1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/Fortran.h"
14 #include "flang/Common/idioms.h"
15 #include "flang/Evaluate/common.h"
16 #include "flang/Evaluate/fold.h"
17 #include "flang/Evaluate/tools.h"
18 #include "flang/Parser/characters.h"
19 #include "flang/Parser/dump-parse-tree.h"
20 #include "flang/Parser/parse-tree-visitor.h"
21 #include "flang/Parser/parse-tree.h"
22 #include "flang/Semantics/scope.h"
23 #include "flang/Semantics/semantics.h"
24 #include "flang/Semantics/symbol.h"
25 #include "flang/Semantics/tools.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <functional>
29 #include <optional>
30 #include <set>
31 
32 // Typedef for optional generic expressions (ubiquitous in this file)
33 using MaybeExpr =
34     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
35 
36 // Much of the code that implements semantic analysis of expressions is
37 // tightly coupled with their typed representations in lib/Evaluate,
38 // and appears here in namespace Fortran::evaluate for convenience.
39 namespace Fortran::evaluate {
40 
41 using common::LanguageFeature;
42 using common::NumericOperator;
43 using common::TypeCategory;
44 
45 static inline std::string ToUpperCase(const std::string &str) {
46   return parser::ToUpperCaseLetters(str);
47 }
48 
49 struct DynamicTypeWithLength : public DynamicType {
50   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
51   std::optional<Expr<SubscriptInteger>> LEN() const;
52   std::optional<Expr<SubscriptInteger>> length;
53 };
54 
55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
56   if (length) {
57     return length;
58   } else {
59     return GetCharLength();
60   }
61 }
62 
63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
64     const std::optional<parser::TypeSpec> &spec) {
65   if (spec) {
66     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
67       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
68       // (viz., an intrinsic type with valid known kind or a non-polymorphic
69       // & non-ABSTRACT derived type).
70       if (const semantics::IntrinsicTypeSpec *
71           intrinsic{typeSpec->AsIntrinsic()}) {
72         TypeCategory category{intrinsic->category()};
73         if (auto optKind{ToInt64(intrinsic->kind())}) {
74           int kind{static_cast<int>(*optKind)};
75           if (category == TypeCategory::Character) {
76             const semantics::CharacterTypeSpec &cts{
77                 typeSpec->characterTypeSpec()};
78             const semantics::ParamValue &len{cts.length()};
79             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
80             // type guards, but not in array constructors.
81             return DynamicTypeWithLength{DynamicType{kind, len}};
82           } else {
83             return DynamicTypeWithLength{DynamicType{category, kind}};
84           }
85         }
86       } else if (const semantics::DerivedTypeSpec *
87           derived{typeSpec->AsDerived()}) {
88         return DynamicTypeWithLength{DynamicType{*derived}};
89       }
90     }
91   }
92   return std::nullopt;
93 }
94 
95 // Utilities to set a source location, if we have one, on an actual argument,
96 // when it is statically present.
97 static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) {
98   x.set_sourceLocation(at);
99 }
100 static void SetArgSourceLocation(
101     std::optional<ActualArgument> &x, parser::CharBlock at) {
102   if (x) {
103     x->set_sourceLocation(at);
104   }
105 }
106 static void SetArgSourceLocation(
107     std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) {
108   if (x && at) {
109     x->set_sourceLocation(*at);
110   }
111 }
112 
113 class ArgumentAnalyzer {
114 public:
115   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
116       : context_{context}, source_{context.GetContextualMessages().at()},
117         isProcedureCall_{false} {}
118   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
119       bool isProcedureCall = false)
120       : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
121   bool fatalErrors() const { return fatalErrors_; }
122   ActualArguments &&GetActuals() {
123     CHECK(!fatalErrors_);
124     return std::move(actuals_);
125   }
126   const Expr<SomeType> &GetExpr(std::size_t i) const {
127     return DEREF(actuals_.at(i).value().UnwrapExpr());
128   }
129   Expr<SomeType> &&MoveExpr(std::size_t i) {
130     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
131   }
132   void Analyze(const common::Indirection<parser::Expr> &x) {
133     Analyze(x.value());
134   }
135   void Analyze(const parser::Expr &x) {
136     actuals_.emplace_back(AnalyzeExpr(x));
137     SetArgSourceLocation(actuals_.back(), x.source);
138     fatalErrors_ |= !actuals_.back();
139   }
140   void Analyze(const parser::Variable &);
141   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
142   void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i,
143       std::optional<DynamicType> otherType);
144 
145   bool IsIntrinsicRelational(
146       RelationalOperator, const DynamicType &, const DynamicType &) const;
147   bool IsIntrinsicLogical() const;
148   bool IsIntrinsicNumeric(NumericOperator) const;
149   bool IsIntrinsicConcat() const;
150 
151   bool CheckConformance();
152   bool CheckForNullPointer(const char *where = "as an operand here");
153 
154   // Find and return a user-defined operator or report an error.
155   // The provided message is used if there is no such operator.
156   MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText,
157       const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false);
158   template <typename E>
159   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) {
160     return TryDefinedOp(
161         context_.context().languageFeatures().GetNames(opr), msg);
162   }
163   // Find and return a user-defined assignment
164   std::optional<ProcedureRef> TryDefinedAssignment();
165   std::optional<ProcedureRef> GetDefinedAssignmentProc();
166   std::optional<DynamicType> GetType(std::size_t) const;
167   void Dump(llvm::raw_ostream &);
168 
169 private:
170   MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText);
171   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
172   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
173   MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &);
174   bool AreConformable() const;
175   const Symbol *FindBoundOp(
176       parser::CharBlock, int passIndex, const Symbol *&definedOp);
177   void AddAssignmentConversion(
178       const DynamicType &lhsType, const DynamicType &rhsType);
179   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
180   int GetRank(std::size_t) const;
181   bool IsBOZLiteral(std::size_t i) const {
182     return evaluate::IsBOZLiteral(GetExpr(i));
183   }
184   void SayNoMatch(const std::string &, bool isAssignment = false);
185   std::string TypeAsFortran(std::size_t);
186   bool AnyUntypedOrMissingOperand();
187 
188   ExpressionAnalyzer &context_;
189   ActualArguments actuals_;
190   parser::CharBlock source_;
191   bool fatalErrors_{false};
192   const bool isProcedureCall_; // false for user-defined op or assignment
193 };
194 
195 // Wraps a data reference in a typed Designator<>, and a procedure
196 // or procedure pointer reference in a ProcedureDesignator.
197 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
198   const Symbol &last{ref.GetLastSymbol()};
199   const Symbol &symbol{BypassGeneric(last).GetUltimate()};
200   if (semantics::IsProcedure(symbol)) {
201     if (auto *component{std::get_if<Component>(&ref.u)}) {
202       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
203     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
204       DIE("unexpected alternative in DataRef");
205     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
206       if (symbol.has<semantics::GenericDetails>()) {
207         Say("'%s' is not a specific procedure"_err_en_US, symbol.name());
208       } else {
209         return Expr<SomeType>{ProcedureDesignator{symbol}};
210       }
211     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
212                    symbol.name().ToString())};
213                interface && !interface->isRestrictedSpecific) {
214       SpecificIntrinsic intrinsic{
215           symbol.name().ToString(), std::move(*interface)};
216       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
217       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
218     } else {
219       Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US,
220           symbol.name());
221     }
222     return std::nullopt;
223   } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) {
224     return result;
225   } else {
226     if (!context_.HasError(last) && !context_.HasError(symbol)) {
227       AttachDeclaration(
228           Say("'%s' is not an object that can appear in an expression"_err_en_US,
229               last.name()),
230           symbol);
231       context_.SetError(last);
232     }
233     return std::nullopt;
234   }
235 }
236 
237 // Some subscript semantic checks must be deferred until all of the
238 // subscripts are in hand.
239 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
240   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
241   int symbolRank{symbol.Rank()};
242   int subscripts{static_cast<int>(ref.size())};
243   if (subscripts == 0) {
244     return std::nullopt; // error recovery
245   } else if (subscripts != symbolRank) {
246     if (symbolRank != 0) {
247       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
248           symbolRank, symbol.name(), subscripts);
249     }
250     return std::nullopt;
251   } else if (Component * component{ref.base().UnwrapComponent()}) {
252     int baseRank{component->base().Rank()};
253     if (baseRank > 0) {
254       int subscriptRank{0};
255       for (const auto &expr : ref.subscript()) {
256         subscriptRank += expr.Rank();
257       }
258       if (subscriptRank > 0) { // C919a
259         Say("Subscripts of component '%s' of rank-%d derived type "
260             "array have rank %d but must all be scalar"_err_en_US,
261             symbol.name(), baseRank, subscriptRank);
262         return std::nullopt;
263       }
264     }
265   } else if (const auto *object{
266                  symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
267     // C928 & C1002
268     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
269       if (!last->upper() && object->IsAssumedSize()) {
270         Say("Assumed-size array '%s' must have explicit final "
271             "subscript upper bound value"_err_en_US,
272             symbol.name());
273         return std::nullopt;
274       }
275     }
276   } else {
277     // Shouldn't get here from Analyze(ArrayElement) without a valid base,
278     // which, if not an object, must be a construct entity from
279     // SELECT TYPE/RANK or ASSOCIATE.
280     CHECK(symbol.has<semantics::AssocEntityDetails>());
281   }
282   return Designate(DataRef{std::move(ref)});
283 }
284 
285 // Applies subscripts to a data reference.
286 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
287     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
288   if (subscripts.empty()) {
289     return std::nullopt; // error recovery
290   }
291   return common::visit(
292       common::visitors{
293           [&](SymbolRef &&symbol) {
294             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
295           },
296           [&](Component &&c) {
297             return CompleteSubscripts(
298                 ArrayRef{std::move(c), std::move(subscripts)});
299           },
300           [&](auto &&) -> MaybeExpr {
301             DIE("bad base for ArrayRef");
302             return std::nullopt;
303           },
304       },
305       std::move(dataRef.u));
306 }
307 
308 // Top-level checks for data references.
309 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
310   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
311     const Symbol &symbol{component->GetLastSymbol()};
312     int componentRank{symbol.Rank()};
313     if (componentRank > 0) {
314       int baseRank{component->base().Rank()};
315       if (baseRank > 0) { // C919a
316         Say("Reference to whole rank-%d component '%%%s' of "
317             "rank-%d array of derived type is not allowed"_err_en_US,
318             componentRank, symbol.name(), baseRank);
319       }
320     }
321   }
322   return Designate(std::move(dataRef));
323 }
324 
325 // Parse tree correction after a substring S(j:k) was misparsed as an
326 // array section.  N.B. Fortran substrings have to have a range, not a
327 // single index.
328 static void FixMisparsedSubstring(const parser::Designator &d) {
329   auto &mutate{const_cast<parser::Designator &>(d)};
330   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
331     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
332             &dataRef->u)}) {
333       parser::ArrayElement &arrElement{ae->value()};
334       if (!arrElement.subscripts.empty()) {
335         auto iter{arrElement.subscripts.begin()};
336         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
337           if (!std::get<2>(triplet->t) /* no stride */ &&
338               ++iter == arrElement.subscripts.end() /* one subscript */) {
339             if (Symbol *
340                 symbol{common::visit(
341                     common::visitors{
342                         [](parser::Name &n) { return n.symbol; },
343                         [](common::Indirection<parser::StructureComponent>
344                                 &sc) { return sc.value().component.symbol; },
345                         [](auto &) -> Symbol * { return nullptr; },
346                     },
347                     arrElement.base.u)}) {
348               const Symbol &ultimate{symbol->GetUltimate()};
349               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
350                 if (!ultimate.IsObjectArray() &&
351                     type->category() == semantics::DeclTypeSpec::Character) {
352                   // The ambiguous S(j:k) was parsed as an array section
353                   // reference, but it's now clear that it's a substring.
354                   // Fix the parse tree in situ.
355                   mutate.u = arrElement.ConvertToSubstring();
356                 }
357               }
358             }
359           }
360         }
361       }
362     }
363   }
364 }
365 
366 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
367   auto restorer{GetContextualMessages().SetLocation(d.source)};
368   FixMisparsedSubstring(d);
369   // These checks have to be deferred to these "top level" data-refs where
370   // we can be sure that there are no following subscripts (yet).
371   // Substrings have already been run through TopLevelChecks() and
372   // won't be returned by ExtractDataRef().
373   if (MaybeExpr result{Analyze(d.u)}) {
374     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
375       return TopLevelChecks(std::move(*dataRef));
376     }
377     return result;
378   }
379   return std::nullopt;
380 }
381 
382 // A utility subroutine to repackage optional expressions of various levels
383 // of type specificity as fully general MaybeExpr values.
384 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
385   return AsGenericExpr(std::move(x));
386 }
387 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
388   if (x) {
389     return AsMaybeExpr(std::move(*x));
390   }
391   return std::nullopt;
392 }
393 
394 // Type kind parameter values for literal constants.
395 int ExpressionAnalyzer::AnalyzeKindParam(
396     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
397   if (!kindParam) {
398     return defaultKind;
399   }
400   return common::visit(
401       common::visitors{
402           [](std::uint64_t k) { return static_cast<int>(k); },
403           [&](const parser::Scalar<
404               parser::Integer<parser::Constant<parser::Name>>> &n) {
405             if (MaybeExpr ie{Analyze(n)}) {
406               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
407                 int iv = *i64;
408                 if (iv == *i64) {
409                   return iv;
410                 }
411               }
412             }
413             return defaultKind;
414           },
415       },
416       kindParam->u);
417 }
418 
419 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
420 struct IntTypeVisitor {
421   using Result = MaybeExpr;
422   using Types = IntegerTypes;
423   template <typename T> Result Test() {
424     if (T::kind >= kind) {
425       const char *p{digits.begin()};
426       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
427       if (!value.overflow) {
428         if (T::kind > kind) {
429           if (!isDefaultKind ||
430               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
431             return std::nullopt;
432           } else if (analyzer.context().ShouldWarn(
433                          LanguageFeature::BigIntLiterals)) {
434             analyzer.Say(digits,
435                 "Integer literal is too large for default INTEGER(KIND=%d); "
436                 "assuming INTEGER(KIND=%d)"_port_en_US,
437                 kind, T::kind);
438           }
439         }
440         return Expr<SomeType>{
441             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
442       }
443     }
444     return std::nullopt;
445   }
446   ExpressionAnalyzer &analyzer;
447   parser::CharBlock digits;
448   int kind;
449   bool isDefaultKind;
450 };
451 
452 template <typename PARSED>
453 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
454   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
455   bool isDefaultKind{!kindParam};
456   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
457   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
458     auto digits{std::get<parser::CharBlock>(x.t)};
459     if (MaybeExpr result{common::SearchTypes(
460             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
461       return result;
462     } else if (isDefaultKind) {
463       Say(digits,
464           "Integer literal is too large for any allowable "
465           "kind of INTEGER"_err_en_US);
466     } else {
467       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
468           kind);
469     }
470   }
471   return std::nullopt;
472 }
473 
474 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
475   auto restorer{
476       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
477   return IntLiteralConstant(x);
478 }
479 
480 MaybeExpr ExpressionAnalyzer::Analyze(
481     const parser::SignedIntLiteralConstant &x) {
482   auto restorer{GetContextualMessages().SetLocation(x.source)};
483   return IntLiteralConstant(x);
484 }
485 
486 template <typename TYPE>
487 Constant<TYPE> ReadRealLiteral(
488     parser::CharBlock source, FoldingContext &context) {
489   const char *p{source.begin()};
490   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
491   CHECK(p == source.end());
492   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
493   auto value{valWithFlags.value};
494   if (context.flushSubnormalsToZero()) {
495     value = value.FlushSubnormalToZero();
496   }
497   return {value};
498 }
499 
500 struct RealTypeVisitor {
501   using Result = std::optional<Expr<SomeReal>>;
502   using Types = RealTypes;
503 
504   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
505       : kind{k}, literal{lit}, context{ctx} {}
506 
507   template <typename T> Result Test() {
508     if (kind == T::kind) {
509       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
510     }
511     return std::nullopt;
512   }
513 
514   int kind;
515   parser::CharBlock literal;
516   FoldingContext &context;
517 };
518 
519 // Reads a real literal constant and encodes it with the right kind.
520 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
521   // Use a local message context around the real literal for better
522   // provenance on any messages.
523   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
524   // If a kind parameter appears, it defines the kind of the literal and the
525   // letter used in an exponent part must be 'E' (e.g., the 'E' in
526   // "6.02214E+23").  In the absence of an explicit kind parameter, any
527   // exponent letter determines the kind.  Otherwise, defaults apply.
528   auto &defaults{context_.defaultKinds()};
529   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
530   const char *end{x.real.source.end()};
531   char expoLetter{' '};
532   std::optional<int> letterKind;
533   for (const char *p{x.real.source.begin()}; p < end; ++p) {
534     if (parser::IsLetter(*p)) {
535       expoLetter = *p;
536       switch (expoLetter) {
537       case 'e':
538         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
539         break;
540       case 'd':
541         letterKind = defaults.doublePrecisionKind();
542         break;
543       case 'q':
544         letterKind = defaults.quadPrecisionKind();
545         break;
546       default:
547         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
548       }
549       break;
550     }
551   }
552   if (letterKind) {
553     defaultKind = *letterKind;
554   }
555   // C716 requires 'E' as an exponent, but this is more useful
556   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
557   if (letterKind && kind != *letterKind && expoLetter != 'e') {
558     Say("Explicit kind parameter on real constant disagrees with "
559         "exponent letter '%c'"_port_en_US,
560         expoLetter);
561   }
562   auto result{common::SearchTypes(
563       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
564   if (!result) { // C717
565     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
566   }
567   return AsMaybeExpr(std::move(result));
568 }
569 
570 MaybeExpr ExpressionAnalyzer::Analyze(
571     const parser::SignedRealLiteralConstant &x) {
572   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
573     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
574     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
575       if (sign == parser::Sign::Negative) {
576         return AsGenericExpr(-std::move(realExpr));
577       }
578     }
579     return result;
580   }
581   return std::nullopt;
582 }
583 
584 MaybeExpr ExpressionAnalyzer::Analyze(
585     const parser::SignedComplexLiteralConstant &x) {
586   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
587   if (!result) {
588     return std::nullopt;
589   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
590     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
591   } else {
592     return result;
593   }
594 }
595 
596 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
597   return Analyze(x.u);
598 }
599 
600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
601   return AsMaybeExpr(
602       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
603           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
604 }
605 
606 // CHARACTER literal processing.
607 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
608   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
609     return std::nullopt;
610   }
611   switch (kind) {
612   case 1:
613     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
614         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
615             string, true)});
616   case 2:
617     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
618         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
619             string, true)});
620   case 4:
621     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
622         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
623             string, true)});
624   default:
625     CRASH_NO_CASE;
626   }
627 }
628 
629 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
630   int kind{
631       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
632   auto value{std::get<std::string>(x.t)};
633   return AnalyzeString(std::move(value), kind);
634 }
635 
636 MaybeExpr ExpressionAnalyzer::Analyze(
637     const parser::HollerithLiteralConstant &x) {
638   int kind{GetDefaultKind(TypeCategory::Character)};
639   auto value{x.v};
640   return AnalyzeString(std::move(value), kind);
641 }
642 
643 // .TRUE. and .FALSE. of various kinds
644 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
645   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
646       GetDefaultKind(TypeCategory::Logical))};
647   bool value{std::get<bool>(x.t)};
648   auto result{common::SearchTypes(
649       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
650           kind, std::move(value)})};
651   if (!result) {
652     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
653   }
654   return result;
655 }
656 
657 // BOZ typeless literals
658 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
659   const char *p{x.v.c_str()};
660   std::uint64_t base{16};
661   switch (*p++) {
662   case 'b':
663     base = 2;
664     break;
665   case 'o':
666     base = 8;
667     break;
668   case 'z':
669     break;
670   case 'x':
671     break;
672   default:
673     CRASH_NO_CASE;
674   }
675   CHECK(*p == '"');
676   ++p;
677   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
678   if (*p != '"') {
679     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
680         x.v); // C7107, C7108
681     return std::nullopt;
682   }
683   if (value.overflow) {
684     Say("BOZ literal '%s' too large"_err_en_US, x.v);
685     return std::nullopt;
686   }
687   return AsGenericExpr(std::move(value.value));
688 }
689 
690 // Names and named constants
691 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
692   auto restorer{GetContextualMessages().SetLocation(n.source)};
693   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
694     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
695         *kind, AsExpr(ImpliedDoIndex{n.source})));
696   }
697   if (context_.HasError(n.symbol)) { // includes case of no symbol
698     return std::nullopt;
699   } else {
700     const Symbol &ultimate{n.symbol->GetUltimate()};
701     if (ultimate.has<semantics::TypeParamDetails>()) {
702       // A bare reference to a derived type parameter (within a parameterized
703       // derived type definition)
704       return Fold(ConvertToType(
705           ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate})));
706     } else {
707       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
708         if (const semantics::Scope *
709             pure{semantics::FindPureProcedureContaining(
710                 context_.FindScope(n.source))}) {
711           SayAt(n,
712               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
713               n.source, DEREF(pure->symbol()).name());
714           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
715         }
716       }
717       if (!isWholeAssumedSizeArrayOk_ &&
718           semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231
719         AttachDeclaration(
720             SayAt(n,
721                 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US,
722                 n.source),
723             *n.symbol);
724       }
725       return Designate(DataRef{*n.symbol});
726     }
727   }
728 }
729 
730 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
731   auto restorer{GetContextualMessages().SetLocation(n.v.source)};
732   if (MaybeExpr value{Analyze(n.v)}) {
733     Expr<SomeType> folded{Fold(std::move(*value))};
734     if (IsConstantExpr(folded)) {
735       return folded;
736     }
737     Say(n.v.source, "must be a constant"_err_en_US); // C718
738   }
739   return std::nullopt;
740 }
741 
742 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) {
743   if (MaybeExpr value{Analyze(n.v)}) {
744     // Subtle: when the NullInit is a DataStmtConstant, it might
745     // be a misparse of a structure constructor without parameters
746     // or components (e.g., T()).  Checking the result to ensure
747     // that a "=>" data entity initializer actually resolved to
748     // a null pointer has to be done by the caller.
749     return Fold(std::move(*value));
750   }
751   return std::nullopt;
752 }
753 
754 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
755   return Analyze(x.value());
756 }
757 
758 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
759   if (const auto &repeat{
760           std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
761     x.repetitions = -1;
762     if (MaybeExpr expr{Analyze(repeat->u)}) {
763       Expr<SomeType> folded{Fold(std::move(*expr))};
764       if (auto value{ToInt64(folded)}) {
765         if (*value >= 0) { // C882
766           x.repetitions = *value;
767         } else {
768           Say(FindSourceLocation(repeat),
769               "Repeat count (%jd) for data value must not be negative"_err_en_US,
770               *value);
771         }
772       }
773     }
774   }
775   return Analyze(std::get<parser::DataStmtConstant>(x.t));
776 }
777 
778 // Substring references
779 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
780     const std::optional<parser::ScalarIntExpr> &bound) {
781   if (bound) {
782     if (MaybeExpr expr{Analyze(*bound)}) {
783       if (expr->Rank() > 1) {
784         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
785       }
786       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
787         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
788           return {std::move(*ssIntExpr)};
789         }
790         return {Expr<SubscriptInteger>{
791             Convert<SubscriptInteger, TypeCategory::Integer>{
792                 std::move(*intExpr)}}};
793       } else {
794         Say("substring bound expression is not INTEGER"_err_en_US);
795       }
796     }
797   }
798   return std::nullopt;
799 }
800 
801 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
802   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
803     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
804       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
805         if (std::optional<DataRef> checked{
806                 ExtractDataRef(std::move(*newBaseExpr))}) {
807           const parser::SubstringRange &range{
808               std::get<parser::SubstringRange>(ss.t)};
809           std::optional<Expr<SubscriptInteger>> first{
810               GetSubstringBound(std::get<0>(range.t))};
811           std::optional<Expr<SubscriptInteger>> last{
812               GetSubstringBound(std::get<1>(range.t))};
813           const Symbol &symbol{checked->GetLastSymbol()};
814           if (std::optional<DynamicType> dynamicType{
815                   DynamicType::From(symbol)}) {
816             if (dynamicType->category() == TypeCategory::Character) {
817               return WrapperHelper<TypeCategory::Character, Designator,
818                   Substring>(dynamicType->kind(),
819                   Substring{std::move(checked.value()), std::move(first),
820                       std::move(last)});
821             }
822           }
823           Say("substring may apply only to CHARACTER"_err_en_US);
824         }
825       }
826     }
827   }
828   return std::nullopt;
829 }
830 
831 // CHARACTER literal substrings
832 MaybeExpr ExpressionAnalyzer::Analyze(
833     const parser::CharLiteralConstantSubstring &x) {
834   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
835   std::optional<Expr<SubscriptInteger>> lower{
836       GetSubstringBound(std::get<0>(range.t))};
837   std::optional<Expr<SubscriptInteger>> upper{
838       GetSubstringBound(std::get<1>(range.t))};
839   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
840     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
841       Expr<SubscriptInteger> length{
842           common::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
843               charExpr->u)};
844       if (!lower) {
845         lower = Expr<SubscriptInteger>{1};
846       }
847       if (!upper) {
848         upper = Expr<SubscriptInteger>{
849             static_cast<std::int64_t>(ToInt64(length).value())};
850       }
851       return common::visit(
852           [&](auto &&ckExpr) -> MaybeExpr {
853             using Result = ResultType<decltype(ckExpr)>;
854             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
855             CHECK(DEREF(cp).size() == 1);
856             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
857             staticData->set_alignment(Result::kind)
858                 .set_itemBytes(Result::kind)
859                 .Push(cp->GetScalarValue().value());
860             Substring substring{std::move(staticData), std::move(lower.value()),
861                 std::move(upper.value())};
862             return AsGenericExpr(
863                 Expr<Result>{Designator<Result>{std::move(substring)}});
864           },
865           std::move(charExpr->u));
866     }
867   }
868   return std::nullopt;
869 }
870 
871 // Subscripted array references
872 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
873     MaybeExpr &&expr) {
874   if (expr) {
875     if (expr->Rank() > 1) {
876       Say("Subscript expression has rank %d greater than 1"_err_en_US,
877           expr->Rank());
878     }
879     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
880       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
881         return std::move(*ssIntExpr);
882       } else {
883         return Expr<SubscriptInteger>{
884             Convert<SubscriptInteger, TypeCategory::Integer>{
885                 std::move(*intExpr)}};
886       }
887     } else {
888       Say("Subscript expression is not INTEGER"_err_en_US);
889     }
890   }
891   return std::nullopt;
892 }
893 
894 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
895     const std::optional<parser::Subscript> &s) {
896   if (s) {
897     return AsSubscript(Analyze(*s));
898   } else {
899     return std::nullopt;
900   }
901 }
902 
903 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
904     const parser::SectionSubscript &ss) {
905   return common::visit(
906       common::visitors{
907           [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
908             const auto &lower{std::get<0>(t.t)};
909             const auto &upper{std::get<1>(t.t)};
910             const auto &stride{std::get<2>(t.t)};
911             auto result{Triplet{
912                 TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
913             if ((lower && !result.lower()) || (upper && !result.upper())) {
914               return std::nullopt;
915             } else {
916               return std::make_optional<Subscript>(result);
917             }
918           },
919           [&](const auto &s) -> std::optional<Subscript> {
920             if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
921               return Subscript{std::move(*subscriptExpr)};
922             } else {
923               return std::nullopt;
924             }
925           },
926       },
927       ss.u);
928 }
929 
930 // Empty result means an error occurred
931 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
932     const std::list<parser::SectionSubscript> &sss) {
933   bool error{false};
934   std::vector<Subscript> subscripts;
935   for (const auto &s : sss) {
936     if (auto subscript{AnalyzeSectionSubscript(s)}) {
937       subscripts.emplace_back(std::move(*subscript));
938     } else {
939       error = true;
940     }
941   }
942   return !error ? subscripts : std::vector<Subscript>{};
943 }
944 
945 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
946   MaybeExpr baseExpr;
947   {
948     auto restorer{AllowWholeAssumedSizeArray()};
949     baseExpr = Analyze(ae.base);
950   }
951   if (baseExpr) {
952     if (ae.subscripts.empty()) {
953       // will be converted to function call later or error reported
954     } else if (baseExpr->Rank() == 0) {
955       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
956         if (!context_.HasError(symbol)) {
957           if (inDataStmtConstant_) {
958             // Better error for NULL(X) with a MOLD= argument
959             Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US,
960                 symbol->name());
961           } else {
962             Say("'%s' is not an array"_err_en_US, symbol->name());
963           }
964           context_.SetError(*symbol);
965         }
966       }
967     } else if (std::optional<DataRef> dataRef{
968                    ExtractDataRef(std::move(*baseExpr))}) {
969       return ApplySubscripts(
970           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
971     } else {
972       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
973     }
974   }
975   // error was reported: analyze subscripts without reporting more errors
976   auto restorer{GetContextualMessages().DiscardMessages()};
977   AnalyzeSectionSubscripts(ae.subscripts);
978   return std::nullopt;
979 }
980 
981 // Type parameter inquiries apply to data references, but don't depend
982 // on any trailing (co)subscripts.
983 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
984   return common::visit(
985       common::visitors{
986           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
987           [](Component &&component) {
988             return NamedEntity{std::move(component)};
989           },
990           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
991           [](CoarrayRef &&coarrayRef) {
992             return NamedEntity{coarrayRef.GetLastSymbol()};
993           },
994       },
995       std::move(designator.u));
996 }
997 
998 // Components of parent derived types are explicitly represented as such.
999 std::optional<Component> ExpressionAnalyzer::CreateComponent(
1000     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
1001   if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b
1002     Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US);
1003   }
1004   if (&component.owner() == &scope) {
1005     return Component{std::move(base), component};
1006   }
1007   if (const Symbol * typeSymbol{scope.GetSymbol()}) {
1008     if (const Symbol *
1009         parentComponent{typeSymbol->GetParentComponent(&scope)}) {
1010       if (const auto *object{
1011               parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) {
1012         if (const auto *parentType{object->type()}) {
1013           if (const semantics::Scope *
1014               parentScope{parentType->derivedTypeSpec().scope()}) {
1015             return CreateComponent(
1016                 DataRef{Component{std::move(base), *parentComponent}},
1017                 component, *parentScope);
1018           }
1019         }
1020       }
1021     }
1022   }
1023   return std::nullopt;
1024 }
1025 
1026 // Derived type component references and type parameter inquiries
1027 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
1028   MaybeExpr base{Analyze(sc.base)};
1029   Symbol *sym{sc.component.symbol};
1030   if (!base || !sym || context_.HasError(sym)) {
1031     return std::nullopt;
1032   }
1033   const auto &name{sc.component.source};
1034   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1035     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
1036     if (sym->detailsIf<semantics::TypeParamDetails>()) {
1037       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
1038         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
1039           if (dyType->category() == TypeCategory::Integer) {
1040             auto restorer{GetContextualMessages().SetLocation(name)};
1041             return Fold(ConvertToType(*dyType,
1042                 AsGenericExpr(TypeParamInquiry{
1043                     IgnoreAnySubscripts(std::move(*designator)), *sym})));
1044           }
1045         }
1046         Say(name, "Type parameter is not INTEGER"_err_en_US);
1047       } else {
1048         Say(name,
1049             "A type parameter inquiry must be applied to "
1050             "a designator"_err_en_US);
1051       }
1052     } else if (!dtSpec || !dtSpec->scope()) {
1053       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
1054       return std::nullopt;
1055     } else if (std::optional<DataRef> dataRef{
1056                    ExtractDataRef(std::move(*dtExpr))}) {
1057       if (auto component{
1058               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
1059         return Designate(DataRef{std::move(*component)});
1060       } else {
1061         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1062             dtSpec->typeSymbol().name());
1063       }
1064     } else {
1065       Say(name,
1066           "Base of component reference must be a data reference"_err_en_US);
1067     }
1068   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1069     // special part-ref: %re, %im, %kind, %len
1070     // Type errors on the base of %re/%im/%len are detected and
1071     // reported in name resolution.
1072     using MiscKind = semantics::MiscDetails::Kind;
1073     MiscKind kind{details->kind()};
1074     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1075       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1076         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
1077           Expr<SomeReal> realExpr{common::visit(
1078               [&](const auto &z) {
1079                 using PartType = typename ResultType<decltype(z)>::Part;
1080                 auto part{kind == MiscKind::ComplexPartRe
1081                         ? ComplexPart::Part::RE
1082                         : ComplexPart::Part::IM};
1083                 return AsCategoryExpr(Designator<PartType>{
1084                     ComplexPart{std::move(*dataRef), part}});
1085               },
1086               zExpr->u)};
1087           return AsGenericExpr(std::move(realExpr));
1088         }
1089       }
1090     } else if (kind == MiscKind::KindParamInquiry ||
1091         kind == MiscKind::LenParamInquiry) {
1092       ActualArgument arg{std::move(*base)};
1093       SetArgSourceLocation(arg, name);
1094       return MakeFunctionRef(name, ActualArguments{std::move(arg)});
1095     } else {
1096       DIE("unexpected MiscDetails::Kind");
1097     }
1098   } else {
1099     Say(name, "derived type required before component reference"_err_en_US);
1100   }
1101   return std::nullopt;
1102 }
1103 
1104 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1105   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1106     DataRef *dataRef{&*maybeDataRef};
1107     std::vector<Subscript> subscripts;
1108     SymbolVector reversed;
1109     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1110       subscripts = std::move(aRef->subscript());
1111       reversed.push_back(aRef->GetLastSymbol());
1112       if (Component * component{aRef->base().UnwrapComponent()}) {
1113         dataRef = &component->base();
1114       } else {
1115         dataRef = nullptr;
1116       }
1117     }
1118     if (dataRef) {
1119       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1120         reversed.push_back(component->GetLastSymbol());
1121         dataRef = &component->base();
1122       }
1123       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1124         reversed.push_back(*baseSym);
1125       } else {
1126         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1127       }
1128     }
1129     std::vector<Expr<SubscriptInteger>> cosubscripts;
1130     bool cosubsOk{true};
1131     for (const auto &cosub :
1132         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1133       MaybeExpr coex{Analyze(cosub)};
1134       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1135         cosubscripts.push_back(
1136             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1137       } else {
1138         cosubsOk = false;
1139       }
1140     }
1141     if (cosubsOk && !reversed.empty()) {
1142       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1143       const Symbol &symbol{reversed.front()};
1144       if (numCosubscripts != symbol.Corank()) {
1145         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1146             symbol.name(), symbol.Corank(), numCosubscripts);
1147       }
1148     }
1149     for (const auto &imageSelSpec :
1150         std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1151       common::visit(
1152           common::visitors{
1153               [&](const auto &x) { Analyze(x.v); },
1154           },
1155           imageSelSpec.u);
1156     }
1157     // Reverse the chain of symbols so that the base is first and coarray
1158     // ultimate component is last.
1159     if (cosubsOk) {
1160       return Designate(
1161           DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1162               std::move(subscripts), std::move(cosubscripts)}});
1163     }
1164   }
1165   return std::nullopt;
1166 }
1167 
1168 int ExpressionAnalyzer::IntegerTypeSpecKind(
1169     const parser::IntegerTypeSpec &spec) {
1170   Expr<SubscriptInteger> value{
1171       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1172   if (auto kind{ToInt64(value)}) {
1173     return static_cast<int>(*kind);
1174   }
1175   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1176   return GetDefaultKind(TypeCategory::Integer);
1177 }
1178 
1179 // Array constructors
1180 
1181 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1182 // all happen to have the same actual type T into one ArrayConstructor<T>.
1183 template <typename T>
1184 ArrayConstructorValues<T> MakeSpecific(
1185     ArrayConstructorValues<SomeType> &&from) {
1186   ArrayConstructorValues<T> to;
1187   for (ArrayConstructorValue<SomeType> &x : from) {
1188     common::visit(
1189         common::visitors{
1190             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1191               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1192               to.Push(std::move(DEREF(typed)));
1193             },
1194             [&](ImpliedDo<SomeType> &&impliedDo) {
1195               to.Push(ImpliedDo<T>{impliedDo.name(),
1196                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1197                   std::move(impliedDo.stride()),
1198                   MakeSpecific<T>(std::move(impliedDo.values()))});
1199             },
1200         },
1201         std::move(x.u));
1202   }
1203   return to;
1204 }
1205 
1206 class ArrayConstructorContext {
1207 public:
1208   ArrayConstructorContext(
1209       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1210       : exprAnalyzer_{c}, type_{std::move(t)} {}
1211 
1212   void Add(const parser::AcValue &);
1213   MaybeExpr ToExpr();
1214 
1215   // These interfaces allow *this to be used as a type visitor argument to
1216   // common::SearchTypes() to convert the array constructor to a typed
1217   // expression in ToExpr().
1218   using Result = MaybeExpr;
1219   using Types = AllTypes;
1220   template <typename T> Result Test() {
1221     if (type_ && type_->category() == T::category) {
1222       if constexpr (T::category == TypeCategory::Derived) {
1223         if (!type_->IsUnlimitedPolymorphic()) {
1224           return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1225               MakeSpecific<T>(std::move(values_))});
1226         }
1227       } else if (type_->kind() == T::kind) {
1228         if constexpr (T::category == TypeCategory::Character) {
1229           if (auto len{type_->LEN()}) {
1230             return AsMaybeExpr(ArrayConstructor<T>{
1231                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1232           }
1233         } else {
1234           return AsMaybeExpr(
1235               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1236         }
1237       }
1238     }
1239     return std::nullopt;
1240   }
1241 
1242 private:
1243   using ImpliedDoIntType = ResultType<ImpliedDoIndex>;
1244 
1245   void Push(MaybeExpr &&);
1246   void Add(const parser::AcValue::Triplet &);
1247   void Add(const parser::Expr &);
1248   void Add(const parser::AcImpliedDo &);
1249   void UnrollConstantImpliedDo(const parser::AcImpliedDo &,
1250       parser::CharBlock name, std::int64_t lower, std::int64_t upper,
1251       std::int64_t stride);
1252 
1253   template <int KIND, typename A>
1254   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1255       const A &x) {
1256     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1257       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1258       return Fold(exprAnalyzer_.GetFoldingContext(),
1259           ConvertToType<Type<TypeCategory::Integer, KIND>>(
1260               std::move(DEREF(intExpr))));
1261     }
1262     return std::nullopt;
1263   }
1264 
1265   // Nested array constructors all reference the same ExpressionAnalyzer,
1266   // which represents the nest of active implied DO loop indices.
1267   ExpressionAnalyzer &exprAnalyzer_;
1268   std::optional<DynamicTypeWithLength> type_;
1269   bool explicitType_{type_.has_value()};
1270   std::optional<std::int64_t> constantLength_;
1271   ArrayConstructorValues<SomeType> values_;
1272   std::uint64_t messageDisplayedSet_{0};
1273 };
1274 
1275 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1276   if (!x) {
1277     return;
1278   }
1279   if (!type_) {
1280     if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1281       // Treat an array constructor of BOZ as if default integer.
1282       if (exprAnalyzer_.context().ShouldWarn(
1283               common::LanguageFeature::BOZAsDefaultInteger)) {
1284         exprAnalyzer_.Say(
1285             "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US);
1286       }
1287       x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1288           exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1289           std::move(*boz)));
1290     }
1291   }
1292   std::optional<DynamicType> dyType{x->GetType()};
1293   if (!dyType) {
1294     if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1295       if (!type_) {
1296         // Treat an array constructor of BOZ as if default integer.
1297         if (exprAnalyzer_.context().ShouldWarn(
1298                 common::LanguageFeature::BOZAsDefaultInteger)) {
1299           exprAnalyzer_.Say(
1300               "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US);
1301         }
1302         x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1303             exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1304             std::move(*boz)));
1305         dyType = x.value().GetType();
1306       } else if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1307         x = std::move(cast);
1308         dyType = *type_;
1309       } else {
1310         if (!(messageDisplayedSet_ & 0x80)) {
1311           exprAnalyzer_.Say(
1312               "BOZ literal is not suitable for use in this array constructor"_err_en_US);
1313           messageDisplayedSet_ |= 0x80;
1314         }
1315         return;
1316       }
1317     } else { // procedure name, &c.
1318       if (!(messageDisplayedSet_ & 0x40)) {
1319         exprAnalyzer_.Say(
1320             "Item is not suitable for use in an array constructor"_err_en_US);
1321         messageDisplayedSet_ |= 0x40;
1322       }
1323       return;
1324     }
1325   } else if (dyType->IsUnlimitedPolymorphic()) {
1326     if (!(messageDisplayedSet_ & 8)) {
1327       exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an "
1328                         "array constructor"_err_en_US); // C7113
1329       messageDisplayedSet_ |= 8;
1330     }
1331     return;
1332   }
1333   DynamicTypeWithLength xType{dyType.value()};
1334   if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1335     CHECK(xType.category() == TypeCategory::Character);
1336     xType.length =
1337         common::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1338   }
1339   if (!type_) {
1340     // If there is no explicit type-spec in an array constructor, the type
1341     // of the array is the declared type of all of the elements, which must
1342     // be well-defined and all match.
1343     // TODO: Possible language extension: use the most general type of
1344     // the values as the type of a numeric constructed array, convert all
1345     // of the other values to that type.  Alternative: let the first value
1346     // determine the type, and convert the others to that type.
1347     CHECK(!explicitType_);
1348     type_ = std::move(xType);
1349     constantLength_ = ToInt64(type_->length);
1350     values_.Push(std::move(*x));
1351   } else if (!explicitType_) {
1352     if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) {
1353       values_.Push(std::move(*x));
1354       if (auto thisLen{ToInt64(xType.LEN())}) {
1355         if (constantLength_) {
1356           if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1357               *thisLen != *constantLength_) {
1358             if (!(messageDisplayedSet_ & 1)) {
1359               exprAnalyzer_.Say(
1360                   "Character literal in array constructor without explicit "
1361                   "type has different length than earlier elements"_port_en_US);
1362               messageDisplayedSet_ |= 1;
1363             }
1364           }
1365           if (*thisLen > *constantLength_) {
1366             // Language extension: use the longest literal to determine the
1367             // length of the array constructor's character elements, not the
1368             // first, when there is no explicit type.
1369             *constantLength_ = *thisLen;
1370             type_->length = xType.LEN();
1371           }
1372         } else {
1373           constantLength_ = *thisLen;
1374           type_->length = xType.LEN();
1375         }
1376       }
1377     } else {
1378       if (!(messageDisplayedSet_ & 2)) {
1379         exprAnalyzer_.Say(
1380             "Values in array constructor must have the same declared type "
1381             "when no explicit type appears"_err_en_US); // C7110
1382         messageDisplayedSet_ |= 2;
1383       }
1384     }
1385   } else {
1386     if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1387       values_.Push(std::move(*cast));
1388     } else if (!(messageDisplayedSet_ & 4)) {
1389       exprAnalyzer_.Say("Value in array constructor of type '%s' could not "
1390                         "be converted to the type of the array '%s'"_err_en_US,
1391           x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
1392       messageDisplayedSet_ |= 4;
1393     }
1394   }
1395 }
1396 
1397 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1398   common::visit(
1399       common::visitors{
1400           [&](const parser::AcValue::Triplet &triplet) { Add(triplet); },
1401           [&](const common::Indirection<parser::Expr> &expr) {
1402             Add(expr.value());
1403           },
1404           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1405             Add(impliedDo.value());
1406           },
1407       },
1408       x.u);
1409 }
1410 
1411 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1412 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) {
1413   std::optional<Expr<ImpliedDoIntType>> lower{
1414       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))};
1415   std::optional<Expr<ImpliedDoIntType>> upper{
1416       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))};
1417   std::optional<Expr<ImpliedDoIntType>> stride{
1418       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))};
1419   if (lower && upper) {
1420     if (!stride) {
1421       stride = Expr<ImpliedDoIntType>{1};
1422     }
1423     if (!type_) {
1424       type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()};
1425     }
1426     auto v{std::move(values_)};
1427     parser::CharBlock anonymous;
1428     Push(Expr<SomeType>{
1429         Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}});
1430     std::swap(v, values_);
1431     values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1432         std::move(*upper), std::move(*stride), std::move(v)});
1433   }
1434 }
1435 
1436 void ArrayConstructorContext::Add(const parser::Expr &expr) {
1437   auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)};
1438   Push(exprAnalyzer_.Analyze(expr));
1439 }
1440 
1441 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) {
1442   const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)};
1443   const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1444   exprAnalyzer_.Analyze(bounds.name);
1445   parser::CharBlock name{bounds.name.thing.thing.source};
1446   const Symbol *symbol{bounds.name.thing.thing.symbol};
1447   int kind{ImpliedDoIntType::kind};
1448   if (const auto dynamicType{DynamicType::From(symbol)}) {
1449     kind = dynamicType->kind();
1450   }
1451   std::optional<Expr<ImpliedDoIntType>> lower{
1452       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)};
1453   std::optional<Expr<ImpliedDoIntType>> upper{
1454       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)};
1455   if (lower && upper) {
1456     std::optional<Expr<ImpliedDoIntType>> stride{
1457         GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)};
1458     if (!stride) {
1459       stride = Expr<ImpliedDoIntType>{1};
1460     }
1461     if (exprAnalyzer_.AddImpliedDo(name, kind)) {
1462       // Check for constant bounds; the loop may require complete unrolling
1463       // of the parse tree if all bounds are constant in order to allow the
1464       // implied DO loop index to qualify as a constant expression.
1465       auto cLower{ToInt64(lower)};
1466       auto cUpper{ToInt64(upper)};
1467       auto cStride{ToInt64(stride)};
1468       if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) {
1469         exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source,
1470             "The stride of an implied DO loop must not be zero"_err_en_US);
1471         messageDisplayedSet_ |= 0x10;
1472       }
1473       bool isConstant{cLower && cUpper && cStride && *cStride != 0};
1474       bool isNonemptyConstant{isConstant &&
1475           ((*cStride > 0 && *cLower <= *cUpper) ||
1476               (*cStride < 0 && *cLower >= *cUpper))};
1477       bool unrollConstantLoop{false};
1478       parser::Messages buffer;
1479       auto saveMessagesDisplayed{messageDisplayedSet_};
1480       {
1481         auto messageRestorer{
1482             exprAnalyzer_.GetContextualMessages().SetMessages(buffer)};
1483         auto v{std::move(values_)};
1484         for (const auto &value :
1485             std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1486           Add(value);
1487         }
1488         std::swap(v, values_);
1489         if (isNonemptyConstant && buffer.AnyFatalError()) {
1490           unrollConstantLoop = true;
1491         } else {
1492           values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1493               std::move(*upper), std::move(*stride), std::move(v)});
1494         }
1495       }
1496       if (unrollConstantLoop) {
1497         messageDisplayedSet_ = saveMessagesDisplayed;
1498         UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride);
1499       } else if (auto *messages{
1500                      exprAnalyzer_.GetContextualMessages().messages()}) {
1501         messages->Annex(std::move(buffer));
1502       }
1503       exprAnalyzer_.RemoveImpliedDo(name);
1504     } else if (!(messageDisplayedSet_ & 0x20)) {
1505       exprAnalyzer_.SayAt(name,
1506           "Implied DO index '%s' is active in a surrounding implied DO loop "
1507           "and may not have the same name"_err_en_US,
1508           name); // C7115
1509       messageDisplayedSet_ |= 0x20;
1510     }
1511   }
1512 }
1513 
1514 // Fortran considers an implied DO index of an array constructor to be
1515 // a constant expression if the bounds of the implied DO loop are constant.
1516 // Usually this doesn't matter, but if we emitted spurious messages as a
1517 // result of not using constant values for the index while analyzing the
1518 // items, we need to do it again the "hard" way with multiple iterations over
1519 // the parse tree.
1520 void ArrayConstructorContext::UnrollConstantImpliedDo(
1521     const parser::AcImpliedDo &impliedDo, parser::CharBlock name,
1522     std::int64_t lower, std::int64_t upper, std::int64_t stride) {
1523   auto &foldingContext{exprAnalyzer_.GetFoldingContext()};
1524   auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()};
1525   for (auto &at{foldingContext.StartImpliedDo(name, lower)};
1526        (stride > 0 && at <= upper) || (stride < 0 && at >= upper);
1527        at += stride) {
1528     for (const auto &value :
1529         std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1530       Add(value);
1531     }
1532   }
1533   foldingContext.EndImpliedDo(name);
1534 }
1535 
1536 MaybeExpr ArrayConstructorContext::ToExpr() {
1537   return common::SearchTypes(std::move(*this));
1538 }
1539 
1540 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1541   const parser::AcSpec &acSpec{array.v};
1542   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1543   for (const parser::AcValue &value : acSpec.values) {
1544     acContext.Add(value);
1545   }
1546   return acContext.ToExpr();
1547 }
1548 
1549 MaybeExpr ExpressionAnalyzer::Analyze(
1550     const parser::StructureConstructor &structure) {
1551   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1552   parser::Name structureType{std::get<parser::Name>(parsedType.t)};
1553   parser::CharBlock &typeName{structureType.source};
1554   if (semantics::Symbol * typeSymbol{structureType.symbol}) {
1555     if (typeSymbol->has<semantics::DerivedTypeDetails>()) {
1556       semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()};
1557       if (!CheckIsValidForwardReference(dtSpec)) {
1558         return std::nullopt;
1559       }
1560     }
1561   }
1562   if (!parsedType.derivedTypeSpec) {
1563     return std::nullopt;
1564   }
1565   const auto &spec{*parsedType.derivedTypeSpec};
1566   const Symbol &typeSymbol{spec.typeSymbol()};
1567   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1568     return std::nullopt; // error recovery
1569   }
1570   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1571   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1572 
1573   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1574     AttachDeclaration(Say(typeName,
1575                           "ABSTRACT derived type '%s' may not be used in a "
1576                           "structure constructor"_err_en_US,
1577                           typeName),
1578         typeSymbol); // C7114
1579   }
1580 
1581   // This iterator traverses all of the components in the derived type and its
1582   // parents.  The symbols for whole parent components appear after their
1583   // own components and before the components of the types that extend them.
1584   // E.g., TYPE :: A; REAL X; END TYPE
1585   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1586   // produces the component list X, A, Y.
1587   // The order is important below because a structure constructor can
1588   // initialize X or A by name, but not both.
1589   auto components{semantics::OrderedComponentIterator{spec}};
1590   auto nextAnonymous{components.begin()};
1591 
1592   std::set<parser::CharBlock> unavailable;
1593   bool anyKeyword{false};
1594   StructureConstructor result{spec};
1595   bool checkConflicts{true}; // until we hit one
1596   auto &messages{GetContextualMessages()};
1597 
1598   for (const auto &component :
1599       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1600     const parser::Expr &expr{
1601         std::get<parser::ComponentDataSource>(component.t).v.value()};
1602     parser::CharBlock source{expr.source};
1603     auto restorer{messages.SetLocation(source)};
1604     const Symbol *symbol{nullptr};
1605     MaybeExpr value{Analyze(expr)};
1606     std::optional<DynamicType> valueType{DynamicType::From(value)};
1607     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1608       anyKeyword = true;
1609       source = kw->v.source;
1610       symbol = kw->v.symbol;
1611       if (!symbol) {
1612         auto componentIter{std::find_if(components.begin(), components.end(),
1613             [=](const Symbol &symbol) { return symbol.name() == source; })};
1614         if (componentIter != components.end()) {
1615           symbol = &*componentIter;
1616         }
1617       }
1618       if (!symbol) { // C7101
1619         Say(source,
1620             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1621             source, typeName);
1622       }
1623     } else {
1624       if (anyKeyword) { // C7100
1625         Say(source,
1626             "Value in structure constructor lacks a component name"_err_en_US);
1627         checkConflicts = false; // stem cascade
1628       }
1629       // Here's a regrettably common extension of the standard: anonymous
1630       // initialization of parent components, e.g., T(PT(1)) rather than
1631       // T(1) or T(PT=PT(1)).
1632       if (nextAnonymous == components.begin() && parentComponent &&
1633           valueType == DynamicType::From(*parentComponent) &&
1634           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1635         auto iter{
1636             std::find(components.begin(), components.end(), *parentComponent)};
1637         if (iter != components.end()) {
1638           symbol = parentComponent;
1639           nextAnonymous = ++iter;
1640           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1641             Say(source,
1642                 "Whole parent component '%s' in structure "
1643                 "constructor should not be anonymous"_port_en_US,
1644                 symbol->name());
1645           }
1646         }
1647       }
1648       while (!symbol && nextAnonymous != components.end()) {
1649         const Symbol &next{*nextAnonymous};
1650         ++nextAnonymous;
1651         if (!next.test(Symbol::Flag::ParentComp)) {
1652           symbol = &next;
1653         }
1654       }
1655       if (!symbol) {
1656         Say(source, "Unexpected value in structure constructor"_err_en_US);
1657       }
1658     }
1659     if (symbol) {
1660       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1661         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1662           Say(source, *msg);
1663         }
1664       }
1665       if (checkConflicts) {
1666         auto componentIter{
1667             std::find(components.begin(), components.end(), *symbol)};
1668         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1669           // C797, C798
1670           Say(source,
1671               "Component '%s' conflicts with another component earlier in "
1672               "this structure constructor"_err_en_US,
1673               symbol->name());
1674         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1675           // Make earlier components unavailable once a whole parent appears.
1676           for (auto it{components.begin()}; it != componentIter; ++it) {
1677             unavailable.insert(it->name());
1678           }
1679         } else {
1680           // Make whole parent components unavailable after any of their
1681           // constituents appear.
1682           for (auto it{componentIter}; it != components.end(); ++it) {
1683             if (it->test(Symbol::Flag::ParentComp)) {
1684               unavailable.insert(it->name());
1685             }
1686           }
1687         }
1688       }
1689       unavailable.insert(symbol->name());
1690       if (value) {
1691         if (symbol->has<semantics::ProcEntityDetails>()) {
1692           CHECK(IsPointer(*symbol));
1693         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1694           // C1594(4)
1695           const auto &innermost{context_.FindScope(expr.source)};
1696           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1697             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1698               if (const Symbol *
1699                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1700                 if (auto *msg{Say(expr.source,
1701                         "Externally visible object '%s' may not be "
1702                         "associated with pointer component '%s' in a "
1703                         "pure procedure"_err_en_US,
1704                         object->name(), pointer->name())}) {
1705                   msg->Attach(object->name(), "Object declaration"_en_US)
1706                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1707                 }
1708               }
1709             }
1710           }
1711         } else if (symbol->has<semantics::TypeParamDetails>()) {
1712           Say(expr.source,
1713               "Type parameter '%s' may not appear as a component "
1714               "of a structure constructor"_err_en_US,
1715               symbol->name());
1716           continue;
1717         } else {
1718           Say(expr.source,
1719               "Component '%s' is neither a procedure pointer "
1720               "nor a data object"_err_en_US,
1721               symbol->name());
1722           continue;
1723         }
1724         if (IsPointer(*symbol)) {
1725           semantics::CheckPointerAssignment(
1726               GetFoldingContext(), *symbol, *value); // C7104, C7105
1727           result.Add(*symbol, Fold(std::move(*value)));
1728         } else if (MaybeExpr converted{
1729                        ConvertToType(*symbol, std::move(*value))}) {
1730           if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
1731             if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
1732               if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
1733                 AttachDeclaration(
1734                     Say(expr.source,
1735                         "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
1736                         GetRank(*valueShape), symbol->name()),
1737                     *symbol);
1738               } else {
1739                 auto checked{
1740                     CheckConformance(messages, *componentShape, *valueShape,
1741                         CheckConformanceFlags::RightIsExpandableDeferred,
1742                         "component", "value")};
1743                 if (checked && *checked && GetRank(*componentShape) > 0 &&
1744                     GetRank(*valueShape) == 0 &&
1745                     !IsExpandableScalar(*converted)) {
1746                   AttachDeclaration(
1747                       Say(expr.source,
1748                           "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
1749                           symbol->name()),
1750                       *symbol);
1751                 }
1752                 if (checked.value_or(true)) {
1753                   result.Add(*symbol, std::move(*converted));
1754                 }
1755               }
1756             } else {
1757               Say(expr.source, "Shape of value cannot be determined"_err_en_US);
1758             }
1759           } else {
1760             AttachDeclaration(
1761                 Say(expr.source,
1762                     "Shape of component '%s' cannot be determined"_err_en_US,
1763                     symbol->name()),
1764                 *symbol);
1765           }
1766         } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) {
1767           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE.
1768           result.Add(*symbol, Expr<SomeType>{NullPointer{}});
1769         } else if (auto symType{DynamicType::From(symbol)}) {
1770           if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() &&
1771               valueType) {
1772             // ok
1773           } else if (valueType) {
1774             AttachDeclaration(
1775                 Say(expr.source,
1776                     "Value in structure constructor of type '%s' is "
1777                     "incompatible with component '%s' of type '%s'"_err_en_US,
1778                     valueType->AsFortran(), symbol->name(),
1779                     symType->AsFortran()),
1780                 *symbol);
1781           } else {
1782             AttachDeclaration(
1783                 Say(expr.source,
1784                     "Value in structure constructor is incompatible with "
1785                     "component '%s' of type %s"_err_en_US,
1786                     symbol->name(), symType->AsFortran()),
1787                 *symbol);
1788           }
1789         }
1790       }
1791     }
1792   }
1793 
1794   // Ensure that unmentioned component objects have default initializers.
1795   for (const Symbol &symbol : components) {
1796     if (!symbol.test(Symbol::Flag::ParentComp) &&
1797         unavailable.find(symbol.name()) == unavailable.cend()) {
1798       if (IsAllocatable(symbol)) {
1799         // Set all remaining allocatables to explicit NULL()
1800         result.Add(symbol, Expr<SomeType>{NullPointer{}});
1801       } else if (const auto *details{
1802                      symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1803         if (details->init()) {
1804           result.Add(symbol, common::Clone(*details->init()));
1805         } else { // C799
1806           AttachDeclaration(Say(typeName,
1807                                 "Structure constructor lacks a value for "
1808                                 "component '%s'"_err_en_US,
1809                                 symbol.name()),
1810               symbol);
1811         }
1812       }
1813     }
1814   }
1815 
1816   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1817 }
1818 
1819 static std::optional<parser::CharBlock> GetPassName(
1820     const semantics::Symbol &proc) {
1821   return common::visit(
1822       [](const auto &details) {
1823         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1824                           std::decay_t<decltype(details)>>) {
1825           return details.passName();
1826         } else {
1827           return std::optional<parser::CharBlock>{};
1828         }
1829       },
1830       proc.details());
1831 }
1832 
1833 static int GetPassIndex(const Symbol &proc) {
1834   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1835   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1836   const auto *interface { semantics::FindInterface(proc) };
1837   if (!passName || !interface) {
1838     return 0; // first argument is passed-object
1839   }
1840   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1841   int index{0};
1842   for (const auto *arg : subp.dummyArgs()) {
1843     if (arg && arg->name() == passName) {
1844       return index;
1845     }
1846     ++index;
1847   }
1848   DIE("PASS argument name not in dummy argument list");
1849 }
1850 
1851 // Injects an expression into an actual argument list as the "passed object"
1852 // for a type-bound procedure reference that is not NOPASS.  Adds an
1853 // argument keyword if possible, but not when the passed object goes
1854 // before a positional argument.
1855 // e.g., obj%tbp(x) -> tbp(obj,x).
1856 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1857     const Symbol &component, bool isPassedObject = true) {
1858   if (component.attrs().test(semantics::Attr::NOPASS)) {
1859     return;
1860   }
1861   int passIndex{GetPassIndex(component)};
1862   auto iter{actuals.begin()};
1863   int at{0};
1864   while (iter < actuals.end() && at < passIndex) {
1865     if (*iter && (*iter)->keyword()) {
1866       iter = actuals.end();
1867       break;
1868     }
1869     ++iter;
1870     ++at;
1871   }
1872   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1873   passed.set_isPassedObject(isPassedObject);
1874   if (iter == actuals.end()) {
1875     if (auto passName{GetPassName(component)}) {
1876       passed.set_keyword(*passName);
1877     }
1878   }
1879   actuals.emplace(iter, std::move(passed));
1880 }
1881 
1882 // Return the compile-time resolution of a procedure binding, if possible.
1883 static const Symbol *GetBindingResolution(
1884     const std::optional<DynamicType> &baseType, const Symbol &component) {
1885   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1886   if (!binding) {
1887     return nullptr;
1888   }
1889   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1890       (!baseType || baseType->IsPolymorphic())) {
1891     return nullptr;
1892   }
1893   return &binding->symbol();
1894 }
1895 
1896 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1897     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1898     -> std::optional<CalleeAndArguments> {
1899   const parser::StructureComponent &sc{pcr.v.thing};
1900   if (MaybeExpr base{Analyze(sc.base)}) {
1901     if (const Symbol * sym{sc.component.symbol}) {
1902       if (context_.HasError(sym)) {
1903         return std::nullopt;
1904       }
1905       if (!IsProcedure(*sym)) {
1906         AttachDeclaration(
1907             Say(sc.component.source, "'%s' is not a procedure"_err_en_US,
1908                 sc.component.source),
1909             *sym);
1910         return std::nullopt;
1911       }
1912       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1913         if (sym->has<semantics::GenericDetails>()) {
1914           AdjustActuals adjustment{
1915               [&](const Symbol &proc, ActualArguments &actuals) {
1916                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1917                   AddPassArg(actuals, std::move(*dtExpr), proc);
1918                 }
1919                 return true;
1920               }};
1921           auto pair{ResolveGeneric(*sym, arguments, adjustment)};
1922           sym = pair.first;
1923           if (!sym) {
1924             EmitGenericResolutionError(*sc.component.symbol, pair.second);
1925             return std::nullopt;
1926           }
1927         }
1928         if (const Symbol *
1929             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1930           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1931           return CalleeAndArguments{
1932               ProcedureDesignator{*resolution}, std::move(arguments)};
1933         } else if (std::optional<DataRef> dataRef{
1934                        ExtractDataRef(std::move(*dtExpr))}) {
1935           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1936             return CalleeAndArguments{
1937                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1938                 std::move(arguments)};
1939           } else {
1940             AddPassArg(arguments,
1941                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1942                 *sym);
1943             return CalleeAndArguments{
1944                 ProcedureDesignator{*sym}, std::move(arguments)};
1945           }
1946         }
1947       }
1948       Say(sc.component.source,
1949           "Base of procedure component reference is not a derived-type object"_err_en_US);
1950     }
1951   }
1952   CHECK(context_.AnyFatalError());
1953   return std::nullopt;
1954 }
1955 
1956 // Can actual be argument associated with dummy?
1957 static bool CheckCompatibleArgument(bool isElemental,
1958     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1959   const auto *expr{actual.UnwrapExpr()};
1960   return common::visit(
1961       common::visitors{
1962           [&](const characteristics::DummyDataObject &x) {
1963             if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) &&
1964                 IsBareNullPointer(expr)) {
1965               // NULL() without MOLD= is compatible with any dummy data pointer
1966               // but cannot be allowed to lead to ambiguity.
1967               return true;
1968             } else if (!isElemental && actual.Rank() != x.type.Rank() &&
1969                 !x.type.attrs().test(
1970                     characteristics::TypeAndShape::Attr::AssumedRank)) {
1971               return false;
1972             } else if (auto actualType{actual.GetType()}) {
1973               return x.type.type().IsTkCompatibleWith(*actualType);
1974             }
1975             return false;
1976           },
1977           [&](const characteristics::DummyProcedure &) {
1978             return expr && IsProcedurePointerTarget(*expr);
1979           },
1980           [&](const characteristics::AlternateReturn &) {
1981             return actual.isAlternateReturn();
1982           },
1983       },
1984       dummy.u);
1985 }
1986 
1987 // Are the actual arguments compatible with the dummy arguments of procedure?
1988 static bool CheckCompatibleArguments(
1989     const characteristics::Procedure &procedure,
1990     const ActualArguments &actuals) {
1991   bool isElemental{procedure.IsElemental()};
1992   const auto &dummies{procedure.dummyArguments};
1993   CHECK(dummies.size() == actuals.size());
1994   for (std::size_t i{0}; i < dummies.size(); ++i) {
1995     const characteristics::DummyArgument &dummy{dummies[i]};
1996     const std::optional<ActualArgument> &actual{actuals[i]};
1997     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1998       return false;
1999     }
2000   }
2001   return true;
2002 }
2003 
2004 // Handles a forward reference to a module function from what must
2005 // be a specification expression.  Return false if the symbol is
2006 // an invalid forward reference.
2007 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
2008   if (context_.HasError(symbol)) {
2009     return false;
2010   }
2011   if (const auto *details{
2012           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
2013     if (details->kind() == semantics::SubprogramKind::Module) {
2014       // If this symbol is still a SubprogramNameDetails, we must be
2015       // checking a specification expression in a sibling module
2016       // procedure.  Resolve its names now so that its interface
2017       // is known.
2018       semantics::ResolveSpecificationParts(context_, symbol);
2019       if (symbol.has<semantics::SubprogramNameDetails>()) {
2020         // When the symbol hasn't had its details updated, we must have
2021         // already been in the process of resolving the function's
2022         // specification part; but recursive function calls are not
2023         // allowed in specification parts (10.1.11 para 5).
2024         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
2025             symbol.name());
2026         context_.SetError(symbol);
2027         return false;
2028       }
2029     } else { // 10.1.11 para 4
2030       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
2031           symbol.name());
2032       context_.SetError(symbol);
2033       return false;
2034     }
2035   }
2036   return true;
2037 }
2038 
2039 // Resolve a call to a generic procedure with given actual arguments.
2040 // adjustActuals is called on procedure bindings to handle pass arg.
2041 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric(
2042     const Symbol &symbol, const ActualArguments &actuals,
2043     const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) {
2044   const Symbol *elemental{nullptr}; // matching elemental specific proc
2045   const Symbol *nonElemental{nullptr}; // matching non-elemental specific
2046   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
2047   bool anyBareNullActual{
2048       std::find_if(actuals.begin(), actuals.end(), [](auto iter) {
2049         return IsBareNullPointer(iter->UnwrapExpr());
2050       }) != actuals.end()};
2051   for (const Symbol &specific : details.specificProcs()) {
2052     if (!ResolveForward(specific)) {
2053       continue;
2054     }
2055     if (std::optional<characteristics::Procedure> procedure{
2056             characteristics::Procedure::Characterize(
2057                 ProcedureDesignator{specific}, context_.foldingContext())}) {
2058       ActualArguments localActuals{actuals};
2059       if (specific.has<semantics::ProcBindingDetails>()) {
2060         if (!adjustActuals.value()(specific, localActuals)) {
2061           continue;
2062         }
2063       }
2064       if (semantics::CheckInterfaceForGeneric(*procedure, localActuals,
2065               GetFoldingContext(), false /* no integer conversions */) &&
2066           CheckCompatibleArguments(*procedure, localActuals)) {
2067         if ((procedure->IsElemental() && elemental) ||
2068             (!procedure->IsElemental() && nonElemental)) {
2069           // 16.9.144(6): a bare NULL() is not allowed as an actual
2070           // argument to a generic procedure if the specific procedure
2071           // cannot be unambiguously distinguished
2072           return {nullptr, true /* due to NULL actuals */};
2073         }
2074         if (!procedure->IsElemental()) {
2075           // takes priority over elemental match
2076           nonElemental = &specific;
2077           if (!anyBareNullActual) {
2078             break; // unambiguous case
2079           }
2080         } else {
2081           elemental = &specific;
2082         }
2083       }
2084     }
2085   }
2086   if (nonElemental) {
2087     return {&AccessSpecific(symbol, *nonElemental), false};
2088   } else if (elemental) {
2089     return {&AccessSpecific(symbol, *elemental), false};
2090   }
2091   // Check parent derived type
2092   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
2093     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
2094       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
2095         auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)};
2096         if (pair.first) {
2097           return pair;
2098         }
2099       }
2100     }
2101   }
2102   if (mightBeStructureConstructor && details.derivedType()) {
2103     return {details.derivedType(), false};
2104   }
2105   return {nullptr, false};
2106 }
2107 
2108 const Symbol &ExpressionAnalyzer::AccessSpecific(
2109     const Symbol &originalGeneric, const Symbol &specific) {
2110   if (const auto *hosted{
2111           originalGeneric.detailsIf<semantics::HostAssocDetails>()}) {
2112     return AccessSpecific(hosted->symbol(), specific);
2113   } else if (const auto *used{
2114                  originalGeneric.detailsIf<semantics::UseDetails>()}) {
2115     const auto &scope{originalGeneric.owner()};
2116     if (auto iter{scope.find(specific.name())}; iter != scope.end()) {
2117       if (const auto *useDetails{
2118               iter->second->detailsIf<semantics::UseDetails>()}) {
2119         const Symbol &usedSymbol{useDetails->symbol()};
2120         const auto *usedGeneric{
2121             usedSymbol.detailsIf<semantics::GenericDetails>()};
2122         if (&usedSymbol == &specific ||
2123             (usedGeneric && usedGeneric->specific() == &specific)) {
2124           return specific;
2125         }
2126       }
2127     }
2128     // Create a renaming USE of the specific procedure.
2129     auto rename{context_.SaveTempName(
2130         used->symbol().owner().GetName().value().ToString() + "$" +
2131         specific.name().ToString())};
2132     return *const_cast<semantics::Scope &>(scope)
2133                 .try_emplace(rename, specific.attrs(),
2134                     semantics::UseDetails{rename, specific})
2135                 .first->second;
2136   } else {
2137     return specific;
2138   }
2139 }
2140 
2141 void ExpressionAnalyzer::EmitGenericResolutionError(
2142     const Symbol &symbol, bool dueToNullActuals) {
2143   Say(dueToNullActuals
2144           ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US
2145           : semantics::IsGenericDefinedOp(symbol)
2146           ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US
2147           : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
2148       symbol.name());
2149 }
2150 
2151 auto ExpressionAnalyzer::GetCalleeAndArguments(
2152     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
2153     bool isSubroutine, bool mightBeStructureConstructor)
2154     -> std::optional<CalleeAndArguments> {
2155   return common::visit(
2156       common::visitors{
2157           [&](const parser::Name &name) {
2158             return GetCalleeAndArguments(name, std::move(arguments),
2159                 isSubroutine, mightBeStructureConstructor);
2160           },
2161           [&](const parser::ProcComponentRef &pcr) {
2162             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
2163           },
2164       },
2165       pd.u);
2166 }
2167 
2168 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
2169     ActualArguments &&arguments, bool isSubroutine,
2170     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
2171   const Symbol *symbol{name.symbol};
2172   if (context_.HasError(symbol)) {
2173     return std::nullopt; // also handles null symbol
2174   }
2175   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
2176   CheckForBadRecursion(name.source, ultimate);
2177   bool dueToNullActual{false};
2178   bool isGenericInterface{ultimate.has<semantics::GenericDetails>()};
2179   const Symbol *resolution{nullptr};
2180   if (isGenericInterface) {
2181     ExpressionAnalyzer::AdjustActuals noAdjustment;
2182     auto pair{ResolveGeneric(
2183         *symbol, arguments, noAdjustment, mightBeStructureConstructor)};
2184     resolution = pair.first;
2185     dueToNullActual = pair.second;
2186   }
2187   if (!resolution) {
2188     // Not generic, or no resolution; may be intrinsic
2189     bool isIntrinsic{symbol->attrs().test(semantics::Attr::INTRINSIC)};
2190     if (!isIntrinsic && !isGenericInterface) {
2191       resolution = symbol;
2192     } else if (std::optional<SpecificCall> specificCall{
2193                    context_.intrinsics().Probe(
2194                        CallCharacteristics{
2195                            ultimate.name().ToString(), isSubroutine},
2196                        arguments, GetFoldingContext())}) {
2197       CheckBadExplicitType(*specificCall, *symbol);
2198       return CalleeAndArguments{
2199           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2200           std::move(specificCall->arguments)};
2201     } else {
2202       if (isGenericInterface) {
2203         EmitGenericResolutionError(*symbol, dueToNullActual);
2204       }
2205       return std::nullopt;
2206     }
2207   }
2208   if (resolution->GetUltimate().has<semantics::DerivedTypeDetails>()) {
2209     if (mightBeStructureConstructor) {
2210       return CalleeAndArguments{
2211           semantics::SymbolRef{*resolution}, std::move(arguments)};
2212     }
2213   } else if (IsProcedure(*resolution)) {
2214     return CalleeAndArguments{
2215         ProcedureDesignator{*resolution}, std::move(arguments)};
2216   }
2217   if (!context_.HasError(*resolution)) {
2218     AttachDeclaration(
2219         Say(name.source, "'%s' is not a callable procedure"_err_en_US,
2220             name.source),
2221         *resolution);
2222   }
2223   return std::nullopt;
2224 }
2225 
2226 // Fortran 2018 expressly states (8.2 p3) that any declared type for a
2227 // generic intrinsic function "has no effect" on the result type of a
2228 // call to that intrinsic.  So one can declare "character*8 cos" and
2229 // still get a real result from "cos(1.)".  This is a dangerous feature,
2230 // especially since implementations are free to extend their sets of
2231 // intrinsics, and in doing so might clash with a name in a program.
2232 // So we emit a warning in this situation, and perhaps it should be an
2233 // error -- any correctly working program can silence the message by
2234 // simply deleting the pointless type declaration.
2235 void ExpressionAnalyzer::CheckBadExplicitType(
2236     const SpecificCall &call, const Symbol &intrinsic) {
2237   if (intrinsic.GetUltimate().GetType()) {
2238     const auto &procedure{call.specificIntrinsic.characteristics.value()};
2239     if (const auto &result{procedure.functionResult}) {
2240       if (const auto *typeAndShape{result->GetTypeAndShape()}) {
2241         if (auto declared{
2242                 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) {
2243           if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) {
2244             if (auto *msg{Say(
2245                     "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_warn_en_US,
2246                     typeAndShape->AsFortran(), intrinsic.name(),
2247                     declared->AsFortran())}) {
2248               msg->Attach(intrinsic.name(),
2249                   "Ignored declaration of intrinsic function '%s'"_en_US,
2250                   intrinsic.name());
2251             }
2252           }
2253         }
2254       }
2255     }
2256   }
2257 }
2258 
2259 void ExpressionAnalyzer::CheckForBadRecursion(
2260     parser::CharBlock callSite, const semantics::Symbol &proc) {
2261   if (const auto *scope{proc.scope()}) {
2262     if (scope->sourceRange().Contains(callSite)) {
2263       parser::Message *msg{nullptr};
2264       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
2265         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
2266             callSite);
2267       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
2268         msg = Say( // 15.6.2.1(3)
2269             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
2270             callSite);
2271       }
2272       AttachDeclaration(msg, proc);
2273     }
2274   }
2275 }
2276 
2277 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
2278   if (const auto *designator{
2279           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
2280     if (const auto *dataRef{
2281             std::get_if<parser::DataRef>(&designator->value().u)}) {
2282       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
2283         return AssumedTypeDummy(*name);
2284       }
2285     }
2286   }
2287   return nullptr;
2288 }
2289 template <>
2290 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) {
2291   if (const Symbol * symbol{name.symbol}) {
2292     if (const auto *type{symbol->GetType()}) {
2293       if (type->category() == semantics::DeclTypeSpec::TypeStar) {
2294         return symbol;
2295       }
2296     }
2297   }
2298   return nullptr;
2299 }
2300 template <typename A>
2301 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) {
2302   // It is illegal for allocatable of pointer objects to be TYPE(*), but at that
2303   // point it is is not guaranteed that it has been checked the object has
2304   // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly
2305   // returned.
2306   return common::visit(
2307       common::visitors{
2308           [&](const parser::StructureComponent &x) {
2309             return AssumedTypeDummy(x.component);
2310           },
2311           [&](const parser::Name &x) { return AssumedTypeDummy(x); },
2312       },
2313       object.u);
2314 }
2315 template <>
2316 const Symbol *AssumedTypeDummy<parser::AllocateObject>(
2317     const parser::AllocateObject &x) {
2318   return AssumedTypePointerOrAllocatableDummy(x);
2319 }
2320 template <>
2321 const Symbol *AssumedTypeDummy<parser::PointerObject>(
2322     const parser::PointerObject &x) {
2323   return AssumedTypePointerOrAllocatableDummy(x);
2324 }
2325 
2326 bool ExpressionAnalyzer::CheckIsValidForwardReference(
2327     const semantics::DerivedTypeSpec &dtSpec) {
2328   if (dtSpec.IsForwardReferenced()) {
2329     Say("Cannot construct value for derived type '%s' "
2330         "before it is defined"_err_en_US,
2331         dtSpec.name());
2332     return false;
2333   }
2334   return true;
2335 }
2336 
2337 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
2338     std::optional<parser::StructureConstructor> *structureConstructor) {
2339   const parser::Call &call{funcRef.v};
2340   auto restorer{GetContextualMessages().SetLocation(call.source)};
2341   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2342   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
2343     analyzer.Analyze(arg, false /* not subroutine call */);
2344   }
2345   if (analyzer.fatalErrors()) {
2346     return std::nullopt;
2347   }
2348   if (std::optional<CalleeAndArguments> callee{
2349           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2350               analyzer.GetActuals(), false /* not subroutine */,
2351               true /* might be structure constructor */)}) {
2352     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
2353       return MakeFunctionRef(
2354           call.source, std::move(*proc), std::move(callee->arguments));
2355     }
2356     CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
2357     const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)};
2358     if (structureConstructor) {
2359       // Structure constructor misparsed as function reference?
2360       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
2361       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
2362         semantics::Scope &scope{context_.FindScope(name->source)};
2363         semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()};
2364         if (!CheckIsValidForwardReference(dtSpec)) {
2365           return std::nullopt;
2366         }
2367         const semantics::DeclTypeSpec &type{
2368             semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))};
2369         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
2370         *structureConstructor =
2371             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
2372         return Analyze(structureConstructor->value());
2373       }
2374     }
2375     if (!context_.HasError(symbol)) {
2376       AttachDeclaration(
2377           Say("'%s' is called like a function but is not a procedure"_err_en_US,
2378               symbol.name()),
2379           symbol);
2380       context_.SetError(symbol);
2381     }
2382   }
2383   return std::nullopt;
2384 }
2385 
2386 static bool HasAlternateReturns(const evaluate::ActualArguments &args) {
2387   for (const auto &arg : args) {
2388     if (arg && arg->isAlternateReturn()) {
2389       return true;
2390     }
2391   }
2392   return false;
2393 }
2394 
2395 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
2396   const parser::Call &call{callStmt.v};
2397   auto restorer{GetContextualMessages().SetLocation(call.source)};
2398   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2399   const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
2400   for (const auto &arg : actualArgList) {
2401     analyzer.Analyze(arg, true /* is subroutine call */);
2402   }
2403   if (!analyzer.fatalErrors()) {
2404     if (std::optional<CalleeAndArguments> callee{
2405             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2406                 analyzer.GetActuals(), true /* subroutine */)}) {
2407       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
2408       CHECK(proc);
2409       if (CheckCall(call.source, *proc, callee->arguments)) {
2410         callStmt.typedCall.Reset(
2411             new ProcedureRef{std::move(*proc), std::move(callee->arguments),
2412                 HasAlternateReturns(callee->arguments)},
2413             ProcedureRef::Deleter);
2414         return;
2415       }
2416     }
2417     if (!context_.AnyFatalError()) {
2418       std::string buf;
2419       llvm::raw_string_ostream dump{buf};
2420       parser::DumpTree(dump, callStmt);
2421       Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US,
2422           dump.str());
2423     }
2424   }
2425 }
2426 
2427 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
2428   if (!x.typedAssignment) {
2429     ArgumentAnalyzer analyzer{*this};
2430     analyzer.Analyze(std::get<parser::Variable>(x.t));
2431     analyzer.Analyze(std::get<parser::Expr>(x.t));
2432     std::optional<Assignment> assignment;
2433     if (!analyzer.fatalErrors()) {
2434       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
2435       if (!procRef) {
2436         analyzer.CheckForNullPointer(
2437             "in a non-pointer intrinsic assignment statement");
2438       }
2439       assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1));
2440       if (procRef) {
2441         assignment->u = std::move(*procRef);
2442       }
2443     }
2444     x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)},
2445         GenericAssignmentWrapper::Deleter);
2446   }
2447   return common::GetPtrFromOptional(x.typedAssignment->v);
2448 }
2449 
2450 const Assignment *ExpressionAnalyzer::Analyze(
2451     const parser::PointerAssignmentStmt &x) {
2452   if (!x.typedAssignment) {
2453     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2454     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2455     if (!lhs || !rhs) {
2456       x.typedAssignment.Reset(
2457           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2458     } else {
2459       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2460       common::visit(
2461           common::visitors{
2462               [&](const std::list<parser::BoundsRemapping> &list) {
2463                 Assignment::BoundsRemapping bounds;
2464                 for (const auto &elem : list) {
2465                   auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2466                   auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2467                   if (lower && upper) {
2468                     bounds.emplace_back(
2469                         Fold(std::move(*lower)), Fold(std::move(*upper)));
2470                   }
2471                 }
2472                 assignment.u = std::move(bounds);
2473               },
2474               [&](const std::list<parser::BoundsSpec> &list) {
2475                 Assignment::BoundsSpec bounds;
2476                 for (const auto &bound : list) {
2477                   if (auto lower{AsSubscript(Analyze(bound.v))}) {
2478                     bounds.emplace_back(Fold(std::move(*lower)));
2479                   }
2480                 }
2481                 assignment.u = std::move(bounds);
2482               },
2483           },
2484           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2485       x.typedAssignment.Reset(
2486           new GenericAssignmentWrapper{std::move(assignment)},
2487           GenericAssignmentWrapper::Deleter);
2488     }
2489   }
2490   return common::GetPtrFromOptional(x.typedAssignment->v);
2491 }
2492 
2493 static bool IsExternalCalledImplicitly(
2494     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2495   if (const auto *symbol{proc.GetSymbol()}) {
2496     return symbol->has<semantics::SubprogramDetails>() &&
2497         symbol->owner().IsGlobal() &&
2498         (!symbol->scope() /*ENTRY*/ ||
2499             !symbol->scope()->sourceRange().Contains(callSite));
2500   } else {
2501     return false;
2502   }
2503 }
2504 
2505 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2506     parser::CharBlock callSite, const ProcedureDesignator &proc,
2507     ActualArguments &arguments) {
2508   auto chars{characteristics::Procedure::Characterize(
2509       proc, context_.foldingContext())};
2510   if (chars) {
2511     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2512     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2513       Say(callSite,
2514           "References to the procedure '%s' require an explicit interface"_err_en_US,
2515           DEREF(proc.GetSymbol()).name());
2516     }
2517     // Checks for ASSOCIATED() are done in intrinsic table processing
2518     bool procIsAssociated{false};
2519     if (const SpecificIntrinsic *
2520         specificIntrinsic{proc.GetSpecificIntrinsic()}) {
2521       if (specificIntrinsic->name == "associated") {
2522         procIsAssociated = true;
2523       }
2524     }
2525     if (!procIsAssociated) {
2526       semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2527           context_.FindScope(callSite), treatExternalAsImplicit,
2528           proc.GetSpecificIntrinsic());
2529       const Symbol *procSymbol{proc.GetSymbol()};
2530       if (procSymbol && !IsPureProcedure(*procSymbol)) {
2531         if (const semantics::Scope *
2532             pure{semantics::FindPureProcedureContaining(
2533                 context_.FindScope(callSite))}) {
2534           Say(callSite,
2535               "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2536               procSymbol->name(), DEREF(pure->symbol()).name());
2537         }
2538       }
2539     }
2540   }
2541   return chars;
2542 }
2543 
2544 // Unary operations
2545 
2546 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2547   if (MaybeExpr operand{Analyze(x.v.value())}) {
2548     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2549       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2550         if (semantics::IsProcedurePointer(*result)) {
2551           Say("A function reference that returns a procedure "
2552               "pointer may not be parenthesized"_err_en_US); // C1003
2553         }
2554       }
2555     }
2556     return Parenthesize(std::move(*operand));
2557   }
2558   return std::nullopt;
2559 }
2560 
2561 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2562     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2563   ArgumentAnalyzer analyzer{context};
2564   analyzer.Analyze(x.v);
2565   if (!analyzer.fatalErrors()) {
2566     if (analyzer.IsIntrinsicNumeric(opr)) {
2567       analyzer.CheckForNullPointer();
2568       if (opr == NumericOperator::Add) {
2569         return analyzer.MoveExpr(0);
2570       } else {
2571         return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2572       }
2573     } else {
2574       return analyzer.TryDefinedOp(AsFortran(opr),
2575           "Operand of unary %s must be numeric; have %s"_err_en_US);
2576     }
2577   }
2578   return std::nullopt;
2579 }
2580 
2581 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2582   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2583 }
2584 
2585 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2586   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2587 }
2588 
2589 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2590   ArgumentAnalyzer analyzer{*this};
2591   analyzer.Analyze(x.v);
2592   if (!analyzer.fatalErrors()) {
2593     if (analyzer.IsIntrinsicLogical()) {
2594       analyzer.CheckForNullPointer();
2595       return AsGenericExpr(
2596           LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2597     } else {
2598       return analyzer.TryDefinedOp(LogicalOperator::Not,
2599           "Operand of %s must be LOGICAL; have %s"_err_en_US);
2600     }
2601   }
2602   return std::nullopt;
2603 }
2604 
2605 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2606   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2607   // intrinsic function.
2608   // Use the actual source for the name of the call for error reporting.
2609   std::optional<ActualArgument> arg;
2610   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2611     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2612   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2613     arg = ActualArgument{std::move(*argExpr)};
2614   } else {
2615     return std::nullopt;
2616   }
2617   parser::CharBlock at{GetContextualMessages().at()};
2618   CHECK(at.size() >= 4);
2619   parser::CharBlock loc{at.begin() + 1, 3};
2620   CHECK(loc == "loc");
2621   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2622 }
2623 
2624 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2625   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2626   ArgumentAnalyzer analyzer{*this, name.source};
2627   analyzer.Analyze(std::get<1>(x.t));
2628   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2629       "No operator %s defined for %s"_err_en_US, nullptr, true);
2630 }
2631 
2632 // Binary (dyadic) operations
2633 
2634 template <template <typename> class OPR>
2635 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2636     const parser::Expr::IntrinsicBinary &x) {
2637   ArgumentAnalyzer analyzer{context};
2638   analyzer.Analyze(std::get<0>(x.t));
2639   analyzer.Analyze(std::get<1>(x.t));
2640   if (!analyzer.fatalErrors()) {
2641     if (analyzer.IsIntrinsicNumeric(opr)) {
2642       analyzer.CheckForNullPointer();
2643       analyzer.CheckConformance();
2644       return NumericOperation<OPR>(context.GetContextualMessages(),
2645           analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2646           context.GetDefaultKind(TypeCategory::Real));
2647     } else {
2648       return analyzer.TryDefinedOp(AsFortran(opr),
2649           "Operands of %s must be numeric; have %s and %s"_err_en_US);
2650     }
2651   }
2652   return std::nullopt;
2653 }
2654 
2655 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2656   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2657 }
2658 
2659 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2660   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2661 }
2662 
2663 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2664   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2665 }
2666 
2667 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2668   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2669 }
2670 
2671 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2672   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2673 }
2674 
2675 MaybeExpr ExpressionAnalyzer::Analyze(
2676     const parser::Expr::ComplexConstructor &x) {
2677   auto re{Analyze(std::get<0>(x.t).value())};
2678   auto im{Analyze(std::get<1>(x.t).value())};
2679   if (re && im) {
2680     ConformabilityCheck(GetContextualMessages(), *re, *im);
2681   }
2682   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2683       std::move(im), GetDefaultKind(TypeCategory::Real)));
2684 }
2685 
2686 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2687   ArgumentAnalyzer analyzer{*this};
2688   analyzer.Analyze(std::get<0>(x.t));
2689   analyzer.Analyze(std::get<1>(x.t));
2690   if (!analyzer.fatalErrors()) {
2691     if (analyzer.IsIntrinsicConcat()) {
2692       analyzer.CheckForNullPointer();
2693       return common::visit(
2694           [&](auto &&x, auto &&y) -> MaybeExpr {
2695             using T = ResultType<decltype(x)>;
2696             if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2697               return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2698             } else {
2699               DIE("different types for intrinsic concat");
2700             }
2701           },
2702           std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2703           std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2704     } else {
2705       return analyzer.TryDefinedOp("//",
2706           "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2707     }
2708   }
2709   return std::nullopt;
2710 }
2711 
2712 // The Name represents a user-defined intrinsic operator.
2713 // If the actuals match one of the specific procedures, return a function ref.
2714 // Otherwise report the error in messages.
2715 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2716     const parser::Name &name, ActualArguments &&actuals) {
2717   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2718     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2719     return MakeFunctionRef(name.source,
2720         std::move(std::get<ProcedureDesignator>(callee->u)),
2721         std::move(callee->arguments));
2722   } else {
2723     return std::nullopt;
2724   }
2725 }
2726 
2727 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2728     const parser::Expr::IntrinsicBinary &x) {
2729   ArgumentAnalyzer analyzer{context};
2730   analyzer.Analyze(std::get<0>(x.t));
2731   analyzer.Analyze(std::get<1>(x.t));
2732   if (!analyzer.fatalErrors()) {
2733     std::optional<DynamicType> leftType{analyzer.GetType(0)};
2734     std::optional<DynamicType> rightType{analyzer.GetType(1)};
2735     analyzer.ConvertBOZ(leftType, 0, rightType);
2736     analyzer.ConvertBOZ(rightType, 1, leftType);
2737     if (leftType && rightType &&
2738         analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) {
2739       analyzer.CheckForNullPointer("as a relational operand");
2740       return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2741           analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2742     } else {
2743       return analyzer.TryDefinedOp(opr,
2744           leftType && leftType->category() == TypeCategory::Logical &&
2745                   rightType && rightType->category() == TypeCategory::Logical
2746               ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US
2747               : "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2748     }
2749   }
2750   return std::nullopt;
2751 }
2752 
2753 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2754   return RelationHelper(*this, RelationalOperator::LT, x);
2755 }
2756 
2757 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2758   return RelationHelper(*this, RelationalOperator::LE, x);
2759 }
2760 
2761 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2762   return RelationHelper(*this, RelationalOperator::EQ, x);
2763 }
2764 
2765 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2766   return RelationHelper(*this, RelationalOperator::NE, x);
2767 }
2768 
2769 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2770   return RelationHelper(*this, RelationalOperator::GE, x);
2771 }
2772 
2773 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2774   return RelationHelper(*this, RelationalOperator::GT, x);
2775 }
2776 
2777 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2778     const parser::Expr::IntrinsicBinary &x) {
2779   ArgumentAnalyzer analyzer{context};
2780   analyzer.Analyze(std::get<0>(x.t));
2781   analyzer.Analyze(std::get<1>(x.t));
2782   if (!analyzer.fatalErrors()) {
2783     if (analyzer.IsIntrinsicLogical()) {
2784       analyzer.CheckForNullPointer("as a logical operand");
2785       return AsGenericExpr(BinaryLogicalOperation(opr,
2786           std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2787           std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2788     } else {
2789       return analyzer.TryDefinedOp(
2790           opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2791     }
2792   }
2793   return std::nullopt;
2794 }
2795 
2796 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2797   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2798 }
2799 
2800 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2801   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2802 }
2803 
2804 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2805   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2806 }
2807 
2808 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2809   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2810 }
2811 
2812 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2813   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2814   ArgumentAnalyzer analyzer{*this, name.source};
2815   analyzer.Analyze(std::get<1>(x.t));
2816   analyzer.Analyze(std::get<2>(x.t));
2817   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2818       "No operator %s defined for %s and %s"_err_en_US, nullptr, true);
2819 }
2820 
2821 // Returns true if a parsed function reference should be converted
2822 // into an array element reference.
2823 static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context,
2824     const parser::FunctionReference &funcRef) {
2825   // Emit message if the function reference fix will end up an array element
2826   // reference with no subscripts, or subscripts on a scalar, because it will
2827   // not be possible to later distinguish in expressions between an empty
2828   // subscript list due to bad subscripts error recovery or because the
2829   // user did not put any.
2830   auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2831   const auto *name{std::get_if<parser::Name>(&proc.u)};
2832   if (!name) {
2833     name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2834   }
2835   if (!name->symbol) {
2836     return false;
2837   } else if (name->symbol->Rank() == 0) {
2838     if (const Symbol *
2839         function{
2840             semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) {
2841       auto &msg{context.Say(funcRef.v.source,
2842           "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US,
2843           name->source)};
2844       AttachDeclaration(&msg, *function);
2845       name->symbol = const_cast<Symbol *>(function);
2846     }
2847     return false;
2848   } else {
2849     if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2850       auto &msg{context.Say(funcRef.v.source,
2851           "Reference to array '%s' with empty subscript list"_err_en_US,
2852           name->source)};
2853       if (name->symbol) {
2854         AttachDeclaration(&msg, *name->symbol);
2855       }
2856     }
2857     return true;
2858   }
2859 }
2860 
2861 // Converts, if appropriate, an original misparse of ambiguous syntax like
2862 // A(1) as a function reference into an array reference.
2863 // Misparsed structure constructors are detected elsewhere after generic
2864 // function call resolution fails.
2865 template <typename... A>
2866 static void FixMisparsedFunctionReference(
2867     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2868   // The parse tree is updated in situ when resolving an ambiguous parse.
2869   using uType = std::decay_t<decltype(constU)>;
2870   auto &u{const_cast<uType &>(constU)};
2871   if (auto *func{
2872           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2873     parser::FunctionReference &funcRef{func->value()};
2874     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2875     if (Symbol *
2876         origSymbol{
2877             common::visit(common::visitors{
2878                               [&](parser::Name &name) { return name.symbol; },
2879                               [&](parser::ProcComponentRef &pcr) {
2880                                 return pcr.v.thing.component.symbol;
2881                               },
2882                           },
2883                 proc.u)}) {
2884       Symbol &symbol{origSymbol->GetUltimate()};
2885       if (symbol.has<semantics::ObjectEntityDetails>() ||
2886           symbol.has<semantics::AssocEntityDetails>()) {
2887         // Note that expression in AssocEntityDetails cannot be a procedure
2888         // pointer as per C1105 so this cannot be a function reference.
2889         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2890                           uType>) {
2891           if (CheckFuncRefToArrayElement(context, funcRef)) {
2892             u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2893           }
2894         } else {
2895           DIE("can't fix misparsed function as array reference");
2896         }
2897       }
2898     }
2899   }
2900 }
2901 
2902 // Common handling of parse tree node types that retain the
2903 // representation of the analyzed expression.
2904 template <typename PARSED>
2905 MaybeExpr ExpressionAnalyzer::ExprOrVariable(
2906     const PARSED &x, parser::CharBlock source) {
2907   if (useSavedTypedExprs_ && x.typedExpr) {
2908     return x.typedExpr->v;
2909   }
2910   auto restorer{GetContextualMessages().SetLocation(source)};
2911   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2912       std::is_same_v<PARSED, parser::Variable>) {
2913     FixMisparsedFunctionReference(context_, x.u);
2914   }
2915   if (AssumedTypeDummy(x)) { // C710
2916     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2917     ResetExpr(x);
2918     return std::nullopt;
2919   }
2920   MaybeExpr result;
2921   if constexpr (common::HasMember<parser::StructureConstructor,
2922                     std::decay_t<decltype(x.u)>> &&
2923       common::HasMember<common::Indirection<parser::FunctionReference>,
2924           std::decay_t<decltype(x.u)>>) {
2925     if (const auto *funcRef{
2926             std::get_if<common::Indirection<parser::FunctionReference>>(
2927                 &x.u)}) {
2928       // Function references in Exprs might turn out to be misparsed structure
2929       // constructors; we have to try generic procedure resolution
2930       // first to be sure.
2931       std::optional<parser::StructureConstructor> ctor;
2932       result = Analyze(funcRef->value(), &ctor);
2933       if (result && ctor) {
2934         // A misparsed function reference is really a structure
2935         // constructor.  Repair the parse tree in situ.
2936         const_cast<PARSED &>(x).u = std::move(*ctor);
2937       }
2938     } else {
2939       result = Analyze(x.u);
2940     }
2941   } else {
2942     result = Analyze(x.u);
2943   }
2944   if (result) {
2945     SetExpr(x, Fold(std::move(*result)));
2946     return x.typedExpr->v;
2947   } else {
2948     ResetExpr(x);
2949     if (!context_.AnyFatalError()) {
2950       std::string buf;
2951       llvm::raw_string_ostream dump{buf};
2952       parser::DumpTree(dump, x);
2953       Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2954           dump.str());
2955     }
2956     return std::nullopt;
2957   }
2958 }
2959 
2960 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2961   return ExprOrVariable(expr, expr.source);
2962 }
2963 
2964 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2965   return ExprOrVariable(variable, variable.GetSource());
2966 }
2967 
2968 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) {
2969   if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) {
2970     if (!useSavedTypedExprs_ || !var->typedExpr) {
2971       parser::CharBlock source{var->GetSource()};
2972       auto restorer{GetContextualMessages().SetLocation(source)};
2973       FixMisparsedFunctionReference(context_, var->u);
2974       if (const auto *funcRef{
2975               std::get_if<common::Indirection<parser::FunctionReference>>(
2976                   &var->u)}) {
2977         // A Selector that parsed as a Variable might turn out during analysis
2978         // to actually be a structure constructor.  In that case, repair the
2979         // Variable parse tree node into an Expr
2980         std::optional<parser::StructureConstructor> ctor;
2981         if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) {
2982           if (ctor) {
2983             auto &writable{const_cast<parser::Selector &>(selector)};
2984             writable.u = parser::Expr{std::move(*ctor)};
2985             auto &expr{std::get<parser::Expr>(writable.u)};
2986             expr.source = source;
2987             SetExpr(expr, Fold(std::move(*result)));
2988             return expr.typedExpr->v;
2989           } else {
2990             SetExpr(*var, Fold(std::move(*result)));
2991             return var->typedExpr->v;
2992           }
2993         } else {
2994           ResetExpr(*var);
2995           if (context_.AnyFatalError()) {
2996             return std::nullopt;
2997           }
2998         }
2999       }
3000     }
3001   }
3002   // Not a Variable -> FunctionReference; handle normally as Variable or Expr
3003   return Analyze(selector.u);
3004 }
3005 
3006 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
3007   auto restorer{common::ScopedSet(inDataStmtConstant_, true)};
3008   return ExprOrVariable(x, x.source);
3009 }
3010 
3011 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) {
3012   return ExprOrVariable(x, parser::FindSourceLocation(x));
3013 }
3014 
3015 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) {
3016   return ExprOrVariable(x, parser::FindSourceLocation(x));
3017 }
3018 
3019 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
3020     TypeCategory category,
3021     const std::optional<parser::KindSelector> &selector) {
3022   int defaultKind{GetDefaultKind(category)};
3023   if (!selector) {
3024     return Expr<SubscriptInteger>{defaultKind};
3025   }
3026   return common::visit(
3027       common::visitors{
3028           [&](const parser::ScalarIntConstantExpr &x) {
3029             if (MaybeExpr kind{Analyze(x)}) {
3030               if (std::optional<std::int64_t> code{ToInt64(*kind)}) {
3031                 if (CheckIntrinsicKind(category, *code)) {
3032                   return Expr<SubscriptInteger>{*code};
3033                 }
3034               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) {
3035                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
3036               }
3037             }
3038             return Expr<SubscriptInteger>{defaultKind};
3039           },
3040           [&](const parser::KindSelector::StarSize &x) {
3041             std::intmax_t size = x.v;
3042             if (!CheckIntrinsicSize(category, size)) {
3043               size = defaultKind;
3044             } else if (category == TypeCategory::Complex) {
3045               size /= 2;
3046             }
3047             return Expr<SubscriptInteger>{size};
3048           },
3049       },
3050       selector->u);
3051 }
3052 
3053 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
3054   return context_.GetDefaultKind(category);
3055 }
3056 
3057 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
3058     common::TypeCategory category) {
3059   return {category, GetDefaultKind(category)};
3060 }
3061 
3062 bool ExpressionAnalyzer::CheckIntrinsicKind(
3063     TypeCategory category, std::int64_t kind) {
3064   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
3065     return true;
3066   } else {
3067     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
3068         ToUpperCase(EnumToString(category)), kind);
3069     return false;
3070   }
3071 }
3072 
3073 bool ExpressionAnalyzer::CheckIntrinsicSize(
3074     TypeCategory category, std::int64_t size) {
3075   if (category == TypeCategory::Complex) {
3076     // COMPLEX*16 == COMPLEX(KIND=8)
3077     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
3078       return true;
3079     }
3080   } else if (IsValidKindOfIntrinsicType(category, size)) {
3081     return true;
3082   }
3083   Say("%s*%jd is not a supported type"_err_en_US,
3084       ToUpperCase(EnumToString(category)), size);
3085   return false;
3086 }
3087 
3088 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
3089   return impliedDos_.insert(std::make_pair(name, kind)).second;
3090 }
3091 
3092 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
3093   auto iter{impliedDos_.find(name)};
3094   if (iter != impliedDos_.end()) {
3095     impliedDos_.erase(iter);
3096   }
3097 }
3098 
3099 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
3100     parser::CharBlock name) const {
3101   auto iter{impliedDos_.find(name)};
3102   if (iter != impliedDos_.cend()) {
3103     return {iter->second};
3104   } else {
3105     return std::nullopt;
3106   }
3107 }
3108 
3109 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
3110     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
3111   if (result) {
3112     if (auto type{result->GetType()}) {
3113       if (type->category() != category) { // C885
3114         Say(at, "Must have %s type, but is %s"_err_en_US,
3115             ToUpperCase(EnumToString(category)),
3116             ToUpperCase(type->AsFortran()));
3117         return false;
3118       } else if (defaultKind) {
3119         int kind{context_.GetDefaultKind(category)};
3120         if (type->kind() != kind) {
3121           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
3122               kind, ToUpperCase(EnumToString(category)),
3123               ToUpperCase(type->AsFortran()));
3124           return false;
3125         }
3126       }
3127     } else {
3128       Say(at, "Must have %s type, but is typeless"_err_en_US,
3129           ToUpperCase(EnumToString(category)));
3130       return false;
3131     }
3132   }
3133   return true;
3134 }
3135 
3136 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
3137     ProcedureDesignator &&proc, ActualArguments &&arguments) {
3138   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
3139     if (intrinsic->characteristics.value().attrs.test(
3140             characteristics::Procedure::Attr::NullPointer) &&
3141         arguments.empty()) {
3142       return Expr<SomeType>{NullPointer{}};
3143     }
3144   }
3145   if (const Symbol * symbol{proc.GetSymbol()}) {
3146     if (!ResolveForward(*symbol)) {
3147       return std::nullopt;
3148     }
3149   }
3150   if (auto chars{CheckCall(callSite, proc, arguments)}) {
3151     if (chars->functionResult) {
3152       const auto &result{*chars->functionResult};
3153       if (result.IsProcedurePointer()) {
3154         return Expr<SomeType>{
3155             ProcedureRef{std::move(proc), std::move(arguments)}};
3156       } else {
3157         // Not a procedure pointer, so type and shape are known.
3158         return TypedWrapper<FunctionRef, ProcedureRef>(
3159             DEREF(result.GetTypeAndShape()).type(),
3160             ProcedureRef{std::move(proc), std::move(arguments)});
3161       }
3162     } else {
3163       Say("Function result characteristics are not known"_err_en_US);
3164     }
3165   }
3166   return std::nullopt;
3167 }
3168 
3169 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
3170     parser::CharBlock intrinsic, ActualArguments &&arguments) {
3171   if (std::optional<SpecificCall> specificCall{
3172           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
3173               arguments, GetFoldingContext())}) {
3174     return MakeFunctionRef(intrinsic,
3175         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
3176         std::move(specificCall->arguments));
3177   } else {
3178     return std::nullopt;
3179   }
3180 }
3181 
3182 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
3183   source_.ExtendToCover(x.GetSource());
3184   if (MaybeExpr expr{context_.Analyze(x)}) {
3185     if (!IsConstantExpr(*expr)) {
3186       actuals_.emplace_back(std::move(*expr));
3187       SetArgSourceLocation(actuals_.back(), x.GetSource());
3188       return;
3189     }
3190     const Symbol *symbol{GetLastSymbol(*expr)};
3191     if (!symbol) {
3192       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3193           x.GetSource());
3194     } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
3195       auto *msg{context_.SayAt(x,
3196           "Assignment to subprogram '%s' is not allowed"_err_en_US,
3197           symbol->name())};
3198       if (subp->isFunction()) {
3199         const auto &result{subp->result().name()};
3200         msg->Attach(result, "Function result is '%s'"_en_US, result);
3201       }
3202     } else {
3203       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3204           symbol->name());
3205     }
3206   }
3207   fatalErrors_ = true;
3208 }
3209 
3210 void ArgumentAnalyzer::Analyze(
3211     const parser::ActualArgSpec &arg, bool isSubroutine) {
3212   // TODO: Actual arguments that are procedures and procedure pointers need to
3213   // be detected and represented (they're not expressions).
3214   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
3215   std::optional<ActualArgument> actual;
3216   common::visit(
3217       common::visitors{
3218           [&](const common::Indirection<parser::Expr> &x) {
3219             actual = AnalyzeExpr(x.value());
3220             SetArgSourceLocation(actual, x.value().source);
3221           },
3222           [&](const parser::AltReturnSpec &label) {
3223             if (!isSubroutine) {
3224               context_.Say("alternate return specification may not appear on"
3225                            " function reference"_err_en_US);
3226             }
3227             actual = ActualArgument(label.v);
3228           },
3229           [&](const parser::ActualArg::PercentRef &) {
3230             context_.Say(
3231                 "not yet implemented: %REF() intrinsic for arguments"_err_en_US);
3232           },
3233           [&](const parser::ActualArg::PercentVal &) {
3234             context_.Say(
3235                 "not yet implemetned: %VAL() intrinsic for arguments"_err_en_US);
3236           },
3237       },
3238       std::get<parser::ActualArg>(arg.t).u);
3239   if (actual) {
3240     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
3241       actual->set_keyword(argKW->v.source);
3242     }
3243     actuals_.emplace_back(std::move(*actual));
3244   } else {
3245     fatalErrors_ = true;
3246   }
3247 }
3248 
3249 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr,
3250     const DynamicType &leftType, const DynamicType &rightType) const {
3251   CHECK(actuals_.size() == 2);
3252   return semantics::IsIntrinsicRelational(
3253       opr, leftType, GetRank(0), rightType, GetRank(1));
3254 }
3255 
3256 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
3257   std::optional<DynamicType> leftType{GetType(0)};
3258   if (actuals_.size() == 1) {
3259     if (IsBOZLiteral(0)) {
3260       return opr == NumericOperator::Add; // unary '+'
3261     } else {
3262       return leftType && semantics::IsIntrinsicNumeric(*leftType);
3263     }
3264   } else {
3265     std::optional<DynamicType> rightType{GetType(1)};
3266     if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real
3267       auto cat1{rightType->category()};
3268       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
3269     } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ
3270       auto cat0{leftType->category()};
3271       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
3272     } else {
3273       return leftType && rightType &&
3274           semantics::IsIntrinsicNumeric(
3275               *leftType, GetRank(0), *rightType, GetRank(1));
3276     }
3277   }
3278 }
3279 
3280 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
3281   if (std::optional<DynamicType> leftType{GetType(0)}) {
3282     if (actuals_.size() == 1) {
3283       return semantics::IsIntrinsicLogical(*leftType);
3284     } else if (std::optional<DynamicType> rightType{GetType(1)}) {
3285       return semantics::IsIntrinsicLogical(
3286           *leftType, GetRank(0), *rightType, GetRank(1));
3287     }
3288   }
3289   return false;
3290 }
3291 
3292 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
3293   if (std::optional<DynamicType> leftType{GetType(0)}) {
3294     if (std::optional<DynamicType> rightType{GetType(1)}) {
3295       return semantics::IsIntrinsicConcat(
3296           *leftType, GetRank(0), *rightType, GetRank(1));
3297     }
3298   }
3299   return false;
3300 }
3301 
3302 bool ArgumentAnalyzer::CheckConformance() {
3303   if (actuals_.size() == 2) {
3304     const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
3305     const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
3306     if (lhs && rhs) {
3307       auto &foldingContext{context_.GetFoldingContext()};
3308       auto lhShape{GetShape(foldingContext, *lhs)};
3309       auto rhShape{GetShape(foldingContext, *rhs)};
3310       if (lhShape && rhShape) {
3311         if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape,
3312                 *rhShape, CheckConformanceFlags::EitherScalarExpandable,
3313                 "left operand", "right operand")
3314                  .value_or(false /*fail when conformance is not known now*/)) {
3315           fatalErrors_ = true;
3316           return false;
3317         }
3318       }
3319     }
3320   }
3321   return true; // no proven problem
3322 }
3323 
3324 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) {
3325   for (const std::optional<ActualArgument> &arg : actuals_) {
3326     if (arg) {
3327       if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) {
3328         if (IsNullPointer(*expr)) {
3329           context_.Say(
3330               source_, "A NULL() pointer is not allowed %s"_err_en_US, where);
3331           fatalErrors_ = true;
3332           return false;
3333         }
3334       }
3335     }
3336   }
3337   return true;
3338 }
3339 
3340 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr,
3341     parser::MessageFixedText error, const Symbol **definedOpSymbolPtr,
3342     bool isUserOp) {
3343   if (AnyUntypedOrMissingOperand()) {
3344     context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3345     return std::nullopt;
3346   }
3347   const Symbol *localDefinedOpSymbolPtr{nullptr};
3348   if (!definedOpSymbolPtr) {
3349     definedOpSymbolPtr = &localDefinedOpSymbolPtr;
3350   }
3351   {
3352     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3353     std::string oprNameString{
3354         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
3355     parser::CharBlock oprName{oprNameString};
3356     const auto &scope{context_.context().FindScope(source_)};
3357     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
3358       *definedOpSymbolPtr = symbol;
3359       parser::Name name{symbol->name(), symbol};
3360       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
3361         return result;
3362       }
3363     }
3364     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
3365       if (const Symbol *
3366           symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) {
3367         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
3368           return result;
3369         }
3370       }
3371     }
3372   }
3373   if (*definedOpSymbolPtr) {
3374     SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString()));
3375   } else if (actuals_.size() == 1 || AreConformable()) {
3376     if (CheckForNullPointer()) {
3377       context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3378     }
3379   } else {
3380     context_.Say(
3381         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
3382         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
3383   }
3384   return std::nullopt;
3385 }
3386 
3387 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
3388     std::vector<const char *> oprs, parser::MessageFixedText error) {
3389   const Symbol *definedOpSymbolPtr{nullptr};
3390   for (std::size_t i{1}; i < oprs.size(); ++i) {
3391     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3392     if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) {
3393       return result;
3394     }
3395   }
3396   return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr);
3397 }
3398 
3399 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
3400   ActualArguments localActuals{actuals_};
3401   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
3402   if (!proc) {
3403     proc = &symbol;
3404     localActuals.at(passIndex).value().set_isPassedObject();
3405   }
3406   CheckConformance();
3407   return context_.MakeFunctionRef(
3408       source_, ProcedureDesignator{*proc}, std::move(localActuals));
3409 }
3410 
3411 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
3412   using semantics::Tristate;
3413   const Expr<SomeType> &lhs{GetExpr(0)};
3414   const Expr<SomeType> &rhs{GetExpr(1)};
3415   std::optional<DynamicType> lhsType{lhs.GetType()};
3416   std::optional<DynamicType> rhsType{rhs.GetType()};
3417   int lhsRank{lhs.Rank()};
3418   int rhsRank{rhs.Rank()};
3419   Tristate isDefined{
3420       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
3421   if (isDefined == Tristate::No) {
3422     if (lhsType && rhsType) {
3423       AddAssignmentConversion(*lhsType, *rhsType);
3424     }
3425     return std::nullopt; // user-defined assignment not allowed for these args
3426   }
3427   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
3428   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
3429     if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032
3430       context_.Say(
3431           "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US,
3432           DEREF(procRef->proc().GetSymbol()).name());
3433     }
3434     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
3435     return std::move(*procRef);
3436   }
3437   if (isDefined == Tristate::Yes) {
3438     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
3439         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
3440       SayNoMatch("ASSIGNMENT(=)", true);
3441     }
3442   }
3443   return std::nullopt;
3444 }
3445 
3446 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
3447     TypeCategory lhs, TypeCategory rhs) {
3448   if (!context_.context().languageFeatures().IsEnabled(
3449           common::LanguageFeature::LogicalIntegerAssignment)) {
3450     return false;
3451   }
3452   std::optional<parser::MessageFixedText> msg;
3453   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
3454     // allow assignment to LOGICAL from INTEGER as a legacy extension
3455     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_port_en_US;
3456   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
3457     // ... and assignment to LOGICAL from INTEGER
3458     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_port_en_US;
3459   } else {
3460     return false;
3461   }
3462   if (context_.context().languageFeatures().ShouldWarn(
3463           common::LanguageFeature::LogicalIntegerAssignment)) {
3464     context_.Say(std::move(*msg));
3465   }
3466   return true;
3467 }
3468 
3469 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
3470   auto restorer{context_.GetContextualMessages().DiscardMessages()};
3471   std::string oprNameString{"assignment(=)"};
3472   parser::CharBlock oprName{oprNameString};
3473   const Symbol *proc{nullptr};
3474   const auto &scope{context_.context().FindScope(source_)};
3475   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
3476     ExpressionAnalyzer::AdjustActuals noAdjustment;
3477     auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)};
3478     if (pair.first) {
3479       proc = pair.first;
3480     } else {
3481       context_.EmitGenericResolutionError(*symbol, pair.second);
3482     }
3483   }
3484   int passedObjectIndex{-1};
3485   const Symbol *definedOpSymbol{nullptr};
3486   for (std::size_t i{0}; i < actuals_.size(); ++i) {
3487     if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) {
3488       if (const Symbol *
3489           resolution{GetBindingResolution(GetType(i), *specific)}) {
3490         proc = resolution;
3491       } else {
3492         proc = specific;
3493         passedObjectIndex = i;
3494       }
3495     }
3496   }
3497   if (!proc) {
3498     return std::nullopt;
3499   }
3500   ActualArguments actualsCopy{actuals_};
3501   if (passedObjectIndex >= 0) {
3502     actualsCopy[passedObjectIndex]->set_isPassedObject();
3503   }
3504   return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
3505 }
3506 
3507 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
3508   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
3509      << '\n';
3510   for (const auto &actual : actuals_) {
3511     if (!actual.has_value()) {
3512       os << "- error\n";
3513     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
3514       os << "- assumed type: " << symbol->name().ToString() << '\n';
3515     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
3516       expr->AsFortran(os << "- expr: ") << '\n';
3517     } else {
3518       DIE("bad ActualArgument");
3519     }
3520   }
3521 }
3522 
3523 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
3524     const parser::Expr &expr) {
3525   source_.ExtendToCover(expr.source);
3526   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
3527     expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
3528     if (isProcedureCall_) {
3529       ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}};
3530       SetArgSourceLocation(arg, expr.source);
3531       return std::move(arg);
3532     }
3533     context_.SayAt(expr.source,
3534         "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
3535   } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) {
3536     if (isProcedureCall_ || !IsProcedure(*argExpr)) {
3537       ActualArgument arg{std::move(*argExpr)};
3538       SetArgSourceLocation(arg, expr.source);
3539       return std::move(arg);
3540     }
3541     context_.SayAt(expr.source,
3542         IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US
3543                              : "Subroutine name is not allowed here"_err_en_US);
3544   }
3545   return std::nullopt;
3546 }
3547 
3548 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray(
3549     const parser::Expr &expr) {
3550   // If an expression's parse tree is a whole assumed-size array:
3551   //   Expr -> Designator -> DataRef -> Name
3552   // treat it as a special case for argument passing and bypass
3553   // the C1002/C1014 constraint checking in expression semantics.
3554   if (const auto *name{parser::Unwrap<parser::Name>(expr)}) {
3555     if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) {
3556       auto restorer{context_.AllowWholeAssumedSizeArray()};
3557       return context_.Analyze(expr);
3558     }
3559   }
3560   return context_.Analyze(expr);
3561 }
3562 
3563 bool ArgumentAnalyzer::AreConformable() const {
3564   CHECK(actuals_.size() == 2);
3565   return actuals_[0] && actuals_[1] &&
3566       evaluate::AreConformable(*actuals_[0], *actuals_[1]);
3567 }
3568 
3569 // Look for a type-bound operator in the type of arg number passIndex.
3570 const Symbol *ArgumentAnalyzer::FindBoundOp(
3571     parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) {
3572   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
3573   if (!type || !type->scope()) {
3574     return nullptr;
3575   }
3576   const Symbol *symbol{type->scope()->FindComponent(oprName)};
3577   if (!symbol) {
3578     return nullptr;
3579   }
3580   definedOp = symbol;
3581   ExpressionAnalyzer::AdjustActuals adjustment{
3582       [&](const Symbol &proc, ActualArguments &) {
3583         return passIndex == GetPassIndex(proc);
3584       }};
3585   auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
3586   if (!pair.first) {
3587     context_.EmitGenericResolutionError(*symbol, pair.second);
3588   }
3589   return pair.first;
3590 }
3591 
3592 // If there is an implicit conversion between intrinsic types, make it explicit
3593 void ArgumentAnalyzer::AddAssignmentConversion(
3594     const DynamicType &lhsType, const DynamicType &rhsType) {
3595   if (lhsType.category() == rhsType.category() &&
3596       (lhsType.category() == TypeCategory::Derived ||
3597           lhsType.kind() == rhsType.kind())) {
3598     // no conversion necessary
3599   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
3600     std::optional<parser::CharBlock> source;
3601     if (actuals_[1]) {
3602       source = actuals_[1]->sourceLocation();
3603     }
3604     actuals_[1] = ActualArgument{*rhsExpr};
3605     SetArgSourceLocation(actuals_[1], source);
3606   } else {
3607     actuals_[1] = std::nullopt;
3608   }
3609 }
3610 
3611 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
3612   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
3613 }
3614 int ArgumentAnalyzer::GetRank(std::size_t i) const {
3615   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
3616 }
3617 
3618 // If the argument at index i is a BOZ literal, convert its type to match the
3619 // otherType.  If it's REAL convert to REAL, otherwise convert to INTEGER.
3620 // Note that IBM supports comparing BOZ literals to CHARACTER operands.  That
3621 // is not currently supported.
3622 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType,
3623     std::size_t i, std::optional<DynamicType> otherType) {
3624   if (IsBOZLiteral(i)) {
3625     Expr<SomeType> &&argExpr{MoveExpr(i)};
3626     auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
3627     if (otherType && otherType->category() == TypeCategory::Real) {
3628       int kind{context_.context().GetDefaultKind(TypeCategory::Real)};
3629       MaybeExpr realExpr{
3630           ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))};
3631       actuals_[i] = std::move(*realExpr);
3632       thisType.emplace(TypeCategory::Real, kind);
3633     } else {
3634       int kind{context_.context().GetDefaultKind(TypeCategory::Integer)};
3635       MaybeExpr intExpr{
3636           ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))};
3637       actuals_[i] = std::move(*intExpr);
3638       thisType.emplace(TypeCategory::Integer, kind);
3639     }
3640   }
3641 }
3642 
3643 // Report error resolving opr when there is a user-defined one available
3644 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
3645   std::string type0{TypeAsFortran(0)};
3646   auto rank0{actuals_[0]->Rank()};
3647   if (actuals_.size() == 1) {
3648     if (rank0 > 0) {
3649       context_.Say("No intrinsic or user-defined %s matches "
3650                    "rank %d array of %s"_err_en_US,
3651           opr, rank0, type0);
3652     } else {
3653       context_.Say("No intrinsic or user-defined %s matches "
3654                    "operand type %s"_err_en_US,
3655           opr, type0);
3656     }
3657   } else {
3658     std::string type1{TypeAsFortran(1)};
3659     auto rank1{actuals_[1]->Rank()};
3660     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
3661       context_.Say("No intrinsic or user-defined %s matches "
3662                    "rank %d array of %s and rank %d array of %s"_err_en_US,
3663           opr, rank0, type0, rank1, type1);
3664     } else if (isAssignment && rank0 != rank1) {
3665       if (rank0 == 0) {
3666         context_.Say("No intrinsic or user-defined %s matches "
3667                      "scalar %s and rank %d array of %s"_err_en_US,
3668             opr, type0, rank1, type1);
3669       } else {
3670         context_.Say("No intrinsic or user-defined %s matches "
3671                      "rank %d array of %s and scalar %s"_err_en_US,
3672             opr, rank0, type0, type1);
3673       }
3674     } else {
3675       context_.Say("No intrinsic or user-defined %s matches "
3676                    "operand types %s and %s"_err_en_US,
3677           opr, type0, type1);
3678     }
3679   }
3680 }
3681 
3682 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
3683   if (i >= actuals_.size() || !actuals_[i]) {
3684     return "missing argument";
3685   } else if (std::optional<DynamicType> type{GetType(i)}) {
3686     return type->IsAssumedType()         ? "TYPE(*)"s
3687         : type->IsUnlimitedPolymorphic() ? "CLASS(*)"s
3688         : type->IsPolymorphic()          ? "CLASS("s + type->AsFortran() + ')'
3689         : type->category() == TypeCategory::Derived
3690         ? "TYPE("s + type->AsFortran() + ')'
3691         : type->category() == TypeCategory::Character
3692         ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
3693         : ToUpperCase(type->AsFortran());
3694   } else {
3695     return "untyped";
3696   }
3697 }
3698 
3699 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() {
3700   for (const auto &actual : actuals_) {
3701     if (!actual ||
3702         (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) {
3703       return true;
3704     }
3705   }
3706   return false;
3707 }
3708 } // namespace Fortran::evaluate
3709 
3710 namespace Fortran::semantics {
3711 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
3712     SemanticsContext &context, common::TypeCategory category,
3713     const std::optional<parser::KindSelector> &selector) {
3714   evaluate::ExpressionAnalyzer analyzer{context};
3715   auto restorer{
3716       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3717   return analyzer.AnalyzeKindSelector(category, selector);
3718 }
3719 
3720 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3721 
3722 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
3723   parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
3724   const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
3725   auto name{bounds.name.thing.thing};
3726   int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
3727   if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
3728     if (dynamicType->category() == TypeCategory::Integer) {
3729       kind = dynamicType->kind();
3730     }
3731   }
3732   exprAnalyzer_.AddImpliedDo(name.source, kind);
3733   parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
3734   exprAnalyzer_.RemoveImpliedDo(name.source);
3735   return false;
3736 }
3737 
3738 bool ExprChecker::Walk(const parser::Program &program) {
3739   parser::Walk(program, *this);
3740   return !context_.AnyFatalError();
3741 }
3742 } // namespace Fortran::semantics
3743