1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } else { 59 return GetCharLength(); 60 } 61 } 62 63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 64 const std::optional<parser::TypeSpec> &spec) { 65 if (spec) { 66 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 67 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 68 // (viz., an intrinsic type with valid known kind or a non-polymorphic 69 // & non-ABSTRACT derived type). 70 if (const semantics::IntrinsicTypeSpec * 71 intrinsic{typeSpec->AsIntrinsic()}) { 72 TypeCategory category{intrinsic->category()}; 73 if (auto optKind{ToInt64(intrinsic->kind())}) { 74 int kind{static_cast<int>(*optKind)}; 75 if (category == TypeCategory::Character) { 76 const semantics::CharacterTypeSpec &cts{ 77 typeSpec->characterTypeSpec()}; 78 const semantics::ParamValue &len{cts.length()}; 79 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 80 // type guards, but not in array constructors. 81 return DynamicTypeWithLength{DynamicType{kind, len}}; 82 } else { 83 return DynamicTypeWithLength{DynamicType{category, kind}}; 84 } 85 } 86 } else if (const semantics::DerivedTypeSpec * 87 derived{typeSpec->AsDerived()}) { 88 return DynamicTypeWithLength{DynamicType{*derived}}; 89 } 90 } 91 } 92 return std::nullopt; 93 } 94 95 // Utilities to set a source location, if we have one, on an actual argument, 96 // when it is statically present. 97 static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) { 98 x.set_sourceLocation(at); 99 } 100 static void SetArgSourceLocation( 101 std::optional<ActualArgument> &x, parser::CharBlock at) { 102 if (x) { 103 x->set_sourceLocation(at); 104 } 105 } 106 static void SetArgSourceLocation( 107 std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) { 108 if (x && at) { 109 x->set_sourceLocation(*at); 110 } 111 } 112 113 class ArgumentAnalyzer { 114 public: 115 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 116 : context_{context}, source_{context.GetContextualMessages().at()}, 117 isProcedureCall_{false} {} 118 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 119 bool isProcedureCall = false) 120 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 121 bool fatalErrors() const { return fatalErrors_; } 122 ActualArguments &&GetActuals() { 123 CHECK(!fatalErrors_); 124 return std::move(actuals_); 125 } 126 const Expr<SomeType> &GetExpr(std::size_t i) const { 127 return DEREF(actuals_.at(i).value().UnwrapExpr()); 128 } 129 Expr<SomeType> &&MoveExpr(std::size_t i) { 130 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 131 } 132 void Analyze(const common::Indirection<parser::Expr> &x) { 133 Analyze(x.value()); 134 } 135 void Analyze(const parser::Expr &x) { 136 actuals_.emplace_back(AnalyzeExpr(x)); 137 SetArgSourceLocation(actuals_.back(), x.source); 138 fatalErrors_ |= !actuals_.back(); 139 } 140 void Analyze(const parser::Variable &); 141 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 142 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 143 std::optional<DynamicType> otherType); 144 145 bool IsIntrinsicRelational( 146 RelationalOperator, const DynamicType &, const DynamicType &) const; 147 bool IsIntrinsicLogical() const; 148 bool IsIntrinsicNumeric(NumericOperator) const; 149 bool IsIntrinsicConcat() const; 150 151 bool CheckConformance(); 152 bool CheckForNullPointer(const char *where = "as an operand here"); 153 154 // Find and return a user-defined operator or report an error. 155 // The provided message is used if there is no such operator. 156 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 157 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 158 template <typename E> 159 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 160 return TryDefinedOp( 161 context_.context().languageFeatures().GetNames(opr), msg); 162 } 163 // Find and return a user-defined assignment 164 std::optional<ProcedureRef> TryDefinedAssignment(); 165 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 166 std::optional<DynamicType> GetType(std::size_t) const; 167 void Dump(llvm::raw_ostream &); 168 169 private: 170 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 171 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 172 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 173 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 174 bool AreConformable() const; 175 const Symbol *FindBoundOp( 176 parser::CharBlock, int passIndex, const Symbol *&definedOp); 177 void AddAssignmentConversion( 178 const DynamicType &lhsType, const DynamicType &rhsType); 179 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 180 int GetRank(std::size_t) const; 181 bool IsBOZLiteral(std::size_t i) const { 182 return evaluate::IsBOZLiteral(GetExpr(i)); 183 } 184 void SayNoMatch(const std::string &, bool isAssignment = false); 185 std::string TypeAsFortran(std::size_t); 186 bool AnyUntypedOrMissingOperand(); 187 188 ExpressionAnalyzer &context_; 189 ActualArguments actuals_; 190 parser::CharBlock source_; 191 bool fatalErrors_{false}; 192 const bool isProcedureCall_; // false for user-defined op or assignment 193 }; 194 195 // Wraps a data reference in a typed Designator<>, and a procedure 196 // or procedure pointer reference in a ProcedureDesignator. 197 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 198 const Symbol &last{ref.GetLastSymbol()}; 199 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 200 if (semantics::IsProcedure(symbol)) { 201 if (auto *component{std::get_if<Component>(&ref.u)}) { 202 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 203 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 204 DIE("unexpected alternative in DataRef"); 205 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 206 if (symbol.has<semantics::GenericDetails>()) { 207 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 208 } else { 209 return Expr<SomeType>{ProcedureDesignator{symbol}}; 210 } 211 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 212 symbol.name().ToString())}; 213 interface && !interface->isRestrictedSpecific) { 214 SpecificIntrinsic intrinsic{ 215 symbol.name().ToString(), std::move(*interface)}; 216 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 217 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 218 } else { 219 Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, 220 symbol.name()); 221 } 222 return std::nullopt; 223 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 224 return result; 225 } else { 226 if (!context_.HasError(last) && !context_.HasError(symbol)) { 227 AttachDeclaration( 228 Say("'%s' is not an object that can appear in an expression"_err_en_US, 229 last.name()), 230 symbol); 231 context_.SetError(last); 232 } 233 return std::nullopt; 234 } 235 } 236 237 // Some subscript semantic checks must be deferred until all of the 238 // subscripts are in hand. 239 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 240 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 241 int symbolRank{symbol.Rank()}; 242 int subscripts{static_cast<int>(ref.size())}; 243 if (subscripts == 0) { 244 return std::nullopt; // error recovery 245 } else if (subscripts != symbolRank) { 246 if (symbolRank != 0) { 247 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 248 symbolRank, symbol.name(), subscripts); 249 } 250 return std::nullopt; 251 } else if (Component * component{ref.base().UnwrapComponent()}) { 252 int baseRank{component->base().Rank()}; 253 if (baseRank > 0) { 254 int subscriptRank{0}; 255 for (const auto &expr : ref.subscript()) { 256 subscriptRank += expr.Rank(); 257 } 258 if (subscriptRank > 0) { // C919a 259 Say("Subscripts of component '%s' of rank-%d derived type " 260 "array have rank %d but must all be scalar"_err_en_US, 261 symbol.name(), baseRank, subscriptRank); 262 return std::nullopt; 263 } 264 } 265 } else if (const auto *object{ 266 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 267 // C928 & C1002 268 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 269 if (!last->upper() && object->IsAssumedSize()) { 270 Say("Assumed-size array '%s' must have explicit final " 271 "subscript upper bound value"_err_en_US, 272 symbol.name()); 273 return std::nullopt; 274 } 275 } 276 } else { 277 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 278 // which, if not an object, must be a construct entity from 279 // SELECT TYPE/RANK or ASSOCIATE. 280 CHECK(symbol.has<semantics::AssocEntityDetails>()); 281 } 282 return Designate(DataRef{std::move(ref)}); 283 } 284 285 // Applies subscripts to a data reference. 286 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 287 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 288 if (subscripts.empty()) { 289 return std::nullopt; // error recovery 290 } 291 return common::visit( 292 common::visitors{ 293 [&](SymbolRef &&symbol) { 294 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 295 }, 296 [&](Component &&c) { 297 return CompleteSubscripts( 298 ArrayRef{std::move(c), std::move(subscripts)}); 299 }, 300 [&](auto &&) -> MaybeExpr { 301 DIE("bad base for ArrayRef"); 302 return std::nullopt; 303 }, 304 }, 305 std::move(dataRef.u)); 306 } 307 308 // Top-level checks for data references. 309 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 310 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 311 const Symbol &symbol{component->GetLastSymbol()}; 312 int componentRank{symbol.Rank()}; 313 if (componentRank > 0) { 314 int baseRank{component->base().Rank()}; 315 if (baseRank > 0) { // C919a 316 Say("Reference to whole rank-%d component '%%%s' of " 317 "rank-%d array of derived type is not allowed"_err_en_US, 318 componentRank, symbol.name(), baseRank); 319 } 320 } 321 } 322 return Designate(std::move(dataRef)); 323 } 324 325 // Parse tree correction after a substring S(j:k) was misparsed as an 326 // array section. N.B. Fortran substrings have to have a range, not a 327 // single index. 328 static void FixMisparsedSubstring(const parser::Designator &d) { 329 auto &mutate{const_cast<parser::Designator &>(d)}; 330 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 331 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 332 &dataRef->u)}) { 333 parser::ArrayElement &arrElement{ae->value()}; 334 if (!arrElement.subscripts.empty()) { 335 auto iter{arrElement.subscripts.begin()}; 336 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 337 if (!std::get<2>(triplet->t) /* no stride */ && 338 ++iter == arrElement.subscripts.end() /* one subscript */) { 339 if (Symbol * 340 symbol{common::visit( 341 common::visitors{ 342 [](parser::Name &n) { return n.symbol; }, 343 [](common::Indirection<parser::StructureComponent> 344 &sc) { return sc.value().component.symbol; }, 345 [](auto &) -> Symbol * { return nullptr; }, 346 }, 347 arrElement.base.u)}) { 348 const Symbol &ultimate{symbol->GetUltimate()}; 349 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 350 if (!ultimate.IsObjectArray() && 351 type->category() == semantics::DeclTypeSpec::Character) { 352 // The ambiguous S(j:k) was parsed as an array section 353 // reference, but it's now clear that it's a substring. 354 // Fix the parse tree in situ. 355 mutate.u = arrElement.ConvertToSubstring(); 356 } 357 } 358 } 359 } 360 } 361 } 362 } 363 } 364 } 365 366 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 367 auto restorer{GetContextualMessages().SetLocation(d.source)}; 368 FixMisparsedSubstring(d); 369 // These checks have to be deferred to these "top level" data-refs where 370 // we can be sure that there are no following subscripts (yet). 371 // Substrings have already been run through TopLevelChecks() and 372 // won't be returned by ExtractDataRef(). 373 if (MaybeExpr result{Analyze(d.u)}) { 374 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 375 return TopLevelChecks(std::move(*dataRef)); 376 } 377 return result; 378 } 379 return std::nullopt; 380 } 381 382 // A utility subroutine to repackage optional expressions of various levels 383 // of type specificity as fully general MaybeExpr values. 384 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 385 return AsGenericExpr(std::move(x)); 386 } 387 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 388 if (x) { 389 return AsMaybeExpr(std::move(*x)); 390 } 391 return std::nullopt; 392 } 393 394 // Type kind parameter values for literal constants. 395 int ExpressionAnalyzer::AnalyzeKindParam( 396 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 397 if (!kindParam) { 398 return defaultKind; 399 } 400 return common::visit( 401 common::visitors{ 402 [](std::uint64_t k) { return static_cast<int>(k); }, 403 [&](const parser::Scalar< 404 parser::Integer<parser::Constant<parser::Name>>> &n) { 405 if (MaybeExpr ie{Analyze(n)}) { 406 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 407 int iv = *i64; 408 if (iv == *i64) { 409 return iv; 410 } 411 } 412 } 413 return defaultKind; 414 }, 415 }, 416 kindParam->u); 417 } 418 419 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 420 struct IntTypeVisitor { 421 using Result = MaybeExpr; 422 using Types = IntegerTypes; 423 template <typename T> Result Test() { 424 if (T::kind >= kind) { 425 const char *p{digits.begin()}; 426 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 427 if (!value.overflow) { 428 if (T::kind > kind) { 429 if (!isDefaultKind || 430 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 431 return std::nullopt; 432 } else if (analyzer.context().ShouldWarn( 433 LanguageFeature::BigIntLiterals)) { 434 analyzer.Say(digits, 435 "Integer literal is too large for default INTEGER(KIND=%d); " 436 "assuming INTEGER(KIND=%d)"_port_en_US, 437 kind, T::kind); 438 } 439 } 440 return Expr<SomeType>{ 441 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 442 } 443 } 444 return std::nullopt; 445 } 446 ExpressionAnalyzer &analyzer; 447 parser::CharBlock digits; 448 int kind; 449 bool isDefaultKind; 450 }; 451 452 template <typename PARSED> 453 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 454 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 455 bool isDefaultKind{!kindParam}; 456 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 457 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 458 auto digits{std::get<parser::CharBlock>(x.t)}; 459 if (MaybeExpr result{common::SearchTypes( 460 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 461 return result; 462 } else if (isDefaultKind) { 463 Say(digits, 464 "Integer literal is too large for any allowable " 465 "kind of INTEGER"_err_en_US); 466 } else { 467 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 468 kind); 469 } 470 } 471 return std::nullopt; 472 } 473 474 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 475 auto restorer{ 476 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 477 return IntLiteralConstant(x); 478 } 479 480 MaybeExpr ExpressionAnalyzer::Analyze( 481 const parser::SignedIntLiteralConstant &x) { 482 auto restorer{GetContextualMessages().SetLocation(x.source)}; 483 return IntLiteralConstant(x); 484 } 485 486 template <typename TYPE> 487 Constant<TYPE> ReadRealLiteral( 488 parser::CharBlock source, FoldingContext &context) { 489 const char *p{source.begin()}; 490 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 491 CHECK(p == source.end()); 492 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 493 auto value{valWithFlags.value}; 494 if (context.flushSubnormalsToZero()) { 495 value = value.FlushSubnormalToZero(); 496 } 497 return {value}; 498 } 499 500 struct RealTypeVisitor { 501 using Result = std::optional<Expr<SomeReal>>; 502 using Types = RealTypes; 503 504 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 505 : kind{k}, literal{lit}, context{ctx} {} 506 507 template <typename T> Result Test() { 508 if (kind == T::kind) { 509 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 510 } 511 return std::nullopt; 512 } 513 514 int kind; 515 parser::CharBlock literal; 516 FoldingContext &context; 517 }; 518 519 // Reads a real literal constant and encodes it with the right kind. 520 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 521 // Use a local message context around the real literal for better 522 // provenance on any messages. 523 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 524 // If a kind parameter appears, it defines the kind of the literal and the 525 // letter used in an exponent part must be 'E' (e.g., the 'E' in 526 // "6.02214E+23"). In the absence of an explicit kind parameter, any 527 // exponent letter determines the kind. Otherwise, defaults apply. 528 auto &defaults{context_.defaultKinds()}; 529 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 530 const char *end{x.real.source.end()}; 531 char expoLetter{' '}; 532 std::optional<int> letterKind; 533 for (const char *p{x.real.source.begin()}; p < end; ++p) { 534 if (parser::IsLetter(*p)) { 535 expoLetter = *p; 536 switch (expoLetter) { 537 case 'e': 538 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 539 break; 540 case 'd': 541 letterKind = defaults.doublePrecisionKind(); 542 break; 543 case 'q': 544 letterKind = defaults.quadPrecisionKind(); 545 break; 546 default: 547 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 548 } 549 break; 550 } 551 } 552 if (letterKind) { 553 defaultKind = *letterKind; 554 } 555 // C716 requires 'E' as an exponent, but this is more useful 556 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 557 if (letterKind && kind != *letterKind && expoLetter != 'e') { 558 Say("Explicit kind parameter on real constant disagrees with " 559 "exponent letter '%c'"_port_en_US, 560 expoLetter); 561 } 562 auto result{common::SearchTypes( 563 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 564 if (!result) { // C717 565 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 566 } 567 return AsMaybeExpr(std::move(result)); 568 } 569 570 MaybeExpr ExpressionAnalyzer::Analyze( 571 const parser::SignedRealLiteralConstant &x) { 572 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 573 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 574 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 575 if (sign == parser::Sign::Negative) { 576 return AsGenericExpr(-std::move(realExpr)); 577 } 578 } 579 return result; 580 } 581 return std::nullopt; 582 } 583 584 MaybeExpr ExpressionAnalyzer::Analyze( 585 const parser::SignedComplexLiteralConstant &x) { 586 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 587 if (!result) { 588 return std::nullopt; 589 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 590 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 591 } else { 592 return result; 593 } 594 } 595 596 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 597 return Analyze(x.u); 598 } 599 600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 601 return AsMaybeExpr( 602 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 603 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 604 } 605 606 // CHARACTER literal processing. 607 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 608 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 609 return std::nullopt; 610 } 611 switch (kind) { 612 case 1: 613 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 614 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 615 string, true)}); 616 case 2: 617 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 618 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 619 string, true)}); 620 case 4: 621 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 622 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 623 string, true)}); 624 default: 625 CRASH_NO_CASE; 626 } 627 } 628 629 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 630 int kind{ 631 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 632 auto value{std::get<std::string>(x.t)}; 633 return AnalyzeString(std::move(value), kind); 634 } 635 636 MaybeExpr ExpressionAnalyzer::Analyze( 637 const parser::HollerithLiteralConstant &x) { 638 int kind{GetDefaultKind(TypeCategory::Character)}; 639 auto value{x.v}; 640 return AnalyzeString(std::move(value), kind); 641 } 642 643 // .TRUE. and .FALSE. of various kinds 644 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 645 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 646 GetDefaultKind(TypeCategory::Logical))}; 647 bool value{std::get<bool>(x.t)}; 648 auto result{common::SearchTypes( 649 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 650 kind, std::move(value)})}; 651 if (!result) { 652 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 653 } 654 return result; 655 } 656 657 // BOZ typeless literals 658 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 659 const char *p{x.v.c_str()}; 660 std::uint64_t base{16}; 661 switch (*p++) { 662 case 'b': 663 base = 2; 664 break; 665 case 'o': 666 base = 8; 667 break; 668 case 'z': 669 break; 670 case 'x': 671 break; 672 default: 673 CRASH_NO_CASE; 674 } 675 CHECK(*p == '"'); 676 ++p; 677 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 678 if (*p != '"') { 679 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 680 x.v); // C7107, C7108 681 return std::nullopt; 682 } 683 if (value.overflow) { 684 Say("BOZ literal '%s' too large"_err_en_US, x.v); 685 return std::nullopt; 686 } 687 return AsGenericExpr(std::move(value.value)); 688 } 689 690 // Names and named constants 691 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 692 auto restorer{GetContextualMessages().SetLocation(n.source)}; 693 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 694 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 695 *kind, AsExpr(ImpliedDoIndex{n.source}))); 696 } 697 if (context_.HasError(n.symbol)) { // includes case of no symbol 698 return std::nullopt; 699 } else { 700 const Symbol &ultimate{n.symbol->GetUltimate()}; 701 if (ultimate.has<semantics::TypeParamDetails>()) { 702 // A bare reference to a derived type parameter (within a parameterized 703 // derived type definition) 704 return Fold(ConvertToType( 705 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 706 } else { 707 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 708 if (const semantics::Scope * 709 pure{semantics::FindPureProcedureContaining( 710 context_.FindScope(n.source))}) { 711 SayAt(n, 712 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 713 n.source, DEREF(pure->symbol()).name()); 714 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 715 } 716 } 717 if (!isWholeAssumedSizeArrayOk_ && 718 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 719 AttachDeclaration( 720 SayAt(n, 721 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 722 n.source), 723 *n.symbol); 724 } 725 return Designate(DataRef{*n.symbol}); 726 } 727 } 728 } 729 730 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 731 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 732 if (MaybeExpr value{Analyze(n.v)}) { 733 Expr<SomeType> folded{Fold(std::move(*value))}; 734 if (IsConstantExpr(folded)) { 735 return folded; 736 } 737 Say(n.v.source, "must be a constant"_err_en_US); // C718 738 } 739 return std::nullopt; 740 } 741 742 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 743 if (MaybeExpr value{Analyze(n.v)}) { 744 // Subtle: when the NullInit is a DataStmtConstant, it might 745 // be a misparse of a structure constructor without parameters 746 // or components (e.g., T()). Checking the result to ensure 747 // that a "=>" data entity initializer actually resolved to 748 // a null pointer has to be done by the caller. 749 return Fold(std::move(*value)); 750 } 751 return std::nullopt; 752 } 753 754 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 755 return Analyze(x.value()); 756 } 757 758 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 759 if (const auto &repeat{ 760 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 761 x.repetitions = -1; 762 if (MaybeExpr expr{Analyze(repeat->u)}) { 763 Expr<SomeType> folded{Fold(std::move(*expr))}; 764 if (auto value{ToInt64(folded)}) { 765 if (*value >= 0) { // C882 766 x.repetitions = *value; 767 } else { 768 Say(FindSourceLocation(repeat), 769 "Repeat count (%jd) for data value must not be negative"_err_en_US, 770 *value); 771 } 772 } 773 } 774 } 775 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 776 } 777 778 // Substring references 779 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 780 const std::optional<parser::ScalarIntExpr> &bound) { 781 if (bound) { 782 if (MaybeExpr expr{Analyze(*bound)}) { 783 if (expr->Rank() > 1) { 784 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 785 } 786 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 787 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 788 return {std::move(*ssIntExpr)}; 789 } 790 return {Expr<SubscriptInteger>{ 791 Convert<SubscriptInteger, TypeCategory::Integer>{ 792 std::move(*intExpr)}}}; 793 } else { 794 Say("substring bound expression is not INTEGER"_err_en_US); 795 } 796 } 797 } 798 return std::nullopt; 799 } 800 801 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 802 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 803 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 804 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 805 if (std::optional<DataRef> checked{ 806 ExtractDataRef(std::move(*newBaseExpr))}) { 807 const parser::SubstringRange &range{ 808 std::get<parser::SubstringRange>(ss.t)}; 809 std::optional<Expr<SubscriptInteger>> first{ 810 GetSubstringBound(std::get<0>(range.t))}; 811 std::optional<Expr<SubscriptInteger>> last{ 812 GetSubstringBound(std::get<1>(range.t))}; 813 const Symbol &symbol{checked->GetLastSymbol()}; 814 if (std::optional<DynamicType> dynamicType{ 815 DynamicType::From(symbol)}) { 816 if (dynamicType->category() == TypeCategory::Character) { 817 return WrapperHelper<TypeCategory::Character, Designator, 818 Substring>(dynamicType->kind(), 819 Substring{std::move(checked.value()), std::move(first), 820 std::move(last)}); 821 } 822 } 823 Say("substring may apply only to CHARACTER"_err_en_US); 824 } 825 } 826 } 827 } 828 return std::nullopt; 829 } 830 831 // CHARACTER literal substrings 832 MaybeExpr ExpressionAnalyzer::Analyze( 833 const parser::CharLiteralConstantSubstring &x) { 834 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 835 std::optional<Expr<SubscriptInteger>> lower{ 836 GetSubstringBound(std::get<0>(range.t))}; 837 std::optional<Expr<SubscriptInteger>> upper{ 838 GetSubstringBound(std::get<1>(range.t))}; 839 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 840 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 841 Expr<SubscriptInteger> length{ 842 common::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 843 charExpr->u)}; 844 if (!lower) { 845 lower = Expr<SubscriptInteger>{1}; 846 } 847 if (!upper) { 848 upper = Expr<SubscriptInteger>{ 849 static_cast<std::int64_t>(ToInt64(length).value())}; 850 } 851 return common::visit( 852 [&](auto &&ckExpr) -> MaybeExpr { 853 using Result = ResultType<decltype(ckExpr)>; 854 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 855 CHECK(DEREF(cp).size() == 1); 856 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 857 staticData->set_alignment(Result::kind) 858 .set_itemBytes(Result::kind) 859 .Push(cp->GetScalarValue().value()); 860 Substring substring{std::move(staticData), std::move(lower.value()), 861 std::move(upper.value())}; 862 return AsGenericExpr( 863 Expr<Result>{Designator<Result>{std::move(substring)}}); 864 }, 865 std::move(charExpr->u)); 866 } 867 } 868 return std::nullopt; 869 } 870 871 // Subscripted array references 872 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 873 MaybeExpr &&expr) { 874 if (expr) { 875 if (expr->Rank() > 1) { 876 Say("Subscript expression has rank %d greater than 1"_err_en_US, 877 expr->Rank()); 878 } 879 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 880 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 881 return std::move(*ssIntExpr); 882 } else { 883 return Expr<SubscriptInteger>{ 884 Convert<SubscriptInteger, TypeCategory::Integer>{ 885 std::move(*intExpr)}}; 886 } 887 } else { 888 Say("Subscript expression is not INTEGER"_err_en_US); 889 } 890 } 891 return std::nullopt; 892 } 893 894 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 895 const std::optional<parser::Subscript> &s) { 896 if (s) { 897 return AsSubscript(Analyze(*s)); 898 } else { 899 return std::nullopt; 900 } 901 } 902 903 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 904 const parser::SectionSubscript &ss) { 905 return common::visit( 906 common::visitors{ 907 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 908 const auto &lower{std::get<0>(t.t)}; 909 const auto &upper{std::get<1>(t.t)}; 910 const auto &stride{std::get<2>(t.t)}; 911 auto result{Triplet{ 912 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 913 if ((lower && !result.lower()) || (upper && !result.upper())) { 914 return std::nullopt; 915 } else { 916 return std::make_optional<Subscript>(result); 917 } 918 }, 919 [&](const auto &s) -> std::optional<Subscript> { 920 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 921 return Subscript{std::move(*subscriptExpr)}; 922 } else { 923 return std::nullopt; 924 } 925 }, 926 }, 927 ss.u); 928 } 929 930 // Empty result means an error occurred 931 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 932 const std::list<parser::SectionSubscript> &sss) { 933 bool error{false}; 934 std::vector<Subscript> subscripts; 935 for (const auto &s : sss) { 936 if (auto subscript{AnalyzeSectionSubscript(s)}) { 937 subscripts.emplace_back(std::move(*subscript)); 938 } else { 939 error = true; 940 } 941 } 942 return !error ? subscripts : std::vector<Subscript>{}; 943 } 944 945 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 946 MaybeExpr baseExpr; 947 { 948 auto restorer{AllowWholeAssumedSizeArray()}; 949 baseExpr = Analyze(ae.base); 950 } 951 if (baseExpr) { 952 if (ae.subscripts.empty()) { 953 // will be converted to function call later or error reported 954 } else if (baseExpr->Rank() == 0) { 955 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 956 if (!context_.HasError(symbol)) { 957 if (inDataStmtConstant_) { 958 // Better error for NULL(X) with a MOLD= argument 959 Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US, 960 symbol->name()); 961 } else { 962 Say("'%s' is not an array"_err_en_US, symbol->name()); 963 } 964 context_.SetError(*symbol); 965 } 966 } 967 } else if (std::optional<DataRef> dataRef{ 968 ExtractDataRef(std::move(*baseExpr))}) { 969 return ApplySubscripts( 970 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 971 } else { 972 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 973 } 974 } 975 // error was reported: analyze subscripts without reporting more errors 976 auto restorer{GetContextualMessages().DiscardMessages()}; 977 AnalyzeSectionSubscripts(ae.subscripts); 978 return std::nullopt; 979 } 980 981 // Type parameter inquiries apply to data references, but don't depend 982 // on any trailing (co)subscripts. 983 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 984 return common::visit( 985 common::visitors{ 986 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 987 [](Component &&component) { 988 return NamedEntity{std::move(component)}; 989 }, 990 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 991 [](CoarrayRef &&coarrayRef) { 992 return NamedEntity{coarrayRef.GetLastSymbol()}; 993 }, 994 }, 995 std::move(designator.u)); 996 } 997 998 // Components of parent derived types are explicitly represented as such. 999 std::optional<Component> ExpressionAnalyzer::CreateComponent( 1000 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 1001 if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b 1002 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); 1003 } 1004 if (&component.owner() == &scope) { 1005 return Component{std::move(base), component}; 1006 } 1007 if (const Symbol * typeSymbol{scope.GetSymbol()}) { 1008 if (const Symbol * 1009 parentComponent{typeSymbol->GetParentComponent(&scope)}) { 1010 if (const auto *object{ 1011 parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) { 1012 if (const auto *parentType{object->type()}) { 1013 if (const semantics::Scope * 1014 parentScope{parentType->derivedTypeSpec().scope()}) { 1015 return CreateComponent( 1016 DataRef{Component{std::move(base), *parentComponent}}, 1017 component, *parentScope); 1018 } 1019 } 1020 } 1021 } 1022 } 1023 return std::nullopt; 1024 } 1025 1026 // Derived type component references and type parameter inquiries 1027 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 1028 MaybeExpr base{Analyze(sc.base)}; 1029 Symbol *sym{sc.component.symbol}; 1030 if (!base || !sym || context_.HasError(sym)) { 1031 return std::nullopt; 1032 } 1033 const auto &name{sc.component.source}; 1034 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1035 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1036 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1037 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1038 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1039 if (dyType->category() == TypeCategory::Integer) { 1040 auto restorer{GetContextualMessages().SetLocation(name)}; 1041 return Fold(ConvertToType(*dyType, 1042 AsGenericExpr(TypeParamInquiry{ 1043 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1044 } 1045 } 1046 Say(name, "Type parameter is not INTEGER"_err_en_US); 1047 } else { 1048 Say(name, 1049 "A type parameter inquiry must be applied to " 1050 "a designator"_err_en_US); 1051 } 1052 } else if (!dtSpec || !dtSpec->scope()) { 1053 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1054 return std::nullopt; 1055 } else if (std::optional<DataRef> dataRef{ 1056 ExtractDataRef(std::move(*dtExpr))}) { 1057 if (auto component{ 1058 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1059 return Designate(DataRef{std::move(*component)}); 1060 } else { 1061 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1062 dtSpec->typeSymbol().name()); 1063 } 1064 } else { 1065 Say(name, 1066 "Base of component reference must be a data reference"_err_en_US); 1067 } 1068 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1069 // special part-ref: %re, %im, %kind, %len 1070 // Type errors on the base of %re/%im/%len are detected and 1071 // reported in name resolution. 1072 using MiscKind = semantics::MiscDetails::Kind; 1073 MiscKind kind{details->kind()}; 1074 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1075 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1076 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1077 Expr<SomeReal> realExpr{common::visit( 1078 [&](const auto &z) { 1079 using PartType = typename ResultType<decltype(z)>::Part; 1080 auto part{kind == MiscKind::ComplexPartRe 1081 ? ComplexPart::Part::RE 1082 : ComplexPart::Part::IM}; 1083 return AsCategoryExpr(Designator<PartType>{ 1084 ComplexPart{std::move(*dataRef), part}}); 1085 }, 1086 zExpr->u)}; 1087 return AsGenericExpr(std::move(realExpr)); 1088 } 1089 } 1090 } else if (kind == MiscKind::KindParamInquiry || 1091 kind == MiscKind::LenParamInquiry) { 1092 ActualArgument arg{std::move(*base)}; 1093 SetArgSourceLocation(arg, name); 1094 return MakeFunctionRef(name, ActualArguments{std::move(arg)}); 1095 } else { 1096 DIE("unexpected MiscDetails::Kind"); 1097 } 1098 } else { 1099 Say(name, "derived type required before component reference"_err_en_US); 1100 } 1101 return std::nullopt; 1102 } 1103 1104 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1105 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1106 DataRef *dataRef{&*maybeDataRef}; 1107 std::vector<Subscript> subscripts; 1108 SymbolVector reversed; 1109 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1110 subscripts = std::move(aRef->subscript()); 1111 reversed.push_back(aRef->GetLastSymbol()); 1112 if (Component * component{aRef->base().UnwrapComponent()}) { 1113 dataRef = &component->base(); 1114 } else { 1115 dataRef = nullptr; 1116 } 1117 } 1118 if (dataRef) { 1119 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1120 reversed.push_back(component->GetLastSymbol()); 1121 dataRef = &component->base(); 1122 } 1123 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1124 reversed.push_back(*baseSym); 1125 } else { 1126 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1127 } 1128 } 1129 std::vector<Expr<SubscriptInteger>> cosubscripts; 1130 bool cosubsOk{true}; 1131 for (const auto &cosub : 1132 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1133 MaybeExpr coex{Analyze(cosub)}; 1134 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1135 cosubscripts.push_back( 1136 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1137 } else { 1138 cosubsOk = false; 1139 } 1140 } 1141 if (cosubsOk && !reversed.empty()) { 1142 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1143 const Symbol &symbol{reversed.front()}; 1144 if (numCosubscripts != symbol.Corank()) { 1145 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1146 symbol.name(), symbol.Corank(), numCosubscripts); 1147 } 1148 } 1149 for (const auto &imageSelSpec : 1150 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1151 common::visit( 1152 common::visitors{ 1153 [&](const auto &x) { Analyze(x.v); }, 1154 }, 1155 imageSelSpec.u); 1156 } 1157 // Reverse the chain of symbols so that the base is first and coarray 1158 // ultimate component is last. 1159 if (cosubsOk) { 1160 return Designate( 1161 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1162 std::move(subscripts), std::move(cosubscripts)}}); 1163 } 1164 } 1165 return std::nullopt; 1166 } 1167 1168 int ExpressionAnalyzer::IntegerTypeSpecKind( 1169 const parser::IntegerTypeSpec &spec) { 1170 Expr<SubscriptInteger> value{ 1171 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1172 if (auto kind{ToInt64(value)}) { 1173 return static_cast<int>(*kind); 1174 } 1175 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1176 return GetDefaultKind(TypeCategory::Integer); 1177 } 1178 1179 // Array constructors 1180 1181 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1182 // all happen to have the same actual type T into one ArrayConstructor<T>. 1183 template <typename T> 1184 ArrayConstructorValues<T> MakeSpecific( 1185 ArrayConstructorValues<SomeType> &&from) { 1186 ArrayConstructorValues<T> to; 1187 for (ArrayConstructorValue<SomeType> &x : from) { 1188 common::visit( 1189 common::visitors{ 1190 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1191 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1192 to.Push(std::move(DEREF(typed))); 1193 }, 1194 [&](ImpliedDo<SomeType> &&impliedDo) { 1195 to.Push(ImpliedDo<T>{impliedDo.name(), 1196 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1197 std::move(impliedDo.stride()), 1198 MakeSpecific<T>(std::move(impliedDo.values()))}); 1199 }, 1200 }, 1201 std::move(x.u)); 1202 } 1203 return to; 1204 } 1205 1206 class ArrayConstructorContext { 1207 public: 1208 ArrayConstructorContext( 1209 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1210 : exprAnalyzer_{c}, type_{std::move(t)} {} 1211 1212 void Add(const parser::AcValue &); 1213 MaybeExpr ToExpr(); 1214 1215 // These interfaces allow *this to be used as a type visitor argument to 1216 // common::SearchTypes() to convert the array constructor to a typed 1217 // expression in ToExpr(). 1218 using Result = MaybeExpr; 1219 using Types = AllTypes; 1220 template <typename T> Result Test() { 1221 if (type_ && type_->category() == T::category) { 1222 if constexpr (T::category == TypeCategory::Derived) { 1223 if (!type_->IsUnlimitedPolymorphic()) { 1224 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1225 MakeSpecific<T>(std::move(values_))}); 1226 } 1227 } else if (type_->kind() == T::kind) { 1228 if constexpr (T::category == TypeCategory::Character) { 1229 if (auto len{type_->LEN()}) { 1230 return AsMaybeExpr(ArrayConstructor<T>{ 1231 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1232 } 1233 } else { 1234 return AsMaybeExpr( 1235 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1236 } 1237 } 1238 } 1239 return std::nullopt; 1240 } 1241 1242 private: 1243 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1244 1245 void Push(MaybeExpr &&); 1246 void Add(const parser::AcValue::Triplet &); 1247 void Add(const parser::Expr &); 1248 void Add(const parser::AcImpliedDo &); 1249 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1250 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1251 std::int64_t stride); 1252 1253 template <int KIND, typename A> 1254 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1255 const A &x) { 1256 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1257 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1258 return Fold(exprAnalyzer_.GetFoldingContext(), 1259 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1260 std::move(DEREF(intExpr)))); 1261 } 1262 return std::nullopt; 1263 } 1264 1265 // Nested array constructors all reference the same ExpressionAnalyzer, 1266 // which represents the nest of active implied DO loop indices. 1267 ExpressionAnalyzer &exprAnalyzer_; 1268 std::optional<DynamicTypeWithLength> type_; 1269 bool explicitType_{type_.has_value()}; 1270 std::optional<std::int64_t> constantLength_; 1271 ArrayConstructorValues<SomeType> values_; 1272 std::uint64_t messageDisplayedSet_{0}; 1273 }; 1274 1275 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1276 if (!x) { 1277 return; 1278 } 1279 if (!type_) { 1280 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1281 // Treat an array constructor of BOZ as if default integer. 1282 if (exprAnalyzer_.context().ShouldWarn( 1283 common::LanguageFeature::BOZAsDefaultInteger)) { 1284 exprAnalyzer_.Say( 1285 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1286 } 1287 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1288 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1289 std::move(*boz))); 1290 } 1291 } 1292 std::optional<DynamicType> dyType{x->GetType()}; 1293 if (!dyType) { 1294 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1295 if (!type_) { 1296 // Treat an array constructor of BOZ as if default integer. 1297 if (exprAnalyzer_.context().ShouldWarn( 1298 common::LanguageFeature::BOZAsDefaultInteger)) { 1299 exprAnalyzer_.Say( 1300 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1301 } 1302 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1303 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1304 std::move(*boz))); 1305 dyType = x.value().GetType(); 1306 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1307 x = std::move(cast); 1308 dyType = *type_; 1309 } else { 1310 if (!(messageDisplayedSet_ & 0x80)) { 1311 exprAnalyzer_.Say( 1312 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1313 messageDisplayedSet_ |= 0x80; 1314 } 1315 return; 1316 } 1317 } else { // procedure name, &c. 1318 if (!(messageDisplayedSet_ & 0x40)) { 1319 exprAnalyzer_.Say( 1320 "Item is not suitable for use in an array constructor"_err_en_US); 1321 messageDisplayedSet_ |= 0x40; 1322 } 1323 return; 1324 } 1325 } else if (dyType->IsUnlimitedPolymorphic()) { 1326 if (!(messageDisplayedSet_ & 8)) { 1327 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1328 "array constructor"_err_en_US); // C7113 1329 messageDisplayedSet_ |= 8; 1330 } 1331 return; 1332 } 1333 DynamicTypeWithLength xType{dyType.value()}; 1334 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1335 CHECK(xType.category() == TypeCategory::Character); 1336 xType.length = 1337 common::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1338 } 1339 if (!type_) { 1340 // If there is no explicit type-spec in an array constructor, the type 1341 // of the array is the declared type of all of the elements, which must 1342 // be well-defined and all match. 1343 // TODO: Possible language extension: use the most general type of 1344 // the values as the type of a numeric constructed array, convert all 1345 // of the other values to that type. Alternative: let the first value 1346 // determine the type, and convert the others to that type. 1347 CHECK(!explicitType_); 1348 type_ = std::move(xType); 1349 constantLength_ = ToInt64(type_->length); 1350 values_.Push(std::move(*x)); 1351 } else if (!explicitType_) { 1352 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1353 values_.Push(std::move(*x)); 1354 if (auto thisLen{ToInt64(xType.LEN())}) { 1355 if (constantLength_) { 1356 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1357 *thisLen != *constantLength_) { 1358 if (!(messageDisplayedSet_ & 1)) { 1359 exprAnalyzer_.Say( 1360 "Character literal in array constructor without explicit " 1361 "type has different length than earlier elements"_port_en_US); 1362 messageDisplayedSet_ |= 1; 1363 } 1364 } 1365 if (*thisLen > *constantLength_) { 1366 // Language extension: use the longest literal to determine the 1367 // length of the array constructor's character elements, not the 1368 // first, when there is no explicit type. 1369 *constantLength_ = *thisLen; 1370 type_->length = xType.LEN(); 1371 } 1372 } else { 1373 constantLength_ = *thisLen; 1374 type_->length = xType.LEN(); 1375 } 1376 } 1377 } else { 1378 if (!(messageDisplayedSet_ & 2)) { 1379 exprAnalyzer_.Say( 1380 "Values in array constructor must have the same declared type " 1381 "when no explicit type appears"_err_en_US); // C7110 1382 messageDisplayedSet_ |= 2; 1383 } 1384 } 1385 } else { 1386 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1387 values_.Push(std::move(*cast)); 1388 } else if (!(messageDisplayedSet_ & 4)) { 1389 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1390 "be converted to the type of the array '%s'"_err_en_US, 1391 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1392 messageDisplayedSet_ |= 4; 1393 } 1394 } 1395 } 1396 1397 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1398 common::visit( 1399 common::visitors{ 1400 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1401 [&](const common::Indirection<parser::Expr> &expr) { 1402 Add(expr.value()); 1403 }, 1404 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1405 Add(impliedDo.value()); 1406 }, 1407 }, 1408 x.u); 1409 } 1410 1411 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1412 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1413 std::optional<Expr<ImpliedDoIntType>> lower{ 1414 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1415 std::optional<Expr<ImpliedDoIntType>> upper{ 1416 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1417 std::optional<Expr<ImpliedDoIntType>> stride{ 1418 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1419 if (lower && upper) { 1420 if (!stride) { 1421 stride = Expr<ImpliedDoIntType>{1}; 1422 } 1423 if (!type_) { 1424 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1425 } 1426 auto v{std::move(values_)}; 1427 parser::CharBlock anonymous; 1428 Push(Expr<SomeType>{ 1429 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1430 std::swap(v, values_); 1431 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1432 std::move(*upper), std::move(*stride), std::move(v)}); 1433 } 1434 } 1435 1436 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1437 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1438 Push(exprAnalyzer_.Analyze(expr)); 1439 } 1440 1441 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1442 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1443 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1444 exprAnalyzer_.Analyze(bounds.name); 1445 parser::CharBlock name{bounds.name.thing.thing.source}; 1446 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1447 int kind{ImpliedDoIntType::kind}; 1448 if (const auto dynamicType{DynamicType::From(symbol)}) { 1449 kind = dynamicType->kind(); 1450 } 1451 std::optional<Expr<ImpliedDoIntType>> lower{ 1452 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1453 std::optional<Expr<ImpliedDoIntType>> upper{ 1454 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1455 if (lower && upper) { 1456 std::optional<Expr<ImpliedDoIntType>> stride{ 1457 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1458 if (!stride) { 1459 stride = Expr<ImpliedDoIntType>{1}; 1460 } 1461 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1462 // Check for constant bounds; the loop may require complete unrolling 1463 // of the parse tree if all bounds are constant in order to allow the 1464 // implied DO loop index to qualify as a constant expression. 1465 auto cLower{ToInt64(lower)}; 1466 auto cUpper{ToInt64(upper)}; 1467 auto cStride{ToInt64(stride)}; 1468 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1469 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1470 "The stride of an implied DO loop must not be zero"_err_en_US); 1471 messageDisplayedSet_ |= 0x10; 1472 } 1473 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1474 bool isNonemptyConstant{isConstant && 1475 ((*cStride > 0 && *cLower <= *cUpper) || 1476 (*cStride < 0 && *cLower >= *cUpper))}; 1477 bool unrollConstantLoop{false}; 1478 parser::Messages buffer; 1479 auto saveMessagesDisplayed{messageDisplayedSet_}; 1480 { 1481 auto messageRestorer{ 1482 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1483 auto v{std::move(values_)}; 1484 for (const auto &value : 1485 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1486 Add(value); 1487 } 1488 std::swap(v, values_); 1489 if (isNonemptyConstant && buffer.AnyFatalError()) { 1490 unrollConstantLoop = true; 1491 } else { 1492 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1493 std::move(*upper), std::move(*stride), std::move(v)}); 1494 } 1495 } 1496 if (unrollConstantLoop) { 1497 messageDisplayedSet_ = saveMessagesDisplayed; 1498 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1499 } else if (auto *messages{ 1500 exprAnalyzer_.GetContextualMessages().messages()}) { 1501 messages->Annex(std::move(buffer)); 1502 } 1503 exprAnalyzer_.RemoveImpliedDo(name); 1504 } else if (!(messageDisplayedSet_ & 0x20)) { 1505 exprAnalyzer_.SayAt(name, 1506 "Implied DO index '%s' is active in a surrounding implied DO loop " 1507 "and may not have the same name"_err_en_US, 1508 name); // C7115 1509 messageDisplayedSet_ |= 0x20; 1510 } 1511 } 1512 } 1513 1514 // Fortran considers an implied DO index of an array constructor to be 1515 // a constant expression if the bounds of the implied DO loop are constant. 1516 // Usually this doesn't matter, but if we emitted spurious messages as a 1517 // result of not using constant values for the index while analyzing the 1518 // items, we need to do it again the "hard" way with multiple iterations over 1519 // the parse tree. 1520 void ArrayConstructorContext::UnrollConstantImpliedDo( 1521 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1522 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1523 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1524 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1525 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1526 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1527 at += stride) { 1528 for (const auto &value : 1529 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1530 Add(value); 1531 } 1532 } 1533 foldingContext.EndImpliedDo(name); 1534 } 1535 1536 MaybeExpr ArrayConstructorContext::ToExpr() { 1537 return common::SearchTypes(std::move(*this)); 1538 } 1539 1540 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1541 const parser::AcSpec &acSpec{array.v}; 1542 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1543 for (const parser::AcValue &value : acSpec.values) { 1544 acContext.Add(value); 1545 } 1546 return acContext.ToExpr(); 1547 } 1548 1549 MaybeExpr ExpressionAnalyzer::Analyze( 1550 const parser::StructureConstructor &structure) { 1551 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1552 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1553 parser::CharBlock &typeName{structureType.source}; 1554 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1555 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1556 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1557 if (!CheckIsValidForwardReference(dtSpec)) { 1558 return std::nullopt; 1559 } 1560 } 1561 } 1562 if (!parsedType.derivedTypeSpec) { 1563 return std::nullopt; 1564 } 1565 const auto &spec{*parsedType.derivedTypeSpec}; 1566 const Symbol &typeSymbol{spec.typeSymbol()}; 1567 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1568 return std::nullopt; // error recovery 1569 } 1570 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1571 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1572 1573 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1574 AttachDeclaration(Say(typeName, 1575 "ABSTRACT derived type '%s' may not be used in a " 1576 "structure constructor"_err_en_US, 1577 typeName), 1578 typeSymbol); // C7114 1579 } 1580 1581 // This iterator traverses all of the components in the derived type and its 1582 // parents. The symbols for whole parent components appear after their 1583 // own components and before the components of the types that extend them. 1584 // E.g., TYPE :: A; REAL X; END TYPE 1585 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1586 // produces the component list X, A, Y. 1587 // The order is important below because a structure constructor can 1588 // initialize X or A by name, but not both. 1589 auto components{semantics::OrderedComponentIterator{spec}}; 1590 auto nextAnonymous{components.begin()}; 1591 1592 std::set<parser::CharBlock> unavailable; 1593 bool anyKeyword{false}; 1594 StructureConstructor result{spec}; 1595 bool checkConflicts{true}; // until we hit one 1596 auto &messages{GetContextualMessages()}; 1597 1598 for (const auto &component : 1599 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1600 const parser::Expr &expr{ 1601 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1602 parser::CharBlock source{expr.source}; 1603 auto restorer{messages.SetLocation(source)}; 1604 const Symbol *symbol{nullptr}; 1605 MaybeExpr value{Analyze(expr)}; 1606 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1607 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1608 anyKeyword = true; 1609 source = kw->v.source; 1610 symbol = kw->v.symbol; 1611 if (!symbol) { 1612 auto componentIter{std::find_if(components.begin(), components.end(), 1613 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1614 if (componentIter != components.end()) { 1615 symbol = &*componentIter; 1616 } 1617 } 1618 if (!symbol) { // C7101 1619 Say(source, 1620 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1621 source, typeName); 1622 } 1623 } else { 1624 if (anyKeyword) { // C7100 1625 Say(source, 1626 "Value in structure constructor lacks a component name"_err_en_US); 1627 checkConflicts = false; // stem cascade 1628 } 1629 // Here's a regrettably common extension of the standard: anonymous 1630 // initialization of parent components, e.g., T(PT(1)) rather than 1631 // T(1) or T(PT=PT(1)). 1632 if (nextAnonymous == components.begin() && parentComponent && 1633 valueType == DynamicType::From(*parentComponent) && 1634 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1635 auto iter{ 1636 std::find(components.begin(), components.end(), *parentComponent)}; 1637 if (iter != components.end()) { 1638 symbol = parentComponent; 1639 nextAnonymous = ++iter; 1640 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1641 Say(source, 1642 "Whole parent component '%s' in structure " 1643 "constructor should not be anonymous"_port_en_US, 1644 symbol->name()); 1645 } 1646 } 1647 } 1648 while (!symbol && nextAnonymous != components.end()) { 1649 const Symbol &next{*nextAnonymous}; 1650 ++nextAnonymous; 1651 if (!next.test(Symbol::Flag::ParentComp)) { 1652 symbol = &next; 1653 } 1654 } 1655 if (!symbol) { 1656 Say(source, "Unexpected value in structure constructor"_err_en_US); 1657 } 1658 } 1659 if (symbol) { 1660 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1661 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1662 Say(source, *msg); 1663 } 1664 } 1665 if (checkConflicts) { 1666 auto componentIter{ 1667 std::find(components.begin(), components.end(), *symbol)}; 1668 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1669 // C797, C798 1670 Say(source, 1671 "Component '%s' conflicts with another component earlier in " 1672 "this structure constructor"_err_en_US, 1673 symbol->name()); 1674 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1675 // Make earlier components unavailable once a whole parent appears. 1676 for (auto it{components.begin()}; it != componentIter; ++it) { 1677 unavailable.insert(it->name()); 1678 } 1679 } else { 1680 // Make whole parent components unavailable after any of their 1681 // constituents appear. 1682 for (auto it{componentIter}; it != components.end(); ++it) { 1683 if (it->test(Symbol::Flag::ParentComp)) { 1684 unavailable.insert(it->name()); 1685 } 1686 } 1687 } 1688 } 1689 unavailable.insert(symbol->name()); 1690 if (value) { 1691 if (symbol->has<semantics::ProcEntityDetails>()) { 1692 CHECK(IsPointer(*symbol)); 1693 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1694 // C1594(4) 1695 const auto &innermost{context_.FindScope(expr.source)}; 1696 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1697 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1698 if (const Symbol * 1699 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1700 if (auto *msg{Say(expr.source, 1701 "Externally visible object '%s' may not be " 1702 "associated with pointer component '%s' in a " 1703 "pure procedure"_err_en_US, 1704 object->name(), pointer->name())}) { 1705 msg->Attach(object->name(), "Object declaration"_en_US) 1706 .Attach(pointer->name(), "Pointer declaration"_en_US); 1707 } 1708 } 1709 } 1710 } 1711 } else if (symbol->has<semantics::TypeParamDetails>()) { 1712 Say(expr.source, 1713 "Type parameter '%s' may not appear as a component " 1714 "of a structure constructor"_err_en_US, 1715 symbol->name()); 1716 continue; 1717 } else { 1718 Say(expr.source, 1719 "Component '%s' is neither a procedure pointer " 1720 "nor a data object"_err_en_US, 1721 symbol->name()); 1722 continue; 1723 } 1724 if (IsPointer(*symbol)) { 1725 semantics::CheckPointerAssignment( 1726 GetFoldingContext(), *symbol, *value); // C7104, C7105 1727 result.Add(*symbol, Fold(std::move(*value))); 1728 } else if (MaybeExpr converted{ 1729 ConvertToType(*symbol, std::move(*value))}) { 1730 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1731 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1732 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1733 AttachDeclaration( 1734 Say(expr.source, 1735 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1736 GetRank(*valueShape), symbol->name()), 1737 *symbol); 1738 } else { 1739 auto checked{ 1740 CheckConformance(messages, *componentShape, *valueShape, 1741 CheckConformanceFlags::RightIsExpandableDeferred, 1742 "component", "value")}; 1743 if (checked && *checked && GetRank(*componentShape) > 0 && 1744 GetRank(*valueShape) == 0 && 1745 !IsExpandableScalar(*converted)) { 1746 AttachDeclaration( 1747 Say(expr.source, 1748 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1749 symbol->name()), 1750 *symbol); 1751 } 1752 if (checked.value_or(true)) { 1753 result.Add(*symbol, std::move(*converted)); 1754 } 1755 } 1756 } else { 1757 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1758 } 1759 } else { 1760 AttachDeclaration( 1761 Say(expr.source, 1762 "Shape of component '%s' cannot be determined"_err_en_US, 1763 symbol->name()), 1764 *symbol); 1765 } 1766 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1767 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE. 1768 result.Add(*symbol, Expr<SomeType>{NullPointer{}}); 1769 } else if (auto symType{DynamicType::From(symbol)}) { 1770 if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() && 1771 valueType) { 1772 // ok 1773 } else if (valueType) { 1774 AttachDeclaration( 1775 Say(expr.source, 1776 "Value in structure constructor of type '%s' is " 1777 "incompatible with component '%s' of type '%s'"_err_en_US, 1778 valueType->AsFortran(), symbol->name(), 1779 symType->AsFortran()), 1780 *symbol); 1781 } else { 1782 AttachDeclaration( 1783 Say(expr.source, 1784 "Value in structure constructor is incompatible with " 1785 "component '%s' of type %s"_err_en_US, 1786 symbol->name(), symType->AsFortran()), 1787 *symbol); 1788 } 1789 } 1790 } 1791 } 1792 } 1793 1794 // Ensure that unmentioned component objects have default initializers. 1795 for (const Symbol &symbol : components) { 1796 if (!symbol.test(Symbol::Flag::ParentComp) && 1797 unavailable.find(symbol.name()) == unavailable.cend()) { 1798 if (IsAllocatable(symbol)) { 1799 // Set all remaining allocatables to explicit NULL() 1800 result.Add(symbol, Expr<SomeType>{NullPointer{}}); 1801 } else if (const auto *details{ 1802 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1803 if (details->init()) { 1804 result.Add(symbol, common::Clone(*details->init())); 1805 } else { // C799 1806 AttachDeclaration(Say(typeName, 1807 "Structure constructor lacks a value for " 1808 "component '%s'"_err_en_US, 1809 symbol.name()), 1810 symbol); 1811 } 1812 } 1813 } 1814 } 1815 1816 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1817 } 1818 1819 static std::optional<parser::CharBlock> GetPassName( 1820 const semantics::Symbol &proc) { 1821 return common::visit( 1822 [](const auto &details) { 1823 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1824 std::decay_t<decltype(details)>>) { 1825 return details.passName(); 1826 } else { 1827 return std::optional<parser::CharBlock>{}; 1828 } 1829 }, 1830 proc.details()); 1831 } 1832 1833 static int GetPassIndex(const Symbol &proc) { 1834 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1835 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1836 const auto *interface { semantics::FindInterface(proc) }; 1837 if (!passName || !interface) { 1838 return 0; // first argument is passed-object 1839 } 1840 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1841 int index{0}; 1842 for (const auto *arg : subp.dummyArgs()) { 1843 if (arg && arg->name() == passName) { 1844 return index; 1845 } 1846 ++index; 1847 } 1848 DIE("PASS argument name not in dummy argument list"); 1849 } 1850 1851 // Injects an expression into an actual argument list as the "passed object" 1852 // for a type-bound procedure reference that is not NOPASS. Adds an 1853 // argument keyword if possible, but not when the passed object goes 1854 // before a positional argument. 1855 // e.g., obj%tbp(x) -> tbp(obj,x). 1856 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1857 const Symbol &component, bool isPassedObject = true) { 1858 if (component.attrs().test(semantics::Attr::NOPASS)) { 1859 return; 1860 } 1861 int passIndex{GetPassIndex(component)}; 1862 auto iter{actuals.begin()}; 1863 int at{0}; 1864 while (iter < actuals.end() && at < passIndex) { 1865 if (*iter && (*iter)->keyword()) { 1866 iter = actuals.end(); 1867 break; 1868 } 1869 ++iter; 1870 ++at; 1871 } 1872 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1873 passed.set_isPassedObject(isPassedObject); 1874 if (iter == actuals.end()) { 1875 if (auto passName{GetPassName(component)}) { 1876 passed.set_keyword(*passName); 1877 } 1878 } 1879 actuals.emplace(iter, std::move(passed)); 1880 } 1881 1882 // Return the compile-time resolution of a procedure binding, if possible. 1883 static const Symbol *GetBindingResolution( 1884 const std::optional<DynamicType> &baseType, const Symbol &component) { 1885 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1886 if (!binding) { 1887 return nullptr; 1888 } 1889 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1890 (!baseType || baseType->IsPolymorphic())) { 1891 return nullptr; 1892 } 1893 return &binding->symbol(); 1894 } 1895 1896 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1897 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1898 -> std::optional<CalleeAndArguments> { 1899 const parser::StructureComponent &sc{pcr.v.thing}; 1900 if (MaybeExpr base{Analyze(sc.base)}) { 1901 if (const Symbol * sym{sc.component.symbol}) { 1902 if (context_.HasError(sym)) { 1903 return std::nullopt; 1904 } 1905 if (!IsProcedure(*sym)) { 1906 AttachDeclaration( 1907 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1908 sc.component.source), 1909 *sym); 1910 return std::nullopt; 1911 } 1912 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1913 if (sym->has<semantics::GenericDetails>()) { 1914 AdjustActuals adjustment{ 1915 [&](const Symbol &proc, ActualArguments &actuals) { 1916 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1917 AddPassArg(actuals, std::move(*dtExpr), proc); 1918 } 1919 return true; 1920 }}; 1921 auto pair{ResolveGeneric(*sym, arguments, adjustment)}; 1922 sym = pair.first; 1923 if (!sym) { 1924 EmitGenericResolutionError(*sc.component.symbol, pair.second); 1925 return std::nullopt; 1926 } 1927 } 1928 if (const Symbol * 1929 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1930 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1931 return CalleeAndArguments{ 1932 ProcedureDesignator{*resolution}, std::move(arguments)}; 1933 } else if (std::optional<DataRef> dataRef{ 1934 ExtractDataRef(std::move(*dtExpr))}) { 1935 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1936 return CalleeAndArguments{ 1937 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1938 std::move(arguments)}; 1939 } else { 1940 AddPassArg(arguments, 1941 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1942 *sym); 1943 return CalleeAndArguments{ 1944 ProcedureDesignator{*sym}, std::move(arguments)}; 1945 } 1946 } 1947 } 1948 Say(sc.component.source, 1949 "Base of procedure component reference is not a derived-type object"_err_en_US); 1950 } 1951 } 1952 CHECK(context_.AnyFatalError()); 1953 return std::nullopt; 1954 } 1955 1956 // Can actual be argument associated with dummy? 1957 static bool CheckCompatibleArgument(bool isElemental, 1958 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1959 const auto *expr{actual.UnwrapExpr()}; 1960 return common::visit( 1961 common::visitors{ 1962 [&](const characteristics::DummyDataObject &x) { 1963 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 1964 IsBareNullPointer(expr)) { 1965 // NULL() without MOLD= is compatible with any dummy data pointer 1966 // but cannot be allowed to lead to ambiguity. 1967 return true; 1968 } else if (!isElemental && actual.Rank() != x.type.Rank() && 1969 !x.type.attrs().test( 1970 characteristics::TypeAndShape::Attr::AssumedRank)) { 1971 return false; 1972 } else if (auto actualType{actual.GetType()}) { 1973 return x.type.type().IsTkCompatibleWith(*actualType); 1974 } 1975 return false; 1976 }, 1977 [&](const characteristics::DummyProcedure &) { 1978 return expr && IsProcedurePointerTarget(*expr); 1979 }, 1980 [&](const characteristics::AlternateReturn &) { 1981 return actual.isAlternateReturn(); 1982 }, 1983 }, 1984 dummy.u); 1985 } 1986 1987 // Are the actual arguments compatible with the dummy arguments of procedure? 1988 static bool CheckCompatibleArguments( 1989 const characteristics::Procedure &procedure, 1990 const ActualArguments &actuals) { 1991 bool isElemental{procedure.IsElemental()}; 1992 const auto &dummies{procedure.dummyArguments}; 1993 CHECK(dummies.size() == actuals.size()); 1994 for (std::size_t i{0}; i < dummies.size(); ++i) { 1995 const characteristics::DummyArgument &dummy{dummies[i]}; 1996 const std::optional<ActualArgument> &actual{actuals[i]}; 1997 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1998 return false; 1999 } 2000 } 2001 return true; 2002 } 2003 2004 // Handles a forward reference to a module function from what must 2005 // be a specification expression. Return false if the symbol is 2006 // an invalid forward reference. 2007 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 2008 if (context_.HasError(symbol)) { 2009 return false; 2010 } 2011 if (const auto *details{ 2012 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 2013 if (details->kind() == semantics::SubprogramKind::Module) { 2014 // If this symbol is still a SubprogramNameDetails, we must be 2015 // checking a specification expression in a sibling module 2016 // procedure. Resolve its names now so that its interface 2017 // is known. 2018 semantics::ResolveSpecificationParts(context_, symbol); 2019 if (symbol.has<semantics::SubprogramNameDetails>()) { 2020 // When the symbol hasn't had its details updated, we must have 2021 // already been in the process of resolving the function's 2022 // specification part; but recursive function calls are not 2023 // allowed in specification parts (10.1.11 para 5). 2024 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 2025 symbol.name()); 2026 context_.SetError(symbol); 2027 return false; 2028 } 2029 } else { // 10.1.11 para 4 2030 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 2031 symbol.name()); 2032 context_.SetError(symbol); 2033 return false; 2034 } 2035 } 2036 return true; 2037 } 2038 2039 // Resolve a call to a generic procedure with given actual arguments. 2040 // adjustActuals is called on procedure bindings to handle pass arg. 2041 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 2042 const Symbol &symbol, const ActualArguments &actuals, 2043 const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) { 2044 const Symbol *elemental{nullptr}; // matching elemental specific proc 2045 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2046 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 2047 bool anyBareNullActual{ 2048 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2049 return IsBareNullPointer(iter->UnwrapExpr()); 2050 }) != actuals.end()}; 2051 for (const Symbol &specific : details.specificProcs()) { 2052 if (!ResolveForward(specific)) { 2053 continue; 2054 } 2055 if (std::optional<characteristics::Procedure> procedure{ 2056 characteristics::Procedure::Characterize( 2057 ProcedureDesignator{specific}, context_.foldingContext())}) { 2058 ActualArguments localActuals{actuals}; 2059 if (specific.has<semantics::ProcBindingDetails>()) { 2060 if (!adjustActuals.value()(specific, localActuals)) { 2061 continue; 2062 } 2063 } 2064 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, 2065 GetFoldingContext(), false /* no integer conversions */) && 2066 CheckCompatibleArguments(*procedure, localActuals)) { 2067 if ((procedure->IsElemental() && elemental) || 2068 (!procedure->IsElemental() && nonElemental)) { 2069 // 16.9.144(6): a bare NULL() is not allowed as an actual 2070 // argument to a generic procedure if the specific procedure 2071 // cannot be unambiguously distinguished 2072 return {nullptr, true /* due to NULL actuals */}; 2073 } 2074 if (!procedure->IsElemental()) { 2075 // takes priority over elemental match 2076 nonElemental = &specific; 2077 if (!anyBareNullActual) { 2078 break; // unambiguous case 2079 } 2080 } else { 2081 elemental = &specific; 2082 } 2083 } 2084 } 2085 } 2086 if (nonElemental) { 2087 return {&AccessSpecific(symbol, *nonElemental), false}; 2088 } else if (elemental) { 2089 return {&AccessSpecific(symbol, *elemental), false}; 2090 } 2091 // Check parent derived type 2092 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2093 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2094 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 2095 auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)}; 2096 if (pair.first) { 2097 return pair; 2098 } 2099 } 2100 } 2101 } 2102 if (mightBeStructureConstructor && details.derivedType()) { 2103 return {details.derivedType(), false}; 2104 } 2105 return {nullptr, false}; 2106 } 2107 2108 const Symbol &ExpressionAnalyzer::AccessSpecific( 2109 const Symbol &originalGeneric, const Symbol &specific) { 2110 if (const auto *hosted{ 2111 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2112 return AccessSpecific(hosted->symbol(), specific); 2113 } else if (const auto *used{ 2114 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2115 const auto &scope{originalGeneric.owner()}; 2116 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2117 if (const auto *useDetails{ 2118 iter->second->detailsIf<semantics::UseDetails>()}) { 2119 const Symbol &usedSymbol{useDetails->symbol()}; 2120 const auto *usedGeneric{ 2121 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2122 if (&usedSymbol == &specific || 2123 (usedGeneric && usedGeneric->specific() == &specific)) { 2124 return specific; 2125 } 2126 } 2127 } 2128 // Create a renaming USE of the specific procedure. 2129 auto rename{context_.SaveTempName( 2130 used->symbol().owner().GetName().value().ToString() + "$" + 2131 specific.name().ToString())}; 2132 return *const_cast<semantics::Scope &>(scope) 2133 .try_emplace(rename, specific.attrs(), 2134 semantics::UseDetails{rename, specific}) 2135 .first->second; 2136 } else { 2137 return specific; 2138 } 2139 } 2140 2141 void ExpressionAnalyzer::EmitGenericResolutionError( 2142 const Symbol &symbol, bool dueToNullActuals) { 2143 Say(dueToNullActuals 2144 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2145 : semantics::IsGenericDefinedOp(symbol) 2146 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2147 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2148 symbol.name()); 2149 } 2150 2151 auto ExpressionAnalyzer::GetCalleeAndArguments( 2152 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2153 bool isSubroutine, bool mightBeStructureConstructor) 2154 -> std::optional<CalleeAndArguments> { 2155 return common::visit( 2156 common::visitors{ 2157 [&](const parser::Name &name) { 2158 return GetCalleeAndArguments(name, std::move(arguments), 2159 isSubroutine, mightBeStructureConstructor); 2160 }, 2161 [&](const parser::ProcComponentRef &pcr) { 2162 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2163 }, 2164 }, 2165 pd.u); 2166 } 2167 2168 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2169 ActualArguments &&arguments, bool isSubroutine, 2170 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2171 const Symbol *symbol{name.symbol}; 2172 if (context_.HasError(symbol)) { 2173 return std::nullopt; // also handles null symbol 2174 } 2175 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2176 CheckForBadRecursion(name.source, ultimate); 2177 bool dueToNullActual{false}; 2178 bool isGenericInterface{ultimate.has<semantics::GenericDetails>()}; 2179 const Symbol *resolution{nullptr}; 2180 if (isGenericInterface) { 2181 ExpressionAnalyzer::AdjustActuals noAdjustment; 2182 auto pair{ResolveGeneric( 2183 *symbol, arguments, noAdjustment, mightBeStructureConstructor)}; 2184 resolution = pair.first; 2185 dueToNullActual = pair.second; 2186 } 2187 if (!resolution) { 2188 // Not generic, or no resolution; may be intrinsic 2189 bool isIntrinsic{symbol->attrs().test(semantics::Attr::INTRINSIC)}; 2190 if (!isIntrinsic && !isGenericInterface) { 2191 resolution = symbol; 2192 } else if (std::optional<SpecificCall> specificCall{ 2193 context_.intrinsics().Probe( 2194 CallCharacteristics{ 2195 ultimate.name().ToString(), isSubroutine}, 2196 arguments, GetFoldingContext())}) { 2197 CheckBadExplicitType(*specificCall, *symbol); 2198 return CalleeAndArguments{ 2199 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2200 std::move(specificCall->arguments)}; 2201 } else { 2202 if (isGenericInterface) { 2203 EmitGenericResolutionError(*symbol, dueToNullActual); 2204 } 2205 return std::nullopt; 2206 } 2207 } 2208 if (resolution->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2209 if (mightBeStructureConstructor) { 2210 return CalleeAndArguments{ 2211 semantics::SymbolRef{*resolution}, std::move(arguments)}; 2212 } 2213 } else if (IsProcedure(*resolution)) { 2214 return CalleeAndArguments{ 2215 ProcedureDesignator{*resolution}, std::move(arguments)}; 2216 } 2217 if (!context_.HasError(*resolution)) { 2218 AttachDeclaration( 2219 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2220 name.source), 2221 *resolution); 2222 } 2223 return std::nullopt; 2224 } 2225 2226 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2227 // generic intrinsic function "has no effect" on the result type of a 2228 // call to that intrinsic. So one can declare "character*8 cos" and 2229 // still get a real result from "cos(1.)". This is a dangerous feature, 2230 // especially since implementations are free to extend their sets of 2231 // intrinsics, and in doing so might clash with a name in a program. 2232 // So we emit a warning in this situation, and perhaps it should be an 2233 // error -- any correctly working program can silence the message by 2234 // simply deleting the pointless type declaration. 2235 void ExpressionAnalyzer::CheckBadExplicitType( 2236 const SpecificCall &call, const Symbol &intrinsic) { 2237 if (intrinsic.GetUltimate().GetType()) { 2238 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2239 if (const auto &result{procedure.functionResult}) { 2240 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2241 if (auto declared{ 2242 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2243 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2244 if (auto *msg{Say( 2245 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_warn_en_US, 2246 typeAndShape->AsFortran(), intrinsic.name(), 2247 declared->AsFortran())}) { 2248 msg->Attach(intrinsic.name(), 2249 "Ignored declaration of intrinsic function '%s'"_en_US, 2250 intrinsic.name()); 2251 } 2252 } 2253 } 2254 } 2255 } 2256 } 2257 } 2258 2259 void ExpressionAnalyzer::CheckForBadRecursion( 2260 parser::CharBlock callSite, const semantics::Symbol &proc) { 2261 if (const auto *scope{proc.scope()}) { 2262 if (scope->sourceRange().Contains(callSite)) { 2263 parser::Message *msg{nullptr}; 2264 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2265 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2266 callSite); 2267 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2268 msg = Say( // 15.6.2.1(3) 2269 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2270 callSite); 2271 } 2272 AttachDeclaration(msg, proc); 2273 } 2274 } 2275 } 2276 2277 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2278 if (const auto *designator{ 2279 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2280 if (const auto *dataRef{ 2281 std::get_if<parser::DataRef>(&designator->value().u)}) { 2282 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2283 return AssumedTypeDummy(*name); 2284 } 2285 } 2286 } 2287 return nullptr; 2288 } 2289 template <> 2290 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2291 if (const Symbol * symbol{name.symbol}) { 2292 if (const auto *type{symbol->GetType()}) { 2293 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2294 return symbol; 2295 } 2296 } 2297 } 2298 return nullptr; 2299 } 2300 template <typename A> 2301 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2302 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2303 // point it is is not guaranteed that it has been checked the object has 2304 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2305 // returned. 2306 return common::visit( 2307 common::visitors{ 2308 [&](const parser::StructureComponent &x) { 2309 return AssumedTypeDummy(x.component); 2310 }, 2311 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2312 }, 2313 object.u); 2314 } 2315 template <> 2316 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2317 const parser::AllocateObject &x) { 2318 return AssumedTypePointerOrAllocatableDummy(x); 2319 } 2320 template <> 2321 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2322 const parser::PointerObject &x) { 2323 return AssumedTypePointerOrAllocatableDummy(x); 2324 } 2325 2326 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2327 const semantics::DerivedTypeSpec &dtSpec) { 2328 if (dtSpec.IsForwardReferenced()) { 2329 Say("Cannot construct value for derived type '%s' " 2330 "before it is defined"_err_en_US, 2331 dtSpec.name()); 2332 return false; 2333 } 2334 return true; 2335 } 2336 2337 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2338 std::optional<parser::StructureConstructor> *structureConstructor) { 2339 const parser::Call &call{funcRef.v}; 2340 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2341 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2342 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2343 analyzer.Analyze(arg, false /* not subroutine call */); 2344 } 2345 if (analyzer.fatalErrors()) { 2346 return std::nullopt; 2347 } 2348 if (std::optional<CalleeAndArguments> callee{ 2349 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2350 analyzer.GetActuals(), false /* not subroutine */, 2351 true /* might be structure constructor */)}) { 2352 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2353 return MakeFunctionRef( 2354 call.source, std::move(*proc), std::move(callee->arguments)); 2355 } 2356 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2357 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2358 if (structureConstructor) { 2359 // Structure constructor misparsed as function reference? 2360 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2361 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2362 semantics::Scope &scope{context_.FindScope(name->source)}; 2363 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2364 if (!CheckIsValidForwardReference(dtSpec)) { 2365 return std::nullopt; 2366 } 2367 const semantics::DeclTypeSpec &type{ 2368 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2369 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2370 *structureConstructor = 2371 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2372 return Analyze(structureConstructor->value()); 2373 } 2374 } 2375 if (!context_.HasError(symbol)) { 2376 AttachDeclaration( 2377 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2378 symbol.name()), 2379 symbol); 2380 context_.SetError(symbol); 2381 } 2382 } 2383 return std::nullopt; 2384 } 2385 2386 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2387 for (const auto &arg : args) { 2388 if (arg && arg->isAlternateReturn()) { 2389 return true; 2390 } 2391 } 2392 return false; 2393 } 2394 2395 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2396 const parser::Call &call{callStmt.v}; 2397 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2398 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2399 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2400 for (const auto &arg : actualArgList) { 2401 analyzer.Analyze(arg, true /* is subroutine call */); 2402 } 2403 if (!analyzer.fatalErrors()) { 2404 if (std::optional<CalleeAndArguments> callee{ 2405 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2406 analyzer.GetActuals(), true /* subroutine */)}) { 2407 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2408 CHECK(proc); 2409 if (CheckCall(call.source, *proc, callee->arguments)) { 2410 callStmt.typedCall.Reset( 2411 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2412 HasAlternateReturns(callee->arguments)}, 2413 ProcedureRef::Deleter); 2414 return; 2415 } 2416 } 2417 if (!context_.AnyFatalError()) { 2418 std::string buf; 2419 llvm::raw_string_ostream dump{buf}; 2420 parser::DumpTree(dump, callStmt); 2421 Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US, 2422 dump.str()); 2423 } 2424 } 2425 } 2426 2427 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2428 if (!x.typedAssignment) { 2429 ArgumentAnalyzer analyzer{*this}; 2430 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2431 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2432 std::optional<Assignment> assignment; 2433 if (!analyzer.fatalErrors()) { 2434 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2435 if (!procRef) { 2436 analyzer.CheckForNullPointer( 2437 "in a non-pointer intrinsic assignment statement"); 2438 } 2439 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2440 if (procRef) { 2441 assignment->u = std::move(*procRef); 2442 } 2443 } 2444 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2445 GenericAssignmentWrapper::Deleter); 2446 } 2447 return common::GetPtrFromOptional(x.typedAssignment->v); 2448 } 2449 2450 const Assignment *ExpressionAnalyzer::Analyze( 2451 const parser::PointerAssignmentStmt &x) { 2452 if (!x.typedAssignment) { 2453 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2454 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2455 if (!lhs || !rhs) { 2456 x.typedAssignment.Reset( 2457 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2458 } else { 2459 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2460 common::visit( 2461 common::visitors{ 2462 [&](const std::list<parser::BoundsRemapping> &list) { 2463 Assignment::BoundsRemapping bounds; 2464 for (const auto &elem : list) { 2465 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2466 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2467 if (lower && upper) { 2468 bounds.emplace_back( 2469 Fold(std::move(*lower)), Fold(std::move(*upper))); 2470 } 2471 } 2472 assignment.u = std::move(bounds); 2473 }, 2474 [&](const std::list<parser::BoundsSpec> &list) { 2475 Assignment::BoundsSpec bounds; 2476 for (const auto &bound : list) { 2477 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2478 bounds.emplace_back(Fold(std::move(*lower))); 2479 } 2480 } 2481 assignment.u = std::move(bounds); 2482 }, 2483 }, 2484 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2485 x.typedAssignment.Reset( 2486 new GenericAssignmentWrapper{std::move(assignment)}, 2487 GenericAssignmentWrapper::Deleter); 2488 } 2489 } 2490 return common::GetPtrFromOptional(x.typedAssignment->v); 2491 } 2492 2493 static bool IsExternalCalledImplicitly( 2494 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2495 if (const auto *symbol{proc.GetSymbol()}) { 2496 return symbol->has<semantics::SubprogramDetails>() && 2497 symbol->owner().IsGlobal() && 2498 (!symbol->scope() /*ENTRY*/ || 2499 !symbol->scope()->sourceRange().Contains(callSite)); 2500 } else { 2501 return false; 2502 } 2503 } 2504 2505 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2506 parser::CharBlock callSite, const ProcedureDesignator &proc, 2507 ActualArguments &arguments) { 2508 auto chars{characteristics::Procedure::Characterize( 2509 proc, context_.foldingContext())}; 2510 if (chars) { 2511 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2512 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2513 Say(callSite, 2514 "References to the procedure '%s' require an explicit interface"_err_en_US, 2515 DEREF(proc.GetSymbol()).name()); 2516 } 2517 // Checks for ASSOCIATED() are done in intrinsic table processing 2518 bool procIsAssociated{false}; 2519 if (const SpecificIntrinsic * 2520 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2521 if (specificIntrinsic->name == "associated") { 2522 procIsAssociated = true; 2523 } 2524 } 2525 if (!procIsAssociated) { 2526 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2527 context_.FindScope(callSite), treatExternalAsImplicit, 2528 proc.GetSpecificIntrinsic()); 2529 const Symbol *procSymbol{proc.GetSymbol()}; 2530 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2531 if (const semantics::Scope * 2532 pure{semantics::FindPureProcedureContaining( 2533 context_.FindScope(callSite))}) { 2534 Say(callSite, 2535 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2536 procSymbol->name(), DEREF(pure->symbol()).name()); 2537 } 2538 } 2539 } 2540 } 2541 return chars; 2542 } 2543 2544 // Unary operations 2545 2546 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2547 if (MaybeExpr operand{Analyze(x.v.value())}) { 2548 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2549 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2550 if (semantics::IsProcedurePointer(*result)) { 2551 Say("A function reference that returns a procedure " 2552 "pointer may not be parenthesized"_err_en_US); // C1003 2553 } 2554 } 2555 } 2556 return Parenthesize(std::move(*operand)); 2557 } 2558 return std::nullopt; 2559 } 2560 2561 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2562 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2563 ArgumentAnalyzer analyzer{context}; 2564 analyzer.Analyze(x.v); 2565 if (!analyzer.fatalErrors()) { 2566 if (analyzer.IsIntrinsicNumeric(opr)) { 2567 analyzer.CheckForNullPointer(); 2568 if (opr == NumericOperator::Add) { 2569 return analyzer.MoveExpr(0); 2570 } else { 2571 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2572 } 2573 } else { 2574 return analyzer.TryDefinedOp(AsFortran(opr), 2575 "Operand of unary %s must be numeric; have %s"_err_en_US); 2576 } 2577 } 2578 return std::nullopt; 2579 } 2580 2581 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2582 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2583 } 2584 2585 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2586 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2587 } 2588 2589 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2590 ArgumentAnalyzer analyzer{*this}; 2591 analyzer.Analyze(x.v); 2592 if (!analyzer.fatalErrors()) { 2593 if (analyzer.IsIntrinsicLogical()) { 2594 analyzer.CheckForNullPointer(); 2595 return AsGenericExpr( 2596 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2597 } else { 2598 return analyzer.TryDefinedOp(LogicalOperator::Not, 2599 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2600 } 2601 } 2602 return std::nullopt; 2603 } 2604 2605 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2606 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2607 // intrinsic function. 2608 // Use the actual source for the name of the call for error reporting. 2609 std::optional<ActualArgument> arg; 2610 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2611 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2612 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2613 arg = ActualArgument{std::move(*argExpr)}; 2614 } else { 2615 return std::nullopt; 2616 } 2617 parser::CharBlock at{GetContextualMessages().at()}; 2618 CHECK(at.size() >= 4); 2619 parser::CharBlock loc{at.begin() + 1, 3}; 2620 CHECK(loc == "loc"); 2621 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2622 } 2623 2624 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2625 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2626 ArgumentAnalyzer analyzer{*this, name.source}; 2627 analyzer.Analyze(std::get<1>(x.t)); 2628 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2629 "No operator %s defined for %s"_err_en_US, nullptr, true); 2630 } 2631 2632 // Binary (dyadic) operations 2633 2634 template <template <typename> class OPR> 2635 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2636 const parser::Expr::IntrinsicBinary &x) { 2637 ArgumentAnalyzer analyzer{context}; 2638 analyzer.Analyze(std::get<0>(x.t)); 2639 analyzer.Analyze(std::get<1>(x.t)); 2640 if (!analyzer.fatalErrors()) { 2641 if (analyzer.IsIntrinsicNumeric(opr)) { 2642 analyzer.CheckForNullPointer(); 2643 analyzer.CheckConformance(); 2644 return NumericOperation<OPR>(context.GetContextualMessages(), 2645 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2646 context.GetDefaultKind(TypeCategory::Real)); 2647 } else { 2648 return analyzer.TryDefinedOp(AsFortran(opr), 2649 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2650 } 2651 } 2652 return std::nullopt; 2653 } 2654 2655 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2656 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2657 } 2658 2659 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2660 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2661 } 2662 2663 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2664 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2665 } 2666 2667 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2668 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2669 } 2670 2671 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2672 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2673 } 2674 2675 MaybeExpr ExpressionAnalyzer::Analyze( 2676 const parser::Expr::ComplexConstructor &x) { 2677 auto re{Analyze(std::get<0>(x.t).value())}; 2678 auto im{Analyze(std::get<1>(x.t).value())}; 2679 if (re && im) { 2680 ConformabilityCheck(GetContextualMessages(), *re, *im); 2681 } 2682 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2683 std::move(im), GetDefaultKind(TypeCategory::Real))); 2684 } 2685 2686 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2687 ArgumentAnalyzer analyzer{*this}; 2688 analyzer.Analyze(std::get<0>(x.t)); 2689 analyzer.Analyze(std::get<1>(x.t)); 2690 if (!analyzer.fatalErrors()) { 2691 if (analyzer.IsIntrinsicConcat()) { 2692 analyzer.CheckForNullPointer(); 2693 return common::visit( 2694 [&](auto &&x, auto &&y) -> MaybeExpr { 2695 using T = ResultType<decltype(x)>; 2696 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2697 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2698 } else { 2699 DIE("different types for intrinsic concat"); 2700 } 2701 }, 2702 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2703 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2704 } else { 2705 return analyzer.TryDefinedOp("//", 2706 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2707 } 2708 } 2709 return std::nullopt; 2710 } 2711 2712 // The Name represents a user-defined intrinsic operator. 2713 // If the actuals match one of the specific procedures, return a function ref. 2714 // Otherwise report the error in messages. 2715 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2716 const parser::Name &name, ActualArguments &&actuals) { 2717 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2718 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2719 return MakeFunctionRef(name.source, 2720 std::move(std::get<ProcedureDesignator>(callee->u)), 2721 std::move(callee->arguments)); 2722 } else { 2723 return std::nullopt; 2724 } 2725 } 2726 2727 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2728 const parser::Expr::IntrinsicBinary &x) { 2729 ArgumentAnalyzer analyzer{context}; 2730 analyzer.Analyze(std::get<0>(x.t)); 2731 analyzer.Analyze(std::get<1>(x.t)); 2732 if (!analyzer.fatalErrors()) { 2733 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2734 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2735 analyzer.ConvertBOZ(leftType, 0, rightType); 2736 analyzer.ConvertBOZ(rightType, 1, leftType); 2737 if (leftType && rightType && 2738 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2739 analyzer.CheckForNullPointer("as a relational operand"); 2740 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2741 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2742 } else { 2743 return analyzer.TryDefinedOp(opr, 2744 leftType && leftType->category() == TypeCategory::Logical && 2745 rightType && rightType->category() == TypeCategory::Logical 2746 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2747 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2748 } 2749 } 2750 return std::nullopt; 2751 } 2752 2753 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2754 return RelationHelper(*this, RelationalOperator::LT, x); 2755 } 2756 2757 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2758 return RelationHelper(*this, RelationalOperator::LE, x); 2759 } 2760 2761 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2762 return RelationHelper(*this, RelationalOperator::EQ, x); 2763 } 2764 2765 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2766 return RelationHelper(*this, RelationalOperator::NE, x); 2767 } 2768 2769 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2770 return RelationHelper(*this, RelationalOperator::GE, x); 2771 } 2772 2773 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2774 return RelationHelper(*this, RelationalOperator::GT, x); 2775 } 2776 2777 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2778 const parser::Expr::IntrinsicBinary &x) { 2779 ArgumentAnalyzer analyzer{context}; 2780 analyzer.Analyze(std::get<0>(x.t)); 2781 analyzer.Analyze(std::get<1>(x.t)); 2782 if (!analyzer.fatalErrors()) { 2783 if (analyzer.IsIntrinsicLogical()) { 2784 analyzer.CheckForNullPointer("as a logical operand"); 2785 return AsGenericExpr(BinaryLogicalOperation(opr, 2786 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2787 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2788 } else { 2789 return analyzer.TryDefinedOp( 2790 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2791 } 2792 } 2793 return std::nullopt; 2794 } 2795 2796 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2797 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2798 } 2799 2800 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2801 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2802 } 2803 2804 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2805 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2806 } 2807 2808 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2809 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2810 } 2811 2812 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2813 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2814 ArgumentAnalyzer analyzer{*this, name.source}; 2815 analyzer.Analyze(std::get<1>(x.t)); 2816 analyzer.Analyze(std::get<2>(x.t)); 2817 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2818 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2819 } 2820 2821 // Returns true if a parsed function reference should be converted 2822 // into an array element reference. 2823 static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context, 2824 const parser::FunctionReference &funcRef) { 2825 // Emit message if the function reference fix will end up an array element 2826 // reference with no subscripts, or subscripts on a scalar, because it will 2827 // not be possible to later distinguish in expressions between an empty 2828 // subscript list due to bad subscripts error recovery or because the 2829 // user did not put any. 2830 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2831 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2832 if (!name) { 2833 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2834 } 2835 if (!name->symbol) { 2836 return false; 2837 } else if (name->symbol->Rank() == 0) { 2838 if (const Symbol * 2839 function{ 2840 semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) { 2841 auto &msg{context.Say(funcRef.v.source, 2842 "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US, 2843 name->source)}; 2844 AttachDeclaration(&msg, *function); 2845 name->symbol = const_cast<Symbol *>(function); 2846 } 2847 return false; 2848 } else { 2849 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2850 auto &msg{context.Say(funcRef.v.source, 2851 "Reference to array '%s' with empty subscript list"_err_en_US, 2852 name->source)}; 2853 if (name->symbol) { 2854 AttachDeclaration(&msg, *name->symbol); 2855 } 2856 } 2857 return true; 2858 } 2859 } 2860 2861 // Converts, if appropriate, an original misparse of ambiguous syntax like 2862 // A(1) as a function reference into an array reference. 2863 // Misparsed structure constructors are detected elsewhere after generic 2864 // function call resolution fails. 2865 template <typename... A> 2866 static void FixMisparsedFunctionReference( 2867 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2868 // The parse tree is updated in situ when resolving an ambiguous parse. 2869 using uType = std::decay_t<decltype(constU)>; 2870 auto &u{const_cast<uType &>(constU)}; 2871 if (auto *func{ 2872 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2873 parser::FunctionReference &funcRef{func->value()}; 2874 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2875 if (Symbol * 2876 origSymbol{ 2877 common::visit(common::visitors{ 2878 [&](parser::Name &name) { return name.symbol; }, 2879 [&](parser::ProcComponentRef &pcr) { 2880 return pcr.v.thing.component.symbol; 2881 }, 2882 }, 2883 proc.u)}) { 2884 Symbol &symbol{origSymbol->GetUltimate()}; 2885 if (symbol.has<semantics::ObjectEntityDetails>() || 2886 symbol.has<semantics::AssocEntityDetails>()) { 2887 // Note that expression in AssocEntityDetails cannot be a procedure 2888 // pointer as per C1105 so this cannot be a function reference. 2889 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2890 uType>) { 2891 if (CheckFuncRefToArrayElement(context, funcRef)) { 2892 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2893 } 2894 } else { 2895 DIE("can't fix misparsed function as array reference"); 2896 } 2897 } 2898 } 2899 } 2900 } 2901 2902 // Common handling of parse tree node types that retain the 2903 // representation of the analyzed expression. 2904 template <typename PARSED> 2905 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2906 const PARSED &x, parser::CharBlock source) { 2907 if (useSavedTypedExprs_ && x.typedExpr) { 2908 return x.typedExpr->v; 2909 } 2910 auto restorer{GetContextualMessages().SetLocation(source)}; 2911 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2912 std::is_same_v<PARSED, parser::Variable>) { 2913 FixMisparsedFunctionReference(context_, x.u); 2914 } 2915 if (AssumedTypeDummy(x)) { // C710 2916 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2917 ResetExpr(x); 2918 return std::nullopt; 2919 } 2920 MaybeExpr result; 2921 if constexpr (common::HasMember<parser::StructureConstructor, 2922 std::decay_t<decltype(x.u)>> && 2923 common::HasMember<common::Indirection<parser::FunctionReference>, 2924 std::decay_t<decltype(x.u)>>) { 2925 if (const auto *funcRef{ 2926 std::get_if<common::Indirection<parser::FunctionReference>>( 2927 &x.u)}) { 2928 // Function references in Exprs might turn out to be misparsed structure 2929 // constructors; we have to try generic procedure resolution 2930 // first to be sure. 2931 std::optional<parser::StructureConstructor> ctor; 2932 result = Analyze(funcRef->value(), &ctor); 2933 if (result && ctor) { 2934 // A misparsed function reference is really a structure 2935 // constructor. Repair the parse tree in situ. 2936 const_cast<PARSED &>(x).u = std::move(*ctor); 2937 } 2938 } else { 2939 result = Analyze(x.u); 2940 } 2941 } else { 2942 result = Analyze(x.u); 2943 } 2944 if (result) { 2945 SetExpr(x, Fold(std::move(*result))); 2946 return x.typedExpr->v; 2947 } else { 2948 ResetExpr(x); 2949 if (!context_.AnyFatalError()) { 2950 std::string buf; 2951 llvm::raw_string_ostream dump{buf}; 2952 parser::DumpTree(dump, x); 2953 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2954 dump.str()); 2955 } 2956 return std::nullopt; 2957 } 2958 } 2959 2960 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2961 return ExprOrVariable(expr, expr.source); 2962 } 2963 2964 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2965 return ExprOrVariable(variable, variable.GetSource()); 2966 } 2967 2968 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 2969 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 2970 if (!useSavedTypedExprs_ || !var->typedExpr) { 2971 parser::CharBlock source{var->GetSource()}; 2972 auto restorer{GetContextualMessages().SetLocation(source)}; 2973 FixMisparsedFunctionReference(context_, var->u); 2974 if (const auto *funcRef{ 2975 std::get_if<common::Indirection<parser::FunctionReference>>( 2976 &var->u)}) { 2977 // A Selector that parsed as a Variable might turn out during analysis 2978 // to actually be a structure constructor. In that case, repair the 2979 // Variable parse tree node into an Expr 2980 std::optional<parser::StructureConstructor> ctor; 2981 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 2982 if (ctor) { 2983 auto &writable{const_cast<parser::Selector &>(selector)}; 2984 writable.u = parser::Expr{std::move(*ctor)}; 2985 auto &expr{std::get<parser::Expr>(writable.u)}; 2986 expr.source = source; 2987 SetExpr(expr, Fold(std::move(*result))); 2988 return expr.typedExpr->v; 2989 } else { 2990 SetExpr(*var, Fold(std::move(*result))); 2991 return var->typedExpr->v; 2992 } 2993 } else { 2994 ResetExpr(*var); 2995 if (context_.AnyFatalError()) { 2996 return std::nullopt; 2997 } 2998 } 2999 } 3000 } 3001 } 3002 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 3003 return Analyze(selector.u); 3004 } 3005 3006 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 3007 auto restorer{common::ScopedSet(inDataStmtConstant_, true)}; 3008 return ExprOrVariable(x, x.source); 3009 } 3010 3011 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 3012 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3013 } 3014 3015 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 3016 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3017 } 3018 3019 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 3020 TypeCategory category, 3021 const std::optional<parser::KindSelector> &selector) { 3022 int defaultKind{GetDefaultKind(category)}; 3023 if (!selector) { 3024 return Expr<SubscriptInteger>{defaultKind}; 3025 } 3026 return common::visit( 3027 common::visitors{ 3028 [&](const parser::ScalarIntConstantExpr &x) { 3029 if (MaybeExpr kind{Analyze(x)}) { 3030 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 3031 if (CheckIntrinsicKind(category, *code)) { 3032 return Expr<SubscriptInteger>{*code}; 3033 } 3034 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 3035 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 3036 } 3037 } 3038 return Expr<SubscriptInteger>{defaultKind}; 3039 }, 3040 [&](const parser::KindSelector::StarSize &x) { 3041 std::intmax_t size = x.v; 3042 if (!CheckIntrinsicSize(category, size)) { 3043 size = defaultKind; 3044 } else if (category == TypeCategory::Complex) { 3045 size /= 2; 3046 } 3047 return Expr<SubscriptInteger>{size}; 3048 }, 3049 }, 3050 selector->u); 3051 } 3052 3053 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 3054 return context_.GetDefaultKind(category); 3055 } 3056 3057 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 3058 common::TypeCategory category) { 3059 return {category, GetDefaultKind(category)}; 3060 } 3061 3062 bool ExpressionAnalyzer::CheckIntrinsicKind( 3063 TypeCategory category, std::int64_t kind) { 3064 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 3065 return true; 3066 } else { 3067 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3068 ToUpperCase(EnumToString(category)), kind); 3069 return false; 3070 } 3071 } 3072 3073 bool ExpressionAnalyzer::CheckIntrinsicSize( 3074 TypeCategory category, std::int64_t size) { 3075 if (category == TypeCategory::Complex) { 3076 // COMPLEX*16 == COMPLEX(KIND=8) 3077 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 3078 return true; 3079 } 3080 } else if (IsValidKindOfIntrinsicType(category, size)) { 3081 return true; 3082 } 3083 Say("%s*%jd is not a supported type"_err_en_US, 3084 ToUpperCase(EnumToString(category)), size); 3085 return false; 3086 } 3087 3088 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3089 return impliedDos_.insert(std::make_pair(name, kind)).second; 3090 } 3091 3092 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3093 auto iter{impliedDos_.find(name)}; 3094 if (iter != impliedDos_.end()) { 3095 impliedDos_.erase(iter); 3096 } 3097 } 3098 3099 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3100 parser::CharBlock name) const { 3101 auto iter{impliedDos_.find(name)}; 3102 if (iter != impliedDos_.cend()) { 3103 return {iter->second}; 3104 } else { 3105 return std::nullopt; 3106 } 3107 } 3108 3109 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3110 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3111 if (result) { 3112 if (auto type{result->GetType()}) { 3113 if (type->category() != category) { // C885 3114 Say(at, "Must have %s type, but is %s"_err_en_US, 3115 ToUpperCase(EnumToString(category)), 3116 ToUpperCase(type->AsFortran())); 3117 return false; 3118 } else if (defaultKind) { 3119 int kind{context_.GetDefaultKind(category)}; 3120 if (type->kind() != kind) { 3121 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3122 kind, ToUpperCase(EnumToString(category)), 3123 ToUpperCase(type->AsFortran())); 3124 return false; 3125 } 3126 } 3127 } else { 3128 Say(at, "Must have %s type, but is typeless"_err_en_US, 3129 ToUpperCase(EnumToString(category))); 3130 return false; 3131 } 3132 } 3133 return true; 3134 } 3135 3136 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3137 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3138 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3139 if (intrinsic->characteristics.value().attrs.test( 3140 characteristics::Procedure::Attr::NullPointer) && 3141 arguments.empty()) { 3142 return Expr<SomeType>{NullPointer{}}; 3143 } 3144 } 3145 if (const Symbol * symbol{proc.GetSymbol()}) { 3146 if (!ResolveForward(*symbol)) { 3147 return std::nullopt; 3148 } 3149 } 3150 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3151 if (chars->functionResult) { 3152 const auto &result{*chars->functionResult}; 3153 if (result.IsProcedurePointer()) { 3154 return Expr<SomeType>{ 3155 ProcedureRef{std::move(proc), std::move(arguments)}}; 3156 } else { 3157 // Not a procedure pointer, so type and shape are known. 3158 return TypedWrapper<FunctionRef, ProcedureRef>( 3159 DEREF(result.GetTypeAndShape()).type(), 3160 ProcedureRef{std::move(proc), std::move(arguments)}); 3161 } 3162 } else { 3163 Say("Function result characteristics are not known"_err_en_US); 3164 } 3165 } 3166 return std::nullopt; 3167 } 3168 3169 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3170 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3171 if (std::optional<SpecificCall> specificCall{ 3172 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3173 arguments, GetFoldingContext())}) { 3174 return MakeFunctionRef(intrinsic, 3175 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3176 std::move(specificCall->arguments)); 3177 } else { 3178 return std::nullopt; 3179 } 3180 } 3181 3182 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3183 source_.ExtendToCover(x.GetSource()); 3184 if (MaybeExpr expr{context_.Analyze(x)}) { 3185 if (!IsConstantExpr(*expr)) { 3186 actuals_.emplace_back(std::move(*expr)); 3187 SetArgSourceLocation(actuals_.back(), x.GetSource()); 3188 return; 3189 } 3190 const Symbol *symbol{GetLastSymbol(*expr)}; 3191 if (!symbol) { 3192 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3193 x.GetSource()); 3194 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3195 auto *msg{context_.SayAt(x, 3196 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3197 symbol->name())}; 3198 if (subp->isFunction()) { 3199 const auto &result{subp->result().name()}; 3200 msg->Attach(result, "Function result is '%s'"_en_US, result); 3201 } 3202 } else { 3203 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3204 symbol->name()); 3205 } 3206 } 3207 fatalErrors_ = true; 3208 } 3209 3210 void ArgumentAnalyzer::Analyze( 3211 const parser::ActualArgSpec &arg, bool isSubroutine) { 3212 // TODO: Actual arguments that are procedures and procedure pointers need to 3213 // be detected and represented (they're not expressions). 3214 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3215 std::optional<ActualArgument> actual; 3216 common::visit( 3217 common::visitors{ 3218 [&](const common::Indirection<parser::Expr> &x) { 3219 actual = AnalyzeExpr(x.value()); 3220 SetArgSourceLocation(actual, x.value().source); 3221 }, 3222 [&](const parser::AltReturnSpec &label) { 3223 if (!isSubroutine) { 3224 context_.Say("alternate return specification may not appear on" 3225 " function reference"_err_en_US); 3226 } 3227 actual = ActualArgument(label.v); 3228 }, 3229 [&](const parser::ActualArg::PercentRef &) { 3230 context_.Say( 3231 "not yet implemented: %REF() intrinsic for arguments"_err_en_US); 3232 }, 3233 [&](const parser::ActualArg::PercentVal &) { 3234 context_.Say( 3235 "not yet implemetned: %VAL() intrinsic for arguments"_err_en_US); 3236 }, 3237 }, 3238 std::get<parser::ActualArg>(arg.t).u); 3239 if (actual) { 3240 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3241 actual->set_keyword(argKW->v.source); 3242 } 3243 actuals_.emplace_back(std::move(*actual)); 3244 } else { 3245 fatalErrors_ = true; 3246 } 3247 } 3248 3249 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3250 const DynamicType &leftType, const DynamicType &rightType) const { 3251 CHECK(actuals_.size() == 2); 3252 return semantics::IsIntrinsicRelational( 3253 opr, leftType, GetRank(0), rightType, GetRank(1)); 3254 } 3255 3256 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3257 std::optional<DynamicType> leftType{GetType(0)}; 3258 if (actuals_.size() == 1) { 3259 if (IsBOZLiteral(0)) { 3260 return opr == NumericOperator::Add; // unary '+' 3261 } else { 3262 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3263 } 3264 } else { 3265 std::optional<DynamicType> rightType{GetType(1)}; 3266 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3267 auto cat1{rightType->category()}; 3268 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3269 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3270 auto cat0{leftType->category()}; 3271 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3272 } else { 3273 return leftType && rightType && 3274 semantics::IsIntrinsicNumeric( 3275 *leftType, GetRank(0), *rightType, GetRank(1)); 3276 } 3277 } 3278 } 3279 3280 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3281 if (std::optional<DynamicType> leftType{GetType(0)}) { 3282 if (actuals_.size() == 1) { 3283 return semantics::IsIntrinsicLogical(*leftType); 3284 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3285 return semantics::IsIntrinsicLogical( 3286 *leftType, GetRank(0), *rightType, GetRank(1)); 3287 } 3288 } 3289 return false; 3290 } 3291 3292 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3293 if (std::optional<DynamicType> leftType{GetType(0)}) { 3294 if (std::optional<DynamicType> rightType{GetType(1)}) { 3295 return semantics::IsIntrinsicConcat( 3296 *leftType, GetRank(0), *rightType, GetRank(1)); 3297 } 3298 } 3299 return false; 3300 } 3301 3302 bool ArgumentAnalyzer::CheckConformance() { 3303 if (actuals_.size() == 2) { 3304 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3305 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3306 if (lhs && rhs) { 3307 auto &foldingContext{context_.GetFoldingContext()}; 3308 auto lhShape{GetShape(foldingContext, *lhs)}; 3309 auto rhShape{GetShape(foldingContext, *rhs)}; 3310 if (lhShape && rhShape) { 3311 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3312 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3313 "left operand", "right operand") 3314 .value_or(false /*fail when conformance is not known now*/)) { 3315 fatalErrors_ = true; 3316 return false; 3317 } 3318 } 3319 } 3320 } 3321 return true; // no proven problem 3322 } 3323 3324 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3325 for (const std::optional<ActualArgument> &arg : actuals_) { 3326 if (arg) { 3327 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3328 if (IsNullPointer(*expr)) { 3329 context_.Say( 3330 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3331 fatalErrors_ = true; 3332 return false; 3333 } 3334 } 3335 } 3336 } 3337 return true; 3338 } 3339 3340 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3341 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3342 bool isUserOp) { 3343 if (AnyUntypedOrMissingOperand()) { 3344 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3345 return std::nullopt; 3346 } 3347 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3348 if (!definedOpSymbolPtr) { 3349 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3350 } 3351 { 3352 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3353 std::string oprNameString{ 3354 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3355 parser::CharBlock oprName{oprNameString}; 3356 const auto &scope{context_.context().FindScope(source_)}; 3357 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3358 *definedOpSymbolPtr = symbol; 3359 parser::Name name{symbol->name(), symbol}; 3360 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3361 return result; 3362 } 3363 } 3364 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3365 if (const Symbol * 3366 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3367 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3368 return result; 3369 } 3370 } 3371 } 3372 } 3373 if (*definedOpSymbolPtr) { 3374 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3375 } else if (actuals_.size() == 1 || AreConformable()) { 3376 if (CheckForNullPointer()) { 3377 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3378 } 3379 } else { 3380 context_.Say( 3381 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3382 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3383 } 3384 return std::nullopt; 3385 } 3386 3387 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3388 std::vector<const char *> oprs, parser::MessageFixedText error) { 3389 const Symbol *definedOpSymbolPtr{nullptr}; 3390 for (std::size_t i{1}; i < oprs.size(); ++i) { 3391 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3392 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3393 return result; 3394 } 3395 } 3396 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3397 } 3398 3399 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3400 ActualArguments localActuals{actuals_}; 3401 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3402 if (!proc) { 3403 proc = &symbol; 3404 localActuals.at(passIndex).value().set_isPassedObject(); 3405 } 3406 CheckConformance(); 3407 return context_.MakeFunctionRef( 3408 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3409 } 3410 3411 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3412 using semantics::Tristate; 3413 const Expr<SomeType> &lhs{GetExpr(0)}; 3414 const Expr<SomeType> &rhs{GetExpr(1)}; 3415 std::optional<DynamicType> lhsType{lhs.GetType()}; 3416 std::optional<DynamicType> rhsType{rhs.GetType()}; 3417 int lhsRank{lhs.Rank()}; 3418 int rhsRank{rhs.Rank()}; 3419 Tristate isDefined{ 3420 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3421 if (isDefined == Tristate::No) { 3422 if (lhsType && rhsType) { 3423 AddAssignmentConversion(*lhsType, *rhsType); 3424 } 3425 return std::nullopt; // user-defined assignment not allowed for these args 3426 } 3427 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3428 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3429 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3430 context_.Say( 3431 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3432 DEREF(procRef->proc().GetSymbol()).name()); 3433 } 3434 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3435 return std::move(*procRef); 3436 } 3437 if (isDefined == Tristate::Yes) { 3438 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3439 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3440 SayNoMatch("ASSIGNMENT(=)", true); 3441 } 3442 } 3443 return std::nullopt; 3444 } 3445 3446 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3447 TypeCategory lhs, TypeCategory rhs) { 3448 if (!context_.context().languageFeatures().IsEnabled( 3449 common::LanguageFeature::LogicalIntegerAssignment)) { 3450 return false; 3451 } 3452 std::optional<parser::MessageFixedText> msg; 3453 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3454 // allow assignment to LOGICAL from INTEGER as a legacy extension 3455 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_port_en_US; 3456 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3457 // ... and assignment to LOGICAL from INTEGER 3458 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_port_en_US; 3459 } else { 3460 return false; 3461 } 3462 if (context_.context().languageFeatures().ShouldWarn( 3463 common::LanguageFeature::LogicalIntegerAssignment)) { 3464 context_.Say(std::move(*msg)); 3465 } 3466 return true; 3467 } 3468 3469 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3470 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3471 std::string oprNameString{"assignment(=)"}; 3472 parser::CharBlock oprName{oprNameString}; 3473 const Symbol *proc{nullptr}; 3474 const auto &scope{context_.context().FindScope(source_)}; 3475 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3476 ExpressionAnalyzer::AdjustActuals noAdjustment; 3477 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}; 3478 if (pair.first) { 3479 proc = pair.first; 3480 } else { 3481 context_.EmitGenericResolutionError(*symbol, pair.second); 3482 } 3483 } 3484 int passedObjectIndex{-1}; 3485 const Symbol *definedOpSymbol{nullptr}; 3486 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3487 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3488 if (const Symbol * 3489 resolution{GetBindingResolution(GetType(i), *specific)}) { 3490 proc = resolution; 3491 } else { 3492 proc = specific; 3493 passedObjectIndex = i; 3494 } 3495 } 3496 } 3497 if (!proc) { 3498 return std::nullopt; 3499 } 3500 ActualArguments actualsCopy{actuals_}; 3501 if (passedObjectIndex >= 0) { 3502 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3503 } 3504 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3505 } 3506 3507 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3508 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3509 << '\n'; 3510 for (const auto &actual : actuals_) { 3511 if (!actual.has_value()) { 3512 os << "- error\n"; 3513 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3514 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3515 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3516 expr->AsFortran(os << "- expr: ") << '\n'; 3517 } else { 3518 DIE("bad ActualArgument"); 3519 } 3520 } 3521 } 3522 3523 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3524 const parser::Expr &expr) { 3525 source_.ExtendToCover(expr.source); 3526 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3527 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3528 if (isProcedureCall_) { 3529 ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}}; 3530 SetArgSourceLocation(arg, expr.source); 3531 return std::move(arg); 3532 } 3533 context_.SayAt(expr.source, 3534 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3535 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3536 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3537 ActualArgument arg{std::move(*argExpr)}; 3538 SetArgSourceLocation(arg, expr.source); 3539 return std::move(arg); 3540 } 3541 context_.SayAt(expr.source, 3542 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3543 : "Subroutine name is not allowed here"_err_en_US); 3544 } 3545 return std::nullopt; 3546 } 3547 3548 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3549 const parser::Expr &expr) { 3550 // If an expression's parse tree is a whole assumed-size array: 3551 // Expr -> Designator -> DataRef -> Name 3552 // treat it as a special case for argument passing and bypass 3553 // the C1002/C1014 constraint checking in expression semantics. 3554 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3555 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3556 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3557 return context_.Analyze(expr); 3558 } 3559 } 3560 return context_.Analyze(expr); 3561 } 3562 3563 bool ArgumentAnalyzer::AreConformable() const { 3564 CHECK(actuals_.size() == 2); 3565 return actuals_[0] && actuals_[1] && 3566 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3567 } 3568 3569 // Look for a type-bound operator in the type of arg number passIndex. 3570 const Symbol *ArgumentAnalyzer::FindBoundOp( 3571 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3572 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3573 if (!type || !type->scope()) { 3574 return nullptr; 3575 } 3576 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3577 if (!symbol) { 3578 return nullptr; 3579 } 3580 definedOp = symbol; 3581 ExpressionAnalyzer::AdjustActuals adjustment{ 3582 [&](const Symbol &proc, ActualArguments &) { 3583 return passIndex == GetPassIndex(proc); 3584 }}; 3585 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3586 if (!pair.first) { 3587 context_.EmitGenericResolutionError(*symbol, pair.second); 3588 } 3589 return pair.first; 3590 } 3591 3592 // If there is an implicit conversion between intrinsic types, make it explicit 3593 void ArgumentAnalyzer::AddAssignmentConversion( 3594 const DynamicType &lhsType, const DynamicType &rhsType) { 3595 if (lhsType.category() == rhsType.category() && 3596 (lhsType.category() == TypeCategory::Derived || 3597 lhsType.kind() == rhsType.kind())) { 3598 // no conversion necessary 3599 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3600 std::optional<parser::CharBlock> source; 3601 if (actuals_[1]) { 3602 source = actuals_[1]->sourceLocation(); 3603 } 3604 actuals_[1] = ActualArgument{*rhsExpr}; 3605 SetArgSourceLocation(actuals_[1], source); 3606 } else { 3607 actuals_[1] = std::nullopt; 3608 } 3609 } 3610 3611 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3612 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3613 } 3614 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3615 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3616 } 3617 3618 // If the argument at index i is a BOZ literal, convert its type to match the 3619 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3620 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3621 // is not currently supported. 3622 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3623 std::size_t i, std::optional<DynamicType> otherType) { 3624 if (IsBOZLiteral(i)) { 3625 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3626 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3627 if (otherType && otherType->category() == TypeCategory::Real) { 3628 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3629 MaybeExpr realExpr{ 3630 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3631 actuals_[i] = std::move(*realExpr); 3632 thisType.emplace(TypeCategory::Real, kind); 3633 } else { 3634 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3635 MaybeExpr intExpr{ 3636 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3637 actuals_[i] = std::move(*intExpr); 3638 thisType.emplace(TypeCategory::Integer, kind); 3639 } 3640 } 3641 } 3642 3643 // Report error resolving opr when there is a user-defined one available 3644 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3645 std::string type0{TypeAsFortran(0)}; 3646 auto rank0{actuals_[0]->Rank()}; 3647 if (actuals_.size() == 1) { 3648 if (rank0 > 0) { 3649 context_.Say("No intrinsic or user-defined %s matches " 3650 "rank %d array of %s"_err_en_US, 3651 opr, rank0, type0); 3652 } else { 3653 context_.Say("No intrinsic or user-defined %s matches " 3654 "operand type %s"_err_en_US, 3655 opr, type0); 3656 } 3657 } else { 3658 std::string type1{TypeAsFortran(1)}; 3659 auto rank1{actuals_[1]->Rank()}; 3660 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3661 context_.Say("No intrinsic or user-defined %s matches " 3662 "rank %d array of %s and rank %d array of %s"_err_en_US, 3663 opr, rank0, type0, rank1, type1); 3664 } else if (isAssignment && rank0 != rank1) { 3665 if (rank0 == 0) { 3666 context_.Say("No intrinsic or user-defined %s matches " 3667 "scalar %s and rank %d array of %s"_err_en_US, 3668 opr, type0, rank1, type1); 3669 } else { 3670 context_.Say("No intrinsic or user-defined %s matches " 3671 "rank %d array of %s and scalar %s"_err_en_US, 3672 opr, rank0, type0, type1); 3673 } 3674 } else { 3675 context_.Say("No intrinsic or user-defined %s matches " 3676 "operand types %s and %s"_err_en_US, 3677 opr, type0, type1); 3678 } 3679 } 3680 } 3681 3682 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3683 if (i >= actuals_.size() || !actuals_[i]) { 3684 return "missing argument"; 3685 } else if (std::optional<DynamicType> type{GetType(i)}) { 3686 return type->IsAssumedType() ? "TYPE(*)"s 3687 : type->IsUnlimitedPolymorphic() ? "CLASS(*)"s 3688 : type->IsPolymorphic() ? "CLASS("s + type->AsFortran() + ')' 3689 : type->category() == TypeCategory::Derived 3690 ? "TYPE("s + type->AsFortran() + ')' 3691 : type->category() == TypeCategory::Character 3692 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3693 : ToUpperCase(type->AsFortran()); 3694 } else { 3695 return "untyped"; 3696 } 3697 } 3698 3699 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3700 for (const auto &actual : actuals_) { 3701 if (!actual || 3702 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3703 return true; 3704 } 3705 } 3706 return false; 3707 } 3708 } // namespace Fortran::evaluate 3709 3710 namespace Fortran::semantics { 3711 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3712 SemanticsContext &context, common::TypeCategory category, 3713 const std::optional<parser::KindSelector> &selector) { 3714 evaluate::ExpressionAnalyzer analyzer{context}; 3715 auto restorer{ 3716 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3717 return analyzer.AnalyzeKindSelector(category, selector); 3718 } 3719 3720 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3721 3722 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3723 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3724 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3725 auto name{bounds.name.thing.thing}; 3726 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3727 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3728 if (dynamicType->category() == TypeCategory::Integer) { 3729 kind = dynamicType->kind(); 3730 } 3731 } 3732 exprAnalyzer_.AddImpliedDo(name.source, kind); 3733 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3734 exprAnalyzer_.RemoveImpliedDo(name.source); 3735 return false; 3736 } 3737 3738 bool ExprChecker::Walk(const parser::Program &program) { 3739 parser::Walk(program, *this); 3740 return !context_.AnyFatalError(); 3741 } 3742 } // namespace Fortran::semantics 3743