iterator FindPolymorphicPotentialComponent( 657 const DerivedTypeSpec &derived) { 658 PotentialComponentIterator potentials{derived}; 659 return std::find_if( 660 potentials.begin(), potentials.end(), [](const Symbol &component) { 661 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) { 662 const DeclTypeSpec *type{details->type()}; 663 return type && type->IsPolymorphic(); 664 } 665 return false; 666 }); 667 } 668 669 bool IsOrContainsPolymorphicComponent(const Symbol &symbol) { 670 if (const Symbol * root{GetAssociationRoot(symbol)}) { 671 if (const auto *details{root->detailsIf<ObjectEntityDetails>()}) { 672 if (const DeclTypeSpec * type{details->type()}) { 673 if (type->IsPolymorphic()) { 674 return true; 675 } 676 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 677 return (bool)FindPolymorphicPotentialComponent(*derived); 678 } 679 } 680 } 681 } 682 return false; 683 } 684 685 bool InProtectedContext(const Symbol &symbol, const Scope ¤tScope) { 686 return IsProtected(symbol) && !IsHostAssociated(symbol, currentScope); 687 } 688 689 // C1101 and C1158 690 // TODO Need to check for a coindexed object (why? C1103?) 691 std::optional<parser::MessageFixedText> WhyNotModifiable( 692 const Symbol &symbol, const Scope &scope) { 693 const Symbol *root{GetAssociationRoot(symbol)}; 694 if (!root) { 695 return "'%s' is construct associated with an expression"_en_US; 696 } else if (InProtectedContext(*root, scope)) { 697 return "'%s' is protected in this scope"_en_US; 698 } else if (IsExternalInPureContext(*root, scope)) { 699 return "'%s' is externally visible and referenced in a pure" 700 " procedure"_en_US; 701 } else if (IsOrContainsEventOrLockComponent(*root)) { 702 return "'%s' is an entity with either an EVENT_TYPE or LOCK_TYPE"_en_US; 703 } else if (IsIntentIn(*root)) { 704 return "'%s' is an INTENT(IN) dummy argument"_en_US; 705 } else if (!IsVariableName(*root)) { 706 return "'%s' is not a variable"_en_US; 707 } else { 708 return std::nullopt; 709 } 710 } 711 712 std::optional<parser::Message> WhyNotModifiable(parser::CharBlock at, 713 const SomeExpr &expr, const Scope &scope, bool vectorSubscriptIsOk) { 714 if (!evaluate::IsVariable(expr)) { 715 return parser::Message{at, "Expression is not a variable"_en_US}; 716 } else if (auto dataRef{evaluate::ExtractDataRef(expr, true)}) { 717 if (!vectorSubscriptIsOk && evaluate::HasVectorSubscript(expr)) { 718 return parser::Message{at, "Variable has a vector subscript"_en_US}; 719 } 720 const Symbol &symbol{dataRef->GetFirstSymbol()}; 721 if (auto maybeWhy{WhyNotModifiable(symbol, scope)}) { 722 return parser::Message{symbol.name(), 723 parser::MessageFormattedText{std::move(*maybeWhy), symbol.name()}}; 724 } 725 } else { 726 // reference to function returning POINTER 727 } 728 return std::nullopt; 729 } 730 731 class ImageControlStmtHelper { 732 using ImageControlStmts = std::variant<parser::ChangeTeamConstruct, 733 parser::CriticalConstruct, parser::EventPostStmt, parser::EventWaitStmt, 734 parser::FormTeamStmt, parser::LockStmt, parser::StopStmt, 735 parser::SyncAllStmt, parser::SyncImagesStmt, parser::SyncMemoryStmt, 736 parser::SyncTeamStmt, parser::UnlockStmt>; 737 738 public: 739 template <typename T> bool operator()(const T &) { 740 return common::HasMember<T, ImageControlStmts>; 741 } 742 template <typename T> bool operator()(const common::Indirection<T> &x) { 743 return (*this)(x.value()); 744 } 745 bool operator()(const parser::AllocateStmt &stmt) { 746 const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)}; 747 for (const auto &allocation : allocationList) { 748 const auto &allocateObject{ 749 std::get<parser::AllocateObject>(allocation.t)}; 750 if (IsCoarrayObject(allocateObject)) { 751 return true; 752 } 753 } 754 return false; 755 } 756 bool operator()(const parser::DeallocateStmt &stmt) { 757 const auto &allocateObjectList{ 758 std::get<std::list<parser::AllocateObject>>(stmt.t)}; 759 for (const auto &allocateObject : allocateObjectList) { 760 if (IsCoarrayObject(allocateObject)) { 761 return true; 762 } 763 } 764 return false; 765 } 766 bool operator()(const parser::CallStmt &stmt) { 767 const auto &procedureDesignator{ 768 std::get<parser::ProcedureDesignator>(stmt.v.t)}; 769 if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) { 770 // TODO: also ensure that the procedure is, in fact, an intrinsic 771 if (name->source == "move_alloc") { 772 const auto &args{std::get<std::list<parser::ActualArgSpec>>(stmt.v.t)}; 773 if (!args.empty()) { 774 const parser::ActualArg &actualArg{ 775 std::get<parser::ActualArg>(args.front().t)}; 776 if (const auto *argExpr{ 777 std::get_if<common::Indirection<parser::Expr>>( 778 &actualArg.u)}) { 779 return HasCoarray(argExpr->value()); 780 } 781 } 782 } 783 } 784 return false; 785 } 786 bool operator()(const parser::Statement<parser::ActionStmt> &stmt) { 787 return std::visit(*this, stmt.statement.u); 788 } 789 790 private: 791 bool IsCoarrayObject(const parser::AllocateObject &allocateObject) { 792 const parser::Name &name{GetLastName(allocateObject)}; 793 return name.symbol && IsCoarray(*name.symbol); 794 } 795 }; 796 797 bool IsImageControlStmt(const parser::ExecutableConstruct &construct) { 798 return std::visit(ImageControlStmtHelper{}, construct.u); 799 } 800 801 std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg( 802 const parser::ExecutableConstruct &construct) { 803 if (const auto *actionStmt{ 804 std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) { 805 return std::visit( 806 common::visitors{ 807 [](const common::Indirection<parser::AllocateStmt> &) 808 -> std::optional<parser::MessageFixedText> { 809 return "ALLOCATE of a coarray is an image control" 810 " statement"_en_US; 811 }, 812 [](const common::Indirection<parser::DeallocateStmt> &) 813 -> std::optional<parser::MessageFixedText> { 814 return "DEALLOCATE of a coarray is an image control" 815 " statement"_en_US; 816 }, 817 [](const common::Indirection<parser::CallStmt> &) 818 -> std::optional<parser::MessageFixedText> { 819 return "MOVE_ALLOC of a coarray is an image control" 820 " statement "_en_US; 821 }, 822 [](const auto &) -> std::optional<parser::MessageFixedText> { 823 return std::nullopt; 824 }, 825 }, 826 actionStmt->statement.u); 827 } 828 return std::nullopt; 829 } 830 831 parser::CharBlock GetImageControlStmtLocation( 832 const parser::ExecutableConstruct &executableConstruct) { 833 return std::visit( 834 common::visitors{ 835 [](const common::Indirection<parser::ChangeTeamConstruct> 836 &construct) { 837 return std::get<parser::Statement<parser::ChangeTeamStmt>>( 838 construct.value().t) 839 .source; 840 }, 841 [](const common::Indirection<parser::CriticalConstruct> &construct) { 842 return std::get<parser::Statement<parser::CriticalStmt>>( 843 construct.value().t) 844 .source; 845 }, 846 [](const parser::Statement<parser::ActionStmt> &actionStmt) { 847 return actionStmt.source; 848 }, 849 [](const auto &) { return parser::CharBlock{}; }, 850 }, 851 executableConstruct.u); 852 } 853 854 bool HasCoarray(const parser::Expr &expression) { 855 if (const auto *expr{GetExpr(expression)}) { 856 for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) { 857 if (const Symbol * root{GetAssociationRoot(symbol)}) { 858 if (IsCoarray(*root)) { 859 return true; 860 } 861 } 862 } 863 } 864 return false; 865 } 866 867 bool IsPolymorphic(const Symbol &symbol) { 868 if (const DeclTypeSpec * type{symbol.GetType()}) { 869 return type->IsPolymorphic(); 870 } 871 return false; 872 } 873 874 bool IsPolymorphicAllocatable(const Symbol &symbol) { 875 return IsAllocatable(symbol) && IsPolymorphic(symbol); 876 } 877 878 std::optional<parser::MessageFormattedText> CheckAccessibleComponent( 879 const Scope &scope, const Symbol &symbol) { 880 CHECK(symbol.owner().IsDerivedType()); // symbol must be a component 881 if (symbol.attrs().test(Attr::PRIVATE)) { 882 if (const Scope * moduleScope{FindModuleContaining(symbol.owner())}) { 883 if (!moduleScope->Contains(scope)) { 884 return parser::MessageFormattedText{ 885 "PRIVATE component '%s' is only accessible within module '%s'"_err_en_US, 886 symbol.name(), moduleScope->GetName().value()}; 887 } 888 } 889 } 890 return std::nullopt; 891 } 892 893 std::list<SourceName> OrderParameterNames(const Symbol &typeSymbol) { 894 std::list<SourceName> result; 895 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { 896 result = OrderParameterNames(spec->typeSymbol()); 897 } 898 const auto ¶mNames{typeSymbol.get<DerivedTypeDetails>().paramNames()}; 899 result.insert(result.end(), paramNames.begin(), paramNames.end()); 900 return result; 901 } 902 903 SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) { 904 SymbolVector result; 905 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { 906 result = OrderParameterDeclarations(spec->typeSymbol()); 907 } 908 const auto ¶mDecls{typeSymbol.get<DerivedTypeDetails>().paramDecls()}; 909 result.insert(result.end(), paramDecls.begin(), paramDecls.end()); 910 return result; 911 } 912 913 const DeclTypeSpec &FindOrInstantiateDerivedType(Scope &scope, 914 DerivedTypeSpec &&spec, SemanticsContext &semanticsContext, 915 DeclTypeSpec::Category category) { 916 spec.CookParameters(semanticsContext.foldingContext()); 917 spec.EvaluateParameters(semanticsContext.foldingContext()); 918 if (const DeclTypeSpec * 919 type{scope.FindInstantiatedDerivedType(spec, category)}) { 920 return *type; 921 } 922 // Create a new instantiation of this parameterized derived type 923 // for this particular distinct set of actual parameter values. 924 DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))}; 925 type.derivedTypeSpec().Instantiate(scope, semanticsContext); 926 return type; 927 } 928 929 const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) { 930 if (proc) { 931 if (const Symbol * submodule{proc->owner().symbol()}) { 932 if (const auto *details{submodule->detailsIf<ModuleDetails>()}) { 933 if (const Scope * ancestor{details->ancestor()}) { 934 const Symbol *iface{ancestor->FindSymbol(proc->name())}; 935 if (IsSeparateModuleProcedureInterface(iface)) { 936 return iface; 937 } 938 } 939 } 940 } 941 } 942 return nullptr; 943 } 944 945 // ComponentIterator implementation 946 947 template <ComponentKind componentKind> 948 typename ComponentIterator<componentKind>::const_iterator 949 ComponentIterator<componentKind>::const_iterator::Create( 950 const DerivedTypeSpec &derived) { 951 const_iterator it{}; 952 it.componentPath_.emplace_back(derived); 953 it.Increment(); // cue up first relevant component, if any 954 return it; 955 } 956 957 template <ComponentKind componentKind> 958 const DerivedTypeSpec * 959 ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal( 960 const Symbol &component) const { 961 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) { 962 if (const DeclTypeSpec * type{details->type()}) { 963 if (const auto *derived{type->AsDerived()}) { 964 bool traverse{false}; 965 if constexpr (componentKind == ComponentKind::Ordered) { 966 // Order Component (only visit parents) 967 traverse = component.test(Symbol::Flag::ParentComp); 968 } else if constexpr (componentKind == ComponentKind::Direct) { 969 traverse = !IsAllocatableOrPointer(component); 970 } else if constexpr (componentKind == ComponentKind::Ultimate) { 971 traverse = !IsAllocatableOrPointer(component); 972 } else if constexpr (componentKind == ComponentKind::Potential) { 973 traverse = !IsPointer(component); 974 } else if constexpr (componentKind == ComponentKind::Scope) { 975 traverse = !IsAllocatableOrPointer(component); 976 } 977 if (traverse) { 978 const Symbol &newTypeSymbol{derived->typeSymbol()}; 979 // Avoid infinite loop if the type is already part of the types 980 // being visited. It is possible to have "loops in type" because 981 // C744 does not forbid to use not yet declared type for 982 // ALLOCATABLE or POINTER components. 983 for (const auto &node : componentPath_) { 984 if (&newTypeSymbol == &node.GetTypeSymbol()) { 985 return nullptr; 986 } 987 } 988 return derived; 989 } 990 } 991 } // intrinsic & unlimited polymorphic not traversable 992 } 993 return nullptr; 994 } 995 996 template <ComponentKind componentKind> 997 static bool StopAtComponentPre(const Symbol &component) { 998 if constexpr (componentKind == ComponentKind::Ordered) { 999 // Parent components need to be iterated upon after their 1000 // sub-components in structure constructor analysis. 1001 return !component.test(Symbol::Flag::ParentComp); 1002 } else if constexpr (componentKind == ComponentKind::Direct) { 1003 return true; 1004 } else if constexpr (componentKind == ComponentKind::Ultimate) { 1005 return component.has<ProcEntityDetails>() || 1006 IsAllocatableOrPointer(component) || 1007 (component.get<ObjectEntityDetails>().type() && 1008 component.get<ObjectEntityDetails>().type()->AsIntrinsic()); 1009 } else if constexpr (componentKind == ComponentKind::Potential) { 1010 return !IsPointer(component); 1011 } 1012 } 1013 1014 template <ComponentKind componentKind> 1015 static bool StopAtComponentPost(const Symbol &component) { 1016 return componentKind == ComponentKind::Ordered && 1017 component.test(Symbol::Flag::ParentComp); 1018 } 1019 1020 template <ComponentKind componentKind> 1021 void ComponentIterator<componentKind>::const_iterator::Increment() { 1022 while (!componentPath_.empty()) { 1023 ComponentPathNode &deepest{componentPath_.back()}; 1024 if (deepest.component()) { 1025 if (!deepest.descended()) { 1026 deepest.set_descended(true); 1027 if (const DerivedTypeSpec * 1028 derived{PlanComponentTraversal(*deepest.component())}) { 1029 componentPath_.emplace_back(*derived); 1030 continue; 1031 } 1032 } else if (!deepest.visited()) { 1033 deepest.set_visited(true); 1034 return; // this is the next component to visit, after descending 1035 } 1036 } 1037 auto &nameIterator{deepest.nameIterator()}; 1038 if (nameIterator == deepest.nameEnd()) { 1039 componentPath_.pop_back(); 1040 } else if constexpr (componentKind == ComponentKind::Scope) { 1041 deepest.set_component(*nameIterator++->second); 1042 deepest.set_descended(false); 1043 deepest.set_visited(true); 1044 return; // this is the next component to visit, before descending 1045 } else { 1046 const Scope &scope{deepest.GetScope()}; 1047 auto scopeIter{scope.find(*nameIterator++)}; 1048 if (scopeIter != scope.cend()) { 1049 const Symbol &component{*scopeIter->second}; 1050 deepest.set_component(component); 1051 deepest.set_descended(false); 1052 if (StopAtComponentPre<componentKind>(component)) { 1053 deepest.set_visited(true); 1054 return; // this is the next component to visit, before descending 1055 } else { 1056 deepest.set_visited(!StopAtComponentPost<componentKind>(component)); 1057 } 1058 } 1059 } 1060 } 1061 } 1062 1063 template <ComponentKind componentKind> 1064 std::string 1065 ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName() 1066 const { 1067 std::string designator{""}; 1068 for (const auto &node : componentPath_) { 1069 designator += "%" + DEREF(node.component()).name().ToString(); 1070 } 1071 return designator; 1072 } 1073 1074 template class ComponentIterator<ComponentKind::Ordered>; 1075 template class ComponentIterator<ComponentKind::Direct>; 1076 template class ComponentIterator<ComponentKind::Ultimate>; 1077 template class ComponentIterator<ComponentKind::Potential>; 1078 template class ComponentIterator<ComponentKind::Scope>; 1079 1080 UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent( 1081 const DerivedTypeSpec &derived) { 1082 UltimateComponentIterator ultimates{derived}; 1083 return std::find_if(ultimates.begin(), ultimates.end(), IsCoarray); 1084 } 1085 1086 UltimateComponentIterator::const_iterator FindPointerUltimateComponent( 1087 const DerivedTypeSpec &derived) { 1088 UltimateComponentIterator ultimates{derived}; 1089 return std::find_if(ultimates.begin(), ultimates.end(), IsPointer); 1090 } 1091 1092 PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent( 1093 const DerivedTypeSpec &derived) { 1094 PotentialComponentIterator potentials{derived}; 1095 return std::find_if( 1096 potentials.begin(), potentials.end(), [](const Symbol &component) { 1097 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) { 1098 const DeclTypeSpec *type{details->type()}; 1099 return type && IsEventTypeOrLockType(type->AsDerived()); 1100 } 1101 return false; 1102 }); 1103 } 1104 1105 UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent( 1106 const DerivedTypeSpec &derived) { 1107 UltimateComponentIterator ultimates{derived}; 1108 return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable); 1109 } 1110 1111 UltimateComponentIterator::const_iterator 1112 FindPolymorphicAllocatableUltimateComponent(const DerivedTypeSpec &derived) { 1113 UltimateComponentIterator ultimates{derived}; 1114 return std::find_if( 1115 ultimates.begin(), ultimates.end(), IsPolymorphicAllocatable); 1116 } 1117 1118 UltimateComponentIterator::const_iterator 1119 FindPolymorphicAllocatableNonCoarrayUltimateComponent( 1120 const DerivedTypeSpec &derived) { 1121 UltimateComponentIterator ultimates{derived}; 1122 return std::find_if(ultimates.begin(), ultimates.end(), [](const Symbol &x) { 1123 return IsPolymorphicAllocatable(x) && !IsCoarray(x); 1124 }); 1125 } 1126 1127 const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived, 1128 const std::function<bool(const Symbol &)> &predicate) { 1129 UltimateComponentIterator ultimates{derived}; 1130 if (auto it{std::find_if(ultimates.begin(), ultimates.end(), 1131 [&predicate](const Symbol &component) -> bool { 1132 return predicate(component); 1133 })}) { 1134 return &*it; 1135 } 1136 return nullptr; 1137 } 1138 1139 const Symbol *FindUltimateComponent(const Symbol &symbol, 1140 const std::function<bool(const Symbol &)> &predicate) { 1141 if (predicate(symbol)) { 1142 return &symbol; 1143 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 1144 if (const auto *type{object->type()}) { 1145 if (const auto *derived{type->AsDerived()}) { 1146 return FindUltimateComponent(*derived, predicate); 1147 } 1148 } 1149 } 1150 return nullptr; 1151 } 1152 1153 const Symbol *FindImmediateComponent(const DerivedTypeSpec &type, 1154 const std::function<bool(const Symbol &)> &predicate) { 1155 if (const Scope * scope{type.scope()}) { 1156 const Symbol *parent{nullptr}; 1157 for (const auto &pair : *scope) { 1158 const Symbol *symbol{&*pair.second}; 1159 if (predicate(*symbol)) { 1160 return symbol; 1161 } 1162 if (symbol->test(Symbol::Flag::ParentComp)) { 1163 parent = symbol; 1164 } 1165 } 1166 if (parent) { 1167 if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) { 1168 if (const auto *type{object->type()}) { 1169 if (const auto *derived{type->AsDerived()}) { 1170 return FindImmediateComponent(*derived, predicate); 1171 } 1172 } 1173 } 1174 } 1175 } 1176 return nullptr; 1177 } 1178 1179 bool IsFunctionResult(const Symbol &symbol) { 1180 return (symbol.has<ObjectEntityDetails>() && 1181 symbol.get<ObjectEntityDetails>().isFuncResult()) || 1182 (symbol.has<ProcEntityDetails>() && 1183 symbol.get<ProcEntityDetails>().isFuncResult()); 1184 } 1185 1186 bool IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) { 1187 if (IsFunctionResult(symbol)) { 1188 if (const Symbol * function{symbol.owner().symbol()}) { 1189 return symbol.name() == function->name(); 1190 } 1191 } 1192 return false; 1193 } 1194 1195 void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) { 1196 checkLabelUse(gotoStmt.v); 1197 } 1198 void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) { 1199 for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) { 1200 checkLabelUse(i); 1201 } 1202 } 1203 1204 void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) { 1205 checkLabelUse(std::get<1>(arithmeticIfStmt.t)); 1206 checkLabelUse(std::get<2>(arithmeticIfStmt.t)); 1207 checkLabelUse(std::get<3>(arithmeticIfStmt.t)); 1208 } 1209 1210 void LabelEnforce::Post(const parser::AssignStmt &assignStmt) { 1211 checkLabelUse(std::get<parser::Label>(assignStmt.t)); 1212 } 1213 1214 void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) { 1215 for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) { 1216 checkLabelUse(i); 1217 } 1218 } 1219 1220 void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) { 1221 checkLabelUse(altReturnSpec.v); 1222 } 1223 1224 void LabelEnforce::Post(const parser::ErrLabel &errLabel) { 1225 checkLabelUse(errLabel.v); 1226 } 1227 void LabelEnforce::Post(const parser::EndLabel &endLabel) { 1228 checkLabelUse(endLabel.v); 1229 } 1230 void LabelEnforce::Post(const parser::EorLabel &eorLabel) { 1231 checkLabelUse(eorLabel.v); 1232 } 1233 1234 void LabelEnforce::checkLabelUse(const parser::Label &labelUsed) { 1235 if (labels_.find(labelUsed) == labels_.end()) { 1236 SayWithConstruct(context_, currentStatementSourcePosition_, 1237 parser::MessageFormattedText{ 1238 "Control flow escapes from %s"_err_en_US, construct_}, 1239 constructSourcePosition_); 1240 } 1241 } 1242 1243 parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() { 1244 return {"Enclosing %s statement"_en_US, construct_}; 1245 } 1246 1247 void LabelEnforce::SayWithConstruct(SemanticsContext &context, 1248 parser::CharBlock stmtLocation, parser::MessageFormattedText &&message, 1249 parser::CharBlock constructLocation) { 1250 context.Say(stmtLocation, message) 1251 .Attach(constructLocation, GetEnclosingConstructMsg()); 1252 } 1253 1254 } // namespace Fortran::semantics 1255