1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/Fortran.h"
14 #include "flang/Common/idioms.h"
15 #include "flang/Evaluate/common.h"
16 #include "flang/Evaluate/fold.h"
17 #include "flang/Evaluate/tools.h"
18 #include "flang/Parser/characters.h"
19 #include "flang/Parser/dump-parse-tree.h"
20 #include "flang/Parser/parse-tree-visitor.h"
21 #include "flang/Parser/parse-tree.h"
22 #include "flang/Semantics/scope.h"
23 #include "flang/Semantics/semantics.h"
24 #include "flang/Semantics/symbol.h"
25 #include "flang/Semantics/tools.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <functional>
29 #include <optional>
30 #include <set>
31 
32 // Typedef for optional generic expressions (ubiquitous in this file)
33 using MaybeExpr =
34     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
35 
36 // Much of the code that implements semantic analysis of expressions is
37 // tightly coupled with their typed representations in lib/Evaluate,
38 // and appears here in namespace Fortran::evaluate for convenience.
39 namespace Fortran::evaluate {
40 
41 using common::LanguageFeature;
42 using common::NumericOperator;
43 using common::TypeCategory;
44 
45 static inline std::string ToUpperCase(const std::string &str) {
46   return parser::ToUpperCaseLetters(str);
47 }
48 
49 struct DynamicTypeWithLength : public DynamicType {
50   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
51   std::optional<Expr<SubscriptInteger>> LEN() const;
52   std::optional<Expr<SubscriptInteger>> length;
53 };
54 
55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
56   if (length) {
57     return length;
58   } else {
59     return GetCharLength();
60   }
61 }
62 
63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
64     const std::optional<parser::TypeSpec> &spec) {
65   if (spec) {
66     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
67       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
68       // (viz., an intrinsic type with valid known kind or a non-polymorphic
69       // & non-ABSTRACT derived type).
70       if (const semantics::IntrinsicTypeSpec *
71           intrinsic{typeSpec->AsIntrinsic()}) {
72         TypeCategory category{intrinsic->category()};
73         if (auto optKind{ToInt64(intrinsic->kind())}) {
74           int kind{static_cast<int>(*optKind)};
75           if (category == TypeCategory::Character) {
76             const semantics::CharacterTypeSpec &cts{
77                 typeSpec->characterTypeSpec()};
78             const semantics::ParamValue &len{cts.length()};
79             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
80             // type guards, but not in array constructors.
81             return DynamicTypeWithLength{DynamicType{kind, len}};
82           } else {
83             return DynamicTypeWithLength{DynamicType{category, kind}};
84           }
85         }
86       } else if (const semantics::DerivedTypeSpec *
87           derived{typeSpec->AsDerived()}) {
88         return DynamicTypeWithLength{DynamicType{*derived}};
89       }
90     }
91   }
92   return std::nullopt;
93 }
94 
95 class ArgumentAnalyzer {
96 public:
97   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
98       : context_{context}, source_{context.GetContextualMessages().at()},
99         isProcedureCall_{false} {}
100   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
101       bool isProcedureCall = false)
102       : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
103   bool fatalErrors() const { return fatalErrors_; }
104   ActualArguments &&GetActuals() {
105     CHECK(!fatalErrors_);
106     return std::move(actuals_);
107   }
108   const Expr<SomeType> &GetExpr(std::size_t i) const {
109     return DEREF(actuals_.at(i).value().UnwrapExpr());
110   }
111   Expr<SomeType> &&MoveExpr(std::size_t i) {
112     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
113   }
114   void Analyze(const common::Indirection<parser::Expr> &x) {
115     Analyze(x.value());
116   }
117   void Analyze(const parser::Expr &x) {
118     actuals_.emplace_back(AnalyzeExpr(x));
119     fatalErrors_ |= !actuals_.back();
120   }
121   void Analyze(const parser::Variable &);
122   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
123   void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i,
124       std::optional<DynamicType> otherType);
125 
126   bool IsIntrinsicRelational(
127       RelationalOperator, const DynamicType &, const DynamicType &) const;
128   bool IsIntrinsicLogical() const;
129   bool IsIntrinsicNumeric(NumericOperator) const;
130   bool IsIntrinsicConcat() const;
131 
132   bool CheckConformance();
133   bool CheckForNullPointer(const char *where = "as an operand here");
134 
135   // Find and return a user-defined operator or report an error.
136   // The provided message is used if there is no such operator.
137   MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText,
138       const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false);
139   template <typename E>
140   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) {
141     return TryDefinedOp(
142         context_.context().languageFeatures().GetNames(opr), msg);
143   }
144   // Find and return a user-defined assignment
145   std::optional<ProcedureRef> TryDefinedAssignment();
146   std::optional<ProcedureRef> GetDefinedAssignmentProc();
147   std::optional<DynamicType> GetType(std::size_t) const;
148   void Dump(llvm::raw_ostream &);
149 
150 private:
151   MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText);
152   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
153   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
154   MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &);
155   bool AreConformable() const;
156   const Symbol *FindBoundOp(
157       parser::CharBlock, int passIndex, const Symbol *&definedOp);
158   void AddAssignmentConversion(
159       const DynamicType &lhsType, const DynamicType &rhsType);
160   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
161   int GetRank(std::size_t) const;
162   bool IsBOZLiteral(std::size_t i) const {
163     return evaluate::IsBOZLiteral(GetExpr(i));
164   }
165   void SayNoMatch(const std::string &, bool isAssignment = false);
166   std::string TypeAsFortran(std::size_t);
167   bool AnyUntypedOrMissingOperand();
168 
169   ExpressionAnalyzer &context_;
170   ActualArguments actuals_;
171   parser::CharBlock source_;
172   bool fatalErrors_{false};
173   const bool isProcedureCall_; // false for user-defined op or assignment
174 };
175 
176 // Wraps a data reference in a typed Designator<>, and a procedure
177 // or procedure pointer reference in a ProcedureDesignator.
178 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
179   const Symbol &last{ref.GetLastSymbol()};
180   const Symbol &symbol{BypassGeneric(last).GetUltimate()};
181   if (semantics::IsProcedure(symbol)) {
182     if (auto *component{std::get_if<Component>(&ref.u)}) {
183       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
184     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
185       DIE("unexpected alternative in DataRef");
186     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
187       if (symbol.has<semantics::GenericDetails>()) {
188         Say("'%s' is not a specific procedure"_err_en_US, symbol.name());
189       } else {
190         return Expr<SomeType>{ProcedureDesignator{symbol}};
191       }
192     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
193                    symbol.name().ToString())};
194                interface && !interface->isRestrictedSpecific) {
195       SpecificIntrinsic intrinsic{
196           symbol.name().ToString(), std::move(*interface)};
197       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
198       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
199     } else {
200       Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US,
201           symbol.name());
202     }
203     return std::nullopt;
204   } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) {
205     return result;
206   } else {
207     if (!context_.HasError(last) && !context_.HasError(symbol)) {
208       AttachDeclaration(
209           Say("'%s' is not an object that can appear in an expression"_err_en_US,
210               last.name()),
211           symbol);
212       context_.SetError(last);
213     }
214     return std::nullopt;
215   }
216 }
217 
218 // Some subscript semantic checks must be deferred until all of the
219 // subscripts are in hand.
220 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
221   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
222   int symbolRank{symbol.Rank()};
223   int subscripts{static_cast<int>(ref.size())};
224   if (subscripts == 0) {
225     return std::nullopt; // error recovery
226   } else if (subscripts != symbolRank) {
227     if (symbolRank != 0) {
228       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
229           symbolRank, symbol.name(), subscripts);
230     }
231     return std::nullopt;
232   } else if (Component * component{ref.base().UnwrapComponent()}) {
233     int baseRank{component->base().Rank()};
234     if (baseRank > 0) {
235       int subscriptRank{0};
236       for (const auto &expr : ref.subscript()) {
237         subscriptRank += expr.Rank();
238       }
239       if (subscriptRank > 0) { // C919a
240         Say("Subscripts of component '%s' of rank-%d derived type "
241             "array have rank %d but must all be scalar"_err_en_US,
242             symbol.name(), baseRank, subscriptRank);
243         return std::nullopt;
244       }
245     }
246   } else if (const auto *object{
247                  symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
248     // C928 & C1002
249     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
250       if (!last->upper() && object->IsAssumedSize()) {
251         Say("Assumed-size array '%s' must have explicit final "
252             "subscript upper bound value"_err_en_US,
253             symbol.name());
254         return std::nullopt;
255       }
256     }
257   } else {
258     // Shouldn't get here from Analyze(ArrayElement) without a valid base,
259     // which, if not an object, must be a construct entity from
260     // SELECT TYPE/RANK or ASSOCIATE.
261     CHECK(symbol.has<semantics::AssocEntityDetails>());
262   }
263   return Designate(DataRef{std::move(ref)});
264 }
265 
266 // Applies subscripts to a data reference.
267 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
268     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
269   if (subscripts.empty()) {
270     return std::nullopt; // error recovery
271   }
272   return std::visit(
273       common::visitors{
274           [&](SymbolRef &&symbol) {
275             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
276           },
277           [&](Component &&c) {
278             return CompleteSubscripts(
279                 ArrayRef{std::move(c), std::move(subscripts)});
280           },
281           [&](auto &&) -> MaybeExpr {
282             DIE("bad base for ArrayRef");
283             return std::nullopt;
284           },
285       },
286       std::move(dataRef.u));
287 }
288 
289 // Top-level checks for data references.
290 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
291   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
292     const Symbol &symbol{component->GetLastSymbol()};
293     int componentRank{symbol.Rank()};
294     if (componentRank > 0) {
295       int baseRank{component->base().Rank()};
296       if (baseRank > 0) { // C919a
297         Say("Reference to whole rank-%d component '%%%s' of "
298             "rank-%d array of derived type is not allowed"_err_en_US,
299             componentRank, symbol.name(), baseRank);
300       }
301     }
302   }
303   return Designate(std::move(dataRef));
304 }
305 
306 // Parse tree correction after a substring S(j:k) was misparsed as an
307 // array section.  N.B. Fortran substrings have to have a range, not a
308 // single index.
309 static void FixMisparsedSubstring(const parser::Designator &d) {
310   auto &mutate{const_cast<parser::Designator &>(d)};
311   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
312     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
313             &dataRef->u)}) {
314       parser::ArrayElement &arrElement{ae->value()};
315       if (!arrElement.subscripts.empty()) {
316         auto iter{arrElement.subscripts.begin()};
317         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
318           if (!std::get<2>(triplet->t) /* no stride */ &&
319               ++iter == arrElement.subscripts.end() /* one subscript */) {
320             if (Symbol *
321                 symbol{std::visit(
322                     common::visitors{
323                         [](parser::Name &n) { return n.symbol; },
324                         [](common::Indirection<parser::StructureComponent>
325                                 &sc) { return sc.value().component.symbol; },
326                         [](auto &) -> Symbol * { return nullptr; },
327                     },
328                     arrElement.base.u)}) {
329               const Symbol &ultimate{symbol->GetUltimate()};
330               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
331                 if (!ultimate.IsObjectArray() &&
332                     type->category() == semantics::DeclTypeSpec::Character) {
333                   // The ambiguous S(j:k) was parsed as an array section
334                   // reference, but it's now clear that it's a substring.
335                   // Fix the parse tree in situ.
336                   mutate.u = arrElement.ConvertToSubstring();
337                 }
338               }
339             }
340           }
341         }
342       }
343     }
344   }
345 }
346 
347 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
348   auto restorer{GetContextualMessages().SetLocation(d.source)};
349   FixMisparsedSubstring(d);
350   // These checks have to be deferred to these "top level" data-refs where
351   // we can be sure that there are no following subscripts (yet).
352   // Substrings have already been run through TopLevelChecks() and
353   // won't be returned by ExtractDataRef().
354   if (MaybeExpr result{Analyze(d.u)}) {
355     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
356       return TopLevelChecks(std::move(*dataRef));
357     }
358     return result;
359   }
360   return std::nullopt;
361 }
362 
363 // A utility subroutine to repackage optional expressions of various levels
364 // of type specificity as fully general MaybeExpr values.
365 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
366   return AsGenericExpr(std::move(x));
367 }
368 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
369   if (x) {
370     return AsMaybeExpr(std::move(*x));
371   }
372   return std::nullopt;
373 }
374 
375 // Type kind parameter values for literal constants.
376 int ExpressionAnalyzer::AnalyzeKindParam(
377     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
378   if (!kindParam) {
379     return defaultKind;
380   }
381   return std::visit(
382       common::visitors{
383           [](std::uint64_t k) { return static_cast<int>(k); },
384           [&](const parser::Scalar<
385               parser::Integer<parser::Constant<parser::Name>>> &n) {
386             if (MaybeExpr ie{Analyze(n)}) {
387               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
388                 int iv = *i64;
389                 if (iv == *i64) {
390                   return iv;
391                 }
392               }
393             }
394             return defaultKind;
395           },
396       },
397       kindParam->u);
398 }
399 
400 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
401 struct IntTypeVisitor {
402   using Result = MaybeExpr;
403   using Types = IntegerTypes;
404   template <typename T> Result Test() {
405     if (T::kind >= kind) {
406       const char *p{digits.begin()};
407       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
408       if (!value.overflow) {
409         if (T::kind > kind) {
410           if (!isDefaultKind ||
411               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
412             return std::nullopt;
413           } else if (analyzer.context().ShouldWarn(
414                          LanguageFeature::BigIntLiterals)) {
415             analyzer.Say(digits,
416                 "Integer literal is too large for default INTEGER(KIND=%d); "
417                 "assuming INTEGER(KIND=%d)"_en_US,
418                 kind, T::kind);
419           }
420         }
421         return Expr<SomeType>{
422             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
423       }
424     }
425     return std::nullopt;
426   }
427   ExpressionAnalyzer &analyzer;
428   parser::CharBlock digits;
429   int kind;
430   bool isDefaultKind;
431 };
432 
433 template <typename PARSED>
434 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
435   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
436   bool isDefaultKind{!kindParam};
437   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
438   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
439     auto digits{std::get<parser::CharBlock>(x.t)};
440     if (MaybeExpr result{common::SearchTypes(
441             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
442       return result;
443     } else if (isDefaultKind) {
444       Say(digits,
445           "Integer literal is too large for any allowable "
446           "kind of INTEGER"_err_en_US);
447     } else {
448       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
449           kind);
450     }
451   }
452   return std::nullopt;
453 }
454 
455 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
456   auto restorer{
457       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
458   return IntLiteralConstant(x);
459 }
460 
461 MaybeExpr ExpressionAnalyzer::Analyze(
462     const parser::SignedIntLiteralConstant &x) {
463   auto restorer{GetContextualMessages().SetLocation(x.source)};
464   return IntLiteralConstant(x);
465 }
466 
467 template <typename TYPE>
468 Constant<TYPE> ReadRealLiteral(
469     parser::CharBlock source, FoldingContext &context) {
470   const char *p{source.begin()};
471   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
472   CHECK(p == source.end());
473   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
474   auto value{valWithFlags.value};
475   if (context.flushSubnormalsToZero()) {
476     value = value.FlushSubnormalToZero();
477   }
478   return {value};
479 }
480 
481 struct RealTypeVisitor {
482   using Result = std::optional<Expr<SomeReal>>;
483   using Types = RealTypes;
484 
485   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
486       : kind{k}, literal{lit}, context{ctx} {}
487 
488   template <typename T> Result Test() {
489     if (kind == T::kind) {
490       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
491     }
492     return std::nullopt;
493   }
494 
495   int kind;
496   parser::CharBlock literal;
497   FoldingContext &context;
498 };
499 
500 // Reads a real literal constant and encodes it with the right kind.
501 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
502   // Use a local message context around the real literal for better
503   // provenance on any messages.
504   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
505   // If a kind parameter appears, it defines the kind of the literal and the
506   // letter used in an exponent part must be 'E' (e.g., the 'E' in
507   // "6.02214E+23").  In the absence of an explicit kind parameter, any
508   // exponent letter determines the kind.  Otherwise, defaults apply.
509   auto &defaults{context_.defaultKinds()};
510   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
511   const char *end{x.real.source.end()};
512   char expoLetter{' '};
513   std::optional<int> letterKind;
514   for (const char *p{x.real.source.begin()}; p < end; ++p) {
515     if (parser::IsLetter(*p)) {
516       expoLetter = *p;
517       switch (expoLetter) {
518       case 'e':
519         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
520         break;
521       case 'd':
522         letterKind = defaults.doublePrecisionKind();
523         break;
524       case 'q':
525         letterKind = defaults.quadPrecisionKind();
526         break;
527       default:
528         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
529       }
530       break;
531     }
532   }
533   if (letterKind) {
534     defaultKind = *letterKind;
535   }
536   // C716 requires 'E' as an exponent, but this is more useful
537   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
538   if (letterKind && kind != *letterKind && expoLetter != 'e') {
539     Say("Explicit kind parameter on real constant disagrees with "
540         "exponent letter '%c'"_en_US,
541         expoLetter);
542   }
543   auto result{common::SearchTypes(
544       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
545   if (!result) { // C717
546     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
547   }
548   return AsMaybeExpr(std::move(result));
549 }
550 
551 MaybeExpr ExpressionAnalyzer::Analyze(
552     const parser::SignedRealLiteralConstant &x) {
553   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
554     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
555     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
556       if (sign == parser::Sign::Negative) {
557         return AsGenericExpr(-std::move(realExpr));
558       }
559     }
560     return result;
561   }
562   return std::nullopt;
563 }
564 
565 MaybeExpr ExpressionAnalyzer::Analyze(
566     const parser::SignedComplexLiteralConstant &x) {
567   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
568   if (!result) {
569     return std::nullopt;
570   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
571     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
572   } else {
573     return result;
574   }
575 }
576 
577 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
578   return Analyze(x.u);
579 }
580 
581 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
582   return AsMaybeExpr(
583       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
584           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
585 }
586 
587 // CHARACTER literal processing.
588 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
589   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
590     return std::nullopt;
591   }
592   switch (kind) {
593   case 1:
594     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
595         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
596             string, true)});
597   case 2:
598     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
599         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
600             string, true)});
601   case 4:
602     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
603         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
604             string, true)});
605   default:
606     CRASH_NO_CASE;
607   }
608 }
609 
610 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
611   int kind{
612       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
613   auto value{std::get<std::string>(x.t)};
614   return AnalyzeString(std::move(value), kind);
615 }
616 
617 MaybeExpr ExpressionAnalyzer::Analyze(
618     const parser::HollerithLiteralConstant &x) {
619   int kind{GetDefaultKind(TypeCategory::Character)};
620   auto value{x.v};
621   return AnalyzeString(std::move(value), kind);
622 }
623 
624 // .TRUE. and .FALSE. of various kinds
625 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
626   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
627       GetDefaultKind(TypeCategory::Logical))};
628   bool value{std::get<bool>(x.t)};
629   auto result{common::SearchTypes(
630       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
631           kind, std::move(value)})};
632   if (!result) {
633     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
634   }
635   return result;
636 }
637 
638 // BOZ typeless literals
639 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
640   const char *p{x.v.c_str()};
641   std::uint64_t base{16};
642   switch (*p++) {
643   case 'b':
644     base = 2;
645     break;
646   case 'o':
647     base = 8;
648     break;
649   case 'z':
650     break;
651   case 'x':
652     break;
653   default:
654     CRASH_NO_CASE;
655   }
656   CHECK(*p == '"');
657   ++p;
658   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
659   if (*p != '"') {
660     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
661         x.v); // C7107, C7108
662     return std::nullopt;
663   }
664   if (value.overflow) {
665     Say("BOZ literal '%s' too large"_err_en_US, x.v);
666     return std::nullopt;
667   }
668   return AsGenericExpr(std::move(value.value));
669 }
670 
671 // Names and named constants
672 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
673   auto restorer{GetContextualMessages().SetLocation(n.source)};
674   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
675     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
676         *kind, AsExpr(ImpliedDoIndex{n.source})));
677   } else if (context_.HasError(n)) {
678     return std::nullopt;
679   } else if (!n.symbol) {
680     SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source);
681     return std::nullopt;
682   } else {
683     const Symbol &ultimate{n.symbol->GetUltimate()};
684     if (ultimate.has<semantics::TypeParamDetails>()) {
685       // A bare reference to a derived type parameter (within a parameterized
686       // derived type definition)
687       return Fold(ConvertToType(
688           ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate})));
689     } else {
690       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
691         if (const semantics::Scope *
692             pure{semantics::FindPureProcedureContaining(
693                 context_.FindScope(n.source))}) {
694           SayAt(n,
695               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
696               n.source, DEREF(pure->symbol()).name());
697           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
698         }
699       }
700       if (!isWholeAssumedSizeArrayOk_ &&
701           semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231
702         AttachDeclaration(
703             SayAt(n,
704                 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US,
705                 n.source),
706             *n.symbol);
707       }
708       return Designate(DataRef{*n.symbol});
709     }
710   }
711 }
712 
713 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
714   auto restorer{GetContextualMessages().SetLocation(n.v.source)};
715   if (MaybeExpr value{Analyze(n.v)}) {
716     Expr<SomeType> folded{Fold(std::move(*value))};
717     if (IsConstantExpr(folded)) {
718       return folded;
719     }
720     Say(n.v.source, "must be a constant"_err_en_US); // C718
721   }
722   return std::nullopt;
723 }
724 
725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) {
726   if (MaybeExpr value{Analyze(n.v)}) {
727     // Subtle: when the NullInit is a DataStmtConstant, it might
728     // be a misparse of a structure constructor without parameters
729     // or components (e.g., T()).  Checking the result to ensure
730     // that a "=>" data entity initializer actually resolved to
731     // a null pointer has to be done by the caller.
732     return Fold(std::move(*value));
733   }
734   return std::nullopt;
735 }
736 
737 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
738   return Analyze(x.value());
739 }
740 
741 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
742   if (const auto &repeat{
743           std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
744     x.repetitions = -1;
745     if (MaybeExpr expr{Analyze(repeat->u)}) {
746       Expr<SomeType> folded{Fold(std::move(*expr))};
747       if (auto value{ToInt64(folded)}) {
748         if (*value >= 0) { // C882
749           x.repetitions = *value;
750         } else {
751           Say(FindSourceLocation(repeat),
752               "Repeat count (%jd) for data value must not be negative"_err_en_US,
753               *value);
754         }
755       }
756     }
757   }
758   return Analyze(std::get<parser::DataStmtConstant>(x.t));
759 }
760 
761 // Substring references
762 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
763     const std::optional<parser::ScalarIntExpr> &bound) {
764   if (bound) {
765     if (MaybeExpr expr{Analyze(*bound)}) {
766       if (expr->Rank() > 1) {
767         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
768       }
769       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
770         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
771           return {std::move(*ssIntExpr)};
772         }
773         return {Expr<SubscriptInteger>{
774             Convert<SubscriptInteger, TypeCategory::Integer>{
775                 std::move(*intExpr)}}};
776       } else {
777         Say("substring bound expression is not INTEGER"_err_en_US);
778       }
779     }
780   }
781   return std::nullopt;
782 }
783 
784 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
785   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
786     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
787       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
788         if (std::optional<DataRef> checked{
789                 ExtractDataRef(std::move(*newBaseExpr))}) {
790           const parser::SubstringRange &range{
791               std::get<parser::SubstringRange>(ss.t)};
792           std::optional<Expr<SubscriptInteger>> first{
793               GetSubstringBound(std::get<0>(range.t))};
794           std::optional<Expr<SubscriptInteger>> last{
795               GetSubstringBound(std::get<1>(range.t))};
796           const Symbol &symbol{checked->GetLastSymbol()};
797           if (std::optional<DynamicType> dynamicType{
798                   DynamicType::From(symbol)}) {
799             if (dynamicType->category() == TypeCategory::Character) {
800               return WrapperHelper<TypeCategory::Character, Designator,
801                   Substring>(dynamicType->kind(),
802                   Substring{std::move(checked.value()), std::move(first),
803                       std::move(last)});
804             }
805           }
806           Say("substring may apply only to CHARACTER"_err_en_US);
807         }
808       }
809     }
810   }
811   return std::nullopt;
812 }
813 
814 // CHARACTER literal substrings
815 MaybeExpr ExpressionAnalyzer::Analyze(
816     const parser::CharLiteralConstantSubstring &x) {
817   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
818   std::optional<Expr<SubscriptInteger>> lower{
819       GetSubstringBound(std::get<0>(range.t))};
820   std::optional<Expr<SubscriptInteger>> upper{
821       GetSubstringBound(std::get<1>(range.t))};
822   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
823     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
824       Expr<SubscriptInteger> length{
825           std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
826               charExpr->u)};
827       if (!lower) {
828         lower = Expr<SubscriptInteger>{1};
829       }
830       if (!upper) {
831         upper = Expr<SubscriptInteger>{
832             static_cast<std::int64_t>(ToInt64(length).value())};
833       }
834       return std::visit(
835           [&](auto &&ckExpr) -> MaybeExpr {
836             using Result = ResultType<decltype(ckExpr)>;
837             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
838             CHECK(DEREF(cp).size() == 1);
839             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
840             staticData->set_alignment(Result::kind)
841                 .set_itemBytes(Result::kind)
842                 .Push(cp->GetScalarValue().value());
843             Substring substring{std::move(staticData), std::move(lower.value()),
844                 std::move(upper.value())};
845             return AsGenericExpr(
846                 Expr<Result>{Designator<Result>{std::move(substring)}});
847           },
848           std::move(charExpr->u));
849     }
850   }
851   return std::nullopt;
852 }
853 
854 // Subscripted array references
855 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
856     MaybeExpr &&expr) {
857   if (expr) {
858     if (expr->Rank() > 1) {
859       Say("Subscript expression has rank %d greater than 1"_err_en_US,
860           expr->Rank());
861     }
862     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
863       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
864         return std::move(*ssIntExpr);
865       } else {
866         return Expr<SubscriptInteger>{
867             Convert<SubscriptInteger, TypeCategory::Integer>{
868                 std::move(*intExpr)}};
869       }
870     } else {
871       Say("Subscript expression is not INTEGER"_err_en_US);
872     }
873   }
874   return std::nullopt;
875 }
876 
877 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
878     const std::optional<parser::Subscript> &s) {
879   if (s) {
880     return AsSubscript(Analyze(*s));
881   } else {
882     return std::nullopt;
883   }
884 }
885 
886 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
887     const parser::SectionSubscript &ss) {
888   return std::visit(
889       common::visitors{
890           [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
891             const auto &lower{std::get<0>(t.t)};
892             const auto &upper{std::get<1>(t.t)};
893             const auto &stride{std::get<2>(t.t)};
894             auto result{Triplet{
895                 TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
896             if ((lower && !result.lower()) || (upper && !result.upper())) {
897               return std::nullopt;
898             } else {
899               return std::make_optional<Subscript>(result);
900             }
901           },
902           [&](const auto &s) -> std::optional<Subscript> {
903             if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
904               return Subscript{std::move(*subscriptExpr)};
905             } else {
906               return std::nullopt;
907             }
908           },
909       },
910       ss.u);
911 }
912 
913 // Empty result means an error occurred
914 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
915     const std::list<parser::SectionSubscript> &sss) {
916   bool error{false};
917   std::vector<Subscript> subscripts;
918   for (const auto &s : sss) {
919     if (auto subscript{AnalyzeSectionSubscript(s)}) {
920       subscripts.emplace_back(std::move(*subscript));
921     } else {
922       error = true;
923     }
924   }
925   return !error ? subscripts : std::vector<Subscript>{};
926 }
927 
928 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
929   MaybeExpr baseExpr;
930   {
931     auto restorer{AllowWholeAssumedSizeArray()};
932     baseExpr = Analyze(ae.base);
933   }
934   if (baseExpr) {
935     if (ae.subscripts.empty()) {
936       // will be converted to function call later or error reported
937     } else if (baseExpr->Rank() == 0) {
938       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
939         if (!context_.HasError(symbol)) {
940           Say("'%s' is not an array"_err_en_US, symbol->name());
941           context_.SetError(*symbol);
942         }
943       }
944     } else if (std::optional<DataRef> dataRef{
945                    ExtractDataRef(std::move(*baseExpr))}) {
946       return ApplySubscripts(
947           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
948     } else {
949       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
950     }
951   }
952   // error was reported: analyze subscripts without reporting more errors
953   auto restorer{GetContextualMessages().DiscardMessages()};
954   AnalyzeSectionSubscripts(ae.subscripts);
955   return std::nullopt;
956 }
957 
958 // Type parameter inquiries apply to data references, but don't depend
959 // on any trailing (co)subscripts.
960 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
961   return std::visit(
962       common::visitors{
963           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
964           [](Component &&component) {
965             return NamedEntity{std::move(component)};
966           },
967           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
968           [](CoarrayRef &&coarrayRef) {
969             return NamedEntity{coarrayRef.GetLastSymbol()};
970           },
971       },
972       std::move(designator.u));
973 }
974 
975 // Components of parent derived types are explicitly represented as such.
976 std::optional<Component> ExpressionAnalyzer::CreateComponent(
977     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
978   if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b
979     Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US);
980   }
981   if (&component.owner() == &scope) {
982     return Component{std::move(base), component};
983   }
984   if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) {
985     if (const Symbol * parentComponent{parentScope->GetSymbol()}) {
986       return CreateComponent(
987           DataRef{Component{std::move(base), *parentComponent}}, component,
988           *parentScope);
989     }
990   }
991   return std::nullopt;
992 }
993 
994 // Derived type component references and type parameter inquiries
995 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
996   MaybeExpr base{Analyze(sc.base)};
997   Symbol *sym{sc.component.symbol};
998   if (!base || !sym || context_.HasError(sym)) {
999     return std::nullopt;
1000   }
1001   const auto &name{sc.component.source};
1002   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1003     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
1004     if (sym->detailsIf<semantics::TypeParamDetails>()) {
1005       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
1006         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
1007           if (dyType->category() == TypeCategory::Integer) {
1008             auto restorer{GetContextualMessages().SetLocation(name)};
1009             return Fold(ConvertToType(*dyType,
1010                 AsGenericExpr(TypeParamInquiry{
1011                     IgnoreAnySubscripts(std::move(*designator)), *sym})));
1012           }
1013         }
1014         Say(name, "Type parameter is not INTEGER"_err_en_US);
1015       } else {
1016         Say(name,
1017             "A type parameter inquiry must be applied to "
1018             "a designator"_err_en_US);
1019       }
1020     } else if (!dtSpec || !dtSpec->scope()) {
1021       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
1022       return std::nullopt;
1023     } else if (std::optional<DataRef> dataRef{
1024                    ExtractDataRef(std::move(*dtExpr))}) {
1025       if (auto component{
1026               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
1027         return Designate(DataRef{std::move(*component)});
1028       } else {
1029         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1030             dtSpec->typeSymbol().name());
1031       }
1032     } else {
1033       Say(name,
1034           "Base of component reference must be a data reference"_err_en_US);
1035     }
1036   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1037     // special part-ref: %re, %im, %kind, %len
1038     // Type errors are detected and reported in semantics.
1039     using MiscKind = semantics::MiscDetails::Kind;
1040     MiscKind kind{details->kind()};
1041     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1042       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1043         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
1044           Expr<SomeReal> realExpr{std::visit(
1045               [&](const auto &z) {
1046                 using PartType = typename ResultType<decltype(z)>::Part;
1047                 auto part{kind == MiscKind::ComplexPartRe
1048                         ? ComplexPart::Part::RE
1049                         : ComplexPart::Part::IM};
1050                 return AsCategoryExpr(Designator<PartType>{
1051                     ComplexPart{std::move(*dataRef), part}});
1052               },
1053               zExpr->u)};
1054           return AsGenericExpr(std::move(realExpr));
1055         }
1056       }
1057     } else if (kind == MiscKind::KindParamInquiry ||
1058         kind == MiscKind::LenParamInquiry) {
1059       // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
1060       return MakeFunctionRef(
1061           name, ActualArguments{ActualArgument{std::move(*base)}});
1062     } else {
1063       DIE("unexpected MiscDetails::Kind");
1064     }
1065   } else {
1066     Say(name, "derived type required before component reference"_err_en_US);
1067   }
1068   return std::nullopt;
1069 }
1070 
1071 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1072   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1073     DataRef *dataRef{&*maybeDataRef};
1074     std::vector<Subscript> subscripts;
1075     SymbolVector reversed;
1076     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1077       subscripts = std::move(aRef->subscript());
1078       reversed.push_back(aRef->GetLastSymbol());
1079       if (Component * component{aRef->base().UnwrapComponent()}) {
1080         dataRef = &component->base();
1081       } else {
1082         dataRef = nullptr;
1083       }
1084     }
1085     if (dataRef) {
1086       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1087         reversed.push_back(component->GetLastSymbol());
1088         dataRef = &component->base();
1089       }
1090       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1091         reversed.push_back(*baseSym);
1092       } else {
1093         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1094       }
1095     }
1096     std::vector<Expr<SubscriptInteger>> cosubscripts;
1097     bool cosubsOk{true};
1098     for (const auto &cosub :
1099         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1100       MaybeExpr coex{Analyze(cosub)};
1101       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1102         cosubscripts.push_back(
1103             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1104       } else {
1105         cosubsOk = false;
1106       }
1107     }
1108     if (cosubsOk && !reversed.empty()) {
1109       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1110       const Symbol &symbol{reversed.front()};
1111       if (numCosubscripts != symbol.Corank()) {
1112         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1113             symbol.name(), symbol.Corank(), numCosubscripts);
1114       }
1115     }
1116     for (const auto &imageSelSpec :
1117         std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1118       std::visit(
1119           common::visitors{
1120               [&](const auto &x) { Analyze(x.v); },
1121           },
1122           imageSelSpec.u);
1123     }
1124     // Reverse the chain of symbols so that the base is first and coarray
1125     // ultimate component is last.
1126     if (cosubsOk) {
1127       return Designate(
1128           DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1129               std::move(subscripts), std::move(cosubscripts)}});
1130     }
1131   }
1132   return std::nullopt;
1133 }
1134 
1135 int ExpressionAnalyzer::IntegerTypeSpecKind(
1136     const parser::IntegerTypeSpec &spec) {
1137   Expr<SubscriptInteger> value{
1138       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1139   if (auto kind{ToInt64(value)}) {
1140     return static_cast<int>(*kind);
1141   }
1142   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1143   return GetDefaultKind(TypeCategory::Integer);
1144 }
1145 
1146 // Array constructors
1147 
1148 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1149 // all happen to have the same actual type T into one ArrayConstructor<T>.
1150 template <typename T>
1151 ArrayConstructorValues<T> MakeSpecific(
1152     ArrayConstructorValues<SomeType> &&from) {
1153   ArrayConstructorValues<T> to;
1154   for (ArrayConstructorValue<SomeType> &x : from) {
1155     std::visit(
1156         common::visitors{
1157             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1158               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1159               to.Push(std::move(DEREF(typed)));
1160             },
1161             [&](ImpliedDo<SomeType> &&impliedDo) {
1162               to.Push(ImpliedDo<T>{impliedDo.name(),
1163                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1164                   std::move(impliedDo.stride()),
1165                   MakeSpecific<T>(std::move(impliedDo.values()))});
1166             },
1167         },
1168         std::move(x.u));
1169   }
1170   return to;
1171 }
1172 
1173 class ArrayConstructorContext {
1174 public:
1175   ArrayConstructorContext(
1176       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1177       : exprAnalyzer_{c}, type_{std::move(t)} {}
1178 
1179   void Add(const parser::AcValue &);
1180   MaybeExpr ToExpr();
1181 
1182   // These interfaces allow *this to be used as a type visitor argument to
1183   // common::SearchTypes() to convert the array constructor to a typed
1184   // expression in ToExpr().
1185   using Result = MaybeExpr;
1186   using Types = AllTypes;
1187   template <typename T> Result Test() {
1188     if (type_ && type_->category() == T::category) {
1189       if constexpr (T::category == TypeCategory::Derived) {
1190         if (!type_->IsUnlimitedPolymorphic()) {
1191           return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1192               MakeSpecific<T>(std::move(values_))});
1193         }
1194       } else if (type_->kind() == T::kind) {
1195         if constexpr (T::category == TypeCategory::Character) {
1196           if (auto len{type_->LEN()}) {
1197             return AsMaybeExpr(ArrayConstructor<T>{
1198                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1199           }
1200         } else {
1201           return AsMaybeExpr(
1202               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1203         }
1204       }
1205     }
1206     return std::nullopt;
1207   }
1208 
1209 private:
1210   using ImpliedDoIntType = ResultType<ImpliedDoIndex>;
1211 
1212   void Push(MaybeExpr &&);
1213   void Add(const parser::AcValue::Triplet &);
1214   void Add(const parser::Expr &);
1215   void Add(const parser::AcImpliedDo &);
1216   void UnrollConstantImpliedDo(const parser::AcImpliedDo &,
1217       parser::CharBlock name, std::int64_t lower, std::int64_t upper,
1218       std::int64_t stride);
1219 
1220   template <int KIND, typename A>
1221   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1222       const A &x) {
1223     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1224       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1225       return Fold(exprAnalyzer_.GetFoldingContext(),
1226           ConvertToType<Type<TypeCategory::Integer, KIND>>(
1227               std::move(DEREF(intExpr))));
1228     }
1229     return std::nullopt;
1230   }
1231 
1232   // Nested array constructors all reference the same ExpressionAnalyzer,
1233   // which represents the nest of active implied DO loop indices.
1234   ExpressionAnalyzer &exprAnalyzer_;
1235   std::optional<DynamicTypeWithLength> type_;
1236   bool explicitType_{type_.has_value()};
1237   std::optional<std::int64_t> constantLength_;
1238   ArrayConstructorValues<SomeType> values_;
1239   std::uint64_t messageDisplayedSet_{0};
1240 };
1241 
1242 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1243   if (!x) {
1244     return;
1245   }
1246   if (!type_) {
1247     if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1248       // Treat an array constructor of BOZ as if default integer.
1249       if (exprAnalyzer_.context().ShouldWarn(
1250               common::LanguageFeature::BOZAsDefaultInteger)) {
1251         exprAnalyzer_.Say(
1252             "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US);
1253       }
1254       x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1255           exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1256           std::move(*boz)));
1257     }
1258   }
1259   std::optional<DynamicType> dyType{x->GetType()};
1260   if (!dyType) {
1261     if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1262       if (!type_) {
1263         // Treat an array constructor of BOZ as if default integer.
1264         if (exprAnalyzer_.context().ShouldWarn(
1265                 common::LanguageFeature::BOZAsDefaultInteger)) {
1266           exprAnalyzer_.Say(
1267               "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US);
1268         }
1269         x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1270             exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1271             std::move(*boz)));
1272         dyType = x.value().GetType();
1273       } else if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1274         x = std::move(cast);
1275         dyType = *type_;
1276       } else {
1277         if (!(messageDisplayedSet_ & 0x80)) {
1278           exprAnalyzer_.Say(
1279               "BOZ literal is not suitable for use in this array constructor"_err_en_US);
1280           messageDisplayedSet_ |= 0x80;
1281         }
1282         return;
1283       }
1284     } else { // procedure name, &c.
1285       if (!(messageDisplayedSet_ & 0x40)) {
1286         exprAnalyzer_.Say(
1287             "Item is not suitable for use in an array constructor"_err_en_US);
1288         messageDisplayedSet_ |= 0x40;
1289       }
1290       return;
1291     }
1292   } else if (dyType->IsUnlimitedPolymorphic()) {
1293     if (!(messageDisplayedSet_ & 8)) {
1294       exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an "
1295                         "array constructor"_err_en_US); // C7113
1296       messageDisplayedSet_ |= 8;
1297     }
1298     return;
1299   }
1300   DynamicTypeWithLength xType{dyType.value()};
1301   if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1302     CHECK(xType.category() == TypeCategory::Character);
1303     xType.length =
1304         std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1305   }
1306   if (!type_) {
1307     // If there is no explicit type-spec in an array constructor, the type
1308     // of the array is the declared type of all of the elements, which must
1309     // be well-defined and all match.
1310     // TODO: Possible language extension: use the most general type of
1311     // the values as the type of a numeric constructed array, convert all
1312     // of the other values to that type.  Alternative: let the first value
1313     // determine the type, and convert the others to that type.
1314     CHECK(!explicitType_);
1315     type_ = std::move(xType);
1316     constantLength_ = ToInt64(type_->length);
1317     values_.Push(std::move(*x));
1318   } else if (!explicitType_) {
1319     if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) {
1320       values_.Push(std::move(*x));
1321       if (auto thisLen{ToInt64(xType.LEN())}) {
1322         if (constantLength_) {
1323           if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1324               *thisLen != *constantLength_) {
1325             if (!(messageDisplayedSet_ & 1)) {
1326               exprAnalyzer_.Say(
1327                   "Character literal in array constructor without explicit "
1328                   "type has different length than earlier elements"_en_US);
1329               messageDisplayedSet_ |= 1;
1330             }
1331           }
1332           if (*thisLen > *constantLength_) {
1333             // Language extension: use the longest literal to determine the
1334             // length of the array constructor's character elements, not the
1335             // first, when there is no explicit type.
1336             *constantLength_ = *thisLen;
1337             type_->length = xType.LEN();
1338           }
1339         } else {
1340           constantLength_ = *thisLen;
1341           type_->length = xType.LEN();
1342         }
1343       }
1344     } else {
1345       if (!(messageDisplayedSet_ & 2)) {
1346         exprAnalyzer_.Say(
1347             "Values in array constructor must have the same declared type "
1348             "when no explicit type appears"_err_en_US); // C7110
1349         messageDisplayedSet_ |= 2;
1350       }
1351     }
1352   } else {
1353     if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1354       values_.Push(std::move(*cast));
1355     } else if (!(messageDisplayedSet_ & 4)) {
1356       exprAnalyzer_.Say("Value in array constructor of type '%s' could not "
1357                         "be converted to the type of the array '%s'"_err_en_US,
1358           x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
1359       messageDisplayedSet_ |= 4;
1360     }
1361   }
1362 }
1363 
1364 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1365   std::visit(
1366       common::visitors{
1367           [&](const parser::AcValue::Triplet &triplet) { Add(triplet); },
1368           [&](const common::Indirection<parser::Expr> &expr) {
1369             Add(expr.value());
1370           },
1371           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1372             Add(impliedDo.value());
1373           },
1374       },
1375       x.u);
1376 }
1377 
1378 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1379 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) {
1380   std::optional<Expr<ImpliedDoIntType>> lower{
1381       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))};
1382   std::optional<Expr<ImpliedDoIntType>> upper{
1383       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))};
1384   std::optional<Expr<ImpliedDoIntType>> stride{
1385       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))};
1386   if (lower && upper) {
1387     if (!stride) {
1388       stride = Expr<ImpliedDoIntType>{1};
1389     }
1390     if (!type_) {
1391       type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()};
1392     }
1393     auto v{std::move(values_)};
1394     parser::CharBlock anonymous;
1395     Push(Expr<SomeType>{
1396         Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}});
1397     std::swap(v, values_);
1398     values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1399         std::move(*upper), std::move(*stride), std::move(v)});
1400   }
1401 }
1402 
1403 void ArrayConstructorContext::Add(const parser::Expr &expr) {
1404   auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)};
1405   Push(exprAnalyzer_.Analyze(expr));
1406 }
1407 
1408 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) {
1409   const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)};
1410   const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1411   exprAnalyzer_.Analyze(bounds.name);
1412   parser::CharBlock name{bounds.name.thing.thing.source};
1413   const Symbol *symbol{bounds.name.thing.thing.symbol};
1414   int kind{ImpliedDoIntType::kind};
1415   if (const auto dynamicType{DynamicType::From(symbol)}) {
1416     kind = dynamicType->kind();
1417   }
1418   std::optional<Expr<ImpliedDoIntType>> lower{
1419       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)};
1420   std::optional<Expr<ImpliedDoIntType>> upper{
1421       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)};
1422   if (lower && upper) {
1423     std::optional<Expr<ImpliedDoIntType>> stride{
1424         GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)};
1425     if (!stride) {
1426       stride = Expr<ImpliedDoIntType>{1};
1427     }
1428     if (exprAnalyzer_.AddImpliedDo(name, kind)) {
1429       // Check for constant bounds; the loop may require complete unrolling
1430       // of the parse tree if all bounds are constant in order to allow the
1431       // implied DO loop index to qualify as a constant expression.
1432       auto cLower{ToInt64(lower)};
1433       auto cUpper{ToInt64(upper)};
1434       auto cStride{ToInt64(stride)};
1435       if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) {
1436         exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source,
1437             "The stride of an implied DO loop must not be zero"_err_en_US);
1438         messageDisplayedSet_ |= 0x10;
1439       }
1440       bool isConstant{cLower && cUpper && cStride && *cStride != 0};
1441       bool isNonemptyConstant{isConstant &&
1442           ((*cStride > 0 && *cLower <= *cUpper) ||
1443               (*cStride < 0 && *cLower >= *cUpper))};
1444       bool unrollConstantLoop{false};
1445       parser::Messages buffer;
1446       auto saveMessagesDisplayed{messageDisplayedSet_};
1447       {
1448         auto messageRestorer{
1449             exprAnalyzer_.GetContextualMessages().SetMessages(buffer)};
1450         auto v{std::move(values_)};
1451         for (const auto &value :
1452             std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1453           Add(value);
1454         }
1455         std::swap(v, values_);
1456         if (isNonemptyConstant && buffer.AnyFatalError()) {
1457           unrollConstantLoop = true;
1458         } else {
1459           values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1460               std::move(*upper), std::move(*stride), std::move(v)});
1461         }
1462       }
1463       if (unrollConstantLoop) {
1464         messageDisplayedSet_ = saveMessagesDisplayed;
1465         UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride);
1466       } else if (auto *messages{
1467                      exprAnalyzer_.GetContextualMessages().messages()}) {
1468         messages->Annex(std::move(buffer));
1469       }
1470       exprAnalyzer_.RemoveImpliedDo(name);
1471     } else if (!(messageDisplayedSet_ & 0x20)) {
1472       exprAnalyzer_.SayAt(name,
1473           "Implied DO index '%s' is active in a surrounding implied DO loop "
1474           "and may not have the same name"_err_en_US,
1475           name); // C7115
1476       messageDisplayedSet_ |= 0x20;
1477     }
1478   }
1479 }
1480 
1481 // Fortran considers an implied DO index of an array constructor to be
1482 // a constant expression if the bounds of the implied DO loop are constant.
1483 // Usually this doesn't matter, but if we emitted spurious messages as a
1484 // result of not using constant values for the index while analyzing the
1485 // items, we need to do it again the "hard" way with multiple iterations over
1486 // the parse tree.
1487 void ArrayConstructorContext::UnrollConstantImpliedDo(
1488     const parser::AcImpliedDo &impliedDo, parser::CharBlock name,
1489     std::int64_t lower, std::int64_t upper, std::int64_t stride) {
1490   auto &foldingContext{exprAnalyzer_.GetFoldingContext()};
1491   auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()};
1492   for (auto &at{foldingContext.StartImpliedDo(name, lower)};
1493        (stride > 0 && at <= upper) || (stride < 0 && at >= upper);
1494        at += stride) {
1495     for (const auto &value :
1496         std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1497       Add(value);
1498     }
1499   }
1500   foldingContext.EndImpliedDo(name);
1501 }
1502 
1503 MaybeExpr ArrayConstructorContext::ToExpr() {
1504   return common::SearchTypes(std::move(*this));
1505 }
1506 
1507 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1508   const parser::AcSpec &acSpec{array.v};
1509   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1510   for (const parser::AcValue &value : acSpec.values) {
1511     acContext.Add(value);
1512   }
1513   return acContext.ToExpr();
1514 }
1515 
1516 MaybeExpr ExpressionAnalyzer::Analyze(
1517     const parser::StructureConstructor &structure) {
1518   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1519   parser::Name structureType{std::get<parser::Name>(parsedType.t)};
1520   parser::CharBlock &typeName{structureType.source};
1521   if (semantics::Symbol * typeSymbol{structureType.symbol}) {
1522     if (typeSymbol->has<semantics::DerivedTypeDetails>()) {
1523       semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()};
1524       if (!CheckIsValidForwardReference(dtSpec)) {
1525         return std::nullopt;
1526       }
1527     }
1528   }
1529   if (!parsedType.derivedTypeSpec) {
1530     return std::nullopt;
1531   }
1532   const auto &spec{*parsedType.derivedTypeSpec};
1533   const Symbol &typeSymbol{spec.typeSymbol()};
1534   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1535     return std::nullopt; // error recovery
1536   }
1537   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1538   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1539 
1540   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1541     AttachDeclaration(Say(typeName,
1542                           "ABSTRACT derived type '%s' may not be used in a "
1543                           "structure constructor"_err_en_US,
1544                           typeName),
1545         typeSymbol); // C7114
1546   }
1547 
1548   // This iterator traverses all of the components in the derived type and its
1549   // parents.  The symbols for whole parent components appear after their
1550   // own components and before the components of the types that extend them.
1551   // E.g., TYPE :: A; REAL X; END TYPE
1552   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1553   // produces the component list X, A, Y.
1554   // The order is important below because a structure constructor can
1555   // initialize X or A by name, but not both.
1556   auto components{semantics::OrderedComponentIterator{spec}};
1557   auto nextAnonymous{components.begin()};
1558 
1559   std::set<parser::CharBlock> unavailable;
1560   bool anyKeyword{false};
1561   StructureConstructor result{spec};
1562   bool checkConflicts{true}; // until we hit one
1563   auto &messages{GetContextualMessages()};
1564 
1565   for (const auto &component :
1566       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1567     const parser::Expr &expr{
1568         std::get<parser::ComponentDataSource>(component.t).v.value()};
1569     parser::CharBlock source{expr.source};
1570     auto restorer{messages.SetLocation(source)};
1571     const Symbol *symbol{nullptr};
1572     MaybeExpr value{Analyze(expr)};
1573     std::optional<DynamicType> valueType{DynamicType::From(value)};
1574     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1575       anyKeyword = true;
1576       source = kw->v.source;
1577       symbol = kw->v.symbol;
1578       if (!symbol) {
1579         auto componentIter{std::find_if(components.begin(), components.end(),
1580             [=](const Symbol &symbol) { return symbol.name() == source; })};
1581         if (componentIter != components.end()) {
1582           symbol = &*componentIter;
1583         }
1584       }
1585       if (!symbol) { // C7101
1586         Say(source,
1587             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1588             source, typeName);
1589       }
1590     } else {
1591       if (anyKeyword) { // C7100
1592         Say(source,
1593             "Value in structure constructor lacks a component name"_err_en_US);
1594         checkConflicts = false; // stem cascade
1595       }
1596       // Here's a regrettably common extension of the standard: anonymous
1597       // initialization of parent components, e.g., T(PT(1)) rather than
1598       // T(1) or T(PT=PT(1)).
1599       if (nextAnonymous == components.begin() && parentComponent &&
1600           valueType == DynamicType::From(*parentComponent) &&
1601           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1602         auto iter{
1603             std::find(components.begin(), components.end(), *parentComponent)};
1604         if (iter != components.end()) {
1605           symbol = parentComponent;
1606           nextAnonymous = ++iter;
1607           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1608             Say(source,
1609                 "Whole parent component '%s' in structure "
1610                 "constructor should not be anonymous"_en_US,
1611                 symbol->name());
1612           }
1613         }
1614       }
1615       while (!symbol && nextAnonymous != components.end()) {
1616         const Symbol &next{*nextAnonymous};
1617         ++nextAnonymous;
1618         if (!next.test(Symbol::Flag::ParentComp)) {
1619           symbol = &next;
1620         }
1621       }
1622       if (!symbol) {
1623         Say(source, "Unexpected value in structure constructor"_err_en_US);
1624       }
1625     }
1626     if (symbol) {
1627       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1628         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1629           Say(source, *msg);
1630         }
1631       }
1632       if (checkConflicts) {
1633         auto componentIter{
1634             std::find(components.begin(), components.end(), *symbol)};
1635         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1636           // C797, C798
1637           Say(source,
1638               "Component '%s' conflicts with another component earlier in "
1639               "this structure constructor"_err_en_US,
1640               symbol->name());
1641         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1642           // Make earlier components unavailable once a whole parent appears.
1643           for (auto it{components.begin()}; it != componentIter; ++it) {
1644             unavailable.insert(it->name());
1645           }
1646         } else {
1647           // Make whole parent components unavailable after any of their
1648           // constituents appear.
1649           for (auto it{componentIter}; it != components.end(); ++it) {
1650             if (it->test(Symbol::Flag::ParentComp)) {
1651               unavailable.insert(it->name());
1652             }
1653           }
1654         }
1655       }
1656       unavailable.insert(symbol->name());
1657       if (value) {
1658         if (symbol->has<semantics::ProcEntityDetails>()) {
1659           CHECK(IsPointer(*symbol));
1660         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1661           // C1594(4)
1662           const auto &innermost{context_.FindScope(expr.source)};
1663           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1664             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1665               if (const Symbol *
1666                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1667                 if (auto *msg{Say(expr.source,
1668                         "Externally visible object '%s' may not be "
1669                         "associated with pointer component '%s' in a "
1670                         "pure procedure"_err_en_US,
1671                         object->name(), pointer->name())}) {
1672                   msg->Attach(object->name(), "Object declaration"_en_US)
1673                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1674                 }
1675               }
1676             }
1677           }
1678         } else if (symbol->has<semantics::TypeParamDetails>()) {
1679           Say(expr.source,
1680               "Type parameter '%s' may not appear as a component "
1681               "of a structure constructor"_err_en_US,
1682               symbol->name());
1683           continue;
1684         } else {
1685           Say(expr.source,
1686               "Component '%s' is neither a procedure pointer "
1687               "nor a data object"_err_en_US,
1688               symbol->name());
1689           continue;
1690         }
1691         if (IsPointer(*symbol)) {
1692           semantics::CheckPointerAssignment(
1693               GetFoldingContext(), *symbol, *value); // C7104, C7105
1694           result.Add(*symbol, Fold(std::move(*value)));
1695         } else if (MaybeExpr converted{
1696                        ConvertToType(*symbol, std::move(*value))}) {
1697           if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
1698             if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
1699               if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
1700                 AttachDeclaration(
1701                     Say(expr.source,
1702                         "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
1703                         GetRank(*valueShape), symbol->name()),
1704                     *symbol);
1705               } else {
1706                 auto checked{
1707                     CheckConformance(messages, *componentShape, *valueShape,
1708                         CheckConformanceFlags::RightIsExpandableDeferred,
1709                         "component", "value")};
1710                 if (checked && *checked && GetRank(*componentShape) > 0 &&
1711                     GetRank(*valueShape) == 0 &&
1712                     !IsExpandableScalar(*converted)) {
1713                   AttachDeclaration(
1714                       Say(expr.source,
1715                           "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
1716                           symbol->name()),
1717                       *symbol);
1718                 }
1719                 if (checked.value_or(true)) {
1720                   result.Add(*symbol, std::move(*converted));
1721                 }
1722               }
1723             } else {
1724               Say(expr.source, "Shape of value cannot be determined"_err_en_US);
1725             }
1726           } else {
1727             AttachDeclaration(
1728                 Say(expr.source,
1729                     "Shape of component '%s' cannot be determined"_err_en_US,
1730                     symbol->name()),
1731                 *symbol);
1732           }
1733         } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) {
1734           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE
1735         } else if (auto symType{DynamicType::From(symbol)}) {
1736           if (valueType) {
1737             AttachDeclaration(
1738                 Say(expr.source,
1739                     "Value in structure constructor of type %s is "
1740                     "incompatible with component '%s' of type %s"_err_en_US,
1741                     valueType->AsFortran(), symbol->name(),
1742                     symType->AsFortran()),
1743                 *symbol);
1744           } else {
1745             AttachDeclaration(
1746                 Say(expr.source,
1747                     "Value in structure constructor is incompatible with "
1748                     " component '%s' of type %s"_err_en_US,
1749                     symbol->name(), symType->AsFortran()),
1750                 *symbol);
1751           }
1752         }
1753       }
1754     }
1755   }
1756 
1757   // Ensure that unmentioned component objects have default initializers.
1758   for (const Symbol &symbol : components) {
1759     if (!symbol.test(Symbol::Flag::ParentComp) &&
1760         unavailable.find(symbol.name()) == unavailable.cend() &&
1761         !IsAllocatable(symbol)) {
1762       if (const auto *details{
1763               symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1764         if (details->init()) {
1765           result.Add(symbol, common::Clone(*details->init()));
1766         } else { // C799
1767           AttachDeclaration(Say(typeName,
1768                                 "Structure constructor lacks a value for "
1769                                 "component '%s'"_err_en_US,
1770                                 symbol.name()),
1771               symbol);
1772         }
1773       }
1774     }
1775   }
1776 
1777   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1778 }
1779 
1780 static std::optional<parser::CharBlock> GetPassName(
1781     const semantics::Symbol &proc) {
1782   return std::visit(
1783       [](const auto &details) {
1784         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1785                           std::decay_t<decltype(details)>>) {
1786           return details.passName();
1787         } else {
1788           return std::optional<parser::CharBlock>{};
1789         }
1790       },
1791       proc.details());
1792 }
1793 
1794 static int GetPassIndex(const Symbol &proc) {
1795   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1796   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1797   const auto *interface{semantics::FindInterface(proc)};
1798   if (!passName || !interface) {
1799     return 0; // first argument is passed-object
1800   }
1801   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1802   int index{0};
1803   for (const auto *arg : subp.dummyArgs()) {
1804     if (arg && arg->name() == passName) {
1805       return index;
1806     }
1807     ++index;
1808   }
1809   DIE("PASS argument name not in dummy argument list");
1810 }
1811 
1812 // Injects an expression into an actual argument list as the "passed object"
1813 // for a type-bound procedure reference that is not NOPASS.  Adds an
1814 // argument keyword if possible, but not when the passed object goes
1815 // before a positional argument.
1816 // e.g., obj%tbp(x) -> tbp(obj,x).
1817 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1818     const Symbol &component, bool isPassedObject = true) {
1819   if (component.attrs().test(semantics::Attr::NOPASS)) {
1820     return;
1821   }
1822   int passIndex{GetPassIndex(component)};
1823   auto iter{actuals.begin()};
1824   int at{0};
1825   while (iter < actuals.end() && at < passIndex) {
1826     if (*iter && (*iter)->keyword()) {
1827       iter = actuals.end();
1828       break;
1829     }
1830     ++iter;
1831     ++at;
1832   }
1833   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1834   passed.set_isPassedObject(isPassedObject);
1835   if (iter == actuals.end()) {
1836     if (auto passName{GetPassName(component)}) {
1837       passed.set_keyword(*passName);
1838     }
1839   }
1840   actuals.emplace(iter, std::move(passed));
1841 }
1842 
1843 // Return the compile-time resolution of a procedure binding, if possible.
1844 static const Symbol *GetBindingResolution(
1845     const std::optional<DynamicType> &baseType, const Symbol &component) {
1846   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1847   if (!binding) {
1848     return nullptr;
1849   }
1850   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1851       (!baseType || baseType->IsPolymorphic())) {
1852     return nullptr;
1853   }
1854   return &binding->symbol();
1855 }
1856 
1857 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1858     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1859     -> std::optional<CalleeAndArguments> {
1860   const parser::StructureComponent &sc{pcr.v.thing};
1861   if (MaybeExpr base{Analyze(sc.base)}) {
1862     if (const Symbol * sym{sc.component.symbol}) {
1863       if (context_.HasError(sym)) {
1864         return std::nullopt;
1865       }
1866       if (!IsProcedure(*sym)) {
1867         AttachDeclaration(
1868             Say(sc.component.source, "'%s' is not a procedure"_err_en_US,
1869                 sc.component.source),
1870             *sym);
1871         return std::nullopt;
1872       }
1873       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1874         if (sym->has<semantics::GenericDetails>()) {
1875           AdjustActuals adjustment{
1876               [&](const Symbol &proc, ActualArguments &actuals) {
1877                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1878                   AddPassArg(actuals, std::move(*dtExpr), proc);
1879                 }
1880                 return true;
1881               }};
1882           auto pair{ResolveGeneric(*sym, arguments, adjustment)};
1883           sym = pair.first;
1884           if (!sym) {
1885             EmitGenericResolutionError(*sc.component.symbol, pair.second);
1886             return std::nullopt;
1887           }
1888         }
1889         if (const Symbol *
1890             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1891           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1892           return CalleeAndArguments{
1893               ProcedureDesignator{*resolution}, std::move(arguments)};
1894         } else if (std::optional<DataRef> dataRef{
1895                        ExtractDataRef(std::move(*dtExpr))}) {
1896           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1897             return CalleeAndArguments{
1898                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1899                 std::move(arguments)};
1900           } else {
1901             AddPassArg(arguments,
1902                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1903                 *sym);
1904             return CalleeAndArguments{
1905                 ProcedureDesignator{*sym}, std::move(arguments)};
1906           }
1907         }
1908       }
1909       Say(sc.component.source,
1910           "Base of procedure component reference is not a derived-type object"_err_en_US);
1911     }
1912   }
1913   CHECK(!GetContextualMessages().empty());
1914   return std::nullopt;
1915 }
1916 
1917 // Can actual be argument associated with dummy?
1918 static bool CheckCompatibleArgument(bool isElemental,
1919     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1920   const auto *expr{actual.UnwrapExpr()};
1921   return std::visit(
1922       common::visitors{
1923           [&](const characteristics::DummyDataObject &x) {
1924             if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) &&
1925                 IsBareNullPointer(expr)) {
1926               // NULL() without MOLD= is compatible with any dummy data pointer
1927               // but cannot be allowed to lead to ambiguity.
1928               return true;
1929             } else if (!isElemental && actual.Rank() != x.type.Rank() &&
1930                 !x.type.attrs().test(
1931                     characteristics::TypeAndShape::Attr::AssumedRank)) {
1932               return false;
1933             } else if (auto actualType{actual.GetType()}) {
1934               return x.type.type().IsTkCompatibleWith(*actualType);
1935             }
1936             return false;
1937           },
1938           [&](const characteristics::DummyProcedure &) {
1939             return expr && IsProcedurePointerTarget(*expr);
1940           },
1941           [&](const characteristics::AlternateReturn &) {
1942             return actual.isAlternateReturn();
1943           },
1944       },
1945       dummy.u);
1946 }
1947 
1948 // Are the actual arguments compatible with the dummy arguments of procedure?
1949 static bool CheckCompatibleArguments(
1950     const characteristics::Procedure &procedure,
1951     const ActualArguments &actuals) {
1952   bool isElemental{procedure.IsElemental()};
1953   const auto &dummies{procedure.dummyArguments};
1954   CHECK(dummies.size() == actuals.size());
1955   for (std::size_t i{0}; i < dummies.size(); ++i) {
1956     const characteristics::DummyArgument &dummy{dummies[i]};
1957     const std::optional<ActualArgument> &actual{actuals[i]};
1958     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1959       return false;
1960     }
1961   }
1962   return true;
1963 }
1964 
1965 // Handles a forward reference to a module function from what must
1966 // be a specification expression.  Return false if the symbol is
1967 // an invalid forward reference.
1968 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
1969   if (context_.HasError(symbol)) {
1970     return false;
1971   }
1972   if (const auto *details{
1973           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
1974     if (details->kind() == semantics::SubprogramKind::Module) {
1975       // If this symbol is still a SubprogramNameDetails, we must be
1976       // checking a specification expression in a sibling module
1977       // procedure.  Resolve its names now so that its interface
1978       // is known.
1979       semantics::ResolveSpecificationParts(context_, symbol);
1980       if (symbol.has<semantics::SubprogramNameDetails>()) {
1981         // When the symbol hasn't had its details updated, we must have
1982         // already been in the process of resolving the function's
1983         // specification part; but recursive function calls are not
1984         // allowed in specification parts (10.1.11 para 5).
1985         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
1986             symbol.name());
1987         context_.SetError(symbol);
1988         return false;
1989       }
1990     } else { // 10.1.11 para 4
1991       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
1992           symbol.name());
1993       context_.SetError(symbol);
1994       return false;
1995     }
1996   }
1997   return true;
1998 }
1999 
2000 // Resolve a call to a generic procedure with given actual arguments.
2001 // adjustActuals is called on procedure bindings to handle pass arg.
2002 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric(
2003     const Symbol &symbol, const ActualArguments &actuals,
2004     const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) {
2005   const Symbol *elemental{nullptr}; // matching elemental specific proc
2006   const Symbol *nonElemental{nullptr}; // matching non-elemental specific
2007   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
2008   bool anyBareNullActual{
2009       std::find_if(actuals.begin(), actuals.end(), [](auto iter) {
2010         return IsBareNullPointer(iter->UnwrapExpr());
2011       }) != actuals.end()};
2012   for (const Symbol &specific : details.specificProcs()) {
2013     if (!ResolveForward(specific)) {
2014       continue;
2015     }
2016     if (std::optional<characteristics::Procedure> procedure{
2017             characteristics::Procedure::Characterize(
2018                 ProcedureDesignator{specific}, context_.foldingContext())}) {
2019       ActualArguments localActuals{actuals};
2020       if (specific.has<semantics::ProcBindingDetails>()) {
2021         if (!adjustActuals.value()(specific, localActuals)) {
2022           continue;
2023         }
2024       }
2025       if (semantics::CheckInterfaceForGeneric(*procedure, localActuals,
2026               GetFoldingContext(), false /* no integer conversions */) &&
2027           CheckCompatibleArguments(*procedure, localActuals)) {
2028         if ((procedure->IsElemental() && elemental) ||
2029             (!procedure->IsElemental() && nonElemental)) {
2030           // 16.9.144(6): a bare NULL() is not allowed as an actual
2031           // argument to a generic procedure if the specific procedure
2032           // cannot be unambiguously distinguished
2033           return {nullptr, true /* due to NULL actuals */};
2034         }
2035         if (!procedure->IsElemental()) {
2036           // takes priority over elemental match
2037           nonElemental = &specific;
2038           if (!anyBareNullActual) {
2039             break; // unambiguous case
2040           }
2041         } else {
2042           elemental = &specific;
2043         }
2044       }
2045     }
2046   }
2047   if (nonElemental) {
2048     return {&AccessSpecific(symbol, *nonElemental), false};
2049   } else if (elemental) {
2050     return {&AccessSpecific(symbol, *elemental), false};
2051   }
2052   // Check parent derived type
2053   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
2054     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
2055       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
2056         auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)};
2057         if (pair.first) {
2058           return pair;
2059         }
2060       }
2061     }
2062   }
2063   if (mightBeStructureConstructor && details.derivedType()) {
2064     return {details.derivedType(), false};
2065   }
2066   return {nullptr, false};
2067 }
2068 
2069 const Symbol &ExpressionAnalyzer::AccessSpecific(
2070     const Symbol &originalGeneric, const Symbol &specific) {
2071   if (const auto *hosted{
2072           originalGeneric.detailsIf<semantics::HostAssocDetails>()}) {
2073     return AccessSpecific(hosted->symbol(), specific);
2074   } else if (const auto *used{
2075                  originalGeneric.detailsIf<semantics::UseDetails>()}) {
2076     const auto &scope{originalGeneric.owner()};
2077     if (auto iter{scope.find(specific.name())}; iter != scope.end()) {
2078       if (const auto *useDetails{
2079               iter->second->detailsIf<semantics::UseDetails>()}) {
2080         const Symbol &usedSymbol{useDetails->symbol()};
2081         const auto *usedGeneric{
2082             usedSymbol.detailsIf<semantics::GenericDetails>()};
2083         if (&usedSymbol == &specific ||
2084             (usedGeneric && usedGeneric->specific() == &specific)) {
2085           return specific;
2086         }
2087       }
2088     }
2089     // Create a renaming USE of the specific procedure.
2090     auto rename{context_.SaveTempName(
2091         used->symbol().owner().GetName().value().ToString() + "$" +
2092         specific.name().ToString())};
2093     return *const_cast<semantics::Scope &>(scope)
2094                 .try_emplace(rename, specific.attrs(),
2095                     semantics::UseDetails{rename, specific})
2096                 .first->second;
2097   } else {
2098     return specific;
2099   }
2100 }
2101 
2102 void ExpressionAnalyzer::EmitGenericResolutionError(
2103     const Symbol &symbol, bool dueToNullActuals) {
2104   Say(dueToNullActuals
2105           ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US
2106           : semantics::IsGenericDefinedOp(symbol)
2107           ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US
2108           : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
2109       symbol.name());
2110 }
2111 
2112 auto ExpressionAnalyzer::GetCalleeAndArguments(
2113     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
2114     bool isSubroutine, bool mightBeStructureConstructor)
2115     -> std::optional<CalleeAndArguments> {
2116   return std::visit(
2117       common::visitors{
2118           [&](const parser::Name &name) {
2119             return GetCalleeAndArguments(name, std::move(arguments),
2120                 isSubroutine, mightBeStructureConstructor);
2121           },
2122           [&](const parser::ProcComponentRef &pcr) {
2123             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
2124           },
2125       },
2126       pd.u);
2127 }
2128 
2129 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
2130     ActualArguments &&arguments, bool isSubroutine,
2131     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
2132   const Symbol *symbol{name.symbol};
2133   if (context_.HasError(symbol)) {
2134     return std::nullopt; // also handles null symbol
2135   }
2136   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
2137   if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
2138     if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
2139             CallCharacteristics{ultimate.name().ToString(), isSubroutine},
2140             arguments, GetFoldingContext())}) {
2141       CheckBadExplicitType(*specificCall, *symbol);
2142       return CalleeAndArguments{
2143           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2144           std::move(specificCall->arguments)};
2145     }
2146   } else {
2147     CheckForBadRecursion(name.source, ultimate);
2148     bool dueToNullActual{false};
2149     if (ultimate.has<semantics::GenericDetails>()) {
2150       ExpressionAnalyzer::AdjustActuals noAdjustment;
2151       auto pair{ResolveGeneric(
2152           *symbol, arguments, noAdjustment, mightBeStructureConstructor)};
2153       symbol = pair.first;
2154       dueToNullActual = pair.second;
2155     }
2156     if (symbol) {
2157       if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
2158         if (mightBeStructureConstructor) {
2159           return CalleeAndArguments{
2160               semantics::SymbolRef{*symbol}, std::move(arguments)};
2161         }
2162       } else if (IsProcedure(*symbol)) {
2163         return CalleeAndArguments{
2164             ProcedureDesignator{*symbol}, std::move(arguments)};
2165       }
2166       if (!context_.HasError(*symbol)) {
2167         AttachDeclaration(
2168             Say(name.source, "'%s' is not a callable procedure"_err_en_US,
2169                 name.source),
2170             *symbol);
2171       }
2172     } else if (std::optional<SpecificCall> specificCall{
2173                    context_.intrinsics().Probe(
2174                        CallCharacteristics{
2175                            ultimate.name().ToString(), isSubroutine},
2176                        arguments, GetFoldingContext())}) {
2177       // Generics can extend intrinsics
2178       return CalleeAndArguments{
2179           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2180           std::move(specificCall->arguments)};
2181     } else {
2182       EmitGenericResolutionError(*name.symbol, dueToNullActual);
2183     }
2184   }
2185   return std::nullopt;
2186 }
2187 
2188 // Fortran 2018 expressly states (8.2 p3) that any declared type for a
2189 // generic intrinsic function "has no effect" on the result type of a
2190 // call to that intrinsic.  So one can declare "character*8 cos" and
2191 // still get a real result from "cos(1.)".  This is a dangerous feature,
2192 // especially since implementations are free to extend their sets of
2193 // intrinsics, and in doing so might clash with a name in a program.
2194 // So we emit a warning in this situation, and perhaps it should be an
2195 // error -- any correctly working program can silence the message by
2196 // simply deleting the pointless type declaration.
2197 void ExpressionAnalyzer::CheckBadExplicitType(
2198     const SpecificCall &call, const Symbol &intrinsic) {
2199   if (intrinsic.GetUltimate().GetType()) {
2200     const auto &procedure{call.specificIntrinsic.characteristics.value()};
2201     if (const auto &result{procedure.functionResult}) {
2202       if (const auto *typeAndShape{result->GetTypeAndShape()}) {
2203         if (auto declared{
2204                 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) {
2205           if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) {
2206             if (auto *msg{Say(
2207                     "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US,
2208                     typeAndShape->AsFortran(), intrinsic.name(),
2209                     declared->AsFortran())}) {
2210               msg->Attach(intrinsic.name(),
2211                   "Ignored declaration of intrinsic function '%s'"_en_US,
2212                   intrinsic.name());
2213             }
2214           }
2215         }
2216       }
2217     }
2218   }
2219 }
2220 
2221 void ExpressionAnalyzer::CheckForBadRecursion(
2222     parser::CharBlock callSite, const semantics::Symbol &proc) {
2223   if (const auto *scope{proc.scope()}) {
2224     if (scope->sourceRange().Contains(callSite)) {
2225       parser::Message *msg{nullptr};
2226       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
2227         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
2228             callSite);
2229       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
2230         msg = Say( // 15.6.2.1(3)
2231             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
2232             callSite);
2233       }
2234       AttachDeclaration(msg, proc);
2235     }
2236   }
2237 }
2238 
2239 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
2240   if (const auto *designator{
2241           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
2242     if (const auto *dataRef{
2243             std::get_if<parser::DataRef>(&designator->value().u)}) {
2244       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
2245         return AssumedTypeDummy(*name);
2246       }
2247     }
2248   }
2249   return nullptr;
2250 }
2251 template <>
2252 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) {
2253   if (const Symbol * symbol{name.symbol}) {
2254     if (const auto *type{symbol->GetType()}) {
2255       if (type->category() == semantics::DeclTypeSpec::TypeStar) {
2256         return symbol;
2257       }
2258     }
2259   }
2260   return nullptr;
2261 }
2262 template <typename A>
2263 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) {
2264   // It is illegal for allocatable of pointer objects to be TYPE(*), but at that
2265   // point it is is not guaranteed that it has been checked the object has
2266   // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly
2267   // returned.
2268   return std::visit(
2269       common::visitors{
2270           [&](const parser::StructureComponent &x) {
2271             return AssumedTypeDummy(x.component);
2272           },
2273           [&](const parser::Name &x) { return AssumedTypeDummy(x); },
2274       },
2275       object.u);
2276 }
2277 template <>
2278 const Symbol *AssumedTypeDummy<parser::AllocateObject>(
2279     const parser::AllocateObject &x) {
2280   return AssumedTypePointerOrAllocatableDummy(x);
2281 }
2282 template <>
2283 const Symbol *AssumedTypeDummy<parser::PointerObject>(
2284     const parser::PointerObject &x) {
2285   return AssumedTypePointerOrAllocatableDummy(x);
2286 }
2287 
2288 bool ExpressionAnalyzer::CheckIsValidForwardReference(
2289     const semantics::DerivedTypeSpec &dtSpec) {
2290   if (dtSpec.IsForwardReferenced()) {
2291     Say("Cannot construct value for derived type '%s' "
2292         "before it is defined"_err_en_US,
2293         dtSpec.name());
2294     return false;
2295   }
2296   return true;
2297 }
2298 
2299 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
2300     std::optional<parser::StructureConstructor> *structureConstructor) {
2301   const parser::Call &call{funcRef.v};
2302   auto restorer{GetContextualMessages().SetLocation(call.source)};
2303   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2304   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
2305     analyzer.Analyze(arg, false /* not subroutine call */);
2306   }
2307   if (analyzer.fatalErrors()) {
2308     return std::nullopt;
2309   }
2310   if (std::optional<CalleeAndArguments> callee{
2311           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2312               analyzer.GetActuals(), false /* not subroutine */,
2313               true /* might be structure constructor */)}) {
2314     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
2315       return MakeFunctionRef(
2316           call.source, std::move(*proc), std::move(callee->arguments));
2317     }
2318     CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
2319     const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)};
2320     if (structureConstructor) {
2321       // Structure constructor misparsed as function reference?
2322       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
2323       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
2324         semantics::Scope &scope{context_.FindScope(name->source)};
2325         semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()};
2326         if (!CheckIsValidForwardReference(dtSpec)) {
2327           return std::nullopt;
2328         }
2329         const semantics::DeclTypeSpec &type{
2330             semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))};
2331         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
2332         *structureConstructor =
2333             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
2334         return Analyze(structureConstructor->value());
2335       }
2336     }
2337     if (!context_.HasError(symbol)) {
2338       AttachDeclaration(
2339           Say("'%s' is called like a function but is not a procedure"_err_en_US,
2340               symbol.name()),
2341           symbol);
2342       context_.SetError(symbol);
2343     }
2344   }
2345   return std::nullopt;
2346 }
2347 
2348 static bool HasAlternateReturns(const evaluate::ActualArguments &args) {
2349   for (const auto &arg : args) {
2350     if (arg && arg->isAlternateReturn()) {
2351       return true;
2352     }
2353   }
2354   return false;
2355 }
2356 
2357 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
2358   const parser::Call &call{callStmt.v};
2359   auto restorer{GetContextualMessages().SetLocation(call.source)};
2360   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2361   const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
2362   for (const auto &arg : actualArgList) {
2363     analyzer.Analyze(arg, true /* is subroutine call */);
2364   }
2365   if (!analyzer.fatalErrors()) {
2366     if (std::optional<CalleeAndArguments> callee{
2367             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2368                 analyzer.GetActuals(), true /* subroutine */)}) {
2369       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
2370       CHECK(proc);
2371       if (CheckCall(call.source, *proc, callee->arguments)) {
2372         bool hasAlternateReturns{HasAlternateReturns(callee->arguments)};
2373         callStmt.typedCall.Reset(
2374             new ProcedureRef{std::move(*proc), std::move(callee->arguments),
2375                 hasAlternateReturns},
2376             ProcedureRef::Deleter);
2377       }
2378     }
2379   }
2380 }
2381 
2382 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
2383   if (!x.typedAssignment) {
2384     ArgumentAnalyzer analyzer{*this};
2385     analyzer.Analyze(std::get<parser::Variable>(x.t));
2386     analyzer.Analyze(std::get<parser::Expr>(x.t));
2387     std::optional<Assignment> assignment;
2388     if (!analyzer.fatalErrors()) {
2389       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
2390       if (!procRef) {
2391         analyzer.CheckForNullPointer(
2392             "in a non-pointer intrinsic assignment statement");
2393       }
2394       assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1));
2395       if (procRef) {
2396         assignment->u = std::move(*procRef);
2397       }
2398     }
2399     x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)},
2400         GenericAssignmentWrapper::Deleter);
2401   }
2402   return common::GetPtrFromOptional(x.typedAssignment->v);
2403 }
2404 
2405 const Assignment *ExpressionAnalyzer::Analyze(
2406     const parser::PointerAssignmentStmt &x) {
2407   if (!x.typedAssignment) {
2408     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2409     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2410     if (!lhs || !rhs) {
2411       x.typedAssignment.Reset(
2412           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2413     } else {
2414       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2415       std::visit(common::visitors{
2416                      [&](const std::list<parser::BoundsRemapping> &list) {
2417                        Assignment::BoundsRemapping bounds;
2418                        for (const auto &elem : list) {
2419                          auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2420                          auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2421                          if (lower && upper) {
2422                            bounds.emplace_back(Fold(std::move(*lower)),
2423                                Fold(std::move(*upper)));
2424                          }
2425                        }
2426                        assignment.u = std::move(bounds);
2427                      },
2428                      [&](const std::list<parser::BoundsSpec> &list) {
2429                        Assignment::BoundsSpec bounds;
2430                        for (const auto &bound : list) {
2431                          if (auto lower{AsSubscript(Analyze(bound.v))}) {
2432                            bounds.emplace_back(Fold(std::move(*lower)));
2433                          }
2434                        }
2435                        assignment.u = std::move(bounds);
2436                      },
2437                  },
2438           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2439       x.typedAssignment.Reset(
2440           new GenericAssignmentWrapper{std::move(assignment)},
2441           GenericAssignmentWrapper::Deleter);
2442     }
2443   }
2444   return common::GetPtrFromOptional(x.typedAssignment->v);
2445 }
2446 
2447 static bool IsExternalCalledImplicitly(
2448     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2449   if (const auto *symbol{proc.GetSymbol()}) {
2450     return symbol->has<semantics::SubprogramDetails>() &&
2451         symbol->owner().IsGlobal() &&
2452         (!symbol->scope() /*ENTRY*/ ||
2453             !symbol->scope()->sourceRange().Contains(callSite));
2454   } else {
2455     return false;
2456   }
2457 }
2458 
2459 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2460     parser::CharBlock callSite, const ProcedureDesignator &proc,
2461     ActualArguments &arguments) {
2462   auto chars{characteristics::Procedure::Characterize(
2463       proc, context_.foldingContext())};
2464   if (chars) {
2465     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2466     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2467       Say(callSite,
2468           "References to the procedure '%s' require an explicit interface"_en_US,
2469           DEREF(proc.GetSymbol()).name());
2470     }
2471     // Checks for ASSOCIATED() are done in intrinsic table processing
2472     bool procIsAssociated{false};
2473     if (const SpecificIntrinsic *
2474         specificIntrinsic{proc.GetSpecificIntrinsic()}) {
2475       if (specificIntrinsic->name == "associated") {
2476         procIsAssociated = true;
2477       }
2478     }
2479     if (!procIsAssociated) {
2480       semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2481           context_.FindScope(callSite), treatExternalAsImplicit,
2482           proc.GetSpecificIntrinsic());
2483       const Symbol *procSymbol{proc.GetSymbol()};
2484       if (procSymbol && !IsPureProcedure(*procSymbol)) {
2485         if (const semantics::Scope *
2486             pure{semantics::FindPureProcedureContaining(
2487                 context_.FindScope(callSite))}) {
2488           Say(callSite,
2489               "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2490               procSymbol->name(), DEREF(pure->symbol()).name());
2491         }
2492       }
2493     }
2494   }
2495   return chars;
2496 }
2497 
2498 // Unary operations
2499 
2500 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2501   if (MaybeExpr operand{Analyze(x.v.value())}) {
2502     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2503       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2504         if (semantics::IsProcedurePointer(*result)) {
2505           Say("A function reference that returns a procedure "
2506               "pointer may not be parenthesized"_err_en_US); // C1003
2507         }
2508       }
2509     }
2510     return Parenthesize(std::move(*operand));
2511   }
2512   return std::nullopt;
2513 }
2514 
2515 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2516     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2517   ArgumentAnalyzer analyzer{context};
2518   analyzer.Analyze(x.v);
2519   if (!analyzer.fatalErrors()) {
2520     if (analyzer.IsIntrinsicNumeric(opr)) {
2521       analyzer.CheckForNullPointer();
2522       if (opr == NumericOperator::Add) {
2523         return analyzer.MoveExpr(0);
2524       } else {
2525         return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2526       }
2527     } else {
2528       return analyzer.TryDefinedOp(AsFortran(opr),
2529           "Operand of unary %s must be numeric; have %s"_err_en_US);
2530     }
2531   }
2532   return std::nullopt;
2533 }
2534 
2535 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2536   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2537 }
2538 
2539 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2540   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2541 }
2542 
2543 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2544   ArgumentAnalyzer analyzer{*this};
2545   analyzer.Analyze(x.v);
2546   if (!analyzer.fatalErrors()) {
2547     if (analyzer.IsIntrinsicLogical()) {
2548       analyzer.CheckForNullPointer();
2549       return AsGenericExpr(
2550           LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2551     } else {
2552       return analyzer.TryDefinedOp(LogicalOperator::Not,
2553           "Operand of %s must be LOGICAL; have %s"_err_en_US);
2554     }
2555   }
2556   return std::nullopt;
2557 }
2558 
2559 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2560   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2561   // intrinsic function.
2562   // Use the actual source for the name of the call for error reporting.
2563   std::optional<ActualArgument> arg;
2564   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2565     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2566   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2567     arg = ActualArgument{std::move(*argExpr)};
2568   } else {
2569     return std::nullopt;
2570   }
2571   parser::CharBlock at{GetContextualMessages().at()};
2572   CHECK(at.size() >= 4);
2573   parser::CharBlock loc{at.begin() + 1, 3};
2574   CHECK(loc == "loc");
2575   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2576 }
2577 
2578 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2579   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2580   ArgumentAnalyzer analyzer{*this, name.source};
2581   analyzer.Analyze(std::get<1>(x.t));
2582   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2583       "No operator %s defined for %s"_err_en_US, nullptr, true);
2584 }
2585 
2586 // Binary (dyadic) operations
2587 
2588 template <template <typename> class OPR>
2589 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2590     const parser::Expr::IntrinsicBinary &x) {
2591   ArgumentAnalyzer analyzer{context};
2592   analyzer.Analyze(std::get<0>(x.t));
2593   analyzer.Analyze(std::get<1>(x.t));
2594   if (!analyzer.fatalErrors()) {
2595     if (analyzer.IsIntrinsicNumeric(opr)) {
2596       analyzer.CheckForNullPointer();
2597       analyzer.CheckConformance();
2598       return NumericOperation<OPR>(context.GetContextualMessages(),
2599           analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2600           context.GetDefaultKind(TypeCategory::Real));
2601     } else {
2602       return analyzer.TryDefinedOp(AsFortran(opr),
2603           "Operands of %s must be numeric; have %s and %s"_err_en_US);
2604     }
2605   }
2606   return std::nullopt;
2607 }
2608 
2609 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2610   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2611 }
2612 
2613 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2614   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2615 }
2616 
2617 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2618   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2619 }
2620 
2621 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2622   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2623 }
2624 
2625 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2626   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2627 }
2628 
2629 MaybeExpr ExpressionAnalyzer::Analyze(
2630     const parser::Expr::ComplexConstructor &x) {
2631   auto re{Analyze(std::get<0>(x.t).value())};
2632   auto im{Analyze(std::get<1>(x.t).value())};
2633   if (re && im) {
2634     ConformabilityCheck(GetContextualMessages(), *re, *im);
2635   }
2636   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2637       std::move(im), GetDefaultKind(TypeCategory::Real)));
2638 }
2639 
2640 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2641   ArgumentAnalyzer analyzer{*this};
2642   analyzer.Analyze(std::get<0>(x.t));
2643   analyzer.Analyze(std::get<1>(x.t));
2644   if (!analyzer.fatalErrors()) {
2645     if (analyzer.IsIntrinsicConcat()) {
2646       analyzer.CheckForNullPointer();
2647       return std::visit(
2648           [&](auto &&x, auto &&y) -> MaybeExpr {
2649             using T = ResultType<decltype(x)>;
2650             if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2651               return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2652             } else {
2653               DIE("different types for intrinsic concat");
2654             }
2655           },
2656           std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2657           std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2658     } else {
2659       return analyzer.TryDefinedOp("//",
2660           "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2661     }
2662   }
2663   return std::nullopt;
2664 }
2665 
2666 // The Name represents a user-defined intrinsic operator.
2667 // If the actuals match one of the specific procedures, return a function ref.
2668 // Otherwise report the error in messages.
2669 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2670     const parser::Name &name, ActualArguments &&actuals) {
2671   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2672     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2673     return MakeFunctionRef(name.source,
2674         std::move(std::get<ProcedureDesignator>(callee->u)),
2675         std::move(callee->arguments));
2676   } else {
2677     return std::nullopt;
2678   }
2679 }
2680 
2681 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2682     const parser::Expr::IntrinsicBinary &x) {
2683   ArgumentAnalyzer analyzer{context};
2684   analyzer.Analyze(std::get<0>(x.t));
2685   analyzer.Analyze(std::get<1>(x.t));
2686   if (!analyzer.fatalErrors()) {
2687     std::optional<DynamicType> leftType{analyzer.GetType(0)};
2688     std::optional<DynamicType> rightType{analyzer.GetType(1)};
2689     analyzer.ConvertBOZ(leftType, 0, rightType);
2690     analyzer.ConvertBOZ(rightType, 1, leftType);
2691     if (leftType && rightType &&
2692         analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) {
2693       analyzer.CheckForNullPointer("as a relational operand");
2694       return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2695           analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2696     } else {
2697       return analyzer.TryDefinedOp(opr,
2698           leftType && leftType->category() == TypeCategory::Logical &&
2699                   rightType && rightType->category() == TypeCategory::Logical
2700               ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US
2701               : "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2702     }
2703   }
2704   return std::nullopt;
2705 }
2706 
2707 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2708   return RelationHelper(*this, RelationalOperator::LT, x);
2709 }
2710 
2711 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2712   return RelationHelper(*this, RelationalOperator::LE, x);
2713 }
2714 
2715 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2716   return RelationHelper(*this, RelationalOperator::EQ, x);
2717 }
2718 
2719 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2720   return RelationHelper(*this, RelationalOperator::NE, x);
2721 }
2722 
2723 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2724   return RelationHelper(*this, RelationalOperator::GE, x);
2725 }
2726 
2727 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2728   return RelationHelper(*this, RelationalOperator::GT, x);
2729 }
2730 
2731 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2732     const parser::Expr::IntrinsicBinary &x) {
2733   ArgumentAnalyzer analyzer{context};
2734   analyzer.Analyze(std::get<0>(x.t));
2735   analyzer.Analyze(std::get<1>(x.t));
2736   if (!analyzer.fatalErrors()) {
2737     if (analyzer.IsIntrinsicLogical()) {
2738       analyzer.CheckForNullPointer("as a logical operand");
2739       return AsGenericExpr(BinaryLogicalOperation(opr,
2740           std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2741           std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2742     } else {
2743       return analyzer.TryDefinedOp(
2744           opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2745     }
2746   }
2747   return std::nullopt;
2748 }
2749 
2750 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2751   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2752 }
2753 
2754 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2755   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2756 }
2757 
2758 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2759   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2760 }
2761 
2762 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2763   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2764 }
2765 
2766 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2767   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2768   ArgumentAnalyzer analyzer{*this, name.source};
2769   analyzer.Analyze(std::get<1>(x.t));
2770   analyzer.Analyze(std::get<2>(x.t));
2771   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2772       "No operator %s defined for %s and %s"_err_en_US, nullptr, true);
2773 }
2774 
2775 static void CheckFuncRefToArrayElementRefHasSubscripts(
2776     semantics::SemanticsContext &context,
2777     const parser::FunctionReference &funcRef) {
2778   // Emit message if the function reference fix will end up an array element
2779   // reference with no subscripts because it will not be possible to later tell
2780   // the difference in expressions between empty subscript list due to bad
2781   // subscripts error recovery or because the user did not put any.
2782   if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2783     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2784     const auto *name{std::get_if<parser::Name>(&proc.u)};
2785     if (!name) {
2786       name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2787     }
2788     auto &msg{context.Say(funcRef.v.source,
2789         name->symbol && name->symbol->Rank() == 0
2790             ? "'%s' is not a function"_err_en_US
2791             : "Reference to array '%s' with empty subscript list"_err_en_US,
2792         name->source)};
2793     if (name->symbol) {
2794       if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) {
2795         msg.Attach(name->source,
2796             "A result variable must be declared with RESULT to allow recursive "
2797             "function calls"_en_US);
2798       } else {
2799         AttachDeclaration(&msg, *name->symbol);
2800       }
2801     }
2802   }
2803 }
2804 
2805 // Converts, if appropriate, an original misparse of ambiguous syntax like
2806 // A(1) as a function reference into an array reference.
2807 // Misparsed structure constructors are detected elsewhere after generic
2808 // function call resolution fails.
2809 template <typename... A>
2810 static void FixMisparsedFunctionReference(
2811     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2812   // The parse tree is updated in situ when resolving an ambiguous parse.
2813   using uType = std::decay_t<decltype(constU)>;
2814   auto &u{const_cast<uType &>(constU)};
2815   if (auto *func{
2816           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2817     parser::FunctionReference &funcRef{func->value()};
2818     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2819     if (Symbol *
2820         origSymbol{
2821             std::visit(common::visitors{
2822                            [&](parser::Name &name) { return name.symbol; },
2823                            [&](parser::ProcComponentRef &pcr) {
2824                              return pcr.v.thing.component.symbol;
2825                            },
2826                        },
2827                 proc.u)}) {
2828       Symbol &symbol{origSymbol->GetUltimate()};
2829       if (symbol.has<semantics::ObjectEntityDetails>() ||
2830           symbol.has<semantics::AssocEntityDetails>()) {
2831         // Note that expression in AssocEntityDetails cannot be a procedure
2832         // pointer as per C1105 so this cannot be a function reference.
2833         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2834                           uType>) {
2835           CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef);
2836           u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2837         } else {
2838           DIE("can't fix misparsed function as array reference");
2839         }
2840       }
2841     }
2842   }
2843 }
2844 
2845 // Common handling of parse tree node types that retain the
2846 // representation of the analyzed expression.
2847 template <typename PARSED>
2848 MaybeExpr ExpressionAnalyzer::ExprOrVariable(
2849     const PARSED &x, parser::CharBlock source) {
2850   if (useSavedTypedExprs_ && x.typedExpr) {
2851     return x.typedExpr->v;
2852   }
2853   auto restorer{GetContextualMessages().SetLocation(source)};
2854   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2855       std::is_same_v<PARSED, parser::Variable>) {
2856     FixMisparsedFunctionReference(context_, x.u);
2857   }
2858   if (AssumedTypeDummy(x)) { // C710
2859     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2860     ResetExpr(x);
2861     return std::nullopt;
2862   }
2863   MaybeExpr result;
2864   if constexpr (common::HasMember<parser::StructureConstructor,
2865                     std::decay_t<decltype(x.u)>> &&
2866       common::HasMember<common::Indirection<parser::FunctionReference>,
2867           std::decay_t<decltype(x.u)>>) {
2868     if (const auto *funcRef{
2869             std::get_if<common::Indirection<parser::FunctionReference>>(
2870                 &x.u)}) {
2871       // Function references in Exprs might turn out to be misparsed structure
2872       // constructors; we have to try generic procedure resolution
2873       // first to be sure.
2874       std::optional<parser::StructureConstructor> ctor;
2875       result = Analyze(funcRef->value(), &ctor);
2876       if (result && ctor) {
2877         // A misparsed function reference is really a structure
2878         // constructor.  Repair the parse tree in situ.
2879         const_cast<PARSED &>(x).u = std::move(*ctor);
2880       }
2881     } else {
2882       result = Analyze(x.u);
2883     }
2884   } else {
2885     result = Analyze(x.u);
2886   }
2887   if (result) {
2888     SetExpr(x, Fold(std::move(*result)));
2889     return x.typedExpr->v;
2890   } else {
2891     ResetExpr(x);
2892     if (!context_.AnyFatalError()) {
2893       std::string buf;
2894       llvm::raw_string_ostream dump{buf};
2895       parser::DumpTree(dump, x);
2896       Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2897           dump.str());
2898     }
2899     return std::nullopt;
2900   }
2901 }
2902 
2903 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2904   return ExprOrVariable(expr, expr.source);
2905 }
2906 
2907 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2908   return ExprOrVariable(variable, variable.GetSource());
2909 }
2910 
2911 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) {
2912   if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) {
2913     if (!useSavedTypedExprs_ || !var->typedExpr) {
2914       parser::CharBlock source{var->GetSource()};
2915       auto restorer{GetContextualMessages().SetLocation(source)};
2916       FixMisparsedFunctionReference(context_, var->u);
2917       if (const auto *funcRef{
2918               std::get_if<common::Indirection<parser::FunctionReference>>(
2919                   &var->u)}) {
2920         // A Selector that parsed as a Variable might turn out during analysis
2921         // to actually be a structure constructor.  In that case, repair the
2922         // Variable parse tree node into an Expr
2923         std::optional<parser::StructureConstructor> ctor;
2924         if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) {
2925           if (ctor) {
2926             auto &writable{const_cast<parser::Selector &>(selector)};
2927             writable.u = parser::Expr{std::move(*ctor)};
2928             auto &expr{std::get<parser::Expr>(writable.u)};
2929             expr.source = source;
2930             SetExpr(expr, Fold(std::move(*result)));
2931             return expr.typedExpr->v;
2932           } else {
2933             SetExpr(*var, Fold(std::move(*result)));
2934             return var->typedExpr->v;
2935           }
2936         } else {
2937           ResetExpr(*var);
2938           if (context_.AnyFatalError()) {
2939             return std::nullopt;
2940           }
2941         }
2942       }
2943     }
2944   }
2945   // Not a Variable -> FunctionReference; handle normally as Variable or Expr
2946   return Analyze(selector.u);
2947 }
2948 
2949 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
2950   return ExprOrVariable(x, x.source);
2951 }
2952 
2953 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) {
2954   return ExprOrVariable(x, parser::FindSourceLocation(x));
2955 }
2956 
2957 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) {
2958   return ExprOrVariable(x, parser::FindSourceLocation(x));
2959 }
2960 
2961 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
2962     TypeCategory category,
2963     const std::optional<parser::KindSelector> &selector) {
2964   int defaultKind{GetDefaultKind(category)};
2965   if (!selector) {
2966     return Expr<SubscriptInteger>{defaultKind};
2967   }
2968   return std::visit(
2969       common::visitors{
2970           [&](const parser::ScalarIntConstantExpr &x) {
2971             if (MaybeExpr kind{Analyze(x)}) {
2972               if (std::optional<std::int64_t> code{ToInt64(*kind)}) {
2973                 if (CheckIntrinsicKind(category, *code)) {
2974                   return Expr<SubscriptInteger>{*code};
2975                 }
2976               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) {
2977                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
2978               }
2979             }
2980             return Expr<SubscriptInteger>{defaultKind};
2981           },
2982           [&](const parser::KindSelector::StarSize &x) {
2983             std::intmax_t size = x.v;
2984             if (!CheckIntrinsicSize(category, size)) {
2985               size = defaultKind;
2986             } else if (category == TypeCategory::Complex) {
2987               size /= 2;
2988             }
2989             return Expr<SubscriptInteger>{size};
2990           },
2991       },
2992       selector->u);
2993 }
2994 
2995 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
2996   return context_.GetDefaultKind(category);
2997 }
2998 
2999 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
3000     common::TypeCategory category) {
3001   return {category, GetDefaultKind(category)};
3002 }
3003 
3004 bool ExpressionAnalyzer::CheckIntrinsicKind(
3005     TypeCategory category, std::int64_t kind) {
3006   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
3007     return true;
3008   } else {
3009     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
3010         ToUpperCase(EnumToString(category)), kind);
3011     return false;
3012   }
3013 }
3014 
3015 bool ExpressionAnalyzer::CheckIntrinsicSize(
3016     TypeCategory category, std::int64_t size) {
3017   if (category == TypeCategory::Complex) {
3018     // COMPLEX*16 == COMPLEX(KIND=8)
3019     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
3020       return true;
3021     }
3022   } else if (IsValidKindOfIntrinsicType(category, size)) {
3023     return true;
3024   }
3025   Say("%s*%jd is not a supported type"_err_en_US,
3026       ToUpperCase(EnumToString(category)), size);
3027   return false;
3028 }
3029 
3030 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
3031   return impliedDos_.insert(std::make_pair(name, kind)).second;
3032 }
3033 
3034 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
3035   auto iter{impliedDos_.find(name)};
3036   if (iter != impliedDos_.end()) {
3037     impliedDos_.erase(iter);
3038   }
3039 }
3040 
3041 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
3042     parser::CharBlock name) const {
3043   auto iter{impliedDos_.find(name)};
3044   if (iter != impliedDos_.cend()) {
3045     return {iter->second};
3046   } else {
3047     return std::nullopt;
3048   }
3049 }
3050 
3051 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
3052     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
3053   if (result) {
3054     if (auto type{result->GetType()}) {
3055       if (type->category() != category) { // C885
3056         Say(at, "Must have %s type, but is %s"_err_en_US,
3057             ToUpperCase(EnumToString(category)),
3058             ToUpperCase(type->AsFortran()));
3059         return false;
3060       } else if (defaultKind) {
3061         int kind{context_.GetDefaultKind(category)};
3062         if (type->kind() != kind) {
3063           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
3064               kind, ToUpperCase(EnumToString(category)),
3065               ToUpperCase(type->AsFortran()));
3066           return false;
3067         }
3068       }
3069     } else {
3070       Say(at, "Must have %s type, but is typeless"_err_en_US,
3071           ToUpperCase(EnumToString(category)));
3072       return false;
3073     }
3074   }
3075   return true;
3076 }
3077 
3078 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
3079     ProcedureDesignator &&proc, ActualArguments &&arguments) {
3080   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
3081     if (intrinsic->name == "null" && arguments.empty()) {
3082       return Expr<SomeType>{NullPointer{}};
3083     }
3084   }
3085   if (const Symbol * symbol{proc.GetSymbol()}) {
3086     if (!ResolveForward(*symbol)) {
3087       return std::nullopt;
3088     }
3089   }
3090   if (auto chars{CheckCall(callSite, proc, arguments)}) {
3091     if (chars->functionResult) {
3092       const auto &result{*chars->functionResult};
3093       if (result.IsProcedurePointer()) {
3094         return Expr<SomeType>{
3095             ProcedureRef{std::move(proc), std::move(arguments)}};
3096       } else {
3097         // Not a procedure pointer, so type and shape are known.
3098         return TypedWrapper<FunctionRef, ProcedureRef>(
3099             DEREF(result.GetTypeAndShape()).type(),
3100             ProcedureRef{std::move(proc), std::move(arguments)});
3101       }
3102     } else {
3103       Say("Function result characteristics are not known"_err_en_US);
3104     }
3105   }
3106   return std::nullopt;
3107 }
3108 
3109 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
3110     parser::CharBlock intrinsic, ActualArguments &&arguments) {
3111   if (std::optional<SpecificCall> specificCall{
3112           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
3113               arguments, GetFoldingContext())}) {
3114     return MakeFunctionRef(intrinsic,
3115         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
3116         std::move(specificCall->arguments));
3117   } else {
3118     return std::nullopt;
3119   }
3120 }
3121 
3122 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
3123   source_.ExtendToCover(x.GetSource());
3124   if (MaybeExpr expr{context_.Analyze(x)}) {
3125     if (!IsConstantExpr(*expr)) {
3126       actuals_.emplace_back(std::move(*expr));
3127       return;
3128     }
3129     const Symbol *symbol{GetLastSymbol(*expr)};
3130     if (!symbol) {
3131       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3132           x.GetSource());
3133     } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
3134       auto *msg{context_.SayAt(x,
3135           "Assignment to subprogram '%s' is not allowed"_err_en_US,
3136           symbol->name())};
3137       if (subp->isFunction()) {
3138         const auto &result{subp->result().name()};
3139         msg->Attach(result, "Function result is '%s'"_err_en_US, result);
3140       }
3141     } else {
3142       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3143           symbol->name());
3144     }
3145   }
3146   fatalErrors_ = true;
3147 }
3148 
3149 void ArgumentAnalyzer::Analyze(
3150     const parser::ActualArgSpec &arg, bool isSubroutine) {
3151   // TODO: Actual arguments that are procedures and procedure pointers need to
3152   // be detected and represented (they're not expressions).
3153   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
3154   std::optional<ActualArgument> actual;
3155   std::visit(common::visitors{
3156                  [&](const common::Indirection<parser::Expr> &x) {
3157                    actual = AnalyzeExpr(x.value());
3158                  },
3159                  [&](const parser::AltReturnSpec &label) {
3160                    if (!isSubroutine) {
3161                      context_.Say(
3162                          "alternate return specification may not appear on"
3163                          " function reference"_err_en_US);
3164                    }
3165                    actual = ActualArgument(label.v);
3166                  },
3167                  [&](const parser::ActualArg::PercentRef &) {
3168                    context_.Say("TODO: %REF() argument"_err_en_US);
3169                  },
3170                  [&](const parser::ActualArg::PercentVal &) {
3171                    context_.Say("TODO: %VAL() argument"_err_en_US);
3172                  },
3173              },
3174       std::get<parser::ActualArg>(arg.t).u);
3175   if (actual) {
3176     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
3177       actual->set_keyword(argKW->v.source);
3178     }
3179     actuals_.emplace_back(std::move(*actual));
3180   } else {
3181     fatalErrors_ = true;
3182   }
3183 }
3184 
3185 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr,
3186     const DynamicType &leftType, const DynamicType &rightType) const {
3187   CHECK(actuals_.size() == 2);
3188   return semantics::IsIntrinsicRelational(
3189       opr, leftType, GetRank(0), rightType, GetRank(1));
3190 }
3191 
3192 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
3193   std::optional<DynamicType> leftType{GetType(0)};
3194   if (actuals_.size() == 1) {
3195     if (IsBOZLiteral(0)) {
3196       return opr == NumericOperator::Add; // unary '+'
3197     } else {
3198       return leftType && semantics::IsIntrinsicNumeric(*leftType);
3199     }
3200   } else {
3201     std::optional<DynamicType> rightType{GetType(1)};
3202     if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real
3203       auto cat1{rightType->category()};
3204       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
3205     } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ
3206       auto cat0{leftType->category()};
3207       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
3208     } else {
3209       return leftType && rightType &&
3210           semantics::IsIntrinsicNumeric(
3211               *leftType, GetRank(0), *rightType, GetRank(1));
3212     }
3213   }
3214 }
3215 
3216 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
3217   if (std::optional<DynamicType> leftType{GetType(0)}) {
3218     if (actuals_.size() == 1) {
3219       return semantics::IsIntrinsicLogical(*leftType);
3220     } else if (std::optional<DynamicType> rightType{GetType(1)}) {
3221       return semantics::IsIntrinsicLogical(
3222           *leftType, GetRank(0), *rightType, GetRank(1));
3223     }
3224   }
3225   return false;
3226 }
3227 
3228 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
3229   if (std::optional<DynamicType> leftType{GetType(0)}) {
3230     if (std::optional<DynamicType> rightType{GetType(1)}) {
3231       return semantics::IsIntrinsicConcat(
3232           *leftType, GetRank(0), *rightType, GetRank(1));
3233     }
3234   }
3235   return false;
3236 }
3237 
3238 bool ArgumentAnalyzer::CheckConformance() {
3239   if (actuals_.size() == 2) {
3240     const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
3241     const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
3242     if (lhs && rhs) {
3243       auto &foldingContext{context_.GetFoldingContext()};
3244       auto lhShape{GetShape(foldingContext, *lhs)};
3245       auto rhShape{GetShape(foldingContext, *rhs)};
3246       if (lhShape && rhShape) {
3247         if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape,
3248                 *rhShape, CheckConformanceFlags::EitherScalarExpandable,
3249                 "left operand", "right operand")
3250                  .value_or(false /*fail when conformance is not known now*/)) {
3251           fatalErrors_ = true;
3252           return false;
3253         }
3254       }
3255     }
3256   }
3257   return true; // no proven problem
3258 }
3259 
3260 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) {
3261   for (const std::optional<ActualArgument> &arg : actuals_) {
3262     if (arg) {
3263       if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) {
3264         if (IsNullPointer(*expr)) {
3265           context_.Say(
3266               source_, "A NULL() pointer is not allowed %s"_err_en_US, where);
3267           fatalErrors_ = true;
3268           return false;
3269         }
3270       }
3271     }
3272   }
3273   return true;
3274 }
3275 
3276 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr,
3277     parser::MessageFixedText error, const Symbol **definedOpSymbolPtr,
3278     bool isUserOp) {
3279   if (AnyUntypedOrMissingOperand()) {
3280     context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3281     return std::nullopt;
3282   }
3283   const Symbol *localDefinedOpSymbolPtr{nullptr};
3284   if (!definedOpSymbolPtr) {
3285     definedOpSymbolPtr = &localDefinedOpSymbolPtr;
3286   }
3287   {
3288     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3289     std::string oprNameString{
3290         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
3291     parser::CharBlock oprName{oprNameString};
3292     const auto &scope{context_.context().FindScope(source_)};
3293     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
3294       *definedOpSymbolPtr = symbol;
3295       parser::Name name{symbol->name(), symbol};
3296       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
3297         return result;
3298       }
3299     }
3300     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
3301       if (const Symbol *
3302           symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) {
3303         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
3304           return result;
3305         }
3306       }
3307     }
3308   }
3309   if (*definedOpSymbolPtr) {
3310     SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString()));
3311   } else if (actuals_.size() == 1 || AreConformable()) {
3312     if (CheckForNullPointer()) {
3313       context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3314     }
3315   } else {
3316     context_.Say(
3317         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
3318         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
3319   }
3320   return std::nullopt;
3321 }
3322 
3323 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
3324     std::vector<const char *> oprs, parser::MessageFixedText error) {
3325   const Symbol *definedOpSymbolPtr{nullptr};
3326   for (std::size_t i{1}; i < oprs.size(); ++i) {
3327     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3328     if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) {
3329       return result;
3330     }
3331   }
3332   return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr);
3333 }
3334 
3335 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
3336   ActualArguments localActuals{actuals_};
3337   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
3338   if (!proc) {
3339     proc = &symbol;
3340     localActuals.at(passIndex).value().set_isPassedObject();
3341   }
3342   CheckConformance();
3343   return context_.MakeFunctionRef(
3344       source_, ProcedureDesignator{*proc}, std::move(localActuals));
3345 }
3346 
3347 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
3348   using semantics::Tristate;
3349   const Expr<SomeType> &lhs{GetExpr(0)};
3350   const Expr<SomeType> &rhs{GetExpr(1)};
3351   std::optional<DynamicType> lhsType{lhs.GetType()};
3352   std::optional<DynamicType> rhsType{rhs.GetType()};
3353   int lhsRank{lhs.Rank()};
3354   int rhsRank{rhs.Rank()};
3355   Tristate isDefined{
3356       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
3357   if (isDefined == Tristate::No) {
3358     if (lhsType && rhsType) {
3359       AddAssignmentConversion(*lhsType, *rhsType);
3360     }
3361     return std::nullopt; // user-defined assignment not allowed for these args
3362   }
3363   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
3364   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
3365     if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032
3366       context_.Say(
3367           "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US,
3368           DEREF(procRef->proc().GetSymbol()).name());
3369     }
3370     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
3371     return std::move(*procRef);
3372   }
3373   if (isDefined == Tristate::Yes) {
3374     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
3375         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
3376       SayNoMatch("ASSIGNMENT(=)", true);
3377     }
3378   }
3379   return std::nullopt;
3380 }
3381 
3382 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
3383     TypeCategory lhs, TypeCategory rhs) {
3384   if (!context_.context().languageFeatures().IsEnabled(
3385           common::LanguageFeature::LogicalIntegerAssignment)) {
3386     return false;
3387   }
3388   std::optional<parser::MessageFixedText> msg;
3389   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
3390     // allow assignment to LOGICAL from INTEGER as a legacy extension
3391     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US;
3392   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
3393     // ... and assignment to LOGICAL from INTEGER
3394     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US;
3395   } else {
3396     return false;
3397   }
3398   if (context_.context().languageFeatures().ShouldWarn(
3399           common::LanguageFeature::LogicalIntegerAssignment)) {
3400     context_.Say(std::move(*msg));
3401   }
3402   return true;
3403 }
3404 
3405 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
3406   auto restorer{context_.GetContextualMessages().DiscardMessages()};
3407   std::string oprNameString{"assignment(=)"};
3408   parser::CharBlock oprName{oprNameString};
3409   const Symbol *proc{nullptr};
3410   const auto &scope{context_.context().FindScope(source_)};
3411   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
3412     ExpressionAnalyzer::AdjustActuals noAdjustment;
3413     auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)};
3414     if (pair.first) {
3415       proc = pair.first;
3416     } else {
3417       context_.EmitGenericResolutionError(*symbol, pair.second);
3418     }
3419   }
3420   int passedObjectIndex{-1};
3421   const Symbol *definedOpSymbol{nullptr};
3422   for (std::size_t i{0}; i < actuals_.size(); ++i) {
3423     if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) {
3424       if (const Symbol *
3425           resolution{GetBindingResolution(GetType(i), *specific)}) {
3426         proc = resolution;
3427       } else {
3428         proc = specific;
3429         passedObjectIndex = i;
3430       }
3431     }
3432   }
3433   if (!proc) {
3434     return std::nullopt;
3435   }
3436   ActualArguments actualsCopy{actuals_};
3437   if (passedObjectIndex >= 0) {
3438     actualsCopy[passedObjectIndex]->set_isPassedObject();
3439   }
3440   return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
3441 }
3442 
3443 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
3444   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
3445      << '\n';
3446   for (const auto &actual : actuals_) {
3447     if (!actual.has_value()) {
3448       os << "- error\n";
3449     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
3450       os << "- assumed type: " << symbol->name().ToString() << '\n';
3451     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
3452       expr->AsFortran(os << "- expr: ") << '\n';
3453     } else {
3454       DIE("bad ActualArgument");
3455     }
3456   }
3457 }
3458 
3459 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
3460     const parser::Expr &expr) {
3461   source_.ExtendToCover(expr.source);
3462   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
3463     expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
3464     if (isProcedureCall_) {
3465       return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
3466     }
3467     context_.SayAt(expr.source,
3468         "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
3469   } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) {
3470     if (isProcedureCall_ || !IsProcedure(*argExpr)) {
3471       return ActualArgument{std::move(*argExpr)};
3472     }
3473     context_.SayAt(expr.source,
3474         IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US
3475                              : "Subroutine name is not allowed here"_err_en_US);
3476   }
3477   return std::nullopt;
3478 }
3479 
3480 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray(
3481     const parser::Expr &expr) {
3482   // If an expression's parse tree is a whole assumed-size array:
3483   //   Expr -> Designator -> DataRef -> Name
3484   // treat it as a special case for argument passing and bypass
3485   // the C1002/C1014 constraint checking in expression semantics.
3486   if (const auto *name{parser::Unwrap<parser::Name>(expr)}) {
3487     if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) {
3488       auto restorer{context_.AllowWholeAssumedSizeArray()};
3489       return context_.Analyze(expr);
3490     }
3491   }
3492   return context_.Analyze(expr);
3493 }
3494 
3495 bool ArgumentAnalyzer::AreConformable() const {
3496   CHECK(actuals_.size() == 2);
3497   return actuals_[0] && actuals_[1] &&
3498       evaluate::AreConformable(*actuals_[0], *actuals_[1]);
3499 }
3500 
3501 // Look for a type-bound operator in the type of arg number passIndex.
3502 const Symbol *ArgumentAnalyzer::FindBoundOp(
3503     parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) {
3504   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
3505   if (!type || !type->scope()) {
3506     return nullptr;
3507   }
3508   const Symbol *symbol{type->scope()->FindComponent(oprName)};
3509   if (!symbol) {
3510     return nullptr;
3511   }
3512   definedOp = symbol;
3513   ExpressionAnalyzer::AdjustActuals adjustment{
3514       [&](const Symbol &proc, ActualArguments &) {
3515         return passIndex == GetPassIndex(proc);
3516       }};
3517   auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
3518   if (!pair.first) {
3519     context_.EmitGenericResolutionError(*symbol, pair.second);
3520   }
3521   return pair.first;
3522 }
3523 
3524 // If there is an implicit conversion between intrinsic types, make it explicit
3525 void ArgumentAnalyzer::AddAssignmentConversion(
3526     const DynamicType &lhsType, const DynamicType &rhsType) {
3527   if (lhsType.category() == rhsType.category() &&
3528       lhsType.kind() == rhsType.kind()) {
3529     // no conversion necessary
3530   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
3531     actuals_[1] = ActualArgument{*rhsExpr};
3532   } else {
3533     actuals_[1] = std::nullopt;
3534   }
3535 }
3536 
3537 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
3538   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
3539 }
3540 int ArgumentAnalyzer::GetRank(std::size_t i) const {
3541   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
3542 }
3543 
3544 // If the argument at index i is a BOZ literal, convert its type to match the
3545 // otherType.  If it's REAL convert to REAL, otherwise convert to INTEGER.
3546 // Note that IBM supports comparing BOZ literals to CHARACTER operands.  That
3547 // is not currently supported.
3548 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType,
3549     std::size_t i, std::optional<DynamicType> otherType) {
3550   if (IsBOZLiteral(i)) {
3551     Expr<SomeType> &&argExpr{MoveExpr(i)};
3552     auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
3553     if (otherType && otherType->category() == TypeCategory::Real) {
3554       int kind{context_.context().GetDefaultKind(TypeCategory::Real)};
3555       MaybeExpr realExpr{
3556           ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))};
3557       actuals_[i] = std::move(*realExpr);
3558       thisType.emplace(TypeCategory::Real, kind);
3559     } else {
3560       int kind{context_.context().GetDefaultKind(TypeCategory::Integer)};
3561       MaybeExpr intExpr{
3562           ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))};
3563       actuals_[i] = std::move(*intExpr);
3564       thisType.emplace(TypeCategory::Integer, kind);
3565     }
3566   }
3567 }
3568 
3569 // Report error resolving opr when there is a user-defined one available
3570 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
3571   std::string type0{TypeAsFortran(0)};
3572   auto rank0{actuals_[0]->Rank()};
3573   if (actuals_.size() == 1) {
3574     if (rank0 > 0) {
3575       context_.Say("No intrinsic or user-defined %s matches "
3576                    "rank %d array of %s"_err_en_US,
3577           opr, rank0, type0);
3578     } else {
3579       context_.Say("No intrinsic or user-defined %s matches "
3580                    "operand type %s"_err_en_US,
3581           opr, type0);
3582     }
3583   } else {
3584     std::string type1{TypeAsFortran(1)};
3585     auto rank1{actuals_[1]->Rank()};
3586     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
3587       context_.Say("No intrinsic or user-defined %s matches "
3588                    "rank %d array of %s and rank %d array of %s"_err_en_US,
3589           opr, rank0, type0, rank1, type1);
3590     } else if (isAssignment && rank0 != rank1) {
3591       if (rank0 == 0) {
3592         context_.Say("No intrinsic or user-defined %s matches "
3593                      "scalar %s and rank %d array of %s"_err_en_US,
3594             opr, type0, rank1, type1);
3595       } else {
3596         context_.Say("No intrinsic or user-defined %s matches "
3597                      "rank %d array of %s and scalar %s"_err_en_US,
3598             opr, rank0, type0, type1);
3599       }
3600     } else {
3601       context_.Say("No intrinsic or user-defined %s matches "
3602                    "operand types %s and %s"_err_en_US,
3603           opr, type0, type1);
3604     }
3605   }
3606 }
3607 
3608 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
3609   if (i >= actuals_.size() || !actuals_[i]) {
3610     return "missing argument";
3611   } else if (std::optional<DynamicType> type{GetType(i)}) {
3612     return type->category() == TypeCategory::Derived
3613         ? "TYPE("s + type->AsFortran() + ')'
3614         : type->category() == TypeCategory::Character
3615         ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
3616         : ToUpperCase(type->AsFortran());
3617   } else {
3618     return "untyped";
3619   }
3620 }
3621 
3622 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() {
3623   for (const auto &actual : actuals_) {
3624     if (!actual ||
3625         (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) {
3626       return true;
3627     }
3628   }
3629   return false;
3630 }
3631 } // namespace Fortran::evaluate
3632 
3633 namespace Fortran::semantics {
3634 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
3635     SemanticsContext &context, common::TypeCategory category,
3636     const std::optional<parser::KindSelector> &selector) {
3637   evaluate::ExpressionAnalyzer analyzer{context};
3638   auto restorer{
3639       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3640   return analyzer.AnalyzeKindSelector(category, selector);
3641 }
3642 
3643 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3644 
3645 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
3646   parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
3647   const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
3648   auto name{bounds.name.thing.thing};
3649   int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
3650   if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
3651     if (dynamicType->category() == TypeCategory::Integer) {
3652       kind = dynamicType->kind();
3653     }
3654   }
3655   exprAnalyzer_.AddImpliedDo(name.source, kind);
3656   parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
3657   exprAnalyzer_.RemoveImpliedDo(name.source);
3658   return false;
3659 }
3660 
3661 bool ExprChecker::Walk(const parser::Program &program) {
3662   parser::Walk(program, *this);
3663   return !context_.AnyFatalError();
3664 }
3665 } // namespace Fortran::semantics
3666