1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/idioms.h" 14 #include "flang/Evaluate/common.h" 15 #include "flang/Evaluate/fold.h" 16 #include "flang/Evaluate/tools.h" 17 #include "flang/Parser/characters.h" 18 #include "flang/Parser/dump-parse-tree.h" 19 #include "flang/Parser/parse-tree-visitor.h" 20 #include "flang/Parser/parse-tree.h" 21 #include "flang/Semantics/scope.h" 22 #include "flang/Semantics/semantics.h" 23 #include "flang/Semantics/symbol.h" 24 #include "flang/Semantics/tools.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <functional> 28 #include <optional> 29 #include <set> 30 31 // Typedef for optional generic expressions (ubiquitous in this file) 32 using MaybeExpr = 33 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 34 35 // Much of the code that implements semantic analysis of expressions is 36 // tightly coupled with their typed representations in lib/Evaluate, 37 // and appears here in namespace Fortran::evaluate for convenience. 38 namespace Fortran::evaluate { 39 40 using common::LanguageFeature; 41 using common::NumericOperator; 42 using common::TypeCategory; 43 44 static inline std::string ToUpperCase(const std::string &str) { 45 return parser::ToUpperCaseLetters(str); 46 } 47 48 struct DynamicTypeWithLength : public DynamicType { 49 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 50 std::optional<Expr<SubscriptInteger>> LEN() const; 51 std::optional<Expr<SubscriptInteger>> length; 52 }; 53 54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 55 if (length) { 56 return length; 57 } 58 if (auto *lengthParam{charLength()}) { 59 if (const auto &len{lengthParam->GetExplicit()}) { 60 return ConvertToType<SubscriptInteger>(common::Clone(*len)); 61 } 62 } 63 return std::nullopt; // assumed or deferred length 64 } 65 66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 67 const std::optional<parser::TypeSpec> &spec) { 68 if (spec) { 69 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 70 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 71 // (viz., an intrinsic type with valid known kind or a non-polymorphic 72 // & non-ABSTRACT derived type). 73 if (const semantics::IntrinsicTypeSpec * 74 intrinsic{typeSpec->AsIntrinsic()}) { 75 TypeCategory category{intrinsic->category()}; 76 if (auto optKind{ToInt64(intrinsic->kind())}) { 77 int kind{static_cast<int>(*optKind)}; 78 if (category == TypeCategory::Character) { 79 const semantics::CharacterTypeSpec &cts{ 80 typeSpec->characterTypeSpec()}; 81 const semantics::ParamValue &len{cts.length()}; 82 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 83 // type guards, but not in array constructors. 84 return DynamicTypeWithLength{DynamicType{kind, len}}; 85 } else { 86 return DynamicTypeWithLength{DynamicType{category, kind}}; 87 } 88 } 89 } else if (const semantics::DerivedTypeSpec * 90 derived{typeSpec->AsDerived()}) { 91 return DynamicTypeWithLength{DynamicType{*derived}}; 92 } 93 } 94 } 95 return std::nullopt; 96 } 97 98 // Wraps a object in an explicitly typed representation (e.g., Designator<> 99 // or FunctionRef<>) that has been instantiated on a dynamically chosen type. 100 template <TypeCategory CATEGORY, template <typename> typename WRAPPER, 101 typename WRAPPED> 102 common::IfNoLvalue<MaybeExpr, WRAPPED> WrapperHelper(int kind, WRAPPED &&x) { 103 return common::SearchTypes( 104 TypeKindVisitor<CATEGORY, WRAPPER, WRAPPED>{kind, std::move(x)}); 105 } 106 107 template <template <typename> typename WRAPPER, typename WRAPPED> 108 common::IfNoLvalue<MaybeExpr, WRAPPED> TypedWrapper( 109 const DynamicType &dyType, WRAPPED &&x) { 110 switch (dyType.category()) { 111 SWITCH_COVERS_ALL_CASES 112 case TypeCategory::Integer: 113 return WrapperHelper<TypeCategory::Integer, WRAPPER, WRAPPED>( 114 dyType.kind(), std::move(x)); 115 case TypeCategory::Real: 116 return WrapperHelper<TypeCategory::Real, WRAPPER, WRAPPED>( 117 dyType.kind(), std::move(x)); 118 case TypeCategory::Complex: 119 return WrapperHelper<TypeCategory::Complex, WRAPPER, WRAPPED>( 120 dyType.kind(), std::move(x)); 121 case TypeCategory::Character: 122 return WrapperHelper<TypeCategory::Character, WRAPPER, WRAPPED>( 123 dyType.kind(), std::move(x)); 124 case TypeCategory::Logical: 125 return WrapperHelper<TypeCategory::Logical, WRAPPER, WRAPPED>( 126 dyType.kind(), std::move(x)); 127 case TypeCategory::Derived: 128 return AsGenericExpr(Expr<SomeDerived>{WRAPPER<SomeDerived>{std::move(x)}}); 129 } 130 } 131 132 class ArgumentAnalyzer { 133 public: 134 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 135 : context_{context}, allowAssumedType_{false} {} 136 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 137 bool allowAssumedType = false) 138 : context_{context}, source_{source}, allowAssumedType_{ 139 allowAssumedType} {} 140 bool fatalErrors() const { return fatalErrors_; } 141 ActualArguments &&GetActuals() { 142 CHECK(!fatalErrors_); 143 return std::move(actuals_); 144 } 145 const Expr<SomeType> &GetExpr(std::size_t i) const { 146 return DEREF(actuals_.at(i).value().UnwrapExpr()); 147 } 148 Expr<SomeType> &&MoveExpr(std::size_t i) { 149 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 150 } 151 void Analyze(const common::Indirection<parser::Expr> &x) { 152 Analyze(x.value()); 153 } 154 void Analyze(const parser::Expr &x) { 155 actuals_.emplace_back(AnalyzeExpr(x)); 156 fatalErrors_ |= !actuals_.back(); 157 } 158 void Analyze(const parser::Variable &); 159 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 160 161 bool IsIntrinsicRelational(RelationalOperator) const; 162 bool IsIntrinsicLogical() const; 163 bool IsIntrinsicNumeric(NumericOperator) const; 164 bool IsIntrinsicConcat() const; 165 166 // Find and return a user-defined operator or report an error. 167 // The provided message is used if there is no such operator. 168 MaybeExpr TryDefinedOp( 169 const char *, parser::MessageFixedText &&, bool isUserOp = false); 170 template <typename E> 171 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 172 return TryDefinedOp( 173 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 174 } 175 // Find and return a user-defined assignment 176 std::optional<ProcedureRef> TryDefinedAssignment(); 177 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 178 void Dump(llvm::raw_ostream &); 179 180 private: 181 MaybeExpr TryDefinedOp( 182 std::vector<const char *>, parser::MessageFixedText &&); 183 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 184 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 185 bool AreConformable() const; 186 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 187 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 188 std::optional<DynamicType> GetType(std::size_t) const; 189 int GetRank(std::size_t) const; 190 bool IsBOZLiteral(std::size_t i) const { 191 return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u); 192 } 193 void SayNoMatch(const std::string &, bool isAssignment = false); 194 std::string TypeAsFortran(std::size_t); 195 bool AnyUntypedOperand(); 196 197 ExpressionAnalyzer &context_; 198 ActualArguments actuals_; 199 parser::CharBlock source_; 200 bool fatalErrors_{false}; 201 const bool allowAssumedType_; 202 const Symbol *sawDefinedOp_{nullptr}; 203 }; 204 205 // Wraps a data reference in a typed Designator<>, and a procedure 206 // or procedure pointer reference in a ProcedureDesignator. 207 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 208 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 209 if (semantics::IsProcedure(symbol)) { 210 if (auto *component{std::get_if<Component>(&ref.u)}) { 211 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 212 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 213 DIE("unexpected alternative in DataRef"); 214 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 215 return Expr<SomeType>{ProcedureDesignator{symbol}}; 216 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 217 symbol.name().ToString())}) { 218 SpecificIntrinsic intrinsic{ 219 symbol.name().ToString(), std::move(*interface)}; 220 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 221 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 222 } else { 223 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 224 symbol.name()); 225 return std::nullopt; 226 } 227 } else if (auto dyType{DynamicType::From(symbol)}) { 228 return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); 229 } 230 return std::nullopt; 231 } 232 233 // Some subscript semantic checks must be deferred until all of the 234 // subscripts are in hand. 235 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 236 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 237 const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 238 int symbolRank{symbol.Rank()}; 239 int subscripts{static_cast<int>(ref.size())}; 240 if (subscripts == 0) { 241 // nothing to check 242 } else if (subscripts != symbolRank) { 243 if (symbolRank != 0) { 244 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 245 symbolRank, symbol.name(), subscripts); 246 } 247 return std::nullopt; 248 } else if (Component * component{ref.base().UnwrapComponent()}) { 249 int baseRank{component->base().Rank()}; 250 if (baseRank > 0) { 251 int subscriptRank{0}; 252 for (const auto &expr : ref.subscript()) { 253 subscriptRank += expr.Rank(); 254 } 255 if (subscriptRank > 0) { 256 Say("Subscripts of component '%s' of rank-%d derived type " 257 "array have rank %d but must all be scalar"_err_en_US, 258 symbol.name(), baseRank, subscriptRank); 259 return std::nullopt; 260 } 261 } 262 } else if (object) { 263 // C928 & C1002 264 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 265 if (!last->upper() && object->IsAssumedSize()) { 266 Say("Assumed-size array '%s' must have explicit final " 267 "subscript upper bound value"_err_en_US, 268 symbol.name()); 269 return std::nullopt; 270 } 271 } 272 } 273 return Designate(DataRef{std::move(ref)}); 274 } 275 276 // Applies subscripts to a data reference. 277 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 278 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 279 return std::visit( 280 common::visitors{ 281 [&](SymbolRef &&symbol) { 282 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 283 }, 284 [&](Component &&c) { 285 return CompleteSubscripts( 286 ArrayRef{std::move(c), std::move(subscripts)}); 287 }, 288 [&](auto &&) -> MaybeExpr { 289 DIE("bad base for ArrayRef"); 290 return std::nullopt; 291 }, 292 }, 293 std::move(dataRef.u)); 294 } 295 296 // Top-level checks for data references. 297 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 298 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 299 const Symbol &symbol{component->GetLastSymbol()}; 300 int componentRank{symbol.Rank()}; 301 if (componentRank > 0) { 302 int baseRank{component->base().Rank()}; 303 if (baseRank > 0) { 304 Say("Reference to whole rank-%d component '%%%s' of " 305 "rank-%d array of derived type is not allowed"_err_en_US, 306 componentRank, symbol.name(), baseRank); 307 } 308 } 309 } 310 return Designate(std::move(dataRef)); 311 } 312 313 // Parse tree correction after a substring S(j:k) was misparsed as an 314 // array section. N.B. Fortran substrings have to have a range, not a 315 // single index. 316 static void FixMisparsedSubstring(const parser::Designator &d) { 317 auto &mutate{const_cast<parser::Designator &>(d)}; 318 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 319 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 320 &dataRef->u)}) { 321 parser::ArrayElement &arrElement{ae->value()}; 322 if (!arrElement.subscripts.empty()) { 323 auto iter{arrElement.subscripts.begin()}; 324 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 325 if (!std::get<2>(triplet->t) /* no stride */ && 326 ++iter == arrElement.subscripts.end() /* one subscript */) { 327 if (Symbol * 328 symbol{std::visit( 329 common::visitors{ 330 [](parser::Name &n) { return n.symbol; }, 331 [](common::Indirection<parser::StructureComponent> 332 &sc) { return sc.value().component.symbol; }, 333 [](auto &) -> Symbol * { return nullptr; }, 334 }, 335 arrElement.base.u)}) { 336 const Symbol &ultimate{symbol->GetUltimate()}; 337 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 338 if (!ultimate.IsObjectArray() && 339 type->category() == semantics::DeclTypeSpec::Character) { 340 // The ambiguous S(j:k) was parsed as an array section 341 // reference, but it's now clear that it's a substring. 342 // Fix the parse tree in situ. 343 mutate.u = arrElement.ConvertToSubstring(); 344 } 345 } 346 } 347 } 348 } 349 } 350 } 351 } 352 } 353 354 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 355 auto restorer{GetContextualMessages().SetLocation(d.source)}; 356 FixMisparsedSubstring(d); 357 // These checks have to be deferred to these "top level" data-refs where 358 // we can be sure that there are no following subscripts (yet). 359 // Substrings have already been run through TopLevelChecks() and 360 // won't be returned by ExtractDataRef(). 361 if (MaybeExpr result{Analyze(d.u)}) { 362 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 363 return TopLevelChecks(std::move(*dataRef)); 364 } 365 return result; 366 } 367 return std::nullopt; 368 } 369 370 // A utility subroutine to repackage optional expressions of various levels 371 // of type specificity as fully general MaybeExpr values. 372 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 373 return std::make_optional(AsGenericExpr(std::move(x))); 374 } 375 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 376 if (x) { 377 return AsMaybeExpr(std::move(*x)); 378 } 379 return std::nullopt; 380 } 381 382 // Type kind parameter values for literal constants. 383 int ExpressionAnalyzer::AnalyzeKindParam( 384 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 385 if (!kindParam) { 386 return defaultKind; 387 } 388 return std::visit( 389 common::visitors{ 390 [](std::uint64_t k) { return static_cast<int>(k); }, 391 [&](const parser::Scalar< 392 parser::Integer<parser::Constant<parser::Name>>> &n) { 393 if (MaybeExpr ie{Analyze(n)}) { 394 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 395 int iv = *i64; 396 if (iv == *i64) { 397 return iv; 398 } 399 } 400 } 401 return defaultKind; 402 }, 403 }, 404 kindParam->u); 405 } 406 407 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 408 struct IntTypeVisitor { 409 using Result = MaybeExpr; 410 using Types = IntegerTypes; 411 template <typename T> Result Test() { 412 if (T::kind >= kind) { 413 const char *p{digits.begin()}; 414 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 415 if (!value.overflow) { 416 if (T::kind > kind) { 417 if (!isDefaultKind || 418 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 419 return std::nullopt; 420 } else if (analyzer.context().ShouldWarn( 421 LanguageFeature::BigIntLiterals)) { 422 analyzer.Say(digits, 423 "Integer literal is too large for default INTEGER(KIND=%d); " 424 "assuming INTEGER(KIND=%d)"_en_US, 425 kind, T::kind); 426 } 427 } 428 return Expr<SomeType>{ 429 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 430 } 431 } 432 return std::nullopt; 433 } 434 ExpressionAnalyzer &analyzer; 435 parser::CharBlock digits; 436 int kind; 437 bool isDefaultKind; 438 }; 439 440 template <typename PARSED> 441 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 442 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 443 bool isDefaultKind{!kindParam}; 444 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 445 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 446 auto digits{std::get<parser::CharBlock>(x.t)}; 447 if (MaybeExpr result{common::SearchTypes( 448 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 449 return result; 450 } else if (isDefaultKind) { 451 Say(digits, 452 "Integer literal is too large for any allowable " 453 "kind of INTEGER"_err_en_US); 454 } else { 455 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 456 kind); 457 } 458 } 459 return std::nullopt; 460 } 461 462 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 463 auto restorer{ 464 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 465 return IntLiteralConstant(x); 466 } 467 468 MaybeExpr ExpressionAnalyzer::Analyze( 469 const parser::SignedIntLiteralConstant &x) { 470 auto restorer{GetContextualMessages().SetLocation(x.source)}; 471 return IntLiteralConstant(x); 472 } 473 474 template <typename TYPE> 475 Constant<TYPE> ReadRealLiteral( 476 parser::CharBlock source, FoldingContext &context) { 477 const char *p{source.begin()}; 478 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 479 CHECK(p == source.end()); 480 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 481 auto value{valWithFlags.value}; 482 if (context.flushSubnormalsToZero()) { 483 value = value.FlushSubnormalToZero(); 484 } 485 return {value}; 486 } 487 488 struct RealTypeVisitor { 489 using Result = std::optional<Expr<SomeReal>>; 490 using Types = RealTypes; 491 492 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 493 : kind{k}, literal{lit}, context{ctx} {} 494 495 template <typename T> Result Test() { 496 if (kind == T::kind) { 497 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 498 } 499 return std::nullopt; 500 } 501 502 int kind; 503 parser::CharBlock literal; 504 FoldingContext &context; 505 }; 506 507 // Reads a real literal constant and encodes it with the right kind. 508 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 509 // Use a local message context around the real literal for better 510 // provenance on any messages. 511 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 512 // If a kind parameter appears, it defines the kind of the literal and the 513 // letter used in an exponent part must be 'E' (e.g., the 'E' in 514 // "6.02214E+23"). In the absence of an explicit kind parameter, any 515 // exponent letter determines the kind. Otherwise, defaults apply. 516 auto &defaults{context_.defaultKinds()}; 517 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 518 const char *end{x.real.source.end()}; 519 char expoLetter{' '}; 520 std::optional<int> letterKind; 521 for (const char *p{x.real.source.begin()}; p < end; ++p) { 522 if (parser::IsLetter(*p)) { 523 expoLetter = *p; 524 switch (expoLetter) { 525 case 'e': 526 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 527 break; 528 case 'd': 529 letterKind = defaults.doublePrecisionKind(); 530 break; 531 case 'q': 532 letterKind = defaults.quadPrecisionKind(); 533 break; 534 default: 535 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 536 } 537 break; 538 } 539 } 540 if (letterKind) { 541 defaultKind = *letterKind; 542 } 543 // C716 requires 'E' as an exponent, but this is more useful 544 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 545 if (letterKind && kind != *letterKind && expoLetter != 'e') { 546 Say("Explicit kind parameter on real constant disagrees with " 547 "exponent letter '%c'"_en_US, 548 expoLetter); 549 } 550 auto result{common::SearchTypes( 551 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 552 if (!result) { // C717 553 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 554 } 555 return AsMaybeExpr(std::move(result)); 556 } 557 558 MaybeExpr ExpressionAnalyzer::Analyze( 559 const parser::SignedRealLiteralConstant &x) { 560 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 561 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 562 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 563 if (sign == parser::Sign::Negative) { 564 return {AsGenericExpr(-std::move(realExpr))}; 565 } 566 } 567 return result; 568 } 569 return std::nullopt; 570 } 571 572 MaybeExpr ExpressionAnalyzer::Analyze( 573 const parser::SignedComplexLiteralConstant &x) { 574 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 575 if (!result) { 576 return std::nullopt; 577 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 578 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 579 } else { 580 return result; 581 } 582 } 583 584 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 585 return Analyze(x.u); 586 } 587 588 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 589 return AsMaybeExpr( 590 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 591 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 592 } 593 594 // CHARACTER literal processing. 595 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 596 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 597 return std::nullopt; 598 } 599 switch (kind) { 600 case 1: 601 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 602 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 603 string, true)}); 604 case 2: 605 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 606 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 607 string, true)}); 608 case 4: 609 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 610 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 611 string, true)}); 612 default: 613 CRASH_NO_CASE; 614 } 615 } 616 617 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 618 int kind{ 619 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 620 auto value{std::get<std::string>(x.t)}; 621 return AnalyzeString(std::move(value), kind); 622 } 623 624 MaybeExpr ExpressionAnalyzer::Analyze( 625 const parser::HollerithLiteralConstant &x) { 626 int kind{GetDefaultKind(TypeCategory::Character)}; 627 auto value{x.v}; 628 return AnalyzeString(std::move(value), kind); 629 } 630 631 // .TRUE. and .FALSE. of various kinds 632 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 633 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 634 GetDefaultKind(TypeCategory::Logical))}; 635 bool value{std::get<bool>(x.t)}; 636 auto result{common::SearchTypes( 637 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 638 kind, std::move(value)})}; 639 if (!result) { 640 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 641 } 642 return result; 643 } 644 645 // BOZ typeless literals 646 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 647 const char *p{x.v.c_str()}; 648 std::uint64_t base{16}; 649 switch (*p++) { 650 case 'b': 651 base = 2; 652 break; 653 case 'o': 654 base = 8; 655 break; 656 case 'z': 657 break; 658 case 'x': 659 break; 660 default: 661 CRASH_NO_CASE; 662 } 663 CHECK(*p == '"'); 664 ++p; 665 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 666 if (*p != '"') { 667 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, x.v); 668 return std::nullopt; 669 } 670 if (value.overflow) { 671 Say("BOZ literal '%s' too large"_err_en_US, x.v); 672 return std::nullopt; 673 } 674 return AsGenericExpr(std::move(value.value)); 675 } 676 677 // For use with SearchTypes to create a TypeParamInquiry with the 678 // right integer kind. 679 struct TypeParamInquiryVisitor { 680 using Result = std::optional<Expr<SomeInteger>>; 681 using Types = IntegerTypes; 682 TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol ¶m) 683 : kind{k}, base{std::move(b)}, parameter{param} {} 684 TypeParamInquiryVisitor(int k, const Symbol ¶m) 685 : kind{k}, parameter{param} {} 686 template <typename T> Result Test() { 687 if (kind == T::kind) { 688 return Expr<SomeInteger>{ 689 Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}}; 690 } 691 return std::nullopt; 692 } 693 int kind; 694 std::optional<NamedEntity> base; 695 const Symbol ¶meter; 696 }; 697 698 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry( 699 const Symbol *symbol) { 700 if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) { 701 if (dyType->category() == TypeCategory::Integer) { 702 return common::SearchTypes( 703 TypeParamInquiryVisitor{dyType->kind(), *symbol}); 704 } 705 } 706 return std::nullopt; 707 } 708 709 // Names and named constants 710 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 711 if (std::optional<int> kind{IsAcImpliedDo(n.source)}) { 712 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 713 *kind, AsExpr(ImpliedDoIndex{n.source}))); 714 } else if (context_.HasError(n) || !n.symbol) { 715 return std::nullopt; 716 } else { 717 const Symbol &ultimate{n.symbol->GetUltimate()}; 718 if (ultimate.has<semantics::TypeParamDetails>()) { 719 // A bare reference to a derived type parameter (within a parameterized 720 // derived type definition) 721 return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate)); 722 } else { 723 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 724 if (const semantics::Scope * 725 pure{semantics::FindPureProcedureContaining( 726 context_.FindScope(n.source))}) { 727 SayAt(n, 728 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 729 n.source, DEREF(pure->symbol()).name()); 730 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 731 } 732 } 733 return Designate(DataRef{*n.symbol}); 734 } 735 } 736 } 737 738 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 739 if (MaybeExpr value{Analyze(n.v)}) { 740 Expr<SomeType> folded{Fold(std::move(*value))}; 741 if (IsConstantExpr(folded)) { 742 return {folded}; 743 } 744 Say(n.v.source, "must be a constant"_err_en_US); // C718 745 } 746 return std::nullopt; 747 } 748 749 // Substring references 750 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 751 const std::optional<parser::ScalarIntExpr> &bound) { 752 if (bound) { 753 if (MaybeExpr expr{Analyze(*bound)}) { 754 if (expr->Rank() > 1) { 755 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 756 } 757 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 758 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 759 return {std::move(*ssIntExpr)}; 760 } 761 return {Expr<SubscriptInteger>{ 762 Convert<SubscriptInteger, TypeCategory::Integer>{ 763 std::move(*intExpr)}}}; 764 } else { 765 Say("substring bound expression is not INTEGER"_err_en_US); 766 } 767 } 768 } 769 return std::nullopt; 770 } 771 772 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 773 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 774 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 775 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 776 if (std::optional<DataRef> checked{ 777 ExtractDataRef(std::move(*newBaseExpr))}) { 778 const parser::SubstringRange &range{ 779 std::get<parser::SubstringRange>(ss.t)}; 780 std::optional<Expr<SubscriptInteger>> first{ 781 GetSubstringBound(std::get<0>(range.t))}; 782 std::optional<Expr<SubscriptInteger>> last{ 783 GetSubstringBound(std::get<1>(range.t))}; 784 const Symbol &symbol{checked->GetLastSymbol()}; 785 if (std::optional<DynamicType> dynamicType{ 786 DynamicType::From(symbol)}) { 787 if (dynamicType->category() == TypeCategory::Character) { 788 return WrapperHelper<TypeCategory::Character, Designator, 789 Substring>(dynamicType->kind(), 790 Substring{std::move(checked.value()), std::move(first), 791 std::move(last)}); 792 } 793 } 794 Say("substring may apply only to CHARACTER"_err_en_US); 795 } 796 } 797 } 798 } 799 return std::nullopt; 800 } 801 802 // CHARACTER literal substrings 803 MaybeExpr ExpressionAnalyzer::Analyze( 804 const parser::CharLiteralConstantSubstring &x) { 805 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 806 std::optional<Expr<SubscriptInteger>> lower{ 807 GetSubstringBound(std::get<0>(range.t))}; 808 std::optional<Expr<SubscriptInteger>> upper{ 809 GetSubstringBound(std::get<1>(range.t))}; 810 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 811 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 812 Expr<SubscriptInteger> length{ 813 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 814 charExpr->u)}; 815 if (!lower) { 816 lower = Expr<SubscriptInteger>{1}; 817 } 818 if (!upper) { 819 upper = Expr<SubscriptInteger>{ 820 static_cast<std::int64_t>(ToInt64(length).value())}; 821 } 822 return std::visit( 823 [&](auto &&ckExpr) -> MaybeExpr { 824 using Result = ResultType<decltype(ckExpr)>; 825 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 826 CHECK(DEREF(cp).size() == 1); 827 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 828 staticData->set_alignment(Result::kind) 829 .set_itemBytes(Result::kind) 830 .Push(cp->GetScalarValue().value()); 831 Substring substring{std::move(staticData), std::move(lower.value()), 832 std::move(upper.value())}; 833 return AsGenericExpr(Expr<SomeCharacter>{ 834 Expr<Result>{Designator<Result>{std::move(substring)}}}); 835 }, 836 std::move(charExpr->u)); 837 } 838 } 839 return std::nullopt; 840 } 841 842 // Subscripted array references 843 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 844 MaybeExpr &&expr) { 845 if (expr) { 846 if (expr->Rank() > 1) { 847 Say("Subscript expression has rank %d greater than 1"_err_en_US, 848 expr->Rank()); 849 } 850 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 851 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 852 return std::move(*ssIntExpr); 853 } else { 854 return Expr<SubscriptInteger>{ 855 Convert<SubscriptInteger, TypeCategory::Integer>{ 856 std::move(*intExpr)}}; 857 } 858 } else { 859 Say("Subscript expression is not INTEGER"_err_en_US); 860 } 861 } 862 return std::nullopt; 863 } 864 865 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 866 const std::optional<parser::Subscript> &s) { 867 if (s) { 868 return AsSubscript(Analyze(*s)); 869 } else { 870 return std::nullopt; 871 } 872 } 873 874 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 875 const parser::SectionSubscript &ss) { 876 return std::visit(common::visitors{ 877 [&](const parser::SubscriptTriplet &t) { 878 return std::make_optional<Subscript>( 879 Triplet{TripletPart(std::get<0>(t.t)), 880 TripletPart(std::get<1>(t.t)), 881 TripletPart(std::get<2>(t.t))}); 882 }, 883 [&](const auto &s) -> std::optional<Subscript> { 884 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 885 return Subscript{std::move(*subscriptExpr)}; 886 } else { 887 return std::nullopt; 888 } 889 }, 890 }, 891 ss.u); 892 } 893 894 // Empty result means an error occurred 895 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 896 const std::list<parser::SectionSubscript> &sss) { 897 bool error{false}; 898 std::vector<Subscript> subscripts; 899 for (const auto &s : sss) { 900 if (auto subscript{AnalyzeSectionSubscript(s)}) { 901 subscripts.emplace_back(std::move(*subscript)); 902 } else { 903 error = true; 904 } 905 } 906 return !error ? subscripts : std::vector<Subscript>{}; 907 } 908 909 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 910 if (MaybeExpr baseExpr{Analyze(ae.base)}) { 911 if (ae.subscripts.empty()) { 912 // will be converted to function call later or error reported 913 return std::nullopt; 914 } else if (baseExpr->Rank() == 0) { 915 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 916 Say("'%s' is not an array"_err_en_US, symbol->name()); 917 } 918 } else if (std::optional<DataRef> dataRef{ 919 ExtractDataRef(std::move(*baseExpr))}) { 920 return ApplySubscripts( 921 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 922 } else { 923 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 924 } 925 } 926 // error was reported: analyze subscripts without reporting more errors 927 auto restorer{GetContextualMessages().DiscardMessages()}; 928 AnalyzeSectionSubscripts(ae.subscripts); 929 return std::nullopt; 930 } 931 932 // Type parameter inquiries apply to data references, but don't depend 933 // on any trailing (co)subscripts. 934 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 935 return std::visit( 936 common::visitors{ 937 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 938 [](Component &&component) { 939 return NamedEntity{std::move(component)}; 940 }, 941 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 942 [](CoarrayRef &&coarrayRef) { 943 return NamedEntity{coarrayRef.GetLastSymbol()}; 944 }, 945 }, 946 std::move(designator.u)); 947 } 948 949 // Components of parent derived types are explicitly represented as such. 950 static std::optional<Component> CreateComponent( 951 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 952 if (&component.owner() == &scope) { 953 return Component{std::move(base), component}; 954 } 955 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 956 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 957 return CreateComponent( 958 DataRef{Component{std::move(base), *parentComponent}}, component, 959 *parentScope); 960 } 961 } 962 return std::nullopt; 963 } 964 965 // Derived type component references and type parameter inquiries 966 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 967 MaybeExpr base{Analyze(sc.base)}; 968 if (!base) { 969 return std::nullopt; 970 } 971 Symbol *sym{sc.component.symbol}; 972 if (context_.HasError(sym)) { 973 return std::nullopt; 974 } 975 const auto &name{sc.component.source}; 976 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 977 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 978 if (sym->detailsIf<semantics::TypeParamDetails>()) { 979 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 980 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 981 if (dyType->category() == TypeCategory::Integer) { 982 return AsMaybeExpr( 983 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(), 984 IgnoreAnySubscripts(std::move(*designator)), *sym})); 985 } 986 } 987 Say(name, "Type parameter is not INTEGER"_err_en_US); 988 } else { 989 Say(name, 990 "A type parameter inquiry must be applied to " 991 "a designator"_err_en_US); 992 } 993 } else if (!dtSpec || !dtSpec->scope()) { 994 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 995 return std::nullopt; 996 } else if (std::optional<DataRef> dataRef{ 997 ExtractDataRef(std::move(*dtExpr))}) { 998 if (auto component{ 999 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1000 return Designate(DataRef{std::move(*component)}); 1001 } else { 1002 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1003 dtSpec->typeSymbol().name()); 1004 } 1005 } else { 1006 Say(name, 1007 "Base of component reference must be a data reference"_err_en_US); 1008 } 1009 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1010 // special part-ref: %re, %im, %kind, %len 1011 // Type errors are detected and reported in semantics. 1012 using MiscKind = semantics::MiscDetails::Kind; 1013 MiscKind kind{details->kind()}; 1014 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1015 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1016 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1017 Expr<SomeReal> realExpr{std::visit( 1018 [&](const auto &z) { 1019 using PartType = typename ResultType<decltype(z)>::Part; 1020 auto part{kind == MiscKind::ComplexPartRe 1021 ? ComplexPart::Part::RE 1022 : ComplexPart::Part::IM}; 1023 return AsCategoryExpr(Designator<PartType>{ 1024 ComplexPart{std::move(*dataRef), part}}); 1025 }, 1026 zExpr->u)}; 1027 return {AsGenericExpr(std::move(realExpr))}; 1028 } 1029 } 1030 } else if (kind == MiscKind::KindParamInquiry || 1031 kind == MiscKind::LenParamInquiry) { 1032 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1033 return MakeFunctionRef( 1034 name, ActualArguments{ActualArgument{std::move(*base)}}); 1035 } else { 1036 DIE("unexpected MiscDetails::Kind"); 1037 } 1038 } else { 1039 Say(name, "derived type required before component reference"_err_en_US); 1040 } 1041 return std::nullopt; 1042 } 1043 1044 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1045 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1046 DataRef *dataRef{&*maybeDataRef}; 1047 std::vector<Subscript> subscripts; 1048 SymbolVector reversed; 1049 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1050 subscripts = std::move(aRef->subscript()); 1051 reversed.push_back(aRef->GetLastSymbol()); 1052 if (Component * component{aRef->base().UnwrapComponent()}) { 1053 dataRef = &component->base(); 1054 } else { 1055 dataRef = nullptr; 1056 } 1057 } 1058 if (dataRef) { 1059 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1060 reversed.push_back(component->GetLastSymbol()); 1061 dataRef = &component->base(); 1062 } 1063 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1064 reversed.push_back(*baseSym); 1065 } else { 1066 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1067 } 1068 } 1069 std::vector<Expr<SubscriptInteger>> cosubscripts; 1070 bool cosubsOk{true}; 1071 for (const auto &cosub : 1072 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1073 MaybeExpr coex{Analyze(cosub)}; 1074 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1075 cosubscripts.push_back( 1076 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1077 } else { 1078 cosubsOk = false; 1079 } 1080 } 1081 if (cosubsOk && !reversed.empty()) { 1082 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1083 const Symbol &symbol{reversed.front()}; 1084 if (numCosubscripts != symbol.Corank()) { 1085 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1086 symbol.name(), symbol.Corank(), numCosubscripts); 1087 } 1088 } 1089 // TODO: stat=/team=/team_number= 1090 // Reverse the chain of symbols so that the base is first and coarray 1091 // ultimate component is last. 1092 return Designate( 1093 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1094 std::move(subscripts), std::move(cosubscripts)}}); 1095 } 1096 return std::nullopt; 1097 } 1098 1099 int ExpressionAnalyzer::IntegerTypeSpecKind( 1100 const parser::IntegerTypeSpec &spec) { 1101 Expr<SubscriptInteger> value{ 1102 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1103 if (auto kind{ToInt64(value)}) { 1104 return static_cast<int>(*kind); 1105 } 1106 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1107 return GetDefaultKind(TypeCategory::Integer); 1108 } 1109 1110 // Array constructors 1111 1112 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1113 // all happen to have the same actual type T into one ArrayConstructor<T>. 1114 template <typename T> 1115 ArrayConstructorValues<T> MakeSpecific( 1116 ArrayConstructorValues<SomeType> &&from) { 1117 ArrayConstructorValues<T> to; 1118 for (ArrayConstructorValue<SomeType> &x : from) { 1119 std::visit( 1120 common::visitors{ 1121 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1122 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1123 to.Push(std::move(DEREF(typed))); 1124 }, 1125 [&](ImpliedDo<SomeType> &&impliedDo) { 1126 to.Push(ImpliedDo<T>{impliedDo.name(), 1127 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1128 std::move(impliedDo.stride()), 1129 MakeSpecific<T>(std::move(impliedDo.values()))}); 1130 }, 1131 }, 1132 std::move(x.u)); 1133 } 1134 return to; 1135 } 1136 1137 class ArrayConstructorContext { 1138 public: 1139 ArrayConstructorContext( 1140 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1141 : exprAnalyzer_{c}, type_{std::move(t)} {} 1142 1143 void Add(const parser::AcValue &); 1144 MaybeExpr ToExpr(); 1145 1146 // These interfaces allow *this to be used as a type visitor argument to 1147 // common::SearchTypes() to convert the array constructor to a typed 1148 // expression in ToExpr(). 1149 using Result = MaybeExpr; 1150 using Types = AllTypes; 1151 template <typename T> Result Test() { 1152 if (type_ && type_->category() == T::category) { 1153 if constexpr (T::category == TypeCategory::Derived) { 1154 return AsMaybeExpr(ArrayConstructor<T>{ 1155 type_->GetDerivedTypeSpec(), MakeSpecific<T>(std::move(values_))}); 1156 } else if (type_->kind() == T::kind) { 1157 if constexpr (T::category == TypeCategory::Character) { 1158 if (auto len{type_->LEN()}) { 1159 return AsMaybeExpr(ArrayConstructor<T>{ 1160 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1161 } 1162 } else { 1163 return AsMaybeExpr( 1164 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1165 } 1166 } 1167 } 1168 return std::nullopt; 1169 } 1170 1171 private: 1172 void Push(MaybeExpr &&); 1173 1174 template <int KIND, typename A> 1175 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1176 const A &x) { 1177 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1178 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1179 return ConvertToType<Type<TypeCategory::Integer, KIND>>( 1180 std::move(DEREF(intExpr))); 1181 } 1182 return std::nullopt; 1183 } 1184 1185 // Nested array constructors all reference the same ExpressionAnalyzer, 1186 // which represents the nest of active implied DO loop indices. 1187 ExpressionAnalyzer &exprAnalyzer_; 1188 std::optional<DynamicTypeWithLength> type_; 1189 bool explicitType_{type_.has_value()}; 1190 std::optional<std::int64_t> constantLength_; 1191 ArrayConstructorValues<SomeType> values_; 1192 }; 1193 1194 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1195 if (!x) { 1196 return; 1197 } 1198 if (auto dyType{x->GetType()}) { 1199 DynamicTypeWithLength xType{*dyType}; 1200 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1201 CHECK(xType.category() == TypeCategory::Character); 1202 xType.length = 1203 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1204 } 1205 if (!type_) { 1206 // If there is no explicit type-spec in an array constructor, the type 1207 // of the array is the declared type of all of the elements, which must 1208 // be well-defined and all match. 1209 // TODO: Possible language extension: use the most general type of 1210 // the values as the type of a numeric constructed array, convert all 1211 // of the other values to that type. Alternative: let the first value 1212 // determine the type, and convert the others to that type. 1213 CHECK(!explicitType_); 1214 type_ = std::move(xType); 1215 constantLength_ = ToInt64(type_->length); 1216 values_.Push(std::move(*x)); 1217 } else if (!explicitType_) { 1218 if (static_cast<const DynamicType &>(*type_) == 1219 static_cast<const DynamicType &>(xType)) { 1220 values_.Push(std::move(*x)); 1221 if (auto thisLen{ToInt64(xType.LEN())}) { 1222 if (constantLength_) { 1223 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1224 *thisLen != *constantLength_) { 1225 exprAnalyzer_.Say( 1226 "Character literal in array constructor without explicit " 1227 "type has different length than earlier element"_en_US); 1228 } 1229 if (*thisLen > *constantLength_) { 1230 // Language extension: use the longest literal to determine the 1231 // length of the array constructor's character elements, not the 1232 // first, when there is no explicit type. 1233 *constantLength_ = *thisLen; 1234 type_->length = xType.LEN(); 1235 } 1236 } else { 1237 constantLength_ = *thisLen; 1238 type_->length = xType.LEN(); 1239 } 1240 } 1241 } else { 1242 exprAnalyzer_.Say( 1243 "Values in array constructor must have the same declared type " 1244 "when no explicit type appears"_err_en_US); 1245 } 1246 } else { 1247 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1248 values_.Push(std::move(*cast)); 1249 } else { 1250 exprAnalyzer_.Say( 1251 "Value in array constructor could not be converted to the type " 1252 "of the array"_err_en_US); 1253 } 1254 } 1255 } 1256 } 1257 1258 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1259 using IntType = ResultType<ImpliedDoIndex>; 1260 std::visit( 1261 common::visitors{ 1262 [&](const parser::AcValue::Triplet &triplet) { 1263 // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1264 std::optional<Expr<IntType>> lower{ 1265 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))}; 1266 std::optional<Expr<IntType>> upper{ 1267 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))}; 1268 std::optional<Expr<IntType>> stride{ 1269 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))}; 1270 if (lower && upper) { 1271 if (!stride) { 1272 stride = Expr<IntType>{1}; 1273 } 1274 if (!type_) { 1275 type_ = DynamicTypeWithLength{IntType::GetType()}; 1276 } 1277 auto v{std::move(values_)}; 1278 parser::CharBlock anonymous; 1279 Push(Expr<SomeType>{ 1280 Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}}); 1281 std::swap(v, values_); 1282 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1283 std::move(*upper), std::move(*stride), std::move(v)}); 1284 } 1285 }, 1286 [&](const common::Indirection<parser::Expr> &expr) { 1287 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation( 1288 expr.value().source)}; 1289 if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) { 1290 Push(std::move(*v)); 1291 } 1292 }, 1293 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1294 const auto &control{ 1295 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)}; 1296 const auto &bounds{ 1297 std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1298 exprAnalyzer_.Analyze(bounds.name); 1299 parser::CharBlock name{bounds.name.thing.thing.source}; 1300 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1301 int kind{IntType::kind}; 1302 if (const auto dynamicType{DynamicType::From(symbol)}) { 1303 kind = dynamicType->kind(); 1304 } 1305 if (exprAnalyzer_.AddAcImpliedDo(name, kind)) { 1306 std::optional<Expr<IntType>> lower{ 1307 GetSpecificIntExpr<IntType::kind>(bounds.lower)}; 1308 std::optional<Expr<IntType>> upper{ 1309 GetSpecificIntExpr<IntType::kind>(bounds.upper)}; 1310 if (lower && upper) { 1311 std::optional<Expr<IntType>> stride{ 1312 GetSpecificIntExpr<IntType::kind>(bounds.step)}; 1313 auto v{std::move(values_)}; 1314 for (const auto &value : 1315 std::get<std::list<parser::AcValue>>(impliedDo.value().t)) { 1316 Add(value); 1317 } 1318 if (!stride) { 1319 stride = Expr<IntType>{1}; 1320 } 1321 std::swap(v, values_); 1322 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1323 std::move(*upper), std::move(*stride), std::move(v)}); 1324 } 1325 exprAnalyzer_.RemoveAcImpliedDo(name); 1326 } else { 1327 exprAnalyzer_.SayAt(name, 1328 "Implied DO index is active in surrounding implied DO loop " 1329 "and may not have the same name"_err_en_US); 1330 } 1331 }, 1332 }, 1333 x.u); 1334 } 1335 1336 MaybeExpr ArrayConstructorContext::ToExpr() { 1337 return common::SearchTypes(std::move(*this)); 1338 } 1339 1340 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1341 const parser::AcSpec &acSpec{array.v}; 1342 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1343 for (const parser::AcValue &value : acSpec.values) { 1344 acContext.Add(value); 1345 } 1346 return acContext.ToExpr(); 1347 } 1348 1349 MaybeExpr ExpressionAnalyzer::Analyze( 1350 const parser::StructureConstructor &structure) { 1351 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1352 parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; 1353 if (!parsedType.derivedTypeSpec) { 1354 return std::nullopt; 1355 } 1356 const auto &spec{*parsedType.derivedTypeSpec}; 1357 const Symbol &typeSymbol{spec.typeSymbol()}; 1358 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1359 return std::nullopt; // error recovery 1360 } 1361 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1362 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1363 1364 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1365 AttachDeclaration(Say(typeName, 1366 "ABSTRACT derived type '%s' may not be used in a " 1367 "structure constructor"_err_en_US, 1368 typeName), 1369 typeSymbol); 1370 } 1371 1372 // This iterator traverses all of the components in the derived type and its 1373 // parents. The symbols for whole parent components appear after their 1374 // own components and before the components of the types that extend them. 1375 // E.g., TYPE :: A; REAL X; END TYPE 1376 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1377 // produces the component list X, A, Y. 1378 // The order is important below because a structure constructor can 1379 // initialize X or A by name, but not both. 1380 auto components{semantics::OrderedComponentIterator{spec}}; 1381 auto nextAnonymous{components.begin()}; 1382 1383 std::set<parser::CharBlock> unavailable; 1384 bool anyKeyword{false}; 1385 StructureConstructor result{spec}; 1386 bool checkConflicts{true}; // until we hit one 1387 1388 for (const auto &component : 1389 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1390 const parser::Expr &expr{ 1391 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1392 parser::CharBlock source{expr.source}; 1393 auto &messages{GetContextualMessages()}; 1394 auto restorer{messages.SetLocation(source)}; 1395 const Symbol *symbol{nullptr}; 1396 MaybeExpr value{Analyze(expr)}; 1397 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1398 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1399 anyKeyword = true; 1400 source = kw->v.source; 1401 symbol = kw->v.symbol; 1402 if (!symbol) { 1403 auto componentIter{std::find_if(components.begin(), components.end(), 1404 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1405 if (componentIter != components.end()) { 1406 symbol = &*componentIter; 1407 } 1408 } 1409 if (!symbol) { // C7101 1410 Say(source, 1411 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1412 source, typeName); 1413 } 1414 } else { 1415 if (anyKeyword) { // C7100 1416 Say(source, 1417 "Value in structure constructor lacks a component name"_err_en_US); 1418 checkConflicts = false; // stem cascade 1419 } 1420 // Here's a regrettably common extension of the standard: anonymous 1421 // initialization of parent components, e.g., T(PT(1)) rather than 1422 // T(1) or T(PT=PT(1)). 1423 if (nextAnonymous == components.begin() && parentComponent && 1424 valueType == DynamicType::From(*parentComponent) && 1425 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1426 auto iter{ 1427 std::find(components.begin(), components.end(), *parentComponent)}; 1428 if (iter != components.end()) { 1429 symbol = parentComponent; 1430 nextAnonymous = ++iter; 1431 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1432 Say(source, 1433 "Whole parent component '%s' in structure " 1434 "constructor should not be anonymous"_en_US, 1435 symbol->name()); 1436 } 1437 } 1438 } 1439 while (!symbol && nextAnonymous != components.end()) { 1440 const Symbol &next{*nextAnonymous}; 1441 ++nextAnonymous; 1442 if (!next.test(Symbol::Flag::ParentComp)) { 1443 symbol = &next; 1444 } 1445 } 1446 if (!symbol) { 1447 Say(source, "Unexpected value in structure constructor"_err_en_US); 1448 } 1449 } 1450 if (symbol) { 1451 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1452 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1453 Say(source, *msg); 1454 } 1455 } 1456 if (checkConflicts) { 1457 auto componentIter{ 1458 std::find(components.begin(), components.end(), *symbol)}; 1459 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1460 // C797, C798 1461 Say(source, 1462 "Component '%s' conflicts with another component earlier in " 1463 "this structure constructor"_err_en_US, 1464 symbol->name()); 1465 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1466 // Make earlier components unavailable once a whole parent appears. 1467 for (auto it{components.begin()}; it != componentIter; ++it) { 1468 unavailable.insert(it->name()); 1469 } 1470 } else { 1471 // Make whole parent components unavailable after any of their 1472 // constituents appear. 1473 for (auto it{componentIter}; it != components.end(); ++it) { 1474 if (it->test(Symbol::Flag::ParentComp)) { 1475 unavailable.insert(it->name()); 1476 } 1477 } 1478 } 1479 } 1480 unavailable.insert(symbol->name()); 1481 if (value) { 1482 if (symbol->has<semantics::ProcEntityDetails>()) { 1483 CHECK(IsPointer(*symbol)); 1484 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1485 // C1594(4) 1486 const auto &innermost{context_.FindScope(expr.source)}; 1487 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1488 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1489 if (const Symbol * 1490 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1491 if (auto *msg{Say(expr.source, 1492 "Externally visible object '%s' may not be " 1493 "associated with pointer component '%s' in a " 1494 "pure procedure"_err_en_US, 1495 object->name(), pointer->name())}) { 1496 msg->Attach(object->name(), "Object declaration"_en_US) 1497 .Attach(pointer->name(), "Pointer declaration"_en_US); 1498 } 1499 } 1500 } 1501 } 1502 } else if (symbol->has<semantics::TypeParamDetails>()) { 1503 Say(expr.source, 1504 "Type parameter '%s' may not appear as a component " 1505 "of a structure constructor"_err_en_US, 1506 symbol->name()); 1507 continue; 1508 } else { 1509 Say(expr.source, 1510 "Component '%s' is neither a procedure pointer " 1511 "nor a data object"_err_en_US, 1512 symbol->name()); 1513 continue; 1514 } 1515 if (IsPointer(*symbol)) { 1516 semantics::CheckPointerAssignment( 1517 GetFoldingContext(), *symbol, *value); // C7104, C7105 1518 result.Add(*symbol, Fold(std::move(*value))); 1519 } else if (MaybeExpr converted{ 1520 ConvertToType(*symbol, std::move(*value))}) { 1521 result.Add(*symbol, std::move(*converted)); 1522 } else if (IsAllocatable(*symbol) && 1523 std::holds_alternative<NullPointer>(value->u)) { 1524 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1525 } else if (auto symType{DynamicType::From(symbol)}) { 1526 if (valueType) { 1527 AttachDeclaration( 1528 Say(expr.source, 1529 "Value in structure constructor of type %s is " 1530 "incompatible with component '%s' of type %s"_err_en_US, 1531 valueType->AsFortran(), symbol->name(), 1532 symType->AsFortran()), 1533 *symbol); 1534 } else { 1535 AttachDeclaration( 1536 Say(expr.source, 1537 "Value in structure constructor is incompatible with " 1538 " component '%s' of type %s"_err_en_US, 1539 symbol->name(), symType->AsFortran()), 1540 *symbol); 1541 } 1542 } 1543 } 1544 } 1545 } 1546 1547 // Ensure that unmentioned component objects have default initializers. 1548 for (const Symbol &symbol : components) { 1549 if (!symbol.test(Symbol::Flag::ParentComp) && 1550 unavailable.find(symbol.name()) == unavailable.cend() && 1551 !IsAllocatable(symbol)) { 1552 if (const auto *details{ 1553 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1554 if (details->init()) { 1555 result.Add(symbol, common::Clone(*details->init())); 1556 } else { // C799 1557 AttachDeclaration(Say(typeName, 1558 "Structure constructor lacks a value for " 1559 "component '%s'"_err_en_US, 1560 symbol.name()), 1561 symbol); 1562 } 1563 } 1564 } 1565 } 1566 1567 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1568 } 1569 1570 static std::optional<parser::CharBlock> GetPassName( 1571 const semantics::Symbol &proc) { 1572 return std::visit( 1573 [](const auto &details) { 1574 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1575 std::decay_t<decltype(details)>>) { 1576 return details.passName(); 1577 } else { 1578 return std::optional<parser::CharBlock>{}; 1579 } 1580 }, 1581 proc.details()); 1582 } 1583 1584 static int GetPassIndex(const Symbol &proc) { 1585 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1586 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1587 const auto *interface{semantics::FindInterface(proc)}; 1588 if (!passName || !interface) { 1589 return 0; // first argument is passed-object 1590 } 1591 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1592 int index{0}; 1593 for (const auto *arg : subp.dummyArgs()) { 1594 if (arg && arg->name() == passName) { 1595 return index; 1596 } 1597 ++index; 1598 } 1599 DIE("PASS argument name not in dummy argument list"); 1600 } 1601 1602 // Injects an expression into an actual argument list as the "passed object" 1603 // for a type-bound procedure reference that is not NOPASS. Adds an 1604 // argument keyword if possible, but not when the passed object goes 1605 // before a positional argument. 1606 // e.g., obj%tbp(x) -> tbp(obj,x). 1607 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1608 const Symbol &component, bool isPassedObject = true) { 1609 if (component.attrs().test(semantics::Attr::NOPASS)) { 1610 return; 1611 } 1612 int passIndex{GetPassIndex(component)}; 1613 auto iter{actuals.begin()}; 1614 int at{0}; 1615 while (iter < actuals.end() && at < passIndex) { 1616 if (*iter && (*iter)->keyword()) { 1617 iter = actuals.end(); 1618 break; 1619 } 1620 ++iter; 1621 ++at; 1622 } 1623 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1624 passed.set_isPassedObject(isPassedObject); 1625 if (iter == actuals.end()) { 1626 if (auto passName{GetPassName(component)}) { 1627 passed.set_keyword(*passName); 1628 } 1629 } 1630 actuals.emplace(iter, std::move(passed)); 1631 } 1632 1633 // Return the compile-time resolution of a procedure binding, if possible. 1634 static const Symbol *GetBindingResolution( 1635 const std::optional<DynamicType> &baseType, const Symbol &component) { 1636 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1637 if (!binding) { 1638 return nullptr; 1639 } 1640 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1641 (!baseType || baseType->IsPolymorphic())) { 1642 return nullptr; 1643 } 1644 return &binding->symbol(); 1645 } 1646 1647 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1648 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1649 -> std::optional<CalleeAndArguments> { 1650 const parser::StructureComponent &sc{pcr.v.thing}; 1651 const auto &name{sc.component.source}; 1652 if (MaybeExpr base{Analyze(sc.base)}) { 1653 if (const Symbol * sym{sc.component.symbol}) { 1654 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1655 if (sym->has<semantics::GenericDetails>()) { 1656 AdjustActuals adjustment{ 1657 [&](const Symbol &proc, ActualArguments &actuals) { 1658 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1659 AddPassArg(actuals, std::move(*dtExpr), proc); 1660 } 1661 return true; 1662 }}; 1663 sym = ResolveGeneric(*sym, arguments, adjustment); 1664 if (!sym) { 1665 EmitGenericResolutionError(*sc.component.symbol); 1666 return std::nullopt; 1667 } 1668 } 1669 if (const Symbol * 1670 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1671 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1672 return CalleeAndArguments{ 1673 ProcedureDesignator{*resolution}, std::move(arguments)}; 1674 } else if (std::optional<DataRef> dataRef{ 1675 ExtractDataRef(std::move(*dtExpr))}) { 1676 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1677 return CalleeAndArguments{ 1678 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1679 std::move(arguments)}; 1680 } else { 1681 AddPassArg(arguments, 1682 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1683 *sym); 1684 return CalleeAndArguments{ 1685 ProcedureDesignator{*sym}, std::move(arguments)}; 1686 } 1687 } 1688 } 1689 Say(name, 1690 "Base of procedure component reference is not a derived-type object"_err_en_US); 1691 } 1692 } 1693 CHECK(!GetContextualMessages().empty()); 1694 return std::nullopt; 1695 } 1696 1697 // Can actual be argument associated with dummy? 1698 static bool CheckCompatibleArgument(bool isElemental, 1699 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1700 return std::visit( 1701 common::visitors{ 1702 [&](const characteristics::DummyDataObject &x) { 1703 characteristics::TypeAndShape dummyTypeAndShape{x.type}; 1704 if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) { 1705 return false; 1706 } else if (auto actualType{actual.GetType()}) { 1707 return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType); 1708 } else { 1709 return false; 1710 } 1711 }, 1712 [&](const characteristics::DummyProcedure &) { 1713 const auto *expr{actual.UnwrapExpr()}; 1714 return expr && IsProcedurePointer(*expr); 1715 }, 1716 [&](const characteristics::AlternateReturn &) { 1717 return actual.isAlternateReturn(); 1718 }, 1719 }, 1720 dummy.u); 1721 } 1722 1723 // Are the actual arguments compatible with the dummy arguments of procedure? 1724 static bool CheckCompatibleArguments( 1725 const characteristics::Procedure &procedure, 1726 const ActualArguments &actuals) { 1727 bool isElemental{procedure.IsElemental()}; 1728 const auto &dummies{procedure.dummyArguments}; 1729 CHECK(dummies.size() == actuals.size()); 1730 for (std::size_t i{0}; i < dummies.size(); ++i) { 1731 const characteristics::DummyArgument &dummy{dummies[i]}; 1732 const std::optional<ActualArgument> &actual{actuals[i]}; 1733 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1734 return false; 1735 } 1736 } 1737 return true; 1738 } 1739 1740 // Handles a forward reference to a module function from what must 1741 // be a specification expression. Return false if the symbol is 1742 // an invalid forward reference. 1743 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1744 if (context_.HasError(symbol)) { 1745 return false; 1746 } 1747 if (const auto *details{ 1748 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1749 if (details->kind() == semantics::SubprogramKind::Module) { 1750 // If this symbol is still a SubprogramNameDetails, we must be 1751 // checking a specification expression in a sibling module 1752 // procedure. Resolve its names now so that its interface 1753 // is known. 1754 semantics::ResolveSpecificationParts(context_, symbol); 1755 if (symbol.has<semantics::SubprogramNameDetails>()) { 1756 // When the symbol hasn't had its details updated, we must have 1757 // already been in the process of resolving the function's 1758 // specification part; but recursive function calls are not 1759 // allowed in specification parts (10.1.11 para 5). 1760 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1761 symbol.name()); 1762 context_.SetError(const_cast<Symbol &>(symbol)); 1763 return false; 1764 } 1765 } else { // 10.1.11 para 4 1766 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1767 symbol.name()); 1768 context_.SetError(const_cast<Symbol &>(symbol)); 1769 return false; 1770 } 1771 } 1772 return true; 1773 } 1774 1775 // Resolve a call to a generic procedure with given actual arguments. 1776 // adjustActuals is called on procedure bindings to handle pass arg. 1777 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1778 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1779 bool mightBeStructureConstructor) { 1780 const Symbol *elemental{nullptr}; // matching elemental specific proc 1781 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1782 for (const Symbol &specific : details.specificProcs()) { 1783 if (!ResolveForward(specific)) { 1784 continue; 1785 } 1786 if (std::optional<characteristics::Procedure> procedure{ 1787 characteristics::Procedure::Characterize( 1788 ProcedureDesignator{specific}, context_.intrinsics())}) { 1789 ActualArguments localActuals{actuals}; 1790 if (specific.has<semantics::ProcBindingDetails>()) { 1791 if (!adjustActuals.value()(specific, localActuals)) { 1792 continue; 1793 } 1794 } 1795 if (semantics::CheckInterfaceForGeneric( 1796 *procedure, localActuals, GetFoldingContext())) { 1797 if (CheckCompatibleArguments(*procedure, localActuals)) { 1798 if (!procedure->IsElemental()) { 1799 return &specific; // takes priority over elemental match 1800 } 1801 elemental = &specific; 1802 } 1803 } 1804 } 1805 } 1806 if (elemental) { 1807 return elemental; 1808 } 1809 // Check parent derived type 1810 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 1811 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 1812 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 1813 if (const Symbol * 1814 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 1815 return result; 1816 } 1817 } 1818 } 1819 } 1820 if (mightBeStructureConstructor && details.derivedType()) { 1821 return details.derivedType(); 1822 } 1823 return nullptr; 1824 } 1825 1826 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 1827 if (semantics::IsGenericDefinedOp(symbol)) { 1828 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 1829 symbol.name()); 1830 } else { 1831 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 1832 symbol.name()); 1833 } 1834 } 1835 1836 auto ExpressionAnalyzer::GetCalleeAndArguments( 1837 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 1838 bool isSubroutine, bool mightBeStructureConstructor) 1839 -> std::optional<CalleeAndArguments> { 1840 return std::visit( 1841 common::visitors{ 1842 [&](const parser::Name &name) { 1843 return GetCalleeAndArguments(name, std::move(arguments), 1844 isSubroutine, mightBeStructureConstructor); 1845 }, 1846 [&](const parser::ProcComponentRef &pcr) { 1847 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 1848 }, 1849 }, 1850 pd.u); 1851 } 1852 1853 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 1854 ActualArguments &&arguments, bool isSubroutine, 1855 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 1856 const Symbol *symbol{name.symbol}; 1857 if (context_.HasError(symbol)) { 1858 return std::nullopt; // also handles null symbol 1859 } 1860 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 1861 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 1862 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 1863 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 1864 arguments, GetFoldingContext())}) { 1865 return CalleeAndArguments{ 1866 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1867 std::move(specificCall->arguments)}; 1868 } 1869 } else { 1870 CheckForBadRecursion(name.source, ultimate); 1871 if (ultimate.has<semantics::GenericDetails>()) { 1872 ExpressionAnalyzer::AdjustActuals noAdjustment; 1873 symbol = ResolveGeneric( 1874 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 1875 } 1876 if (symbol) { 1877 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 1878 if (mightBeStructureConstructor) { 1879 return CalleeAndArguments{ 1880 semantics::SymbolRef{*symbol}, std::move(arguments)}; 1881 } 1882 } else { 1883 return CalleeAndArguments{ 1884 ProcedureDesignator{*symbol}, std::move(arguments)}; 1885 } 1886 } else if (std::optional<SpecificCall> specificCall{ 1887 context_.intrinsics().Probe( 1888 CallCharacteristics{ 1889 ultimate.name().ToString(), isSubroutine}, 1890 arguments, GetFoldingContext())}) { 1891 // Generics can extend intrinsics 1892 return CalleeAndArguments{ 1893 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1894 std::move(specificCall->arguments)}; 1895 } else { 1896 EmitGenericResolutionError(*name.symbol); 1897 } 1898 } 1899 return std::nullopt; 1900 } 1901 1902 void ExpressionAnalyzer::CheckForBadRecursion( 1903 parser::CharBlock callSite, const semantics::Symbol &proc) { 1904 if (const auto *scope{proc.scope()}) { 1905 if (scope->sourceRange().Contains(callSite)) { 1906 parser::Message *msg{nullptr}; 1907 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 1908 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 1909 callSite); 1910 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 1911 msg = Say( // 15.6.2.1(3) 1912 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 1913 callSite); 1914 } 1915 AttachDeclaration(msg, proc); 1916 } 1917 } 1918 } 1919 1920 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 1921 if (const auto *designator{ 1922 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 1923 if (const auto *dataRef{ 1924 std::get_if<parser::DataRef>(&designator->value().u)}) { 1925 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 1926 if (const Symbol * symbol{name->symbol}) { 1927 if (const auto *type{symbol->GetType()}) { 1928 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 1929 return symbol; 1930 } 1931 } 1932 } 1933 } 1934 } 1935 } 1936 return nullptr; 1937 } 1938 1939 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 1940 std::optional<parser::StructureConstructor> *structureConstructor) { 1941 const parser::Call &call{funcRef.v}; 1942 auto restorer{GetContextualMessages().SetLocation(call.source)}; 1943 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 1944 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 1945 analyzer.Analyze(arg, false /* not subroutine call */); 1946 } 1947 if (analyzer.fatalErrors()) { 1948 return std::nullopt; 1949 } 1950 if (std::optional<CalleeAndArguments> callee{ 1951 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 1952 analyzer.GetActuals(), false /* not subroutine */, 1953 true /* might be structure constructor */)}) { 1954 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 1955 return MakeFunctionRef( 1956 call.source, std::move(*proc), std::move(callee->arguments)); 1957 } else if (structureConstructor) { 1958 // Structure constructor misparsed as function reference? 1959 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 1960 const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)}; 1961 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 1962 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 1963 semantics::Scope &scope{context_.FindScope(name->source)}; 1964 const semantics::DeclTypeSpec &type{ 1965 semantics::FindOrInstantiateDerivedType(scope, 1966 semantics::DerivedTypeSpec{ 1967 name->source, derivedType.GetUltimate()}, 1968 context_)}; 1969 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 1970 *structureConstructor = 1971 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 1972 return Analyze(structureConstructor->value()); 1973 } 1974 } 1975 } 1976 return std::nullopt; 1977 } 1978 1979 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 1980 const parser::Call &call{callStmt.v}; 1981 auto restorer{GetContextualMessages().SetLocation(call.source)}; 1982 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 1983 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 1984 analyzer.Analyze(arg, true /* is subroutine call */); 1985 } 1986 if (!analyzer.fatalErrors()) { 1987 if (std::optional<CalleeAndArguments> callee{ 1988 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 1989 analyzer.GetActuals(), true /* subroutine */)}) { 1990 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 1991 CHECK(proc); 1992 if (CheckCall(call.source, *proc, callee->arguments)) { 1993 callStmt.typedCall.reset( 1994 new ProcedureRef{std::move(*proc), std::move(callee->arguments)}); 1995 } 1996 } 1997 } 1998 } 1999 2000 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2001 if (!x.typedAssignment) { 2002 ArgumentAnalyzer analyzer{*this}; 2003 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2004 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2005 if (analyzer.fatalErrors()) { 2006 x.typedAssignment.reset(new GenericAssignmentWrapper{}); 2007 } else { 2008 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2009 Assignment assignment{ 2010 Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))}; 2011 if (procRef) { 2012 assignment.u = std::move(*procRef); 2013 } 2014 x.typedAssignment.reset( 2015 new GenericAssignmentWrapper{std::move(assignment)}); 2016 } 2017 } 2018 return common::GetPtrFromOptional(x.typedAssignment->v); 2019 } 2020 2021 const Assignment *ExpressionAnalyzer::Analyze( 2022 const parser::PointerAssignmentStmt &x) { 2023 if (!x.typedAssignment) { 2024 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2025 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2026 if (!lhs || !rhs) { 2027 x.typedAssignment.reset(new GenericAssignmentWrapper{}); 2028 } else { 2029 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2030 std::visit(common::visitors{ 2031 [&](const std::list<parser::BoundsRemapping> &list) { 2032 Assignment::BoundsRemapping bounds; 2033 for (const auto &elem : list) { 2034 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2035 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2036 if (lower && upper) { 2037 bounds.emplace_back(Fold(std::move(*lower)), 2038 Fold(std::move(*upper))); 2039 } 2040 } 2041 assignment.u = std::move(bounds); 2042 }, 2043 [&](const std::list<parser::BoundsSpec> &list) { 2044 Assignment::BoundsSpec bounds; 2045 for (const auto &bound : list) { 2046 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2047 bounds.emplace_back(Fold(std::move(*lower))); 2048 } 2049 } 2050 assignment.u = std::move(bounds); 2051 }, 2052 }, 2053 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2054 x.typedAssignment.reset( 2055 new GenericAssignmentWrapper{std::move(assignment)}); 2056 } 2057 } 2058 return common::GetPtrFromOptional(x.typedAssignment->v); 2059 } 2060 2061 static bool IsExternalCalledImplicitly( 2062 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2063 if (const auto *symbol{proc.GetSymbol()}) { 2064 return symbol->has<semantics::SubprogramDetails>() && 2065 symbol->owner().IsGlobal() && 2066 (!symbol->scope() /*ENTRY*/ || 2067 !symbol->scope()->sourceRange().Contains(callSite)); 2068 } else { 2069 return false; 2070 } 2071 } 2072 2073 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2074 parser::CharBlock callSite, const ProcedureDesignator &proc, 2075 ActualArguments &arguments) { 2076 auto chars{ 2077 characteristics::Procedure::Characterize(proc, context_.intrinsics())}; 2078 if (chars) { 2079 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2080 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2081 Say(callSite, 2082 "References to the procedure '%s' require an explicit interface"_en_US, 2083 DEREF(proc.GetSymbol()).name()); 2084 } 2085 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2086 context_.FindScope(callSite), treatExternalAsImplicit); 2087 if (!chars->attrs.test(characteristics::Procedure::Attr::Pure)) { 2088 if (const semantics::Scope * 2089 pure{semantics::FindPureProcedureContaining( 2090 context_.FindScope(callSite))}) { 2091 Say(callSite, 2092 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2093 DEREF(proc.GetSymbol()).name(), DEREF(pure->symbol()).name()); 2094 } 2095 } 2096 } 2097 return chars; 2098 } 2099 2100 // Unary operations 2101 2102 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2103 if (MaybeExpr operand{Analyze(x.v.value())}) { 2104 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2105 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2106 if (semantics::IsProcedurePointer(*result)) { 2107 Say("A function reference that returns a procedure " 2108 "pointer may not be parenthesized"_err_en_US); // C1003 2109 } 2110 } 2111 } 2112 return Parenthesize(std::move(*operand)); 2113 } 2114 return std::nullopt; 2115 } 2116 2117 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2118 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2119 ArgumentAnalyzer analyzer{context}; 2120 analyzer.Analyze(x.v); 2121 if (analyzer.fatalErrors()) { 2122 return std::nullopt; 2123 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2124 if (opr == NumericOperator::Add) { 2125 return analyzer.MoveExpr(0); 2126 } else { 2127 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2128 } 2129 } else { 2130 return analyzer.TryDefinedOp(AsFortran(opr), 2131 "Operand of unary %s must be numeric; have %s"_err_en_US); 2132 } 2133 } 2134 2135 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2136 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2137 } 2138 2139 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2140 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2141 } 2142 2143 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2144 ArgumentAnalyzer analyzer{*this}; 2145 analyzer.Analyze(x.v); 2146 if (analyzer.fatalErrors()) { 2147 return std::nullopt; 2148 } else if (analyzer.IsIntrinsicLogical()) { 2149 return AsGenericExpr( 2150 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2151 } else { 2152 return analyzer.TryDefinedOp(LogicalOperator::Not, 2153 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2154 } 2155 } 2156 2157 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2158 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2159 // intrinsic function. 2160 // Use the actual source for the name of the call for error reporting. 2161 std::optional<ActualArgument> arg; 2162 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2163 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2164 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2165 arg = ActualArgument{std::move(*argExpr)}; 2166 } else { 2167 return std::nullopt; 2168 } 2169 parser::CharBlock at{GetContextualMessages().at()}; 2170 CHECK(at.size() >= 4); 2171 parser::CharBlock loc{at.begin() + 1, 3}; 2172 CHECK(loc == "loc"); 2173 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2174 } 2175 2176 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2177 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2178 ArgumentAnalyzer analyzer{*this, name.source}; 2179 analyzer.Analyze(std::get<1>(x.t)); 2180 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2181 "No operator %s defined for %s"_err_en_US, true); 2182 } 2183 2184 // Binary (dyadic) operations 2185 2186 template <template <typename> class OPR> 2187 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2188 const parser::Expr::IntrinsicBinary &x) { 2189 ArgumentAnalyzer analyzer{context}; 2190 analyzer.Analyze(std::get<0>(x.t)); 2191 analyzer.Analyze(std::get<1>(x.t)); 2192 if (analyzer.fatalErrors()) { 2193 return std::nullopt; 2194 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2195 return NumericOperation<OPR>(context.GetContextualMessages(), 2196 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2197 context.GetDefaultKind(TypeCategory::Real)); 2198 } else { 2199 return analyzer.TryDefinedOp(AsFortran(opr), 2200 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2201 } 2202 } 2203 2204 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2205 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2206 } 2207 2208 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2209 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2210 } 2211 2212 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2213 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2214 } 2215 2216 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2217 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2218 } 2219 2220 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2221 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2222 } 2223 2224 MaybeExpr ExpressionAnalyzer::Analyze( 2225 const parser::Expr::ComplexConstructor &x) { 2226 auto re{Analyze(std::get<0>(x.t).value())}; 2227 auto im{Analyze(std::get<1>(x.t).value())}; 2228 if (re && im) { 2229 ConformabilityCheck(GetContextualMessages(), *re, *im); 2230 } 2231 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2232 std::move(im), GetDefaultKind(TypeCategory::Real))); 2233 } 2234 2235 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2236 ArgumentAnalyzer analyzer{*this}; 2237 analyzer.Analyze(std::get<0>(x.t)); 2238 analyzer.Analyze(std::get<1>(x.t)); 2239 if (analyzer.fatalErrors()) { 2240 return std::nullopt; 2241 } else if (analyzer.IsIntrinsicConcat()) { 2242 return std::visit( 2243 [&](auto &&x, auto &&y) -> MaybeExpr { 2244 using T = ResultType<decltype(x)>; 2245 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2246 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2247 } else { 2248 DIE("different types for intrinsic concat"); 2249 } 2250 }, 2251 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2252 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2253 } else { 2254 return analyzer.TryDefinedOp("//", 2255 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2256 } 2257 } 2258 2259 // The Name represents a user-defined intrinsic operator. 2260 // If the actuals match one of the specific procedures, return a function ref. 2261 // Otherwise report the error in messages. 2262 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2263 const parser::Name &name, ActualArguments &&actuals) { 2264 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2265 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2266 return MakeFunctionRef(name.source, 2267 std::move(std::get<ProcedureDesignator>(callee->u)), 2268 std::move(callee->arguments)); 2269 } else { 2270 return std::nullopt; 2271 } 2272 } 2273 2274 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2275 const parser::Expr::IntrinsicBinary &x) { 2276 ArgumentAnalyzer analyzer{context}; 2277 analyzer.Analyze(std::get<0>(x.t)); 2278 analyzer.Analyze(std::get<1>(x.t)); 2279 if (analyzer.fatalErrors()) { 2280 return std::nullopt; 2281 } else if (analyzer.IsIntrinsicRelational(opr)) { 2282 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2283 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2284 } else { 2285 return analyzer.TryDefinedOp(opr, 2286 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2287 } 2288 } 2289 2290 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2291 return RelationHelper(*this, RelationalOperator::LT, x); 2292 } 2293 2294 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2295 return RelationHelper(*this, RelationalOperator::LE, x); 2296 } 2297 2298 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2299 return RelationHelper(*this, RelationalOperator::EQ, x); 2300 } 2301 2302 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2303 return RelationHelper(*this, RelationalOperator::NE, x); 2304 } 2305 2306 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2307 return RelationHelper(*this, RelationalOperator::GE, x); 2308 } 2309 2310 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2311 return RelationHelper(*this, RelationalOperator::GT, x); 2312 } 2313 2314 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2315 const parser::Expr::IntrinsicBinary &x) { 2316 ArgumentAnalyzer analyzer{context}; 2317 analyzer.Analyze(std::get<0>(x.t)); 2318 analyzer.Analyze(std::get<1>(x.t)); 2319 if (analyzer.fatalErrors()) { 2320 return std::nullopt; 2321 } else if (analyzer.IsIntrinsicLogical()) { 2322 return AsGenericExpr(BinaryLogicalOperation(opr, 2323 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2324 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2325 } else { 2326 return analyzer.TryDefinedOp( 2327 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2328 } 2329 } 2330 2331 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2332 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2333 } 2334 2335 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2336 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2337 } 2338 2339 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2340 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2341 } 2342 2343 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2344 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2345 } 2346 2347 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2348 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2349 ArgumentAnalyzer analyzer{*this, name.source}; 2350 analyzer.Analyze(std::get<1>(x.t)); 2351 analyzer.Analyze(std::get<2>(x.t)); 2352 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2353 "No operator %s defined for %s and %s"_err_en_US, true); 2354 } 2355 2356 static void CheckFuncRefToArrayElementRefHasSubscripts( 2357 semantics::SemanticsContext &context, 2358 const parser::FunctionReference &funcRef) { 2359 // Emit message if the function reference fix will end up an array element 2360 // reference with no subscripts because it will not be possible to later tell 2361 // the difference in expressions between empty subscript list due to bad 2362 // subscripts error recovery or because the user did not put any. 2363 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2364 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2365 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2366 if (!name) { 2367 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2368 } 2369 auto &msg{context.Say(funcRef.v.source, 2370 name->symbol && name->symbol->Rank() == 0 2371 ? "'%s' is not a function"_err_en_US 2372 : "Reference to array '%s' with empty subscript list"_err_en_US, 2373 name->source)}; 2374 if (name->symbol) { 2375 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2376 msg.Attach(name->source, 2377 "A result variable must be declared with RESULT to allow recursive " 2378 "function calls"_en_US); 2379 } else { 2380 AttachDeclaration(&msg, *name->symbol); 2381 } 2382 } 2383 } 2384 } 2385 2386 // Converts, if appropriate, an original misparse of ambiguous syntax like 2387 // A(1) as a function reference into an array reference. 2388 // Misparse structure constructors are detected elsewhere after generic 2389 // function call resolution fails. 2390 template <typename... A> 2391 static void FixMisparsedFunctionReference( 2392 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2393 // The parse tree is updated in situ when resolving an ambiguous parse. 2394 using uType = std::decay_t<decltype(constU)>; 2395 auto &u{const_cast<uType &>(constU)}; 2396 if (auto *func{ 2397 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2398 parser::FunctionReference &funcRef{func->value()}; 2399 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2400 if (Symbol * 2401 origSymbol{ 2402 std::visit(common::visitors{ 2403 [&](parser::Name &name) { return name.symbol; }, 2404 [&](parser::ProcComponentRef &pcr) { 2405 return pcr.v.thing.component.symbol; 2406 }, 2407 }, 2408 proc.u)}) { 2409 Symbol &symbol{origSymbol->GetUltimate()}; 2410 if (symbol.has<semantics::ObjectEntityDetails>() || 2411 symbol.has<semantics::AssocEntityDetails>()) { 2412 // Note that expression in AssocEntityDetails cannot be a procedure 2413 // pointer as per C1105 so this cannot be a function reference. 2414 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2415 uType>) { 2416 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2417 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2418 } else { 2419 DIE("can't fix misparsed function as array reference"); 2420 } 2421 } 2422 } 2423 } 2424 } 2425 2426 // Common handling of parser::Expr and parser::Variable 2427 template <typename PARSED> 2428 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) { 2429 if (!x.typedExpr) { 2430 FixMisparsedFunctionReference(context_, x.u); 2431 MaybeExpr result; 2432 if (AssumedTypeDummy(x)) { // C710 2433 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2434 } else { 2435 if constexpr (std::is_same_v<PARSED, parser::Expr>) { 2436 // Analyze the expression in a specified source position context for 2437 // better error reporting. 2438 auto restorer{GetContextualMessages().SetLocation(x.source)}; 2439 result = evaluate::Fold(foldingContext_, Analyze(x.u)); 2440 } else { 2441 result = Analyze(x.u); 2442 } 2443 } 2444 x.typedExpr.reset(new GenericExprWrapper{std::move(result)}); 2445 if (!x.typedExpr->v) { 2446 if (!context_.AnyFatalError()) { 2447 std::string buf; 2448 llvm::raw_string_ostream dump{buf}; 2449 parser::DumpTree(dump, x); 2450 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2451 dump.str()); 2452 } 2453 fatalErrors_ = true; 2454 } 2455 } 2456 return x.typedExpr->v; 2457 } 2458 2459 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2460 auto restorer{GetContextualMessages().SetLocation(expr.source)}; 2461 return ExprOrVariable(expr); 2462 } 2463 2464 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2465 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; 2466 return ExprOrVariable(variable); 2467 } 2468 2469 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2470 TypeCategory category, 2471 const std::optional<parser::KindSelector> &selector) { 2472 int defaultKind{GetDefaultKind(category)}; 2473 if (!selector) { 2474 return Expr<SubscriptInteger>{defaultKind}; 2475 } 2476 return std::visit( 2477 common::visitors{ 2478 [&](const parser::ScalarIntConstantExpr &x) { 2479 if (MaybeExpr kind{Analyze(x)}) { 2480 Expr<SomeType> folded{Fold(std::move(*kind))}; 2481 if (std::optional<std::int64_t> code{ToInt64(folded)}) { 2482 if (CheckIntrinsicKind(category, *code)) { 2483 return Expr<SubscriptInteger>{*code}; 2484 } 2485 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) { 2486 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2487 } 2488 } 2489 return Expr<SubscriptInteger>{defaultKind}; 2490 }, 2491 [&](const parser::KindSelector::StarSize &x) { 2492 std::intmax_t size = x.v; 2493 if (!CheckIntrinsicSize(category, size)) { 2494 size = defaultKind; 2495 } else if (category == TypeCategory::Complex) { 2496 size /= 2; 2497 } 2498 return Expr<SubscriptInteger>{size}; 2499 }, 2500 }, 2501 selector->u); 2502 } 2503 2504 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2505 return context_.GetDefaultKind(category); 2506 } 2507 2508 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2509 common::TypeCategory category) { 2510 return {category, GetDefaultKind(category)}; 2511 } 2512 2513 bool ExpressionAnalyzer::CheckIntrinsicKind( 2514 TypeCategory category, std::int64_t kind) { 2515 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2516 return true; 2517 } else { 2518 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2519 ToUpperCase(EnumToString(category)), kind); 2520 return false; 2521 } 2522 } 2523 2524 bool ExpressionAnalyzer::CheckIntrinsicSize( 2525 TypeCategory category, std::int64_t size) { 2526 if (category == TypeCategory::Complex) { 2527 // COMPLEX*16 == COMPLEX(KIND=8) 2528 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2529 return true; 2530 } 2531 } else if (IsValidKindOfIntrinsicType(category, size)) { 2532 return true; 2533 } 2534 Say("%s*%jd is not a supported type"_err_en_US, 2535 ToUpperCase(EnumToString(category)), size); 2536 return false; 2537 } 2538 2539 bool ExpressionAnalyzer::AddAcImpliedDo(parser::CharBlock name, int kind) { 2540 return acImpliedDos_.insert(std::make_pair(name, kind)).second; 2541 } 2542 2543 void ExpressionAnalyzer::RemoveAcImpliedDo(parser::CharBlock name) { 2544 auto iter{acImpliedDos_.find(name)}; 2545 if (iter != acImpliedDos_.end()) { 2546 acImpliedDos_.erase(iter); 2547 } 2548 } 2549 2550 std::optional<int> ExpressionAnalyzer::IsAcImpliedDo( 2551 parser::CharBlock name) const { 2552 auto iter{acImpliedDos_.find(name)}; 2553 if (iter != acImpliedDos_.cend()) { 2554 return {iter->second}; 2555 } else { 2556 return std::nullopt; 2557 } 2558 } 2559 2560 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 2561 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 2562 if (result) { 2563 if (auto type{result->GetType()}) { 2564 if (type->category() != category) { // C885 2565 Say(at, "Must have %s type, but is %s"_err_en_US, 2566 ToUpperCase(EnumToString(category)), 2567 ToUpperCase(type->AsFortran())); 2568 return false; 2569 } else if (defaultKind) { 2570 int kind{context_.GetDefaultKind(category)}; 2571 if (type->kind() != kind) { 2572 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 2573 kind, ToUpperCase(EnumToString(category)), 2574 ToUpperCase(type->AsFortran())); 2575 return false; 2576 } 2577 } 2578 } else { 2579 Say(at, "Must have %s type, but is typeless"_err_en_US, 2580 ToUpperCase(EnumToString(category))); 2581 return false; 2582 } 2583 } 2584 return true; 2585 } 2586 2587 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 2588 ProcedureDesignator &&proc, ActualArguments &&arguments) { 2589 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 2590 if (intrinsic->name == "null" && arguments.empty()) { 2591 return Expr<SomeType>{NullPointer{}}; 2592 } 2593 } 2594 if (const Symbol * symbol{proc.GetSymbol()}) { 2595 if (!ResolveForward(*symbol)) { 2596 return std::nullopt; 2597 } 2598 } 2599 if (auto chars{CheckCall(callSite, proc, arguments)}) { 2600 if (chars->functionResult) { 2601 const auto &result{*chars->functionResult}; 2602 if (result.IsProcedurePointer()) { 2603 return Expr<SomeType>{ 2604 ProcedureRef{std::move(proc), std::move(arguments)}}; 2605 } else { 2606 // Not a procedure pointer, so type and shape are known. 2607 return TypedWrapper<FunctionRef, ProcedureRef>( 2608 DEREF(result.GetTypeAndShape()).type(), 2609 ProcedureRef{std::move(proc), std::move(arguments)}); 2610 } 2611 } 2612 } 2613 return std::nullopt; 2614 } 2615 2616 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 2617 parser::CharBlock intrinsic, ActualArguments &&arguments) { 2618 if (std::optional<SpecificCall> specificCall{ 2619 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 2620 arguments, context_.foldingContext())}) { 2621 return MakeFunctionRef(intrinsic, 2622 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2623 std::move(specificCall->arguments)); 2624 } else { 2625 return std::nullopt; 2626 } 2627 } 2628 2629 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 2630 source_.ExtendToCover(x.GetSource()); 2631 if (MaybeExpr expr{context_.Analyze(x)}) { 2632 if (!IsConstantExpr(*expr)) { 2633 actuals_.emplace_back(std::move(*expr)); 2634 return; 2635 } 2636 const Symbol *symbol{GetFirstSymbol(*expr)}; 2637 context_.Say(x.GetSource(), 2638 "Assignment to constant '%s' is not allowed"_err_en_US, 2639 symbol ? symbol->name() : x.GetSource()); 2640 } 2641 fatalErrors_ = true; 2642 } 2643 2644 void ArgumentAnalyzer::Analyze( 2645 const parser::ActualArgSpec &arg, bool isSubroutine) { 2646 // TODO: C1002: Allow a whole assumed-size array to appear if the dummy 2647 // argument would accept it. Handle by special-casing the context 2648 // ActualArg -> Variable -> Designator. 2649 // TODO: Actual arguments that are procedures and procedure pointers need to 2650 // be detected and represented (they're not expressions). 2651 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 2652 std::optional<ActualArgument> actual; 2653 std::visit(common::visitors{ 2654 [&](const common::Indirection<parser::Expr> &x) { 2655 // TODO: Distinguish & handle procedure name and 2656 // proc-component-ref 2657 actual = AnalyzeExpr(x.value()); 2658 }, 2659 [&](const parser::AltReturnSpec &) { 2660 if (!isSubroutine) { 2661 context_.Say( 2662 "alternate return specification may not appear on" 2663 " function reference"_err_en_US); 2664 } 2665 }, 2666 [&](const parser::ActualArg::PercentRef &) { 2667 context_.Say("TODO: %REF() argument"_err_en_US); 2668 }, 2669 [&](const parser::ActualArg::PercentVal &) { 2670 context_.Say("TODO: %VAL() argument"_err_en_US); 2671 }, 2672 }, 2673 std::get<parser::ActualArg>(arg.t).u); 2674 if (actual) { 2675 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 2676 actual->set_keyword(argKW->v.source); 2677 } 2678 actuals_.emplace_back(std::move(*actual)); 2679 } else { 2680 fatalErrors_ = true; 2681 } 2682 } 2683 2684 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 2685 CHECK(actuals_.size() == 2); 2686 return semantics::IsIntrinsicRelational( 2687 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2688 } 2689 2690 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 2691 std::optional<DynamicType> type0{GetType(0)}; 2692 if (actuals_.size() == 1) { 2693 if (IsBOZLiteral(0)) { 2694 return opr == NumericOperator::Add; 2695 } else { 2696 return type0 && semantics::IsIntrinsicNumeric(*type0); 2697 } 2698 } else { 2699 std::optional<DynamicType> type1{GetType(1)}; 2700 if (IsBOZLiteral(0) && type1) { 2701 auto cat1{type1->category()}; 2702 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 2703 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 2704 auto cat0{type0->category()}; 2705 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 2706 } else { 2707 return type0 && type1 && 2708 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 2709 } 2710 } 2711 } 2712 2713 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 2714 if (actuals_.size() == 1) { 2715 return semantics::IsIntrinsicLogical(*GetType(0)); 2716 return GetType(0)->category() == TypeCategory::Logical; 2717 } else { 2718 return semantics::IsIntrinsicLogical( 2719 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2720 } 2721 } 2722 2723 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 2724 return semantics::IsIntrinsicConcat( 2725 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2726 } 2727 2728 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2729 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 2730 if (AnyUntypedOperand()) { 2731 context_.Say( 2732 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2733 return std::nullopt; 2734 } 2735 { 2736 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2737 std::string oprNameString{ 2738 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 2739 parser::CharBlock oprName{oprNameString}; 2740 const auto &scope{context_.context().FindScope(source_)}; 2741 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 2742 parser::Name name{symbol->name(), symbol}; 2743 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 2744 return result; 2745 } 2746 sawDefinedOp_ = symbol; 2747 } 2748 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2749 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 2750 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 2751 return result; 2752 } 2753 } 2754 } 2755 } 2756 if (sawDefinedOp_) { 2757 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 2758 } else if (actuals_.size() == 1 || AreConformable()) { 2759 context_.Say( 2760 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2761 } else { 2762 context_.Say( 2763 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 2764 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 2765 } 2766 return std::nullopt; 2767 } 2768 2769 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2770 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 2771 for (std::size_t i{1}; i < oprs.size(); ++i) { 2772 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2773 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 2774 return result; 2775 } 2776 } 2777 return TryDefinedOp(oprs[0], std::move(error)); 2778 } 2779 2780 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 2781 ActualArguments localActuals{actuals_}; 2782 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 2783 if (!proc) { 2784 proc = &symbol; 2785 localActuals.at(passIndex).value().set_isPassedObject(); 2786 } 2787 return context_.MakeFunctionRef( 2788 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 2789 } 2790 2791 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 2792 using semantics::Tristate; 2793 const Expr<SomeType> &lhs{GetExpr(0)}; 2794 const Expr<SomeType> &rhs{GetExpr(1)}; 2795 std::optional<DynamicType> lhsType{lhs.GetType()}; 2796 std::optional<DynamicType> rhsType{rhs.GetType()}; 2797 int lhsRank{lhs.Rank()}; 2798 int rhsRank{rhs.Rank()}; 2799 Tristate isDefined{ 2800 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 2801 if (isDefined == Tristate::No) { 2802 return std::nullopt; // user-defined assignment not allowed for these args 2803 } 2804 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 2805 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 2806 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 2807 return std::move(*procRef); 2808 } 2809 if (isDefined == Tristate::Yes) { 2810 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 2811 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 2812 SayNoMatch("ASSIGNMENT(=)", true); 2813 } 2814 } 2815 return std::nullopt; 2816 } 2817 2818 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 2819 TypeCategory lhs, TypeCategory rhs) { 2820 if (!context_.context().languageFeatures().IsEnabled( 2821 common::LanguageFeature::LogicalIntegerAssignment)) { 2822 return false; 2823 } 2824 std::optional<parser::MessageFixedText> msg; 2825 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 2826 // allow assignment to LOGICAL from INTEGER as a legacy extension 2827 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 2828 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 2829 // ... and assignment to LOGICAL from INTEGER 2830 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 2831 } else { 2832 return false; 2833 } 2834 if (context_.context().languageFeatures().ShouldWarn( 2835 common::LanguageFeature::LogicalIntegerAssignment)) { 2836 context_.Say(std::move(*msg)); 2837 } 2838 return true; 2839 } 2840 2841 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 2842 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2843 std::string oprNameString{"assignment(=)"}; 2844 parser::CharBlock oprName{oprNameString}; 2845 const Symbol *proc{nullptr}; 2846 const auto &scope{context_.context().FindScope(source_)}; 2847 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 2848 ExpressionAnalyzer::AdjustActuals noAdjustment; 2849 if (const Symbol * 2850 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 2851 proc = specific; 2852 } else { 2853 context_.EmitGenericResolutionError(*symbol); 2854 } 2855 } 2856 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2857 if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) { 2858 proc = specific; 2859 } 2860 } 2861 if (proc) { 2862 ActualArguments actualsCopy{actuals_}; 2863 actualsCopy[1]->Parenthesize(); 2864 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 2865 } else { 2866 return std::nullopt; 2867 } 2868 } 2869 2870 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 2871 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 2872 << '\n'; 2873 for (const auto &actual : actuals_) { 2874 if (!actual.has_value()) { 2875 os << "- error\n"; 2876 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 2877 os << "- assumed type: " << symbol->name().ToString() << '\n'; 2878 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 2879 expr->AsFortran(os << "- expr: ") << '\n'; 2880 } else { 2881 DIE("bad ActualArgument"); 2882 } 2883 } 2884 } 2885 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 2886 const parser::Expr &expr) { 2887 source_.ExtendToCover(expr.source); 2888 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 2889 expr.typedExpr.reset(new GenericExprWrapper{}); 2890 if (allowAssumedType_) { 2891 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2892 } else { 2893 context_.SayAt(expr.source, 2894 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2895 return std::nullopt; 2896 } 2897 } else if (MaybeExpr argExpr{context_.Analyze(expr)}) { 2898 return ActualArgument{context_.Fold(std::move(*argExpr))}; 2899 } else { 2900 return std::nullopt; 2901 } 2902 } 2903 2904 bool ArgumentAnalyzer::AreConformable() const { 2905 CHECK(!fatalErrors_ && actuals_.size() == 2); 2906 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 2907 } 2908 2909 // Look for a type-bound operator in the type of arg number passIndex. 2910 const Symbol *ArgumentAnalyzer::FindBoundOp( 2911 parser::CharBlock oprName, int passIndex) { 2912 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 2913 if (!type || !type->scope()) { 2914 return nullptr; 2915 } 2916 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 2917 if (!symbol) { 2918 return nullptr; 2919 } 2920 sawDefinedOp_ = symbol; 2921 ExpressionAnalyzer::AdjustActuals adjustment{ 2922 [&](const Symbol &proc, ActualArguments &) { 2923 return passIndex == GetPassIndex(proc); 2924 }}; 2925 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 2926 if (!result) { 2927 context_.EmitGenericResolutionError(*symbol); 2928 } 2929 return result; 2930 } 2931 2932 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 2933 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 2934 } 2935 int ArgumentAnalyzer::GetRank(std::size_t i) const { 2936 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 2937 } 2938 2939 // Report error resolving opr when there is a user-defined one available 2940 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 2941 std::string type0{TypeAsFortran(0)}; 2942 auto rank0{actuals_[0]->Rank()}; 2943 if (actuals_.size() == 1) { 2944 if (rank0 > 0) { 2945 context_.Say("No intrinsic or user-defined %s matches " 2946 "rank %d array of %s"_err_en_US, 2947 opr, rank0, type0); 2948 } else { 2949 context_.Say("No intrinsic or user-defined %s matches " 2950 "operand type %s"_err_en_US, 2951 opr, type0); 2952 } 2953 } else { 2954 std::string type1{TypeAsFortran(1)}; 2955 auto rank1{actuals_[1]->Rank()}; 2956 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 2957 context_.Say("No intrinsic or user-defined %s matches " 2958 "rank %d array of %s and rank %d array of %s"_err_en_US, 2959 opr, rank0, type0, rank1, type1); 2960 } else if (isAssignment && rank0 != rank1) { 2961 if (rank0 == 0) { 2962 context_.Say("No intrinsic or user-defined %s matches " 2963 "scalar %s and rank %d array of %s"_err_en_US, 2964 opr, type0, rank1, type1); 2965 } else { 2966 context_.Say("No intrinsic or user-defined %s matches " 2967 "rank %d array of %s and scalar %s"_err_en_US, 2968 opr, rank0, type0, type1); 2969 } 2970 } else { 2971 context_.Say("No intrinsic or user-defined %s matches " 2972 "operand types %s and %s"_err_en_US, 2973 opr, type0, type1); 2974 } 2975 } 2976 } 2977 2978 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 2979 if (std::optional<DynamicType> type{GetType(i)}) { 2980 return type->category() == TypeCategory::Derived 2981 ? "TYPE("s + type->AsFortran() + ')' 2982 : type->category() == TypeCategory::Character 2983 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 2984 : ToUpperCase(type->AsFortran()); 2985 } else { 2986 return "untyped"; 2987 } 2988 } 2989 2990 bool ArgumentAnalyzer::AnyUntypedOperand() { 2991 for (const auto &actual : actuals_) { 2992 if (!actual.value().GetType()) { 2993 return true; 2994 } 2995 } 2996 return false; 2997 } 2998 2999 } // namespace Fortran::evaluate 3000 3001 namespace Fortran::semantics { 3002 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3003 SemanticsContext &context, common::TypeCategory category, 3004 const std::optional<parser::KindSelector> &selector) { 3005 evaluate::ExpressionAnalyzer analyzer{context}; 3006 auto restorer{ 3007 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3008 return analyzer.AnalyzeKindSelector(category, selector); 3009 } 3010 3011 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3012 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3013 } 3014 3015 const evaluate::Assignment *AnalyzeAssignmentStmt( 3016 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3017 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3018 } 3019 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3020 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3021 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3022 } 3023 3024 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3025 3026 bool ExprChecker::Walk(const parser::Program &program) { 3027 parser::Walk(program, *this); 3028 return !context_.AnyFatalError(); 3029 } 3030 3031 bool ExprChecker::Pre(const parser::DataStmtConstant &x) { 3032 std::visit(common::visitors{ 3033 [&](const parser::NullInit &) {}, 3034 [&](const parser::InitialDataTarget &y) { 3035 AnalyzeExpr(context_, y.value()); 3036 }, 3037 [&](const auto &y) { AnalyzeExpr(context_, y); }, 3038 }, 3039 x.u); 3040 return false; 3041 } 3042 3043 } // namespace Fortran::semantics 3044