1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/Fortran.h"
14 #include "flang/Common/idioms.h"
15 #include "flang/Evaluate/common.h"
16 #include "flang/Evaluate/fold.h"
17 #include "flang/Evaluate/tools.h"
18 #include "flang/Parser/characters.h"
19 #include "flang/Parser/dump-parse-tree.h"
20 #include "flang/Parser/parse-tree-visitor.h"
21 #include "flang/Parser/parse-tree.h"
22 #include "flang/Semantics/scope.h"
23 #include "flang/Semantics/semantics.h"
24 #include "flang/Semantics/symbol.h"
25 #include "flang/Semantics/tools.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <functional>
29 #include <optional>
30 #include <set>
31 
32 // Typedef for optional generic expressions (ubiquitous in this file)
33 using MaybeExpr =
34     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
35 
36 // Much of the code that implements semantic analysis of expressions is
37 // tightly coupled with their typed representations in lib/Evaluate,
38 // and appears here in namespace Fortran::evaluate for convenience.
39 namespace Fortran::evaluate {
40 
41 using common::LanguageFeature;
42 using common::NumericOperator;
43 using common::TypeCategory;
44 
45 static inline std::string ToUpperCase(const std::string &str) {
46   return parser::ToUpperCaseLetters(str);
47 }
48 
49 struct DynamicTypeWithLength : public DynamicType {
50   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
51   std::optional<Expr<SubscriptInteger>> LEN() const;
52   std::optional<Expr<SubscriptInteger>> length;
53 };
54 
55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
56   if (length) {
57     return length;
58   }
59   if (auto *lengthParam{charLength()}) {
60     if (const auto &len{lengthParam->GetExplicit()}) {
61       return ConvertToType<SubscriptInteger>(common::Clone(*len));
62     }
63   }
64   return std::nullopt; // assumed or deferred length
65 }
66 
67 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
68     const std::optional<parser::TypeSpec> &spec) {
69   if (spec) {
70     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
71       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
72       // (viz., an intrinsic type with valid known kind or a non-polymorphic
73       // & non-ABSTRACT derived type).
74       if (const semantics::IntrinsicTypeSpec *
75           intrinsic{typeSpec->AsIntrinsic()}) {
76         TypeCategory category{intrinsic->category()};
77         if (auto optKind{ToInt64(intrinsic->kind())}) {
78           int kind{static_cast<int>(*optKind)};
79           if (category == TypeCategory::Character) {
80             const semantics::CharacterTypeSpec &cts{
81                 typeSpec->characterTypeSpec()};
82             const semantics::ParamValue &len{cts.length()};
83             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
84             // type guards, but not in array constructors.
85             return DynamicTypeWithLength{DynamicType{kind, len}};
86           } else {
87             return DynamicTypeWithLength{DynamicType{category, kind}};
88           }
89         }
90       } else if (const semantics::DerivedTypeSpec *
91           derived{typeSpec->AsDerived()}) {
92         return DynamicTypeWithLength{DynamicType{*derived}};
93       }
94     }
95   }
96   return std::nullopt;
97 }
98 
99 class ArgumentAnalyzer {
100 public:
101   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
102       : context_{context}, source_{context.GetContextualMessages().at()},
103         isProcedureCall_{false} {}
104   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
105       bool isProcedureCall = false)
106       : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
107   bool fatalErrors() const { return fatalErrors_; }
108   ActualArguments &&GetActuals() {
109     CHECK(!fatalErrors_);
110     return std::move(actuals_);
111   }
112   const Expr<SomeType> &GetExpr(std::size_t i) const {
113     return DEREF(actuals_.at(i).value().UnwrapExpr());
114   }
115   Expr<SomeType> &&MoveExpr(std::size_t i) {
116     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
117   }
118   void Analyze(const common::Indirection<parser::Expr> &x) {
119     Analyze(x.value());
120   }
121   void Analyze(const parser::Expr &x) {
122     actuals_.emplace_back(AnalyzeExpr(x));
123     fatalErrors_ |= !actuals_.back();
124   }
125   void Analyze(const parser::Variable &);
126   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
127   void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType);
128 
129   bool IsIntrinsicRelational(RelationalOperator) const;
130   bool IsIntrinsicLogical() const;
131   bool IsIntrinsicNumeric(NumericOperator) const;
132   bool IsIntrinsicConcat() const;
133 
134   bool CheckConformance() const;
135 
136   // Find and return a user-defined operator or report an error.
137   // The provided message is used if there is no such operator.
138   MaybeExpr TryDefinedOp(
139       const char *, parser::MessageFixedText &&, bool isUserOp = false);
140   template <typename E>
141   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) {
142     return TryDefinedOp(
143         context_.context().languageFeatures().GetNames(opr), std::move(msg));
144   }
145   // Find and return a user-defined assignment
146   std::optional<ProcedureRef> TryDefinedAssignment();
147   std::optional<ProcedureRef> GetDefinedAssignmentProc();
148   std::optional<DynamicType> GetType(std::size_t) const;
149   void Dump(llvm::raw_ostream &);
150 
151 private:
152   MaybeExpr TryDefinedOp(
153       std::vector<const char *>, parser::MessageFixedText &&);
154   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
155   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
156   MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &);
157   bool AreConformable() const;
158   const Symbol *FindBoundOp(parser::CharBlock, int passIndex);
159   void AddAssignmentConversion(
160       const DynamicType &lhsType, const DynamicType &rhsType);
161   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
162   int GetRank(std::size_t) const;
163   bool IsBOZLiteral(std::size_t i) const {
164     return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u);
165   }
166   void SayNoMatch(const std::string &, bool isAssignment = false);
167   std::string TypeAsFortran(std::size_t);
168   bool AnyUntypedOrMissingOperand();
169 
170   ExpressionAnalyzer &context_;
171   ActualArguments actuals_;
172   parser::CharBlock source_;
173   bool fatalErrors_{false};
174   const bool isProcedureCall_; // false for user-defined op or assignment
175   const Symbol *sawDefinedOp_{nullptr};
176 };
177 
178 // Wraps a data reference in a typed Designator<>, and a procedure
179 // or procedure pointer reference in a ProcedureDesignator.
180 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
181   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
182   if (semantics::IsProcedure(symbol)) {
183     if (auto *component{std::get_if<Component>(&ref.u)}) {
184       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
185     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
186       DIE("unexpected alternative in DataRef");
187     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
188       return Expr<SomeType>{ProcedureDesignator{symbol}};
189     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
190                    symbol.name().ToString())}) {
191       SpecificIntrinsic intrinsic{
192           symbol.name().ToString(), std::move(*interface)};
193       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
194       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
195     } else {
196       Say("'%s' is not a specific intrinsic procedure"_err_en_US,
197           symbol.name());
198       return std::nullopt;
199     }
200   } else if (auto dyType{DynamicType::From(symbol)}) {
201     return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref));
202   }
203   return std::nullopt;
204 }
205 
206 // Some subscript semantic checks must be deferred until all of the
207 // subscripts are in hand.
208 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
209   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
210   int symbolRank{symbol.Rank()};
211   int subscripts{static_cast<int>(ref.size())};
212   if (subscripts == 0) {
213     return std::nullopt; // error recovery
214   } else if (subscripts != symbolRank) {
215     if (symbolRank != 0) {
216       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
217           symbolRank, symbol.name(), subscripts);
218     }
219     return std::nullopt;
220   } else if (Component * component{ref.base().UnwrapComponent()}) {
221     int baseRank{component->base().Rank()};
222     if (baseRank > 0) {
223       int subscriptRank{0};
224       for (const auto &expr : ref.subscript()) {
225         subscriptRank += expr.Rank();
226       }
227       if (subscriptRank > 0) {
228         Say("Subscripts of component '%s' of rank-%d derived type "
229             "array have rank %d but must all be scalar"_err_en_US,
230             symbol.name(), baseRank, subscriptRank);
231         return std::nullopt;
232       }
233     }
234   } else if (const auto *object{
235                  symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
236     // C928 & C1002
237     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
238       if (!last->upper() && object->IsAssumedSize()) {
239         Say("Assumed-size array '%s' must have explicit final "
240             "subscript upper bound value"_err_en_US,
241             symbol.name());
242         return std::nullopt;
243       }
244     }
245   } else {
246     // Shouldn't get here from Analyze(ArrayElement) without a valid base,
247     // which, if not an object, must be a construct entity from
248     // SELECT TYPE/RANK or ASSOCIATE.
249     CHECK(symbol.has<semantics::AssocEntityDetails>());
250   }
251   return Designate(DataRef{std::move(ref)});
252 }
253 
254 // Applies subscripts to a data reference.
255 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
256     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
257   if (subscripts.empty()) {
258     return std::nullopt; // error recovery
259   }
260   return std::visit(
261       common::visitors{
262           [&](SymbolRef &&symbol) {
263             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
264           },
265           [&](Component &&c) {
266             return CompleteSubscripts(
267                 ArrayRef{std::move(c), std::move(subscripts)});
268           },
269           [&](auto &&) -> MaybeExpr {
270             DIE("bad base for ArrayRef");
271             return std::nullopt;
272           },
273       },
274       std::move(dataRef.u));
275 }
276 
277 // Top-level checks for data references.
278 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
279   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
280     const Symbol &symbol{component->GetLastSymbol()};
281     int componentRank{symbol.Rank()};
282     if (componentRank > 0) {
283       int baseRank{component->base().Rank()};
284       if (baseRank > 0) {
285         Say("Reference to whole rank-%d component '%%%s' of "
286             "rank-%d array of derived type is not allowed"_err_en_US,
287             componentRank, symbol.name(), baseRank);
288       }
289     }
290   }
291   return Designate(std::move(dataRef));
292 }
293 
294 // Parse tree correction after a substring S(j:k) was misparsed as an
295 // array section.  N.B. Fortran substrings have to have a range, not a
296 // single index.
297 static void FixMisparsedSubstring(const parser::Designator &d) {
298   auto &mutate{const_cast<parser::Designator &>(d)};
299   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
300     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
301             &dataRef->u)}) {
302       parser::ArrayElement &arrElement{ae->value()};
303       if (!arrElement.subscripts.empty()) {
304         auto iter{arrElement.subscripts.begin()};
305         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
306           if (!std::get<2>(triplet->t) /* no stride */ &&
307               ++iter == arrElement.subscripts.end() /* one subscript */) {
308             if (Symbol *
309                 symbol{std::visit(
310                     common::visitors{
311                         [](parser::Name &n) { return n.symbol; },
312                         [](common::Indirection<parser::StructureComponent>
313                                 &sc) { return sc.value().component.symbol; },
314                         [](auto &) -> Symbol * { return nullptr; },
315                     },
316                     arrElement.base.u)}) {
317               const Symbol &ultimate{symbol->GetUltimate()};
318               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
319                 if (!ultimate.IsObjectArray() &&
320                     type->category() == semantics::DeclTypeSpec::Character) {
321                   // The ambiguous S(j:k) was parsed as an array section
322                   // reference, but it's now clear that it's a substring.
323                   // Fix the parse tree in situ.
324                   mutate.u = arrElement.ConvertToSubstring();
325                 }
326               }
327             }
328           }
329         }
330       }
331     }
332   }
333 }
334 
335 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
336   auto restorer{GetContextualMessages().SetLocation(d.source)};
337   FixMisparsedSubstring(d);
338   // These checks have to be deferred to these "top level" data-refs where
339   // we can be sure that there are no following subscripts (yet).
340   // Substrings have already been run through TopLevelChecks() and
341   // won't be returned by ExtractDataRef().
342   if (MaybeExpr result{Analyze(d.u)}) {
343     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
344       return TopLevelChecks(std::move(*dataRef));
345     }
346     return result;
347   }
348   return std::nullopt;
349 }
350 
351 // A utility subroutine to repackage optional expressions of various levels
352 // of type specificity as fully general MaybeExpr values.
353 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
354   return AsGenericExpr(std::move(x));
355 }
356 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
357   if (x) {
358     return AsMaybeExpr(std::move(*x));
359   }
360   return std::nullopt;
361 }
362 
363 // Type kind parameter values for literal constants.
364 int ExpressionAnalyzer::AnalyzeKindParam(
365     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
366   if (!kindParam) {
367     return defaultKind;
368   }
369   return std::visit(
370       common::visitors{
371           [](std::uint64_t k) { return static_cast<int>(k); },
372           [&](const parser::Scalar<
373               parser::Integer<parser::Constant<parser::Name>>> &n) {
374             if (MaybeExpr ie{Analyze(n)}) {
375               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
376                 int iv = *i64;
377                 if (iv == *i64) {
378                   return iv;
379                 }
380               }
381             }
382             return defaultKind;
383           },
384       },
385       kindParam->u);
386 }
387 
388 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
389 struct IntTypeVisitor {
390   using Result = MaybeExpr;
391   using Types = IntegerTypes;
392   template <typename T> Result Test() {
393     if (T::kind >= kind) {
394       const char *p{digits.begin()};
395       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
396       if (!value.overflow) {
397         if (T::kind > kind) {
398           if (!isDefaultKind ||
399               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
400             return std::nullopt;
401           } else if (analyzer.context().ShouldWarn(
402                          LanguageFeature::BigIntLiterals)) {
403             analyzer.Say(digits,
404                 "Integer literal is too large for default INTEGER(KIND=%d); "
405                 "assuming INTEGER(KIND=%d)"_en_US,
406                 kind, T::kind);
407           }
408         }
409         return Expr<SomeType>{
410             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
411       }
412     }
413     return std::nullopt;
414   }
415   ExpressionAnalyzer &analyzer;
416   parser::CharBlock digits;
417   int kind;
418   bool isDefaultKind;
419 };
420 
421 template <typename PARSED>
422 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
423   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
424   bool isDefaultKind{!kindParam};
425   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
426   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
427     auto digits{std::get<parser::CharBlock>(x.t)};
428     if (MaybeExpr result{common::SearchTypes(
429             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
430       return result;
431     } else if (isDefaultKind) {
432       Say(digits,
433           "Integer literal is too large for any allowable "
434           "kind of INTEGER"_err_en_US);
435     } else {
436       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
437           kind);
438     }
439   }
440   return std::nullopt;
441 }
442 
443 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
444   auto restorer{
445       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
446   return IntLiteralConstant(x);
447 }
448 
449 MaybeExpr ExpressionAnalyzer::Analyze(
450     const parser::SignedIntLiteralConstant &x) {
451   auto restorer{GetContextualMessages().SetLocation(x.source)};
452   return IntLiteralConstant(x);
453 }
454 
455 template <typename TYPE>
456 Constant<TYPE> ReadRealLiteral(
457     parser::CharBlock source, FoldingContext &context) {
458   const char *p{source.begin()};
459   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
460   CHECK(p == source.end());
461   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
462   auto value{valWithFlags.value};
463   if (context.flushSubnormalsToZero()) {
464     value = value.FlushSubnormalToZero();
465   }
466   return {value};
467 }
468 
469 struct RealTypeVisitor {
470   using Result = std::optional<Expr<SomeReal>>;
471   using Types = RealTypes;
472 
473   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
474       : kind{k}, literal{lit}, context{ctx} {}
475 
476   template <typename T> Result Test() {
477     if (kind == T::kind) {
478       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
479     }
480     return std::nullopt;
481   }
482 
483   int kind;
484   parser::CharBlock literal;
485   FoldingContext &context;
486 };
487 
488 // Reads a real literal constant and encodes it with the right kind.
489 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
490   // Use a local message context around the real literal for better
491   // provenance on any messages.
492   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
493   // If a kind parameter appears, it defines the kind of the literal and the
494   // letter used in an exponent part must be 'E' (e.g., the 'E' in
495   // "6.02214E+23").  In the absence of an explicit kind parameter, any
496   // exponent letter determines the kind.  Otherwise, defaults apply.
497   auto &defaults{context_.defaultKinds()};
498   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
499   const char *end{x.real.source.end()};
500   char expoLetter{' '};
501   std::optional<int> letterKind;
502   for (const char *p{x.real.source.begin()}; p < end; ++p) {
503     if (parser::IsLetter(*p)) {
504       expoLetter = *p;
505       switch (expoLetter) {
506       case 'e':
507         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
508         break;
509       case 'd':
510         letterKind = defaults.doublePrecisionKind();
511         break;
512       case 'q':
513         letterKind = defaults.quadPrecisionKind();
514         break;
515       default:
516         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
517       }
518       break;
519     }
520   }
521   if (letterKind) {
522     defaultKind = *letterKind;
523   }
524   // C716 requires 'E' as an exponent, but this is more useful
525   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
526   if (letterKind && kind != *letterKind && expoLetter != 'e') {
527     Say("Explicit kind parameter on real constant disagrees with "
528         "exponent letter '%c'"_en_US,
529         expoLetter);
530   }
531   auto result{common::SearchTypes(
532       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
533   if (!result) { // C717
534     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
535   }
536   return AsMaybeExpr(std::move(result));
537 }
538 
539 MaybeExpr ExpressionAnalyzer::Analyze(
540     const parser::SignedRealLiteralConstant &x) {
541   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
542     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
543     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
544       if (sign == parser::Sign::Negative) {
545         return AsGenericExpr(-std::move(realExpr));
546       }
547     }
548     return result;
549   }
550   return std::nullopt;
551 }
552 
553 MaybeExpr ExpressionAnalyzer::Analyze(
554     const parser::SignedComplexLiteralConstant &x) {
555   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
556   if (!result) {
557     return std::nullopt;
558   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
559     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
560   } else {
561     return result;
562   }
563 }
564 
565 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
566   return Analyze(x.u);
567 }
568 
569 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
570   return AsMaybeExpr(
571       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
572           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
573 }
574 
575 // CHARACTER literal processing.
576 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
577   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
578     return std::nullopt;
579   }
580   switch (kind) {
581   case 1:
582     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
583         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
584             string, true)});
585   case 2:
586     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
587         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
588             string, true)});
589   case 4:
590     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
591         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
592             string, true)});
593   default:
594     CRASH_NO_CASE;
595   }
596 }
597 
598 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
599   int kind{
600       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
601   auto value{std::get<std::string>(x.t)};
602   return AnalyzeString(std::move(value), kind);
603 }
604 
605 MaybeExpr ExpressionAnalyzer::Analyze(
606     const parser::HollerithLiteralConstant &x) {
607   int kind{GetDefaultKind(TypeCategory::Character)};
608   auto value{x.v};
609   return AnalyzeString(std::move(value), kind);
610 }
611 
612 // .TRUE. and .FALSE. of various kinds
613 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
614   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
615       GetDefaultKind(TypeCategory::Logical))};
616   bool value{std::get<bool>(x.t)};
617   auto result{common::SearchTypes(
618       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
619           kind, std::move(value)})};
620   if (!result) {
621     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
622   }
623   return result;
624 }
625 
626 // BOZ typeless literals
627 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
628   const char *p{x.v.c_str()};
629   std::uint64_t base{16};
630   switch (*p++) {
631   case 'b':
632     base = 2;
633     break;
634   case 'o':
635     base = 8;
636     break;
637   case 'z':
638     break;
639   case 'x':
640     break;
641   default:
642     CRASH_NO_CASE;
643   }
644   CHECK(*p == '"');
645   ++p;
646   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
647   if (*p != '"') {
648     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
649         x.v); // C7107, C7108
650     return std::nullopt;
651   }
652   if (value.overflow) {
653     Say("BOZ literal '%s' too large"_err_en_US, x.v);
654     return std::nullopt;
655   }
656   return AsGenericExpr(std::move(value.value));
657 }
658 
659 // Names and named constants
660 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
661   auto restorer{GetContextualMessages().SetLocation(n.source)};
662   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
663     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
664         *kind, AsExpr(ImpliedDoIndex{n.source})));
665   } else if (context_.HasError(n)) {
666     return std::nullopt;
667   } else if (!n.symbol) {
668     SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source);
669     return std::nullopt;
670   } else {
671     const Symbol &ultimate{n.symbol->GetUltimate()};
672     if (ultimate.has<semantics::TypeParamDetails>()) {
673       // A bare reference to a derived type parameter (within a parameterized
674       // derived type definition)
675       return Fold(ConvertToType(
676           ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate})));
677     } else {
678       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
679         if (const semantics::Scope *
680             pure{semantics::FindPureProcedureContaining(
681                 context_.FindScope(n.source))}) {
682           SayAt(n,
683               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
684               n.source, DEREF(pure->symbol()).name());
685           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
686         }
687       }
688       if (!isWholeAssumedSizeArrayOk_ &&
689           semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231
690         AttachDeclaration(
691             SayAt(n,
692                 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US,
693                 n.source),
694             *n.symbol);
695       }
696       return Designate(DataRef{*n.symbol});
697     }
698   }
699 }
700 
701 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
702   auto restorer{GetContextualMessages().SetLocation(n.v.source)};
703   if (MaybeExpr value{Analyze(n.v)}) {
704     Expr<SomeType> folded{Fold(std::move(*value))};
705     if (IsConstantExpr(folded)) {
706       return folded;
707     }
708     Say(n.v.source, "must be a constant"_err_en_US); // C718
709   }
710   return std::nullopt;
711 }
712 
713 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) {
714   if (MaybeExpr value{Analyze(n.v)}) {
715     // Subtle: when the NullInit is a DataStmtConstant, it might
716     // be a misparse of a structure constructor without parameters
717     // or components (e.g., T()).  Checking the result to ensure
718     // that a "=>" data entity initializer actually resolved to
719     // a null pointer has to be done by the caller.
720     return Fold(std::move(*value));
721   }
722   return std::nullopt;
723 }
724 
725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
726   return Analyze(x.value());
727 }
728 
729 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
730   if (const auto &repeat{
731           std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
732     x.repetitions = -1;
733     if (MaybeExpr expr{Analyze(repeat->u)}) {
734       Expr<SomeType> folded{Fold(std::move(*expr))};
735       if (auto value{ToInt64(folded)}) {
736         if (*value >= 0) { // C882
737           x.repetitions = *value;
738         } else {
739           Say(FindSourceLocation(repeat),
740               "Repeat count (%jd) for data value must not be negative"_err_en_US,
741               *value);
742         }
743       }
744     }
745   }
746   return Analyze(std::get<parser::DataStmtConstant>(x.t));
747 }
748 
749 // Substring references
750 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
751     const std::optional<parser::ScalarIntExpr> &bound) {
752   if (bound) {
753     if (MaybeExpr expr{Analyze(*bound)}) {
754       if (expr->Rank() > 1) {
755         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
756       }
757       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
758         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
759           return {std::move(*ssIntExpr)};
760         }
761         return {Expr<SubscriptInteger>{
762             Convert<SubscriptInteger, TypeCategory::Integer>{
763                 std::move(*intExpr)}}};
764       } else {
765         Say("substring bound expression is not INTEGER"_err_en_US);
766       }
767     }
768   }
769   return std::nullopt;
770 }
771 
772 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
773   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
774     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
775       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
776         if (std::optional<DataRef> checked{
777                 ExtractDataRef(std::move(*newBaseExpr))}) {
778           const parser::SubstringRange &range{
779               std::get<parser::SubstringRange>(ss.t)};
780           std::optional<Expr<SubscriptInteger>> first{
781               GetSubstringBound(std::get<0>(range.t))};
782           std::optional<Expr<SubscriptInteger>> last{
783               GetSubstringBound(std::get<1>(range.t))};
784           const Symbol &symbol{checked->GetLastSymbol()};
785           if (std::optional<DynamicType> dynamicType{
786                   DynamicType::From(symbol)}) {
787             if (dynamicType->category() == TypeCategory::Character) {
788               return WrapperHelper<TypeCategory::Character, Designator,
789                   Substring>(dynamicType->kind(),
790                   Substring{std::move(checked.value()), std::move(first),
791                       std::move(last)});
792             }
793           }
794           Say("substring may apply only to CHARACTER"_err_en_US);
795         }
796       }
797     }
798   }
799   return std::nullopt;
800 }
801 
802 // CHARACTER literal substrings
803 MaybeExpr ExpressionAnalyzer::Analyze(
804     const parser::CharLiteralConstantSubstring &x) {
805   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
806   std::optional<Expr<SubscriptInteger>> lower{
807       GetSubstringBound(std::get<0>(range.t))};
808   std::optional<Expr<SubscriptInteger>> upper{
809       GetSubstringBound(std::get<1>(range.t))};
810   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
811     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
812       Expr<SubscriptInteger> length{
813           std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
814               charExpr->u)};
815       if (!lower) {
816         lower = Expr<SubscriptInteger>{1};
817       }
818       if (!upper) {
819         upper = Expr<SubscriptInteger>{
820             static_cast<std::int64_t>(ToInt64(length).value())};
821       }
822       return std::visit(
823           [&](auto &&ckExpr) -> MaybeExpr {
824             using Result = ResultType<decltype(ckExpr)>;
825             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
826             CHECK(DEREF(cp).size() == 1);
827             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
828             staticData->set_alignment(Result::kind)
829                 .set_itemBytes(Result::kind)
830                 .Push(cp->GetScalarValue().value());
831             Substring substring{std::move(staticData), std::move(lower.value()),
832                 std::move(upper.value())};
833             return AsGenericExpr(
834                 Expr<Result>{Designator<Result>{std::move(substring)}});
835           },
836           std::move(charExpr->u));
837     }
838   }
839   return std::nullopt;
840 }
841 
842 // Subscripted array references
843 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
844     MaybeExpr &&expr) {
845   if (expr) {
846     if (expr->Rank() > 1) {
847       Say("Subscript expression has rank %d greater than 1"_err_en_US,
848           expr->Rank());
849     }
850     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
851       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
852         return std::move(*ssIntExpr);
853       } else {
854         return Expr<SubscriptInteger>{
855             Convert<SubscriptInteger, TypeCategory::Integer>{
856                 std::move(*intExpr)}};
857       }
858     } else {
859       Say("Subscript expression is not INTEGER"_err_en_US);
860     }
861   }
862   return std::nullopt;
863 }
864 
865 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
866     const std::optional<parser::Subscript> &s) {
867   if (s) {
868     return AsSubscript(Analyze(*s));
869   } else {
870     return std::nullopt;
871   }
872 }
873 
874 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
875     const parser::SectionSubscript &ss) {
876   return std::visit(
877       common::visitors{
878           [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
879             const auto &lower{std::get<0>(t.t)};
880             const auto &upper{std::get<1>(t.t)};
881             const auto &stride{std::get<2>(t.t)};
882             auto result{Triplet{
883                 TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
884             if ((lower && !result.lower()) || (upper && !result.upper())) {
885               return std::nullopt;
886             } else {
887               return std::make_optional<Subscript>(result);
888             }
889           },
890           [&](const auto &s) -> std::optional<Subscript> {
891             if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
892               return Subscript{std::move(*subscriptExpr)};
893             } else {
894               return std::nullopt;
895             }
896           },
897       },
898       ss.u);
899 }
900 
901 // Empty result means an error occurred
902 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
903     const std::list<parser::SectionSubscript> &sss) {
904   bool error{false};
905   std::vector<Subscript> subscripts;
906   for (const auto &s : sss) {
907     if (auto subscript{AnalyzeSectionSubscript(s)}) {
908       subscripts.emplace_back(std::move(*subscript));
909     } else {
910       error = true;
911     }
912   }
913   return !error ? subscripts : std::vector<Subscript>{};
914 }
915 
916 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
917   MaybeExpr baseExpr;
918   {
919     auto restorer{AllowWholeAssumedSizeArray()};
920     baseExpr = Analyze(ae.base);
921   }
922   if (baseExpr) {
923     if (ae.subscripts.empty()) {
924       // will be converted to function call later or error reported
925     } else if (baseExpr->Rank() == 0) {
926       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
927         if (!context_.HasError(symbol)) {
928           Say("'%s' is not an array"_err_en_US, symbol->name());
929           context_.SetError(*symbol);
930         }
931       }
932     } else if (std::optional<DataRef> dataRef{
933                    ExtractDataRef(std::move(*baseExpr))}) {
934       return ApplySubscripts(
935           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
936     } else {
937       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
938     }
939   }
940   // error was reported: analyze subscripts without reporting more errors
941   auto restorer{GetContextualMessages().DiscardMessages()};
942   AnalyzeSectionSubscripts(ae.subscripts);
943   return std::nullopt;
944 }
945 
946 // Type parameter inquiries apply to data references, but don't depend
947 // on any trailing (co)subscripts.
948 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
949   return std::visit(
950       common::visitors{
951           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
952           [](Component &&component) {
953             return NamedEntity{std::move(component)};
954           },
955           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
956           [](CoarrayRef &&coarrayRef) {
957             return NamedEntity{coarrayRef.GetLastSymbol()};
958           },
959       },
960       std::move(designator.u));
961 }
962 
963 // Components of parent derived types are explicitly represented as such.
964 static std::optional<Component> CreateComponent(
965     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
966   if (&component.owner() == &scope) {
967     return Component{std::move(base), component};
968   }
969   if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) {
970     if (const Symbol * parentComponent{parentScope->GetSymbol()}) {
971       return CreateComponent(
972           DataRef{Component{std::move(base), *parentComponent}}, component,
973           *parentScope);
974     }
975   }
976   return std::nullopt;
977 }
978 
979 // Derived type component references and type parameter inquiries
980 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
981   MaybeExpr base{Analyze(sc.base)};
982   Symbol *sym{sc.component.symbol};
983   if (!base || !sym || context_.HasError(sym)) {
984     return std::nullopt;
985   }
986   const auto &name{sc.component.source};
987   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
988     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
989     if (sym->detailsIf<semantics::TypeParamDetails>()) {
990       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
991         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
992           if (dyType->category() == TypeCategory::Integer) {
993             auto restorer{GetContextualMessages().SetLocation(name)};
994             return Fold(ConvertToType(*dyType,
995                 AsGenericExpr(TypeParamInquiry{
996                     IgnoreAnySubscripts(std::move(*designator)), *sym})));
997           }
998         }
999         Say(name, "Type parameter is not INTEGER"_err_en_US);
1000       } else {
1001         Say(name,
1002             "A type parameter inquiry must be applied to "
1003             "a designator"_err_en_US);
1004       }
1005     } else if (!dtSpec || !dtSpec->scope()) {
1006       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
1007       return std::nullopt;
1008     } else if (std::optional<DataRef> dataRef{
1009                    ExtractDataRef(std::move(*dtExpr))}) {
1010       if (auto component{
1011               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
1012         return Designate(DataRef{std::move(*component)});
1013       } else {
1014         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1015             dtSpec->typeSymbol().name());
1016       }
1017     } else {
1018       Say(name,
1019           "Base of component reference must be a data reference"_err_en_US);
1020     }
1021   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1022     // special part-ref: %re, %im, %kind, %len
1023     // Type errors are detected and reported in semantics.
1024     using MiscKind = semantics::MiscDetails::Kind;
1025     MiscKind kind{details->kind()};
1026     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1027       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1028         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
1029           Expr<SomeReal> realExpr{std::visit(
1030               [&](const auto &z) {
1031                 using PartType = typename ResultType<decltype(z)>::Part;
1032                 auto part{kind == MiscKind::ComplexPartRe
1033                         ? ComplexPart::Part::RE
1034                         : ComplexPart::Part::IM};
1035                 return AsCategoryExpr(Designator<PartType>{
1036                     ComplexPart{std::move(*dataRef), part}});
1037               },
1038               zExpr->u)};
1039           return AsGenericExpr(std::move(realExpr));
1040         }
1041       }
1042     } else if (kind == MiscKind::KindParamInquiry ||
1043         kind == MiscKind::LenParamInquiry) {
1044       // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
1045       return MakeFunctionRef(
1046           name, ActualArguments{ActualArgument{std::move(*base)}});
1047     } else {
1048       DIE("unexpected MiscDetails::Kind");
1049     }
1050   } else {
1051     Say(name, "derived type required before component reference"_err_en_US);
1052   }
1053   return std::nullopt;
1054 }
1055 
1056 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1057   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1058     DataRef *dataRef{&*maybeDataRef};
1059     std::vector<Subscript> subscripts;
1060     SymbolVector reversed;
1061     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1062       subscripts = std::move(aRef->subscript());
1063       reversed.push_back(aRef->GetLastSymbol());
1064       if (Component * component{aRef->base().UnwrapComponent()}) {
1065         dataRef = &component->base();
1066       } else {
1067         dataRef = nullptr;
1068       }
1069     }
1070     if (dataRef) {
1071       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1072         reversed.push_back(component->GetLastSymbol());
1073         dataRef = &component->base();
1074       }
1075       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1076         reversed.push_back(*baseSym);
1077       } else {
1078         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1079       }
1080     }
1081     std::vector<Expr<SubscriptInteger>> cosubscripts;
1082     bool cosubsOk{true};
1083     for (const auto &cosub :
1084         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1085       MaybeExpr coex{Analyze(cosub)};
1086       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1087         cosubscripts.push_back(
1088             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1089       } else {
1090         cosubsOk = false;
1091       }
1092     }
1093     if (cosubsOk && !reversed.empty()) {
1094       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1095       const Symbol &symbol{reversed.front()};
1096       if (numCosubscripts != symbol.Corank()) {
1097         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1098             symbol.name(), symbol.Corank(), numCosubscripts);
1099       }
1100     }
1101     for (const auto &imageSelSpec :
1102         std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1103       std::visit(
1104           common::visitors{
1105               [&](const auto &x) { Analyze(x.v); },
1106           },
1107           imageSelSpec.u);
1108     }
1109     // Reverse the chain of symbols so that the base is first and coarray
1110     // ultimate component is last.
1111     if (cosubsOk) {
1112       return Designate(
1113           DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1114               std::move(subscripts), std::move(cosubscripts)}});
1115     }
1116   }
1117   return std::nullopt;
1118 }
1119 
1120 int ExpressionAnalyzer::IntegerTypeSpecKind(
1121     const parser::IntegerTypeSpec &spec) {
1122   Expr<SubscriptInteger> value{
1123       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1124   if (auto kind{ToInt64(value)}) {
1125     return static_cast<int>(*kind);
1126   }
1127   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1128   return GetDefaultKind(TypeCategory::Integer);
1129 }
1130 
1131 // Array constructors
1132 
1133 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1134 // all happen to have the same actual type T into one ArrayConstructor<T>.
1135 template <typename T>
1136 ArrayConstructorValues<T> MakeSpecific(
1137     ArrayConstructorValues<SomeType> &&from) {
1138   ArrayConstructorValues<T> to;
1139   for (ArrayConstructorValue<SomeType> &x : from) {
1140     std::visit(
1141         common::visitors{
1142             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1143               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1144               to.Push(std::move(DEREF(typed)));
1145             },
1146             [&](ImpliedDo<SomeType> &&impliedDo) {
1147               to.Push(ImpliedDo<T>{impliedDo.name(),
1148                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1149                   std::move(impliedDo.stride()),
1150                   MakeSpecific<T>(std::move(impliedDo.values()))});
1151             },
1152         },
1153         std::move(x.u));
1154   }
1155   return to;
1156 }
1157 
1158 class ArrayConstructorContext {
1159 public:
1160   ArrayConstructorContext(
1161       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1162       : exprAnalyzer_{c}, type_{std::move(t)} {}
1163 
1164   void Add(const parser::AcValue &);
1165   MaybeExpr ToExpr();
1166 
1167   // These interfaces allow *this to be used as a type visitor argument to
1168   // common::SearchTypes() to convert the array constructor to a typed
1169   // expression in ToExpr().
1170   using Result = MaybeExpr;
1171   using Types = AllTypes;
1172   template <typename T> Result Test() {
1173     if (type_ && type_->category() == T::category) {
1174       if constexpr (T::category == TypeCategory::Derived) {
1175         if (type_->IsUnlimitedPolymorphic()) {
1176           return std::nullopt;
1177         } else {
1178           return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1179               MakeSpecific<T>(std::move(values_))});
1180         }
1181       } else if (type_->kind() == T::kind) {
1182         if constexpr (T::category == TypeCategory::Character) {
1183           if (auto len{type_->LEN()}) {
1184             return AsMaybeExpr(ArrayConstructor<T>{
1185                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1186           }
1187         } else {
1188           return AsMaybeExpr(
1189               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1190         }
1191       }
1192     }
1193     return std::nullopt;
1194   }
1195 
1196 private:
1197   using ImpliedDoIntType = ResultType<ImpliedDoIndex>;
1198 
1199   void Push(MaybeExpr &&);
1200   void Add(const parser::AcValue::Triplet &);
1201   void Add(const parser::Expr &);
1202   void Add(const parser::AcImpliedDo &);
1203   void UnrollConstantImpliedDo(const parser::AcImpliedDo &,
1204       parser::CharBlock name, std::int64_t lower, std::int64_t upper,
1205       std::int64_t stride);
1206 
1207   template <int KIND, typename A>
1208   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1209       const A &x) {
1210     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1211       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1212       return Fold(exprAnalyzer_.GetFoldingContext(),
1213           ConvertToType<Type<TypeCategory::Integer, KIND>>(
1214               std::move(DEREF(intExpr))));
1215     }
1216     return std::nullopt;
1217   }
1218 
1219   // Nested array constructors all reference the same ExpressionAnalyzer,
1220   // which represents the nest of active implied DO loop indices.
1221   ExpressionAnalyzer &exprAnalyzer_;
1222   std::optional<DynamicTypeWithLength> type_;
1223   bool explicitType_{type_.has_value()};
1224   std::optional<std::int64_t> constantLength_;
1225   ArrayConstructorValues<SomeType> values_;
1226   std::uint64_t messageDisplayedSet_{0};
1227 };
1228 
1229 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1230   if (!x) {
1231     return;
1232   }
1233   if (auto dyType{x->GetType()}) {
1234     DynamicTypeWithLength xType{*dyType};
1235     if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1236       CHECK(xType.category() == TypeCategory::Character);
1237       xType.length =
1238           std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1239     }
1240     if (!type_) {
1241       // If there is no explicit type-spec in an array constructor, the type
1242       // of the array is the declared type of all of the elements, which must
1243       // be well-defined and all match.
1244       // TODO: Possible language extension: use the most general type of
1245       // the values as the type of a numeric constructed array, convert all
1246       // of the other values to that type.  Alternative: let the first value
1247       // determine the type, and convert the others to that type.
1248       CHECK(!explicitType_);
1249       type_ = std::move(xType);
1250       constantLength_ = ToInt64(type_->length);
1251       values_.Push(std::move(*x));
1252     } else if (!explicitType_) {
1253       if (static_cast<const DynamicType &>(*type_) ==
1254           static_cast<const DynamicType &>(xType)) {
1255         values_.Push(std::move(*x));
1256         if (auto thisLen{ToInt64(xType.LEN())}) {
1257           if (constantLength_) {
1258             if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1259                 *thisLen != *constantLength_) {
1260               if (!(messageDisplayedSet_ & 1)) {
1261                 exprAnalyzer_.Say(
1262                     "Character literal in array constructor without explicit "
1263                     "type has different length than earlier elements"_en_US);
1264                 messageDisplayedSet_ |= 1;
1265               }
1266             }
1267             if (*thisLen > *constantLength_) {
1268               // Language extension: use the longest literal to determine the
1269               // length of the array constructor's character elements, not the
1270               // first, when there is no explicit type.
1271               *constantLength_ = *thisLen;
1272               type_->length = xType.LEN();
1273             }
1274           } else {
1275             constantLength_ = *thisLen;
1276             type_->length = xType.LEN();
1277           }
1278         }
1279       } else {
1280         if (!(messageDisplayedSet_ & 2)) {
1281           exprAnalyzer_.Say(
1282               "Values in array constructor must have the same declared type "
1283               "when no explicit type appears"_err_en_US); // C7110
1284           messageDisplayedSet_ |= 2;
1285         }
1286       }
1287     } else {
1288       if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1289         values_.Push(std::move(*cast));
1290       } else if (!(messageDisplayedSet_ & 4)) {
1291         exprAnalyzer_.Say(
1292             "Value in array constructor of type '%s' could not "
1293             "be converted to the type of the array '%s'"_err_en_US,
1294             x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
1295         messageDisplayedSet_ |= 4;
1296       }
1297     }
1298   }
1299 }
1300 
1301 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1302   std::visit(
1303       common::visitors{
1304           [&](const parser::AcValue::Triplet &triplet) { Add(triplet); },
1305           [&](const common::Indirection<parser::Expr> &expr) {
1306             Add(expr.value());
1307           },
1308           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1309             Add(impliedDo.value());
1310           },
1311       },
1312       x.u);
1313 }
1314 
1315 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1316 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) {
1317   std::optional<Expr<ImpliedDoIntType>> lower{
1318       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))};
1319   std::optional<Expr<ImpliedDoIntType>> upper{
1320       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))};
1321   std::optional<Expr<ImpliedDoIntType>> stride{
1322       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))};
1323   if (lower && upper) {
1324     if (!stride) {
1325       stride = Expr<ImpliedDoIntType>{1};
1326     }
1327     if (!type_) {
1328       type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()};
1329     }
1330     auto v{std::move(values_)};
1331     parser::CharBlock anonymous;
1332     Push(Expr<SomeType>{
1333         Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}});
1334     std::swap(v, values_);
1335     values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1336         std::move(*upper), std::move(*stride), std::move(v)});
1337   }
1338 }
1339 
1340 void ArrayConstructorContext::Add(const parser::Expr &expr) {
1341   auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)};
1342   if (MaybeExpr v{exprAnalyzer_.Analyze(expr)}) {
1343     if (auto exprType{v->GetType()}) {
1344       if (!(messageDisplayedSet_ & 8) && exprType->IsUnlimitedPolymorphic()) {
1345         exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an "
1346                           "array constructor"_err_en_US); // C7113
1347         messageDisplayedSet_ |= 8;
1348       }
1349     }
1350     Push(std::move(*v));
1351   }
1352 }
1353 
1354 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) {
1355   const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)};
1356   const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1357   exprAnalyzer_.Analyze(bounds.name);
1358   parser::CharBlock name{bounds.name.thing.thing.source};
1359   const Symbol *symbol{bounds.name.thing.thing.symbol};
1360   int kind{ImpliedDoIntType::kind};
1361   if (const auto dynamicType{DynamicType::From(symbol)}) {
1362     kind = dynamicType->kind();
1363   }
1364   if (!exprAnalyzer_.AddImpliedDo(name, kind)) {
1365     if (!(messageDisplayedSet_ & 0x20)) {
1366       exprAnalyzer_.SayAt(name,
1367           "Implied DO index is active in surrounding implied DO loop "
1368           "and may not have the same name"_err_en_US); // C7115
1369       messageDisplayedSet_ |= 0x20;
1370     }
1371     return;
1372   }
1373   std::optional<Expr<ImpliedDoIntType>> lower{
1374       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)};
1375   std::optional<Expr<ImpliedDoIntType>> upper{
1376       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)};
1377   if (lower && upper) {
1378     std::optional<Expr<ImpliedDoIntType>> stride{
1379         GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)};
1380     if (!stride) {
1381       stride = Expr<ImpliedDoIntType>{1};
1382     }
1383     // Check for constant bounds; the loop may require complete unrolling
1384     // of the parse tree if all bounds are constant in order to allow the
1385     // implied DO loop index to qualify as a constant expression.
1386     auto cLower{ToInt64(lower)};
1387     auto cUpper{ToInt64(upper)};
1388     auto cStride{ToInt64(stride)};
1389     if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) {
1390       exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source,
1391           "The stride of an implied DO loop must not be zero"_err_en_US);
1392       messageDisplayedSet_ |= 0x10;
1393     }
1394     bool isConstant{cLower && cUpper && cStride && *cStride != 0};
1395     bool isNonemptyConstant{isConstant &&
1396         ((*cStride > 0 && *cLower <= *cUpper) ||
1397             (*cStride < 0 && *cLower >= *cUpper))};
1398     bool unrollConstantLoop{false};
1399     parser::Messages buffer;
1400     auto saveMessagesDisplayed{messageDisplayedSet_};
1401     {
1402       auto messageRestorer{
1403           exprAnalyzer_.GetContextualMessages().SetMessages(buffer)};
1404       auto v{std::move(values_)};
1405       for (const auto &value :
1406           std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1407         Add(value);
1408       }
1409       std::swap(v, values_);
1410       if (isNonemptyConstant && buffer.AnyFatalError()) {
1411         unrollConstantLoop = true;
1412       } else {
1413         values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1414             std::move(*upper), std::move(*stride), std::move(v)});
1415       }
1416     }
1417     if (unrollConstantLoop) {
1418       messageDisplayedSet_ = saveMessagesDisplayed;
1419       UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride);
1420     } else if (auto *messages{
1421                    exprAnalyzer_.GetContextualMessages().messages()}) {
1422       messages->Annex(std::move(buffer));
1423     }
1424   }
1425   exprAnalyzer_.RemoveImpliedDo(name);
1426 }
1427 
1428 // Fortran considers an implied DO index of an array constructor to be
1429 // a constant expression if the bounds of the implied DO loop are constant.
1430 // Usually this doesn't matter, but if we emitted spurious messages as a
1431 // result of not using constant values for the index while analyzing the
1432 // items, we need to do it again the "hard" way with multiple iterations over
1433 // the parse tree.
1434 void ArrayConstructorContext::UnrollConstantImpliedDo(
1435     const parser::AcImpliedDo &impliedDo, parser::CharBlock name,
1436     std::int64_t lower, std::int64_t upper, std::int64_t stride) {
1437   auto &foldingContext{exprAnalyzer_.GetFoldingContext()};
1438   auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()};
1439   for (auto &at{foldingContext.StartImpliedDo(name, lower)};
1440        (stride > 0 && at <= upper) || (stride < 0 && at >= upper);
1441        at += stride) {
1442     for (const auto &value :
1443         std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1444       Add(value);
1445     }
1446   }
1447   foldingContext.EndImpliedDo(name);
1448 }
1449 
1450 MaybeExpr ArrayConstructorContext::ToExpr() {
1451   return common::SearchTypes(std::move(*this));
1452 }
1453 
1454 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1455   const parser::AcSpec &acSpec{array.v};
1456   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1457   for (const parser::AcValue &value : acSpec.values) {
1458     acContext.Add(value);
1459   }
1460   return acContext.ToExpr();
1461 }
1462 
1463 MaybeExpr ExpressionAnalyzer::Analyze(
1464     const parser::StructureConstructor &structure) {
1465   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1466   parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source};
1467   if (!parsedType.derivedTypeSpec) {
1468     return std::nullopt;
1469   }
1470   const auto &spec{*parsedType.derivedTypeSpec};
1471   const Symbol &typeSymbol{spec.typeSymbol()};
1472   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1473     return std::nullopt; // error recovery
1474   }
1475   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1476   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1477 
1478   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1479     AttachDeclaration(Say(typeName,
1480                           "ABSTRACT derived type '%s' may not be used in a "
1481                           "structure constructor"_err_en_US,
1482                           typeName),
1483         typeSymbol); // C7114
1484   }
1485 
1486   // This iterator traverses all of the components in the derived type and its
1487   // parents.  The symbols for whole parent components appear after their
1488   // own components and before the components of the types that extend them.
1489   // E.g., TYPE :: A; REAL X; END TYPE
1490   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1491   // produces the component list X, A, Y.
1492   // The order is important below because a structure constructor can
1493   // initialize X or A by name, but not both.
1494   auto components{semantics::OrderedComponentIterator{spec}};
1495   auto nextAnonymous{components.begin()};
1496 
1497   std::set<parser::CharBlock> unavailable;
1498   bool anyKeyword{false};
1499   StructureConstructor result{spec};
1500   bool checkConflicts{true}; // until we hit one
1501   auto &messages{GetContextualMessages()};
1502 
1503   for (const auto &component :
1504       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1505     const parser::Expr &expr{
1506         std::get<parser::ComponentDataSource>(component.t).v.value()};
1507     parser::CharBlock source{expr.source};
1508     auto restorer{messages.SetLocation(source)};
1509     const Symbol *symbol{nullptr};
1510     MaybeExpr value{Analyze(expr)};
1511     std::optional<DynamicType> valueType{DynamicType::From(value)};
1512     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1513       anyKeyword = true;
1514       source = kw->v.source;
1515       symbol = kw->v.symbol;
1516       if (!symbol) {
1517         auto componentIter{std::find_if(components.begin(), components.end(),
1518             [=](const Symbol &symbol) { return symbol.name() == source; })};
1519         if (componentIter != components.end()) {
1520           symbol = &*componentIter;
1521         }
1522       }
1523       if (!symbol) { // C7101
1524         Say(source,
1525             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1526             source, typeName);
1527       }
1528     } else {
1529       if (anyKeyword) { // C7100
1530         Say(source,
1531             "Value in structure constructor lacks a component name"_err_en_US);
1532         checkConflicts = false; // stem cascade
1533       }
1534       // Here's a regrettably common extension of the standard: anonymous
1535       // initialization of parent components, e.g., T(PT(1)) rather than
1536       // T(1) or T(PT=PT(1)).
1537       if (nextAnonymous == components.begin() && parentComponent &&
1538           valueType == DynamicType::From(*parentComponent) &&
1539           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1540         auto iter{
1541             std::find(components.begin(), components.end(), *parentComponent)};
1542         if (iter != components.end()) {
1543           symbol = parentComponent;
1544           nextAnonymous = ++iter;
1545           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1546             Say(source,
1547                 "Whole parent component '%s' in structure "
1548                 "constructor should not be anonymous"_en_US,
1549                 symbol->name());
1550           }
1551         }
1552       }
1553       while (!symbol && nextAnonymous != components.end()) {
1554         const Symbol &next{*nextAnonymous};
1555         ++nextAnonymous;
1556         if (!next.test(Symbol::Flag::ParentComp)) {
1557           symbol = &next;
1558         }
1559       }
1560       if (!symbol) {
1561         Say(source, "Unexpected value in structure constructor"_err_en_US);
1562       }
1563     }
1564     if (symbol) {
1565       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1566         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1567           Say(source, *msg);
1568         }
1569       }
1570       if (checkConflicts) {
1571         auto componentIter{
1572             std::find(components.begin(), components.end(), *symbol)};
1573         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1574           // C797, C798
1575           Say(source,
1576               "Component '%s' conflicts with another component earlier in "
1577               "this structure constructor"_err_en_US,
1578               symbol->name());
1579         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1580           // Make earlier components unavailable once a whole parent appears.
1581           for (auto it{components.begin()}; it != componentIter; ++it) {
1582             unavailable.insert(it->name());
1583           }
1584         } else {
1585           // Make whole parent components unavailable after any of their
1586           // constituents appear.
1587           for (auto it{componentIter}; it != components.end(); ++it) {
1588             if (it->test(Symbol::Flag::ParentComp)) {
1589               unavailable.insert(it->name());
1590             }
1591           }
1592         }
1593       }
1594       unavailable.insert(symbol->name());
1595       if (value) {
1596         if (symbol->has<semantics::ProcEntityDetails>()) {
1597           CHECK(IsPointer(*symbol));
1598         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1599           // C1594(4)
1600           const auto &innermost{context_.FindScope(expr.source)};
1601           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1602             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1603               if (const Symbol *
1604                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1605                 if (auto *msg{Say(expr.source,
1606                         "Externally visible object '%s' may not be "
1607                         "associated with pointer component '%s' in a "
1608                         "pure procedure"_err_en_US,
1609                         object->name(), pointer->name())}) {
1610                   msg->Attach(object->name(), "Object declaration"_en_US)
1611                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1612                 }
1613               }
1614             }
1615           }
1616         } else if (symbol->has<semantics::TypeParamDetails>()) {
1617           Say(expr.source,
1618               "Type parameter '%s' may not appear as a component "
1619               "of a structure constructor"_err_en_US,
1620               symbol->name());
1621           continue;
1622         } else {
1623           Say(expr.source,
1624               "Component '%s' is neither a procedure pointer "
1625               "nor a data object"_err_en_US,
1626               symbol->name());
1627           continue;
1628         }
1629         if (IsPointer(*symbol)) {
1630           semantics::CheckPointerAssignment(
1631               GetFoldingContext(), *symbol, *value); // C7104, C7105
1632           result.Add(*symbol, Fold(std::move(*value)));
1633         } else if (MaybeExpr converted{
1634                        ConvertToType(*symbol, std::move(*value))}) {
1635           if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
1636             if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
1637               if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
1638                 AttachDeclaration(
1639                     Say(expr.source,
1640                         "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
1641                         GetRank(*valueShape), symbol->name()),
1642                     *symbol);
1643               } else if (CheckConformance(messages, *componentShape,
1644                              *valueShape, "component", "value", false,
1645                              true /* can expand scalar value */)) {
1646                 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 &&
1647                     !IsExpandableScalar(*converted)) {
1648                   AttachDeclaration(
1649                       Say(expr.source,
1650                           "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
1651                           symbol->name()),
1652                       *symbol);
1653                 } else {
1654                   result.Add(*symbol, std::move(*converted));
1655                 }
1656               }
1657             } else {
1658               Say(expr.source, "Shape of value cannot be determined"_err_en_US);
1659             }
1660           } else {
1661             AttachDeclaration(
1662                 Say(expr.source,
1663                     "Shape of component '%s' cannot be determined"_err_en_US,
1664                     symbol->name()),
1665                 *symbol);
1666           }
1667         } else if (IsAllocatable(*symbol) &&
1668             std::holds_alternative<NullPointer>(value->u)) {
1669           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE
1670         } else if (auto symType{DynamicType::From(symbol)}) {
1671           if (valueType) {
1672             AttachDeclaration(
1673                 Say(expr.source,
1674                     "Value in structure constructor of type %s is "
1675                     "incompatible with component '%s' of type %s"_err_en_US,
1676                     valueType->AsFortran(), symbol->name(),
1677                     symType->AsFortran()),
1678                 *symbol);
1679           } else {
1680             AttachDeclaration(
1681                 Say(expr.source,
1682                     "Value in structure constructor is incompatible with "
1683                     " component '%s' of type %s"_err_en_US,
1684                     symbol->name(), symType->AsFortran()),
1685                 *symbol);
1686           }
1687         }
1688       }
1689     }
1690   }
1691 
1692   // Ensure that unmentioned component objects have default initializers.
1693   for (const Symbol &symbol : components) {
1694     if (!symbol.test(Symbol::Flag::ParentComp) &&
1695         unavailable.find(symbol.name()) == unavailable.cend() &&
1696         !IsAllocatable(symbol)) {
1697       if (const auto *details{
1698               symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1699         if (details->init()) {
1700           result.Add(symbol, common::Clone(*details->init()));
1701         } else { // C799
1702           AttachDeclaration(Say(typeName,
1703                                 "Structure constructor lacks a value for "
1704                                 "component '%s'"_err_en_US,
1705                                 symbol.name()),
1706               symbol);
1707         }
1708       }
1709     }
1710   }
1711 
1712   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1713 }
1714 
1715 static std::optional<parser::CharBlock> GetPassName(
1716     const semantics::Symbol &proc) {
1717   return std::visit(
1718       [](const auto &details) {
1719         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1720                           std::decay_t<decltype(details)>>) {
1721           return details.passName();
1722         } else {
1723           return std::optional<parser::CharBlock>{};
1724         }
1725       },
1726       proc.details());
1727 }
1728 
1729 static int GetPassIndex(const Symbol &proc) {
1730   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1731   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1732   const auto *interface{semantics::FindInterface(proc)};
1733   if (!passName || !interface) {
1734     return 0; // first argument is passed-object
1735   }
1736   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1737   int index{0};
1738   for (const auto *arg : subp.dummyArgs()) {
1739     if (arg && arg->name() == passName) {
1740       return index;
1741     }
1742     ++index;
1743   }
1744   DIE("PASS argument name not in dummy argument list");
1745 }
1746 
1747 // Injects an expression into an actual argument list as the "passed object"
1748 // for a type-bound procedure reference that is not NOPASS.  Adds an
1749 // argument keyword if possible, but not when the passed object goes
1750 // before a positional argument.
1751 // e.g., obj%tbp(x) -> tbp(obj,x).
1752 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1753     const Symbol &component, bool isPassedObject = true) {
1754   if (component.attrs().test(semantics::Attr::NOPASS)) {
1755     return;
1756   }
1757   int passIndex{GetPassIndex(component)};
1758   auto iter{actuals.begin()};
1759   int at{0};
1760   while (iter < actuals.end() && at < passIndex) {
1761     if (*iter && (*iter)->keyword()) {
1762       iter = actuals.end();
1763       break;
1764     }
1765     ++iter;
1766     ++at;
1767   }
1768   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1769   passed.set_isPassedObject(isPassedObject);
1770   if (iter == actuals.end()) {
1771     if (auto passName{GetPassName(component)}) {
1772       passed.set_keyword(*passName);
1773     }
1774   }
1775   actuals.emplace(iter, std::move(passed));
1776 }
1777 
1778 // Return the compile-time resolution of a procedure binding, if possible.
1779 static const Symbol *GetBindingResolution(
1780     const std::optional<DynamicType> &baseType, const Symbol &component) {
1781   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1782   if (!binding) {
1783     return nullptr;
1784   }
1785   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1786       (!baseType || baseType->IsPolymorphic())) {
1787     return nullptr;
1788   }
1789   return &binding->symbol();
1790 }
1791 
1792 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1793     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1794     -> std::optional<CalleeAndArguments> {
1795   const parser::StructureComponent &sc{pcr.v.thing};
1796   if (MaybeExpr base{Analyze(sc.base)}) {
1797     if (const Symbol * sym{sc.component.symbol}) {
1798       if (context_.HasError(sym)) {
1799         return std::nullopt;
1800       }
1801       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1802         if (sym->has<semantics::GenericDetails>()) {
1803           AdjustActuals adjustment{
1804               [&](const Symbol &proc, ActualArguments &actuals) {
1805                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1806                   AddPassArg(actuals, std::move(*dtExpr), proc);
1807                 }
1808                 return true;
1809               }};
1810           sym = ResolveGeneric(*sym, arguments, adjustment);
1811           if (!sym) {
1812             EmitGenericResolutionError(*sc.component.symbol);
1813             return std::nullopt;
1814           }
1815         }
1816         if (const Symbol *
1817             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1818           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1819           return CalleeAndArguments{
1820               ProcedureDesignator{*resolution}, std::move(arguments)};
1821         } else if (std::optional<DataRef> dataRef{
1822                        ExtractDataRef(std::move(*dtExpr))}) {
1823           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1824             return CalleeAndArguments{
1825                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1826                 std::move(arguments)};
1827           } else {
1828             AddPassArg(arguments,
1829                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1830                 *sym);
1831             return CalleeAndArguments{
1832                 ProcedureDesignator{*sym}, std::move(arguments)};
1833           }
1834         }
1835       }
1836       Say(sc.component.source,
1837           "Base of procedure component reference is not a derived-type object"_err_en_US);
1838     }
1839   }
1840   CHECK(!GetContextualMessages().empty());
1841   return std::nullopt;
1842 }
1843 
1844 // Can actual be argument associated with dummy?
1845 static bool CheckCompatibleArgument(bool isElemental,
1846     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1847   return std::visit(
1848       common::visitors{
1849           [&](const characteristics::DummyDataObject &x) {
1850             if (!isElemental && actual.Rank() != x.type.Rank() &&
1851                 !x.type.attrs().test(
1852                     characteristics::TypeAndShape::Attr::AssumedRank)) {
1853               return false;
1854             } else if (auto actualType{actual.GetType()}) {
1855               return x.type.type().IsTkCompatibleWith(*actualType);
1856             } else {
1857               return false;
1858             }
1859           },
1860           [&](const characteristics::DummyProcedure &) {
1861             const auto *expr{actual.UnwrapExpr()};
1862             return expr && IsProcedurePointer(*expr);
1863           },
1864           [&](const characteristics::AlternateReturn &) {
1865             return actual.isAlternateReturn();
1866           },
1867       },
1868       dummy.u);
1869 }
1870 
1871 // Are the actual arguments compatible with the dummy arguments of procedure?
1872 static bool CheckCompatibleArguments(
1873     const characteristics::Procedure &procedure,
1874     const ActualArguments &actuals) {
1875   bool isElemental{procedure.IsElemental()};
1876   const auto &dummies{procedure.dummyArguments};
1877   CHECK(dummies.size() == actuals.size());
1878   for (std::size_t i{0}; i < dummies.size(); ++i) {
1879     const characteristics::DummyArgument &dummy{dummies[i]};
1880     const std::optional<ActualArgument> &actual{actuals[i]};
1881     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1882       return false;
1883     }
1884   }
1885   return true;
1886 }
1887 
1888 // Handles a forward reference to a module function from what must
1889 // be a specification expression.  Return false if the symbol is
1890 // an invalid forward reference.
1891 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
1892   if (context_.HasError(symbol)) {
1893     return false;
1894   }
1895   if (const auto *details{
1896           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
1897     if (details->kind() == semantics::SubprogramKind::Module) {
1898       // If this symbol is still a SubprogramNameDetails, we must be
1899       // checking a specification expression in a sibling module
1900       // procedure.  Resolve its names now so that its interface
1901       // is known.
1902       semantics::ResolveSpecificationParts(context_, symbol);
1903       if (symbol.has<semantics::SubprogramNameDetails>()) {
1904         // When the symbol hasn't had its details updated, we must have
1905         // already been in the process of resolving the function's
1906         // specification part; but recursive function calls are not
1907         // allowed in specification parts (10.1.11 para 5).
1908         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
1909             symbol.name());
1910         context_.SetError(symbol);
1911         return false;
1912       }
1913     } else { // 10.1.11 para 4
1914       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
1915           symbol.name());
1916       context_.SetError(symbol);
1917       return false;
1918     }
1919   }
1920   return true;
1921 }
1922 
1923 // Resolve a call to a generic procedure with given actual arguments.
1924 // adjustActuals is called on procedure bindings to handle pass arg.
1925 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol,
1926     const ActualArguments &actuals, const AdjustActuals &adjustActuals,
1927     bool mightBeStructureConstructor) {
1928   const Symbol *elemental{nullptr}; // matching elemental specific proc
1929   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
1930   for (const Symbol &specific : details.specificProcs()) {
1931     if (!ResolveForward(specific)) {
1932       continue;
1933     }
1934     if (std::optional<characteristics::Procedure> procedure{
1935             characteristics::Procedure::Characterize(
1936                 ProcedureDesignator{specific}, context_.foldingContext())}) {
1937       ActualArguments localActuals{actuals};
1938       if (specific.has<semantics::ProcBindingDetails>()) {
1939         if (!adjustActuals.value()(specific, localActuals)) {
1940           continue;
1941         }
1942       }
1943       if (semantics::CheckInterfaceForGeneric(
1944               *procedure, localActuals, GetFoldingContext())) {
1945         if (CheckCompatibleArguments(*procedure, localActuals)) {
1946           if (!procedure->IsElemental()) {
1947             // takes priority over elemental match
1948             return &AccessSpecific(symbol, specific);
1949           }
1950           elemental = &specific;
1951         }
1952       }
1953     }
1954   }
1955   if (elemental) {
1956     return &AccessSpecific(symbol, *elemental);
1957   }
1958   // Check parent derived type
1959   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
1960     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
1961       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
1962         if (const Symbol *
1963             result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) {
1964           return result;
1965         }
1966       }
1967     }
1968   }
1969   if (mightBeStructureConstructor && details.derivedType()) {
1970     return details.derivedType();
1971   }
1972   return nullptr;
1973 }
1974 
1975 const Symbol &ExpressionAnalyzer::AccessSpecific(
1976     const Symbol &originalGeneric, const Symbol &specific) {
1977   if (const auto *hosted{
1978           originalGeneric.detailsIf<semantics::HostAssocDetails>()}) {
1979     return AccessSpecific(hosted->symbol(), specific);
1980   } else if (const auto *used{
1981                  originalGeneric.detailsIf<semantics::UseDetails>()}) {
1982     const auto &scope{originalGeneric.owner()};
1983     auto iter{scope.find(specific.name())};
1984     if (iter != scope.end() && iter->second->has<semantics::UseDetails>() &&
1985         &iter->second->get<semantics::UseDetails>().symbol() == &specific) {
1986       return specific;
1987     } else {
1988       // Create a renaming USE of the specific procedure.
1989       auto rename{context_.SaveTempName(
1990           used->symbol().owner().GetName().value().ToString() + "$" +
1991           specific.name().ToString())};
1992       return *const_cast<semantics::Scope &>(scope)
1993                   .try_emplace(rename, specific.attrs(),
1994                       semantics::UseDetails{rename, specific})
1995                   .first->second;
1996     }
1997   } else {
1998     return specific;
1999   }
2000 }
2001 
2002 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) {
2003   if (semantics::IsGenericDefinedOp(symbol)) {
2004     Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US,
2005         symbol.name());
2006   } else {
2007     Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
2008         symbol.name());
2009   }
2010 }
2011 
2012 auto ExpressionAnalyzer::GetCalleeAndArguments(
2013     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
2014     bool isSubroutine, bool mightBeStructureConstructor)
2015     -> std::optional<CalleeAndArguments> {
2016   return std::visit(
2017       common::visitors{
2018           [&](const parser::Name &name) {
2019             return GetCalleeAndArguments(name, std::move(arguments),
2020                 isSubroutine, mightBeStructureConstructor);
2021           },
2022           [&](const parser::ProcComponentRef &pcr) {
2023             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
2024           },
2025       },
2026       pd.u);
2027 }
2028 
2029 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
2030     ActualArguments &&arguments, bool isSubroutine,
2031     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
2032   const Symbol *symbol{name.symbol};
2033   if (context_.HasError(symbol)) {
2034     return std::nullopt; // also handles null symbol
2035   }
2036   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
2037   if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
2038     if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
2039             CallCharacteristics{ultimate.name().ToString(), isSubroutine},
2040             arguments, GetFoldingContext())}) {
2041       return CalleeAndArguments{
2042           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2043           std::move(specificCall->arguments)};
2044     }
2045   } else {
2046     CheckForBadRecursion(name.source, ultimate);
2047     if (ultimate.has<semantics::GenericDetails>()) {
2048       ExpressionAnalyzer::AdjustActuals noAdjustment;
2049       symbol = ResolveGeneric(
2050           *symbol, arguments, noAdjustment, mightBeStructureConstructor);
2051     }
2052     if (symbol) {
2053       if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
2054         if (mightBeStructureConstructor) {
2055           return CalleeAndArguments{
2056               semantics::SymbolRef{*symbol}, std::move(arguments)};
2057         }
2058       } else {
2059         return CalleeAndArguments{
2060             ProcedureDesignator{*symbol}, std::move(arguments)};
2061       }
2062     } else if (std::optional<SpecificCall> specificCall{
2063                    context_.intrinsics().Probe(
2064                        CallCharacteristics{
2065                            ultimate.name().ToString(), isSubroutine},
2066                        arguments, GetFoldingContext())}) {
2067       // Generics can extend intrinsics
2068       return CalleeAndArguments{
2069           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2070           std::move(specificCall->arguments)};
2071     } else {
2072       EmitGenericResolutionError(*name.symbol);
2073     }
2074   }
2075   return std::nullopt;
2076 }
2077 
2078 void ExpressionAnalyzer::CheckForBadRecursion(
2079     parser::CharBlock callSite, const semantics::Symbol &proc) {
2080   if (const auto *scope{proc.scope()}) {
2081     if (scope->sourceRange().Contains(callSite)) {
2082       parser::Message *msg{nullptr};
2083       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
2084         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
2085             callSite);
2086       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
2087         msg = Say( // 15.6.2.1(3)
2088             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
2089             callSite);
2090       }
2091       AttachDeclaration(msg, proc);
2092     }
2093   }
2094 }
2095 
2096 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
2097   if (const auto *designator{
2098           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
2099     if (const auto *dataRef{
2100             std::get_if<parser::DataRef>(&designator->value().u)}) {
2101       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
2102         if (const Symbol * symbol{name->symbol}) {
2103           if (const auto *type{symbol->GetType()}) {
2104             if (type->category() == semantics::DeclTypeSpec::TypeStar) {
2105               return symbol;
2106             }
2107           }
2108         }
2109       }
2110     }
2111   }
2112   return nullptr;
2113 }
2114 
2115 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
2116     std::optional<parser::StructureConstructor> *structureConstructor) {
2117   const parser::Call &call{funcRef.v};
2118   auto restorer{GetContextualMessages().SetLocation(call.source)};
2119   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2120   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
2121     analyzer.Analyze(arg, false /* not subroutine call */);
2122   }
2123   if (analyzer.fatalErrors()) {
2124     return std::nullopt;
2125   }
2126   if (std::optional<CalleeAndArguments> callee{
2127           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2128               analyzer.GetActuals(), false /* not subroutine */,
2129               true /* might be structure constructor */)}) {
2130     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
2131       return MakeFunctionRef(
2132           call.source, std::move(*proc), std::move(callee->arguments));
2133     } else if (structureConstructor) {
2134       // Structure constructor misparsed as function reference?
2135       CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
2136       const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)};
2137       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
2138       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
2139         semantics::Scope &scope{context_.FindScope(name->source)};
2140         semantics::DerivedTypeSpec dtSpec{
2141             name->source, derivedType.GetUltimate()};
2142         if (dtSpec.IsForwardReferenced()) {
2143           Say(call.source,
2144               "Cannot construct value for derived type '%s' "
2145               "before it is defined"_err_en_US,
2146               name->source);
2147           return std::nullopt;
2148         }
2149         const semantics::DeclTypeSpec &type{
2150             semantics::FindOrInstantiateDerivedType(
2151                 scope, std::move(dtSpec), context_)};
2152         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
2153         *structureConstructor =
2154             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
2155         return Analyze(structureConstructor->value());
2156       }
2157     }
2158   }
2159   return std::nullopt;
2160 }
2161 
2162 static bool HasAlternateReturns(const evaluate::ActualArguments &args) {
2163   for (const auto &arg : args) {
2164     if (arg && arg->isAlternateReturn()) {
2165       return true;
2166     }
2167   }
2168   return false;
2169 }
2170 
2171 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
2172   const parser::Call &call{callStmt.v};
2173   auto restorer{GetContextualMessages().SetLocation(call.source)};
2174   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2175   const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
2176   for (const auto &arg : actualArgList) {
2177     analyzer.Analyze(arg, true /* is subroutine call */);
2178   }
2179   if (!analyzer.fatalErrors()) {
2180     if (std::optional<CalleeAndArguments> callee{
2181             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2182                 analyzer.GetActuals(), true /* subroutine */)}) {
2183       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
2184       CHECK(proc);
2185       if (CheckCall(call.source, *proc, callee->arguments)) {
2186         bool hasAlternateReturns{HasAlternateReturns(callee->arguments)};
2187         callStmt.typedCall.Reset(
2188             new ProcedureRef{std::move(*proc), std::move(callee->arguments),
2189                 hasAlternateReturns},
2190             ProcedureRef::Deleter);
2191       }
2192     }
2193   }
2194 }
2195 
2196 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
2197   if (!x.typedAssignment) {
2198     ArgumentAnalyzer analyzer{*this};
2199     analyzer.Analyze(std::get<parser::Variable>(x.t));
2200     analyzer.Analyze(std::get<parser::Expr>(x.t));
2201     if (analyzer.fatalErrors()) {
2202       x.typedAssignment.Reset(
2203           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2204     } else {
2205       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
2206       Assignment assignment{analyzer.MoveExpr(0), analyzer.MoveExpr(1)};
2207       if (procRef) {
2208         assignment.u = std::move(*procRef);
2209       }
2210       x.typedAssignment.Reset(
2211           new GenericAssignmentWrapper{std::move(assignment)},
2212           GenericAssignmentWrapper::Deleter);
2213     }
2214   }
2215   return common::GetPtrFromOptional(x.typedAssignment->v);
2216 }
2217 
2218 const Assignment *ExpressionAnalyzer::Analyze(
2219     const parser::PointerAssignmentStmt &x) {
2220   if (!x.typedAssignment) {
2221     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2222     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2223     if (!lhs || !rhs) {
2224       x.typedAssignment.Reset(
2225           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2226     } else {
2227       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2228       std::visit(common::visitors{
2229                      [&](const std::list<parser::BoundsRemapping> &list) {
2230                        Assignment::BoundsRemapping bounds;
2231                        for (const auto &elem : list) {
2232                          auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2233                          auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2234                          if (lower && upper) {
2235                            bounds.emplace_back(Fold(std::move(*lower)),
2236                                Fold(std::move(*upper)));
2237                          }
2238                        }
2239                        assignment.u = std::move(bounds);
2240                      },
2241                      [&](const std::list<parser::BoundsSpec> &list) {
2242                        Assignment::BoundsSpec bounds;
2243                        for (const auto &bound : list) {
2244                          if (auto lower{AsSubscript(Analyze(bound.v))}) {
2245                            bounds.emplace_back(Fold(std::move(*lower)));
2246                          }
2247                        }
2248                        assignment.u = std::move(bounds);
2249                      },
2250                  },
2251           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2252       x.typedAssignment.Reset(
2253           new GenericAssignmentWrapper{std::move(assignment)},
2254           GenericAssignmentWrapper::Deleter);
2255     }
2256   }
2257   return common::GetPtrFromOptional(x.typedAssignment->v);
2258 }
2259 
2260 static bool IsExternalCalledImplicitly(
2261     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2262   if (const auto *symbol{proc.GetSymbol()}) {
2263     return symbol->has<semantics::SubprogramDetails>() &&
2264         symbol->owner().IsGlobal() &&
2265         (!symbol->scope() /*ENTRY*/ ||
2266             !symbol->scope()->sourceRange().Contains(callSite));
2267   } else {
2268     return false;
2269   }
2270 }
2271 
2272 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2273     parser::CharBlock callSite, const ProcedureDesignator &proc,
2274     ActualArguments &arguments) {
2275   auto chars{characteristics::Procedure::Characterize(
2276       proc, context_.foldingContext())};
2277   if (chars) {
2278     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2279     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2280       Say(callSite,
2281           "References to the procedure '%s' require an explicit interface"_en_US,
2282           DEREF(proc.GetSymbol()).name());
2283     }
2284     // Checks for ASSOCIATED() are done in intrinsic table processing
2285     bool procIsAssociated{false};
2286     if (const SpecificIntrinsic *
2287         specificIntrinsic{proc.GetSpecificIntrinsic()}) {
2288       if (specificIntrinsic->name == "associated") {
2289         procIsAssociated = true;
2290       }
2291     }
2292     if (!procIsAssociated) {
2293       semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2294           context_.FindScope(callSite), treatExternalAsImplicit,
2295           proc.GetSpecificIntrinsic());
2296       const Symbol *procSymbol{proc.GetSymbol()};
2297       if (procSymbol && !IsPureProcedure(*procSymbol)) {
2298         if (const semantics::Scope *
2299             pure{semantics::FindPureProcedureContaining(
2300                 context_.FindScope(callSite))}) {
2301           Say(callSite,
2302               "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2303               procSymbol->name(), DEREF(pure->symbol()).name());
2304         }
2305       }
2306     }
2307   }
2308   return chars;
2309 }
2310 
2311 // Unary operations
2312 
2313 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2314   if (MaybeExpr operand{Analyze(x.v.value())}) {
2315     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2316       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2317         if (semantics::IsProcedurePointer(*result)) {
2318           Say("A function reference that returns a procedure "
2319               "pointer may not be parenthesized"_err_en_US); // C1003
2320         }
2321       }
2322     }
2323     return Parenthesize(std::move(*operand));
2324   }
2325   return std::nullopt;
2326 }
2327 
2328 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2329     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2330   ArgumentAnalyzer analyzer{context};
2331   analyzer.Analyze(x.v);
2332   if (analyzer.fatalErrors()) {
2333     return std::nullopt;
2334   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2335     if (opr == NumericOperator::Add) {
2336       return analyzer.MoveExpr(0);
2337     } else {
2338       return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2339     }
2340   } else {
2341     return analyzer.TryDefinedOp(AsFortran(opr),
2342         "Operand of unary %s must be numeric; have %s"_err_en_US);
2343   }
2344 }
2345 
2346 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2347   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2348 }
2349 
2350 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2351   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2352 }
2353 
2354 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2355   ArgumentAnalyzer analyzer{*this};
2356   analyzer.Analyze(x.v);
2357   if (analyzer.fatalErrors()) {
2358     return std::nullopt;
2359   } else if (analyzer.IsIntrinsicLogical()) {
2360     return AsGenericExpr(
2361         LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2362   } else {
2363     return analyzer.TryDefinedOp(LogicalOperator::Not,
2364         "Operand of %s must be LOGICAL; have %s"_err_en_US);
2365   }
2366 }
2367 
2368 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2369   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2370   // intrinsic function.
2371   // Use the actual source for the name of the call for error reporting.
2372   std::optional<ActualArgument> arg;
2373   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2374     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2375   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2376     arg = ActualArgument{std::move(*argExpr)};
2377   } else {
2378     return std::nullopt;
2379   }
2380   parser::CharBlock at{GetContextualMessages().at()};
2381   CHECK(at.size() >= 4);
2382   parser::CharBlock loc{at.begin() + 1, 3};
2383   CHECK(loc == "loc");
2384   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2385 }
2386 
2387 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2388   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2389   ArgumentAnalyzer analyzer{*this, name.source};
2390   analyzer.Analyze(std::get<1>(x.t));
2391   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2392       "No operator %s defined for %s"_err_en_US, true);
2393 }
2394 
2395 // Binary (dyadic) operations
2396 
2397 template <template <typename> class OPR>
2398 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2399     const parser::Expr::IntrinsicBinary &x) {
2400   ArgumentAnalyzer analyzer{context};
2401   analyzer.Analyze(std::get<0>(x.t));
2402   analyzer.Analyze(std::get<1>(x.t));
2403   if (analyzer.fatalErrors()) {
2404     return std::nullopt;
2405   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2406     analyzer.CheckConformance();
2407     return NumericOperation<OPR>(context.GetContextualMessages(),
2408         analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2409         context.GetDefaultKind(TypeCategory::Real));
2410   } else {
2411     return analyzer.TryDefinedOp(AsFortran(opr),
2412         "Operands of %s must be numeric; have %s and %s"_err_en_US);
2413   }
2414 }
2415 
2416 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2417   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2418 }
2419 
2420 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2421   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2422 }
2423 
2424 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2425   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2426 }
2427 
2428 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2429   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2430 }
2431 
2432 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2433   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2434 }
2435 
2436 MaybeExpr ExpressionAnalyzer::Analyze(
2437     const parser::Expr::ComplexConstructor &x) {
2438   auto re{Analyze(std::get<0>(x.t).value())};
2439   auto im{Analyze(std::get<1>(x.t).value())};
2440   if (re && im) {
2441     ConformabilityCheck(GetContextualMessages(), *re, *im);
2442   }
2443   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2444       std::move(im), GetDefaultKind(TypeCategory::Real)));
2445 }
2446 
2447 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2448   ArgumentAnalyzer analyzer{*this};
2449   analyzer.Analyze(std::get<0>(x.t));
2450   analyzer.Analyze(std::get<1>(x.t));
2451   if (analyzer.fatalErrors()) {
2452     return std::nullopt;
2453   } else if (analyzer.IsIntrinsicConcat()) {
2454     return std::visit(
2455         [&](auto &&x, auto &&y) -> MaybeExpr {
2456           using T = ResultType<decltype(x)>;
2457           if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2458             return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2459           } else {
2460             DIE("different types for intrinsic concat");
2461           }
2462         },
2463         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2464         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2465   } else {
2466     return analyzer.TryDefinedOp("//",
2467         "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2468   }
2469 }
2470 
2471 // The Name represents a user-defined intrinsic operator.
2472 // If the actuals match one of the specific procedures, return a function ref.
2473 // Otherwise report the error in messages.
2474 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2475     const parser::Name &name, ActualArguments &&actuals) {
2476   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2477     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2478     return MakeFunctionRef(name.source,
2479         std::move(std::get<ProcedureDesignator>(callee->u)),
2480         std::move(callee->arguments));
2481   } else {
2482     return std::nullopt;
2483   }
2484 }
2485 
2486 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2487     const parser::Expr::IntrinsicBinary &x) {
2488   ArgumentAnalyzer analyzer{context};
2489   analyzer.Analyze(std::get<0>(x.t));
2490   analyzer.Analyze(std::get<1>(x.t));
2491   if (analyzer.fatalErrors()) {
2492     return std::nullopt;
2493   } else {
2494     if (IsNullPointer(analyzer.GetExpr(0)) ||
2495         IsNullPointer(analyzer.GetExpr(1))) {
2496       context.Say("NULL() not allowed as an operand of a relational "
2497                   "operator"_err_en_US);
2498       return std::nullopt;
2499     }
2500     std::optional<DynamicType> leftType{analyzer.GetType(0)};
2501     std::optional<DynamicType> rightType{analyzer.GetType(1)};
2502     analyzer.ConvertBOZ(0, rightType);
2503     analyzer.ConvertBOZ(1, leftType);
2504     if (analyzer.IsIntrinsicRelational(opr)) {
2505       return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2506           analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2507     } else if (leftType && leftType->category() == TypeCategory::Logical &&
2508         rightType && rightType->category() == TypeCategory::Logical) {
2509       context.Say("LOGICAL operands must be compared using .EQV. or "
2510                   ".NEQV."_err_en_US);
2511       return std::nullopt;
2512     } else {
2513       return analyzer.TryDefinedOp(opr,
2514           "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2515     }
2516   }
2517 }
2518 
2519 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2520   return RelationHelper(*this, RelationalOperator::LT, x);
2521 }
2522 
2523 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2524   return RelationHelper(*this, RelationalOperator::LE, x);
2525 }
2526 
2527 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2528   return RelationHelper(*this, RelationalOperator::EQ, x);
2529 }
2530 
2531 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2532   return RelationHelper(*this, RelationalOperator::NE, x);
2533 }
2534 
2535 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2536   return RelationHelper(*this, RelationalOperator::GE, x);
2537 }
2538 
2539 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2540   return RelationHelper(*this, RelationalOperator::GT, x);
2541 }
2542 
2543 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2544     const parser::Expr::IntrinsicBinary &x) {
2545   ArgumentAnalyzer analyzer{context};
2546   analyzer.Analyze(std::get<0>(x.t));
2547   analyzer.Analyze(std::get<1>(x.t));
2548   if (analyzer.fatalErrors()) {
2549     return std::nullopt;
2550   } else if (analyzer.IsIntrinsicLogical()) {
2551     return AsGenericExpr(BinaryLogicalOperation(opr,
2552         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2553         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2554   } else {
2555     return analyzer.TryDefinedOp(
2556         opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2557   }
2558 }
2559 
2560 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2561   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2562 }
2563 
2564 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2565   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2566 }
2567 
2568 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2569   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2570 }
2571 
2572 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2573   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2574 }
2575 
2576 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2577   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2578   ArgumentAnalyzer analyzer{*this, name.source};
2579   analyzer.Analyze(std::get<1>(x.t));
2580   analyzer.Analyze(std::get<2>(x.t));
2581   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2582       "No operator %s defined for %s and %s"_err_en_US, true);
2583 }
2584 
2585 static void CheckFuncRefToArrayElementRefHasSubscripts(
2586     semantics::SemanticsContext &context,
2587     const parser::FunctionReference &funcRef) {
2588   // Emit message if the function reference fix will end up an array element
2589   // reference with no subscripts because it will not be possible to later tell
2590   // the difference in expressions between empty subscript list due to bad
2591   // subscripts error recovery or because the user did not put any.
2592   if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2593     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2594     const auto *name{std::get_if<parser::Name>(&proc.u)};
2595     if (!name) {
2596       name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2597     }
2598     auto &msg{context.Say(funcRef.v.source,
2599         name->symbol && name->symbol->Rank() == 0
2600             ? "'%s' is not a function"_err_en_US
2601             : "Reference to array '%s' with empty subscript list"_err_en_US,
2602         name->source)};
2603     if (name->symbol) {
2604       if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) {
2605         msg.Attach(name->source,
2606             "A result variable must be declared with RESULT to allow recursive "
2607             "function calls"_en_US);
2608       } else {
2609         AttachDeclaration(&msg, *name->symbol);
2610       }
2611     }
2612   }
2613 }
2614 
2615 // Converts, if appropriate, an original misparse of ambiguous syntax like
2616 // A(1) as a function reference into an array reference.
2617 // Misparse structure constructors are detected elsewhere after generic
2618 // function call resolution fails.
2619 template <typename... A>
2620 static void FixMisparsedFunctionReference(
2621     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2622   // The parse tree is updated in situ when resolving an ambiguous parse.
2623   using uType = std::decay_t<decltype(constU)>;
2624   auto &u{const_cast<uType &>(constU)};
2625   if (auto *func{
2626           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2627     parser::FunctionReference &funcRef{func->value()};
2628     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2629     if (Symbol *
2630         origSymbol{
2631             std::visit(common::visitors{
2632                            [&](parser::Name &name) { return name.symbol; },
2633                            [&](parser::ProcComponentRef &pcr) {
2634                              return pcr.v.thing.component.symbol;
2635                            },
2636                        },
2637                 proc.u)}) {
2638       Symbol &symbol{origSymbol->GetUltimate()};
2639       if (symbol.has<semantics::ObjectEntityDetails>() ||
2640           symbol.has<semantics::AssocEntityDetails>()) {
2641         // Note that expression in AssocEntityDetails cannot be a procedure
2642         // pointer as per C1105 so this cannot be a function reference.
2643         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2644                           uType>) {
2645           CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef);
2646           u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2647         } else {
2648           DIE("can't fix misparsed function as array reference");
2649         }
2650       }
2651     }
2652   }
2653 }
2654 
2655 // Common handling of parse tree node types that retain the
2656 // representation of the analyzed expression.
2657 template <typename PARSED>
2658 MaybeExpr ExpressionAnalyzer::ExprOrVariable(
2659     const PARSED &x, parser::CharBlock source) {
2660   if (useSavedTypedExprs_ && x.typedExpr) {
2661     return x.typedExpr->v;
2662   }
2663   auto restorer{GetContextualMessages().SetLocation(source)};
2664   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2665       std::is_same_v<PARSED, parser::Variable>) {
2666     FixMisparsedFunctionReference(context_, x.u);
2667   }
2668   if (AssumedTypeDummy(x)) { // C710
2669     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2670   } else if (MaybeExpr result{Analyze(x.u)}) {
2671     SetExpr(x, Fold(std::move(*result)));
2672     return x.typedExpr->v;
2673   }
2674   ResetExpr(x);
2675   if (!context_.AnyFatalError()) {
2676     std::string buf;
2677     llvm::raw_string_ostream dump{buf};
2678     parser::DumpTree(dump, x);
2679     Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2680         dump.str());
2681   }
2682   return std::nullopt;
2683 }
2684 
2685 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2686   auto restorer{GetContextualMessages().SetLocation(expr.source)};
2687   return ExprOrVariable(expr, expr.source);
2688 }
2689 
2690 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2691   auto restorer{GetContextualMessages().SetLocation(variable.GetSource())};
2692   return ExprOrVariable(variable, variable.GetSource());
2693 }
2694 
2695 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
2696   auto restorer{GetContextualMessages().SetLocation(x.source)};
2697   return ExprOrVariable(x, x.source);
2698 }
2699 
2700 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
2701     TypeCategory category,
2702     const std::optional<parser::KindSelector> &selector) {
2703   int defaultKind{GetDefaultKind(category)};
2704   if (!selector) {
2705     return Expr<SubscriptInteger>{defaultKind};
2706   }
2707   return std::visit(
2708       common::visitors{
2709           [&](const parser::ScalarIntConstantExpr &x) {
2710             if (MaybeExpr kind{Analyze(x)}) {
2711               if (std::optional<std::int64_t> code{ToInt64(*kind)}) {
2712                 if (CheckIntrinsicKind(category, *code)) {
2713                   return Expr<SubscriptInteger>{*code};
2714                 }
2715               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) {
2716                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
2717               }
2718             }
2719             return Expr<SubscriptInteger>{defaultKind};
2720           },
2721           [&](const parser::KindSelector::StarSize &x) {
2722             std::intmax_t size = x.v;
2723             if (!CheckIntrinsicSize(category, size)) {
2724               size = defaultKind;
2725             } else if (category == TypeCategory::Complex) {
2726               size /= 2;
2727             }
2728             return Expr<SubscriptInteger>{size};
2729           },
2730       },
2731       selector->u);
2732 }
2733 
2734 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
2735   return context_.GetDefaultKind(category);
2736 }
2737 
2738 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
2739     common::TypeCategory category) {
2740   return {category, GetDefaultKind(category)};
2741 }
2742 
2743 bool ExpressionAnalyzer::CheckIntrinsicKind(
2744     TypeCategory category, std::int64_t kind) {
2745   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
2746     return true;
2747   } else {
2748     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
2749         ToUpperCase(EnumToString(category)), kind);
2750     return false;
2751   }
2752 }
2753 
2754 bool ExpressionAnalyzer::CheckIntrinsicSize(
2755     TypeCategory category, std::int64_t size) {
2756   if (category == TypeCategory::Complex) {
2757     // COMPLEX*16 == COMPLEX(KIND=8)
2758     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
2759       return true;
2760     }
2761   } else if (IsValidKindOfIntrinsicType(category, size)) {
2762     return true;
2763   }
2764   Say("%s*%jd is not a supported type"_err_en_US,
2765       ToUpperCase(EnumToString(category)), size);
2766   return false;
2767 }
2768 
2769 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
2770   return impliedDos_.insert(std::make_pair(name, kind)).second;
2771 }
2772 
2773 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
2774   auto iter{impliedDos_.find(name)};
2775   if (iter != impliedDos_.end()) {
2776     impliedDos_.erase(iter);
2777   }
2778 }
2779 
2780 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
2781     parser::CharBlock name) const {
2782   auto iter{impliedDos_.find(name)};
2783   if (iter != impliedDos_.cend()) {
2784     return {iter->second};
2785   } else {
2786     return std::nullopt;
2787   }
2788 }
2789 
2790 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
2791     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
2792   if (result) {
2793     if (auto type{result->GetType()}) {
2794       if (type->category() != category) { // C885
2795         Say(at, "Must have %s type, but is %s"_err_en_US,
2796             ToUpperCase(EnumToString(category)),
2797             ToUpperCase(type->AsFortran()));
2798         return false;
2799       } else if (defaultKind) {
2800         int kind{context_.GetDefaultKind(category)};
2801         if (type->kind() != kind) {
2802           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
2803               kind, ToUpperCase(EnumToString(category)),
2804               ToUpperCase(type->AsFortran()));
2805           return false;
2806         }
2807       }
2808     } else {
2809       Say(at, "Must have %s type, but is typeless"_err_en_US,
2810           ToUpperCase(EnumToString(category)));
2811       return false;
2812     }
2813   }
2814   return true;
2815 }
2816 
2817 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
2818     ProcedureDesignator &&proc, ActualArguments &&arguments) {
2819   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
2820     if (intrinsic->name == "null" && arguments.empty()) {
2821       return Expr<SomeType>{NullPointer{}};
2822     }
2823   }
2824   if (const Symbol * symbol{proc.GetSymbol()}) {
2825     if (!ResolveForward(*symbol)) {
2826       return std::nullopt;
2827     }
2828   }
2829   if (auto chars{CheckCall(callSite, proc, arguments)}) {
2830     if (chars->functionResult) {
2831       const auto &result{*chars->functionResult};
2832       if (result.IsProcedurePointer()) {
2833         return Expr<SomeType>{
2834             ProcedureRef{std::move(proc), std::move(arguments)}};
2835       } else {
2836         // Not a procedure pointer, so type and shape are known.
2837         return TypedWrapper<FunctionRef, ProcedureRef>(
2838             DEREF(result.GetTypeAndShape()).type(),
2839             ProcedureRef{std::move(proc), std::move(arguments)});
2840       }
2841     }
2842   }
2843   return std::nullopt;
2844 }
2845 
2846 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
2847     parser::CharBlock intrinsic, ActualArguments &&arguments) {
2848   if (std::optional<SpecificCall> specificCall{
2849           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
2850               arguments, context_.foldingContext())}) {
2851     return MakeFunctionRef(intrinsic,
2852         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2853         std::move(specificCall->arguments));
2854   } else {
2855     return std::nullopt;
2856   }
2857 }
2858 
2859 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
2860   source_.ExtendToCover(x.GetSource());
2861   if (MaybeExpr expr{context_.Analyze(x)}) {
2862     if (!IsConstantExpr(*expr)) {
2863       actuals_.emplace_back(std::move(*expr));
2864       return;
2865     }
2866     const Symbol *symbol{GetLastSymbol(*expr)};
2867     if (!symbol) {
2868       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
2869           x.GetSource());
2870     } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
2871       auto *msg{context_.SayAt(x,
2872           "Assignment to subprogram '%s' is not allowed"_err_en_US,
2873           symbol->name())};
2874       if (subp->isFunction()) {
2875         const auto &result{subp->result().name()};
2876         msg->Attach(result, "Function result is '%s'"_err_en_US, result);
2877       }
2878     } else {
2879       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
2880           symbol->name());
2881     }
2882   }
2883   fatalErrors_ = true;
2884 }
2885 
2886 void ArgumentAnalyzer::Analyze(
2887     const parser::ActualArgSpec &arg, bool isSubroutine) {
2888   // TODO: Actual arguments that are procedures and procedure pointers need to
2889   // be detected and represented (they're not expressions).
2890   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
2891   std::optional<ActualArgument> actual;
2892   std::visit(common::visitors{
2893                  [&](const common::Indirection<parser::Expr> &x) {
2894                    // TODO: Distinguish & handle procedure name and
2895                    // proc-component-ref
2896                    actual = AnalyzeExpr(x.value());
2897                  },
2898                  [&](const parser::AltReturnSpec &label) {
2899                    if (!isSubroutine) {
2900                      context_.Say(
2901                          "alternate return specification may not appear on"
2902                          " function reference"_err_en_US);
2903                    }
2904                    actual = ActualArgument(label.v);
2905                  },
2906                  [&](const parser::ActualArg::PercentRef &) {
2907                    context_.Say("TODO: %REF() argument"_err_en_US);
2908                  },
2909                  [&](const parser::ActualArg::PercentVal &) {
2910                    context_.Say("TODO: %VAL() argument"_err_en_US);
2911                  },
2912              },
2913       std::get<parser::ActualArg>(arg.t).u);
2914   if (actual) {
2915     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
2916       actual->set_keyword(argKW->v.source);
2917     }
2918     actuals_.emplace_back(std::move(*actual));
2919   } else {
2920     fatalErrors_ = true;
2921   }
2922 }
2923 
2924 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const {
2925   CHECK(actuals_.size() == 2);
2926   return semantics::IsIntrinsicRelational(
2927       opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2928 }
2929 
2930 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
2931   std::optional<DynamicType> type0{GetType(0)};
2932   if (actuals_.size() == 1) {
2933     if (IsBOZLiteral(0)) {
2934       return opr == NumericOperator::Add;
2935     } else {
2936       return type0 && semantics::IsIntrinsicNumeric(*type0);
2937     }
2938   } else {
2939     std::optional<DynamicType> type1{GetType(1)};
2940     if (IsBOZLiteral(0) && type1) {
2941       auto cat1{type1->category()};
2942       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
2943     } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ
2944       auto cat0{type0->category()};
2945       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
2946     } else {
2947       return type0 && type1 &&
2948           semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1));
2949     }
2950   }
2951 }
2952 
2953 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
2954   if (actuals_.size() == 1) {
2955     return semantics::IsIntrinsicLogical(*GetType(0));
2956     return GetType(0)->category() == TypeCategory::Logical;
2957   } else {
2958     return semantics::IsIntrinsicLogical(
2959         *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2960   }
2961 }
2962 
2963 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
2964   return semantics::IsIntrinsicConcat(
2965       *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2966 }
2967 
2968 bool ArgumentAnalyzer::CheckConformance() const {
2969   if (actuals_.size() == 2) {
2970     const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
2971     const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
2972     if (lhs && rhs) {
2973       auto &foldingContext{context_.GetFoldingContext()};
2974       auto lhShape{GetShape(foldingContext, *lhs)};
2975       auto rhShape{GetShape(foldingContext, *rhs)};
2976       if (lhShape && rhShape) {
2977         return evaluate::CheckConformance(foldingContext.messages(), *lhShape,
2978             *rhShape, "left operand", "right operand", true,
2979             true /* scalar expansion is allowed */);
2980       }
2981     }
2982   }
2983   return true; // no proven problem
2984 }
2985 
2986 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
2987     const char *opr, parser::MessageFixedText &&error, bool isUserOp) {
2988   if (AnyUntypedOrMissingOperand()) {
2989     context_.Say(
2990         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
2991     return std::nullopt;
2992   }
2993   {
2994     auto restorer{context_.GetContextualMessages().DiscardMessages()};
2995     std::string oprNameString{
2996         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
2997     parser::CharBlock oprName{oprNameString};
2998     const auto &scope{context_.context().FindScope(source_)};
2999     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
3000       parser::Name name{symbol->name(), symbol};
3001       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
3002         return result;
3003       }
3004       sawDefinedOp_ = symbol;
3005     }
3006     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
3007       if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) {
3008         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
3009           return result;
3010         }
3011       }
3012     }
3013   }
3014   if (sawDefinedOp_) {
3015     SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString()));
3016   } else if (actuals_.size() == 1 || AreConformable()) {
3017     context_.Say(
3018         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3019   } else {
3020     context_.Say(
3021         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
3022         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
3023   }
3024   return std::nullopt;
3025 }
3026 
3027 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
3028     std::vector<const char *> oprs, parser::MessageFixedText &&error) {
3029   for (std::size_t i{1}; i < oprs.size(); ++i) {
3030     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3031     if (auto result{TryDefinedOp(oprs[i], std::move(error))}) {
3032       return result;
3033     }
3034   }
3035   return TryDefinedOp(oprs[0], std::move(error));
3036 }
3037 
3038 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
3039   ActualArguments localActuals{actuals_};
3040   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
3041   if (!proc) {
3042     proc = &symbol;
3043     localActuals.at(passIndex).value().set_isPassedObject();
3044   }
3045   CheckConformance();
3046   return context_.MakeFunctionRef(
3047       source_, ProcedureDesignator{*proc}, std::move(localActuals));
3048 }
3049 
3050 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
3051   using semantics::Tristate;
3052   const Expr<SomeType> &lhs{GetExpr(0)};
3053   const Expr<SomeType> &rhs{GetExpr(1)};
3054   std::optional<DynamicType> lhsType{lhs.GetType()};
3055   std::optional<DynamicType> rhsType{rhs.GetType()};
3056   int lhsRank{lhs.Rank()};
3057   int rhsRank{rhs.Rank()};
3058   Tristate isDefined{
3059       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
3060   if (isDefined == Tristate::No) {
3061     if (lhsType && rhsType) {
3062       AddAssignmentConversion(*lhsType, *rhsType);
3063     }
3064     return std::nullopt; // user-defined assignment not allowed for these args
3065   }
3066   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
3067   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
3068     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
3069     return std::move(*procRef);
3070   }
3071   if (isDefined == Tristate::Yes) {
3072     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
3073         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
3074       SayNoMatch("ASSIGNMENT(=)", true);
3075     }
3076   }
3077   return std::nullopt;
3078 }
3079 
3080 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
3081     TypeCategory lhs, TypeCategory rhs) {
3082   if (!context_.context().languageFeatures().IsEnabled(
3083           common::LanguageFeature::LogicalIntegerAssignment)) {
3084     return false;
3085   }
3086   std::optional<parser::MessageFixedText> msg;
3087   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
3088     // allow assignment to LOGICAL from INTEGER as a legacy extension
3089     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US;
3090   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
3091     // ... and assignment to LOGICAL from INTEGER
3092     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US;
3093   } else {
3094     return false;
3095   }
3096   if (context_.context().languageFeatures().ShouldWarn(
3097           common::LanguageFeature::LogicalIntegerAssignment)) {
3098     context_.Say(std::move(*msg));
3099   }
3100   return true;
3101 }
3102 
3103 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
3104   auto restorer{context_.GetContextualMessages().DiscardMessages()};
3105   std::string oprNameString{"assignment(=)"};
3106   parser::CharBlock oprName{oprNameString};
3107   const Symbol *proc{nullptr};
3108   const auto &scope{context_.context().FindScope(source_)};
3109   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
3110     ExpressionAnalyzer::AdjustActuals noAdjustment;
3111     if (const Symbol *
3112         specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) {
3113       proc = specific;
3114     } else {
3115       context_.EmitGenericResolutionError(*symbol);
3116     }
3117   }
3118   int passedObjectIndex{-1};
3119   for (std::size_t i{0}; i < actuals_.size(); ++i) {
3120     if (const Symbol * specific{FindBoundOp(oprName, i)}) {
3121       if (const Symbol *
3122           resolution{GetBindingResolution(GetType(i), *specific)}) {
3123         proc = resolution;
3124       } else {
3125         proc = specific;
3126         passedObjectIndex = i;
3127       }
3128     }
3129   }
3130   if (!proc) {
3131     return std::nullopt;
3132   }
3133   ActualArguments actualsCopy{actuals_};
3134   if (passedObjectIndex >= 0) {
3135     actualsCopy[passedObjectIndex]->set_isPassedObject();
3136   }
3137   return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
3138 }
3139 
3140 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
3141   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
3142      << '\n';
3143   for (const auto &actual : actuals_) {
3144     if (!actual.has_value()) {
3145       os << "- error\n";
3146     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
3147       os << "- assumed type: " << symbol->name().ToString() << '\n';
3148     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
3149       expr->AsFortran(os << "- expr: ") << '\n';
3150     } else {
3151       DIE("bad ActualArgument");
3152     }
3153   }
3154 }
3155 
3156 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
3157     const parser::Expr &expr) {
3158   source_.ExtendToCover(expr.source);
3159   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
3160     expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
3161     if (isProcedureCall_) {
3162       return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
3163     }
3164     context_.SayAt(expr.source,
3165         "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
3166   } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) {
3167     if (isProcedureCall_ || !IsProcedure(*argExpr)) {
3168       return ActualArgument{std::move(*argExpr)};
3169     }
3170     context_.SayAt(expr.source,
3171         IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US
3172                              : "Subroutine name is not allowed here"_err_en_US);
3173   }
3174   return std::nullopt;
3175 }
3176 
3177 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray(
3178     const parser::Expr &expr) {
3179   // If an expression's parse tree is a whole assumed-size array:
3180   //   Expr -> Designator -> DataRef -> Name
3181   // treat it as a special case for argument passing and bypass
3182   // the C1002/C1014 constraint checking in expression semantics.
3183   if (const auto *name{parser::Unwrap<parser::Name>(expr)}) {
3184     if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) {
3185       auto restorer{context_.AllowWholeAssumedSizeArray()};
3186       return context_.Analyze(expr);
3187     }
3188   }
3189   return context_.Analyze(expr);
3190 }
3191 
3192 bool ArgumentAnalyzer::AreConformable() const {
3193   CHECK(!fatalErrors_ && actuals_.size() == 2);
3194   return evaluate::AreConformable(*actuals_[0], *actuals_[1]);
3195 }
3196 
3197 // Look for a type-bound operator in the type of arg number passIndex.
3198 const Symbol *ArgumentAnalyzer::FindBoundOp(
3199     parser::CharBlock oprName, int passIndex) {
3200   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
3201   if (!type || !type->scope()) {
3202     return nullptr;
3203   }
3204   const Symbol *symbol{type->scope()->FindComponent(oprName)};
3205   if (!symbol) {
3206     return nullptr;
3207   }
3208   sawDefinedOp_ = symbol;
3209   ExpressionAnalyzer::AdjustActuals adjustment{
3210       [&](const Symbol &proc, ActualArguments &) {
3211         return passIndex == GetPassIndex(proc);
3212       }};
3213   const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
3214   if (!result) {
3215     context_.EmitGenericResolutionError(*symbol);
3216   }
3217   return result;
3218 }
3219 
3220 // If there is an implicit conversion between intrinsic types, make it explicit
3221 void ArgumentAnalyzer::AddAssignmentConversion(
3222     const DynamicType &lhsType, const DynamicType &rhsType) {
3223   if (lhsType.category() == rhsType.category() &&
3224       lhsType.kind() == rhsType.kind()) {
3225     // no conversion necessary
3226   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
3227     actuals_[1] = ActualArgument{*rhsExpr};
3228   } else {
3229     actuals_[1] = std::nullopt;
3230   }
3231 }
3232 
3233 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
3234   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
3235 }
3236 int ArgumentAnalyzer::GetRank(std::size_t i) const {
3237   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
3238 }
3239 
3240 // If the argument at index i is a BOZ literal, convert its type to match the
3241 // otherType.  It it's REAL convert to REAL, otherwise convert to INTEGER.
3242 // Note that IBM supports comparing BOZ literals to CHARACTER operands.  That
3243 // is not currently supported.
3244 void ArgumentAnalyzer::ConvertBOZ(
3245     std::size_t i, std::optional<DynamicType> otherType) {
3246   if (IsBOZLiteral(i)) {
3247     Expr<SomeType> &&argExpr{MoveExpr(i)};
3248     auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
3249     if (otherType && otherType->category() == TypeCategory::Real) {
3250       MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>(
3251           context_.context().GetDefaultKind(TypeCategory::Real),
3252           std::move(*boz))};
3253       actuals_[i] = std::move(*realExpr);
3254     } else {
3255       MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>(
3256           context_.context().GetDefaultKind(TypeCategory::Integer),
3257           std::move(*boz))};
3258       actuals_[i] = std::move(*intExpr);
3259     }
3260   }
3261 }
3262 
3263 // Report error resolving opr when there is a user-defined one available
3264 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
3265   std::string type0{TypeAsFortran(0)};
3266   auto rank0{actuals_[0]->Rank()};
3267   if (actuals_.size() == 1) {
3268     if (rank0 > 0) {
3269       context_.Say("No intrinsic or user-defined %s matches "
3270                    "rank %d array of %s"_err_en_US,
3271           opr, rank0, type0);
3272     } else {
3273       context_.Say("No intrinsic or user-defined %s matches "
3274                    "operand type %s"_err_en_US,
3275           opr, type0);
3276     }
3277   } else {
3278     std::string type1{TypeAsFortran(1)};
3279     auto rank1{actuals_[1]->Rank()};
3280     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
3281       context_.Say("No intrinsic or user-defined %s matches "
3282                    "rank %d array of %s and rank %d array of %s"_err_en_US,
3283           opr, rank0, type0, rank1, type1);
3284     } else if (isAssignment && rank0 != rank1) {
3285       if (rank0 == 0) {
3286         context_.Say("No intrinsic or user-defined %s matches "
3287                      "scalar %s and rank %d array of %s"_err_en_US,
3288             opr, type0, rank1, type1);
3289       } else {
3290         context_.Say("No intrinsic or user-defined %s matches "
3291                      "rank %d array of %s and scalar %s"_err_en_US,
3292             opr, rank0, type0, type1);
3293       }
3294     } else {
3295       context_.Say("No intrinsic or user-defined %s matches "
3296                    "operand types %s and %s"_err_en_US,
3297           opr, type0, type1);
3298     }
3299   }
3300 }
3301 
3302 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
3303   if (i >= actuals_.size() || !actuals_[i]) {
3304     return "missing argument";
3305   } else if (std::optional<DynamicType> type{GetType(i)}) {
3306     return type->category() == TypeCategory::Derived
3307         ? "TYPE("s + type->AsFortran() + ')'
3308         : type->category() == TypeCategory::Character
3309         ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
3310         : ToUpperCase(type->AsFortran());
3311   } else {
3312     return "untyped";
3313   }
3314 }
3315 
3316 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() {
3317   for (const auto &actual : actuals_) {
3318     if (!actual || !actual->GetType()) {
3319       return true;
3320     }
3321   }
3322   return false;
3323 }
3324 
3325 } // namespace Fortran::evaluate
3326 
3327 namespace Fortran::semantics {
3328 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
3329     SemanticsContext &context, common::TypeCategory category,
3330     const std::optional<parser::KindSelector> &selector) {
3331   evaluate::ExpressionAnalyzer analyzer{context};
3332   auto restorer{
3333       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3334   return analyzer.AnalyzeKindSelector(category, selector);
3335 }
3336 
3337 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) {
3338   evaluate::ExpressionAnalyzer{context}.Analyze(call);
3339 }
3340 
3341 const evaluate::Assignment *AnalyzeAssignmentStmt(
3342     SemanticsContext &context, const parser::AssignmentStmt &stmt) {
3343   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3344 }
3345 const evaluate::Assignment *AnalyzePointerAssignmentStmt(
3346     SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) {
3347   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3348 }
3349 
3350 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3351 
3352 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
3353   parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
3354   const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
3355   auto name{bounds.name.thing.thing};
3356   int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
3357   if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
3358     if (dynamicType->category() == TypeCategory::Integer) {
3359       kind = dynamicType->kind();
3360     }
3361   }
3362   exprAnalyzer_.AddImpliedDo(name.source, kind);
3363   parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
3364   exprAnalyzer_.RemoveImpliedDo(name.source);
3365   return false;
3366 }
3367 
3368 bool ExprChecker::Walk(const parser::Program &program) {
3369   parser::Walk(program, *this);
3370   return !context_.AnyFatalError();
3371 }
3372 } // namespace Fortran::semantics
3373