1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } else { 59 return GetCharLength(); 60 } 61 } 62 63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 64 const std::optional<parser::TypeSpec> &spec) { 65 if (spec) { 66 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 67 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 68 // (viz., an intrinsic type with valid known kind or a non-polymorphic 69 // & non-ABSTRACT derived type). 70 if (const semantics::IntrinsicTypeSpec * 71 intrinsic{typeSpec->AsIntrinsic()}) { 72 TypeCategory category{intrinsic->category()}; 73 if (auto optKind{ToInt64(intrinsic->kind())}) { 74 int kind{static_cast<int>(*optKind)}; 75 if (category == TypeCategory::Character) { 76 const semantics::CharacterTypeSpec &cts{ 77 typeSpec->characterTypeSpec()}; 78 const semantics::ParamValue &len{cts.length()}; 79 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 80 // type guards, but not in array constructors. 81 return DynamicTypeWithLength{DynamicType{kind, len}}; 82 } else { 83 return DynamicTypeWithLength{DynamicType{category, kind}}; 84 } 85 } 86 } else if (const semantics::DerivedTypeSpec * 87 derived{typeSpec->AsDerived()}) { 88 return DynamicTypeWithLength{DynamicType{*derived}}; 89 } 90 } 91 } 92 return std::nullopt; 93 } 94 95 class ArgumentAnalyzer { 96 public: 97 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 98 : context_{context}, source_{context.GetContextualMessages().at()}, 99 isProcedureCall_{false} {} 100 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 101 bool isProcedureCall = false) 102 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 103 bool fatalErrors() const { return fatalErrors_; } 104 ActualArguments &&GetActuals() { 105 CHECK(!fatalErrors_); 106 return std::move(actuals_); 107 } 108 const Expr<SomeType> &GetExpr(std::size_t i) const { 109 return DEREF(actuals_.at(i).value().UnwrapExpr()); 110 } 111 Expr<SomeType> &&MoveExpr(std::size_t i) { 112 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 113 } 114 void Analyze(const common::Indirection<parser::Expr> &x) { 115 Analyze(x.value()); 116 } 117 void Analyze(const parser::Expr &x) { 118 actuals_.emplace_back(AnalyzeExpr(x)); 119 fatalErrors_ |= !actuals_.back(); 120 } 121 void Analyze(const parser::Variable &); 122 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 123 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 124 std::optional<DynamicType> otherType); 125 126 bool IsIntrinsicRelational( 127 RelationalOperator, const DynamicType &, const DynamicType &) const; 128 bool IsIntrinsicLogical() const; 129 bool IsIntrinsicNumeric(NumericOperator) const; 130 bool IsIntrinsicConcat() const; 131 132 bool CheckConformance(); 133 bool CheckForNullPointer(const char *where = "as an operand here"); 134 135 // Find and return a user-defined operator or report an error. 136 // The provided message is used if there is no such operator. 137 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 138 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 139 template <typename E> 140 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 141 return TryDefinedOp( 142 context_.context().languageFeatures().GetNames(opr), msg); 143 } 144 // Find and return a user-defined assignment 145 std::optional<ProcedureRef> TryDefinedAssignment(); 146 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 147 std::optional<DynamicType> GetType(std::size_t) const; 148 void Dump(llvm::raw_ostream &); 149 150 private: 151 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 152 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 153 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 154 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 155 bool AreConformable() const; 156 const Symbol *FindBoundOp( 157 parser::CharBlock, int passIndex, const Symbol *&definedOp); 158 void AddAssignmentConversion( 159 const DynamicType &lhsType, const DynamicType &rhsType); 160 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 161 int GetRank(std::size_t) const; 162 bool IsBOZLiteral(std::size_t i) const { 163 return evaluate::IsBOZLiteral(GetExpr(i)); 164 } 165 void SayNoMatch(const std::string &, bool isAssignment = false); 166 std::string TypeAsFortran(std::size_t); 167 bool AnyUntypedOrMissingOperand(); 168 169 ExpressionAnalyzer &context_; 170 ActualArguments actuals_; 171 parser::CharBlock source_; 172 bool fatalErrors_{false}; 173 const bool isProcedureCall_; // false for user-defined op or assignment 174 }; 175 176 // Wraps a data reference in a typed Designator<>, and a procedure 177 // or procedure pointer reference in a ProcedureDesignator. 178 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 179 const Symbol &last{ref.GetLastSymbol()}; 180 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 181 if (semantics::IsProcedure(symbol)) { 182 if (auto *component{std::get_if<Component>(&ref.u)}) { 183 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 184 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 185 DIE("unexpected alternative in DataRef"); 186 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 187 if (symbol.has<semantics::GenericDetails>()) { 188 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 189 } else { 190 return Expr<SomeType>{ProcedureDesignator{symbol}}; 191 } 192 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 193 symbol.name().ToString())}) { 194 SpecificIntrinsic intrinsic{ 195 symbol.name().ToString(), std::move(*interface)}; 196 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 197 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 198 } else { 199 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 200 symbol.name()); 201 } 202 return std::nullopt; 203 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 204 return result; 205 } else { 206 if (!context_.HasError(last) && !context_.HasError(symbol)) { 207 AttachDeclaration( 208 Say("'%s' is not an object that can appear in an expression"_err_en_US, 209 last.name()), 210 symbol); 211 context_.SetError(last); 212 } 213 return std::nullopt; 214 } 215 } 216 217 // Some subscript semantic checks must be deferred until all of the 218 // subscripts are in hand. 219 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 220 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 221 int symbolRank{symbol.Rank()}; 222 int subscripts{static_cast<int>(ref.size())}; 223 if (subscripts == 0) { 224 return std::nullopt; // error recovery 225 } else if (subscripts != symbolRank) { 226 if (symbolRank != 0) { 227 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 228 symbolRank, symbol.name(), subscripts); 229 } 230 return std::nullopt; 231 } else if (Component * component{ref.base().UnwrapComponent()}) { 232 int baseRank{component->base().Rank()}; 233 if (baseRank > 0) { 234 int subscriptRank{0}; 235 for (const auto &expr : ref.subscript()) { 236 subscriptRank += expr.Rank(); 237 } 238 if (subscriptRank > 0) { // C919a 239 Say("Subscripts of component '%s' of rank-%d derived type " 240 "array have rank %d but must all be scalar"_err_en_US, 241 symbol.name(), baseRank, subscriptRank); 242 return std::nullopt; 243 } 244 } 245 } else if (const auto *object{ 246 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 247 // C928 & C1002 248 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 249 if (!last->upper() && object->IsAssumedSize()) { 250 Say("Assumed-size array '%s' must have explicit final " 251 "subscript upper bound value"_err_en_US, 252 symbol.name()); 253 return std::nullopt; 254 } 255 } 256 } else { 257 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 258 // which, if not an object, must be a construct entity from 259 // SELECT TYPE/RANK or ASSOCIATE. 260 CHECK(symbol.has<semantics::AssocEntityDetails>()); 261 } 262 return Designate(DataRef{std::move(ref)}); 263 } 264 265 // Applies subscripts to a data reference. 266 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 267 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 268 if (subscripts.empty()) { 269 return std::nullopt; // error recovery 270 } 271 return std::visit( 272 common::visitors{ 273 [&](SymbolRef &&symbol) { 274 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 275 }, 276 [&](Component &&c) { 277 return CompleteSubscripts( 278 ArrayRef{std::move(c), std::move(subscripts)}); 279 }, 280 [&](auto &&) -> MaybeExpr { 281 DIE("bad base for ArrayRef"); 282 return std::nullopt; 283 }, 284 }, 285 std::move(dataRef.u)); 286 } 287 288 // Top-level checks for data references. 289 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 290 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 291 const Symbol &symbol{component->GetLastSymbol()}; 292 int componentRank{symbol.Rank()}; 293 if (componentRank > 0) { 294 int baseRank{component->base().Rank()}; 295 if (baseRank > 0) { // C919a 296 Say("Reference to whole rank-%d component '%%%s' of " 297 "rank-%d array of derived type is not allowed"_err_en_US, 298 componentRank, symbol.name(), baseRank); 299 } 300 } 301 } 302 return Designate(std::move(dataRef)); 303 } 304 305 // Parse tree correction after a substring S(j:k) was misparsed as an 306 // array section. N.B. Fortran substrings have to have a range, not a 307 // single index. 308 static void FixMisparsedSubstring(const parser::Designator &d) { 309 auto &mutate{const_cast<parser::Designator &>(d)}; 310 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 311 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 312 &dataRef->u)}) { 313 parser::ArrayElement &arrElement{ae->value()}; 314 if (!arrElement.subscripts.empty()) { 315 auto iter{arrElement.subscripts.begin()}; 316 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 317 if (!std::get<2>(triplet->t) /* no stride */ && 318 ++iter == arrElement.subscripts.end() /* one subscript */) { 319 if (Symbol * 320 symbol{std::visit( 321 common::visitors{ 322 [](parser::Name &n) { return n.symbol; }, 323 [](common::Indirection<parser::StructureComponent> 324 &sc) { return sc.value().component.symbol; }, 325 [](auto &) -> Symbol * { return nullptr; }, 326 }, 327 arrElement.base.u)}) { 328 const Symbol &ultimate{symbol->GetUltimate()}; 329 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 330 if (!ultimate.IsObjectArray() && 331 type->category() == semantics::DeclTypeSpec::Character) { 332 // The ambiguous S(j:k) was parsed as an array section 333 // reference, but it's now clear that it's a substring. 334 // Fix the parse tree in situ. 335 mutate.u = arrElement.ConvertToSubstring(); 336 } 337 } 338 } 339 } 340 } 341 } 342 } 343 } 344 } 345 346 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 347 auto restorer{GetContextualMessages().SetLocation(d.source)}; 348 FixMisparsedSubstring(d); 349 // These checks have to be deferred to these "top level" data-refs where 350 // we can be sure that there are no following subscripts (yet). 351 // Substrings have already been run through TopLevelChecks() and 352 // won't be returned by ExtractDataRef(). 353 if (MaybeExpr result{Analyze(d.u)}) { 354 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 355 return TopLevelChecks(std::move(*dataRef)); 356 } 357 return result; 358 } 359 return std::nullopt; 360 } 361 362 // A utility subroutine to repackage optional expressions of various levels 363 // of type specificity as fully general MaybeExpr values. 364 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 365 return AsGenericExpr(std::move(x)); 366 } 367 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 368 if (x) { 369 return AsMaybeExpr(std::move(*x)); 370 } 371 return std::nullopt; 372 } 373 374 // Type kind parameter values for literal constants. 375 int ExpressionAnalyzer::AnalyzeKindParam( 376 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 377 if (!kindParam) { 378 return defaultKind; 379 } 380 return std::visit( 381 common::visitors{ 382 [](std::uint64_t k) { return static_cast<int>(k); }, 383 [&](const parser::Scalar< 384 parser::Integer<parser::Constant<parser::Name>>> &n) { 385 if (MaybeExpr ie{Analyze(n)}) { 386 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 387 int iv = *i64; 388 if (iv == *i64) { 389 return iv; 390 } 391 } 392 } 393 return defaultKind; 394 }, 395 }, 396 kindParam->u); 397 } 398 399 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 400 struct IntTypeVisitor { 401 using Result = MaybeExpr; 402 using Types = IntegerTypes; 403 template <typename T> Result Test() { 404 if (T::kind >= kind) { 405 const char *p{digits.begin()}; 406 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 407 if (!value.overflow) { 408 if (T::kind > kind) { 409 if (!isDefaultKind || 410 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 411 return std::nullopt; 412 } else if (analyzer.context().ShouldWarn( 413 LanguageFeature::BigIntLiterals)) { 414 analyzer.Say(digits, 415 "Integer literal is too large for default INTEGER(KIND=%d); " 416 "assuming INTEGER(KIND=%d)"_en_US, 417 kind, T::kind); 418 } 419 } 420 return Expr<SomeType>{ 421 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 422 } 423 } 424 return std::nullopt; 425 } 426 ExpressionAnalyzer &analyzer; 427 parser::CharBlock digits; 428 int kind; 429 bool isDefaultKind; 430 }; 431 432 template <typename PARSED> 433 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 434 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 435 bool isDefaultKind{!kindParam}; 436 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 437 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 438 auto digits{std::get<parser::CharBlock>(x.t)}; 439 if (MaybeExpr result{common::SearchTypes( 440 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 441 return result; 442 } else if (isDefaultKind) { 443 Say(digits, 444 "Integer literal is too large for any allowable " 445 "kind of INTEGER"_err_en_US); 446 } else { 447 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 448 kind); 449 } 450 } 451 return std::nullopt; 452 } 453 454 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 455 auto restorer{ 456 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 457 return IntLiteralConstant(x); 458 } 459 460 MaybeExpr ExpressionAnalyzer::Analyze( 461 const parser::SignedIntLiteralConstant &x) { 462 auto restorer{GetContextualMessages().SetLocation(x.source)}; 463 return IntLiteralConstant(x); 464 } 465 466 template <typename TYPE> 467 Constant<TYPE> ReadRealLiteral( 468 parser::CharBlock source, FoldingContext &context) { 469 const char *p{source.begin()}; 470 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 471 CHECK(p == source.end()); 472 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 473 auto value{valWithFlags.value}; 474 if (context.flushSubnormalsToZero()) { 475 value = value.FlushSubnormalToZero(); 476 } 477 return {value}; 478 } 479 480 struct RealTypeVisitor { 481 using Result = std::optional<Expr<SomeReal>>; 482 using Types = RealTypes; 483 484 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 485 : kind{k}, literal{lit}, context{ctx} {} 486 487 template <typename T> Result Test() { 488 if (kind == T::kind) { 489 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 490 } 491 return std::nullopt; 492 } 493 494 int kind; 495 parser::CharBlock literal; 496 FoldingContext &context; 497 }; 498 499 // Reads a real literal constant and encodes it with the right kind. 500 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 501 // Use a local message context around the real literal for better 502 // provenance on any messages. 503 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 504 // If a kind parameter appears, it defines the kind of the literal and the 505 // letter used in an exponent part must be 'E' (e.g., the 'E' in 506 // "6.02214E+23"). In the absence of an explicit kind parameter, any 507 // exponent letter determines the kind. Otherwise, defaults apply. 508 auto &defaults{context_.defaultKinds()}; 509 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 510 const char *end{x.real.source.end()}; 511 char expoLetter{' '}; 512 std::optional<int> letterKind; 513 for (const char *p{x.real.source.begin()}; p < end; ++p) { 514 if (parser::IsLetter(*p)) { 515 expoLetter = *p; 516 switch (expoLetter) { 517 case 'e': 518 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 519 break; 520 case 'd': 521 letterKind = defaults.doublePrecisionKind(); 522 break; 523 case 'q': 524 letterKind = defaults.quadPrecisionKind(); 525 break; 526 default: 527 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 528 } 529 break; 530 } 531 } 532 if (letterKind) { 533 defaultKind = *letterKind; 534 } 535 // C716 requires 'E' as an exponent, but this is more useful 536 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 537 if (letterKind && kind != *letterKind && expoLetter != 'e') { 538 Say("Explicit kind parameter on real constant disagrees with " 539 "exponent letter '%c'"_en_US, 540 expoLetter); 541 } 542 auto result{common::SearchTypes( 543 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 544 if (!result) { // C717 545 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 546 } 547 return AsMaybeExpr(std::move(result)); 548 } 549 550 MaybeExpr ExpressionAnalyzer::Analyze( 551 const parser::SignedRealLiteralConstant &x) { 552 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 553 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 554 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 555 if (sign == parser::Sign::Negative) { 556 return AsGenericExpr(-std::move(realExpr)); 557 } 558 } 559 return result; 560 } 561 return std::nullopt; 562 } 563 564 MaybeExpr ExpressionAnalyzer::Analyze( 565 const parser::SignedComplexLiteralConstant &x) { 566 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 567 if (!result) { 568 return std::nullopt; 569 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 570 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 571 } else { 572 return result; 573 } 574 } 575 576 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 577 return Analyze(x.u); 578 } 579 580 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 581 return AsMaybeExpr( 582 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 583 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 584 } 585 586 // CHARACTER literal processing. 587 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 588 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 589 return std::nullopt; 590 } 591 switch (kind) { 592 case 1: 593 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 594 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 595 string, true)}); 596 case 2: 597 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 598 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 599 string, true)}); 600 case 4: 601 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 602 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 603 string, true)}); 604 default: 605 CRASH_NO_CASE; 606 } 607 } 608 609 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 610 int kind{ 611 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 612 auto value{std::get<std::string>(x.t)}; 613 return AnalyzeString(std::move(value), kind); 614 } 615 616 MaybeExpr ExpressionAnalyzer::Analyze( 617 const parser::HollerithLiteralConstant &x) { 618 int kind{GetDefaultKind(TypeCategory::Character)}; 619 auto value{x.v}; 620 return AnalyzeString(std::move(value), kind); 621 } 622 623 // .TRUE. and .FALSE. of various kinds 624 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 625 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 626 GetDefaultKind(TypeCategory::Logical))}; 627 bool value{std::get<bool>(x.t)}; 628 auto result{common::SearchTypes( 629 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 630 kind, std::move(value)})}; 631 if (!result) { 632 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 633 } 634 return result; 635 } 636 637 // BOZ typeless literals 638 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 639 const char *p{x.v.c_str()}; 640 std::uint64_t base{16}; 641 switch (*p++) { 642 case 'b': 643 base = 2; 644 break; 645 case 'o': 646 base = 8; 647 break; 648 case 'z': 649 break; 650 case 'x': 651 break; 652 default: 653 CRASH_NO_CASE; 654 } 655 CHECK(*p == '"'); 656 ++p; 657 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 658 if (*p != '"') { 659 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 660 x.v); // C7107, C7108 661 return std::nullopt; 662 } 663 if (value.overflow) { 664 Say("BOZ literal '%s' too large"_err_en_US, x.v); 665 return std::nullopt; 666 } 667 return AsGenericExpr(std::move(value.value)); 668 } 669 670 // Names and named constants 671 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 672 auto restorer{GetContextualMessages().SetLocation(n.source)}; 673 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 674 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 675 *kind, AsExpr(ImpliedDoIndex{n.source}))); 676 } else if (context_.HasError(n)) { 677 return std::nullopt; 678 } else if (!n.symbol) { 679 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 680 return std::nullopt; 681 } else { 682 const Symbol &ultimate{n.symbol->GetUltimate()}; 683 if (ultimate.has<semantics::TypeParamDetails>()) { 684 // A bare reference to a derived type parameter (within a parameterized 685 // derived type definition) 686 return Fold(ConvertToType( 687 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 688 } else { 689 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 690 if (const semantics::Scope * 691 pure{semantics::FindPureProcedureContaining( 692 context_.FindScope(n.source))}) { 693 SayAt(n, 694 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 695 n.source, DEREF(pure->symbol()).name()); 696 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 697 } 698 } 699 if (!isWholeAssumedSizeArrayOk_ && 700 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 701 AttachDeclaration( 702 SayAt(n, 703 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 704 n.source), 705 *n.symbol); 706 } 707 return Designate(DataRef{*n.symbol}); 708 } 709 } 710 } 711 712 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 713 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 714 if (MaybeExpr value{Analyze(n.v)}) { 715 Expr<SomeType> folded{Fold(std::move(*value))}; 716 if (IsConstantExpr(folded)) { 717 return folded; 718 } 719 Say(n.v.source, "must be a constant"_err_en_US); // C718 720 } 721 return std::nullopt; 722 } 723 724 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 725 if (MaybeExpr value{Analyze(n.v)}) { 726 // Subtle: when the NullInit is a DataStmtConstant, it might 727 // be a misparse of a structure constructor without parameters 728 // or components (e.g., T()). Checking the result to ensure 729 // that a "=>" data entity initializer actually resolved to 730 // a null pointer has to be done by the caller. 731 return Fold(std::move(*value)); 732 } 733 return std::nullopt; 734 } 735 736 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 737 return Analyze(x.value()); 738 } 739 740 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 741 if (const auto &repeat{ 742 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 743 x.repetitions = -1; 744 if (MaybeExpr expr{Analyze(repeat->u)}) { 745 Expr<SomeType> folded{Fold(std::move(*expr))}; 746 if (auto value{ToInt64(folded)}) { 747 if (*value >= 0) { // C882 748 x.repetitions = *value; 749 } else { 750 Say(FindSourceLocation(repeat), 751 "Repeat count (%jd) for data value must not be negative"_err_en_US, 752 *value); 753 } 754 } 755 } 756 } 757 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 758 } 759 760 // Substring references 761 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 762 const std::optional<parser::ScalarIntExpr> &bound) { 763 if (bound) { 764 if (MaybeExpr expr{Analyze(*bound)}) { 765 if (expr->Rank() > 1) { 766 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 767 } 768 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 769 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 770 return {std::move(*ssIntExpr)}; 771 } 772 return {Expr<SubscriptInteger>{ 773 Convert<SubscriptInteger, TypeCategory::Integer>{ 774 std::move(*intExpr)}}}; 775 } else { 776 Say("substring bound expression is not INTEGER"_err_en_US); 777 } 778 } 779 } 780 return std::nullopt; 781 } 782 783 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 784 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 785 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 786 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 787 if (std::optional<DataRef> checked{ 788 ExtractDataRef(std::move(*newBaseExpr))}) { 789 const parser::SubstringRange &range{ 790 std::get<parser::SubstringRange>(ss.t)}; 791 std::optional<Expr<SubscriptInteger>> first{ 792 GetSubstringBound(std::get<0>(range.t))}; 793 std::optional<Expr<SubscriptInteger>> last{ 794 GetSubstringBound(std::get<1>(range.t))}; 795 const Symbol &symbol{checked->GetLastSymbol()}; 796 if (std::optional<DynamicType> dynamicType{ 797 DynamicType::From(symbol)}) { 798 if (dynamicType->category() == TypeCategory::Character) { 799 return WrapperHelper<TypeCategory::Character, Designator, 800 Substring>(dynamicType->kind(), 801 Substring{std::move(checked.value()), std::move(first), 802 std::move(last)}); 803 } 804 } 805 Say("substring may apply only to CHARACTER"_err_en_US); 806 } 807 } 808 } 809 } 810 return std::nullopt; 811 } 812 813 // CHARACTER literal substrings 814 MaybeExpr ExpressionAnalyzer::Analyze( 815 const parser::CharLiteralConstantSubstring &x) { 816 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 817 std::optional<Expr<SubscriptInteger>> lower{ 818 GetSubstringBound(std::get<0>(range.t))}; 819 std::optional<Expr<SubscriptInteger>> upper{ 820 GetSubstringBound(std::get<1>(range.t))}; 821 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 822 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 823 Expr<SubscriptInteger> length{ 824 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 825 charExpr->u)}; 826 if (!lower) { 827 lower = Expr<SubscriptInteger>{1}; 828 } 829 if (!upper) { 830 upper = Expr<SubscriptInteger>{ 831 static_cast<std::int64_t>(ToInt64(length).value())}; 832 } 833 return std::visit( 834 [&](auto &&ckExpr) -> MaybeExpr { 835 using Result = ResultType<decltype(ckExpr)>; 836 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 837 CHECK(DEREF(cp).size() == 1); 838 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 839 staticData->set_alignment(Result::kind) 840 .set_itemBytes(Result::kind) 841 .Push(cp->GetScalarValue().value()); 842 Substring substring{std::move(staticData), std::move(lower.value()), 843 std::move(upper.value())}; 844 return AsGenericExpr( 845 Expr<Result>{Designator<Result>{std::move(substring)}}); 846 }, 847 std::move(charExpr->u)); 848 } 849 } 850 return std::nullopt; 851 } 852 853 // Subscripted array references 854 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 855 MaybeExpr &&expr) { 856 if (expr) { 857 if (expr->Rank() > 1) { 858 Say("Subscript expression has rank %d greater than 1"_err_en_US, 859 expr->Rank()); 860 } 861 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 862 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 863 return std::move(*ssIntExpr); 864 } else { 865 return Expr<SubscriptInteger>{ 866 Convert<SubscriptInteger, TypeCategory::Integer>{ 867 std::move(*intExpr)}}; 868 } 869 } else { 870 Say("Subscript expression is not INTEGER"_err_en_US); 871 } 872 } 873 return std::nullopt; 874 } 875 876 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 877 const std::optional<parser::Subscript> &s) { 878 if (s) { 879 return AsSubscript(Analyze(*s)); 880 } else { 881 return std::nullopt; 882 } 883 } 884 885 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 886 const parser::SectionSubscript &ss) { 887 return std::visit( 888 common::visitors{ 889 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 890 const auto &lower{std::get<0>(t.t)}; 891 const auto &upper{std::get<1>(t.t)}; 892 const auto &stride{std::get<2>(t.t)}; 893 auto result{Triplet{ 894 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 895 if ((lower && !result.lower()) || (upper && !result.upper())) { 896 return std::nullopt; 897 } else { 898 return std::make_optional<Subscript>(result); 899 } 900 }, 901 [&](const auto &s) -> std::optional<Subscript> { 902 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 903 return Subscript{std::move(*subscriptExpr)}; 904 } else { 905 return std::nullopt; 906 } 907 }, 908 }, 909 ss.u); 910 } 911 912 // Empty result means an error occurred 913 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 914 const std::list<parser::SectionSubscript> &sss) { 915 bool error{false}; 916 std::vector<Subscript> subscripts; 917 for (const auto &s : sss) { 918 if (auto subscript{AnalyzeSectionSubscript(s)}) { 919 subscripts.emplace_back(std::move(*subscript)); 920 } else { 921 error = true; 922 } 923 } 924 return !error ? subscripts : std::vector<Subscript>{}; 925 } 926 927 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 928 MaybeExpr baseExpr; 929 { 930 auto restorer{AllowWholeAssumedSizeArray()}; 931 baseExpr = Analyze(ae.base); 932 } 933 if (baseExpr) { 934 if (ae.subscripts.empty()) { 935 // will be converted to function call later or error reported 936 } else if (baseExpr->Rank() == 0) { 937 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 938 if (!context_.HasError(symbol)) { 939 Say("'%s' is not an array"_err_en_US, symbol->name()); 940 context_.SetError(*symbol); 941 } 942 } 943 } else if (std::optional<DataRef> dataRef{ 944 ExtractDataRef(std::move(*baseExpr))}) { 945 return ApplySubscripts( 946 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 947 } else { 948 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 949 } 950 } 951 // error was reported: analyze subscripts without reporting more errors 952 auto restorer{GetContextualMessages().DiscardMessages()}; 953 AnalyzeSectionSubscripts(ae.subscripts); 954 return std::nullopt; 955 } 956 957 // Type parameter inquiries apply to data references, but don't depend 958 // on any trailing (co)subscripts. 959 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 960 return std::visit( 961 common::visitors{ 962 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 963 [](Component &&component) { 964 return NamedEntity{std::move(component)}; 965 }, 966 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 967 [](CoarrayRef &&coarrayRef) { 968 return NamedEntity{coarrayRef.GetLastSymbol()}; 969 }, 970 }, 971 std::move(designator.u)); 972 } 973 974 // Components of parent derived types are explicitly represented as such. 975 std::optional<Component> ExpressionAnalyzer::CreateComponent( 976 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 977 if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b 978 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); 979 } 980 if (&component.owner() == &scope) { 981 return Component{std::move(base), component}; 982 } 983 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 984 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 985 return CreateComponent( 986 DataRef{Component{std::move(base), *parentComponent}}, component, 987 *parentScope); 988 } 989 } 990 return std::nullopt; 991 } 992 993 // Derived type component references and type parameter inquiries 994 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 995 MaybeExpr base{Analyze(sc.base)}; 996 Symbol *sym{sc.component.symbol}; 997 if (!base || !sym || context_.HasError(sym)) { 998 return std::nullopt; 999 } 1000 const auto &name{sc.component.source}; 1001 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1002 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1003 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1004 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1005 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1006 if (dyType->category() == TypeCategory::Integer) { 1007 auto restorer{GetContextualMessages().SetLocation(name)}; 1008 return Fold(ConvertToType(*dyType, 1009 AsGenericExpr(TypeParamInquiry{ 1010 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1011 } 1012 } 1013 Say(name, "Type parameter is not INTEGER"_err_en_US); 1014 } else { 1015 Say(name, 1016 "A type parameter inquiry must be applied to " 1017 "a designator"_err_en_US); 1018 } 1019 } else if (!dtSpec || !dtSpec->scope()) { 1020 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1021 return std::nullopt; 1022 } else if (std::optional<DataRef> dataRef{ 1023 ExtractDataRef(std::move(*dtExpr))}) { 1024 if (auto component{ 1025 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1026 return Designate(DataRef{std::move(*component)}); 1027 } else { 1028 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1029 dtSpec->typeSymbol().name()); 1030 } 1031 } else { 1032 Say(name, 1033 "Base of component reference must be a data reference"_err_en_US); 1034 } 1035 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1036 // special part-ref: %re, %im, %kind, %len 1037 // Type errors are detected and reported in semantics. 1038 using MiscKind = semantics::MiscDetails::Kind; 1039 MiscKind kind{details->kind()}; 1040 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1041 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1042 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1043 Expr<SomeReal> realExpr{std::visit( 1044 [&](const auto &z) { 1045 using PartType = typename ResultType<decltype(z)>::Part; 1046 auto part{kind == MiscKind::ComplexPartRe 1047 ? ComplexPart::Part::RE 1048 : ComplexPart::Part::IM}; 1049 return AsCategoryExpr(Designator<PartType>{ 1050 ComplexPart{std::move(*dataRef), part}}); 1051 }, 1052 zExpr->u)}; 1053 return AsGenericExpr(std::move(realExpr)); 1054 } 1055 } 1056 } else if (kind == MiscKind::KindParamInquiry || 1057 kind == MiscKind::LenParamInquiry) { 1058 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1059 return MakeFunctionRef( 1060 name, ActualArguments{ActualArgument{std::move(*base)}}); 1061 } else { 1062 DIE("unexpected MiscDetails::Kind"); 1063 } 1064 } else { 1065 Say(name, "derived type required before component reference"_err_en_US); 1066 } 1067 return std::nullopt; 1068 } 1069 1070 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1071 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1072 DataRef *dataRef{&*maybeDataRef}; 1073 std::vector<Subscript> subscripts; 1074 SymbolVector reversed; 1075 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1076 subscripts = std::move(aRef->subscript()); 1077 reversed.push_back(aRef->GetLastSymbol()); 1078 if (Component * component{aRef->base().UnwrapComponent()}) { 1079 dataRef = &component->base(); 1080 } else { 1081 dataRef = nullptr; 1082 } 1083 } 1084 if (dataRef) { 1085 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1086 reversed.push_back(component->GetLastSymbol()); 1087 dataRef = &component->base(); 1088 } 1089 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1090 reversed.push_back(*baseSym); 1091 } else { 1092 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1093 } 1094 } 1095 std::vector<Expr<SubscriptInteger>> cosubscripts; 1096 bool cosubsOk{true}; 1097 for (const auto &cosub : 1098 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1099 MaybeExpr coex{Analyze(cosub)}; 1100 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1101 cosubscripts.push_back( 1102 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1103 } else { 1104 cosubsOk = false; 1105 } 1106 } 1107 if (cosubsOk && !reversed.empty()) { 1108 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1109 const Symbol &symbol{reversed.front()}; 1110 if (numCosubscripts != symbol.Corank()) { 1111 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1112 symbol.name(), symbol.Corank(), numCosubscripts); 1113 } 1114 } 1115 for (const auto &imageSelSpec : 1116 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1117 std::visit( 1118 common::visitors{ 1119 [&](const auto &x) { Analyze(x.v); }, 1120 }, 1121 imageSelSpec.u); 1122 } 1123 // Reverse the chain of symbols so that the base is first and coarray 1124 // ultimate component is last. 1125 if (cosubsOk) { 1126 return Designate( 1127 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1128 std::move(subscripts), std::move(cosubscripts)}}); 1129 } 1130 } 1131 return std::nullopt; 1132 } 1133 1134 int ExpressionAnalyzer::IntegerTypeSpecKind( 1135 const parser::IntegerTypeSpec &spec) { 1136 Expr<SubscriptInteger> value{ 1137 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1138 if (auto kind{ToInt64(value)}) { 1139 return static_cast<int>(*kind); 1140 } 1141 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1142 return GetDefaultKind(TypeCategory::Integer); 1143 } 1144 1145 // Array constructors 1146 1147 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1148 // all happen to have the same actual type T into one ArrayConstructor<T>. 1149 template <typename T> 1150 ArrayConstructorValues<T> MakeSpecific( 1151 ArrayConstructorValues<SomeType> &&from) { 1152 ArrayConstructorValues<T> to; 1153 for (ArrayConstructorValue<SomeType> &x : from) { 1154 std::visit( 1155 common::visitors{ 1156 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1157 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1158 to.Push(std::move(DEREF(typed))); 1159 }, 1160 [&](ImpliedDo<SomeType> &&impliedDo) { 1161 to.Push(ImpliedDo<T>{impliedDo.name(), 1162 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1163 std::move(impliedDo.stride()), 1164 MakeSpecific<T>(std::move(impliedDo.values()))}); 1165 }, 1166 }, 1167 std::move(x.u)); 1168 } 1169 return to; 1170 } 1171 1172 class ArrayConstructorContext { 1173 public: 1174 ArrayConstructorContext( 1175 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1176 : exprAnalyzer_{c}, type_{std::move(t)} {} 1177 1178 void Add(const parser::AcValue &); 1179 MaybeExpr ToExpr(); 1180 1181 // These interfaces allow *this to be used as a type visitor argument to 1182 // common::SearchTypes() to convert the array constructor to a typed 1183 // expression in ToExpr(). 1184 using Result = MaybeExpr; 1185 using Types = AllTypes; 1186 template <typename T> Result Test() { 1187 if (type_ && type_->category() == T::category) { 1188 if constexpr (T::category == TypeCategory::Derived) { 1189 if (!type_->IsUnlimitedPolymorphic()) { 1190 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1191 MakeSpecific<T>(std::move(values_))}); 1192 } 1193 } else if (type_->kind() == T::kind) { 1194 if constexpr (T::category == TypeCategory::Character) { 1195 if (auto len{type_->LEN()}) { 1196 return AsMaybeExpr(ArrayConstructor<T>{ 1197 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1198 } 1199 } else { 1200 return AsMaybeExpr( 1201 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1202 } 1203 } 1204 } 1205 return std::nullopt; 1206 } 1207 1208 private: 1209 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1210 1211 void Push(MaybeExpr &&); 1212 void Add(const parser::AcValue::Triplet &); 1213 void Add(const parser::Expr &); 1214 void Add(const parser::AcImpliedDo &); 1215 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1216 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1217 std::int64_t stride); 1218 1219 template <int KIND, typename A> 1220 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1221 const A &x) { 1222 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1223 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1224 return Fold(exprAnalyzer_.GetFoldingContext(), 1225 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1226 std::move(DEREF(intExpr)))); 1227 } 1228 return std::nullopt; 1229 } 1230 1231 // Nested array constructors all reference the same ExpressionAnalyzer, 1232 // which represents the nest of active implied DO loop indices. 1233 ExpressionAnalyzer &exprAnalyzer_; 1234 std::optional<DynamicTypeWithLength> type_; 1235 bool explicitType_{type_.has_value()}; 1236 std::optional<std::int64_t> constantLength_; 1237 ArrayConstructorValues<SomeType> values_; 1238 std::uint64_t messageDisplayedSet_{0}; 1239 }; 1240 1241 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1242 if (!x) { 1243 return; 1244 } 1245 if (!type_) { 1246 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1247 // Treat an array constructor of BOZ as if default integer. 1248 if (exprAnalyzer_.context().ShouldWarn( 1249 common::LanguageFeature::BOZAsDefaultInteger)) { 1250 exprAnalyzer_.Say( 1251 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1252 } 1253 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1254 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1255 std::move(*boz))); 1256 } 1257 } 1258 std::optional<DynamicType> dyType{x->GetType()}; 1259 if (!dyType) { 1260 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1261 if (!type_) { 1262 // Treat an array constructor of BOZ as if default integer. 1263 if (exprAnalyzer_.context().ShouldWarn( 1264 common::LanguageFeature::BOZAsDefaultInteger)) { 1265 exprAnalyzer_.Say( 1266 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1267 } 1268 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1269 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1270 std::move(*boz))); 1271 dyType = x.value().GetType(); 1272 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1273 x = std::move(cast); 1274 dyType = *type_; 1275 } else { 1276 if (!(messageDisplayedSet_ & 0x80)) { 1277 exprAnalyzer_.Say( 1278 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1279 messageDisplayedSet_ |= 0x80; 1280 } 1281 return; 1282 } 1283 } else { // procedure name, &c. 1284 if (!(messageDisplayedSet_ & 0x40)) { 1285 exprAnalyzer_.Say( 1286 "Item is not suitable for use in an array constructor"_err_en_US); 1287 messageDisplayedSet_ |= 0x40; 1288 } 1289 return; 1290 } 1291 } else if (dyType->IsUnlimitedPolymorphic()) { 1292 if (!(messageDisplayedSet_ & 8)) { 1293 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1294 "array constructor"_err_en_US); // C7113 1295 messageDisplayedSet_ |= 8; 1296 } 1297 return; 1298 } 1299 DynamicTypeWithLength xType{dyType.value()}; 1300 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1301 CHECK(xType.category() == TypeCategory::Character); 1302 xType.length = 1303 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1304 } 1305 if (!type_) { 1306 // If there is no explicit type-spec in an array constructor, the type 1307 // of the array is the declared type of all of the elements, which must 1308 // be well-defined and all match. 1309 // TODO: Possible language extension: use the most general type of 1310 // the values as the type of a numeric constructed array, convert all 1311 // of the other values to that type. Alternative: let the first value 1312 // determine the type, and convert the others to that type. 1313 CHECK(!explicitType_); 1314 type_ = std::move(xType); 1315 constantLength_ = ToInt64(type_->length); 1316 values_.Push(std::move(*x)); 1317 } else if (!explicitType_) { 1318 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1319 values_.Push(std::move(*x)); 1320 if (auto thisLen{ToInt64(xType.LEN())}) { 1321 if (constantLength_) { 1322 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1323 *thisLen != *constantLength_) { 1324 if (!(messageDisplayedSet_ & 1)) { 1325 exprAnalyzer_.Say( 1326 "Character literal in array constructor without explicit " 1327 "type has different length than earlier elements"_en_US); 1328 messageDisplayedSet_ |= 1; 1329 } 1330 } 1331 if (*thisLen > *constantLength_) { 1332 // Language extension: use the longest literal to determine the 1333 // length of the array constructor's character elements, not the 1334 // first, when there is no explicit type. 1335 *constantLength_ = *thisLen; 1336 type_->length = xType.LEN(); 1337 } 1338 } else { 1339 constantLength_ = *thisLen; 1340 type_->length = xType.LEN(); 1341 } 1342 } 1343 } else { 1344 if (!(messageDisplayedSet_ & 2)) { 1345 exprAnalyzer_.Say( 1346 "Values in array constructor must have the same declared type " 1347 "when no explicit type appears"_err_en_US); // C7110 1348 messageDisplayedSet_ |= 2; 1349 } 1350 } 1351 } else { 1352 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1353 values_.Push(std::move(*cast)); 1354 } else if (!(messageDisplayedSet_ & 4)) { 1355 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1356 "be converted to the type of the array '%s'"_err_en_US, 1357 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1358 messageDisplayedSet_ |= 4; 1359 } 1360 } 1361 } 1362 1363 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1364 std::visit( 1365 common::visitors{ 1366 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1367 [&](const common::Indirection<parser::Expr> &expr) { 1368 Add(expr.value()); 1369 }, 1370 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1371 Add(impliedDo.value()); 1372 }, 1373 }, 1374 x.u); 1375 } 1376 1377 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1378 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1379 std::optional<Expr<ImpliedDoIntType>> lower{ 1380 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1381 std::optional<Expr<ImpliedDoIntType>> upper{ 1382 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1383 std::optional<Expr<ImpliedDoIntType>> stride{ 1384 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1385 if (lower && upper) { 1386 if (!stride) { 1387 stride = Expr<ImpliedDoIntType>{1}; 1388 } 1389 if (!type_) { 1390 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1391 } 1392 auto v{std::move(values_)}; 1393 parser::CharBlock anonymous; 1394 Push(Expr<SomeType>{ 1395 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1396 std::swap(v, values_); 1397 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1398 std::move(*upper), std::move(*stride), std::move(v)}); 1399 } 1400 } 1401 1402 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1403 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1404 Push(exprAnalyzer_.Analyze(expr)); 1405 } 1406 1407 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1408 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1409 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1410 exprAnalyzer_.Analyze(bounds.name); 1411 parser::CharBlock name{bounds.name.thing.thing.source}; 1412 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1413 int kind{ImpliedDoIntType::kind}; 1414 if (const auto dynamicType{DynamicType::From(symbol)}) { 1415 kind = dynamicType->kind(); 1416 } 1417 std::optional<Expr<ImpliedDoIntType>> lower{ 1418 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1419 std::optional<Expr<ImpliedDoIntType>> upper{ 1420 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1421 if (lower && upper) { 1422 std::optional<Expr<ImpliedDoIntType>> stride{ 1423 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1424 if (!stride) { 1425 stride = Expr<ImpliedDoIntType>{1}; 1426 } 1427 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1428 // Check for constant bounds; the loop may require complete unrolling 1429 // of the parse tree if all bounds are constant in order to allow the 1430 // implied DO loop index to qualify as a constant expression. 1431 auto cLower{ToInt64(lower)}; 1432 auto cUpper{ToInt64(upper)}; 1433 auto cStride{ToInt64(stride)}; 1434 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1435 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1436 "The stride of an implied DO loop must not be zero"_err_en_US); 1437 messageDisplayedSet_ |= 0x10; 1438 } 1439 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1440 bool isNonemptyConstant{isConstant && 1441 ((*cStride > 0 && *cLower <= *cUpper) || 1442 (*cStride < 0 && *cLower >= *cUpper))}; 1443 bool unrollConstantLoop{false}; 1444 parser::Messages buffer; 1445 auto saveMessagesDisplayed{messageDisplayedSet_}; 1446 { 1447 auto messageRestorer{ 1448 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1449 auto v{std::move(values_)}; 1450 for (const auto &value : 1451 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1452 Add(value); 1453 } 1454 std::swap(v, values_); 1455 if (isNonemptyConstant && buffer.AnyFatalError()) { 1456 unrollConstantLoop = true; 1457 } else { 1458 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1459 std::move(*upper), std::move(*stride), std::move(v)}); 1460 } 1461 } 1462 if (unrollConstantLoop) { 1463 messageDisplayedSet_ = saveMessagesDisplayed; 1464 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1465 } else if (auto *messages{ 1466 exprAnalyzer_.GetContextualMessages().messages()}) { 1467 messages->Annex(std::move(buffer)); 1468 } 1469 exprAnalyzer_.RemoveImpliedDo(name); 1470 } else if (!(messageDisplayedSet_ & 0x20)) { 1471 exprAnalyzer_.SayAt(name, 1472 "Implied DO index '%s' is active in a surrounding implied DO loop " 1473 "and may not have the same name"_err_en_US, 1474 name); // C7115 1475 messageDisplayedSet_ |= 0x20; 1476 } 1477 } 1478 } 1479 1480 // Fortran considers an implied DO index of an array constructor to be 1481 // a constant expression if the bounds of the implied DO loop are constant. 1482 // Usually this doesn't matter, but if we emitted spurious messages as a 1483 // result of not using constant values for the index while analyzing the 1484 // items, we need to do it again the "hard" way with multiple iterations over 1485 // the parse tree. 1486 void ArrayConstructorContext::UnrollConstantImpliedDo( 1487 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1488 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1489 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1490 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1491 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1492 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1493 at += stride) { 1494 for (const auto &value : 1495 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1496 Add(value); 1497 } 1498 } 1499 foldingContext.EndImpliedDo(name); 1500 } 1501 1502 MaybeExpr ArrayConstructorContext::ToExpr() { 1503 return common::SearchTypes(std::move(*this)); 1504 } 1505 1506 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1507 const parser::AcSpec &acSpec{array.v}; 1508 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1509 for (const parser::AcValue &value : acSpec.values) { 1510 acContext.Add(value); 1511 } 1512 return acContext.ToExpr(); 1513 } 1514 1515 MaybeExpr ExpressionAnalyzer::Analyze( 1516 const parser::StructureConstructor &structure) { 1517 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1518 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1519 parser::CharBlock &typeName{structureType.source}; 1520 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1521 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1522 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1523 if (!CheckIsValidForwardReference(dtSpec)) { 1524 return std::nullopt; 1525 } 1526 } 1527 } 1528 if (!parsedType.derivedTypeSpec) { 1529 return std::nullopt; 1530 } 1531 const auto &spec{*parsedType.derivedTypeSpec}; 1532 const Symbol &typeSymbol{spec.typeSymbol()}; 1533 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1534 return std::nullopt; // error recovery 1535 } 1536 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1537 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1538 1539 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1540 AttachDeclaration(Say(typeName, 1541 "ABSTRACT derived type '%s' may not be used in a " 1542 "structure constructor"_err_en_US, 1543 typeName), 1544 typeSymbol); // C7114 1545 } 1546 1547 // This iterator traverses all of the components in the derived type and its 1548 // parents. The symbols for whole parent components appear after their 1549 // own components and before the components of the types that extend them. 1550 // E.g., TYPE :: A; REAL X; END TYPE 1551 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1552 // produces the component list X, A, Y. 1553 // The order is important below because a structure constructor can 1554 // initialize X or A by name, but not both. 1555 auto components{semantics::OrderedComponentIterator{spec}}; 1556 auto nextAnonymous{components.begin()}; 1557 1558 std::set<parser::CharBlock> unavailable; 1559 bool anyKeyword{false}; 1560 StructureConstructor result{spec}; 1561 bool checkConflicts{true}; // until we hit one 1562 auto &messages{GetContextualMessages()}; 1563 1564 for (const auto &component : 1565 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1566 const parser::Expr &expr{ 1567 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1568 parser::CharBlock source{expr.source}; 1569 auto restorer{messages.SetLocation(source)}; 1570 const Symbol *symbol{nullptr}; 1571 MaybeExpr value{Analyze(expr)}; 1572 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1573 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1574 anyKeyword = true; 1575 source = kw->v.source; 1576 symbol = kw->v.symbol; 1577 if (!symbol) { 1578 auto componentIter{std::find_if(components.begin(), components.end(), 1579 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1580 if (componentIter != components.end()) { 1581 symbol = &*componentIter; 1582 } 1583 } 1584 if (!symbol) { // C7101 1585 Say(source, 1586 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1587 source, typeName); 1588 } 1589 } else { 1590 if (anyKeyword) { // C7100 1591 Say(source, 1592 "Value in structure constructor lacks a component name"_err_en_US); 1593 checkConflicts = false; // stem cascade 1594 } 1595 // Here's a regrettably common extension of the standard: anonymous 1596 // initialization of parent components, e.g., T(PT(1)) rather than 1597 // T(1) or T(PT=PT(1)). 1598 if (nextAnonymous == components.begin() && parentComponent && 1599 valueType == DynamicType::From(*parentComponent) && 1600 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1601 auto iter{ 1602 std::find(components.begin(), components.end(), *parentComponent)}; 1603 if (iter != components.end()) { 1604 symbol = parentComponent; 1605 nextAnonymous = ++iter; 1606 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1607 Say(source, 1608 "Whole parent component '%s' in structure " 1609 "constructor should not be anonymous"_en_US, 1610 symbol->name()); 1611 } 1612 } 1613 } 1614 while (!symbol && nextAnonymous != components.end()) { 1615 const Symbol &next{*nextAnonymous}; 1616 ++nextAnonymous; 1617 if (!next.test(Symbol::Flag::ParentComp)) { 1618 symbol = &next; 1619 } 1620 } 1621 if (!symbol) { 1622 Say(source, "Unexpected value in structure constructor"_err_en_US); 1623 } 1624 } 1625 if (symbol) { 1626 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1627 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1628 Say(source, *msg); 1629 } 1630 } 1631 if (checkConflicts) { 1632 auto componentIter{ 1633 std::find(components.begin(), components.end(), *symbol)}; 1634 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1635 // C797, C798 1636 Say(source, 1637 "Component '%s' conflicts with another component earlier in " 1638 "this structure constructor"_err_en_US, 1639 symbol->name()); 1640 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1641 // Make earlier components unavailable once a whole parent appears. 1642 for (auto it{components.begin()}; it != componentIter; ++it) { 1643 unavailable.insert(it->name()); 1644 } 1645 } else { 1646 // Make whole parent components unavailable after any of their 1647 // constituents appear. 1648 for (auto it{componentIter}; it != components.end(); ++it) { 1649 if (it->test(Symbol::Flag::ParentComp)) { 1650 unavailable.insert(it->name()); 1651 } 1652 } 1653 } 1654 } 1655 unavailable.insert(symbol->name()); 1656 if (value) { 1657 if (symbol->has<semantics::ProcEntityDetails>()) { 1658 CHECK(IsPointer(*symbol)); 1659 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1660 // C1594(4) 1661 const auto &innermost{context_.FindScope(expr.source)}; 1662 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1663 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1664 if (const Symbol * 1665 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1666 if (auto *msg{Say(expr.source, 1667 "Externally visible object '%s' may not be " 1668 "associated with pointer component '%s' in a " 1669 "pure procedure"_err_en_US, 1670 object->name(), pointer->name())}) { 1671 msg->Attach(object->name(), "Object declaration"_en_US) 1672 .Attach(pointer->name(), "Pointer declaration"_en_US); 1673 } 1674 } 1675 } 1676 } 1677 } else if (symbol->has<semantics::TypeParamDetails>()) { 1678 Say(expr.source, 1679 "Type parameter '%s' may not appear as a component " 1680 "of a structure constructor"_err_en_US, 1681 symbol->name()); 1682 continue; 1683 } else { 1684 Say(expr.source, 1685 "Component '%s' is neither a procedure pointer " 1686 "nor a data object"_err_en_US, 1687 symbol->name()); 1688 continue; 1689 } 1690 if (IsPointer(*symbol)) { 1691 semantics::CheckPointerAssignment( 1692 GetFoldingContext(), *symbol, *value); // C7104, C7105 1693 result.Add(*symbol, Fold(std::move(*value))); 1694 } else if (MaybeExpr converted{ 1695 ConvertToType(*symbol, std::move(*value))}) { 1696 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1697 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1698 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1699 AttachDeclaration( 1700 Say(expr.source, 1701 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1702 GetRank(*valueShape), symbol->name()), 1703 *symbol); 1704 } else { 1705 auto checked{ 1706 CheckConformance(messages, *componentShape, *valueShape, 1707 CheckConformanceFlags::RightIsExpandableDeferred, 1708 "component", "value")}; 1709 if (checked && *checked && GetRank(*componentShape) > 0 && 1710 GetRank(*valueShape) == 0 && 1711 !IsExpandableScalar(*converted)) { 1712 AttachDeclaration( 1713 Say(expr.source, 1714 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1715 symbol->name()), 1716 *symbol); 1717 } 1718 if (checked.value_or(true)) { 1719 result.Add(*symbol, std::move(*converted)); 1720 } 1721 } 1722 } else { 1723 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1724 } 1725 } else { 1726 AttachDeclaration( 1727 Say(expr.source, 1728 "Shape of component '%s' cannot be determined"_err_en_US, 1729 symbol->name()), 1730 *symbol); 1731 } 1732 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1733 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1734 } else if (auto symType{DynamicType::From(symbol)}) { 1735 if (valueType) { 1736 AttachDeclaration( 1737 Say(expr.source, 1738 "Value in structure constructor of type %s is " 1739 "incompatible with component '%s' of type %s"_err_en_US, 1740 valueType->AsFortran(), symbol->name(), 1741 symType->AsFortran()), 1742 *symbol); 1743 } else { 1744 AttachDeclaration( 1745 Say(expr.source, 1746 "Value in structure constructor is incompatible with " 1747 " component '%s' of type %s"_err_en_US, 1748 symbol->name(), symType->AsFortran()), 1749 *symbol); 1750 } 1751 } 1752 } 1753 } 1754 } 1755 1756 // Ensure that unmentioned component objects have default initializers. 1757 for (const Symbol &symbol : components) { 1758 if (!symbol.test(Symbol::Flag::ParentComp) && 1759 unavailable.find(symbol.name()) == unavailable.cend() && 1760 !IsAllocatable(symbol)) { 1761 if (const auto *details{ 1762 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1763 if (details->init()) { 1764 result.Add(symbol, common::Clone(*details->init())); 1765 } else { // C799 1766 AttachDeclaration(Say(typeName, 1767 "Structure constructor lacks a value for " 1768 "component '%s'"_err_en_US, 1769 symbol.name()), 1770 symbol); 1771 } 1772 } 1773 } 1774 } 1775 1776 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1777 } 1778 1779 static std::optional<parser::CharBlock> GetPassName( 1780 const semantics::Symbol &proc) { 1781 return std::visit( 1782 [](const auto &details) { 1783 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1784 std::decay_t<decltype(details)>>) { 1785 return details.passName(); 1786 } else { 1787 return std::optional<parser::CharBlock>{}; 1788 } 1789 }, 1790 proc.details()); 1791 } 1792 1793 static int GetPassIndex(const Symbol &proc) { 1794 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1795 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1796 const auto *interface{semantics::FindInterface(proc)}; 1797 if (!passName || !interface) { 1798 return 0; // first argument is passed-object 1799 } 1800 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1801 int index{0}; 1802 for (const auto *arg : subp.dummyArgs()) { 1803 if (arg && arg->name() == passName) { 1804 return index; 1805 } 1806 ++index; 1807 } 1808 DIE("PASS argument name not in dummy argument list"); 1809 } 1810 1811 // Injects an expression into an actual argument list as the "passed object" 1812 // for a type-bound procedure reference that is not NOPASS. Adds an 1813 // argument keyword if possible, but not when the passed object goes 1814 // before a positional argument. 1815 // e.g., obj%tbp(x) -> tbp(obj,x). 1816 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1817 const Symbol &component, bool isPassedObject = true) { 1818 if (component.attrs().test(semantics::Attr::NOPASS)) { 1819 return; 1820 } 1821 int passIndex{GetPassIndex(component)}; 1822 auto iter{actuals.begin()}; 1823 int at{0}; 1824 while (iter < actuals.end() && at < passIndex) { 1825 if (*iter && (*iter)->keyword()) { 1826 iter = actuals.end(); 1827 break; 1828 } 1829 ++iter; 1830 ++at; 1831 } 1832 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1833 passed.set_isPassedObject(isPassedObject); 1834 if (iter == actuals.end()) { 1835 if (auto passName{GetPassName(component)}) { 1836 passed.set_keyword(*passName); 1837 } 1838 } 1839 actuals.emplace(iter, std::move(passed)); 1840 } 1841 1842 // Return the compile-time resolution of a procedure binding, if possible. 1843 static const Symbol *GetBindingResolution( 1844 const std::optional<DynamicType> &baseType, const Symbol &component) { 1845 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1846 if (!binding) { 1847 return nullptr; 1848 } 1849 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1850 (!baseType || baseType->IsPolymorphic())) { 1851 return nullptr; 1852 } 1853 return &binding->symbol(); 1854 } 1855 1856 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1857 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1858 -> std::optional<CalleeAndArguments> { 1859 const parser::StructureComponent &sc{pcr.v.thing}; 1860 if (MaybeExpr base{Analyze(sc.base)}) { 1861 if (const Symbol * sym{sc.component.symbol}) { 1862 if (context_.HasError(sym)) { 1863 return std::nullopt; 1864 } 1865 if (!IsProcedure(*sym)) { 1866 AttachDeclaration( 1867 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1868 sc.component.source), 1869 *sym); 1870 return std::nullopt; 1871 } 1872 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1873 if (sym->has<semantics::GenericDetails>()) { 1874 AdjustActuals adjustment{ 1875 [&](const Symbol &proc, ActualArguments &actuals) { 1876 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1877 AddPassArg(actuals, std::move(*dtExpr), proc); 1878 } 1879 return true; 1880 }}; 1881 auto pair{ResolveGeneric(*sym, arguments, adjustment)}; 1882 sym = pair.first; 1883 if (!sym) { 1884 EmitGenericResolutionError(*sc.component.symbol, pair.second); 1885 return std::nullopt; 1886 } 1887 } 1888 if (const Symbol * 1889 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1890 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1891 return CalleeAndArguments{ 1892 ProcedureDesignator{*resolution}, std::move(arguments)}; 1893 } else if (std::optional<DataRef> dataRef{ 1894 ExtractDataRef(std::move(*dtExpr))}) { 1895 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1896 return CalleeAndArguments{ 1897 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1898 std::move(arguments)}; 1899 } else { 1900 AddPassArg(arguments, 1901 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1902 *sym); 1903 return CalleeAndArguments{ 1904 ProcedureDesignator{*sym}, std::move(arguments)}; 1905 } 1906 } 1907 } 1908 Say(sc.component.source, 1909 "Base of procedure component reference is not a derived-type object"_err_en_US); 1910 } 1911 } 1912 CHECK(!GetContextualMessages().empty()); 1913 return std::nullopt; 1914 } 1915 1916 // Can actual be argument associated with dummy? 1917 static bool CheckCompatibleArgument(bool isElemental, 1918 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1919 const auto *expr{actual.UnwrapExpr()}; 1920 return std::visit( 1921 common::visitors{ 1922 [&](const characteristics::DummyDataObject &x) { 1923 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 1924 IsBareNullPointer(expr)) { 1925 // NULL() without MOLD= is compatible with any dummy data pointer 1926 // but cannot be allowed to lead to ambiguity. 1927 return true; 1928 } else if (!isElemental && actual.Rank() != x.type.Rank() && 1929 !x.type.attrs().test( 1930 characteristics::TypeAndShape::Attr::AssumedRank)) { 1931 return false; 1932 } else if (auto actualType{actual.GetType()}) { 1933 return x.type.type().IsTkCompatibleWith(*actualType); 1934 } 1935 return false; 1936 }, 1937 [&](const characteristics::DummyProcedure &) { 1938 return expr && IsProcedurePointerTarget(*expr); 1939 }, 1940 [&](const characteristics::AlternateReturn &) { 1941 return actual.isAlternateReturn(); 1942 }, 1943 }, 1944 dummy.u); 1945 } 1946 1947 // Are the actual arguments compatible with the dummy arguments of procedure? 1948 static bool CheckCompatibleArguments( 1949 const characteristics::Procedure &procedure, 1950 const ActualArguments &actuals) { 1951 bool isElemental{procedure.IsElemental()}; 1952 const auto &dummies{procedure.dummyArguments}; 1953 CHECK(dummies.size() == actuals.size()); 1954 for (std::size_t i{0}; i < dummies.size(); ++i) { 1955 const characteristics::DummyArgument &dummy{dummies[i]}; 1956 const std::optional<ActualArgument> &actual{actuals[i]}; 1957 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1958 return false; 1959 } 1960 } 1961 return true; 1962 } 1963 1964 // Handles a forward reference to a module function from what must 1965 // be a specification expression. Return false if the symbol is 1966 // an invalid forward reference. 1967 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1968 if (context_.HasError(symbol)) { 1969 return false; 1970 } 1971 if (const auto *details{ 1972 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1973 if (details->kind() == semantics::SubprogramKind::Module) { 1974 // If this symbol is still a SubprogramNameDetails, we must be 1975 // checking a specification expression in a sibling module 1976 // procedure. Resolve its names now so that its interface 1977 // is known. 1978 semantics::ResolveSpecificationParts(context_, symbol); 1979 if (symbol.has<semantics::SubprogramNameDetails>()) { 1980 // When the symbol hasn't had its details updated, we must have 1981 // already been in the process of resolving the function's 1982 // specification part; but recursive function calls are not 1983 // allowed in specification parts (10.1.11 para 5). 1984 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1985 symbol.name()); 1986 context_.SetError(symbol); 1987 return false; 1988 } 1989 } else { // 10.1.11 para 4 1990 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1991 symbol.name()); 1992 context_.SetError(symbol); 1993 return false; 1994 } 1995 } 1996 return true; 1997 } 1998 1999 // Resolve a call to a generic procedure with given actual arguments. 2000 // adjustActuals is called on procedure bindings to handle pass arg. 2001 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 2002 const Symbol &symbol, const ActualArguments &actuals, 2003 const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) { 2004 const Symbol *elemental{nullptr}; // matching elemental specific proc 2005 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2006 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 2007 bool anyBareNullActual{ 2008 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2009 return IsBareNullPointer(iter->UnwrapExpr()); 2010 }) != actuals.end()}; 2011 for (const Symbol &specific : details.specificProcs()) { 2012 if (!ResolveForward(specific)) { 2013 continue; 2014 } 2015 if (std::optional<characteristics::Procedure> procedure{ 2016 characteristics::Procedure::Characterize( 2017 ProcedureDesignator{specific}, context_.foldingContext())}) { 2018 ActualArguments localActuals{actuals}; 2019 if (specific.has<semantics::ProcBindingDetails>()) { 2020 if (!adjustActuals.value()(specific, localActuals)) { 2021 continue; 2022 } 2023 } 2024 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, 2025 GetFoldingContext(), false /* no integer conversions */) && 2026 CheckCompatibleArguments(*procedure, localActuals)) { 2027 if ((procedure->IsElemental() && elemental) || 2028 (!procedure->IsElemental() && nonElemental)) { 2029 // 16.9.144(6): a bare NULL() is not allowed as an actual 2030 // argument to a generic procedure if the specific procedure 2031 // cannot be unambiguously distinguished 2032 return {nullptr, true /* due to NULL actuals */}; 2033 } 2034 if (!procedure->IsElemental()) { 2035 // takes priority over elemental match 2036 nonElemental = &specific; 2037 if (!anyBareNullActual) { 2038 break; // unambiguous case 2039 } 2040 } else { 2041 elemental = &specific; 2042 } 2043 } 2044 } 2045 } 2046 if (nonElemental) { 2047 return {&AccessSpecific(symbol, *nonElemental), false}; 2048 } else if (elemental) { 2049 return {&AccessSpecific(symbol, *elemental), false}; 2050 } 2051 // Check parent derived type 2052 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2053 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2054 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 2055 auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)}; 2056 if (pair.first) { 2057 return pair; 2058 } 2059 } 2060 } 2061 } 2062 if (mightBeStructureConstructor && details.derivedType()) { 2063 return {details.derivedType(), false}; 2064 } 2065 return {nullptr, false}; 2066 } 2067 2068 const Symbol &ExpressionAnalyzer::AccessSpecific( 2069 const Symbol &originalGeneric, const Symbol &specific) { 2070 if (const auto *hosted{ 2071 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2072 return AccessSpecific(hosted->symbol(), specific); 2073 } else if (const auto *used{ 2074 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2075 const auto &scope{originalGeneric.owner()}; 2076 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2077 if (const auto *useDetails{ 2078 iter->second->detailsIf<semantics::UseDetails>()}) { 2079 const Symbol &usedSymbol{useDetails->symbol()}; 2080 const auto *usedGeneric{ 2081 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2082 if (&usedSymbol == &specific || 2083 (usedGeneric && usedGeneric->specific() == &specific)) { 2084 return specific; 2085 } 2086 } 2087 } 2088 // Create a renaming USE of the specific procedure. 2089 auto rename{context_.SaveTempName( 2090 used->symbol().owner().GetName().value().ToString() + "$" + 2091 specific.name().ToString())}; 2092 return *const_cast<semantics::Scope &>(scope) 2093 .try_emplace(rename, specific.attrs(), 2094 semantics::UseDetails{rename, specific}) 2095 .first->second; 2096 } else { 2097 return specific; 2098 } 2099 } 2100 2101 void ExpressionAnalyzer::EmitGenericResolutionError( 2102 const Symbol &symbol, bool dueToNullActuals) { 2103 Say(dueToNullActuals 2104 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2105 : semantics::IsGenericDefinedOp(symbol) 2106 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2107 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2108 symbol.name()); 2109 } 2110 2111 auto ExpressionAnalyzer::GetCalleeAndArguments( 2112 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2113 bool isSubroutine, bool mightBeStructureConstructor) 2114 -> std::optional<CalleeAndArguments> { 2115 return std::visit( 2116 common::visitors{ 2117 [&](const parser::Name &name) { 2118 return GetCalleeAndArguments(name, std::move(arguments), 2119 isSubroutine, mightBeStructureConstructor); 2120 }, 2121 [&](const parser::ProcComponentRef &pcr) { 2122 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2123 }, 2124 }, 2125 pd.u); 2126 } 2127 2128 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2129 ActualArguments &&arguments, bool isSubroutine, 2130 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2131 const Symbol *symbol{name.symbol}; 2132 if (context_.HasError(symbol)) { 2133 return std::nullopt; // also handles null symbol 2134 } 2135 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2136 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2137 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2138 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2139 arguments, GetFoldingContext())}) { 2140 CheckBadExplicitType(*specificCall, *symbol); 2141 return CalleeAndArguments{ 2142 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2143 std::move(specificCall->arguments)}; 2144 } 2145 } else { 2146 CheckForBadRecursion(name.source, ultimate); 2147 bool dueToNullActual{false}; 2148 if (ultimate.has<semantics::GenericDetails>()) { 2149 ExpressionAnalyzer::AdjustActuals noAdjustment; 2150 auto pair{ResolveGeneric( 2151 *symbol, arguments, noAdjustment, mightBeStructureConstructor)}; 2152 symbol = pair.first; 2153 dueToNullActual = pair.second; 2154 } 2155 if (symbol) { 2156 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2157 if (mightBeStructureConstructor) { 2158 return CalleeAndArguments{ 2159 semantics::SymbolRef{*symbol}, std::move(arguments)}; 2160 } 2161 } else if (IsProcedure(*symbol)) { 2162 return CalleeAndArguments{ 2163 ProcedureDesignator{*symbol}, std::move(arguments)}; 2164 } 2165 if (!context_.HasError(*symbol)) { 2166 AttachDeclaration( 2167 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2168 name.source), 2169 *symbol); 2170 } 2171 } else if (std::optional<SpecificCall> specificCall{ 2172 context_.intrinsics().Probe( 2173 CallCharacteristics{ 2174 ultimate.name().ToString(), isSubroutine}, 2175 arguments, GetFoldingContext())}) { 2176 // Generics can extend intrinsics 2177 return CalleeAndArguments{ 2178 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2179 std::move(specificCall->arguments)}; 2180 } else { 2181 EmitGenericResolutionError(*name.symbol, dueToNullActual); 2182 } 2183 } 2184 return std::nullopt; 2185 } 2186 2187 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2188 // generic intrinsic function "has no effect" on the result type of a 2189 // call to that intrinsic. So one can declare "character*8 cos" and 2190 // still get a real result from "cos(1.)". This is a dangerous feature, 2191 // especially since implementations are free to extend their sets of 2192 // intrinsics, and in doing so might clash with a name in a program. 2193 // So we emit a warning in this situation, and perhaps it should be an 2194 // error -- any correctly working program can silence the message by 2195 // simply deleting the pointless type declaration. 2196 void ExpressionAnalyzer::CheckBadExplicitType( 2197 const SpecificCall &call, const Symbol &intrinsic) { 2198 if (intrinsic.GetUltimate().GetType()) { 2199 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2200 if (const auto &result{procedure.functionResult}) { 2201 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2202 if (auto declared{ 2203 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2204 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2205 if (auto *msg{Say( 2206 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US, 2207 typeAndShape->AsFortran(), intrinsic.name(), 2208 declared->AsFortran())}) { 2209 msg->Attach(intrinsic.name(), 2210 "Ignored declaration of intrinsic function '%s'"_en_US, 2211 intrinsic.name()); 2212 } 2213 } 2214 } 2215 } 2216 } 2217 } 2218 } 2219 2220 void ExpressionAnalyzer::CheckForBadRecursion( 2221 parser::CharBlock callSite, const semantics::Symbol &proc) { 2222 if (const auto *scope{proc.scope()}) { 2223 if (scope->sourceRange().Contains(callSite)) { 2224 parser::Message *msg{nullptr}; 2225 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2226 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2227 callSite); 2228 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2229 msg = Say( // 15.6.2.1(3) 2230 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2231 callSite); 2232 } 2233 AttachDeclaration(msg, proc); 2234 } 2235 } 2236 } 2237 2238 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2239 if (const auto *designator{ 2240 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2241 if (const auto *dataRef{ 2242 std::get_if<parser::DataRef>(&designator->value().u)}) { 2243 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2244 return AssumedTypeDummy(*name); 2245 } 2246 } 2247 } 2248 return nullptr; 2249 } 2250 template <> 2251 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2252 if (const Symbol * symbol{name.symbol}) { 2253 if (const auto *type{symbol->GetType()}) { 2254 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2255 return symbol; 2256 } 2257 } 2258 } 2259 return nullptr; 2260 } 2261 template <typename A> 2262 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2263 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2264 // point it is is not guaranteed that it has been checked the object has 2265 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2266 // returned. 2267 return std::visit( 2268 common::visitors{ 2269 [&](const parser::StructureComponent &x) { 2270 return AssumedTypeDummy(x.component); 2271 }, 2272 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2273 }, 2274 object.u); 2275 } 2276 template <> 2277 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2278 const parser::AllocateObject &x) { 2279 return AssumedTypePointerOrAllocatableDummy(x); 2280 } 2281 template <> 2282 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2283 const parser::PointerObject &x) { 2284 return AssumedTypePointerOrAllocatableDummy(x); 2285 } 2286 2287 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2288 const semantics::DerivedTypeSpec &dtSpec) { 2289 if (dtSpec.IsForwardReferenced()) { 2290 Say("Cannot construct value for derived type '%s' " 2291 "before it is defined"_err_en_US, 2292 dtSpec.name()); 2293 return false; 2294 } 2295 return true; 2296 } 2297 2298 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2299 std::optional<parser::StructureConstructor> *structureConstructor) { 2300 const parser::Call &call{funcRef.v}; 2301 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2302 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2303 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2304 analyzer.Analyze(arg, false /* not subroutine call */); 2305 } 2306 if (analyzer.fatalErrors()) { 2307 return std::nullopt; 2308 } 2309 if (std::optional<CalleeAndArguments> callee{ 2310 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2311 analyzer.GetActuals(), false /* not subroutine */, 2312 true /* might be structure constructor */)}) { 2313 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2314 return MakeFunctionRef( 2315 call.source, std::move(*proc), std::move(callee->arguments)); 2316 } 2317 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2318 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2319 if (structureConstructor) { 2320 // Structure constructor misparsed as function reference? 2321 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2322 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2323 semantics::Scope &scope{context_.FindScope(name->source)}; 2324 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2325 if (!CheckIsValidForwardReference(dtSpec)) { 2326 return std::nullopt; 2327 } 2328 const semantics::DeclTypeSpec &type{ 2329 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2330 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2331 *structureConstructor = 2332 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2333 return Analyze(structureConstructor->value()); 2334 } 2335 } 2336 if (!context_.HasError(symbol)) { 2337 AttachDeclaration( 2338 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2339 symbol.name()), 2340 symbol); 2341 context_.SetError(symbol); 2342 } 2343 } 2344 return std::nullopt; 2345 } 2346 2347 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2348 for (const auto &arg : args) { 2349 if (arg && arg->isAlternateReturn()) { 2350 return true; 2351 } 2352 } 2353 return false; 2354 } 2355 2356 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2357 const parser::Call &call{callStmt.v}; 2358 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2359 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2360 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2361 for (const auto &arg : actualArgList) { 2362 analyzer.Analyze(arg, true /* is subroutine call */); 2363 } 2364 if (!analyzer.fatalErrors()) { 2365 if (std::optional<CalleeAndArguments> callee{ 2366 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2367 analyzer.GetActuals(), true /* subroutine */)}) { 2368 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2369 CHECK(proc); 2370 if (CheckCall(call.source, *proc, callee->arguments)) { 2371 bool hasAlternateReturns{HasAlternateReturns(callee->arguments)}; 2372 callStmt.typedCall.Reset( 2373 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2374 hasAlternateReturns}, 2375 ProcedureRef::Deleter); 2376 } 2377 } 2378 } 2379 } 2380 2381 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2382 if (!x.typedAssignment) { 2383 ArgumentAnalyzer analyzer{*this}; 2384 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2385 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2386 std::optional<Assignment> assignment; 2387 if (!analyzer.fatalErrors()) { 2388 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2389 if (!procRef) { 2390 analyzer.CheckForNullPointer( 2391 "in a non-pointer intrinsic assignment statement"); 2392 } 2393 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2394 if (procRef) { 2395 assignment->u = std::move(*procRef); 2396 } 2397 } 2398 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2399 GenericAssignmentWrapper::Deleter); 2400 } 2401 return common::GetPtrFromOptional(x.typedAssignment->v); 2402 } 2403 2404 const Assignment *ExpressionAnalyzer::Analyze( 2405 const parser::PointerAssignmentStmt &x) { 2406 if (!x.typedAssignment) { 2407 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2408 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2409 if (!lhs || !rhs) { 2410 x.typedAssignment.Reset( 2411 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2412 } else { 2413 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2414 std::visit(common::visitors{ 2415 [&](const std::list<parser::BoundsRemapping> &list) { 2416 Assignment::BoundsRemapping bounds; 2417 for (const auto &elem : list) { 2418 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2419 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2420 if (lower && upper) { 2421 bounds.emplace_back(Fold(std::move(*lower)), 2422 Fold(std::move(*upper))); 2423 } 2424 } 2425 assignment.u = std::move(bounds); 2426 }, 2427 [&](const std::list<parser::BoundsSpec> &list) { 2428 Assignment::BoundsSpec bounds; 2429 for (const auto &bound : list) { 2430 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2431 bounds.emplace_back(Fold(std::move(*lower))); 2432 } 2433 } 2434 assignment.u = std::move(bounds); 2435 }, 2436 }, 2437 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2438 x.typedAssignment.Reset( 2439 new GenericAssignmentWrapper{std::move(assignment)}, 2440 GenericAssignmentWrapper::Deleter); 2441 } 2442 } 2443 return common::GetPtrFromOptional(x.typedAssignment->v); 2444 } 2445 2446 static bool IsExternalCalledImplicitly( 2447 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2448 if (const auto *symbol{proc.GetSymbol()}) { 2449 return symbol->has<semantics::SubprogramDetails>() && 2450 symbol->owner().IsGlobal() && 2451 (!symbol->scope() /*ENTRY*/ || 2452 !symbol->scope()->sourceRange().Contains(callSite)); 2453 } else { 2454 return false; 2455 } 2456 } 2457 2458 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2459 parser::CharBlock callSite, const ProcedureDesignator &proc, 2460 ActualArguments &arguments) { 2461 auto chars{characteristics::Procedure::Characterize( 2462 proc, context_.foldingContext())}; 2463 if (chars) { 2464 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2465 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2466 Say(callSite, 2467 "References to the procedure '%s' require an explicit interface"_en_US, 2468 DEREF(proc.GetSymbol()).name()); 2469 } 2470 // Checks for ASSOCIATED() are done in intrinsic table processing 2471 bool procIsAssociated{false}; 2472 if (const SpecificIntrinsic * 2473 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2474 if (specificIntrinsic->name == "associated") { 2475 procIsAssociated = true; 2476 } 2477 } 2478 if (!procIsAssociated) { 2479 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2480 context_.FindScope(callSite), treatExternalAsImplicit, 2481 proc.GetSpecificIntrinsic()); 2482 const Symbol *procSymbol{proc.GetSymbol()}; 2483 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2484 if (const semantics::Scope * 2485 pure{semantics::FindPureProcedureContaining( 2486 context_.FindScope(callSite))}) { 2487 Say(callSite, 2488 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2489 procSymbol->name(), DEREF(pure->symbol()).name()); 2490 } 2491 } 2492 } 2493 } 2494 return chars; 2495 } 2496 2497 // Unary operations 2498 2499 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2500 if (MaybeExpr operand{Analyze(x.v.value())}) { 2501 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2502 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2503 if (semantics::IsProcedurePointer(*result)) { 2504 Say("A function reference that returns a procedure " 2505 "pointer may not be parenthesized"_err_en_US); // C1003 2506 } 2507 } 2508 } 2509 return Parenthesize(std::move(*operand)); 2510 } 2511 return std::nullopt; 2512 } 2513 2514 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2515 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2516 ArgumentAnalyzer analyzer{context}; 2517 analyzer.Analyze(x.v); 2518 if (!analyzer.fatalErrors()) { 2519 if (analyzer.IsIntrinsicNumeric(opr)) { 2520 analyzer.CheckForNullPointer(); 2521 if (opr == NumericOperator::Add) { 2522 return analyzer.MoveExpr(0); 2523 } else { 2524 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2525 } 2526 } else { 2527 return analyzer.TryDefinedOp(AsFortran(opr), 2528 "Operand of unary %s must be numeric; have %s"_err_en_US); 2529 } 2530 } 2531 return std::nullopt; 2532 } 2533 2534 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2535 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2536 } 2537 2538 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2539 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2540 } 2541 2542 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2543 ArgumentAnalyzer analyzer{*this}; 2544 analyzer.Analyze(x.v); 2545 if (!analyzer.fatalErrors()) { 2546 if (analyzer.IsIntrinsicLogical()) { 2547 analyzer.CheckForNullPointer(); 2548 return AsGenericExpr( 2549 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2550 } else { 2551 return analyzer.TryDefinedOp(LogicalOperator::Not, 2552 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2553 } 2554 } 2555 return std::nullopt; 2556 } 2557 2558 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2559 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2560 // intrinsic function. 2561 // Use the actual source for the name of the call for error reporting. 2562 std::optional<ActualArgument> arg; 2563 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2564 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2565 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2566 arg = ActualArgument{std::move(*argExpr)}; 2567 } else { 2568 return std::nullopt; 2569 } 2570 parser::CharBlock at{GetContextualMessages().at()}; 2571 CHECK(at.size() >= 4); 2572 parser::CharBlock loc{at.begin() + 1, 3}; 2573 CHECK(loc == "loc"); 2574 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2575 } 2576 2577 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2578 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2579 ArgumentAnalyzer analyzer{*this, name.source}; 2580 analyzer.Analyze(std::get<1>(x.t)); 2581 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2582 "No operator %s defined for %s"_err_en_US, nullptr, true); 2583 } 2584 2585 // Binary (dyadic) operations 2586 2587 template <template <typename> class OPR> 2588 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2589 const parser::Expr::IntrinsicBinary &x) { 2590 ArgumentAnalyzer analyzer{context}; 2591 analyzer.Analyze(std::get<0>(x.t)); 2592 analyzer.Analyze(std::get<1>(x.t)); 2593 if (!analyzer.fatalErrors()) { 2594 if (analyzer.IsIntrinsicNumeric(opr)) { 2595 analyzer.CheckForNullPointer(); 2596 analyzer.CheckConformance(); 2597 return NumericOperation<OPR>(context.GetContextualMessages(), 2598 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2599 context.GetDefaultKind(TypeCategory::Real)); 2600 } else { 2601 return analyzer.TryDefinedOp(AsFortran(opr), 2602 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2603 } 2604 } 2605 return std::nullopt; 2606 } 2607 2608 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2609 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2610 } 2611 2612 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2613 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2614 } 2615 2616 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2617 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2618 } 2619 2620 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2621 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2622 } 2623 2624 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2625 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2626 } 2627 2628 MaybeExpr ExpressionAnalyzer::Analyze( 2629 const parser::Expr::ComplexConstructor &x) { 2630 auto re{Analyze(std::get<0>(x.t).value())}; 2631 auto im{Analyze(std::get<1>(x.t).value())}; 2632 if (re && im) { 2633 ConformabilityCheck(GetContextualMessages(), *re, *im); 2634 } 2635 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2636 std::move(im), GetDefaultKind(TypeCategory::Real))); 2637 } 2638 2639 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2640 ArgumentAnalyzer analyzer{*this}; 2641 analyzer.Analyze(std::get<0>(x.t)); 2642 analyzer.Analyze(std::get<1>(x.t)); 2643 if (!analyzer.fatalErrors()) { 2644 if (analyzer.IsIntrinsicConcat()) { 2645 analyzer.CheckForNullPointer(); 2646 return std::visit( 2647 [&](auto &&x, auto &&y) -> MaybeExpr { 2648 using T = ResultType<decltype(x)>; 2649 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2650 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2651 } else { 2652 DIE("different types for intrinsic concat"); 2653 } 2654 }, 2655 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2656 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2657 } else { 2658 return analyzer.TryDefinedOp("//", 2659 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2660 } 2661 } 2662 return std::nullopt; 2663 } 2664 2665 // The Name represents a user-defined intrinsic operator. 2666 // If the actuals match one of the specific procedures, return a function ref. 2667 // Otherwise report the error in messages. 2668 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2669 const parser::Name &name, ActualArguments &&actuals) { 2670 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2671 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2672 return MakeFunctionRef(name.source, 2673 std::move(std::get<ProcedureDesignator>(callee->u)), 2674 std::move(callee->arguments)); 2675 } else { 2676 return std::nullopt; 2677 } 2678 } 2679 2680 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2681 const parser::Expr::IntrinsicBinary &x) { 2682 ArgumentAnalyzer analyzer{context}; 2683 analyzer.Analyze(std::get<0>(x.t)); 2684 analyzer.Analyze(std::get<1>(x.t)); 2685 if (!analyzer.fatalErrors()) { 2686 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2687 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2688 analyzer.ConvertBOZ(leftType, 0, rightType); 2689 analyzer.ConvertBOZ(rightType, 1, leftType); 2690 if (leftType && rightType && 2691 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2692 analyzer.CheckForNullPointer("as a relational operand"); 2693 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2694 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2695 } else { 2696 return analyzer.TryDefinedOp(opr, 2697 leftType && leftType->category() == TypeCategory::Logical && 2698 rightType && rightType->category() == TypeCategory::Logical 2699 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2700 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2701 } 2702 } 2703 return std::nullopt; 2704 } 2705 2706 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2707 return RelationHelper(*this, RelationalOperator::LT, x); 2708 } 2709 2710 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2711 return RelationHelper(*this, RelationalOperator::LE, x); 2712 } 2713 2714 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2715 return RelationHelper(*this, RelationalOperator::EQ, x); 2716 } 2717 2718 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2719 return RelationHelper(*this, RelationalOperator::NE, x); 2720 } 2721 2722 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2723 return RelationHelper(*this, RelationalOperator::GE, x); 2724 } 2725 2726 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2727 return RelationHelper(*this, RelationalOperator::GT, x); 2728 } 2729 2730 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2731 const parser::Expr::IntrinsicBinary &x) { 2732 ArgumentAnalyzer analyzer{context}; 2733 analyzer.Analyze(std::get<0>(x.t)); 2734 analyzer.Analyze(std::get<1>(x.t)); 2735 if (!analyzer.fatalErrors()) { 2736 if (analyzer.IsIntrinsicLogical()) { 2737 analyzer.CheckForNullPointer("as a logical operand"); 2738 return AsGenericExpr(BinaryLogicalOperation(opr, 2739 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2740 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2741 } else { 2742 return analyzer.TryDefinedOp( 2743 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2744 } 2745 } 2746 return std::nullopt; 2747 } 2748 2749 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2750 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2751 } 2752 2753 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2754 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2755 } 2756 2757 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2758 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2759 } 2760 2761 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2762 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2763 } 2764 2765 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2766 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2767 ArgumentAnalyzer analyzer{*this, name.source}; 2768 analyzer.Analyze(std::get<1>(x.t)); 2769 analyzer.Analyze(std::get<2>(x.t)); 2770 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2771 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2772 } 2773 2774 static void CheckFuncRefToArrayElementRefHasSubscripts( 2775 semantics::SemanticsContext &context, 2776 const parser::FunctionReference &funcRef) { 2777 // Emit message if the function reference fix will end up an array element 2778 // reference with no subscripts because it will not be possible to later tell 2779 // the difference in expressions between empty subscript list due to bad 2780 // subscripts error recovery or because the user did not put any. 2781 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2782 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2783 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2784 if (!name) { 2785 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2786 } 2787 auto &msg{context.Say(funcRef.v.source, 2788 name->symbol && name->symbol->Rank() == 0 2789 ? "'%s' is not a function"_err_en_US 2790 : "Reference to array '%s' with empty subscript list"_err_en_US, 2791 name->source)}; 2792 if (name->symbol) { 2793 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2794 msg.Attach(name->source, 2795 "A result variable must be declared with RESULT to allow recursive " 2796 "function calls"_en_US); 2797 } else { 2798 AttachDeclaration(&msg, *name->symbol); 2799 } 2800 } 2801 } 2802 } 2803 2804 // Converts, if appropriate, an original misparse of ambiguous syntax like 2805 // A(1) as a function reference into an array reference. 2806 // Misparsed structure constructors are detected elsewhere after generic 2807 // function call resolution fails. 2808 template <typename... A> 2809 static void FixMisparsedFunctionReference( 2810 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2811 // The parse tree is updated in situ when resolving an ambiguous parse. 2812 using uType = std::decay_t<decltype(constU)>; 2813 auto &u{const_cast<uType &>(constU)}; 2814 if (auto *func{ 2815 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2816 parser::FunctionReference &funcRef{func->value()}; 2817 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2818 if (Symbol * 2819 origSymbol{ 2820 std::visit(common::visitors{ 2821 [&](parser::Name &name) { return name.symbol; }, 2822 [&](parser::ProcComponentRef &pcr) { 2823 return pcr.v.thing.component.symbol; 2824 }, 2825 }, 2826 proc.u)}) { 2827 Symbol &symbol{origSymbol->GetUltimate()}; 2828 if (symbol.has<semantics::ObjectEntityDetails>() || 2829 symbol.has<semantics::AssocEntityDetails>()) { 2830 // Note that expression in AssocEntityDetails cannot be a procedure 2831 // pointer as per C1105 so this cannot be a function reference. 2832 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2833 uType>) { 2834 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2835 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2836 } else { 2837 DIE("can't fix misparsed function as array reference"); 2838 } 2839 } 2840 } 2841 } 2842 } 2843 2844 // Common handling of parse tree node types that retain the 2845 // representation of the analyzed expression. 2846 template <typename PARSED> 2847 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2848 const PARSED &x, parser::CharBlock source) { 2849 if (useSavedTypedExprs_ && x.typedExpr) { 2850 return x.typedExpr->v; 2851 } 2852 auto restorer{GetContextualMessages().SetLocation(source)}; 2853 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2854 std::is_same_v<PARSED, parser::Variable>) { 2855 FixMisparsedFunctionReference(context_, x.u); 2856 } 2857 if (AssumedTypeDummy(x)) { // C710 2858 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2859 ResetExpr(x); 2860 return std::nullopt; 2861 } 2862 MaybeExpr result; 2863 if constexpr (common::HasMember<parser::StructureConstructor, 2864 std::decay_t<decltype(x.u)>> && 2865 common::HasMember<common::Indirection<parser::FunctionReference>, 2866 std::decay_t<decltype(x.u)>>) { 2867 if (const auto *funcRef{ 2868 std::get_if<common::Indirection<parser::FunctionReference>>( 2869 &x.u)}) { 2870 // Function references in Exprs might turn out to be misparsed structure 2871 // constructors; we have to try generic procedure resolution 2872 // first to be sure. 2873 std::optional<parser::StructureConstructor> ctor; 2874 result = Analyze(funcRef->value(), &ctor); 2875 if (result && ctor) { 2876 // A misparsed function reference is really a structure 2877 // constructor. Repair the parse tree in situ. 2878 const_cast<PARSED &>(x).u = std::move(*ctor); 2879 } 2880 } else { 2881 result = Analyze(x.u); 2882 } 2883 } else { 2884 result = Analyze(x.u); 2885 } 2886 if (result) { 2887 SetExpr(x, Fold(std::move(*result))); 2888 return x.typedExpr->v; 2889 } else { 2890 ResetExpr(x); 2891 if (!context_.AnyFatalError()) { 2892 std::string buf; 2893 llvm::raw_string_ostream dump{buf}; 2894 parser::DumpTree(dump, x); 2895 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2896 dump.str()); 2897 } 2898 return std::nullopt; 2899 } 2900 } 2901 2902 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2903 return ExprOrVariable(expr, expr.source); 2904 } 2905 2906 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2907 return ExprOrVariable(variable, variable.GetSource()); 2908 } 2909 2910 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 2911 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 2912 if (!useSavedTypedExprs_ || !var->typedExpr) { 2913 parser::CharBlock source{var->GetSource()}; 2914 auto restorer{GetContextualMessages().SetLocation(source)}; 2915 FixMisparsedFunctionReference(context_, var->u); 2916 if (const auto *funcRef{ 2917 std::get_if<common::Indirection<parser::FunctionReference>>( 2918 &var->u)}) { 2919 // A Selector that parsed as a Variable might turn out during analysis 2920 // to actually be a structure constructor. In that case, repair the 2921 // Variable parse tree node into an Expr 2922 std::optional<parser::StructureConstructor> ctor; 2923 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 2924 if (ctor) { 2925 auto &writable{const_cast<parser::Selector &>(selector)}; 2926 writable.u = parser::Expr{std::move(*ctor)}; 2927 auto &expr{std::get<parser::Expr>(writable.u)}; 2928 expr.source = source; 2929 SetExpr(expr, Fold(std::move(*result))); 2930 return expr.typedExpr->v; 2931 } else { 2932 SetExpr(*var, Fold(std::move(*result))); 2933 return var->typedExpr->v; 2934 } 2935 } else { 2936 ResetExpr(*var); 2937 if (context_.AnyFatalError()) { 2938 return std::nullopt; 2939 } 2940 } 2941 } 2942 } 2943 } 2944 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 2945 return Analyze(selector.u); 2946 } 2947 2948 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2949 return ExprOrVariable(x, x.source); 2950 } 2951 2952 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 2953 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2954 } 2955 2956 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 2957 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2958 } 2959 2960 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2961 TypeCategory category, 2962 const std::optional<parser::KindSelector> &selector) { 2963 int defaultKind{GetDefaultKind(category)}; 2964 if (!selector) { 2965 return Expr<SubscriptInteger>{defaultKind}; 2966 } 2967 return std::visit( 2968 common::visitors{ 2969 [&](const parser::ScalarIntConstantExpr &x) { 2970 if (MaybeExpr kind{Analyze(x)}) { 2971 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 2972 if (CheckIntrinsicKind(category, *code)) { 2973 return Expr<SubscriptInteger>{*code}; 2974 } 2975 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 2976 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2977 } 2978 } 2979 return Expr<SubscriptInteger>{defaultKind}; 2980 }, 2981 [&](const parser::KindSelector::StarSize &x) { 2982 std::intmax_t size = x.v; 2983 if (!CheckIntrinsicSize(category, size)) { 2984 size = defaultKind; 2985 } else if (category == TypeCategory::Complex) { 2986 size /= 2; 2987 } 2988 return Expr<SubscriptInteger>{size}; 2989 }, 2990 }, 2991 selector->u); 2992 } 2993 2994 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2995 return context_.GetDefaultKind(category); 2996 } 2997 2998 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2999 common::TypeCategory category) { 3000 return {category, GetDefaultKind(category)}; 3001 } 3002 3003 bool ExpressionAnalyzer::CheckIntrinsicKind( 3004 TypeCategory category, std::int64_t kind) { 3005 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 3006 return true; 3007 } else { 3008 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3009 ToUpperCase(EnumToString(category)), kind); 3010 return false; 3011 } 3012 } 3013 3014 bool ExpressionAnalyzer::CheckIntrinsicSize( 3015 TypeCategory category, std::int64_t size) { 3016 if (category == TypeCategory::Complex) { 3017 // COMPLEX*16 == COMPLEX(KIND=8) 3018 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 3019 return true; 3020 } 3021 } else if (IsValidKindOfIntrinsicType(category, size)) { 3022 return true; 3023 } 3024 Say("%s*%jd is not a supported type"_err_en_US, 3025 ToUpperCase(EnumToString(category)), size); 3026 return false; 3027 } 3028 3029 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3030 return impliedDos_.insert(std::make_pair(name, kind)).second; 3031 } 3032 3033 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3034 auto iter{impliedDos_.find(name)}; 3035 if (iter != impliedDos_.end()) { 3036 impliedDos_.erase(iter); 3037 } 3038 } 3039 3040 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3041 parser::CharBlock name) const { 3042 auto iter{impliedDos_.find(name)}; 3043 if (iter != impliedDos_.cend()) { 3044 return {iter->second}; 3045 } else { 3046 return std::nullopt; 3047 } 3048 } 3049 3050 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3051 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3052 if (result) { 3053 if (auto type{result->GetType()}) { 3054 if (type->category() != category) { // C885 3055 Say(at, "Must have %s type, but is %s"_err_en_US, 3056 ToUpperCase(EnumToString(category)), 3057 ToUpperCase(type->AsFortran())); 3058 return false; 3059 } else if (defaultKind) { 3060 int kind{context_.GetDefaultKind(category)}; 3061 if (type->kind() != kind) { 3062 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3063 kind, ToUpperCase(EnumToString(category)), 3064 ToUpperCase(type->AsFortran())); 3065 return false; 3066 } 3067 } 3068 } else { 3069 Say(at, "Must have %s type, but is typeless"_err_en_US, 3070 ToUpperCase(EnumToString(category))); 3071 return false; 3072 } 3073 } 3074 return true; 3075 } 3076 3077 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3078 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3079 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3080 if (intrinsic->name == "null" && arguments.empty()) { 3081 return Expr<SomeType>{NullPointer{}}; 3082 } 3083 } 3084 if (const Symbol * symbol{proc.GetSymbol()}) { 3085 if (!ResolveForward(*symbol)) { 3086 return std::nullopt; 3087 } 3088 } 3089 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3090 if (chars->functionResult) { 3091 const auto &result{*chars->functionResult}; 3092 if (result.IsProcedurePointer()) { 3093 return Expr<SomeType>{ 3094 ProcedureRef{std::move(proc), std::move(arguments)}}; 3095 } else { 3096 // Not a procedure pointer, so type and shape are known. 3097 return TypedWrapper<FunctionRef, ProcedureRef>( 3098 DEREF(result.GetTypeAndShape()).type(), 3099 ProcedureRef{std::move(proc), std::move(arguments)}); 3100 } 3101 } else { 3102 Say("Function result characteristics are not known"_err_en_US); 3103 } 3104 } 3105 return std::nullopt; 3106 } 3107 3108 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3109 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3110 if (std::optional<SpecificCall> specificCall{ 3111 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3112 arguments, GetFoldingContext())}) { 3113 return MakeFunctionRef(intrinsic, 3114 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3115 std::move(specificCall->arguments)); 3116 } else { 3117 return std::nullopt; 3118 } 3119 } 3120 3121 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3122 source_.ExtendToCover(x.GetSource()); 3123 if (MaybeExpr expr{context_.Analyze(x)}) { 3124 if (!IsConstantExpr(*expr)) { 3125 actuals_.emplace_back(std::move(*expr)); 3126 return; 3127 } 3128 const Symbol *symbol{GetLastSymbol(*expr)}; 3129 if (!symbol) { 3130 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3131 x.GetSource()); 3132 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3133 auto *msg{context_.SayAt(x, 3134 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3135 symbol->name())}; 3136 if (subp->isFunction()) { 3137 const auto &result{subp->result().name()}; 3138 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 3139 } 3140 } else { 3141 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3142 symbol->name()); 3143 } 3144 } 3145 fatalErrors_ = true; 3146 } 3147 3148 void ArgumentAnalyzer::Analyze( 3149 const parser::ActualArgSpec &arg, bool isSubroutine) { 3150 // TODO: Actual arguments that are procedures and procedure pointers need to 3151 // be detected and represented (they're not expressions). 3152 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3153 std::optional<ActualArgument> actual; 3154 std::visit(common::visitors{ 3155 [&](const common::Indirection<parser::Expr> &x) { 3156 actual = AnalyzeExpr(x.value()); 3157 }, 3158 [&](const parser::AltReturnSpec &label) { 3159 if (!isSubroutine) { 3160 context_.Say( 3161 "alternate return specification may not appear on" 3162 " function reference"_err_en_US); 3163 } 3164 actual = ActualArgument(label.v); 3165 }, 3166 [&](const parser::ActualArg::PercentRef &) { 3167 context_.Say("TODO: %REF() argument"_err_en_US); 3168 }, 3169 [&](const parser::ActualArg::PercentVal &) { 3170 context_.Say("TODO: %VAL() argument"_err_en_US); 3171 }, 3172 }, 3173 std::get<parser::ActualArg>(arg.t).u); 3174 if (actual) { 3175 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3176 actual->set_keyword(argKW->v.source); 3177 } 3178 actuals_.emplace_back(std::move(*actual)); 3179 } else { 3180 fatalErrors_ = true; 3181 } 3182 } 3183 3184 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3185 const DynamicType &leftType, const DynamicType &rightType) const { 3186 CHECK(actuals_.size() == 2); 3187 return semantics::IsIntrinsicRelational( 3188 opr, leftType, GetRank(0), rightType, GetRank(1)); 3189 } 3190 3191 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3192 std::optional<DynamicType> leftType{GetType(0)}; 3193 if (actuals_.size() == 1) { 3194 if (IsBOZLiteral(0)) { 3195 return opr == NumericOperator::Add; // unary '+' 3196 } else { 3197 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3198 } 3199 } else { 3200 std::optional<DynamicType> rightType{GetType(1)}; 3201 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3202 auto cat1{rightType->category()}; 3203 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3204 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3205 auto cat0{leftType->category()}; 3206 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3207 } else { 3208 return leftType && rightType && 3209 semantics::IsIntrinsicNumeric( 3210 *leftType, GetRank(0), *rightType, GetRank(1)); 3211 } 3212 } 3213 } 3214 3215 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3216 if (std::optional<DynamicType> leftType{GetType(0)}) { 3217 if (actuals_.size() == 1) { 3218 return semantics::IsIntrinsicLogical(*leftType); 3219 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3220 return semantics::IsIntrinsicLogical( 3221 *leftType, GetRank(0), *rightType, GetRank(1)); 3222 } 3223 } 3224 return false; 3225 } 3226 3227 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3228 if (std::optional<DynamicType> leftType{GetType(0)}) { 3229 if (std::optional<DynamicType> rightType{GetType(1)}) { 3230 return semantics::IsIntrinsicConcat( 3231 *leftType, GetRank(0), *rightType, GetRank(1)); 3232 } 3233 } 3234 return false; 3235 } 3236 3237 bool ArgumentAnalyzer::CheckConformance() { 3238 if (actuals_.size() == 2) { 3239 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3240 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3241 if (lhs && rhs) { 3242 auto &foldingContext{context_.GetFoldingContext()}; 3243 auto lhShape{GetShape(foldingContext, *lhs)}; 3244 auto rhShape{GetShape(foldingContext, *rhs)}; 3245 if (lhShape && rhShape) { 3246 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3247 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3248 "left operand", "right operand") 3249 .value_or(false /*fail when conformance is not known now*/)) { 3250 fatalErrors_ = true; 3251 return false; 3252 } 3253 } 3254 } 3255 } 3256 return true; // no proven problem 3257 } 3258 3259 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3260 for (const std::optional<ActualArgument> &arg : actuals_) { 3261 if (arg) { 3262 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3263 if (IsNullPointer(*expr)) { 3264 context_.Say( 3265 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3266 fatalErrors_ = true; 3267 return false; 3268 } 3269 } 3270 } 3271 } 3272 return true; 3273 } 3274 3275 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3276 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3277 bool isUserOp) { 3278 if (AnyUntypedOrMissingOperand()) { 3279 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3280 return std::nullopt; 3281 } 3282 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3283 if (!definedOpSymbolPtr) { 3284 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3285 } 3286 { 3287 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3288 std::string oprNameString{ 3289 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3290 parser::CharBlock oprName{oprNameString}; 3291 const auto &scope{context_.context().FindScope(source_)}; 3292 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3293 *definedOpSymbolPtr = symbol; 3294 parser::Name name{symbol->name(), symbol}; 3295 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3296 return result; 3297 } 3298 } 3299 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3300 if (const Symbol * 3301 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3302 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3303 return result; 3304 } 3305 } 3306 } 3307 } 3308 if (*definedOpSymbolPtr) { 3309 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3310 } else if (actuals_.size() == 1 || AreConformable()) { 3311 if (CheckForNullPointer()) { 3312 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3313 } 3314 } else { 3315 context_.Say( 3316 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3317 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3318 } 3319 return std::nullopt; 3320 } 3321 3322 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3323 std::vector<const char *> oprs, parser::MessageFixedText error) { 3324 const Symbol *definedOpSymbolPtr{nullptr}; 3325 for (std::size_t i{1}; i < oprs.size(); ++i) { 3326 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3327 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3328 return result; 3329 } 3330 } 3331 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3332 } 3333 3334 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3335 ActualArguments localActuals{actuals_}; 3336 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3337 if (!proc) { 3338 proc = &symbol; 3339 localActuals.at(passIndex).value().set_isPassedObject(); 3340 } 3341 CheckConformance(); 3342 return context_.MakeFunctionRef( 3343 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3344 } 3345 3346 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3347 using semantics::Tristate; 3348 const Expr<SomeType> &lhs{GetExpr(0)}; 3349 const Expr<SomeType> &rhs{GetExpr(1)}; 3350 std::optional<DynamicType> lhsType{lhs.GetType()}; 3351 std::optional<DynamicType> rhsType{rhs.GetType()}; 3352 int lhsRank{lhs.Rank()}; 3353 int rhsRank{rhs.Rank()}; 3354 Tristate isDefined{ 3355 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3356 if (isDefined == Tristate::No) { 3357 if (lhsType && rhsType) { 3358 AddAssignmentConversion(*lhsType, *rhsType); 3359 } 3360 return std::nullopt; // user-defined assignment not allowed for these args 3361 } 3362 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3363 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3364 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3365 context_.Say( 3366 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3367 DEREF(procRef->proc().GetSymbol()).name()); 3368 } 3369 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3370 return std::move(*procRef); 3371 } 3372 if (isDefined == Tristate::Yes) { 3373 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3374 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3375 SayNoMatch("ASSIGNMENT(=)", true); 3376 } 3377 } 3378 return std::nullopt; 3379 } 3380 3381 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3382 TypeCategory lhs, TypeCategory rhs) { 3383 if (!context_.context().languageFeatures().IsEnabled( 3384 common::LanguageFeature::LogicalIntegerAssignment)) { 3385 return false; 3386 } 3387 std::optional<parser::MessageFixedText> msg; 3388 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3389 // allow assignment to LOGICAL from INTEGER as a legacy extension 3390 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 3391 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3392 // ... and assignment to LOGICAL from INTEGER 3393 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 3394 } else { 3395 return false; 3396 } 3397 if (context_.context().languageFeatures().ShouldWarn( 3398 common::LanguageFeature::LogicalIntegerAssignment)) { 3399 context_.Say(std::move(*msg)); 3400 } 3401 return true; 3402 } 3403 3404 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3405 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3406 std::string oprNameString{"assignment(=)"}; 3407 parser::CharBlock oprName{oprNameString}; 3408 const Symbol *proc{nullptr}; 3409 const auto &scope{context_.context().FindScope(source_)}; 3410 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3411 ExpressionAnalyzer::AdjustActuals noAdjustment; 3412 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}; 3413 if (pair.first) { 3414 proc = pair.first; 3415 } else { 3416 context_.EmitGenericResolutionError(*symbol, pair.second); 3417 } 3418 } 3419 int passedObjectIndex{-1}; 3420 const Symbol *definedOpSymbol{nullptr}; 3421 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3422 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3423 if (const Symbol * 3424 resolution{GetBindingResolution(GetType(i), *specific)}) { 3425 proc = resolution; 3426 } else { 3427 proc = specific; 3428 passedObjectIndex = i; 3429 } 3430 } 3431 } 3432 if (!proc) { 3433 return std::nullopt; 3434 } 3435 ActualArguments actualsCopy{actuals_}; 3436 if (passedObjectIndex >= 0) { 3437 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3438 } 3439 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3440 } 3441 3442 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3443 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3444 << '\n'; 3445 for (const auto &actual : actuals_) { 3446 if (!actual.has_value()) { 3447 os << "- error\n"; 3448 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3449 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3450 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3451 expr->AsFortran(os << "- expr: ") << '\n'; 3452 } else { 3453 DIE("bad ActualArgument"); 3454 } 3455 } 3456 } 3457 3458 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3459 const parser::Expr &expr) { 3460 source_.ExtendToCover(expr.source); 3461 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3462 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3463 if (isProcedureCall_) { 3464 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 3465 } 3466 context_.SayAt(expr.source, 3467 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3468 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3469 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3470 return ActualArgument{std::move(*argExpr)}; 3471 } 3472 context_.SayAt(expr.source, 3473 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3474 : "Subroutine name is not allowed here"_err_en_US); 3475 } 3476 return std::nullopt; 3477 } 3478 3479 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3480 const parser::Expr &expr) { 3481 // If an expression's parse tree is a whole assumed-size array: 3482 // Expr -> Designator -> DataRef -> Name 3483 // treat it as a special case for argument passing and bypass 3484 // the C1002/C1014 constraint checking in expression semantics. 3485 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3486 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3487 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3488 return context_.Analyze(expr); 3489 } 3490 } 3491 return context_.Analyze(expr); 3492 } 3493 3494 bool ArgumentAnalyzer::AreConformable() const { 3495 CHECK(actuals_.size() == 2); 3496 return actuals_[0] && actuals_[1] && 3497 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3498 } 3499 3500 // Look for a type-bound operator in the type of arg number passIndex. 3501 const Symbol *ArgumentAnalyzer::FindBoundOp( 3502 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3503 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3504 if (!type || !type->scope()) { 3505 return nullptr; 3506 } 3507 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3508 if (!symbol) { 3509 return nullptr; 3510 } 3511 definedOp = symbol; 3512 ExpressionAnalyzer::AdjustActuals adjustment{ 3513 [&](const Symbol &proc, ActualArguments &) { 3514 return passIndex == GetPassIndex(proc); 3515 }}; 3516 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3517 if (!pair.first) { 3518 context_.EmitGenericResolutionError(*symbol, pair.second); 3519 } 3520 return pair.first; 3521 } 3522 3523 // If there is an implicit conversion between intrinsic types, make it explicit 3524 void ArgumentAnalyzer::AddAssignmentConversion( 3525 const DynamicType &lhsType, const DynamicType &rhsType) { 3526 if (lhsType.category() == rhsType.category() && 3527 lhsType.kind() == rhsType.kind()) { 3528 // no conversion necessary 3529 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3530 actuals_[1] = ActualArgument{*rhsExpr}; 3531 } else { 3532 actuals_[1] = std::nullopt; 3533 } 3534 } 3535 3536 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3537 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3538 } 3539 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3540 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3541 } 3542 3543 // If the argument at index i is a BOZ literal, convert its type to match the 3544 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3545 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3546 // is not currently supported. 3547 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3548 std::size_t i, std::optional<DynamicType> otherType) { 3549 if (IsBOZLiteral(i)) { 3550 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3551 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3552 if (otherType && otherType->category() == TypeCategory::Real) { 3553 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3554 MaybeExpr realExpr{ 3555 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3556 actuals_[i] = std::move(*realExpr); 3557 thisType.emplace(TypeCategory::Real, kind); 3558 } else { 3559 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3560 MaybeExpr intExpr{ 3561 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3562 actuals_[i] = std::move(*intExpr); 3563 thisType.emplace(TypeCategory::Integer, kind); 3564 } 3565 } 3566 } 3567 3568 // Report error resolving opr when there is a user-defined one available 3569 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3570 std::string type0{TypeAsFortran(0)}; 3571 auto rank0{actuals_[0]->Rank()}; 3572 if (actuals_.size() == 1) { 3573 if (rank0 > 0) { 3574 context_.Say("No intrinsic or user-defined %s matches " 3575 "rank %d array of %s"_err_en_US, 3576 opr, rank0, type0); 3577 } else { 3578 context_.Say("No intrinsic or user-defined %s matches " 3579 "operand type %s"_err_en_US, 3580 opr, type0); 3581 } 3582 } else { 3583 std::string type1{TypeAsFortran(1)}; 3584 auto rank1{actuals_[1]->Rank()}; 3585 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3586 context_.Say("No intrinsic or user-defined %s matches " 3587 "rank %d array of %s and rank %d array of %s"_err_en_US, 3588 opr, rank0, type0, rank1, type1); 3589 } else if (isAssignment && rank0 != rank1) { 3590 if (rank0 == 0) { 3591 context_.Say("No intrinsic or user-defined %s matches " 3592 "scalar %s and rank %d array of %s"_err_en_US, 3593 opr, type0, rank1, type1); 3594 } else { 3595 context_.Say("No intrinsic or user-defined %s matches " 3596 "rank %d array of %s and scalar %s"_err_en_US, 3597 opr, rank0, type0, type1); 3598 } 3599 } else { 3600 context_.Say("No intrinsic or user-defined %s matches " 3601 "operand types %s and %s"_err_en_US, 3602 opr, type0, type1); 3603 } 3604 } 3605 } 3606 3607 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3608 if (i >= actuals_.size() || !actuals_[i]) { 3609 return "missing argument"; 3610 } else if (std::optional<DynamicType> type{GetType(i)}) { 3611 return type->category() == TypeCategory::Derived 3612 ? "TYPE("s + type->AsFortran() + ')' 3613 : type->category() == TypeCategory::Character 3614 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3615 : ToUpperCase(type->AsFortran()); 3616 } else { 3617 return "untyped"; 3618 } 3619 } 3620 3621 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3622 for (const auto &actual : actuals_) { 3623 if (!actual || 3624 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3625 return true; 3626 } 3627 } 3628 return false; 3629 } 3630 } // namespace Fortran::evaluate 3631 3632 namespace Fortran::semantics { 3633 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3634 SemanticsContext &context, common::TypeCategory category, 3635 const std::optional<parser::KindSelector> &selector) { 3636 evaluate::ExpressionAnalyzer analyzer{context}; 3637 auto restorer{ 3638 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3639 return analyzer.AnalyzeKindSelector(category, selector); 3640 } 3641 3642 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3643 3644 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3645 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3646 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3647 auto name{bounds.name.thing.thing}; 3648 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3649 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3650 if (dynamicType->category() == TypeCategory::Integer) { 3651 kind = dynamicType->kind(); 3652 } 3653 } 3654 exprAnalyzer_.AddImpliedDo(name.source, kind); 3655 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3656 exprAnalyzer_.RemoveImpliedDo(name.source); 3657 return false; 3658 } 3659 3660 bool ExprChecker::Walk(const parser::Program &program) { 3661 parser::Walk(program, *this); 3662 return !context_.AnyFatalError(); 3663 } 3664 } // namespace Fortran::semantics 3665