1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } else { 59 return GetCharLength(); 60 } 61 } 62 63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 64 const std::optional<parser::TypeSpec> &spec) { 65 if (spec) { 66 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 67 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 68 // (viz., an intrinsic type with valid known kind or a non-polymorphic 69 // & non-ABSTRACT derived type). 70 if (const semantics::IntrinsicTypeSpec * 71 intrinsic{typeSpec->AsIntrinsic()}) { 72 TypeCategory category{intrinsic->category()}; 73 if (auto optKind{ToInt64(intrinsic->kind())}) { 74 int kind{static_cast<int>(*optKind)}; 75 if (category == TypeCategory::Character) { 76 const semantics::CharacterTypeSpec &cts{ 77 typeSpec->characterTypeSpec()}; 78 const semantics::ParamValue &len{cts.length()}; 79 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 80 // type guards, but not in array constructors. 81 return DynamicTypeWithLength{DynamicType{kind, len}}; 82 } else { 83 return DynamicTypeWithLength{DynamicType{category, kind}}; 84 } 85 } 86 } else if (const semantics::DerivedTypeSpec * 87 derived{typeSpec->AsDerived()}) { 88 return DynamicTypeWithLength{DynamicType{*derived}}; 89 } 90 } 91 } 92 return std::nullopt; 93 } 94 95 class ArgumentAnalyzer { 96 public: 97 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 98 : context_{context}, source_{context.GetContextualMessages().at()}, 99 isProcedureCall_{false} {} 100 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 101 bool isProcedureCall = false) 102 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 103 bool fatalErrors() const { return fatalErrors_; } 104 ActualArguments &&GetActuals() { 105 CHECK(!fatalErrors_); 106 return std::move(actuals_); 107 } 108 const Expr<SomeType> &GetExpr(std::size_t i) const { 109 return DEREF(actuals_.at(i).value().UnwrapExpr()); 110 } 111 Expr<SomeType> &&MoveExpr(std::size_t i) { 112 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 113 } 114 void Analyze(const common::Indirection<parser::Expr> &x) { 115 Analyze(x.value()); 116 } 117 void Analyze(const parser::Expr &x) { 118 actuals_.emplace_back(AnalyzeExpr(x)); 119 fatalErrors_ |= !actuals_.back(); 120 } 121 void Analyze(const parser::Variable &); 122 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 123 void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType); 124 125 bool IsIntrinsicRelational(RelationalOperator) const; 126 bool IsIntrinsicLogical() const; 127 bool IsIntrinsicNumeric(NumericOperator) const; 128 bool IsIntrinsicConcat() const; 129 130 bool CheckConformance() const; 131 132 // Find and return a user-defined operator or report an error. 133 // The provided message is used if there is no such operator. 134 MaybeExpr TryDefinedOp( 135 const char *, parser::MessageFixedText &&, bool isUserOp = false); 136 template <typename E> 137 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 138 return TryDefinedOp( 139 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 140 } 141 // Find and return a user-defined assignment 142 std::optional<ProcedureRef> TryDefinedAssignment(); 143 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 144 std::optional<DynamicType> GetType(std::size_t) const; 145 void Dump(llvm::raw_ostream &); 146 147 private: 148 MaybeExpr TryDefinedOp( 149 std::vector<const char *>, parser::MessageFixedText &&); 150 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 151 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 152 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 153 bool AreConformable() const; 154 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 155 void AddAssignmentConversion( 156 const DynamicType &lhsType, const DynamicType &rhsType); 157 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 158 int GetRank(std::size_t) const; 159 bool IsBOZLiteral(std::size_t i) const { 160 return evaluate::IsBOZLiteral(GetExpr(i)); 161 } 162 void SayNoMatch(const std::string &, bool isAssignment = false); 163 std::string TypeAsFortran(std::size_t); 164 bool AnyUntypedOrMissingOperand(); 165 166 ExpressionAnalyzer &context_; 167 ActualArguments actuals_; 168 parser::CharBlock source_; 169 bool fatalErrors_{false}; 170 const bool isProcedureCall_; // false for user-defined op or assignment 171 const Symbol *sawDefinedOp_{nullptr}; 172 }; 173 174 // Wraps a data reference in a typed Designator<>, and a procedure 175 // or procedure pointer reference in a ProcedureDesignator. 176 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 177 const Symbol &last{ref.GetLastSymbol()}; 178 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 179 if (semantics::IsProcedure(symbol)) { 180 if (auto *component{std::get_if<Component>(&ref.u)}) { 181 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 182 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 183 DIE("unexpected alternative in DataRef"); 184 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 185 if (symbol.has<semantics::GenericDetails>()) { 186 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 187 } else { 188 return Expr<SomeType>{ProcedureDesignator{symbol}}; 189 } 190 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 191 symbol.name().ToString())}) { 192 SpecificIntrinsic intrinsic{ 193 symbol.name().ToString(), std::move(*interface)}; 194 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 195 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 196 } else { 197 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 198 symbol.name()); 199 } 200 return std::nullopt; 201 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 202 return result; 203 } else { 204 if (!context_.HasError(last) && !context_.HasError(symbol)) { 205 AttachDeclaration( 206 Say("'%s' is not an object that can appear in an expression"_err_en_US, 207 last.name()), 208 symbol); 209 context_.SetError(last); 210 } 211 return std::nullopt; 212 } 213 } 214 215 // Some subscript semantic checks must be deferred until all of the 216 // subscripts are in hand. 217 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 218 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 219 int symbolRank{symbol.Rank()}; 220 int subscripts{static_cast<int>(ref.size())}; 221 if (subscripts == 0) { 222 return std::nullopt; // error recovery 223 } else if (subscripts != symbolRank) { 224 if (symbolRank != 0) { 225 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 226 symbolRank, symbol.name(), subscripts); 227 } 228 return std::nullopt; 229 } else if (Component * component{ref.base().UnwrapComponent()}) { 230 int baseRank{component->base().Rank()}; 231 if (baseRank > 0) { 232 int subscriptRank{0}; 233 for (const auto &expr : ref.subscript()) { 234 subscriptRank += expr.Rank(); 235 } 236 if (subscriptRank > 0) { 237 Say("Subscripts of component '%s' of rank-%d derived type " 238 "array have rank %d but must all be scalar"_err_en_US, 239 symbol.name(), baseRank, subscriptRank); 240 return std::nullopt; 241 } 242 } 243 } else if (const auto *object{ 244 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 245 // C928 & C1002 246 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 247 if (!last->upper() && object->IsAssumedSize()) { 248 Say("Assumed-size array '%s' must have explicit final " 249 "subscript upper bound value"_err_en_US, 250 symbol.name()); 251 return std::nullopt; 252 } 253 } 254 } else { 255 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 256 // which, if not an object, must be a construct entity from 257 // SELECT TYPE/RANK or ASSOCIATE. 258 CHECK(symbol.has<semantics::AssocEntityDetails>()); 259 } 260 return Designate(DataRef{std::move(ref)}); 261 } 262 263 // Applies subscripts to a data reference. 264 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 265 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 266 if (subscripts.empty()) { 267 return std::nullopt; // error recovery 268 } 269 return std::visit( 270 common::visitors{ 271 [&](SymbolRef &&symbol) { 272 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 273 }, 274 [&](Component &&c) { 275 return CompleteSubscripts( 276 ArrayRef{std::move(c), std::move(subscripts)}); 277 }, 278 [&](auto &&) -> MaybeExpr { 279 DIE("bad base for ArrayRef"); 280 return std::nullopt; 281 }, 282 }, 283 std::move(dataRef.u)); 284 } 285 286 // Top-level checks for data references. 287 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 288 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 289 const Symbol &symbol{component->GetLastSymbol()}; 290 int componentRank{symbol.Rank()}; 291 if (componentRank > 0) { 292 int baseRank{component->base().Rank()}; 293 if (baseRank > 0) { 294 Say("Reference to whole rank-%d component '%%%s' of " 295 "rank-%d array of derived type is not allowed"_err_en_US, 296 componentRank, symbol.name(), baseRank); 297 } 298 } 299 } 300 return Designate(std::move(dataRef)); 301 } 302 303 // Parse tree correction after a substring S(j:k) was misparsed as an 304 // array section. N.B. Fortran substrings have to have a range, not a 305 // single index. 306 static void FixMisparsedSubstring(const parser::Designator &d) { 307 auto &mutate{const_cast<parser::Designator &>(d)}; 308 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 309 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 310 &dataRef->u)}) { 311 parser::ArrayElement &arrElement{ae->value()}; 312 if (!arrElement.subscripts.empty()) { 313 auto iter{arrElement.subscripts.begin()}; 314 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 315 if (!std::get<2>(triplet->t) /* no stride */ && 316 ++iter == arrElement.subscripts.end() /* one subscript */) { 317 if (Symbol * 318 symbol{std::visit( 319 common::visitors{ 320 [](parser::Name &n) { return n.symbol; }, 321 [](common::Indirection<parser::StructureComponent> 322 &sc) { return sc.value().component.symbol; }, 323 [](auto &) -> Symbol * { return nullptr; }, 324 }, 325 arrElement.base.u)}) { 326 const Symbol &ultimate{symbol->GetUltimate()}; 327 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 328 if (!ultimate.IsObjectArray() && 329 type->category() == semantics::DeclTypeSpec::Character) { 330 // The ambiguous S(j:k) was parsed as an array section 331 // reference, but it's now clear that it's a substring. 332 // Fix the parse tree in situ. 333 mutate.u = arrElement.ConvertToSubstring(); 334 } 335 } 336 } 337 } 338 } 339 } 340 } 341 } 342 } 343 344 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 345 auto restorer{GetContextualMessages().SetLocation(d.source)}; 346 FixMisparsedSubstring(d); 347 // These checks have to be deferred to these "top level" data-refs where 348 // we can be sure that there are no following subscripts (yet). 349 // Substrings have already been run through TopLevelChecks() and 350 // won't be returned by ExtractDataRef(). 351 if (MaybeExpr result{Analyze(d.u)}) { 352 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 353 return TopLevelChecks(std::move(*dataRef)); 354 } 355 return result; 356 } 357 return std::nullopt; 358 } 359 360 // A utility subroutine to repackage optional expressions of various levels 361 // of type specificity as fully general MaybeExpr values. 362 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 363 return AsGenericExpr(std::move(x)); 364 } 365 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 366 if (x) { 367 return AsMaybeExpr(std::move(*x)); 368 } 369 return std::nullopt; 370 } 371 372 // Type kind parameter values for literal constants. 373 int ExpressionAnalyzer::AnalyzeKindParam( 374 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 375 if (!kindParam) { 376 return defaultKind; 377 } 378 return std::visit( 379 common::visitors{ 380 [](std::uint64_t k) { return static_cast<int>(k); }, 381 [&](const parser::Scalar< 382 parser::Integer<parser::Constant<parser::Name>>> &n) { 383 if (MaybeExpr ie{Analyze(n)}) { 384 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 385 int iv = *i64; 386 if (iv == *i64) { 387 return iv; 388 } 389 } 390 } 391 return defaultKind; 392 }, 393 }, 394 kindParam->u); 395 } 396 397 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 398 struct IntTypeVisitor { 399 using Result = MaybeExpr; 400 using Types = IntegerTypes; 401 template <typename T> Result Test() { 402 if (T::kind >= kind) { 403 const char *p{digits.begin()}; 404 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 405 if (!value.overflow) { 406 if (T::kind > kind) { 407 if (!isDefaultKind || 408 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 409 return std::nullopt; 410 } else if (analyzer.context().ShouldWarn( 411 LanguageFeature::BigIntLiterals)) { 412 analyzer.Say(digits, 413 "Integer literal is too large for default INTEGER(KIND=%d); " 414 "assuming INTEGER(KIND=%d)"_en_US, 415 kind, T::kind); 416 } 417 } 418 return Expr<SomeType>{ 419 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 420 } 421 } 422 return std::nullopt; 423 } 424 ExpressionAnalyzer &analyzer; 425 parser::CharBlock digits; 426 int kind; 427 bool isDefaultKind; 428 }; 429 430 template <typename PARSED> 431 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 432 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 433 bool isDefaultKind{!kindParam}; 434 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 435 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 436 auto digits{std::get<parser::CharBlock>(x.t)}; 437 if (MaybeExpr result{common::SearchTypes( 438 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 439 return result; 440 } else if (isDefaultKind) { 441 Say(digits, 442 "Integer literal is too large for any allowable " 443 "kind of INTEGER"_err_en_US); 444 } else { 445 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 446 kind); 447 } 448 } 449 return std::nullopt; 450 } 451 452 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 453 auto restorer{ 454 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 455 return IntLiteralConstant(x); 456 } 457 458 MaybeExpr ExpressionAnalyzer::Analyze( 459 const parser::SignedIntLiteralConstant &x) { 460 auto restorer{GetContextualMessages().SetLocation(x.source)}; 461 return IntLiteralConstant(x); 462 } 463 464 template <typename TYPE> 465 Constant<TYPE> ReadRealLiteral( 466 parser::CharBlock source, FoldingContext &context) { 467 const char *p{source.begin()}; 468 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 469 CHECK(p == source.end()); 470 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 471 auto value{valWithFlags.value}; 472 if (context.flushSubnormalsToZero()) { 473 value = value.FlushSubnormalToZero(); 474 } 475 return {value}; 476 } 477 478 struct RealTypeVisitor { 479 using Result = std::optional<Expr<SomeReal>>; 480 using Types = RealTypes; 481 482 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 483 : kind{k}, literal{lit}, context{ctx} {} 484 485 template <typename T> Result Test() { 486 if (kind == T::kind) { 487 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 488 } 489 return std::nullopt; 490 } 491 492 int kind; 493 parser::CharBlock literal; 494 FoldingContext &context; 495 }; 496 497 // Reads a real literal constant and encodes it with the right kind. 498 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 499 // Use a local message context around the real literal for better 500 // provenance on any messages. 501 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 502 // If a kind parameter appears, it defines the kind of the literal and the 503 // letter used in an exponent part must be 'E' (e.g., the 'E' in 504 // "6.02214E+23"). In the absence of an explicit kind parameter, any 505 // exponent letter determines the kind. Otherwise, defaults apply. 506 auto &defaults{context_.defaultKinds()}; 507 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 508 const char *end{x.real.source.end()}; 509 char expoLetter{' '}; 510 std::optional<int> letterKind; 511 for (const char *p{x.real.source.begin()}; p < end; ++p) { 512 if (parser::IsLetter(*p)) { 513 expoLetter = *p; 514 switch (expoLetter) { 515 case 'e': 516 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 517 break; 518 case 'd': 519 letterKind = defaults.doublePrecisionKind(); 520 break; 521 case 'q': 522 letterKind = defaults.quadPrecisionKind(); 523 break; 524 default: 525 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 526 } 527 break; 528 } 529 } 530 if (letterKind) { 531 defaultKind = *letterKind; 532 } 533 // C716 requires 'E' as an exponent, but this is more useful 534 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 535 if (letterKind && kind != *letterKind && expoLetter != 'e') { 536 Say("Explicit kind parameter on real constant disagrees with " 537 "exponent letter '%c'"_en_US, 538 expoLetter); 539 } 540 auto result{common::SearchTypes( 541 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 542 if (!result) { // C717 543 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 544 } 545 return AsMaybeExpr(std::move(result)); 546 } 547 548 MaybeExpr ExpressionAnalyzer::Analyze( 549 const parser::SignedRealLiteralConstant &x) { 550 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 551 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 552 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 553 if (sign == parser::Sign::Negative) { 554 return AsGenericExpr(-std::move(realExpr)); 555 } 556 } 557 return result; 558 } 559 return std::nullopt; 560 } 561 562 MaybeExpr ExpressionAnalyzer::Analyze( 563 const parser::SignedComplexLiteralConstant &x) { 564 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 565 if (!result) { 566 return std::nullopt; 567 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 568 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 569 } else { 570 return result; 571 } 572 } 573 574 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 575 return Analyze(x.u); 576 } 577 578 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 579 return AsMaybeExpr( 580 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 581 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 582 } 583 584 // CHARACTER literal processing. 585 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 586 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 587 return std::nullopt; 588 } 589 switch (kind) { 590 case 1: 591 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 592 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 593 string, true)}); 594 case 2: 595 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 596 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 597 string, true)}); 598 case 4: 599 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 600 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 601 string, true)}); 602 default: 603 CRASH_NO_CASE; 604 } 605 } 606 607 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 608 int kind{ 609 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 610 auto value{std::get<std::string>(x.t)}; 611 return AnalyzeString(std::move(value), kind); 612 } 613 614 MaybeExpr ExpressionAnalyzer::Analyze( 615 const parser::HollerithLiteralConstant &x) { 616 int kind{GetDefaultKind(TypeCategory::Character)}; 617 auto value{x.v}; 618 return AnalyzeString(std::move(value), kind); 619 } 620 621 // .TRUE. and .FALSE. of various kinds 622 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 623 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 624 GetDefaultKind(TypeCategory::Logical))}; 625 bool value{std::get<bool>(x.t)}; 626 auto result{common::SearchTypes( 627 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 628 kind, std::move(value)})}; 629 if (!result) { 630 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 631 } 632 return result; 633 } 634 635 // BOZ typeless literals 636 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 637 const char *p{x.v.c_str()}; 638 std::uint64_t base{16}; 639 switch (*p++) { 640 case 'b': 641 base = 2; 642 break; 643 case 'o': 644 base = 8; 645 break; 646 case 'z': 647 break; 648 case 'x': 649 break; 650 default: 651 CRASH_NO_CASE; 652 } 653 CHECK(*p == '"'); 654 ++p; 655 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 656 if (*p != '"') { 657 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 658 x.v); // C7107, C7108 659 return std::nullopt; 660 } 661 if (value.overflow) { 662 Say("BOZ literal '%s' too large"_err_en_US, x.v); 663 return std::nullopt; 664 } 665 return AsGenericExpr(std::move(value.value)); 666 } 667 668 // Names and named constants 669 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 670 auto restorer{GetContextualMessages().SetLocation(n.source)}; 671 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 672 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 673 *kind, AsExpr(ImpliedDoIndex{n.source}))); 674 } else if (context_.HasError(n)) { 675 return std::nullopt; 676 } else if (!n.symbol) { 677 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 678 return std::nullopt; 679 } else { 680 const Symbol &ultimate{n.symbol->GetUltimate()}; 681 if (ultimate.has<semantics::TypeParamDetails>()) { 682 // A bare reference to a derived type parameter (within a parameterized 683 // derived type definition) 684 return Fold(ConvertToType( 685 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 686 } else { 687 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 688 if (const semantics::Scope * 689 pure{semantics::FindPureProcedureContaining( 690 context_.FindScope(n.source))}) { 691 SayAt(n, 692 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 693 n.source, DEREF(pure->symbol()).name()); 694 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 695 } 696 } 697 if (!isWholeAssumedSizeArrayOk_ && 698 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 699 AttachDeclaration( 700 SayAt(n, 701 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 702 n.source), 703 *n.symbol); 704 } 705 return Designate(DataRef{*n.symbol}); 706 } 707 } 708 } 709 710 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 711 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 712 if (MaybeExpr value{Analyze(n.v)}) { 713 Expr<SomeType> folded{Fold(std::move(*value))}; 714 if (IsConstantExpr(folded)) { 715 return folded; 716 } 717 Say(n.v.source, "must be a constant"_err_en_US); // C718 718 } 719 return std::nullopt; 720 } 721 722 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 723 if (MaybeExpr value{Analyze(n.v)}) { 724 // Subtle: when the NullInit is a DataStmtConstant, it might 725 // be a misparse of a structure constructor without parameters 726 // or components (e.g., T()). Checking the result to ensure 727 // that a "=>" data entity initializer actually resolved to 728 // a null pointer has to be done by the caller. 729 return Fold(std::move(*value)); 730 } 731 return std::nullopt; 732 } 733 734 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 735 return Analyze(x.value()); 736 } 737 738 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 739 if (const auto &repeat{ 740 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 741 x.repetitions = -1; 742 if (MaybeExpr expr{Analyze(repeat->u)}) { 743 Expr<SomeType> folded{Fold(std::move(*expr))}; 744 if (auto value{ToInt64(folded)}) { 745 if (*value >= 0) { // C882 746 x.repetitions = *value; 747 } else { 748 Say(FindSourceLocation(repeat), 749 "Repeat count (%jd) for data value must not be negative"_err_en_US, 750 *value); 751 } 752 } 753 } 754 } 755 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 756 } 757 758 // Substring references 759 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 760 const std::optional<parser::ScalarIntExpr> &bound) { 761 if (bound) { 762 if (MaybeExpr expr{Analyze(*bound)}) { 763 if (expr->Rank() > 1) { 764 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 765 } 766 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 767 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 768 return {std::move(*ssIntExpr)}; 769 } 770 return {Expr<SubscriptInteger>{ 771 Convert<SubscriptInteger, TypeCategory::Integer>{ 772 std::move(*intExpr)}}}; 773 } else { 774 Say("substring bound expression is not INTEGER"_err_en_US); 775 } 776 } 777 } 778 return std::nullopt; 779 } 780 781 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 782 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 783 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 784 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 785 if (std::optional<DataRef> checked{ 786 ExtractDataRef(std::move(*newBaseExpr))}) { 787 const parser::SubstringRange &range{ 788 std::get<parser::SubstringRange>(ss.t)}; 789 std::optional<Expr<SubscriptInteger>> first{ 790 GetSubstringBound(std::get<0>(range.t))}; 791 std::optional<Expr<SubscriptInteger>> last{ 792 GetSubstringBound(std::get<1>(range.t))}; 793 const Symbol &symbol{checked->GetLastSymbol()}; 794 if (std::optional<DynamicType> dynamicType{ 795 DynamicType::From(symbol)}) { 796 if (dynamicType->category() == TypeCategory::Character) { 797 return WrapperHelper<TypeCategory::Character, Designator, 798 Substring>(dynamicType->kind(), 799 Substring{std::move(checked.value()), std::move(first), 800 std::move(last)}); 801 } 802 } 803 Say("substring may apply only to CHARACTER"_err_en_US); 804 } 805 } 806 } 807 } 808 return std::nullopt; 809 } 810 811 // CHARACTER literal substrings 812 MaybeExpr ExpressionAnalyzer::Analyze( 813 const parser::CharLiteralConstantSubstring &x) { 814 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 815 std::optional<Expr<SubscriptInteger>> lower{ 816 GetSubstringBound(std::get<0>(range.t))}; 817 std::optional<Expr<SubscriptInteger>> upper{ 818 GetSubstringBound(std::get<1>(range.t))}; 819 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 820 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 821 Expr<SubscriptInteger> length{ 822 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 823 charExpr->u)}; 824 if (!lower) { 825 lower = Expr<SubscriptInteger>{1}; 826 } 827 if (!upper) { 828 upper = Expr<SubscriptInteger>{ 829 static_cast<std::int64_t>(ToInt64(length).value())}; 830 } 831 return std::visit( 832 [&](auto &&ckExpr) -> MaybeExpr { 833 using Result = ResultType<decltype(ckExpr)>; 834 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 835 CHECK(DEREF(cp).size() == 1); 836 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 837 staticData->set_alignment(Result::kind) 838 .set_itemBytes(Result::kind) 839 .Push(cp->GetScalarValue().value()); 840 Substring substring{std::move(staticData), std::move(lower.value()), 841 std::move(upper.value())}; 842 return AsGenericExpr( 843 Expr<Result>{Designator<Result>{std::move(substring)}}); 844 }, 845 std::move(charExpr->u)); 846 } 847 } 848 return std::nullopt; 849 } 850 851 // Subscripted array references 852 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 853 MaybeExpr &&expr) { 854 if (expr) { 855 if (expr->Rank() > 1) { 856 Say("Subscript expression has rank %d greater than 1"_err_en_US, 857 expr->Rank()); 858 } 859 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 860 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 861 return std::move(*ssIntExpr); 862 } else { 863 return Expr<SubscriptInteger>{ 864 Convert<SubscriptInteger, TypeCategory::Integer>{ 865 std::move(*intExpr)}}; 866 } 867 } else { 868 Say("Subscript expression is not INTEGER"_err_en_US); 869 } 870 } 871 return std::nullopt; 872 } 873 874 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 875 const std::optional<parser::Subscript> &s) { 876 if (s) { 877 return AsSubscript(Analyze(*s)); 878 } else { 879 return std::nullopt; 880 } 881 } 882 883 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 884 const parser::SectionSubscript &ss) { 885 return std::visit( 886 common::visitors{ 887 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 888 const auto &lower{std::get<0>(t.t)}; 889 const auto &upper{std::get<1>(t.t)}; 890 const auto &stride{std::get<2>(t.t)}; 891 auto result{Triplet{ 892 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 893 if ((lower && !result.lower()) || (upper && !result.upper())) { 894 return std::nullopt; 895 } else { 896 return std::make_optional<Subscript>(result); 897 } 898 }, 899 [&](const auto &s) -> std::optional<Subscript> { 900 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 901 return Subscript{std::move(*subscriptExpr)}; 902 } else { 903 return std::nullopt; 904 } 905 }, 906 }, 907 ss.u); 908 } 909 910 // Empty result means an error occurred 911 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 912 const std::list<parser::SectionSubscript> &sss) { 913 bool error{false}; 914 std::vector<Subscript> subscripts; 915 for (const auto &s : sss) { 916 if (auto subscript{AnalyzeSectionSubscript(s)}) { 917 subscripts.emplace_back(std::move(*subscript)); 918 } else { 919 error = true; 920 } 921 } 922 return !error ? subscripts : std::vector<Subscript>{}; 923 } 924 925 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 926 MaybeExpr baseExpr; 927 { 928 auto restorer{AllowWholeAssumedSizeArray()}; 929 baseExpr = Analyze(ae.base); 930 } 931 if (baseExpr) { 932 if (ae.subscripts.empty()) { 933 // will be converted to function call later or error reported 934 } else if (baseExpr->Rank() == 0) { 935 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 936 if (!context_.HasError(symbol)) { 937 Say("'%s' is not an array"_err_en_US, symbol->name()); 938 context_.SetError(*symbol); 939 } 940 } 941 } else if (std::optional<DataRef> dataRef{ 942 ExtractDataRef(std::move(*baseExpr))}) { 943 return ApplySubscripts( 944 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 945 } else { 946 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 947 } 948 } 949 // error was reported: analyze subscripts without reporting more errors 950 auto restorer{GetContextualMessages().DiscardMessages()}; 951 AnalyzeSectionSubscripts(ae.subscripts); 952 return std::nullopt; 953 } 954 955 // Type parameter inquiries apply to data references, but don't depend 956 // on any trailing (co)subscripts. 957 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 958 return std::visit( 959 common::visitors{ 960 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 961 [](Component &&component) { 962 return NamedEntity{std::move(component)}; 963 }, 964 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 965 [](CoarrayRef &&coarrayRef) { 966 return NamedEntity{coarrayRef.GetLastSymbol()}; 967 }, 968 }, 969 std::move(designator.u)); 970 } 971 972 // Components of parent derived types are explicitly represented as such. 973 static std::optional<Component> CreateComponent( 974 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 975 if (&component.owner() == &scope) { 976 return Component{std::move(base), component}; 977 } 978 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 979 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 980 return CreateComponent( 981 DataRef{Component{std::move(base), *parentComponent}}, component, 982 *parentScope); 983 } 984 } 985 return std::nullopt; 986 } 987 988 // Derived type component references and type parameter inquiries 989 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 990 MaybeExpr base{Analyze(sc.base)}; 991 Symbol *sym{sc.component.symbol}; 992 if (!base || !sym || context_.HasError(sym)) { 993 return std::nullopt; 994 } 995 const auto &name{sc.component.source}; 996 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 997 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 998 if (sym->detailsIf<semantics::TypeParamDetails>()) { 999 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1000 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1001 if (dyType->category() == TypeCategory::Integer) { 1002 auto restorer{GetContextualMessages().SetLocation(name)}; 1003 return Fold(ConvertToType(*dyType, 1004 AsGenericExpr(TypeParamInquiry{ 1005 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1006 } 1007 } 1008 Say(name, "Type parameter is not INTEGER"_err_en_US); 1009 } else { 1010 Say(name, 1011 "A type parameter inquiry must be applied to " 1012 "a designator"_err_en_US); 1013 } 1014 } else if (!dtSpec || !dtSpec->scope()) { 1015 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1016 return std::nullopt; 1017 } else if (std::optional<DataRef> dataRef{ 1018 ExtractDataRef(std::move(*dtExpr))}) { 1019 if (auto component{ 1020 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1021 return Designate(DataRef{std::move(*component)}); 1022 } else { 1023 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1024 dtSpec->typeSymbol().name()); 1025 } 1026 } else { 1027 Say(name, 1028 "Base of component reference must be a data reference"_err_en_US); 1029 } 1030 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1031 // special part-ref: %re, %im, %kind, %len 1032 // Type errors are detected and reported in semantics. 1033 using MiscKind = semantics::MiscDetails::Kind; 1034 MiscKind kind{details->kind()}; 1035 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1036 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1037 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1038 Expr<SomeReal> realExpr{std::visit( 1039 [&](const auto &z) { 1040 using PartType = typename ResultType<decltype(z)>::Part; 1041 auto part{kind == MiscKind::ComplexPartRe 1042 ? ComplexPart::Part::RE 1043 : ComplexPart::Part::IM}; 1044 return AsCategoryExpr(Designator<PartType>{ 1045 ComplexPart{std::move(*dataRef), part}}); 1046 }, 1047 zExpr->u)}; 1048 return AsGenericExpr(std::move(realExpr)); 1049 } 1050 } 1051 } else if (kind == MiscKind::KindParamInquiry || 1052 kind == MiscKind::LenParamInquiry) { 1053 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1054 return MakeFunctionRef( 1055 name, ActualArguments{ActualArgument{std::move(*base)}}); 1056 } else { 1057 DIE("unexpected MiscDetails::Kind"); 1058 } 1059 } else { 1060 Say(name, "derived type required before component reference"_err_en_US); 1061 } 1062 return std::nullopt; 1063 } 1064 1065 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1066 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1067 DataRef *dataRef{&*maybeDataRef}; 1068 std::vector<Subscript> subscripts; 1069 SymbolVector reversed; 1070 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1071 subscripts = std::move(aRef->subscript()); 1072 reversed.push_back(aRef->GetLastSymbol()); 1073 if (Component * component{aRef->base().UnwrapComponent()}) { 1074 dataRef = &component->base(); 1075 } else { 1076 dataRef = nullptr; 1077 } 1078 } 1079 if (dataRef) { 1080 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1081 reversed.push_back(component->GetLastSymbol()); 1082 dataRef = &component->base(); 1083 } 1084 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1085 reversed.push_back(*baseSym); 1086 } else { 1087 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1088 } 1089 } 1090 std::vector<Expr<SubscriptInteger>> cosubscripts; 1091 bool cosubsOk{true}; 1092 for (const auto &cosub : 1093 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1094 MaybeExpr coex{Analyze(cosub)}; 1095 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1096 cosubscripts.push_back( 1097 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1098 } else { 1099 cosubsOk = false; 1100 } 1101 } 1102 if (cosubsOk && !reversed.empty()) { 1103 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1104 const Symbol &symbol{reversed.front()}; 1105 if (numCosubscripts != symbol.Corank()) { 1106 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1107 symbol.name(), symbol.Corank(), numCosubscripts); 1108 } 1109 } 1110 for (const auto &imageSelSpec : 1111 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1112 std::visit( 1113 common::visitors{ 1114 [&](const auto &x) { Analyze(x.v); }, 1115 }, 1116 imageSelSpec.u); 1117 } 1118 // Reverse the chain of symbols so that the base is first and coarray 1119 // ultimate component is last. 1120 if (cosubsOk) { 1121 return Designate( 1122 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1123 std::move(subscripts), std::move(cosubscripts)}}); 1124 } 1125 } 1126 return std::nullopt; 1127 } 1128 1129 int ExpressionAnalyzer::IntegerTypeSpecKind( 1130 const parser::IntegerTypeSpec &spec) { 1131 Expr<SubscriptInteger> value{ 1132 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1133 if (auto kind{ToInt64(value)}) { 1134 return static_cast<int>(*kind); 1135 } 1136 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1137 return GetDefaultKind(TypeCategory::Integer); 1138 } 1139 1140 // Array constructors 1141 1142 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1143 // all happen to have the same actual type T into one ArrayConstructor<T>. 1144 template <typename T> 1145 ArrayConstructorValues<T> MakeSpecific( 1146 ArrayConstructorValues<SomeType> &&from) { 1147 ArrayConstructorValues<T> to; 1148 for (ArrayConstructorValue<SomeType> &x : from) { 1149 std::visit( 1150 common::visitors{ 1151 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1152 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1153 to.Push(std::move(DEREF(typed))); 1154 }, 1155 [&](ImpliedDo<SomeType> &&impliedDo) { 1156 to.Push(ImpliedDo<T>{impliedDo.name(), 1157 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1158 std::move(impliedDo.stride()), 1159 MakeSpecific<T>(std::move(impliedDo.values()))}); 1160 }, 1161 }, 1162 std::move(x.u)); 1163 } 1164 return to; 1165 } 1166 1167 class ArrayConstructorContext { 1168 public: 1169 ArrayConstructorContext( 1170 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1171 : exprAnalyzer_{c}, type_{std::move(t)} {} 1172 1173 void Add(const parser::AcValue &); 1174 MaybeExpr ToExpr(); 1175 1176 // These interfaces allow *this to be used as a type visitor argument to 1177 // common::SearchTypes() to convert the array constructor to a typed 1178 // expression in ToExpr(). 1179 using Result = MaybeExpr; 1180 using Types = AllTypes; 1181 template <typename T> Result Test() { 1182 if (type_ && type_->category() == T::category) { 1183 if constexpr (T::category == TypeCategory::Derived) { 1184 if (!type_->IsUnlimitedPolymorphic()) { 1185 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1186 MakeSpecific<T>(std::move(values_))}); 1187 } 1188 } else if (type_->kind() == T::kind) { 1189 if constexpr (T::category == TypeCategory::Character) { 1190 if (auto len{type_->LEN()}) { 1191 return AsMaybeExpr(ArrayConstructor<T>{ 1192 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1193 } 1194 } else { 1195 return AsMaybeExpr( 1196 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1197 } 1198 } 1199 } 1200 return std::nullopt; 1201 } 1202 1203 private: 1204 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1205 1206 void Push(MaybeExpr &&); 1207 void Add(const parser::AcValue::Triplet &); 1208 void Add(const parser::Expr &); 1209 void Add(const parser::AcImpliedDo &); 1210 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1211 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1212 std::int64_t stride); 1213 1214 template <int KIND, typename A> 1215 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1216 const A &x) { 1217 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1218 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1219 return Fold(exprAnalyzer_.GetFoldingContext(), 1220 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1221 std::move(DEREF(intExpr)))); 1222 } 1223 return std::nullopt; 1224 } 1225 1226 // Nested array constructors all reference the same ExpressionAnalyzer, 1227 // which represents the nest of active implied DO loop indices. 1228 ExpressionAnalyzer &exprAnalyzer_; 1229 std::optional<DynamicTypeWithLength> type_; 1230 bool explicitType_{type_.has_value()}; 1231 std::optional<std::int64_t> constantLength_; 1232 ArrayConstructorValues<SomeType> values_; 1233 std::uint64_t messageDisplayedSet_{0}; 1234 }; 1235 1236 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1237 if (!x) { 1238 return; 1239 } 1240 if (!type_) { 1241 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1242 // Treat an array constructor of BOZ as if default integer. 1243 if (exprAnalyzer_.context().ShouldWarn( 1244 common::LanguageFeature::BOZAsDefaultInteger)) { 1245 exprAnalyzer_.Say( 1246 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1247 } 1248 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1249 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1250 std::move(*boz))); 1251 } 1252 } 1253 std::optional<DynamicType> dyType{x->GetType()}; 1254 if (!dyType) { 1255 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1256 if (!type_) { 1257 // Treat an array constructor of BOZ as if default integer. 1258 if (exprAnalyzer_.context().ShouldWarn( 1259 common::LanguageFeature::BOZAsDefaultInteger)) { 1260 exprAnalyzer_.Say( 1261 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1262 } 1263 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1264 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1265 std::move(*boz))); 1266 dyType = x.value().GetType(); 1267 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1268 x = std::move(cast); 1269 dyType = *type_; 1270 } else { 1271 if (!(messageDisplayedSet_ & 0x80)) { 1272 exprAnalyzer_.Say( 1273 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1274 messageDisplayedSet_ |= 0x80; 1275 } 1276 return; 1277 } 1278 } else { // procedure name, &c. 1279 if (!(messageDisplayedSet_ & 0x40)) { 1280 exprAnalyzer_.Say( 1281 "Item is not suitable for use in an array constructor"_err_en_US); 1282 messageDisplayedSet_ |= 0x40; 1283 } 1284 return; 1285 } 1286 } else if (dyType->IsUnlimitedPolymorphic()) { 1287 if (!(messageDisplayedSet_ & 8)) { 1288 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1289 "array constructor"_err_en_US); // C7113 1290 messageDisplayedSet_ |= 8; 1291 } 1292 return; 1293 } 1294 DynamicTypeWithLength xType{dyType.value()}; 1295 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1296 CHECK(xType.category() == TypeCategory::Character); 1297 xType.length = 1298 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1299 } 1300 if (!type_) { 1301 // If there is no explicit type-spec in an array constructor, the type 1302 // of the array is the declared type of all of the elements, which must 1303 // be well-defined and all match. 1304 // TODO: Possible language extension: use the most general type of 1305 // the values as the type of a numeric constructed array, convert all 1306 // of the other values to that type. Alternative: let the first value 1307 // determine the type, and convert the others to that type. 1308 CHECK(!explicitType_); 1309 type_ = std::move(xType); 1310 constantLength_ = ToInt64(type_->length); 1311 values_.Push(std::move(*x)); 1312 } else if (!explicitType_) { 1313 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1314 values_.Push(std::move(*x)); 1315 if (auto thisLen{ToInt64(xType.LEN())}) { 1316 if (constantLength_) { 1317 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1318 *thisLen != *constantLength_) { 1319 if (!(messageDisplayedSet_ & 1)) { 1320 exprAnalyzer_.Say( 1321 "Character literal in array constructor without explicit " 1322 "type has different length than earlier elements"_en_US); 1323 messageDisplayedSet_ |= 1; 1324 } 1325 } 1326 if (*thisLen > *constantLength_) { 1327 // Language extension: use the longest literal to determine the 1328 // length of the array constructor's character elements, not the 1329 // first, when there is no explicit type. 1330 *constantLength_ = *thisLen; 1331 type_->length = xType.LEN(); 1332 } 1333 } else { 1334 constantLength_ = *thisLen; 1335 type_->length = xType.LEN(); 1336 } 1337 } 1338 } else { 1339 if (!(messageDisplayedSet_ & 2)) { 1340 exprAnalyzer_.Say( 1341 "Values in array constructor must have the same declared type " 1342 "when no explicit type appears"_err_en_US); // C7110 1343 messageDisplayedSet_ |= 2; 1344 } 1345 } 1346 } else { 1347 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1348 values_.Push(std::move(*cast)); 1349 } else if (!(messageDisplayedSet_ & 4)) { 1350 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1351 "be converted to the type of the array '%s'"_err_en_US, 1352 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1353 messageDisplayedSet_ |= 4; 1354 } 1355 } 1356 } 1357 1358 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1359 std::visit( 1360 common::visitors{ 1361 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1362 [&](const common::Indirection<parser::Expr> &expr) { 1363 Add(expr.value()); 1364 }, 1365 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1366 Add(impliedDo.value()); 1367 }, 1368 }, 1369 x.u); 1370 } 1371 1372 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1373 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1374 std::optional<Expr<ImpliedDoIntType>> lower{ 1375 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1376 std::optional<Expr<ImpliedDoIntType>> upper{ 1377 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1378 std::optional<Expr<ImpliedDoIntType>> stride{ 1379 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1380 if (lower && upper) { 1381 if (!stride) { 1382 stride = Expr<ImpliedDoIntType>{1}; 1383 } 1384 if (!type_) { 1385 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1386 } 1387 auto v{std::move(values_)}; 1388 parser::CharBlock anonymous; 1389 Push(Expr<SomeType>{ 1390 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1391 std::swap(v, values_); 1392 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1393 std::move(*upper), std::move(*stride), std::move(v)}); 1394 } 1395 } 1396 1397 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1398 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1399 Push(exprAnalyzer_.Analyze(expr)); 1400 } 1401 1402 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1403 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1404 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1405 exprAnalyzer_.Analyze(bounds.name); 1406 parser::CharBlock name{bounds.name.thing.thing.source}; 1407 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1408 int kind{ImpliedDoIntType::kind}; 1409 if (const auto dynamicType{DynamicType::From(symbol)}) { 1410 kind = dynamicType->kind(); 1411 } 1412 std::optional<Expr<ImpliedDoIntType>> lower{ 1413 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1414 std::optional<Expr<ImpliedDoIntType>> upper{ 1415 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1416 if (lower && upper) { 1417 std::optional<Expr<ImpliedDoIntType>> stride{ 1418 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1419 if (!stride) { 1420 stride = Expr<ImpliedDoIntType>{1}; 1421 } 1422 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1423 // Check for constant bounds; the loop may require complete unrolling 1424 // of the parse tree if all bounds are constant in order to allow the 1425 // implied DO loop index to qualify as a constant expression. 1426 auto cLower{ToInt64(lower)}; 1427 auto cUpper{ToInt64(upper)}; 1428 auto cStride{ToInt64(stride)}; 1429 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1430 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1431 "The stride of an implied DO loop must not be zero"_err_en_US); 1432 messageDisplayedSet_ |= 0x10; 1433 } 1434 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1435 bool isNonemptyConstant{isConstant && 1436 ((*cStride > 0 && *cLower <= *cUpper) || 1437 (*cStride < 0 && *cLower >= *cUpper))}; 1438 bool unrollConstantLoop{false}; 1439 parser::Messages buffer; 1440 auto saveMessagesDisplayed{messageDisplayedSet_}; 1441 { 1442 auto messageRestorer{ 1443 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1444 auto v{std::move(values_)}; 1445 for (const auto &value : 1446 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1447 Add(value); 1448 } 1449 std::swap(v, values_); 1450 if (isNonemptyConstant && buffer.AnyFatalError()) { 1451 unrollConstantLoop = true; 1452 } else { 1453 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1454 std::move(*upper), std::move(*stride), std::move(v)}); 1455 } 1456 } 1457 if (unrollConstantLoop) { 1458 messageDisplayedSet_ = saveMessagesDisplayed; 1459 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1460 } else if (auto *messages{ 1461 exprAnalyzer_.GetContextualMessages().messages()}) { 1462 messages->Annex(std::move(buffer)); 1463 } 1464 exprAnalyzer_.RemoveImpliedDo(name); 1465 } else if (!(messageDisplayedSet_ & 0x20)) { 1466 exprAnalyzer_.SayAt(name, 1467 "Implied DO index '%s' is active in a surrounding implied DO loop " 1468 "and may not have the same name"_err_en_US, 1469 name); // C7115 1470 messageDisplayedSet_ |= 0x20; 1471 } 1472 } 1473 } 1474 1475 // Fortran considers an implied DO index of an array constructor to be 1476 // a constant expression if the bounds of the implied DO loop are constant. 1477 // Usually this doesn't matter, but if we emitted spurious messages as a 1478 // result of not using constant values for the index while analyzing the 1479 // items, we need to do it again the "hard" way with multiple iterations over 1480 // the parse tree. 1481 void ArrayConstructorContext::UnrollConstantImpliedDo( 1482 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1483 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1484 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1485 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1486 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1487 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1488 at += stride) { 1489 for (const auto &value : 1490 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1491 Add(value); 1492 } 1493 } 1494 foldingContext.EndImpliedDo(name); 1495 } 1496 1497 MaybeExpr ArrayConstructorContext::ToExpr() { 1498 return common::SearchTypes(std::move(*this)); 1499 } 1500 1501 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1502 const parser::AcSpec &acSpec{array.v}; 1503 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1504 for (const parser::AcValue &value : acSpec.values) { 1505 acContext.Add(value); 1506 } 1507 return acContext.ToExpr(); 1508 } 1509 1510 MaybeExpr ExpressionAnalyzer::Analyze( 1511 const parser::StructureConstructor &structure) { 1512 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1513 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1514 parser::CharBlock &typeName{structureType.source}; 1515 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1516 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1517 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1518 if (!CheckIsValidForwardReference(dtSpec)) { 1519 return std::nullopt; 1520 } 1521 } 1522 } 1523 if (!parsedType.derivedTypeSpec) { 1524 return std::nullopt; 1525 } 1526 const auto &spec{*parsedType.derivedTypeSpec}; 1527 const Symbol &typeSymbol{spec.typeSymbol()}; 1528 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1529 return std::nullopt; // error recovery 1530 } 1531 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1532 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1533 1534 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1535 AttachDeclaration(Say(typeName, 1536 "ABSTRACT derived type '%s' may not be used in a " 1537 "structure constructor"_err_en_US, 1538 typeName), 1539 typeSymbol); // C7114 1540 } 1541 1542 // This iterator traverses all of the components in the derived type and its 1543 // parents. The symbols for whole parent components appear after their 1544 // own components and before the components of the types that extend them. 1545 // E.g., TYPE :: A; REAL X; END TYPE 1546 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1547 // produces the component list X, A, Y. 1548 // The order is important below because a structure constructor can 1549 // initialize X or A by name, but not both. 1550 auto components{semantics::OrderedComponentIterator{spec}}; 1551 auto nextAnonymous{components.begin()}; 1552 1553 std::set<parser::CharBlock> unavailable; 1554 bool anyKeyword{false}; 1555 StructureConstructor result{spec}; 1556 bool checkConflicts{true}; // until we hit one 1557 auto &messages{GetContextualMessages()}; 1558 1559 for (const auto &component : 1560 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1561 const parser::Expr &expr{ 1562 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1563 parser::CharBlock source{expr.source}; 1564 auto restorer{messages.SetLocation(source)}; 1565 const Symbol *symbol{nullptr}; 1566 MaybeExpr value{Analyze(expr)}; 1567 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1568 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1569 anyKeyword = true; 1570 source = kw->v.source; 1571 symbol = kw->v.symbol; 1572 if (!symbol) { 1573 auto componentIter{std::find_if(components.begin(), components.end(), 1574 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1575 if (componentIter != components.end()) { 1576 symbol = &*componentIter; 1577 } 1578 } 1579 if (!symbol) { // C7101 1580 Say(source, 1581 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1582 source, typeName); 1583 } 1584 } else { 1585 if (anyKeyword) { // C7100 1586 Say(source, 1587 "Value in structure constructor lacks a component name"_err_en_US); 1588 checkConflicts = false; // stem cascade 1589 } 1590 // Here's a regrettably common extension of the standard: anonymous 1591 // initialization of parent components, e.g., T(PT(1)) rather than 1592 // T(1) or T(PT=PT(1)). 1593 if (nextAnonymous == components.begin() && parentComponent && 1594 valueType == DynamicType::From(*parentComponent) && 1595 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1596 auto iter{ 1597 std::find(components.begin(), components.end(), *parentComponent)}; 1598 if (iter != components.end()) { 1599 symbol = parentComponent; 1600 nextAnonymous = ++iter; 1601 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1602 Say(source, 1603 "Whole parent component '%s' in structure " 1604 "constructor should not be anonymous"_en_US, 1605 symbol->name()); 1606 } 1607 } 1608 } 1609 while (!symbol && nextAnonymous != components.end()) { 1610 const Symbol &next{*nextAnonymous}; 1611 ++nextAnonymous; 1612 if (!next.test(Symbol::Flag::ParentComp)) { 1613 symbol = &next; 1614 } 1615 } 1616 if (!symbol) { 1617 Say(source, "Unexpected value in structure constructor"_err_en_US); 1618 } 1619 } 1620 if (symbol) { 1621 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1622 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1623 Say(source, *msg); 1624 } 1625 } 1626 if (checkConflicts) { 1627 auto componentIter{ 1628 std::find(components.begin(), components.end(), *symbol)}; 1629 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1630 // C797, C798 1631 Say(source, 1632 "Component '%s' conflicts with another component earlier in " 1633 "this structure constructor"_err_en_US, 1634 symbol->name()); 1635 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1636 // Make earlier components unavailable once a whole parent appears. 1637 for (auto it{components.begin()}; it != componentIter; ++it) { 1638 unavailable.insert(it->name()); 1639 } 1640 } else { 1641 // Make whole parent components unavailable after any of their 1642 // constituents appear. 1643 for (auto it{componentIter}; it != components.end(); ++it) { 1644 if (it->test(Symbol::Flag::ParentComp)) { 1645 unavailable.insert(it->name()); 1646 } 1647 } 1648 } 1649 } 1650 unavailable.insert(symbol->name()); 1651 if (value) { 1652 if (symbol->has<semantics::ProcEntityDetails>()) { 1653 CHECK(IsPointer(*symbol)); 1654 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1655 // C1594(4) 1656 const auto &innermost{context_.FindScope(expr.source)}; 1657 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1658 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1659 if (const Symbol * 1660 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1661 if (auto *msg{Say(expr.source, 1662 "Externally visible object '%s' may not be " 1663 "associated with pointer component '%s' in a " 1664 "pure procedure"_err_en_US, 1665 object->name(), pointer->name())}) { 1666 msg->Attach(object->name(), "Object declaration"_en_US) 1667 .Attach(pointer->name(), "Pointer declaration"_en_US); 1668 } 1669 } 1670 } 1671 } 1672 } else if (symbol->has<semantics::TypeParamDetails>()) { 1673 Say(expr.source, 1674 "Type parameter '%s' may not appear as a component " 1675 "of a structure constructor"_err_en_US, 1676 symbol->name()); 1677 continue; 1678 } else { 1679 Say(expr.source, 1680 "Component '%s' is neither a procedure pointer " 1681 "nor a data object"_err_en_US, 1682 symbol->name()); 1683 continue; 1684 } 1685 if (IsPointer(*symbol)) { 1686 semantics::CheckPointerAssignment( 1687 GetFoldingContext(), *symbol, *value); // C7104, C7105 1688 result.Add(*symbol, Fold(std::move(*value))); 1689 } else if (MaybeExpr converted{ 1690 ConvertToType(*symbol, std::move(*value))}) { 1691 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1692 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1693 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1694 AttachDeclaration( 1695 Say(expr.source, 1696 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1697 GetRank(*valueShape), symbol->name()), 1698 *symbol); 1699 } else { 1700 auto checked{ 1701 CheckConformance(messages, *componentShape, *valueShape, 1702 CheckConformanceFlags::RightIsExpandableDeferred, 1703 "component", "value")}; 1704 if (checked && *checked && GetRank(*componentShape) > 0 && 1705 GetRank(*valueShape) == 0 && 1706 !IsExpandableScalar(*converted)) { 1707 AttachDeclaration( 1708 Say(expr.source, 1709 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1710 symbol->name()), 1711 *symbol); 1712 } 1713 if (checked.value_or(true)) { 1714 result.Add(*symbol, std::move(*converted)); 1715 } 1716 } 1717 } else { 1718 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1719 } 1720 } else { 1721 AttachDeclaration( 1722 Say(expr.source, 1723 "Shape of component '%s' cannot be determined"_err_en_US, 1724 symbol->name()), 1725 *symbol); 1726 } 1727 } else if (IsAllocatable(*symbol) && 1728 std::holds_alternative<NullPointer>(value->u)) { 1729 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1730 } else if (auto symType{DynamicType::From(symbol)}) { 1731 if (valueType) { 1732 AttachDeclaration( 1733 Say(expr.source, 1734 "Value in structure constructor of type %s is " 1735 "incompatible with component '%s' of type %s"_err_en_US, 1736 valueType->AsFortran(), symbol->name(), 1737 symType->AsFortran()), 1738 *symbol); 1739 } else { 1740 AttachDeclaration( 1741 Say(expr.source, 1742 "Value in structure constructor is incompatible with " 1743 " component '%s' of type %s"_err_en_US, 1744 symbol->name(), symType->AsFortran()), 1745 *symbol); 1746 } 1747 } 1748 } 1749 } 1750 } 1751 1752 // Ensure that unmentioned component objects have default initializers. 1753 for (const Symbol &symbol : components) { 1754 if (!symbol.test(Symbol::Flag::ParentComp) && 1755 unavailable.find(symbol.name()) == unavailable.cend() && 1756 !IsAllocatable(symbol)) { 1757 if (const auto *details{ 1758 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1759 if (details->init()) { 1760 result.Add(symbol, common::Clone(*details->init())); 1761 } else { // C799 1762 AttachDeclaration(Say(typeName, 1763 "Structure constructor lacks a value for " 1764 "component '%s'"_err_en_US, 1765 symbol.name()), 1766 symbol); 1767 } 1768 } 1769 } 1770 } 1771 1772 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1773 } 1774 1775 static std::optional<parser::CharBlock> GetPassName( 1776 const semantics::Symbol &proc) { 1777 return std::visit( 1778 [](const auto &details) { 1779 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1780 std::decay_t<decltype(details)>>) { 1781 return details.passName(); 1782 } else { 1783 return std::optional<parser::CharBlock>{}; 1784 } 1785 }, 1786 proc.details()); 1787 } 1788 1789 static int GetPassIndex(const Symbol &proc) { 1790 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1791 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1792 const auto *interface{semantics::FindInterface(proc)}; 1793 if (!passName || !interface) { 1794 return 0; // first argument is passed-object 1795 } 1796 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1797 int index{0}; 1798 for (const auto *arg : subp.dummyArgs()) { 1799 if (arg && arg->name() == passName) { 1800 return index; 1801 } 1802 ++index; 1803 } 1804 DIE("PASS argument name not in dummy argument list"); 1805 } 1806 1807 // Injects an expression into an actual argument list as the "passed object" 1808 // for a type-bound procedure reference that is not NOPASS. Adds an 1809 // argument keyword if possible, but not when the passed object goes 1810 // before a positional argument. 1811 // e.g., obj%tbp(x) -> tbp(obj,x). 1812 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1813 const Symbol &component, bool isPassedObject = true) { 1814 if (component.attrs().test(semantics::Attr::NOPASS)) { 1815 return; 1816 } 1817 int passIndex{GetPassIndex(component)}; 1818 auto iter{actuals.begin()}; 1819 int at{0}; 1820 while (iter < actuals.end() && at < passIndex) { 1821 if (*iter && (*iter)->keyword()) { 1822 iter = actuals.end(); 1823 break; 1824 } 1825 ++iter; 1826 ++at; 1827 } 1828 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1829 passed.set_isPassedObject(isPassedObject); 1830 if (iter == actuals.end()) { 1831 if (auto passName{GetPassName(component)}) { 1832 passed.set_keyword(*passName); 1833 } 1834 } 1835 actuals.emplace(iter, std::move(passed)); 1836 } 1837 1838 // Return the compile-time resolution of a procedure binding, if possible. 1839 static const Symbol *GetBindingResolution( 1840 const std::optional<DynamicType> &baseType, const Symbol &component) { 1841 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1842 if (!binding) { 1843 return nullptr; 1844 } 1845 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1846 (!baseType || baseType->IsPolymorphic())) { 1847 return nullptr; 1848 } 1849 return &binding->symbol(); 1850 } 1851 1852 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1853 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1854 -> std::optional<CalleeAndArguments> { 1855 const parser::StructureComponent &sc{pcr.v.thing}; 1856 if (MaybeExpr base{Analyze(sc.base)}) { 1857 if (const Symbol * sym{sc.component.symbol}) { 1858 if (context_.HasError(sym)) { 1859 return std::nullopt; 1860 } 1861 if (!IsProcedure(*sym)) { 1862 AttachDeclaration( 1863 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1864 sc.component.source), 1865 *sym); 1866 return std::nullopt; 1867 } 1868 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1869 if (sym->has<semantics::GenericDetails>()) { 1870 AdjustActuals adjustment{ 1871 [&](const Symbol &proc, ActualArguments &actuals) { 1872 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1873 AddPassArg(actuals, std::move(*dtExpr), proc); 1874 } 1875 return true; 1876 }}; 1877 sym = ResolveGeneric(*sym, arguments, adjustment); 1878 if (!sym) { 1879 EmitGenericResolutionError(*sc.component.symbol); 1880 return std::nullopt; 1881 } 1882 } 1883 if (const Symbol * 1884 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1885 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1886 return CalleeAndArguments{ 1887 ProcedureDesignator{*resolution}, std::move(arguments)}; 1888 } else if (std::optional<DataRef> dataRef{ 1889 ExtractDataRef(std::move(*dtExpr))}) { 1890 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1891 return CalleeAndArguments{ 1892 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1893 std::move(arguments)}; 1894 } else { 1895 AddPassArg(arguments, 1896 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1897 *sym); 1898 return CalleeAndArguments{ 1899 ProcedureDesignator{*sym}, std::move(arguments)}; 1900 } 1901 } 1902 } 1903 Say(sc.component.source, 1904 "Base of procedure component reference is not a derived-type object"_err_en_US); 1905 } 1906 } 1907 CHECK(!GetContextualMessages().empty()); 1908 return std::nullopt; 1909 } 1910 1911 // Can actual be argument associated with dummy? 1912 static bool CheckCompatibleArgument(bool isElemental, 1913 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1914 return std::visit( 1915 common::visitors{ 1916 [&](const characteristics::DummyDataObject &x) { 1917 if (!isElemental && actual.Rank() != x.type.Rank() && 1918 !x.type.attrs().test( 1919 characteristics::TypeAndShape::Attr::AssumedRank)) { 1920 return false; 1921 } else if (auto actualType{actual.GetType()}) { 1922 return x.type.type().IsTkCompatibleWith(*actualType); 1923 } else { 1924 return false; 1925 } 1926 }, 1927 [&](const characteristics::DummyProcedure &) { 1928 const auto *expr{actual.UnwrapExpr()}; 1929 return expr && IsProcedurePointerTarget(*expr); 1930 }, 1931 [&](const characteristics::AlternateReturn &) { 1932 return actual.isAlternateReturn(); 1933 }, 1934 }, 1935 dummy.u); 1936 } 1937 1938 // Are the actual arguments compatible with the dummy arguments of procedure? 1939 static bool CheckCompatibleArguments( 1940 const characteristics::Procedure &procedure, 1941 const ActualArguments &actuals) { 1942 bool isElemental{procedure.IsElemental()}; 1943 const auto &dummies{procedure.dummyArguments}; 1944 CHECK(dummies.size() == actuals.size()); 1945 for (std::size_t i{0}; i < dummies.size(); ++i) { 1946 const characteristics::DummyArgument &dummy{dummies[i]}; 1947 const std::optional<ActualArgument> &actual{actuals[i]}; 1948 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1949 return false; 1950 } 1951 } 1952 return true; 1953 } 1954 1955 // Handles a forward reference to a module function from what must 1956 // be a specification expression. Return false if the symbol is 1957 // an invalid forward reference. 1958 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1959 if (context_.HasError(symbol)) { 1960 return false; 1961 } 1962 if (const auto *details{ 1963 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1964 if (details->kind() == semantics::SubprogramKind::Module) { 1965 // If this symbol is still a SubprogramNameDetails, we must be 1966 // checking a specification expression in a sibling module 1967 // procedure. Resolve its names now so that its interface 1968 // is known. 1969 semantics::ResolveSpecificationParts(context_, symbol); 1970 if (symbol.has<semantics::SubprogramNameDetails>()) { 1971 // When the symbol hasn't had its details updated, we must have 1972 // already been in the process of resolving the function's 1973 // specification part; but recursive function calls are not 1974 // allowed in specification parts (10.1.11 para 5). 1975 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1976 symbol.name()); 1977 context_.SetError(symbol); 1978 return false; 1979 } 1980 } else { // 10.1.11 para 4 1981 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1982 symbol.name()); 1983 context_.SetError(symbol); 1984 return false; 1985 } 1986 } 1987 return true; 1988 } 1989 1990 // Resolve a call to a generic procedure with given actual arguments. 1991 // adjustActuals is called on procedure bindings to handle pass arg. 1992 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1993 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1994 bool mightBeStructureConstructor) { 1995 const Symbol *elemental{nullptr}; // matching elemental specific proc 1996 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1997 for (const Symbol &specific : details.specificProcs()) { 1998 if (!ResolveForward(specific)) { 1999 continue; 2000 } 2001 if (std::optional<characteristics::Procedure> procedure{ 2002 characteristics::Procedure::Characterize( 2003 ProcedureDesignator{specific}, context_.foldingContext())}) { 2004 ActualArguments localActuals{actuals}; 2005 if (specific.has<semantics::ProcBindingDetails>()) { 2006 if (!adjustActuals.value()(specific, localActuals)) { 2007 continue; 2008 } 2009 } 2010 if (semantics::CheckInterfaceForGeneric( 2011 *procedure, localActuals, GetFoldingContext())) { 2012 if (CheckCompatibleArguments(*procedure, localActuals)) { 2013 if (!procedure->IsElemental()) { 2014 // takes priority over elemental match 2015 return &AccessSpecific(symbol, specific); 2016 } 2017 elemental = &specific; 2018 } 2019 } 2020 } 2021 } 2022 if (elemental) { 2023 return &AccessSpecific(symbol, *elemental); 2024 } 2025 // Check parent derived type 2026 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2027 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2028 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 2029 if (const Symbol * 2030 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 2031 return result; 2032 } 2033 } 2034 } 2035 } 2036 if (mightBeStructureConstructor && details.derivedType()) { 2037 return details.derivedType(); 2038 } 2039 return nullptr; 2040 } 2041 2042 const Symbol &ExpressionAnalyzer::AccessSpecific( 2043 const Symbol &originalGeneric, const Symbol &specific) { 2044 if (const auto *hosted{ 2045 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2046 return AccessSpecific(hosted->symbol(), specific); 2047 } else if (const auto *used{ 2048 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2049 const auto &scope{originalGeneric.owner()}; 2050 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2051 if (const auto *useDetails{ 2052 iter->second->detailsIf<semantics::UseDetails>()}) { 2053 const Symbol &usedSymbol{useDetails->symbol()}; 2054 const auto *usedGeneric{ 2055 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2056 if (&usedSymbol == &specific || 2057 (usedGeneric && usedGeneric->specific() == &specific)) { 2058 return specific; 2059 } 2060 } 2061 } 2062 // Create a renaming USE of the specific procedure. 2063 auto rename{context_.SaveTempName( 2064 used->symbol().owner().GetName().value().ToString() + "$" + 2065 specific.name().ToString())}; 2066 return *const_cast<semantics::Scope &>(scope) 2067 .try_emplace(rename, specific.attrs(), 2068 semantics::UseDetails{rename, specific}) 2069 .first->second; 2070 } else { 2071 return specific; 2072 } 2073 } 2074 2075 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 2076 if (semantics::IsGenericDefinedOp(symbol)) { 2077 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 2078 symbol.name()); 2079 } else { 2080 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2081 symbol.name()); 2082 } 2083 } 2084 2085 auto ExpressionAnalyzer::GetCalleeAndArguments( 2086 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2087 bool isSubroutine, bool mightBeStructureConstructor) 2088 -> std::optional<CalleeAndArguments> { 2089 return std::visit( 2090 common::visitors{ 2091 [&](const parser::Name &name) { 2092 return GetCalleeAndArguments(name, std::move(arguments), 2093 isSubroutine, mightBeStructureConstructor); 2094 }, 2095 [&](const parser::ProcComponentRef &pcr) { 2096 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2097 }, 2098 }, 2099 pd.u); 2100 } 2101 2102 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2103 ActualArguments &&arguments, bool isSubroutine, 2104 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2105 const Symbol *symbol{name.symbol}; 2106 if (context_.HasError(symbol)) { 2107 return std::nullopt; // also handles null symbol 2108 } 2109 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2110 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2111 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2112 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2113 arguments, GetFoldingContext())}) { 2114 CheckBadExplicitType(*specificCall, *symbol); 2115 return CalleeAndArguments{ 2116 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2117 std::move(specificCall->arguments)}; 2118 } 2119 } else { 2120 CheckForBadRecursion(name.source, ultimate); 2121 if (ultimate.has<semantics::GenericDetails>()) { 2122 ExpressionAnalyzer::AdjustActuals noAdjustment; 2123 symbol = ResolveGeneric( 2124 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 2125 } 2126 if (symbol) { 2127 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2128 if (mightBeStructureConstructor) { 2129 return CalleeAndArguments{ 2130 semantics::SymbolRef{*symbol}, std::move(arguments)}; 2131 } 2132 } else if (IsProcedure(*symbol)) { 2133 return CalleeAndArguments{ 2134 ProcedureDesignator{*symbol}, std::move(arguments)}; 2135 } 2136 if (!context_.HasError(*symbol)) { 2137 AttachDeclaration( 2138 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2139 name.source), 2140 *symbol); 2141 } 2142 } else if (std::optional<SpecificCall> specificCall{ 2143 context_.intrinsics().Probe( 2144 CallCharacteristics{ 2145 ultimate.name().ToString(), isSubroutine}, 2146 arguments, GetFoldingContext())}) { 2147 // Generics can extend intrinsics 2148 return CalleeAndArguments{ 2149 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2150 std::move(specificCall->arguments)}; 2151 } else { 2152 EmitGenericResolutionError(*name.symbol); 2153 } 2154 } 2155 return std::nullopt; 2156 } 2157 2158 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2159 // generic intrinsic function "has no effect" on the result type of a 2160 // call to that intrinsic. So one can declare "character*8 cos" and 2161 // still get a real result from "cos(1.)". This is a dangerous feature, 2162 // especially since implementations are free to extend their sets of 2163 // intrinsics, and in doing so might clash with a name in a program. 2164 // So we emit a warning in this situation, and perhaps it should be an 2165 // error -- any correctly working program can silence the message by 2166 // simply deleting the pointless type declaration. 2167 void ExpressionAnalyzer::CheckBadExplicitType( 2168 const SpecificCall &call, const Symbol &intrinsic) { 2169 if (intrinsic.GetUltimate().GetType()) { 2170 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2171 if (const auto &result{procedure.functionResult}) { 2172 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2173 if (auto declared{ 2174 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2175 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2176 if (auto *msg{Say( 2177 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US, 2178 typeAndShape->AsFortran(), intrinsic.name(), 2179 declared->AsFortran())}) { 2180 msg->Attach(intrinsic.name(), 2181 "Ignored declaration of intrinsic function '%s'"_en_US, 2182 intrinsic.name()); 2183 } 2184 } 2185 } 2186 } 2187 } 2188 } 2189 } 2190 2191 void ExpressionAnalyzer::CheckForBadRecursion( 2192 parser::CharBlock callSite, const semantics::Symbol &proc) { 2193 if (const auto *scope{proc.scope()}) { 2194 if (scope->sourceRange().Contains(callSite)) { 2195 parser::Message *msg{nullptr}; 2196 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2197 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2198 callSite); 2199 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2200 msg = Say( // 15.6.2.1(3) 2201 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2202 callSite); 2203 } 2204 AttachDeclaration(msg, proc); 2205 } 2206 } 2207 } 2208 2209 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2210 if (const auto *designator{ 2211 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2212 if (const auto *dataRef{ 2213 std::get_if<parser::DataRef>(&designator->value().u)}) { 2214 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2215 return AssumedTypeDummy(*name); 2216 } 2217 } 2218 } 2219 return nullptr; 2220 } 2221 template <> 2222 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2223 if (const Symbol * symbol{name.symbol}) { 2224 if (const auto *type{symbol->GetType()}) { 2225 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2226 return symbol; 2227 } 2228 } 2229 } 2230 return nullptr; 2231 } 2232 template <typename A> 2233 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2234 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2235 // point it is is not guaranteed that it has been checked the object has 2236 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2237 // returned. 2238 return std::visit( 2239 common::visitors{ 2240 [&](const parser::StructureComponent &x) { 2241 return AssumedTypeDummy(x.component); 2242 }, 2243 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2244 }, 2245 object.u); 2246 } 2247 template <> 2248 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2249 const parser::AllocateObject &x) { 2250 return AssumedTypePointerOrAllocatableDummy(x); 2251 } 2252 template <> 2253 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2254 const parser::PointerObject &x) { 2255 return AssumedTypePointerOrAllocatableDummy(x); 2256 } 2257 2258 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2259 const semantics::DerivedTypeSpec &dtSpec) { 2260 if (dtSpec.IsForwardReferenced()) { 2261 Say("Cannot construct value for derived type '%s' " 2262 "before it is defined"_err_en_US, 2263 dtSpec.name()); 2264 return false; 2265 } 2266 return true; 2267 } 2268 2269 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2270 std::optional<parser::StructureConstructor> *structureConstructor) { 2271 const parser::Call &call{funcRef.v}; 2272 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2273 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2274 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2275 analyzer.Analyze(arg, false /* not subroutine call */); 2276 } 2277 if (analyzer.fatalErrors()) { 2278 return std::nullopt; 2279 } 2280 if (std::optional<CalleeAndArguments> callee{ 2281 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2282 analyzer.GetActuals(), false /* not subroutine */, 2283 true /* might be structure constructor */)}) { 2284 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2285 return MakeFunctionRef( 2286 call.source, std::move(*proc), std::move(callee->arguments)); 2287 } 2288 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2289 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2290 if (structureConstructor) { 2291 // Structure constructor misparsed as function reference? 2292 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2293 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2294 semantics::Scope &scope{context_.FindScope(name->source)}; 2295 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2296 if (!CheckIsValidForwardReference(dtSpec)) { 2297 return std::nullopt; 2298 } 2299 const semantics::DeclTypeSpec &type{ 2300 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2301 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2302 *structureConstructor = 2303 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2304 return Analyze(structureConstructor->value()); 2305 } 2306 } 2307 if (!context_.HasError(symbol)) { 2308 AttachDeclaration( 2309 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2310 symbol.name()), 2311 symbol); 2312 context_.SetError(symbol); 2313 } 2314 } 2315 return std::nullopt; 2316 } 2317 2318 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2319 for (const auto &arg : args) { 2320 if (arg && arg->isAlternateReturn()) { 2321 return true; 2322 } 2323 } 2324 return false; 2325 } 2326 2327 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2328 const parser::Call &call{callStmt.v}; 2329 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2330 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2331 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2332 for (const auto &arg : actualArgList) { 2333 analyzer.Analyze(arg, true /* is subroutine call */); 2334 } 2335 if (!analyzer.fatalErrors()) { 2336 if (std::optional<CalleeAndArguments> callee{ 2337 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2338 analyzer.GetActuals(), true /* subroutine */)}) { 2339 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2340 CHECK(proc); 2341 if (CheckCall(call.source, *proc, callee->arguments)) { 2342 bool hasAlternateReturns{HasAlternateReturns(callee->arguments)}; 2343 callStmt.typedCall.Reset( 2344 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2345 hasAlternateReturns}, 2346 ProcedureRef::Deleter); 2347 } 2348 } 2349 } 2350 } 2351 2352 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2353 if (!x.typedAssignment) { 2354 ArgumentAnalyzer analyzer{*this}; 2355 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2356 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2357 if (analyzer.fatalErrors()) { 2358 x.typedAssignment.Reset( 2359 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2360 } else { 2361 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2362 Assignment assignment{analyzer.MoveExpr(0), analyzer.MoveExpr(1)}; 2363 if (procRef) { 2364 assignment.u = std::move(*procRef); 2365 } 2366 x.typedAssignment.Reset( 2367 new GenericAssignmentWrapper{std::move(assignment)}, 2368 GenericAssignmentWrapper::Deleter); 2369 } 2370 } 2371 return common::GetPtrFromOptional(x.typedAssignment->v); 2372 } 2373 2374 const Assignment *ExpressionAnalyzer::Analyze( 2375 const parser::PointerAssignmentStmt &x) { 2376 if (!x.typedAssignment) { 2377 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2378 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2379 if (!lhs || !rhs) { 2380 x.typedAssignment.Reset( 2381 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2382 } else { 2383 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2384 std::visit(common::visitors{ 2385 [&](const std::list<parser::BoundsRemapping> &list) { 2386 Assignment::BoundsRemapping bounds; 2387 for (const auto &elem : list) { 2388 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2389 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2390 if (lower && upper) { 2391 bounds.emplace_back(Fold(std::move(*lower)), 2392 Fold(std::move(*upper))); 2393 } 2394 } 2395 assignment.u = std::move(bounds); 2396 }, 2397 [&](const std::list<parser::BoundsSpec> &list) { 2398 Assignment::BoundsSpec bounds; 2399 for (const auto &bound : list) { 2400 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2401 bounds.emplace_back(Fold(std::move(*lower))); 2402 } 2403 } 2404 assignment.u = std::move(bounds); 2405 }, 2406 }, 2407 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2408 x.typedAssignment.Reset( 2409 new GenericAssignmentWrapper{std::move(assignment)}, 2410 GenericAssignmentWrapper::Deleter); 2411 } 2412 } 2413 return common::GetPtrFromOptional(x.typedAssignment->v); 2414 } 2415 2416 static bool IsExternalCalledImplicitly( 2417 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2418 if (const auto *symbol{proc.GetSymbol()}) { 2419 return symbol->has<semantics::SubprogramDetails>() && 2420 symbol->owner().IsGlobal() && 2421 (!symbol->scope() /*ENTRY*/ || 2422 !symbol->scope()->sourceRange().Contains(callSite)); 2423 } else { 2424 return false; 2425 } 2426 } 2427 2428 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2429 parser::CharBlock callSite, const ProcedureDesignator &proc, 2430 ActualArguments &arguments) { 2431 auto chars{characteristics::Procedure::Characterize( 2432 proc, context_.foldingContext())}; 2433 if (chars) { 2434 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2435 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2436 Say(callSite, 2437 "References to the procedure '%s' require an explicit interface"_en_US, 2438 DEREF(proc.GetSymbol()).name()); 2439 } 2440 // Checks for ASSOCIATED() are done in intrinsic table processing 2441 bool procIsAssociated{false}; 2442 if (const SpecificIntrinsic * 2443 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2444 if (specificIntrinsic->name == "associated") { 2445 procIsAssociated = true; 2446 } 2447 } 2448 if (!procIsAssociated) { 2449 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2450 context_.FindScope(callSite), treatExternalAsImplicit, 2451 proc.GetSpecificIntrinsic()); 2452 const Symbol *procSymbol{proc.GetSymbol()}; 2453 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2454 if (const semantics::Scope * 2455 pure{semantics::FindPureProcedureContaining( 2456 context_.FindScope(callSite))}) { 2457 Say(callSite, 2458 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2459 procSymbol->name(), DEREF(pure->symbol()).name()); 2460 } 2461 } 2462 } 2463 } 2464 return chars; 2465 } 2466 2467 // Unary operations 2468 2469 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2470 if (MaybeExpr operand{Analyze(x.v.value())}) { 2471 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2472 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2473 if (semantics::IsProcedurePointer(*result)) { 2474 Say("A function reference that returns a procedure " 2475 "pointer may not be parenthesized"_err_en_US); // C1003 2476 } 2477 } 2478 } 2479 return Parenthesize(std::move(*operand)); 2480 } 2481 return std::nullopt; 2482 } 2483 2484 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2485 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2486 ArgumentAnalyzer analyzer{context}; 2487 analyzer.Analyze(x.v); 2488 if (analyzer.fatalErrors()) { 2489 return std::nullopt; 2490 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2491 if (opr == NumericOperator::Add) { 2492 return analyzer.MoveExpr(0); 2493 } else { 2494 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2495 } 2496 } else { 2497 return analyzer.TryDefinedOp(AsFortran(opr), 2498 "Operand of unary %s must be numeric; have %s"_err_en_US); 2499 } 2500 } 2501 2502 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2503 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2504 } 2505 2506 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2507 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2508 } 2509 2510 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2511 ArgumentAnalyzer analyzer{*this}; 2512 analyzer.Analyze(x.v); 2513 if (analyzer.fatalErrors()) { 2514 return std::nullopt; 2515 } else if (analyzer.IsIntrinsicLogical()) { 2516 return AsGenericExpr( 2517 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2518 } else { 2519 return analyzer.TryDefinedOp(LogicalOperator::Not, 2520 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2521 } 2522 } 2523 2524 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2525 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2526 // intrinsic function. 2527 // Use the actual source for the name of the call for error reporting. 2528 std::optional<ActualArgument> arg; 2529 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2530 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2531 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2532 arg = ActualArgument{std::move(*argExpr)}; 2533 } else { 2534 return std::nullopt; 2535 } 2536 parser::CharBlock at{GetContextualMessages().at()}; 2537 CHECK(at.size() >= 4); 2538 parser::CharBlock loc{at.begin() + 1, 3}; 2539 CHECK(loc == "loc"); 2540 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2541 } 2542 2543 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2544 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2545 ArgumentAnalyzer analyzer{*this, name.source}; 2546 analyzer.Analyze(std::get<1>(x.t)); 2547 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2548 "No operator %s defined for %s"_err_en_US, true); 2549 } 2550 2551 // Binary (dyadic) operations 2552 2553 template <template <typename> class OPR> 2554 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2555 const parser::Expr::IntrinsicBinary &x) { 2556 ArgumentAnalyzer analyzer{context}; 2557 analyzer.Analyze(std::get<0>(x.t)); 2558 analyzer.Analyze(std::get<1>(x.t)); 2559 if (analyzer.fatalErrors()) { 2560 return std::nullopt; 2561 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2562 analyzer.CheckConformance(); 2563 return NumericOperation<OPR>(context.GetContextualMessages(), 2564 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2565 context.GetDefaultKind(TypeCategory::Real)); 2566 } else { 2567 return analyzer.TryDefinedOp(AsFortran(opr), 2568 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2569 } 2570 } 2571 2572 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2573 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2574 } 2575 2576 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2577 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2578 } 2579 2580 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2581 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2582 } 2583 2584 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2585 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2586 } 2587 2588 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2589 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2590 } 2591 2592 MaybeExpr ExpressionAnalyzer::Analyze( 2593 const parser::Expr::ComplexConstructor &x) { 2594 auto re{Analyze(std::get<0>(x.t).value())}; 2595 auto im{Analyze(std::get<1>(x.t).value())}; 2596 if (re && im) { 2597 ConformabilityCheck(GetContextualMessages(), *re, *im); 2598 } 2599 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2600 std::move(im), GetDefaultKind(TypeCategory::Real))); 2601 } 2602 2603 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2604 ArgumentAnalyzer analyzer{*this}; 2605 analyzer.Analyze(std::get<0>(x.t)); 2606 analyzer.Analyze(std::get<1>(x.t)); 2607 if (analyzer.fatalErrors()) { 2608 return std::nullopt; 2609 } else if (analyzer.IsIntrinsicConcat()) { 2610 return std::visit( 2611 [&](auto &&x, auto &&y) -> MaybeExpr { 2612 using T = ResultType<decltype(x)>; 2613 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2614 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2615 } else { 2616 DIE("different types for intrinsic concat"); 2617 } 2618 }, 2619 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2620 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2621 } else { 2622 return analyzer.TryDefinedOp("//", 2623 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2624 } 2625 } 2626 2627 // The Name represents a user-defined intrinsic operator. 2628 // If the actuals match one of the specific procedures, return a function ref. 2629 // Otherwise report the error in messages. 2630 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2631 const parser::Name &name, ActualArguments &&actuals) { 2632 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2633 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2634 return MakeFunctionRef(name.source, 2635 std::move(std::get<ProcedureDesignator>(callee->u)), 2636 std::move(callee->arguments)); 2637 } else { 2638 return std::nullopt; 2639 } 2640 } 2641 2642 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2643 const parser::Expr::IntrinsicBinary &x) { 2644 ArgumentAnalyzer analyzer{context}; 2645 analyzer.Analyze(std::get<0>(x.t)); 2646 analyzer.Analyze(std::get<1>(x.t)); 2647 if (analyzer.fatalErrors()) { 2648 return std::nullopt; 2649 } else { 2650 if (IsNullPointer(analyzer.GetExpr(0)) || 2651 IsNullPointer(analyzer.GetExpr(1))) { 2652 context.Say("NULL() not allowed as an operand of a relational " 2653 "operator"_err_en_US); 2654 return std::nullopt; 2655 } 2656 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2657 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2658 analyzer.ConvertBOZ(0, rightType); 2659 analyzer.ConvertBOZ(1, leftType); 2660 if (analyzer.IsIntrinsicRelational(opr)) { 2661 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2662 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2663 } else if (leftType && leftType->category() == TypeCategory::Logical && 2664 rightType && rightType->category() == TypeCategory::Logical) { 2665 context.Say("LOGICAL operands must be compared using .EQV. or " 2666 ".NEQV."_err_en_US); 2667 return std::nullopt; 2668 } else { 2669 return analyzer.TryDefinedOp(opr, 2670 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2671 } 2672 } 2673 } 2674 2675 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2676 return RelationHelper(*this, RelationalOperator::LT, x); 2677 } 2678 2679 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2680 return RelationHelper(*this, RelationalOperator::LE, x); 2681 } 2682 2683 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2684 return RelationHelper(*this, RelationalOperator::EQ, x); 2685 } 2686 2687 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2688 return RelationHelper(*this, RelationalOperator::NE, x); 2689 } 2690 2691 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2692 return RelationHelper(*this, RelationalOperator::GE, x); 2693 } 2694 2695 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2696 return RelationHelper(*this, RelationalOperator::GT, x); 2697 } 2698 2699 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2700 const parser::Expr::IntrinsicBinary &x) { 2701 ArgumentAnalyzer analyzer{context}; 2702 analyzer.Analyze(std::get<0>(x.t)); 2703 analyzer.Analyze(std::get<1>(x.t)); 2704 if (analyzer.fatalErrors()) { 2705 return std::nullopt; 2706 } else if (analyzer.IsIntrinsicLogical()) { 2707 return AsGenericExpr(BinaryLogicalOperation(opr, 2708 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2709 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2710 } else { 2711 return analyzer.TryDefinedOp( 2712 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2713 } 2714 } 2715 2716 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2717 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2718 } 2719 2720 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2721 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2722 } 2723 2724 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2725 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2726 } 2727 2728 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2729 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2730 } 2731 2732 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2733 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2734 ArgumentAnalyzer analyzer{*this, name.source}; 2735 analyzer.Analyze(std::get<1>(x.t)); 2736 analyzer.Analyze(std::get<2>(x.t)); 2737 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2738 "No operator %s defined for %s and %s"_err_en_US, true); 2739 } 2740 2741 static void CheckFuncRefToArrayElementRefHasSubscripts( 2742 semantics::SemanticsContext &context, 2743 const parser::FunctionReference &funcRef) { 2744 // Emit message if the function reference fix will end up an array element 2745 // reference with no subscripts because it will not be possible to later tell 2746 // the difference in expressions between empty subscript list due to bad 2747 // subscripts error recovery or because the user did not put any. 2748 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2749 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2750 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2751 if (!name) { 2752 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2753 } 2754 auto &msg{context.Say(funcRef.v.source, 2755 name->symbol && name->symbol->Rank() == 0 2756 ? "'%s' is not a function"_err_en_US 2757 : "Reference to array '%s' with empty subscript list"_err_en_US, 2758 name->source)}; 2759 if (name->symbol) { 2760 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2761 msg.Attach(name->source, 2762 "A result variable must be declared with RESULT to allow recursive " 2763 "function calls"_en_US); 2764 } else { 2765 AttachDeclaration(&msg, *name->symbol); 2766 } 2767 } 2768 } 2769 } 2770 2771 // Converts, if appropriate, an original misparse of ambiguous syntax like 2772 // A(1) as a function reference into an array reference. 2773 // Misparse structure constructors are detected elsewhere after generic 2774 // function call resolution fails. 2775 template <typename... A> 2776 static void FixMisparsedFunctionReference( 2777 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2778 // The parse tree is updated in situ when resolving an ambiguous parse. 2779 using uType = std::decay_t<decltype(constU)>; 2780 auto &u{const_cast<uType &>(constU)}; 2781 if (auto *func{ 2782 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2783 parser::FunctionReference &funcRef{func->value()}; 2784 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2785 if (Symbol * 2786 origSymbol{ 2787 std::visit(common::visitors{ 2788 [&](parser::Name &name) { return name.symbol; }, 2789 [&](parser::ProcComponentRef &pcr) { 2790 return pcr.v.thing.component.symbol; 2791 }, 2792 }, 2793 proc.u)}) { 2794 Symbol &symbol{origSymbol->GetUltimate()}; 2795 if (symbol.has<semantics::ObjectEntityDetails>() || 2796 symbol.has<semantics::AssocEntityDetails>()) { 2797 // Note that expression in AssocEntityDetails cannot be a procedure 2798 // pointer as per C1105 so this cannot be a function reference. 2799 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2800 uType>) { 2801 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2802 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2803 } else { 2804 DIE("can't fix misparsed function as array reference"); 2805 } 2806 } 2807 } 2808 } 2809 } 2810 2811 // Common handling of parse tree node types that retain the 2812 // representation of the analyzed expression. 2813 template <typename PARSED> 2814 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2815 const PARSED &x, parser::CharBlock source) { 2816 if (useSavedTypedExprs_ && x.typedExpr) { 2817 return x.typedExpr->v; 2818 } 2819 auto restorer{GetContextualMessages().SetLocation(source)}; 2820 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2821 std::is_same_v<PARSED, parser::Variable>) { 2822 FixMisparsedFunctionReference(context_, x.u); 2823 } 2824 if (AssumedTypeDummy(x)) { // C710 2825 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2826 ResetExpr(x); 2827 return std::nullopt; 2828 } 2829 MaybeExpr result; 2830 if constexpr (common::HasMember<parser::StructureConstructor, 2831 std::decay_t<decltype(x.u)>> && 2832 common::HasMember<common::Indirection<parser::FunctionReference>, 2833 std::decay_t<decltype(x.u)>>) { 2834 if (const auto *funcRef{ 2835 std::get_if<common::Indirection<parser::FunctionReference>>( 2836 &x.u)}) { 2837 // Function references in Exprs might turn out to be misparsed structure 2838 // constructors; we have to try generic procedure resolution 2839 // first to be sure. 2840 std::optional<parser::StructureConstructor> ctor; 2841 result = Analyze(funcRef->value(), &ctor); 2842 if (result && ctor) { 2843 // A misparsed function reference is really a structure 2844 // constructor. Repair the parse tree in situ. 2845 const_cast<PARSED &>(x).u = std::move(*ctor); 2846 } 2847 } else { 2848 result = Analyze(x.u); 2849 } 2850 } else { 2851 result = Analyze(x.u); 2852 } 2853 if (result) { 2854 SetExpr(x, Fold(std::move(*result))); 2855 return x.typedExpr->v; 2856 } else { 2857 ResetExpr(x); 2858 if (!context_.AnyFatalError()) { 2859 std::string buf; 2860 llvm::raw_string_ostream dump{buf}; 2861 parser::DumpTree(dump, x); 2862 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2863 dump.str()); 2864 } 2865 return std::nullopt; 2866 } 2867 } 2868 2869 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2870 return ExprOrVariable(expr, expr.source); 2871 } 2872 2873 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2874 return ExprOrVariable(variable, variable.GetSource()); 2875 } 2876 2877 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 2878 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 2879 if (!useSavedTypedExprs_ || !var->typedExpr) { 2880 parser::CharBlock source{var->GetSource()}; 2881 auto restorer{GetContextualMessages().SetLocation(source)}; 2882 FixMisparsedFunctionReference(context_, var->u); 2883 if (const auto *funcRef{ 2884 std::get_if<common::Indirection<parser::FunctionReference>>( 2885 &var->u)}) { 2886 // A Selector that parsed as a Variable might turn out during analysis 2887 // to actually be a structure constructor. In that case, repair the 2888 // Variable parse tree node into an Expr 2889 std::optional<parser::StructureConstructor> ctor; 2890 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 2891 if (ctor) { 2892 auto &writable{const_cast<parser::Selector &>(selector)}; 2893 writable.u = parser::Expr{std::move(*ctor)}; 2894 auto &expr{std::get<parser::Expr>(writable.u)}; 2895 expr.source = source; 2896 SetExpr(expr, Fold(std::move(*result))); 2897 return expr.typedExpr->v; 2898 } else { 2899 SetExpr(*var, Fold(std::move(*result))); 2900 return var->typedExpr->v; 2901 } 2902 } else { 2903 ResetExpr(*var); 2904 if (context_.AnyFatalError()) { 2905 return std::nullopt; 2906 } 2907 } 2908 } 2909 } 2910 } 2911 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 2912 return Analyze(selector.u); 2913 } 2914 2915 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2916 return ExprOrVariable(x, x.source); 2917 } 2918 2919 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 2920 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2921 } 2922 2923 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 2924 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2925 } 2926 2927 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2928 TypeCategory category, 2929 const std::optional<parser::KindSelector> &selector) { 2930 int defaultKind{GetDefaultKind(category)}; 2931 if (!selector) { 2932 return Expr<SubscriptInteger>{defaultKind}; 2933 } 2934 return std::visit( 2935 common::visitors{ 2936 [&](const parser::ScalarIntConstantExpr &x) { 2937 if (MaybeExpr kind{Analyze(x)}) { 2938 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 2939 if (CheckIntrinsicKind(category, *code)) { 2940 return Expr<SubscriptInteger>{*code}; 2941 } 2942 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 2943 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2944 } 2945 } 2946 return Expr<SubscriptInteger>{defaultKind}; 2947 }, 2948 [&](const parser::KindSelector::StarSize &x) { 2949 std::intmax_t size = x.v; 2950 if (!CheckIntrinsicSize(category, size)) { 2951 size = defaultKind; 2952 } else if (category == TypeCategory::Complex) { 2953 size /= 2; 2954 } 2955 return Expr<SubscriptInteger>{size}; 2956 }, 2957 }, 2958 selector->u); 2959 } 2960 2961 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2962 return context_.GetDefaultKind(category); 2963 } 2964 2965 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2966 common::TypeCategory category) { 2967 return {category, GetDefaultKind(category)}; 2968 } 2969 2970 bool ExpressionAnalyzer::CheckIntrinsicKind( 2971 TypeCategory category, std::int64_t kind) { 2972 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2973 return true; 2974 } else { 2975 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2976 ToUpperCase(EnumToString(category)), kind); 2977 return false; 2978 } 2979 } 2980 2981 bool ExpressionAnalyzer::CheckIntrinsicSize( 2982 TypeCategory category, std::int64_t size) { 2983 if (category == TypeCategory::Complex) { 2984 // COMPLEX*16 == COMPLEX(KIND=8) 2985 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2986 return true; 2987 } 2988 } else if (IsValidKindOfIntrinsicType(category, size)) { 2989 return true; 2990 } 2991 Say("%s*%jd is not a supported type"_err_en_US, 2992 ToUpperCase(EnumToString(category)), size); 2993 return false; 2994 } 2995 2996 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 2997 return impliedDos_.insert(std::make_pair(name, kind)).second; 2998 } 2999 3000 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3001 auto iter{impliedDos_.find(name)}; 3002 if (iter != impliedDos_.end()) { 3003 impliedDos_.erase(iter); 3004 } 3005 } 3006 3007 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3008 parser::CharBlock name) const { 3009 auto iter{impliedDos_.find(name)}; 3010 if (iter != impliedDos_.cend()) { 3011 return {iter->second}; 3012 } else { 3013 return std::nullopt; 3014 } 3015 } 3016 3017 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3018 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3019 if (result) { 3020 if (auto type{result->GetType()}) { 3021 if (type->category() != category) { // C885 3022 Say(at, "Must have %s type, but is %s"_err_en_US, 3023 ToUpperCase(EnumToString(category)), 3024 ToUpperCase(type->AsFortran())); 3025 return false; 3026 } else if (defaultKind) { 3027 int kind{context_.GetDefaultKind(category)}; 3028 if (type->kind() != kind) { 3029 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3030 kind, ToUpperCase(EnumToString(category)), 3031 ToUpperCase(type->AsFortran())); 3032 return false; 3033 } 3034 } 3035 } else { 3036 Say(at, "Must have %s type, but is typeless"_err_en_US, 3037 ToUpperCase(EnumToString(category))); 3038 return false; 3039 } 3040 } 3041 return true; 3042 } 3043 3044 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3045 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3046 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3047 if (intrinsic->name == "null" && arguments.empty()) { 3048 return Expr<SomeType>{NullPointer{}}; 3049 } 3050 } 3051 if (const Symbol * symbol{proc.GetSymbol()}) { 3052 if (!ResolveForward(*symbol)) { 3053 return std::nullopt; 3054 } 3055 } 3056 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3057 if (chars->functionResult) { 3058 const auto &result{*chars->functionResult}; 3059 if (result.IsProcedurePointer()) { 3060 return Expr<SomeType>{ 3061 ProcedureRef{std::move(proc), std::move(arguments)}}; 3062 } else { 3063 // Not a procedure pointer, so type and shape are known. 3064 return TypedWrapper<FunctionRef, ProcedureRef>( 3065 DEREF(result.GetTypeAndShape()).type(), 3066 ProcedureRef{std::move(proc), std::move(arguments)}); 3067 } 3068 } else { 3069 Say("Function result characteristics are not known"_err_en_US); 3070 } 3071 } 3072 return std::nullopt; 3073 } 3074 3075 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3076 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3077 if (std::optional<SpecificCall> specificCall{ 3078 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3079 arguments, context_.foldingContext())}) { 3080 return MakeFunctionRef(intrinsic, 3081 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3082 std::move(specificCall->arguments)); 3083 } else { 3084 return std::nullopt; 3085 } 3086 } 3087 3088 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3089 source_.ExtendToCover(x.GetSource()); 3090 if (MaybeExpr expr{context_.Analyze(x)}) { 3091 if (!IsConstantExpr(*expr)) { 3092 actuals_.emplace_back(std::move(*expr)); 3093 return; 3094 } 3095 const Symbol *symbol{GetLastSymbol(*expr)}; 3096 if (!symbol) { 3097 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3098 x.GetSource()); 3099 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3100 auto *msg{context_.SayAt(x, 3101 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3102 symbol->name())}; 3103 if (subp->isFunction()) { 3104 const auto &result{subp->result().name()}; 3105 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 3106 } 3107 } else { 3108 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3109 symbol->name()); 3110 } 3111 } 3112 fatalErrors_ = true; 3113 } 3114 3115 void ArgumentAnalyzer::Analyze( 3116 const parser::ActualArgSpec &arg, bool isSubroutine) { 3117 // TODO: Actual arguments that are procedures and procedure pointers need to 3118 // be detected and represented (they're not expressions). 3119 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3120 std::optional<ActualArgument> actual; 3121 std::visit(common::visitors{ 3122 [&](const common::Indirection<parser::Expr> &x) { 3123 actual = AnalyzeExpr(x.value()); 3124 }, 3125 [&](const parser::AltReturnSpec &label) { 3126 if (!isSubroutine) { 3127 context_.Say( 3128 "alternate return specification may not appear on" 3129 " function reference"_err_en_US); 3130 } 3131 actual = ActualArgument(label.v); 3132 }, 3133 [&](const parser::ActualArg::PercentRef &) { 3134 context_.Say("TODO: %REF() argument"_err_en_US); 3135 }, 3136 [&](const parser::ActualArg::PercentVal &) { 3137 context_.Say("TODO: %VAL() argument"_err_en_US); 3138 }, 3139 }, 3140 std::get<parser::ActualArg>(arg.t).u); 3141 if (actual) { 3142 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3143 actual->set_keyword(argKW->v.source); 3144 } 3145 actuals_.emplace_back(std::move(*actual)); 3146 } else { 3147 fatalErrors_ = true; 3148 } 3149 } 3150 3151 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 3152 CHECK(actuals_.size() == 2); 3153 return semantics::IsIntrinsicRelational( 3154 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 3155 } 3156 3157 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3158 std::optional<DynamicType> type0{GetType(0)}; 3159 if (actuals_.size() == 1) { 3160 if (IsBOZLiteral(0)) { 3161 return opr == NumericOperator::Add; 3162 } else { 3163 return type0 && semantics::IsIntrinsicNumeric(*type0); 3164 } 3165 } else { 3166 std::optional<DynamicType> type1{GetType(1)}; 3167 if (IsBOZLiteral(0) && type1) { 3168 auto cat1{type1->category()}; 3169 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3170 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 3171 auto cat0{type0->category()}; 3172 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3173 } else { 3174 return type0 && type1 && 3175 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 3176 } 3177 } 3178 } 3179 3180 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3181 if (actuals_.size() == 1) { 3182 return semantics::IsIntrinsicLogical(*GetType(0)); 3183 return GetType(0)->category() == TypeCategory::Logical; 3184 } else { 3185 return semantics::IsIntrinsicLogical( 3186 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 3187 } 3188 } 3189 3190 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3191 return semantics::IsIntrinsicConcat( 3192 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 3193 } 3194 3195 bool ArgumentAnalyzer::CheckConformance() const { 3196 if (actuals_.size() == 2) { 3197 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3198 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3199 if (lhs && rhs) { 3200 auto &foldingContext{context_.GetFoldingContext()}; 3201 auto lhShape{GetShape(foldingContext, *lhs)}; 3202 auto rhShape{GetShape(foldingContext, *rhs)}; 3203 if (lhShape && rhShape) { 3204 return evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3205 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3206 "left operand", "right operand") 3207 .value_or(false /*fail when conformance is not known now*/); 3208 } 3209 } 3210 } 3211 return true; // no proven problem 3212 } 3213 3214 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3215 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 3216 if (AnyUntypedOrMissingOperand()) { 3217 context_.Say( 3218 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3219 return std::nullopt; 3220 } 3221 { 3222 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3223 std::string oprNameString{ 3224 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3225 parser::CharBlock oprName{oprNameString}; 3226 const auto &scope{context_.context().FindScope(source_)}; 3227 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3228 parser::Name name{symbol->name(), symbol}; 3229 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3230 return result; 3231 } 3232 sawDefinedOp_ = symbol; 3233 } 3234 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3235 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 3236 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3237 return result; 3238 } 3239 } 3240 } 3241 } 3242 if (sawDefinedOp_) { 3243 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 3244 } else if (actuals_.size() == 1 || AreConformable()) { 3245 context_.Say( 3246 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3247 } else { 3248 context_.Say( 3249 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3250 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3251 } 3252 return std::nullopt; 3253 } 3254 3255 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3256 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 3257 for (std::size_t i{1}; i < oprs.size(); ++i) { 3258 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3259 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 3260 return result; 3261 } 3262 } 3263 return TryDefinedOp(oprs[0], std::move(error)); 3264 } 3265 3266 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3267 ActualArguments localActuals{actuals_}; 3268 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3269 if (!proc) { 3270 proc = &symbol; 3271 localActuals.at(passIndex).value().set_isPassedObject(); 3272 } 3273 CheckConformance(); 3274 return context_.MakeFunctionRef( 3275 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3276 } 3277 3278 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3279 using semantics::Tristate; 3280 const Expr<SomeType> &lhs{GetExpr(0)}; 3281 const Expr<SomeType> &rhs{GetExpr(1)}; 3282 std::optional<DynamicType> lhsType{lhs.GetType()}; 3283 std::optional<DynamicType> rhsType{rhs.GetType()}; 3284 int lhsRank{lhs.Rank()}; 3285 int rhsRank{rhs.Rank()}; 3286 Tristate isDefined{ 3287 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3288 if (isDefined == Tristate::No) { 3289 if (lhsType && rhsType) { 3290 AddAssignmentConversion(*lhsType, *rhsType); 3291 } 3292 return std::nullopt; // user-defined assignment not allowed for these args 3293 } 3294 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3295 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3296 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3297 return std::move(*procRef); 3298 } 3299 if (isDefined == Tristate::Yes) { 3300 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3301 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3302 SayNoMatch("ASSIGNMENT(=)", true); 3303 } 3304 } 3305 return std::nullopt; 3306 } 3307 3308 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3309 TypeCategory lhs, TypeCategory rhs) { 3310 if (!context_.context().languageFeatures().IsEnabled( 3311 common::LanguageFeature::LogicalIntegerAssignment)) { 3312 return false; 3313 } 3314 std::optional<parser::MessageFixedText> msg; 3315 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3316 // allow assignment to LOGICAL from INTEGER as a legacy extension 3317 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 3318 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3319 // ... and assignment to LOGICAL from INTEGER 3320 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 3321 } else { 3322 return false; 3323 } 3324 if (context_.context().languageFeatures().ShouldWarn( 3325 common::LanguageFeature::LogicalIntegerAssignment)) { 3326 context_.Say(std::move(*msg)); 3327 } 3328 return true; 3329 } 3330 3331 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3332 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3333 std::string oprNameString{"assignment(=)"}; 3334 parser::CharBlock oprName{oprNameString}; 3335 const Symbol *proc{nullptr}; 3336 const auto &scope{context_.context().FindScope(source_)}; 3337 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3338 ExpressionAnalyzer::AdjustActuals noAdjustment; 3339 if (const Symbol * 3340 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 3341 proc = specific; 3342 } else { 3343 context_.EmitGenericResolutionError(*symbol); 3344 } 3345 } 3346 int passedObjectIndex{-1}; 3347 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3348 if (const Symbol * specific{FindBoundOp(oprName, i)}) { 3349 if (const Symbol * 3350 resolution{GetBindingResolution(GetType(i), *specific)}) { 3351 proc = resolution; 3352 } else { 3353 proc = specific; 3354 passedObjectIndex = i; 3355 } 3356 } 3357 } 3358 if (!proc) { 3359 return std::nullopt; 3360 } 3361 ActualArguments actualsCopy{actuals_}; 3362 if (passedObjectIndex >= 0) { 3363 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3364 } 3365 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3366 } 3367 3368 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3369 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3370 << '\n'; 3371 for (const auto &actual : actuals_) { 3372 if (!actual.has_value()) { 3373 os << "- error\n"; 3374 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3375 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3376 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3377 expr->AsFortran(os << "- expr: ") << '\n'; 3378 } else { 3379 DIE("bad ActualArgument"); 3380 } 3381 } 3382 } 3383 3384 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3385 const parser::Expr &expr) { 3386 source_.ExtendToCover(expr.source); 3387 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3388 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3389 if (isProcedureCall_) { 3390 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 3391 } 3392 context_.SayAt(expr.source, 3393 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3394 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3395 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3396 return ActualArgument{std::move(*argExpr)}; 3397 } 3398 context_.SayAt(expr.source, 3399 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3400 : "Subroutine name is not allowed here"_err_en_US); 3401 } 3402 return std::nullopt; 3403 } 3404 3405 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3406 const parser::Expr &expr) { 3407 // If an expression's parse tree is a whole assumed-size array: 3408 // Expr -> Designator -> DataRef -> Name 3409 // treat it as a special case for argument passing and bypass 3410 // the C1002/C1014 constraint checking in expression semantics. 3411 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3412 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3413 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3414 return context_.Analyze(expr); 3415 } 3416 } 3417 return context_.Analyze(expr); 3418 } 3419 3420 bool ArgumentAnalyzer::AreConformable() const { 3421 CHECK(!fatalErrors_ && actuals_.size() == 2); 3422 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3423 } 3424 3425 // Look for a type-bound operator in the type of arg number passIndex. 3426 const Symbol *ArgumentAnalyzer::FindBoundOp( 3427 parser::CharBlock oprName, int passIndex) { 3428 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3429 if (!type || !type->scope()) { 3430 return nullptr; 3431 } 3432 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3433 if (!symbol) { 3434 return nullptr; 3435 } 3436 sawDefinedOp_ = symbol; 3437 ExpressionAnalyzer::AdjustActuals adjustment{ 3438 [&](const Symbol &proc, ActualArguments &) { 3439 return passIndex == GetPassIndex(proc); 3440 }}; 3441 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3442 if (!result) { 3443 context_.EmitGenericResolutionError(*symbol); 3444 } 3445 return result; 3446 } 3447 3448 // If there is an implicit conversion between intrinsic types, make it explicit 3449 void ArgumentAnalyzer::AddAssignmentConversion( 3450 const DynamicType &lhsType, const DynamicType &rhsType) { 3451 if (lhsType.category() == rhsType.category() && 3452 lhsType.kind() == rhsType.kind()) { 3453 // no conversion necessary 3454 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3455 actuals_[1] = ActualArgument{*rhsExpr}; 3456 } else { 3457 actuals_[1] = std::nullopt; 3458 } 3459 } 3460 3461 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3462 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3463 } 3464 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3465 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3466 } 3467 3468 // If the argument at index i is a BOZ literal, convert its type to match the 3469 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3470 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3471 // is not currently supported. 3472 void ArgumentAnalyzer::ConvertBOZ( 3473 std::size_t i, std::optional<DynamicType> otherType) { 3474 if (IsBOZLiteral(i)) { 3475 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3476 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3477 if (otherType && otherType->category() == TypeCategory::Real) { 3478 MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>( 3479 context_.context().GetDefaultKind(TypeCategory::Real), 3480 std::move(*boz))}; 3481 actuals_[i] = std::move(*realExpr); 3482 } else { 3483 MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>( 3484 context_.context().GetDefaultKind(TypeCategory::Integer), 3485 std::move(*boz))}; 3486 actuals_[i] = std::move(*intExpr); 3487 } 3488 } 3489 } 3490 3491 // Report error resolving opr when there is a user-defined one available 3492 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3493 std::string type0{TypeAsFortran(0)}; 3494 auto rank0{actuals_[0]->Rank()}; 3495 if (actuals_.size() == 1) { 3496 if (rank0 > 0) { 3497 context_.Say("No intrinsic or user-defined %s matches " 3498 "rank %d array of %s"_err_en_US, 3499 opr, rank0, type0); 3500 } else { 3501 context_.Say("No intrinsic or user-defined %s matches " 3502 "operand type %s"_err_en_US, 3503 opr, type0); 3504 } 3505 } else { 3506 std::string type1{TypeAsFortran(1)}; 3507 auto rank1{actuals_[1]->Rank()}; 3508 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3509 context_.Say("No intrinsic or user-defined %s matches " 3510 "rank %d array of %s and rank %d array of %s"_err_en_US, 3511 opr, rank0, type0, rank1, type1); 3512 } else if (isAssignment && rank0 != rank1) { 3513 if (rank0 == 0) { 3514 context_.Say("No intrinsic or user-defined %s matches " 3515 "scalar %s and rank %d array of %s"_err_en_US, 3516 opr, type0, rank1, type1); 3517 } else { 3518 context_.Say("No intrinsic or user-defined %s matches " 3519 "rank %d array of %s and scalar %s"_err_en_US, 3520 opr, rank0, type0, type1); 3521 } 3522 } else { 3523 context_.Say("No intrinsic or user-defined %s matches " 3524 "operand types %s and %s"_err_en_US, 3525 opr, type0, type1); 3526 } 3527 } 3528 } 3529 3530 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3531 if (i >= actuals_.size() || !actuals_[i]) { 3532 return "missing argument"; 3533 } else if (std::optional<DynamicType> type{GetType(i)}) { 3534 return type->category() == TypeCategory::Derived 3535 ? "TYPE("s + type->AsFortran() + ')' 3536 : type->category() == TypeCategory::Character 3537 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3538 : ToUpperCase(type->AsFortran()); 3539 } else { 3540 return "untyped"; 3541 } 3542 } 3543 3544 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3545 for (const auto &actual : actuals_) { 3546 if (!actual || !actual->GetType()) { 3547 return true; 3548 } 3549 } 3550 return false; 3551 } 3552 3553 } // namespace Fortran::evaluate 3554 3555 namespace Fortran::semantics { 3556 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3557 SemanticsContext &context, common::TypeCategory category, 3558 const std::optional<parser::KindSelector> &selector) { 3559 evaluate::ExpressionAnalyzer analyzer{context}; 3560 auto restorer{ 3561 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3562 return analyzer.AnalyzeKindSelector(category, selector); 3563 } 3564 3565 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3566 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3567 } 3568 3569 const evaluate::Assignment *AnalyzeAssignmentStmt( 3570 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3571 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3572 } 3573 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3574 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3575 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3576 } 3577 3578 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3579 3580 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3581 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3582 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3583 auto name{bounds.name.thing.thing}; 3584 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3585 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3586 if (dynamicType->category() == TypeCategory::Integer) { 3587 kind = dynamicType->kind(); 3588 } 3589 } 3590 exprAnalyzer_.AddImpliedDo(name.source, kind); 3591 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3592 exprAnalyzer_.RemoveImpliedDo(name.source); 3593 return false; 3594 } 3595 3596 bool ExprChecker::Walk(const parser::Program &program) { 3597 parser::Walk(program, *this); 3598 return !context_.AnyFatalError(); 3599 } 3600 } // namespace Fortran::semantics 3601