1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } else { 59 return GetCharLength(); 60 } 61 } 62 63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 64 const std::optional<parser::TypeSpec> &spec) { 65 if (spec) { 66 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 67 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 68 // (viz., an intrinsic type with valid known kind or a non-polymorphic 69 // & non-ABSTRACT derived type). 70 if (const semantics::IntrinsicTypeSpec * 71 intrinsic{typeSpec->AsIntrinsic()}) { 72 TypeCategory category{intrinsic->category()}; 73 if (auto optKind{ToInt64(intrinsic->kind())}) { 74 int kind{static_cast<int>(*optKind)}; 75 if (category == TypeCategory::Character) { 76 const semantics::CharacterTypeSpec &cts{ 77 typeSpec->characterTypeSpec()}; 78 const semantics::ParamValue &len{cts.length()}; 79 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 80 // type guards, but not in array constructors. 81 return DynamicTypeWithLength{DynamicType{kind, len}}; 82 } else { 83 return DynamicTypeWithLength{DynamicType{category, kind}}; 84 } 85 } 86 } else if (const semantics::DerivedTypeSpec * 87 derived{typeSpec->AsDerived()}) { 88 return DynamicTypeWithLength{DynamicType{*derived}}; 89 } 90 } 91 } 92 return std::nullopt; 93 } 94 95 class ArgumentAnalyzer { 96 public: 97 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 98 : context_{context}, source_{context.GetContextualMessages().at()}, 99 isProcedureCall_{false} {} 100 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 101 bool isProcedureCall = false) 102 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 103 bool fatalErrors() const { return fatalErrors_; } 104 ActualArguments &&GetActuals() { 105 CHECK(!fatalErrors_); 106 return std::move(actuals_); 107 } 108 const Expr<SomeType> &GetExpr(std::size_t i) const { 109 return DEREF(actuals_.at(i).value().UnwrapExpr()); 110 } 111 Expr<SomeType> &&MoveExpr(std::size_t i) { 112 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 113 } 114 void Analyze(const common::Indirection<parser::Expr> &x) { 115 Analyze(x.value()); 116 } 117 void Analyze(const parser::Expr &x) { 118 actuals_.emplace_back(AnalyzeExpr(x)); 119 fatalErrors_ |= !actuals_.back(); 120 } 121 void Analyze(const parser::Variable &); 122 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 123 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 124 std::optional<DynamicType> otherType); 125 126 bool IsIntrinsicRelational( 127 RelationalOperator, const DynamicType &, const DynamicType &) const; 128 bool IsIntrinsicLogical() const; 129 bool IsIntrinsicNumeric(NumericOperator) const; 130 bool IsIntrinsicConcat() const; 131 132 bool CheckConformance(); 133 bool CheckForNullPointer(const char *where = "as an operand here"); 134 135 // Find and return a user-defined operator or report an error. 136 // The provided message is used if there is no such operator. 137 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 138 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 139 template <typename E> 140 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 141 return TryDefinedOp( 142 context_.context().languageFeatures().GetNames(opr), msg); 143 } 144 // Find and return a user-defined assignment 145 std::optional<ProcedureRef> TryDefinedAssignment(); 146 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 147 std::optional<DynamicType> GetType(std::size_t) const; 148 void Dump(llvm::raw_ostream &); 149 150 private: 151 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 152 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 153 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 154 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 155 bool AreConformable() const; 156 const Symbol *FindBoundOp( 157 parser::CharBlock, int passIndex, const Symbol *&definedOp); 158 void AddAssignmentConversion( 159 const DynamicType &lhsType, const DynamicType &rhsType); 160 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 161 int GetRank(std::size_t) const; 162 bool IsBOZLiteral(std::size_t i) const { 163 return evaluate::IsBOZLiteral(GetExpr(i)); 164 } 165 void SayNoMatch(const std::string &, bool isAssignment = false); 166 std::string TypeAsFortran(std::size_t); 167 bool AnyUntypedOrMissingOperand(); 168 169 ExpressionAnalyzer &context_; 170 ActualArguments actuals_; 171 parser::CharBlock source_; 172 bool fatalErrors_{false}; 173 const bool isProcedureCall_; // false for user-defined op or assignment 174 }; 175 176 // Wraps a data reference in a typed Designator<>, and a procedure 177 // or procedure pointer reference in a ProcedureDesignator. 178 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 179 const Symbol &last{ref.GetLastSymbol()}; 180 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 181 if (semantics::IsProcedure(symbol)) { 182 if (auto *component{std::get_if<Component>(&ref.u)}) { 183 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 184 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 185 DIE("unexpected alternative in DataRef"); 186 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 187 if (symbol.has<semantics::GenericDetails>()) { 188 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 189 } else { 190 return Expr<SomeType>{ProcedureDesignator{symbol}}; 191 } 192 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 193 symbol.name().ToString())}; 194 interface && !interface->isRestrictedSpecific) { 195 SpecificIntrinsic intrinsic{ 196 symbol.name().ToString(), std::move(*interface)}; 197 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 198 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 199 } else { 200 Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, 201 symbol.name()); 202 } 203 return std::nullopt; 204 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 205 return result; 206 } else { 207 if (!context_.HasError(last) && !context_.HasError(symbol)) { 208 AttachDeclaration( 209 Say("'%s' is not an object that can appear in an expression"_err_en_US, 210 last.name()), 211 symbol); 212 context_.SetError(last); 213 } 214 return std::nullopt; 215 } 216 } 217 218 // Some subscript semantic checks must be deferred until all of the 219 // subscripts are in hand. 220 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 221 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 222 int symbolRank{symbol.Rank()}; 223 int subscripts{static_cast<int>(ref.size())}; 224 if (subscripts == 0) { 225 return std::nullopt; // error recovery 226 } else if (subscripts != symbolRank) { 227 if (symbolRank != 0) { 228 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 229 symbolRank, symbol.name(), subscripts); 230 } 231 return std::nullopt; 232 } else if (Component * component{ref.base().UnwrapComponent()}) { 233 int baseRank{component->base().Rank()}; 234 if (baseRank > 0) { 235 int subscriptRank{0}; 236 for (const auto &expr : ref.subscript()) { 237 subscriptRank += expr.Rank(); 238 } 239 if (subscriptRank > 0) { // C919a 240 Say("Subscripts of component '%s' of rank-%d derived type " 241 "array have rank %d but must all be scalar"_err_en_US, 242 symbol.name(), baseRank, subscriptRank); 243 return std::nullopt; 244 } 245 } 246 } else if (const auto *object{ 247 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 248 // C928 & C1002 249 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 250 if (!last->upper() && object->IsAssumedSize()) { 251 Say("Assumed-size array '%s' must have explicit final " 252 "subscript upper bound value"_err_en_US, 253 symbol.name()); 254 return std::nullopt; 255 } 256 } 257 } else { 258 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 259 // which, if not an object, must be a construct entity from 260 // SELECT TYPE/RANK or ASSOCIATE. 261 CHECK(symbol.has<semantics::AssocEntityDetails>()); 262 } 263 return Designate(DataRef{std::move(ref)}); 264 } 265 266 // Applies subscripts to a data reference. 267 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 268 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 269 if (subscripts.empty()) { 270 return std::nullopt; // error recovery 271 } 272 return std::visit( 273 common::visitors{ 274 [&](SymbolRef &&symbol) { 275 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 276 }, 277 [&](Component &&c) { 278 return CompleteSubscripts( 279 ArrayRef{std::move(c), std::move(subscripts)}); 280 }, 281 [&](auto &&) -> MaybeExpr { 282 DIE("bad base for ArrayRef"); 283 return std::nullopt; 284 }, 285 }, 286 std::move(dataRef.u)); 287 } 288 289 // Top-level checks for data references. 290 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 291 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 292 const Symbol &symbol{component->GetLastSymbol()}; 293 int componentRank{symbol.Rank()}; 294 if (componentRank > 0) { 295 int baseRank{component->base().Rank()}; 296 if (baseRank > 0) { // C919a 297 Say("Reference to whole rank-%d component '%%%s' of " 298 "rank-%d array of derived type is not allowed"_err_en_US, 299 componentRank, symbol.name(), baseRank); 300 } 301 } 302 } 303 return Designate(std::move(dataRef)); 304 } 305 306 // Parse tree correction after a substring S(j:k) was misparsed as an 307 // array section. N.B. Fortran substrings have to have a range, not a 308 // single index. 309 static void FixMisparsedSubstring(const parser::Designator &d) { 310 auto &mutate{const_cast<parser::Designator &>(d)}; 311 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 312 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 313 &dataRef->u)}) { 314 parser::ArrayElement &arrElement{ae->value()}; 315 if (!arrElement.subscripts.empty()) { 316 auto iter{arrElement.subscripts.begin()}; 317 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 318 if (!std::get<2>(triplet->t) /* no stride */ && 319 ++iter == arrElement.subscripts.end() /* one subscript */) { 320 if (Symbol * 321 symbol{std::visit( 322 common::visitors{ 323 [](parser::Name &n) { return n.symbol; }, 324 [](common::Indirection<parser::StructureComponent> 325 &sc) { return sc.value().component.symbol; }, 326 [](auto &) -> Symbol * { return nullptr; }, 327 }, 328 arrElement.base.u)}) { 329 const Symbol &ultimate{symbol->GetUltimate()}; 330 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 331 if (!ultimate.IsObjectArray() && 332 type->category() == semantics::DeclTypeSpec::Character) { 333 // The ambiguous S(j:k) was parsed as an array section 334 // reference, but it's now clear that it's a substring. 335 // Fix the parse tree in situ. 336 mutate.u = arrElement.ConvertToSubstring(); 337 } 338 } 339 } 340 } 341 } 342 } 343 } 344 } 345 } 346 347 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 348 auto restorer{GetContextualMessages().SetLocation(d.source)}; 349 FixMisparsedSubstring(d); 350 // These checks have to be deferred to these "top level" data-refs where 351 // we can be sure that there are no following subscripts (yet). 352 // Substrings have already been run through TopLevelChecks() and 353 // won't be returned by ExtractDataRef(). 354 if (MaybeExpr result{Analyze(d.u)}) { 355 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 356 return TopLevelChecks(std::move(*dataRef)); 357 } 358 return result; 359 } 360 return std::nullopt; 361 } 362 363 // A utility subroutine to repackage optional expressions of various levels 364 // of type specificity as fully general MaybeExpr values. 365 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 366 return AsGenericExpr(std::move(x)); 367 } 368 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 369 if (x) { 370 return AsMaybeExpr(std::move(*x)); 371 } 372 return std::nullopt; 373 } 374 375 // Type kind parameter values for literal constants. 376 int ExpressionAnalyzer::AnalyzeKindParam( 377 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 378 if (!kindParam) { 379 return defaultKind; 380 } 381 return std::visit( 382 common::visitors{ 383 [](std::uint64_t k) { return static_cast<int>(k); }, 384 [&](const parser::Scalar< 385 parser::Integer<parser::Constant<parser::Name>>> &n) { 386 if (MaybeExpr ie{Analyze(n)}) { 387 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 388 int iv = *i64; 389 if (iv == *i64) { 390 return iv; 391 } 392 } 393 } 394 return defaultKind; 395 }, 396 }, 397 kindParam->u); 398 } 399 400 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 401 struct IntTypeVisitor { 402 using Result = MaybeExpr; 403 using Types = IntegerTypes; 404 template <typename T> Result Test() { 405 if (T::kind >= kind) { 406 const char *p{digits.begin()}; 407 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 408 if (!value.overflow) { 409 if (T::kind > kind) { 410 if (!isDefaultKind || 411 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 412 return std::nullopt; 413 } else if (analyzer.context().ShouldWarn( 414 LanguageFeature::BigIntLiterals)) { 415 analyzer.Say(digits, 416 "Integer literal is too large for default INTEGER(KIND=%d); " 417 "assuming INTEGER(KIND=%d)"_en_US, 418 kind, T::kind); 419 } 420 } 421 return Expr<SomeType>{ 422 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 423 } 424 } 425 return std::nullopt; 426 } 427 ExpressionAnalyzer &analyzer; 428 parser::CharBlock digits; 429 int kind; 430 bool isDefaultKind; 431 }; 432 433 template <typename PARSED> 434 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 435 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 436 bool isDefaultKind{!kindParam}; 437 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 438 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 439 auto digits{std::get<parser::CharBlock>(x.t)}; 440 if (MaybeExpr result{common::SearchTypes( 441 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 442 return result; 443 } else if (isDefaultKind) { 444 Say(digits, 445 "Integer literal is too large for any allowable " 446 "kind of INTEGER"_err_en_US); 447 } else { 448 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 449 kind); 450 } 451 } 452 return std::nullopt; 453 } 454 455 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 456 auto restorer{ 457 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 458 return IntLiteralConstant(x); 459 } 460 461 MaybeExpr ExpressionAnalyzer::Analyze( 462 const parser::SignedIntLiteralConstant &x) { 463 auto restorer{GetContextualMessages().SetLocation(x.source)}; 464 return IntLiteralConstant(x); 465 } 466 467 template <typename TYPE> 468 Constant<TYPE> ReadRealLiteral( 469 parser::CharBlock source, FoldingContext &context) { 470 const char *p{source.begin()}; 471 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 472 CHECK(p == source.end()); 473 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 474 auto value{valWithFlags.value}; 475 if (context.flushSubnormalsToZero()) { 476 value = value.FlushSubnormalToZero(); 477 } 478 return {value}; 479 } 480 481 struct RealTypeVisitor { 482 using Result = std::optional<Expr<SomeReal>>; 483 using Types = RealTypes; 484 485 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 486 : kind{k}, literal{lit}, context{ctx} {} 487 488 template <typename T> Result Test() { 489 if (kind == T::kind) { 490 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 491 } 492 return std::nullopt; 493 } 494 495 int kind; 496 parser::CharBlock literal; 497 FoldingContext &context; 498 }; 499 500 // Reads a real literal constant and encodes it with the right kind. 501 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 502 // Use a local message context around the real literal for better 503 // provenance on any messages. 504 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 505 // If a kind parameter appears, it defines the kind of the literal and the 506 // letter used in an exponent part must be 'E' (e.g., the 'E' in 507 // "6.02214E+23"). In the absence of an explicit kind parameter, any 508 // exponent letter determines the kind. Otherwise, defaults apply. 509 auto &defaults{context_.defaultKinds()}; 510 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 511 const char *end{x.real.source.end()}; 512 char expoLetter{' '}; 513 std::optional<int> letterKind; 514 for (const char *p{x.real.source.begin()}; p < end; ++p) { 515 if (parser::IsLetter(*p)) { 516 expoLetter = *p; 517 switch (expoLetter) { 518 case 'e': 519 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 520 break; 521 case 'd': 522 letterKind = defaults.doublePrecisionKind(); 523 break; 524 case 'q': 525 letterKind = defaults.quadPrecisionKind(); 526 break; 527 default: 528 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 529 } 530 break; 531 } 532 } 533 if (letterKind) { 534 defaultKind = *letterKind; 535 } 536 // C716 requires 'E' as an exponent, but this is more useful 537 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 538 if (letterKind && kind != *letterKind && expoLetter != 'e') { 539 Say("Explicit kind parameter on real constant disagrees with " 540 "exponent letter '%c'"_en_US, 541 expoLetter); 542 } 543 auto result{common::SearchTypes( 544 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 545 if (!result) { // C717 546 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 547 } 548 return AsMaybeExpr(std::move(result)); 549 } 550 551 MaybeExpr ExpressionAnalyzer::Analyze( 552 const parser::SignedRealLiteralConstant &x) { 553 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 554 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 555 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 556 if (sign == parser::Sign::Negative) { 557 return AsGenericExpr(-std::move(realExpr)); 558 } 559 } 560 return result; 561 } 562 return std::nullopt; 563 } 564 565 MaybeExpr ExpressionAnalyzer::Analyze( 566 const parser::SignedComplexLiteralConstant &x) { 567 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 568 if (!result) { 569 return std::nullopt; 570 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 571 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 572 } else { 573 return result; 574 } 575 } 576 577 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 578 return Analyze(x.u); 579 } 580 581 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 582 return AsMaybeExpr( 583 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 584 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 585 } 586 587 // CHARACTER literal processing. 588 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 589 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 590 return std::nullopt; 591 } 592 switch (kind) { 593 case 1: 594 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 595 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 596 string, true)}); 597 case 2: 598 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 599 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 600 string, true)}); 601 case 4: 602 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 603 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 604 string, true)}); 605 default: 606 CRASH_NO_CASE; 607 } 608 } 609 610 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 611 int kind{ 612 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 613 auto value{std::get<std::string>(x.t)}; 614 return AnalyzeString(std::move(value), kind); 615 } 616 617 MaybeExpr ExpressionAnalyzer::Analyze( 618 const parser::HollerithLiteralConstant &x) { 619 int kind{GetDefaultKind(TypeCategory::Character)}; 620 auto value{x.v}; 621 return AnalyzeString(std::move(value), kind); 622 } 623 624 // .TRUE. and .FALSE. of various kinds 625 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 626 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 627 GetDefaultKind(TypeCategory::Logical))}; 628 bool value{std::get<bool>(x.t)}; 629 auto result{common::SearchTypes( 630 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 631 kind, std::move(value)})}; 632 if (!result) { 633 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 634 } 635 return result; 636 } 637 638 // BOZ typeless literals 639 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 640 const char *p{x.v.c_str()}; 641 std::uint64_t base{16}; 642 switch (*p++) { 643 case 'b': 644 base = 2; 645 break; 646 case 'o': 647 base = 8; 648 break; 649 case 'z': 650 break; 651 case 'x': 652 break; 653 default: 654 CRASH_NO_CASE; 655 } 656 CHECK(*p == '"'); 657 ++p; 658 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 659 if (*p != '"') { 660 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 661 x.v); // C7107, C7108 662 return std::nullopt; 663 } 664 if (value.overflow) { 665 Say("BOZ literal '%s' too large"_err_en_US, x.v); 666 return std::nullopt; 667 } 668 return AsGenericExpr(std::move(value.value)); 669 } 670 671 // Names and named constants 672 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 673 auto restorer{GetContextualMessages().SetLocation(n.source)}; 674 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 675 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 676 *kind, AsExpr(ImpliedDoIndex{n.source}))); 677 } else if (context_.HasError(n)) { 678 return std::nullopt; 679 } else if (!n.symbol) { 680 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 681 return std::nullopt; 682 } else { 683 const Symbol &ultimate{n.symbol->GetUltimate()}; 684 if (ultimate.has<semantics::TypeParamDetails>()) { 685 // A bare reference to a derived type parameter (within a parameterized 686 // derived type definition) 687 return Fold(ConvertToType( 688 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 689 } else { 690 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 691 if (const semantics::Scope * 692 pure{semantics::FindPureProcedureContaining( 693 context_.FindScope(n.source))}) { 694 SayAt(n, 695 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 696 n.source, DEREF(pure->symbol()).name()); 697 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 698 } 699 } 700 if (!isWholeAssumedSizeArrayOk_ && 701 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 702 AttachDeclaration( 703 SayAt(n, 704 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 705 n.source), 706 *n.symbol); 707 } 708 return Designate(DataRef{*n.symbol}); 709 } 710 } 711 } 712 713 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 714 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 715 if (MaybeExpr value{Analyze(n.v)}) { 716 Expr<SomeType> folded{Fold(std::move(*value))}; 717 if (IsConstantExpr(folded)) { 718 return folded; 719 } 720 Say(n.v.source, "must be a constant"_err_en_US); // C718 721 } 722 return std::nullopt; 723 } 724 725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 726 if (MaybeExpr value{Analyze(n.v)}) { 727 // Subtle: when the NullInit is a DataStmtConstant, it might 728 // be a misparse of a structure constructor without parameters 729 // or components (e.g., T()). Checking the result to ensure 730 // that a "=>" data entity initializer actually resolved to 731 // a null pointer has to be done by the caller. 732 return Fold(std::move(*value)); 733 } 734 return std::nullopt; 735 } 736 737 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 738 return Analyze(x.value()); 739 } 740 741 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 742 if (const auto &repeat{ 743 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 744 x.repetitions = -1; 745 if (MaybeExpr expr{Analyze(repeat->u)}) { 746 Expr<SomeType> folded{Fold(std::move(*expr))}; 747 if (auto value{ToInt64(folded)}) { 748 if (*value >= 0) { // C882 749 x.repetitions = *value; 750 } else { 751 Say(FindSourceLocation(repeat), 752 "Repeat count (%jd) for data value must not be negative"_err_en_US, 753 *value); 754 } 755 } 756 } 757 } 758 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 759 } 760 761 // Substring references 762 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 763 const std::optional<parser::ScalarIntExpr> &bound) { 764 if (bound) { 765 if (MaybeExpr expr{Analyze(*bound)}) { 766 if (expr->Rank() > 1) { 767 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 768 } 769 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 770 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 771 return {std::move(*ssIntExpr)}; 772 } 773 return {Expr<SubscriptInteger>{ 774 Convert<SubscriptInteger, TypeCategory::Integer>{ 775 std::move(*intExpr)}}}; 776 } else { 777 Say("substring bound expression is not INTEGER"_err_en_US); 778 } 779 } 780 } 781 return std::nullopt; 782 } 783 784 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 785 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 786 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 787 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 788 if (std::optional<DataRef> checked{ 789 ExtractDataRef(std::move(*newBaseExpr))}) { 790 const parser::SubstringRange &range{ 791 std::get<parser::SubstringRange>(ss.t)}; 792 std::optional<Expr<SubscriptInteger>> first{ 793 GetSubstringBound(std::get<0>(range.t))}; 794 std::optional<Expr<SubscriptInteger>> last{ 795 GetSubstringBound(std::get<1>(range.t))}; 796 const Symbol &symbol{checked->GetLastSymbol()}; 797 if (std::optional<DynamicType> dynamicType{ 798 DynamicType::From(symbol)}) { 799 if (dynamicType->category() == TypeCategory::Character) { 800 return WrapperHelper<TypeCategory::Character, Designator, 801 Substring>(dynamicType->kind(), 802 Substring{std::move(checked.value()), std::move(first), 803 std::move(last)}); 804 } 805 } 806 Say("substring may apply only to CHARACTER"_err_en_US); 807 } 808 } 809 } 810 } 811 return std::nullopt; 812 } 813 814 // CHARACTER literal substrings 815 MaybeExpr ExpressionAnalyzer::Analyze( 816 const parser::CharLiteralConstantSubstring &x) { 817 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 818 std::optional<Expr<SubscriptInteger>> lower{ 819 GetSubstringBound(std::get<0>(range.t))}; 820 std::optional<Expr<SubscriptInteger>> upper{ 821 GetSubstringBound(std::get<1>(range.t))}; 822 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 823 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 824 Expr<SubscriptInteger> length{ 825 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 826 charExpr->u)}; 827 if (!lower) { 828 lower = Expr<SubscriptInteger>{1}; 829 } 830 if (!upper) { 831 upper = Expr<SubscriptInteger>{ 832 static_cast<std::int64_t>(ToInt64(length).value())}; 833 } 834 return std::visit( 835 [&](auto &&ckExpr) -> MaybeExpr { 836 using Result = ResultType<decltype(ckExpr)>; 837 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 838 CHECK(DEREF(cp).size() == 1); 839 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 840 staticData->set_alignment(Result::kind) 841 .set_itemBytes(Result::kind) 842 .Push(cp->GetScalarValue().value()); 843 Substring substring{std::move(staticData), std::move(lower.value()), 844 std::move(upper.value())}; 845 return AsGenericExpr( 846 Expr<Result>{Designator<Result>{std::move(substring)}}); 847 }, 848 std::move(charExpr->u)); 849 } 850 } 851 return std::nullopt; 852 } 853 854 // Subscripted array references 855 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 856 MaybeExpr &&expr) { 857 if (expr) { 858 if (expr->Rank() > 1) { 859 Say("Subscript expression has rank %d greater than 1"_err_en_US, 860 expr->Rank()); 861 } 862 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 863 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 864 return std::move(*ssIntExpr); 865 } else { 866 return Expr<SubscriptInteger>{ 867 Convert<SubscriptInteger, TypeCategory::Integer>{ 868 std::move(*intExpr)}}; 869 } 870 } else { 871 Say("Subscript expression is not INTEGER"_err_en_US); 872 } 873 } 874 return std::nullopt; 875 } 876 877 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 878 const std::optional<parser::Subscript> &s) { 879 if (s) { 880 return AsSubscript(Analyze(*s)); 881 } else { 882 return std::nullopt; 883 } 884 } 885 886 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 887 const parser::SectionSubscript &ss) { 888 return std::visit( 889 common::visitors{ 890 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 891 const auto &lower{std::get<0>(t.t)}; 892 const auto &upper{std::get<1>(t.t)}; 893 const auto &stride{std::get<2>(t.t)}; 894 auto result{Triplet{ 895 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 896 if ((lower && !result.lower()) || (upper && !result.upper())) { 897 return std::nullopt; 898 } else { 899 return std::make_optional<Subscript>(result); 900 } 901 }, 902 [&](const auto &s) -> std::optional<Subscript> { 903 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 904 return Subscript{std::move(*subscriptExpr)}; 905 } else { 906 return std::nullopt; 907 } 908 }, 909 }, 910 ss.u); 911 } 912 913 // Empty result means an error occurred 914 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 915 const std::list<parser::SectionSubscript> &sss) { 916 bool error{false}; 917 std::vector<Subscript> subscripts; 918 for (const auto &s : sss) { 919 if (auto subscript{AnalyzeSectionSubscript(s)}) { 920 subscripts.emplace_back(std::move(*subscript)); 921 } else { 922 error = true; 923 } 924 } 925 return !error ? subscripts : std::vector<Subscript>{}; 926 } 927 928 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 929 MaybeExpr baseExpr; 930 { 931 auto restorer{AllowWholeAssumedSizeArray()}; 932 baseExpr = Analyze(ae.base); 933 } 934 if (baseExpr) { 935 if (ae.subscripts.empty()) { 936 // will be converted to function call later or error reported 937 } else if (baseExpr->Rank() == 0) { 938 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 939 if (!context_.HasError(symbol)) { 940 Say("'%s' is not an array"_err_en_US, symbol->name()); 941 context_.SetError(*symbol); 942 } 943 } 944 } else if (std::optional<DataRef> dataRef{ 945 ExtractDataRef(std::move(*baseExpr))}) { 946 return ApplySubscripts( 947 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 948 } else { 949 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 950 } 951 } 952 // error was reported: analyze subscripts without reporting more errors 953 auto restorer{GetContextualMessages().DiscardMessages()}; 954 AnalyzeSectionSubscripts(ae.subscripts); 955 return std::nullopt; 956 } 957 958 // Type parameter inquiries apply to data references, but don't depend 959 // on any trailing (co)subscripts. 960 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 961 return std::visit( 962 common::visitors{ 963 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 964 [](Component &&component) { 965 return NamedEntity{std::move(component)}; 966 }, 967 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 968 [](CoarrayRef &&coarrayRef) { 969 return NamedEntity{coarrayRef.GetLastSymbol()}; 970 }, 971 }, 972 std::move(designator.u)); 973 } 974 975 // Components of parent derived types are explicitly represented as such. 976 std::optional<Component> ExpressionAnalyzer::CreateComponent( 977 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 978 if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b 979 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); 980 } 981 if (&component.owner() == &scope) { 982 return Component{std::move(base), component}; 983 } 984 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 985 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 986 return CreateComponent( 987 DataRef{Component{std::move(base), *parentComponent}}, component, 988 *parentScope); 989 } 990 } 991 return std::nullopt; 992 } 993 994 // Derived type component references and type parameter inquiries 995 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 996 MaybeExpr base{Analyze(sc.base)}; 997 Symbol *sym{sc.component.symbol}; 998 if (!base || !sym || context_.HasError(sym)) { 999 return std::nullopt; 1000 } 1001 const auto &name{sc.component.source}; 1002 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1003 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1004 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1005 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1006 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1007 if (dyType->category() == TypeCategory::Integer) { 1008 auto restorer{GetContextualMessages().SetLocation(name)}; 1009 return Fold(ConvertToType(*dyType, 1010 AsGenericExpr(TypeParamInquiry{ 1011 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1012 } 1013 } 1014 Say(name, "Type parameter is not INTEGER"_err_en_US); 1015 } else { 1016 Say(name, 1017 "A type parameter inquiry must be applied to " 1018 "a designator"_err_en_US); 1019 } 1020 } else if (!dtSpec || !dtSpec->scope()) { 1021 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1022 return std::nullopt; 1023 } else if (std::optional<DataRef> dataRef{ 1024 ExtractDataRef(std::move(*dtExpr))}) { 1025 if (auto component{ 1026 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1027 return Designate(DataRef{std::move(*component)}); 1028 } else { 1029 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1030 dtSpec->typeSymbol().name()); 1031 } 1032 } else { 1033 Say(name, 1034 "Base of component reference must be a data reference"_err_en_US); 1035 } 1036 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1037 // special part-ref: %re, %im, %kind, %len 1038 // Type errors are detected and reported in semantics. 1039 using MiscKind = semantics::MiscDetails::Kind; 1040 MiscKind kind{details->kind()}; 1041 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1042 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1043 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1044 Expr<SomeReal> realExpr{std::visit( 1045 [&](const auto &z) { 1046 using PartType = typename ResultType<decltype(z)>::Part; 1047 auto part{kind == MiscKind::ComplexPartRe 1048 ? ComplexPart::Part::RE 1049 : ComplexPart::Part::IM}; 1050 return AsCategoryExpr(Designator<PartType>{ 1051 ComplexPart{std::move(*dataRef), part}}); 1052 }, 1053 zExpr->u)}; 1054 return AsGenericExpr(std::move(realExpr)); 1055 } 1056 } 1057 } else if (kind == MiscKind::KindParamInquiry || 1058 kind == MiscKind::LenParamInquiry) { 1059 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1060 return MakeFunctionRef( 1061 name, ActualArguments{ActualArgument{std::move(*base)}}); 1062 } else { 1063 DIE("unexpected MiscDetails::Kind"); 1064 } 1065 } else { 1066 Say(name, "derived type required before component reference"_err_en_US); 1067 } 1068 return std::nullopt; 1069 } 1070 1071 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1072 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1073 DataRef *dataRef{&*maybeDataRef}; 1074 std::vector<Subscript> subscripts; 1075 SymbolVector reversed; 1076 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1077 subscripts = std::move(aRef->subscript()); 1078 reversed.push_back(aRef->GetLastSymbol()); 1079 if (Component * component{aRef->base().UnwrapComponent()}) { 1080 dataRef = &component->base(); 1081 } else { 1082 dataRef = nullptr; 1083 } 1084 } 1085 if (dataRef) { 1086 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1087 reversed.push_back(component->GetLastSymbol()); 1088 dataRef = &component->base(); 1089 } 1090 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1091 reversed.push_back(*baseSym); 1092 } else { 1093 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1094 } 1095 } 1096 std::vector<Expr<SubscriptInteger>> cosubscripts; 1097 bool cosubsOk{true}; 1098 for (const auto &cosub : 1099 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1100 MaybeExpr coex{Analyze(cosub)}; 1101 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1102 cosubscripts.push_back( 1103 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1104 } else { 1105 cosubsOk = false; 1106 } 1107 } 1108 if (cosubsOk && !reversed.empty()) { 1109 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1110 const Symbol &symbol{reversed.front()}; 1111 if (numCosubscripts != symbol.Corank()) { 1112 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1113 symbol.name(), symbol.Corank(), numCosubscripts); 1114 } 1115 } 1116 for (const auto &imageSelSpec : 1117 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1118 std::visit( 1119 common::visitors{ 1120 [&](const auto &x) { Analyze(x.v); }, 1121 }, 1122 imageSelSpec.u); 1123 } 1124 // Reverse the chain of symbols so that the base is first and coarray 1125 // ultimate component is last. 1126 if (cosubsOk) { 1127 return Designate( 1128 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1129 std::move(subscripts), std::move(cosubscripts)}}); 1130 } 1131 } 1132 return std::nullopt; 1133 } 1134 1135 int ExpressionAnalyzer::IntegerTypeSpecKind( 1136 const parser::IntegerTypeSpec &spec) { 1137 Expr<SubscriptInteger> value{ 1138 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1139 if (auto kind{ToInt64(value)}) { 1140 return static_cast<int>(*kind); 1141 } 1142 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1143 return GetDefaultKind(TypeCategory::Integer); 1144 } 1145 1146 // Array constructors 1147 1148 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1149 // all happen to have the same actual type T into one ArrayConstructor<T>. 1150 template <typename T> 1151 ArrayConstructorValues<T> MakeSpecific( 1152 ArrayConstructorValues<SomeType> &&from) { 1153 ArrayConstructorValues<T> to; 1154 for (ArrayConstructorValue<SomeType> &x : from) { 1155 std::visit( 1156 common::visitors{ 1157 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1158 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1159 to.Push(std::move(DEREF(typed))); 1160 }, 1161 [&](ImpliedDo<SomeType> &&impliedDo) { 1162 to.Push(ImpliedDo<T>{impliedDo.name(), 1163 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1164 std::move(impliedDo.stride()), 1165 MakeSpecific<T>(std::move(impliedDo.values()))}); 1166 }, 1167 }, 1168 std::move(x.u)); 1169 } 1170 return to; 1171 } 1172 1173 class ArrayConstructorContext { 1174 public: 1175 ArrayConstructorContext( 1176 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1177 : exprAnalyzer_{c}, type_{std::move(t)} {} 1178 1179 void Add(const parser::AcValue &); 1180 MaybeExpr ToExpr(); 1181 1182 // These interfaces allow *this to be used as a type visitor argument to 1183 // common::SearchTypes() to convert the array constructor to a typed 1184 // expression in ToExpr(). 1185 using Result = MaybeExpr; 1186 using Types = AllTypes; 1187 template <typename T> Result Test() { 1188 if (type_ && type_->category() == T::category) { 1189 if constexpr (T::category == TypeCategory::Derived) { 1190 if (!type_->IsUnlimitedPolymorphic()) { 1191 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1192 MakeSpecific<T>(std::move(values_))}); 1193 } 1194 } else if (type_->kind() == T::kind) { 1195 if constexpr (T::category == TypeCategory::Character) { 1196 if (auto len{type_->LEN()}) { 1197 return AsMaybeExpr(ArrayConstructor<T>{ 1198 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1199 } 1200 } else { 1201 return AsMaybeExpr( 1202 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1203 } 1204 } 1205 } 1206 return std::nullopt; 1207 } 1208 1209 private: 1210 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1211 1212 void Push(MaybeExpr &&); 1213 void Add(const parser::AcValue::Triplet &); 1214 void Add(const parser::Expr &); 1215 void Add(const parser::AcImpliedDo &); 1216 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1217 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1218 std::int64_t stride); 1219 1220 template <int KIND, typename A> 1221 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1222 const A &x) { 1223 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1224 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1225 return Fold(exprAnalyzer_.GetFoldingContext(), 1226 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1227 std::move(DEREF(intExpr)))); 1228 } 1229 return std::nullopt; 1230 } 1231 1232 // Nested array constructors all reference the same ExpressionAnalyzer, 1233 // which represents the nest of active implied DO loop indices. 1234 ExpressionAnalyzer &exprAnalyzer_; 1235 std::optional<DynamicTypeWithLength> type_; 1236 bool explicitType_{type_.has_value()}; 1237 std::optional<std::int64_t> constantLength_; 1238 ArrayConstructorValues<SomeType> values_; 1239 std::uint64_t messageDisplayedSet_{0}; 1240 }; 1241 1242 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1243 if (!x) { 1244 return; 1245 } 1246 if (!type_) { 1247 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1248 // Treat an array constructor of BOZ as if default integer. 1249 if (exprAnalyzer_.context().ShouldWarn( 1250 common::LanguageFeature::BOZAsDefaultInteger)) { 1251 exprAnalyzer_.Say( 1252 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1253 } 1254 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1255 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1256 std::move(*boz))); 1257 } 1258 } 1259 std::optional<DynamicType> dyType{x->GetType()}; 1260 if (!dyType) { 1261 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1262 if (!type_) { 1263 // Treat an array constructor of BOZ as if default integer. 1264 if (exprAnalyzer_.context().ShouldWarn( 1265 common::LanguageFeature::BOZAsDefaultInteger)) { 1266 exprAnalyzer_.Say( 1267 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1268 } 1269 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1270 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1271 std::move(*boz))); 1272 dyType = x.value().GetType(); 1273 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1274 x = std::move(cast); 1275 dyType = *type_; 1276 } else { 1277 if (!(messageDisplayedSet_ & 0x80)) { 1278 exprAnalyzer_.Say( 1279 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1280 messageDisplayedSet_ |= 0x80; 1281 } 1282 return; 1283 } 1284 } else { // procedure name, &c. 1285 if (!(messageDisplayedSet_ & 0x40)) { 1286 exprAnalyzer_.Say( 1287 "Item is not suitable for use in an array constructor"_err_en_US); 1288 messageDisplayedSet_ |= 0x40; 1289 } 1290 return; 1291 } 1292 } else if (dyType->IsUnlimitedPolymorphic()) { 1293 if (!(messageDisplayedSet_ & 8)) { 1294 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1295 "array constructor"_err_en_US); // C7113 1296 messageDisplayedSet_ |= 8; 1297 } 1298 return; 1299 } 1300 DynamicTypeWithLength xType{dyType.value()}; 1301 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1302 CHECK(xType.category() == TypeCategory::Character); 1303 xType.length = 1304 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1305 } 1306 if (!type_) { 1307 // If there is no explicit type-spec in an array constructor, the type 1308 // of the array is the declared type of all of the elements, which must 1309 // be well-defined and all match. 1310 // TODO: Possible language extension: use the most general type of 1311 // the values as the type of a numeric constructed array, convert all 1312 // of the other values to that type. Alternative: let the first value 1313 // determine the type, and convert the others to that type. 1314 CHECK(!explicitType_); 1315 type_ = std::move(xType); 1316 constantLength_ = ToInt64(type_->length); 1317 values_.Push(std::move(*x)); 1318 } else if (!explicitType_) { 1319 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1320 values_.Push(std::move(*x)); 1321 if (auto thisLen{ToInt64(xType.LEN())}) { 1322 if (constantLength_) { 1323 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1324 *thisLen != *constantLength_) { 1325 if (!(messageDisplayedSet_ & 1)) { 1326 exprAnalyzer_.Say( 1327 "Character literal in array constructor without explicit " 1328 "type has different length than earlier elements"_en_US); 1329 messageDisplayedSet_ |= 1; 1330 } 1331 } 1332 if (*thisLen > *constantLength_) { 1333 // Language extension: use the longest literal to determine the 1334 // length of the array constructor's character elements, not the 1335 // first, when there is no explicit type. 1336 *constantLength_ = *thisLen; 1337 type_->length = xType.LEN(); 1338 } 1339 } else { 1340 constantLength_ = *thisLen; 1341 type_->length = xType.LEN(); 1342 } 1343 } 1344 } else { 1345 if (!(messageDisplayedSet_ & 2)) { 1346 exprAnalyzer_.Say( 1347 "Values in array constructor must have the same declared type " 1348 "when no explicit type appears"_err_en_US); // C7110 1349 messageDisplayedSet_ |= 2; 1350 } 1351 } 1352 } else { 1353 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1354 values_.Push(std::move(*cast)); 1355 } else if (!(messageDisplayedSet_ & 4)) { 1356 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1357 "be converted to the type of the array '%s'"_err_en_US, 1358 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1359 messageDisplayedSet_ |= 4; 1360 } 1361 } 1362 } 1363 1364 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1365 std::visit( 1366 common::visitors{ 1367 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1368 [&](const common::Indirection<parser::Expr> &expr) { 1369 Add(expr.value()); 1370 }, 1371 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1372 Add(impliedDo.value()); 1373 }, 1374 }, 1375 x.u); 1376 } 1377 1378 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1379 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1380 std::optional<Expr<ImpliedDoIntType>> lower{ 1381 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1382 std::optional<Expr<ImpliedDoIntType>> upper{ 1383 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1384 std::optional<Expr<ImpliedDoIntType>> stride{ 1385 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1386 if (lower && upper) { 1387 if (!stride) { 1388 stride = Expr<ImpliedDoIntType>{1}; 1389 } 1390 if (!type_) { 1391 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1392 } 1393 auto v{std::move(values_)}; 1394 parser::CharBlock anonymous; 1395 Push(Expr<SomeType>{ 1396 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1397 std::swap(v, values_); 1398 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1399 std::move(*upper), std::move(*stride), std::move(v)}); 1400 } 1401 } 1402 1403 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1404 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1405 Push(exprAnalyzer_.Analyze(expr)); 1406 } 1407 1408 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1409 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1410 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1411 exprAnalyzer_.Analyze(bounds.name); 1412 parser::CharBlock name{bounds.name.thing.thing.source}; 1413 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1414 int kind{ImpliedDoIntType::kind}; 1415 if (const auto dynamicType{DynamicType::From(symbol)}) { 1416 kind = dynamicType->kind(); 1417 } 1418 std::optional<Expr<ImpliedDoIntType>> lower{ 1419 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1420 std::optional<Expr<ImpliedDoIntType>> upper{ 1421 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1422 if (lower && upper) { 1423 std::optional<Expr<ImpliedDoIntType>> stride{ 1424 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1425 if (!stride) { 1426 stride = Expr<ImpliedDoIntType>{1}; 1427 } 1428 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1429 // Check for constant bounds; the loop may require complete unrolling 1430 // of the parse tree if all bounds are constant in order to allow the 1431 // implied DO loop index to qualify as a constant expression. 1432 auto cLower{ToInt64(lower)}; 1433 auto cUpper{ToInt64(upper)}; 1434 auto cStride{ToInt64(stride)}; 1435 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1436 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1437 "The stride of an implied DO loop must not be zero"_err_en_US); 1438 messageDisplayedSet_ |= 0x10; 1439 } 1440 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1441 bool isNonemptyConstant{isConstant && 1442 ((*cStride > 0 && *cLower <= *cUpper) || 1443 (*cStride < 0 && *cLower >= *cUpper))}; 1444 bool unrollConstantLoop{false}; 1445 parser::Messages buffer; 1446 auto saveMessagesDisplayed{messageDisplayedSet_}; 1447 { 1448 auto messageRestorer{ 1449 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1450 auto v{std::move(values_)}; 1451 for (const auto &value : 1452 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1453 Add(value); 1454 } 1455 std::swap(v, values_); 1456 if (isNonemptyConstant && buffer.AnyFatalError()) { 1457 unrollConstantLoop = true; 1458 } else { 1459 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1460 std::move(*upper), std::move(*stride), std::move(v)}); 1461 } 1462 } 1463 if (unrollConstantLoop) { 1464 messageDisplayedSet_ = saveMessagesDisplayed; 1465 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1466 } else if (auto *messages{ 1467 exprAnalyzer_.GetContextualMessages().messages()}) { 1468 messages->Annex(std::move(buffer)); 1469 } 1470 exprAnalyzer_.RemoveImpliedDo(name); 1471 } else if (!(messageDisplayedSet_ & 0x20)) { 1472 exprAnalyzer_.SayAt(name, 1473 "Implied DO index '%s' is active in a surrounding implied DO loop " 1474 "and may not have the same name"_err_en_US, 1475 name); // C7115 1476 messageDisplayedSet_ |= 0x20; 1477 } 1478 } 1479 } 1480 1481 // Fortran considers an implied DO index of an array constructor to be 1482 // a constant expression if the bounds of the implied DO loop are constant. 1483 // Usually this doesn't matter, but if we emitted spurious messages as a 1484 // result of not using constant values for the index while analyzing the 1485 // items, we need to do it again the "hard" way with multiple iterations over 1486 // the parse tree. 1487 void ArrayConstructorContext::UnrollConstantImpliedDo( 1488 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1489 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1490 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1491 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1492 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1493 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1494 at += stride) { 1495 for (const auto &value : 1496 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1497 Add(value); 1498 } 1499 } 1500 foldingContext.EndImpliedDo(name); 1501 } 1502 1503 MaybeExpr ArrayConstructorContext::ToExpr() { 1504 return common::SearchTypes(std::move(*this)); 1505 } 1506 1507 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1508 const parser::AcSpec &acSpec{array.v}; 1509 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1510 for (const parser::AcValue &value : acSpec.values) { 1511 acContext.Add(value); 1512 } 1513 return acContext.ToExpr(); 1514 } 1515 1516 MaybeExpr ExpressionAnalyzer::Analyze( 1517 const parser::StructureConstructor &structure) { 1518 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1519 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1520 parser::CharBlock &typeName{structureType.source}; 1521 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1522 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1523 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1524 if (!CheckIsValidForwardReference(dtSpec)) { 1525 return std::nullopt; 1526 } 1527 } 1528 } 1529 if (!parsedType.derivedTypeSpec) { 1530 return std::nullopt; 1531 } 1532 const auto &spec{*parsedType.derivedTypeSpec}; 1533 const Symbol &typeSymbol{spec.typeSymbol()}; 1534 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1535 return std::nullopt; // error recovery 1536 } 1537 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1538 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1539 1540 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1541 AttachDeclaration(Say(typeName, 1542 "ABSTRACT derived type '%s' may not be used in a " 1543 "structure constructor"_err_en_US, 1544 typeName), 1545 typeSymbol); // C7114 1546 } 1547 1548 // This iterator traverses all of the components in the derived type and its 1549 // parents. The symbols for whole parent components appear after their 1550 // own components and before the components of the types that extend them. 1551 // E.g., TYPE :: A; REAL X; END TYPE 1552 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1553 // produces the component list X, A, Y. 1554 // The order is important below because a structure constructor can 1555 // initialize X or A by name, but not both. 1556 auto components{semantics::OrderedComponentIterator{spec}}; 1557 auto nextAnonymous{components.begin()}; 1558 1559 std::set<parser::CharBlock> unavailable; 1560 bool anyKeyword{false}; 1561 StructureConstructor result{spec}; 1562 bool checkConflicts{true}; // until we hit one 1563 auto &messages{GetContextualMessages()}; 1564 1565 for (const auto &component : 1566 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1567 const parser::Expr &expr{ 1568 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1569 parser::CharBlock source{expr.source}; 1570 auto restorer{messages.SetLocation(source)}; 1571 const Symbol *symbol{nullptr}; 1572 MaybeExpr value{Analyze(expr)}; 1573 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1574 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1575 anyKeyword = true; 1576 source = kw->v.source; 1577 symbol = kw->v.symbol; 1578 if (!symbol) { 1579 auto componentIter{std::find_if(components.begin(), components.end(), 1580 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1581 if (componentIter != components.end()) { 1582 symbol = &*componentIter; 1583 } 1584 } 1585 if (!symbol) { // C7101 1586 Say(source, 1587 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1588 source, typeName); 1589 } 1590 } else { 1591 if (anyKeyword) { // C7100 1592 Say(source, 1593 "Value in structure constructor lacks a component name"_err_en_US); 1594 checkConflicts = false; // stem cascade 1595 } 1596 // Here's a regrettably common extension of the standard: anonymous 1597 // initialization of parent components, e.g., T(PT(1)) rather than 1598 // T(1) or T(PT=PT(1)). 1599 if (nextAnonymous == components.begin() && parentComponent && 1600 valueType == DynamicType::From(*parentComponent) && 1601 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1602 auto iter{ 1603 std::find(components.begin(), components.end(), *parentComponent)}; 1604 if (iter != components.end()) { 1605 symbol = parentComponent; 1606 nextAnonymous = ++iter; 1607 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1608 Say(source, 1609 "Whole parent component '%s' in structure " 1610 "constructor should not be anonymous"_en_US, 1611 symbol->name()); 1612 } 1613 } 1614 } 1615 while (!symbol && nextAnonymous != components.end()) { 1616 const Symbol &next{*nextAnonymous}; 1617 ++nextAnonymous; 1618 if (!next.test(Symbol::Flag::ParentComp)) { 1619 symbol = &next; 1620 } 1621 } 1622 if (!symbol) { 1623 Say(source, "Unexpected value in structure constructor"_err_en_US); 1624 } 1625 } 1626 if (symbol) { 1627 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1628 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1629 Say(source, *msg); 1630 } 1631 } 1632 if (checkConflicts) { 1633 auto componentIter{ 1634 std::find(components.begin(), components.end(), *symbol)}; 1635 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1636 // C797, C798 1637 Say(source, 1638 "Component '%s' conflicts with another component earlier in " 1639 "this structure constructor"_err_en_US, 1640 symbol->name()); 1641 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1642 // Make earlier components unavailable once a whole parent appears. 1643 for (auto it{components.begin()}; it != componentIter; ++it) { 1644 unavailable.insert(it->name()); 1645 } 1646 } else { 1647 // Make whole parent components unavailable after any of their 1648 // constituents appear. 1649 for (auto it{componentIter}; it != components.end(); ++it) { 1650 if (it->test(Symbol::Flag::ParentComp)) { 1651 unavailable.insert(it->name()); 1652 } 1653 } 1654 } 1655 } 1656 unavailable.insert(symbol->name()); 1657 if (value) { 1658 if (symbol->has<semantics::ProcEntityDetails>()) { 1659 CHECK(IsPointer(*symbol)); 1660 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1661 // C1594(4) 1662 const auto &innermost{context_.FindScope(expr.source)}; 1663 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1664 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1665 if (const Symbol * 1666 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1667 if (auto *msg{Say(expr.source, 1668 "Externally visible object '%s' may not be " 1669 "associated with pointer component '%s' in a " 1670 "pure procedure"_err_en_US, 1671 object->name(), pointer->name())}) { 1672 msg->Attach(object->name(), "Object declaration"_en_US) 1673 .Attach(pointer->name(), "Pointer declaration"_en_US); 1674 } 1675 } 1676 } 1677 } 1678 } else if (symbol->has<semantics::TypeParamDetails>()) { 1679 Say(expr.source, 1680 "Type parameter '%s' may not appear as a component " 1681 "of a structure constructor"_err_en_US, 1682 symbol->name()); 1683 continue; 1684 } else { 1685 Say(expr.source, 1686 "Component '%s' is neither a procedure pointer " 1687 "nor a data object"_err_en_US, 1688 symbol->name()); 1689 continue; 1690 } 1691 if (IsPointer(*symbol)) { 1692 semantics::CheckPointerAssignment( 1693 GetFoldingContext(), *symbol, *value); // C7104, C7105 1694 result.Add(*symbol, Fold(std::move(*value))); 1695 } else if (MaybeExpr converted{ 1696 ConvertToType(*symbol, std::move(*value))}) { 1697 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1698 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1699 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1700 AttachDeclaration( 1701 Say(expr.source, 1702 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1703 GetRank(*valueShape), symbol->name()), 1704 *symbol); 1705 } else { 1706 auto checked{ 1707 CheckConformance(messages, *componentShape, *valueShape, 1708 CheckConformanceFlags::RightIsExpandableDeferred, 1709 "component", "value")}; 1710 if (checked && *checked && GetRank(*componentShape) > 0 && 1711 GetRank(*valueShape) == 0 && 1712 !IsExpandableScalar(*converted)) { 1713 AttachDeclaration( 1714 Say(expr.source, 1715 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1716 symbol->name()), 1717 *symbol); 1718 } 1719 if (checked.value_or(true)) { 1720 result.Add(*symbol, std::move(*converted)); 1721 } 1722 } 1723 } else { 1724 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1725 } 1726 } else { 1727 AttachDeclaration( 1728 Say(expr.source, 1729 "Shape of component '%s' cannot be determined"_err_en_US, 1730 symbol->name()), 1731 *symbol); 1732 } 1733 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1734 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1735 } else if (auto symType{DynamicType::From(symbol)}) { 1736 if (valueType) { 1737 AttachDeclaration( 1738 Say(expr.source, 1739 "Value in structure constructor of type %s is " 1740 "incompatible with component '%s' of type %s"_err_en_US, 1741 valueType->AsFortran(), symbol->name(), 1742 symType->AsFortran()), 1743 *symbol); 1744 } else { 1745 AttachDeclaration( 1746 Say(expr.source, 1747 "Value in structure constructor is incompatible with " 1748 " component '%s' of type %s"_err_en_US, 1749 symbol->name(), symType->AsFortran()), 1750 *symbol); 1751 } 1752 } 1753 } 1754 } 1755 } 1756 1757 // Ensure that unmentioned component objects have default initializers. 1758 for (const Symbol &symbol : components) { 1759 if (!symbol.test(Symbol::Flag::ParentComp) && 1760 unavailable.find(symbol.name()) == unavailable.cend() && 1761 !IsAllocatable(symbol)) { 1762 if (const auto *details{ 1763 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1764 if (details->init()) { 1765 result.Add(symbol, common::Clone(*details->init())); 1766 } else { // C799 1767 AttachDeclaration(Say(typeName, 1768 "Structure constructor lacks a value for " 1769 "component '%s'"_err_en_US, 1770 symbol.name()), 1771 symbol); 1772 } 1773 } 1774 } 1775 } 1776 1777 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1778 } 1779 1780 static std::optional<parser::CharBlock> GetPassName( 1781 const semantics::Symbol &proc) { 1782 return std::visit( 1783 [](const auto &details) { 1784 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1785 std::decay_t<decltype(details)>>) { 1786 return details.passName(); 1787 } else { 1788 return std::optional<parser::CharBlock>{}; 1789 } 1790 }, 1791 proc.details()); 1792 } 1793 1794 static int GetPassIndex(const Symbol &proc) { 1795 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1796 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1797 const auto *interface{semantics::FindInterface(proc)}; 1798 if (!passName || !interface) { 1799 return 0; // first argument is passed-object 1800 } 1801 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1802 int index{0}; 1803 for (const auto *arg : subp.dummyArgs()) { 1804 if (arg && arg->name() == passName) { 1805 return index; 1806 } 1807 ++index; 1808 } 1809 DIE("PASS argument name not in dummy argument list"); 1810 } 1811 1812 // Injects an expression into an actual argument list as the "passed object" 1813 // for a type-bound procedure reference that is not NOPASS. Adds an 1814 // argument keyword if possible, but not when the passed object goes 1815 // before a positional argument. 1816 // e.g., obj%tbp(x) -> tbp(obj,x). 1817 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1818 const Symbol &component, bool isPassedObject = true) { 1819 if (component.attrs().test(semantics::Attr::NOPASS)) { 1820 return; 1821 } 1822 int passIndex{GetPassIndex(component)}; 1823 auto iter{actuals.begin()}; 1824 int at{0}; 1825 while (iter < actuals.end() && at < passIndex) { 1826 if (*iter && (*iter)->keyword()) { 1827 iter = actuals.end(); 1828 break; 1829 } 1830 ++iter; 1831 ++at; 1832 } 1833 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1834 passed.set_isPassedObject(isPassedObject); 1835 if (iter == actuals.end()) { 1836 if (auto passName{GetPassName(component)}) { 1837 passed.set_keyword(*passName); 1838 } 1839 } 1840 actuals.emplace(iter, std::move(passed)); 1841 } 1842 1843 // Return the compile-time resolution of a procedure binding, if possible. 1844 static const Symbol *GetBindingResolution( 1845 const std::optional<DynamicType> &baseType, const Symbol &component) { 1846 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1847 if (!binding) { 1848 return nullptr; 1849 } 1850 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1851 (!baseType || baseType->IsPolymorphic())) { 1852 return nullptr; 1853 } 1854 return &binding->symbol(); 1855 } 1856 1857 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1858 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1859 -> std::optional<CalleeAndArguments> { 1860 const parser::StructureComponent &sc{pcr.v.thing}; 1861 if (MaybeExpr base{Analyze(sc.base)}) { 1862 if (const Symbol * sym{sc.component.symbol}) { 1863 if (context_.HasError(sym)) { 1864 return std::nullopt; 1865 } 1866 if (!IsProcedure(*sym)) { 1867 AttachDeclaration( 1868 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1869 sc.component.source), 1870 *sym); 1871 return std::nullopt; 1872 } 1873 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1874 if (sym->has<semantics::GenericDetails>()) { 1875 AdjustActuals adjustment{ 1876 [&](const Symbol &proc, ActualArguments &actuals) { 1877 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1878 AddPassArg(actuals, std::move(*dtExpr), proc); 1879 } 1880 return true; 1881 }}; 1882 auto pair{ResolveGeneric(*sym, arguments, adjustment)}; 1883 sym = pair.first; 1884 if (!sym) { 1885 EmitGenericResolutionError(*sc.component.symbol, pair.second); 1886 return std::nullopt; 1887 } 1888 } 1889 if (const Symbol * 1890 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1891 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1892 return CalleeAndArguments{ 1893 ProcedureDesignator{*resolution}, std::move(arguments)}; 1894 } else if (std::optional<DataRef> dataRef{ 1895 ExtractDataRef(std::move(*dtExpr))}) { 1896 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1897 return CalleeAndArguments{ 1898 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1899 std::move(arguments)}; 1900 } else { 1901 AddPassArg(arguments, 1902 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1903 *sym); 1904 return CalleeAndArguments{ 1905 ProcedureDesignator{*sym}, std::move(arguments)}; 1906 } 1907 } 1908 } 1909 Say(sc.component.source, 1910 "Base of procedure component reference is not a derived-type object"_err_en_US); 1911 } 1912 } 1913 CHECK(!GetContextualMessages().empty()); 1914 return std::nullopt; 1915 } 1916 1917 // Can actual be argument associated with dummy? 1918 static bool CheckCompatibleArgument(bool isElemental, 1919 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1920 const auto *expr{actual.UnwrapExpr()}; 1921 return std::visit( 1922 common::visitors{ 1923 [&](const characteristics::DummyDataObject &x) { 1924 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 1925 IsBareNullPointer(expr)) { 1926 // NULL() without MOLD= is compatible with any dummy data pointer 1927 // but cannot be allowed to lead to ambiguity. 1928 return true; 1929 } else if (!isElemental && actual.Rank() != x.type.Rank() && 1930 !x.type.attrs().test( 1931 characteristics::TypeAndShape::Attr::AssumedRank)) { 1932 return false; 1933 } else if (auto actualType{actual.GetType()}) { 1934 return x.type.type().IsTkCompatibleWith(*actualType); 1935 } 1936 return false; 1937 }, 1938 [&](const characteristics::DummyProcedure &) { 1939 return expr && IsProcedurePointerTarget(*expr); 1940 }, 1941 [&](const characteristics::AlternateReturn &) { 1942 return actual.isAlternateReturn(); 1943 }, 1944 }, 1945 dummy.u); 1946 } 1947 1948 // Are the actual arguments compatible with the dummy arguments of procedure? 1949 static bool CheckCompatibleArguments( 1950 const characteristics::Procedure &procedure, 1951 const ActualArguments &actuals) { 1952 bool isElemental{procedure.IsElemental()}; 1953 const auto &dummies{procedure.dummyArguments}; 1954 CHECK(dummies.size() == actuals.size()); 1955 for (std::size_t i{0}; i < dummies.size(); ++i) { 1956 const characteristics::DummyArgument &dummy{dummies[i]}; 1957 const std::optional<ActualArgument> &actual{actuals[i]}; 1958 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1959 return false; 1960 } 1961 } 1962 return true; 1963 } 1964 1965 // Handles a forward reference to a module function from what must 1966 // be a specification expression. Return false if the symbol is 1967 // an invalid forward reference. 1968 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1969 if (context_.HasError(symbol)) { 1970 return false; 1971 } 1972 if (const auto *details{ 1973 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1974 if (details->kind() == semantics::SubprogramKind::Module) { 1975 // If this symbol is still a SubprogramNameDetails, we must be 1976 // checking a specification expression in a sibling module 1977 // procedure. Resolve its names now so that its interface 1978 // is known. 1979 semantics::ResolveSpecificationParts(context_, symbol); 1980 if (symbol.has<semantics::SubprogramNameDetails>()) { 1981 // When the symbol hasn't had its details updated, we must have 1982 // already been in the process of resolving the function's 1983 // specification part; but recursive function calls are not 1984 // allowed in specification parts (10.1.11 para 5). 1985 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1986 symbol.name()); 1987 context_.SetError(symbol); 1988 return false; 1989 } 1990 } else { // 10.1.11 para 4 1991 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1992 symbol.name()); 1993 context_.SetError(symbol); 1994 return false; 1995 } 1996 } 1997 return true; 1998 } 1999 2000 // Resolve a call to a generic procedure with given actual arguments. 2001 // adjustActuals is called on procedure bindings to handle pass arg. 2002 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 2003 const Symbol &symbol, const ActualArguments &actuals, 2004 const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) { 2005 const Symbol *elemental{nullptr}; // matching elemental specific proc 2006 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2007 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 2008 bool anyBareNullActual{ 2009 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2010 return IsBareNullPointer(iter->UnwrapExpr()); 2011 }) != actuals.end()}; 2012 for (const Symbol &specific : details.specificProcs()) { 2013 if (!ResolveForward(specific)) { 2014 continue; 2015 } 2016 if (std::optional<characteristics::Procedure> procedure{ 2017 characteristics::Procedure::Characterize( 2018 ProcedureDesignator{specific}, context_.foldingContext())}) { 2019 ActualArguments localActuals{actuals}; 2020 if (specific.has<semantics::ProcBindingDetails>()) { 2021 if (!adjustActuals.value()(specific, localActuals)) { 2022 continue; 2023 } 2024 } 2025 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, 2026 GetFoldingContext(), false /* no integer conversions */) && 2027 CheckCompatibleArguments(*procedure, localActuals)) { 2028 if ((procedure->IsElemental() && elemental) || 2029 (!procedure->IsElemental() && nonElemental)) { 2030 // 16.9.144(6): a bare NULL() is not allowed as an actual 2031 // argument to a generic procedure if the specific procedure 2032 // cannot be unambiguously distinguished 2033 return {nullptr, true /* due to NULL actuals */}; 2034 } 2035 if (!procedure->IsElemental()) { 2036 // takes priority over elemental match 2037 nonElemental = &specific; 2038 if (!anyBareNullActual) { 2039 break; // unambiguous case 2040 } 2041 } else { 2042 elemental = &specific; 2043 } 2044 } 2045 } 2046 } 2047 if (nonElemental) { 2048 return {&AccessSpecific(symbol, *nonElemental), false}; 2049 } else if (elemental) { 2050 return {&AccessSpecific(symbol, *elemental), false}; 2051 } 2052 // Check parent derived type 2053 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2054 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2055 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 2056 auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)}; 2057 if (pair.first) { 2058 return pair; 2059 } 2060 } 2061 } 2062 } 2063 if (mightBeStructureConstructor && details.derivedType()) { 2064 return {details.derivedType(), false}; 2065 } 2066 return {nullptr, false}; 2067 } 2068 2069 const Symbol &ExpressionAnalyzer::AccessSpecific( 2070 const Symbol &originalGeneric, const Symbol &specific) { 2071 if (const auto *hosted{ 2072 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2073 return AccessSpecific(hosted->symbol(), specific); 2074 } else if (const auto *used{ 2075 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2076 const auto &scope{originalGeneric.owner()}; 2077 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2078 if (const auto *useDetails{ 2079 iter->second->detailsIf<semantics::UseDetails>()}) { 2080 const Symbol &usedSymbol{useDetails->symbol()}; 2081 const auto *usedGeneric{ 2082 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2083 if (&usedSymbol == &specific || 2084 (usedGeneric && usedGeneric->specific() == &specific)) { 2085 return specific; 2086 } 2087 } 2088 } 2089 // Create a renaming USE of the specific procedure. 2090 auto rename{context_.SaveTempName( 2091 used->symbol().owner().GetName().value().ToString() + "$" + 2092 specific.name().ToString())}; 2093 return *const_cast<semantics::Scope &>(scope) 2094 .try_emplace(rename, specific.attrs(), 2095 semantics::UseDetails{rename, specific}) 2096 .first->second; 2097 } else { 2098 return specific; 2099 } 2100 } 2101 2102 void ExpressionAnalyzer::EmitGenericResolutionError( 2103 const Symbol &symbol, bool dueToNullActuals) { 2104 Say(dueToNullActuals 2105 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2106 : semantics::IsGenericDefinedOp(symbol) 2107 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2108 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2109 symbol.name()); 2110 } 2111 2112 auto ExpressionAnalyzer::GetCalleeAndArguments( 2113 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2114 bool isSubroutine, bool mightBeStructureConstructor) 2115 -> std::optional<CalleeAndArguments> { 2116 return std::visit( 2117 common::visitors{ 2118 [&](const parser::Name &name) { 2119 return GetCalleeAndArguments(name, std::move(arguments), 2120 isSubroutine, mightBeStructureConstructor); 2121 }, 2122 [&](const parser::ProcComponentRef &pcr) { 2123 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2124 }, 2125 }, 2126 pd.u); 2127 } 2128 2129 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2130 ActualArguments &&arguments, bool isSubroutine, 2131 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2132 const Symbol *symbol{name.symbol}; 2133 if (context_.HasError(symbol)) { 2134 return std::nullopt; // also handles null symbol 2135 } 2136 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2137 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2138 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2139 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2140 arguments, GetFoldingContext())}) { 2141 CheckBadExplicitType(*specificCall, *symbol); 2142 return CalleeAndArguments{ 2143 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2144 std::move(specificCall->arguments)}; 2145 } 2146 } else { 2147 CheckForBadRecursion(name.source, ultimate); 2148 bool dueToNullActual{false}; 2149 if (ultimate.has<semantics::GenericDetails>()) { 2150 ExpressionAnalyzer::AdjustActuals noAdjustment; 2151 auto pair{ResolveGeneric( 2152 *symbol, arguments, noAdjustment, mightBeStructureConstructor)}; 2153 symbol = pair.first; 2154 dueToNullActual = pair.second; 2155 } 2156 if (symbol) { 2157 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2158 if (mightBeStructureConstructor) { 2159 return CalleeAndArguments{ 2160 semantics::SymbolRef{*symbol}, std::move(arguments)}; 2161 } 2162 } else if (IsProcedure(*symbol)) { 2163 return CalleeAndArguments{ 2164 ProcedureDesignator{*symbol}, std::move(arguments)}; 2165 } 2166 if (!context_.HasError(*symbol)) { 2167 AttachDeclaration( 2168 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2169 name.source), 2170 *symbol); 2171 } 2172 } else if (std::optional<SpecificCall> specificCall{ 2173 context_.intrinsics().Probe( 2174 CallCharacteristics{ 2175 ultimate.name().ToString(), isSubroutine}, 2176 arguments, GetFoldingContext())}) { 2177 // Generics can extend intrinsics 2178 return CalleeAndArguments{ 2179 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2180 std::move(specificCall->arguments)}; 2181 } else { 2182 EmitGenericResolutionError(*name.symbol, dueToNullActual); 2183 } 2184 } 2185 return std::nullopt; 2186 } 2187 2188 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2189 // generic intrinsic function "has no effect" on the result type of a 2190 // call to that intrinsic. So one can declare "character*8 cos" and 2191 // still get a real result from "cos(1.)". This is a dangerous feature, 2192 // especially since implementations are free to extend their sets of 2193 // intrinsics, and in doing so might clash with a name in a program. 2194 // So we emit a warning in this situation, and perhaps it should be an 2195 // error -- any correctly working program can silence the message by 2196 // simply deleting the pointless type declaration. 2197 void ExpressionAnalyzer::CheckBadExplicitType( 2198 const SpecificCall &call, const Symbol &intrinsic) { 2199 if (intrinsic.GetUltimate().GetType()) { 2200 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2201 if (const auto &result{procedure.functionResult}) { 2202 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2203 if (auto declared{ 2204 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2205 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2206 if (auto *msg{Say( 2207 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US, 2208 typeAndShape->AsFortran(), intrinsic.name(), 2209 declared->AsFortran())}) { 2210 msg->Attach(intrinsic.name(), 2211 "Ignored declaration of intrinsic function '%s'"_en_US, 2212 intrinsic.name()); 2213 } 2214 } 2215 } 2216 } 2217 } 2218 } 2219 } 2220 2221 void ExpressionAnalyzer::CheckForBadRecursion( 2222 parser::CharBlock callSite, const semantics::Symbol &proc) { 2223 if (const auto *scope{proc.scope()}) { 2224 if (scope->sourceRange().Contains(callSite)) { 2225 parser::Message *msg{nullptr}; 2226 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2227 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2228 callSite); 2229 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2230 msg = Say( // 15.6.2.1(3) 2231 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2232 callSite); 2233 } 2234 AttachDeclaration(msg, proc); 2235 } 2236 } 2237 } 2238 2239 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2240 if (const auto *designator{ 2241 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2242 if (const auto *dataRef{ 2243 std::get_if<parser::DataRef>(&designator->value().u)}) { 2244 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2245 return AssumedTypeDummy(*name); 2246 } 2247 } 2248 } 2249 return nullptr; 2250 } 2251 template <> 2252 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2253 if (const Symbol * symbol{name.symbol}) { 2254 if (const auto *type{symbol->GetType()}) { 2255 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2256 return symbol; 2257 } 2258 } 2259 } 2260 return nullptr; 2261 } 2262 template <typename A> 2263 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2264 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2265 // point it is is not guaranteed that it has been checked the object has 2266 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2267 // returned. 2268 return std::visit( 2269 common::visitors{ 2270 [&](const parser::StructureComponent &x) { 2271 return AssumedTypeDummy(x.component); 2272 }, 2273 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2274 }, 2275 object.u); 2276 } 2277 template <> 2278 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2279 const parser::AllocateObject &x) { 2280 return AssumedTypePointerOrAllocatableDummy(x); 2281 } 2282 template <> 2283 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2284 const parser::PointerObject &x) { 2285 return AssumedTypePointerOrAllocatableDummy(x); 2286 } 2287 2288 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2289 const semantics::DerivedTypeSpec &dtSpec) { 2290 if (dtSpec.IsForwardReferenced()) { 2291 Say("Cannot construct value for derived type '%s' " 2292 "before it is defined"_err_en_US, 2293 dtSpec.name()); 2294 return false; 2295 } 2296 return true; 2297 } 2298 2299 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2300 std::optional<parser::StructureConstructor> *structureConstructor) { 2301 const parser::Call &call{funcRef.v}; 2302 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2303 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2304 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2305 analyzer.Analyze(arg, false /* not subroutine call */); 2306 } 2307 if (analyzer.fatalErrors()) { 2308 return std::nullopt; 2309 } 2310 if (std::optional<CalleeAndArguments> callee{ 2311 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2312 analyzer.GetActuals(), false /* not subroutine */, 2313 true /* might be structure constructor */)}) { 2314 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2315 return MakeFunctionRef( 2316 call.source, std::move(*proc), std::move(callee->arguments)); 2317 } 2318 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2319 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2320 if (structureConstructor) { 2321 // Structure constructor misparsed as function reference? 2322 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2323 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2324 semantics::Scope &scope{context_.FindScope(name->source)}; 2325 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2326 if (!CheckIsValidForwardReference(dtSpec)) { 2327 return std::nullopt; 2328 } 2329 const semantics::DeclTypeSpec &type{ 2330 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2331 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2332 *structureConstructor = 2333 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2334 return Analyze(structureConstructor->value()); 2335 } 2336 } 2337 if (!context_.HasError(symbol)) { 2338 AttachDeclaration( 2339 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2340 symbol.name()), 2341 symbol); 2342 context_.SetError(symbol); 2343 } 2344 } 2345 return std::nullopt; 2346 } 2347 2348 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2349 for (const auto &arg : args) { 2350 if (arg && arg->isAlternateReturn()) { 2351 return true; 2352 } 2353 } 2354 return false; 2355 } 2356 2357 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2358 const parser::Call &call{callStmt.v}; 2359 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2360 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2361 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2362 for (const auto &arg : actualArgList) { 2363 analyzer.Analyze(arg, true /* is subroutine call */); 2364 } 2365 if (!analyzer.fatalErrors()) { 2366 if (std::optional<CalleeAndArguments> callee{ 2367 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2368 analyzer.GetActuals(), true /* subroutine */)}) { 2369 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2370 CHECK(proc); 2371 if (CheckCall(call.source, *proc, callee->arguments)) { 2372 bool hasAlternateReturns{HasAlternateReturns(callee->arguments)}; 2373 callStmt.typedCall.Reset( 2374 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2375 hasAlternateReturns}, 2376 ProcedureRef::Deleter); 2377 } 2378 } 2379 } 2380 } 2381 2382 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2383 if (!x.typedAssignment) { 2384 ArgumentAnalyzer analyzer{*this}; 2385 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2386 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2387 std::optional<Assignment> assignment; 2388 if (!analyzer.fatalErrors()) { 2389 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2390 if (!procRef) { 2391 analyzer.CheckForNullPointer( 2392 "in a non-pointer intrinsic assignment statement"); 2393 } 2394 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2395 if (procRef) { 2396 assignment->u = std::move(*procRef); 2397 } 2398 } 2399 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2400 GenericAssignmentWrapper::Deleter); 2401 } 2402 return common::GetPtrFromOptional(x.typedAssignment->v); 2403 } 2404 2405 const Assignment *ExpressionAnalyzer::Analyze( 2406 const parser::PointerAssignmentStmt &x) { 2407 if (!x.typedAssignment) { 2408 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2409 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2410 if (!lhs || !rhs) { 2411 x.typedAssignment.Reset( 2412 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2413 } else { 2414 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2415 std::visit(common::visitors{ 2416 [&](const std::list<parser::BoundsRemapping> &list) { 2417 Assignment::BoundsRemapping bounds; 2418 for (const auto &elem : list) { 2419 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2420 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2421 if (lower && upper) { 2422 bounds.emplace_back(Fold(std::move(*lower)), 2423 Fold(std::move(*upper))); 2424 } 2425 } 2426 assignment.u = std::move(bounds); 2427 }, 2428 [&](const std::list<parser::BoundsSpec> &list) { 2429 Assignment::BoundsSpec bounds; 2430 for (const auto &bound : list) { 2431 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2432 bounds.emplace_back(Fold(std::move(*lower))); 2433 } 2434 } 2435 assignment.u = std::move(bounds); 2436 }, 2437 }, 2438 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2439 x.typedAssignment.Reset( 2440 new GenericAssignmentWrapper{std::move(assignment)}, 2441 GenericAssignmentWrapper::Deleter); 2442 } 2443 } 2444 return common::GetPtrFromOptional(x.typedAssignment->v); 2445 } 2446 2447 static bool IsExternalCalledImplicitly( 2448 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2449 if (const auto *symbol{proc.GetSymbol()}) { 2450 return symbol->has<semantics::SubprogramDetails>() && 2451 symbol->owner().IsGlobal() && 2452 (!symbol->scope() /*ENTRY*/ || 2453 !symbol->scope()->sourceRange().Contains(callSite)); 2454 } else { 2455 return false; 2456 } 2457 } 2458 2459 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2460 parser::CharBlock callSite, const ProcedureDesignator &proc, 2461 ActualArguments &arguments) { 2462 auto chars{characteristics::Procedure::Characterize( 2463 proc, context_.foldingContext())}; 2464 if (chars) { 2465 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2466 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2467 Say(callSite, 2468 "References to the procedure '%s' require an explicit interface"_en_US, 2469 DEREF(proc.GetSymbol()).name()); 2470 } 2471 // Checks for ASSOCIATED() are done in intrinsic table processing 2472 bool procIsAssociated{false}; 2473 if (const SpecificIntrinsic * 2474 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2475 if (specificIntrinsic->name == "associated") { 2476 procIsAssociated = true; 2477 } 2478 } 2479 if (!procIsAssociated) { 2480 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2481 context_.FindScope(callSite), treatExternalAsImplicit, 2482 proc.GetSpecificIntrinsic()); 2483 const Symbol *procSymbol{proc.GetSymbol()}; 2484 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2485 if (const semantics::Scope * 2486 pure{semantics::FindPureProcedureContaining( 2487 context_.FindScope(callSite))}) { 2488 Say(callSite, 2489 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2490 procSymbol->name(), DEREF(pure->symbol()).name()); 2491 } 2492 } 2493 } 2494 } 2495 return chars; 2496 } 2497 2498 // Unary operations 2499 2500 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2501 if (MaybeExpr operand{Analyze(x.v.value())}) { 2502 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2503 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2504 if (semantics::IsProcedurePointer(*result)) { 2505 Say("A function reference that returns a procedure " 2506 "pointer may not be parenthesized"_err_en_US); // C1003 2507 } 2508 } 2509 } 2510 return Parenthesize(std::move(*operand)); 2511 } 2512 return std::nullopt; 2513 } 2514 2515 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2516 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2517 ArgumentAnalyzer analyzer{context}; 2518 analyzer.Analyze(x.v); 2519 if (!analyzer.fatalErrors()) { 2520 if (analyzer.IsIntrinsicNumeric(opr)) { 2521 analyzer.CheckForNullPointer(); 2522 if (opr == NumericOperator::Add) { 2523 return analyzer.MoveExpr(0); 2524 } else { 2525 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2526 } 2527 } else { 2528 return analyzer.TryDefinedOp(AsFortran(opr), 2529 "Operand of unary %s must be numeric; have %s"_err_en_US); 2530 } 2531 } 2532 return std::nullopt; 2533 } 2534 2535 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2536 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2537 } 2538 2539 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2540 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2541 } 2542 2543 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2544 ArgumentAnalyzer analyzer{*this}; 2545 analyzer.Analyze(x.v); 2546 if (!analyzer.fatalErrors()) { 2547 if (analyzer.IsIntrinsicLogical()) { 2548 analyzer.CheckForNullPointer(); 2549 return AsGenericExpr( 2550 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2551 } else { 2552 return analyzer.TryDefinedOp(LogicalOperator::Not, 2553 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2554 } 2555 } 2556 return std::nullopt; 2557 } 2558 2559 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2560 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2561 // intrinsic function. 2562 // Use the actual source for the name of the call for error reporting. 2563 std::optional<ActualArgument> arg; 2564 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2565 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2566 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2567 arg = ActualArgument{std::move(*argExpr)}; 2568 } else { 2569 return std::nullopt; 2570 } 2571 parser::CharBlock at{GetContextualMessages().at()}; 2572 CHECK(at.size() >= 4); 2573 parser::CharBlock loc{at.begin() + 1, 3}; 2574 CHECK(loc == "loc"); 2575 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2576 } 2577 2578 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2579 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2580 ArgumentAnalyzer analyzer{*this, name.source}; 2581 analyzer.Analyze(std::get<1>(x.t)); 2582 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2583 "No operator %s defined for %s"_err_en_US, nullptr, true); 2584 } 2585 2586 // Binary (dyadic) operations 2587 2588 template <template <typename> class OPR> 2589 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2590 const parser::Expr::IntrinsicBinary &x) { 2591 ArgumentAnalyzer analyzer{context}; 2592 analyzer.Analyze(std::get<0>(x.t)); 2593 analyzer.Analyze(std::get<1>(x.t)); 2594 if (!analyzer.fatalErrors()) { 2595 if (analyzer.IsIntrinsicNumeric(opr)) { 2596 analyzer.CheckForNullPointer(); 2597 analyzer.CheckConformance(); 2598 return NumericOperation<OPR>(context.GetContextualMessages(), 2599 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2600 context.GetDefaultKind(TypeCategory::Real)); 2601 } else { 2602 return analyzer.TryDefinedOp(AsFortran(opr), 2603 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2604 } 2605 } 2606 return std::nullopt; 2607 } 2608 2609 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2610 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2611 } 2612 2613 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2614 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2615 } 2616 2617 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2618 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2619 } 2620 2621 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2622 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2623 } 2624 2625 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2626 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2627 } 2628 2629 MaybeExpr ExpressionAnalyzer::Analyze( 2630 const parser::Expr::ComplexConstructor &x) { 2631 auto re{Analyze(std::get<0>(x.t).value())}; 2632 auto im{Analyze(std::get<1>(x.t).value())}; 2633 if (re && im) { 2634 ConformabilityCheck(GetContextualMessages(), *re, *im); 2635 } 2636 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2637 std::move(im), GetDefaultKind(TypeCategory::Real))); 2638 } 2639 2640 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2641 ArgumentAnalyzer analyzer{*this}; 2642 analyzer.Analyze(std::get<0>(x.t)); 2643 analyzer.Analyze(std::get<1>(x.t)); 2644 if (!analyzer.fatalErrors()) { 2645 if (analyzer.IsIntrinsicConcat()) { 2646 analyzer.CheckForNullPointer(); 2647 return std::visit( 2648 [&](auto &&x, auto &&y) -> MaybeExpr { 2649 using T = ResultType<decltype(x)>; 2650 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2651 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2652 } else { 2653 DIE("different types for intrinsic concat"); 2654 } 2655 }, 2656 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2657 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2658 } else { 2659 return analyzer.TryDefinedOp("//", 2660 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2661 } 2662 } 2663 return std::nullopt; 2664 } 2665 2666 // The Name represents a user-defined intrinsic operator. 2667 // If the actuals match one of the specific procedures, return a function ref. 2668 // Otherwise report the error in messages. 2669 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2670 const parser::Name &name, ActualArguments &&actuals) { 2671 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2672 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2673 return MakeFunctionRef(name.source, 2674 std::move(std::get<ProcedureDesignator>(callee->u)), 2675 std::move(callee->arguments)); 2676 } else { 2677 return std::nullopt; 2678 } 2679 } 2680 2681 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2682 const parser::Expr::IntrinsicBinary &x) { 2683 ArgumentAnalyzer analyzer{context}; 2684 analyzer.Analyze(std::get<0>(x.t)); 2685 analyzer.Analyze(std::get<1>(x.t)); 2686 if (!analyzer.fatalErrors()) { 2687 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2688 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2689 analyzer.ConvertBOZ(leftType, 0, rightType); 2690 analyzer.ConvertBOZ(rightType, 1, leftType); 2691 if (leftType && rightType && 2692 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2693 analyzer.CheckForNullPointer("as a relational operand"); 2694 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2695 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2696 } else { 2697 return analyzer.TryDefinedOp(opr, 2698 leftType && leftType->category() == TypeCategory::Logical && 2699 rightType && rightType->category() == TypeCategory::Logical 2700 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2701 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2702 } 2703 } 2704 return std::nullopt; 2705 } 2706 2707 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2708 return RelationHelper(*this, RelationalOperator::LT, x); 2709 } 2710 2711 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2712 return RelationHelper(*this, RelationalOperator::LE, x); 2713 } 2714 2715 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2716 return RelationHelper(*this, RelationalOperator::EQ, x); 2717 } 2718 2719 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2720 return RelationHelper(*this, RelationalOperator::NE, x); 2721 } 2722 2723 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2724 return RelationHelper(*this, RelationalOperator::GE, x); 2725 } 2726 2727 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2728 return RelationHelper(*this, RelationalOperator::GT, x); 2729 } 2730 2731 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2732 const parser::Expr::IntrinsicBinary &x) { 2733 ArgumentAnalyzer analyzer{context}; 2734 analyzer.Analyze(std::get<0>(x.t)); 2735 analyzer.Analyze(std::get<1>(x.t)); 2736 if (!analyzer.fatalErrors()) { 2737 if (analyzer.IsIntrinsicLogical()) { 2738 analyzer.CheckForNullPointer("as a logical operand"); 2739 return AsGenericExpr(BinaryLogicalOperation(opr, 2740 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2741 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2742 } else { 2743 return analyzer.TryDefinedOp( 2744 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2745 } 2746 } 2747 return std::nullopt; 2748 } 2749 2750 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2751 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2752 } 2753 2754 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2755 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2756 } 2757 2758 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2759 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2760 } 2761 2762 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2763 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2764 } 2765 2766 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2767 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2768 ArgumentAnalyzer analyzer{*this, name.source}; 2769 analyzer.Analyze(std::get<1>(x.t)); 2770 analyzer.Analyze(std::get<2>(x.t)); 2771 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2772 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2773 } 2774 2775 static void CheckFuncRefToArrayElementRefHasSubscripts( 2776 semantics::SemanticsContext &context, 2777 const parser::FunctionReference &funcRef) { 2778 // Emit message if the function reference fix will end up an array element 2779 // reference with no subscripts because it will not be possible to later tell 2780 // the difference in expressions between empty subscript list due to bad 2781 // subscripts error recovery or because the user did not put any. 2782 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2783 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2784 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2785 if (!name) { 2786 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2787 } 2788 auto &msg{context.Say(funcRef.v.source, 2789 name->symbol && name->symbol->Rank() == 0 2790 ? "'%s' is not a function"_err_en_US 2791 : "Reference to array '%s' with empty subscript list"_err_en_US, 2792 name->source)}; 2793 if (name->symbol) { 2794 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2795 msg.Attach(name->source, 2796 "A result variable must be declared with RESULT to allow recursive " 2797 "function calls"_en_US); 2798 } else { 2799 AttachDeclaration(&msg, *name->symbol); 2800 } 2801 } 2802 } 2803 } 2804 2805 // Converts, if appropriate, an original misparse of ambiguous syntax like 2806 // A(1) as a function reference into an array reference. 2807 // Misparsed structure constructors are detected elsewhere after generic 2808 // function call resolution fails. 2809 template <typename... A> 2810 static void FixMisparsedFunctionReference( 2811 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2812 // The parse tree is updated in situ when resolving an ambiguous parse. 2813 using uType = std::decay_t<decltype(constU)>; 2814 auto &u{const_cast<uType &>(constU)}; 2815 if (auto *func{ 2816 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2817 parser::FunctionReference &funcRef{func->value()}; 2818 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2819 if (Symbol * 2820 origSymbol{ 2821 std::visit(common::visitors{ 2822 [&](parser::Name &name) { return name.symbol; }, 2823 [&](parser::ProcComponentRef &pcr) { 2824 return pcr.v.thing.component.symbol; 2825 }, 2826 }, 2827 proc.u)}) { 2828 Symbol &symbol{origSymbol->GetUltimate()}; 2829 if (symbol.has<semantics::ObjectEntityDetails>() || 2830 symbol.has<semantics::AssocEntityDetails>()) { 2831 // Note that expression in AssocEntityDetails cannot be a procedure 2832 // pointer as per C1105 so this cannot be a function reference. 2833 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2834 uType>) { 2835 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2836 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2837 } else { 2838 DIE("can't fix misparsed function as array reference"); 2839 } 2840 } 2841 } 2842 } 2843 } 2844 2845 // Common handling of parse tree node types that retain the 2846 // representation of the analyzed expression. 2847 template <typename PARSED> 2848 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2849 const PARSED &x, parser::CharBlock source) { 2850 if (useSavedTypedExprs_ && x.typedExpr) { 2851 return x.typedExpr->v; 2852 } 2853 auto restorer{GetContextualMessages().SetLocation(source)}; 2854 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2855 std::is_same_v<PARSED, parser::Variable>) { 2856 FixMisparsedFunctionReference(context_, x.u); 2857 } 2858 if (AssumedTypeDummy(x)) { // C710 2859 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2860 ResetExpr(x); 2861 return std::nullopt; 2862 } 2863 MaybeExpr result; 2864 if constexpr (common::HasMember<parser::StructureConstructor, 2865 std::decay_t<decltype(x.u)>> && 2866 common::HasMember<common::Indirection<parser::FunctionReference>, 2867 std::decay_t<decltype(x.u)>>) { 2868 if (const auto *funcRef{ 2869 std::get_if<common::Indirection<parser::FunctionReference>>( 2870 &x.u)}) { 2871 // Function references in Exprs might turn out to be misparsed structure 2872 // constructors; we have to try generic procedure resolution 2873 // first to be sure. 2874 std::optional<parser::StructureConstructor> ctor; 2875 result = Analyze(funcRef->value(), &ctor); 2876 if (result && ctor) { 2877 // A misparsed function reference is really a structure 2878 // constructor. Repair the parse tree in situ. 2879 const_cast<PARSED &>(x).u = std::move(*ctor); 2880 } 2881 } else { 2882 result = Analyze(x.u); 2883 } 2884 } else { 2885 result = Analyze(x.u); 2886 } 2887 if (result) { 2888 SetExpr(x, Fold(std::move(*result))); 2889 return x.typedExpr->v; 2890 } else { 2891 ResetExpr(x); 2892 if (!context_.AnyFatalError()) { 2893 std::string buf; 2894 llvm::raw_string_ostream dump{buf}; 2895 parser::DumpTree(dump, x); 2896 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2897 dump.str()); 2898 } 2899 return std::nullopt; 2900 } 2901 } 2902 2903 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2904 return ExprOrVariable(expr, expr.source); 2905 } 2906 2907 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2908 return ExprOrVariable(variable, variable.GetSource()); 2909 } 2910 2911 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 2912 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 2913 if (!useSavedTypedExprs_ || !var->typedExpr) { 2914 parser::CharBlock source{var->GetSource()}; 2915 auto restorer{GetContextualMessages().SetLocation(source)}; 2916 FixMisparsedFunctionReference(context_, var->u); 2917 if (const auto *funcRef{ 2918 std::get_if<common::Indirection<parser::FunctionReference>>( 2919 &var->u)}) { 2920 // A Selector that parsed as a Variable might turn out during analysis 2921 // to actually be a structure constructor. In that case, repair the 2922 // Variable parse tree node into an Expr 2923 std::optional<parser::StructureConstructor> ctor; 2924 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 2925 if (ctor) { 2926 auto &writable{const_cast<parser::Selector &>(selector)}; 2927 writable.u = parser::Expr{std::move(*ctor)}; 2928 auto &expr{std::get<parser::Expr>(writable.u)}; 2929 expr.source = source; 2930 SetExpr(expr, Fold(std::move(*result))); 2931 return expr.typedExpr->v; 2932 } else { 2933 SetExpr(*var, Fold(std::move(*result))); 2934 return var->typedExpr->v; 2935 } 2936 } else { 2937 ResetExpr(*var); 2938 if (context_.AnyFatalError()) { 2939 return std::nullopt; 2940 } 2941 } 2942 } 2943 } 2944 } 2945 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 2946 return Analyze(selector.u); 2947 } 2948 2949 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2950 return ExprOrVariable(x, x.source); 2951 } 2952 2953 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 2954 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2955 } 2956 2957 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 2958 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2959 } 2960 2961 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2962 TypeCategory category, 2963 const std::optional<parser::KindSelector> &selector) { 2964 int defaultKind{GetDefaultKind(category)}; 2965 if (!selector) { 2966 return Expr<SubscriptInteger>{defaultKind}; 2967 } 2968 return std::visit( 2969 common::visitors{ 2970 [&](const parser::ScalarIntConstantExpr &x) { 2971 if (MaybeExpr kind{Analyze(x)}) { 2972 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 2973 if (CheckIntrinsicKind(category, *code)) { 2974 return Expr<SubscriptInteger>{*code}; 2975 } 2976 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 2977 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2978 } 2979 } 2980 return Expr<SubscriptInteger>{defaultKind}; 2981 }, 2982 [&](const parser::KindSelector::StarSize &x) { 2983 std::intmax_t size = x.v; 2984 if (!CheckIntrinsicSize(category, size)) { 2985 size = defaultKind; 2986 } else if (category == TypeCategory::Complex) { 2987 size /= 2; 2988 } 2989 return Expr<SubscriptInteger>{size}; 2990 }, 2991 }, 2992 selector->u); 2993 } 2994 2995 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2996 return context_.GetDefaultKind(category); 2997 } 2998 2999 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 3000 common::TypeCategory category) { 3001 return {category, GetDefaultKind(category)}; 3002 } 3003 3004 bool ExpressionAnalyzer::CheckIntrinsicKind( 3005 TypeCategory category, std::int64_t kind) { 3006 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 3007 return true; 3008 } else { 3009 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3010 ToUpperCase(EnumToString(category)), kind); 3011 return false; 3012 } 3013 } 3014 3015 bool ExpressionAnalyzer::CheckIntrinsicSize( 3016 TypeCategory category, std::int64_t size) { 3017 if (category == TypeCategory::Complex) { 3018 // COMPLEX*16 == COMPLEX(KIND=8) 3019 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 3020 return true; 3021 } 3022 } else if (IsValidKindOfIntrinsicType(category, size)) { 3023 return true; 3024 } 3025 Say("%s*%jd is not a supported type"_err_en_US, 3026 ToUpperCase(EnumToString(category)), size); 3027 return false; 3028 } 3029 3030 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3031 return impliedDos_.insert(std::make_pair(name, kind)).second; 3032 } 3033 3034 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3035 auto iter{impliedDos_.find(name)}; 3036 if (iter != impliedDos_.end()) { 3037 impliedDos_.erase(iter); 3038 } 3039 } 3040 3041 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3042 parser::CharBlock name) const { 3043 auto iter{impliedDos_.find(name)}; 3044 if (iter != impliedDos_.cend()) { 3045 return {iter->second}; 3046 } else { 3047 return std::nullopt; 3048 } 3049 } 3050 3051 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3052 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3053 if (result) { 3054 if (auto type{result->GetType()}) { 3055 if (type->category() != category) { // C885 3056 Say(at, "Must have %s type, but is %s"_err_en_US, 3057 ToUpperCase(EnumToString(category)), 3058 ToUpperCase(type->AsFortran())); 3059 return false; 3060 } else if (defaultKind) { 3061 int kind{context_.GetDefaultKind(category)}; 3062 if (type->kind() != kind) { 3063 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3064 kind, ToUpperCase(EnumToString(category)), 3065 ToUpperCase(type->AsFortran())); 3066 return false; 3067 } 3068 } 3069 } else { 3070 Say(at, "Must have %s type, but is typeless"_err_en_US, 3071 ToUpperCase(EnumToString(category))); 3072 return false; 3073 } 3074 } 3075 return true; 3076 } 3077 3078 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3079 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3080 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3081 if (intrinsic->name == "null" && arguments.empty()) { 3082 return Expr<SomeType>{NullPointer{}}; 3083 } 3084 } 3085 if (const Symbol * symbol{proc.GetSymbol()}) { 3086 if (!ResolveForward(*symbol)) { 3087 return std::nullopt; 3088 } 3089 } 3090 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3091 if (chars->functionResult) { 3092 const auto &result{*chars->functionResult}; 3093 if (result.IsProcedurePointer()) { 3094 return Expr<SomeType>{ 3095 ProcedureRef{std::move(proc), std::move(arguments)}}; 3096 } else { 3097 // Not a procedure pointer, so type and shape are known. 3098 return TypedWrapper<FunctionRef, ProcedureRef>( 3099 DEREF(result.GetTypeAndShape()).type(), 3100 ProcedureRef{std::move(proc), std::move(arguments)}); 3101 } 3102 } else { 3103 Say("Function result characteristics are not known"_err_en_US); 3104 } 3105 } 3106 return std::nullopt; 3107 } 3108 3109 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3110 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3111 if (std::optional<SpecificCall> specificCall{ 3112 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3113 arguments, GetFoldingContext())}) { 3114 return MakeFunctionRef(intrinsic, 3115 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3116 std::move(specificCall->arguments)); 3117 } else { 3118 return std::nullopt; 3119 } 3120 } 3121 3122 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3123 source_.ExtendToCover(x.GetSource()); 3124 if (MaybeExpr expr{context_.Analyze(x)}) { 3125 if (!IsConstantExpr(*expr)) { 3126 actuals_.emplace_back(std::move(*expr)); 3127 return; 3128 } 3129 const Symbol *symbol{GetLastSymbol(*expr)}; 3130 if (!symbol) { 3131 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3132 x.GetSource()); 3133 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3134 auto *msg{context_.SayAt(x, 3135 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3136 symbol->name())}; 3137 if (subp->isFunction()) { 3138 const auto &result{subp->result().name()}; 3139 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 3140 } 3141 } else { 3142 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3143 symbol->name()); 3144 } 3145 } 3146 fatalErrors_ = true; 3147 } 3148 3149 void ArgumentAnalyzer::Analyze( 3150 const parser::ActualArgSpec &arg, bool isSubroutine) { 3151 // TODO: Actual arguments that are procedures and procedure pointers need to 3152 // be detected and represented (they're not expressions). 3153 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3154 std::optional<ActualArgument> actual; 3155 std::visit(common::visitors{ 3156 [&](const common::Indirection<parser::Expr> &x) { 3157 actual = AnalyzeExpr(x.value()); 3158 }, 3159 [&](const parser::AltReturnSpec &label) { 3160 if (!isSubroutine) { 3161 context_.Say( 3162 "alternate return specification may not appear on" 3163 " function reference"_err_en_US); 3164 } 3165 actual = ActualArgument(label.v); 3166 }, 3167 [&](const parser::ActualArg::PercentRef &) { 3168 context_.Say("TODO: %REF() argument"_err_en_US); 3169 }, 3170 [&](const parser::ActualArg::PercentVal &) { 3171 context_.Say("TODO: %VAL() argument"_err_en_US); 3172 }, 3173 }, 3174 std::get<parser::ActualArg>(arg.t).u); 3175 if (actual) { 3176 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3177 actual->set_keyword(argKW->v.source); 3178 } 3179 actuals_.emplace_back(std::move(*actual)); 3180 } else { 3181 fatalErrors_ = true; 3182 } 3183 } 3184 3185 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3186 const DynamicType &leftType, const DynamicType &rightType) const { 3187 CHECK(actuals_.size() == 2); 3188 return semantics::IsIntrinsicRelational( 3189 opr, leftType, GetRank(0), rightType, GetRank(1)); 3190 } 3191 3192 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3193 std::optional<DynamicType> leftType{GetType(0)}; 3194 if (actuals_.size() == 1) { 3195 if (IsBOZLiteral(0)) { 3196 return opr == NumericOperator::Add; // unary '+' 3197 } else { 3198 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3199 } 3200 } else { 3201 std::optional<DynamicType> rightType{GetType(1)}; 3202 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3203 auto cat1{rightType->category()}; 3204 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3205 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3206 auto cat0{leftType->category()}; 3207 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3208 } else { 3209 return leftType && rightType && 3210 semantics::IsIntrinsicNumeric( 3211 *leftType, GetRank(0), *rightType, GetRank(1)); 3212 } 3213 } 3214 } 3215 3216 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3217 if (std::optional<DynamicType> leftType{GetType(0)}) { 3218 if (actuals_.size() == 1) { 3219 return semantics::IsIntrinsicLogical(*leftType); 3220 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3221 return semantics::IsIntrinsicLogical( 3222 *leftType, GetRank(0), *rightType, GetRank(1)); 3223 } 3224 } 3225 return false; 3226 } 3227 3228 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3229 if (std::optional<DynamicType> leftType{GetType(0)}) { 3230 if (std::optional<DynamicType> rightType{GetType(1)}) { 3231 return semantics::IsIntrinsicConcat( 3232 *leftType, GetRank(0), *rightType, GetRank(1)); 3233 } 3234 } 3235 return false; 3236 } 3237 3238 bool ArgumentAnalyzer::CheckConformance() { 3239 if (actuals_.size() == 2) { 3240 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3241 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3242 if (lhs && rhs) { 3243 auto &foldingContext{context_.GetFoldingContext()}; 3244 auto lhShape{GetShape(foldingContext, *lhs)}; 3245 auto rhShape{GetShape(foldingContext, *rhs)}; 3246 if (lhShape && rhShape) { 3247 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3248 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3249 "left operand", "right operand") 3250 .value_or(false /*fail when conformance is not known now*/)) { 3251 fatalErrors_ = true; 3252 return false; 3253 } 3254 } 3255 } 3256 } 3257 return true; // no proven problem 3258 } 3259 3260 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3261 for (const std::optional<ActualArgument> &arg : actuals_) { 3262 if (arg) { 3263 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3264 if (IsNullPointer(*expr)) { 3265 context_.Say( 3266 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3267 fatalErrors_ = true; 3268 return false; 3269 } 3270 } 3271 } 3272 } 3273 return true; 3274 } 3275 3276 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3277 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3278 bool isUserOp) { 3279 if (AnyUntypedOrMissingOperand()) { 3280 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3281 return std::nullopt; 3282 } 3283 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3284 if (!definedOpSymbolPtr) { 3285 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3286 } 3287 { 3288 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3289 std::string oprNameString{ 3290 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3291 parser::CharBlock oprName{oprNameString}; 3292 const auto &scope{context_.context().FindScope(source_)}; 3293 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3294 *definedOpSymbolPtr = symbol; 3295 parser::Name name{symbol->name(), symbol}; 3296 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3297 return result; 3298 } 3299 } 3300 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3301 if (const Symbol * 3302 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3303 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3304 return result; 3305 } 3306 } 3307 } 3308 } 3309 if (*definedOpSymbolPtr) { 3310 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3311 } else if (actuals_.size() == 1 || AreConformable()) { 3312 if (CheckForNullPointer()) { 3313 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3314 } 3315 } else { 3316 context_.Say( 3317 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3318 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3319 } 3320 return std::nullopt; 3321 } 3322 3323 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3324 std::vector<const char *> oprs, parser::MessageFixedText error) { 3325 const Symbol *definedOpSymbolPtr{nullptr}; 3326 for (std::size_t i{1}; i < oprs.size(); ++i) { 3327 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3328 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3329 return result; 3330 } 3331 } 3332 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3333 } 3334 3335 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3336 ActualArguments localActuals{actuals_}; 3337 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3338 if (!proc) { 3339 proc = &symbol; 3340 localActuals.at(passIndex).value().set_isPassedObject(); 3341 } 3342 CheckConformance(); 3343 return context_.MakeFunctionRef( 3344 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3345 } 3346 3347 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3348 using semantics::Tristate; 3349 const Expr<SomeType> &lhs{GetExpr(0)}; 3350 const Expr<SomeType> &rhs{GetExpr(1)}; 3351 std::optional<DynamicType> lhsType{lhs.GetType()}; 3352 std::optional<DynamicType> rhsType{rhs.GetType()}; 3353 int lhsRank{lhs.Rank()}; 3354 int rhsRank{rhs.Rank()}; 3355 Tristate isDefined{ 3356 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3357 if (isDefined == Tristate::No) { 3358 if (lhsType && rhsType) { 3359 AddAssignmentConversion(*lhsType, *rhsType); 3360 } 3361 return std::nullopt; // user-defined assignment not allowed for these args 3362 } 3363 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3364 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3365 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3366 context_.Say( 3367 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3368 DEREF(procRef->proc().GetSymbol()).name()); 3369 } 3370 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3371 return std::move(*procRef); 3372 } 3373 if (isDefined == Tristate::Yes) { 3374 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3375 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3376 SayNoMatch("ASSIGNMENT(=)", true); 3377 } 3378 } 3379 return std::nullopt; 3380 } 3381 3382 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3383 TypeCategory lhs, TypeCategory rhs) { 3384 if (!context_.context().languageFeatures().IsEnabled( 3385 common::LanguageFeature::LogicalIntegerAssignment)) { 3386 return false; 3387 } 3388 std::optional<parser::MessageFixedText> msg; 3389 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3390 // allow assignment to LOGICAL from INTEGER as a legacy extension 3391 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 3392 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3393 // ... and assignment to LOGICAL from INTEGER 3394 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 3395 } else { 3396 return false; 3397 } 3398 if (context_.context().languageFeatures().ShouldWarn( 3399 common::LanguageFeature::LogicalIntegerAssignment)) { 3400 context_.Say(std::move(*msg)); 3401 } 3402 return true; 3403 } 3404 3405 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3406 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3407 std::string oprNameString{"assignment(=)"}; 3408 parser::CharBlock oprName{oprNameString}; 3409 const Symbol *proc{nullptr}; 3410 const auto &scope{context_.context().FindScope(source_)}; 3411 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3412 ExpressionAnalyzer::AdjustActuals noAdjustment; 3413 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}; 3414 if (pair.first) { 3415 proc = pair.first; 3416 } else { 3417 context_.EmitGenericResolutionError(*symbol, pair.second); 3418 } 3419 } 3420 int passedObjectIndex{-1}; 3421 const Symbol *definedOpSymbol{nullptr}; 3422 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3423 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3424 if (const Symbol * 3425 resolution{GetBindingResolution(GetType(i), *specific)}) { 3426 proc = resolution; 3427 } else { 3428 proc = specific; 3429 passedObjectIndex = i; 3430 } 3431 } 3432 } 3433 if (!proc) { 3434 return std::nullopt; 3435 } 3436 ActualArguments actualsCopy{actuals_}; 3437 if (passedObjectIndex >= 0) { 3438 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3439 } 3440 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3441 } 3442 3443 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3444 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3445 << '\n'; 3446 for (const auto &actual : actuals_) { 3447 if (!actual.has_value()) { 3448 os << "- error\n"; 3449 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3450 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3451 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3452 expr->AsFortran(os << "- expr: ") << '\n'; 3453 } else { 3454 DIE("bad ActualArgument"); 3455 } 3456 } 3457 } 3458 3459 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3460 const parser::Expr &expr) { 3461 source_.ExtendToCover(expr.source); 3462 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3463 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3464 if (isProcedureCall_) { 3465 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 3466 } 3467 context_.SayAt(expr.source, 3468 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3469 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3470 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3471 return ActualArgument{std::move(*argExpr)}; 3472 } 3473 context_.SayAt(expr.source, 3474 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3475 : "Subroutine name is not allowed here"_err_en_US); 3476 } 3477 return std::nullopt; 3478 } 3479 3480 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3481 const parser::Expr &expr) { 3482 // If an expression's parse tree is a whole assumed-size array: 3483 // Expr -> Designator -> DataRef -> Name 3484 // treat it as a special case for argument passing and bypass 3485 // the C1002/C1014 constraint checking in expression semantics. 3486 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3487 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3488 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3489 return context_.Analyze(expr); 3490 } 3491 } 3492 return context_.Analyze(expr); 3493 } 3494 3495 bool ArgumentAnalyzer::AreConformable() const { 3496 CHECK(actuals_.size() == 2); 3497 return actuals_[0] && actuals_[1] && 3498 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3499 } 3500 3501 // Look for a type-bound operator in the type of arg number passIndex. 3502 const Symbol *ArgumentAnalyzer::FindBoundOp( 3503 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3504 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3505 if (!type || !type->scope()) { 3506 return nullptr; 3507 } 3508 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3509 if (!symbol) { 3510 return nullptr; 3511 } 3512 definedOp = symbol; 3513 ExpressionAnalyzer::AdjustActuals adjustment{ 3514 [&](const Symbol &proc, ActualArguments &) { 3515 return passIndex == GetPassIndex(proc); 3516 }}; 3517 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3518 if (!pair.first) { 3519 context_.EmitGenericResolutionError(*symbol, pair.second); 3520 } 3521 return pair.first; 3522 } 3523 3524 // If there is an implicit conversion between intrinsic types, make it explicit 3525 void ArgumentAnalyzer::AddAssignmentConversion( 3526 const DynamicType &lhsType, const DynamicType &rhsType) { 3527 if (lhsType.category() == rhsType.category() && 3528 lhsType.kind() == rhsType.kind()) { 3529 // no conversion necessary 3530 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3531 actuals_[1] = ActualArgument{*rhsExpr}; 3532 } else { 3533 actuals_[1] = std::nullopt; 3534 } 3535 } 3536 3537 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3538 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3539 } 3540 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3541 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3542 } 3543 3544 // If the argument at index i is a BOZ literal, convert its type to match the 3545 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3546 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3547 // is not currently supported. 3548 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3549 std::size_t i, std::optional<DynamicType> otherType) { 3550 if (IsBOZLiteral(i)) { 3551 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3552 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3553 if (otherType && otherType->category() == TypeCategory::Real) { 3554 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3555 MaybeExpr realExpr{ 3556 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3557 actuals_[i] = std::move(*realExpr); 3558 thisType.emplace(TypeCategory::Real, kind); 3559 } else { 3560 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3561 MaybeExpr intExpr{ 3562 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3563 actuals_[i] = std::move(*intExpr); 3564 thisType.emplace(TypeCategory::Integer, kind); 3565 } 3566 } 3567 } 3568 3569 // Report error resolving opr when there is a user-defined one available 3570 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3571 std::string type0{TypeAsFortran(0)}; 3572 auto rank0{actuals_[0]->Rank()}; 3573 if (actuals_.size() == 1) { 3574 if (rank0 > 0) { 3575 context_.Say("No intrinsic or user-defined %s matches " 3576 "rank %d array of %s"_err_en_US, 3577 opr, rank0, type0); 3578 } else { 3579 context_.Say("No intrinsic or user-defined %s matches " 3580 "operand type %s"_err_en_US, 3581 opr, type0); 3582 } 3583 } else { 3584 std::string type1{TypeAsFortran(1)}; 3585 auto rank1{actuals_[1]->Rank()}; 3586 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3587 context_.Say("No intrinsic or user-defined %s matches " 3588 "rank %d array of %s and rank %d array of %s"_err_en_US, 3589 opr, rank0, type0, rank1, type1); 3590 } else if (isAssignment && rank0 != rank1) { 3591 if (rank0 == 0) { 3592 context_.Say("No intrinsic or user-defined %s matches " 3593 "scalar %s and rank %d array of %s"_err_en_US, 3594 opr, type0, rank1, type1); 3595 } else { 3596 context_.Say("No intrinsic or user-defined %s matches " 3597 "rank %d array of %s and scalar %s"_err_en_US, 3598 opr, rank0, type0, type1); 3599 } 3600 } else { 3601 context_.Say("No intrinsic or user-defined %s matches " 3602 "operand types %s and %s"_err_en_US, 3603 opr, type0, type1); 3604 } 3605 } 3606 } 3607 3608 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3609 if (i >= actuals_.size() || !actuals_[i]) { 3610 return "missing argument"; 3611 } else if (std::optional<DynamicType> type{GetType(i)}) { 3612 return type->category() == TypeCategory::Derived 3613 ? "TYPE("s + type->AsFortran() + ')' 3614 : type->category() == TypeCategory::Character 3615 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3616 : ToUpperCase(type->AsFortran()); 3617 } else { 3618 return "untyped"; 3619 } 3620 } 3621 3622 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3623 for (const auto &actual : actuals_) { 3624 if (!actual || 3625 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3626 return true; 3627 } 3628 } 3629 return false; 3630 } 3631 } // namespace Fortran::evaluate 3632 3633 namespace Fortran::semantics { 3634 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3635 SemanticsContext &context, common::TypeCategory category, 3636 const std::optional<parser::KindSelector> &selector) { 3637 evaluate::ExpressionAnalyzer analyzer{context}; 3638 auto restorer{ 3639 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3640 return analyzer.AnalyzeKindSelector(category, selector); 3641 } 3642 3643 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3644 3645 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3646 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3647 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3648 auto name{bounds.name.thing.thing}; 3649 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3650 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3651 if (dynamicType->category() == TypeCategory::Integer) { 3652 kind = dynamicType->kind(); 3653 } 3654 } 3655 exprAnalyzer_.AddImpliedDo(name.source, kind); 3656 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3657 exprAnalyzer_.RemoveImpliedDo(name.source); 3658 return false; 3659 } 3660 3661 bool ExprChecker::Walk(const parser::Program &program) { 3662 parser::Walk(program, *this); 3663 return !context_.AnyFatalError(); 3664 } 3665 } // namespace Fortran::semantics 3666