1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/idioms.h"
14 #include "flang/Evaluate/common.h"
15 #include "flang/Evaluate/fold.h"
16 #include "flang/Evaluate/tools.h"
17 #include "flang/Parser/characters.h"
18 #include "flang/Parser/dump-parse-tree.h"
19 #include "flang/Parser/parse-tree-visitor.h"
20 #include "flang/Parser/parse-tree.h"
21 #include "flang/Semantics/scope.h"
22 #include "flang/Semantics/semantics.h"
23 #include "flang/Semantics/symbol.h"
24 #include "flang/Semantics/tools.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <functional>
28 #include <optional>
29 #include <set>
30 
31 // Typedef for optional generic expressions (ubiquitous in this file)
32 using MaybeExpr =
33     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
34 
35 // Much of the code that implements semantic analysis of expressions is
36 // tightly coupled with their typed representations in lib/Evaluate,
37 // and appears here in namespace Fortran::evaluate for convenience.
38 namespace Fortran::evaluate {
39 
40 using common::LanguageFeature;
41 using common::NumericOperator;
42 using common::TypeCategory;
43 
44 static inline std::string ToUpperCase(const std::string &str) {
45   return parser::ToUpperCaseLetters(str);
46 }
47 
48 struct DynamicTypeWithLength : public DynamicType {
49   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
50   std::optional<Expr<SubscriptInteger>> LEN() const;
51   std::optional<Expr<SubscriptInteger>> length;
52 };
53 
54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
55   if (length) {
56     return length;
57   }
58   if (auto *lengthParam{charLength()}) {
59     if (const auto &len{lengthParam->GetExplicit()}) {
60       return ConvertToType<SubscriptInteger>(common::Clone(*len));
61     }
62   }
63   return std::nullopt; // assumed or deferred length
64 }
65 
66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
67     const std::optional<parser::TypeSpec> &spec) {
68   if (spec) {
69     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
70       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
71       // (viz., an intrinsic type with valid known kind or a non-polymorphic
72       // & non-ABSTRACT derived type).
73       if (const semantics::IntrinsicTypeSpec *
74           intrinsic{typeSpec->AsIntrinsic()}) {
75         TypeCategory category{intrinsic->category()};
76         if (auto optKind{ToInt64(intrinsic->kind())}) {
77           int kind{static_cast<int>(*optKind)};
78           if (category == TypeCategory::Character) {
79             const semantics::CharacterTypeSpec &cts{
80                 typeSpec->characterTypeSpec()};
81             const semantics::ParamValue &len{cts.length()};
82             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
83             // type guards, but not in array constructors.
84             return DynamicTypeWithLength{DynamicType{kind, len}};
85           } else {
86             return DynamicTypeWithLength{DynamicType{category, kind}};
87           }
88         }
89       } else if (const semantics::DerivedTypeSpec *
90           derived{typeSpec->AsDerived()}) {
91         return DynamicTypeWithLength{DynamicType{*derived}};
92       }
93     }
94   }
95   return std::nullopt;
96 }
97 
98 class ArgumentAnalyzer {
99 public:
100   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
101       : context_{context}, source_{context.GetContextualMessages().at()},
102         isProcedureCall_{false} {}
103   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
104       bool isProcedureCall = false)
105       : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
106   bool fatalErrors() const { return fatalErrors_; }
107   ActualArguments &&GetActuals() {
108     CHECK(!fatalErrors_);
109     return std::move(actuals_);
110   }
111   const Expr<SomeType> &GetExpr(std::size_t i) const {
112     return DEREF(actuals_.at(i).value().UnwrapExpr());
113   }
114   Expr<SomeType> &&MoveExpr(std::size_t i) {
115     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
116   }
117   void Analyze(const common::Indirection<parser::Expr> &x) {
118     Analyze(x.value());
119   }
120   void Analyze(const parser::Expr &x) {
121     actuals_.emplace_back(AnalyzeExpr(x));
122     fatalErrors_ |= !actuals_.back();
123   }
124   void Analyze(const parser::Variable &);
125   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
126   void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType);
127 
128   bool IsIntrinsicRelational(RelationalOperator) const;
129   bool IsIntrinsicLogical() const;
130   bool IsIntrinsicNumeric(NumericOperator) const;
131   bool IsIntrinsicConcat() const;
132 
133   bool CheckConformance() const;
134 
135   // Find and return a user-defined operator or report an error.
136   // The provided message is used if there is no such operator.
137   MaybeExpr TryDefinedOp(
138       const char *, parser::MessageFixedText &&, bool isUserOp = false);
139   template <typename E>
140   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) {
141     return TryDefinedOp(
142         context_.context().languageFeatures().GetNames(opr), std::move(msg));
143   }
144   // Find and return a user-defined assignment
145   std::optional<ProcedureRef> TryDefinedAssignment();
146   std::optional<ProcedureRef> GetDefinedAssignmentProc();
147   std::optional<DynamicType> GetType(std::size_t) const;
148   void Dump(llvm::raw_ostream &);
149 
150 private:
151   MaybeExpr TryDefinedOp(
152       std::vector<const char *>, parser::MessageFixedText &&);
153   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
154   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
155   MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &);
156   bool AreConformable() const;
157   const Symbol *FindBoundOp(parser::CharBlock, int passIndex);
158   void AddAssignmentConversion(
159       const DynamicType &lhsType, const DynamicType &rhsType);
160   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
161   int GetRank(std::size_t) const;
162   bool IsBOZLiteral(std::size_t i) const {
163     return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u);
164   }
165   void SayNoMatch(const std::string &, bool isAssignment = false);
166   std::string TypeAsFortran(std::size_t);
167   bool AnyUntypedOperand();
168 
169   ExpressionAnalyzer &context_;
170   ActualArguments actuals_;
171   parser::CharBlock source_;
172   bool fatalErrors_{false};
173   const bool isProcedureCall_; // false for user-defined op or assignment
174   const Symbol *sawDefinedOp_{nullptr};
175 };
176 
177 // Wraps a data reference in a typed Designator<>, and a procedure
178 // or procedure pointer reference in a ProcedureDesignator.
179 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
180   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
181   if (semantics::IsProcedure(symbol)) {
182     if (auto *component{std::get_if<Component>(&ref.u)}) {
183       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
184     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
185       DIE("unexpected alternative in DataRef");
186     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
187       return Expr<SomeType>{ProcedureDesignator{symbol}};
188     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
189                    symbol.name().ToString())}) {
190       SpecificIntrinsic intrinsic{
191           symbol.name().ToString(), std::move(*interface)};
192       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
193       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
194     } else {
195       Say("'%s' is not a specific intrinsic procedure"_err_en_US,
196           symbol.name());
197       return std::nullopt;
198     }
199   } else if (auto dyType{DynamicType::From(symbol)}) {
200     return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref));
201   }
202   return std::nullopt;
203 }
204 
205 // Some subscript semantic checks must be deferred until all of the
206 // subscripts are in hand.
207 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
208   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
209   int symbolRank{symbol.Rank()};
210   int subscripts{static_cast<int>(ref.size())};
211   if (subscripts == 0) {
212     return std::nullopt; // error recovery
213   } else if (subscripts != symbolRank) {
214     if (symbolRank != 0) {
215       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
216           symbolRank, symbol.name(), subscripts);
217     }
218     return std::nullopt;
219   } else if (Component * component{ref.base().UnwrapComponent()}) {
220     int baseRank{component->base().Rank()};
221     if (baseRank > 0) {
222       int subscriptRank{0};
223       for (const auto &expr : ref.subscript()) {
224         subscriptRank += expr.Rank();
225       }
226       if (subscriptRank > 0) {
227         Say("Subscripts of component '%s' of rank-%d derived type "
228             "array have rank %d but must all be scalar"_err_en_US,
229             symbol.name(), baseRank, subscriptRank);
230         return std::nullopt;
231       }
232     }
233   } else if (const auto *object{
234                  symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
235     // C928 & C1002
236     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
237       if (!last->upper() && object->IsAssumedSize()) {
238         Say("Assumed-size array '%s' must have explicit final "
239             "subscript upper bound value"_err_en_US,
240             symbol.name());
241         return std::nullopt;
242       }
243     }
244   } else {
245     // Shouldn't get here from Analyze(ArrayElement) without a valid base,
246     // which, if not an object, must be a construct entity from
247     // SELECT TYPE/RANK or ASSOCIATE.
248     CHECK(symbol.has<semantics::AssocEntityDetails>());
249   }
250   return Designate(DataRef{std::move(ref)});
251 }
252 
253 // Applies subscripts to a data reference.
254 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
255     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
256   if (subscripts.empty()) {
257     return std::nullopt; // error recovery
258   }
259   return std::visit(
260       common::visitors{
261           [&](SymbolRef &&symbol) {
262             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
263           },
264           [&](Component &&c) {
265             return CompleteSubscripts(
266                 ArrayRef{std::move(c), std::move(subscripts)});
267           },
268           [&](auto &&) -> MaybeExpr {
269             DIE("bad base for ArrayRef");
270             return std::nullopt;
271           },
272       },
273       std::move(dataRef.u));
274 }
275 
276 // Top-level checks for data references.
277 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
278   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
279     const Symbol &symbol{component->GetLastSymbol()};
280     int componentRank{symbol.Rank()};
281     if (componentRank > 0) {
282       int baseRank{component->base().Rank()};
283       if (baseRank > 0) {
284         Say("Reference to whole rank-%d component '%%%s' of "
285             "rank-%d array of derived type is not allowed"_err_en_US,
286             componentRank, symbol.name(), baseRank);
287       }
288     }
289   }
290   return Designate(std::move(dataRef));
291 }
292 
293 // Parse tree correction after a substring S(j:k) was misparsed as an
294 // array section.  N.B. Fortran substrings have to have a range, not a
295 // single index.
296 static void FixMisparsedSubstring(const parser::Designator &d) {
297   auto &mutate{const_cast<parser::Designator &>(d)};
298   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
299     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
300             &dataRef->u)}) {
301       parser::ArrayElement &arrElement{ae->value()};
302       if (!arrElement.subscripts.empty()) {
303         auto iter{arrElement.subscripts.begin()};
304         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
305           if (!std::get<2>(triplet->t) /* no stride */ &&
306               ++iter == arrElement.subscripts.end() /* one subscript */) {
307             if (Symbol *
308                 symbol{std::visit(
309                     common::visitors{
310                         [](parser::Name &n) { return n.symbol; },
311                         [](common::Indirection<parser::StructureComponent>
312                                 &sc) { return sc.value().component.symbol; },
313                         [](auto &) -> Symbol * { return nullptr; },
314                     },
315                     arrElement.base.u)}) {
316               const Symbol &ultimate{symbol->GetUltimate()};
317               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
318                 if (!ultimate.IsObjectArray() &&
319                     type->category() == semantics::DeclTypeSpec::Character) {
320                   // The ambiguous S(j:k) was parsed as an array section
321                   // reference, but it's now clear that it's a substring.
322                   // Fix the parse tree in situ.
323                   mutate.u = arrElement.ConvertToSubstring();
324                 }
325               }
326             }
327           }
328         }
329       }
330     }
331   }
332 }
333 
334 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
335   auto restorer{GetContextualMessages().SetLocation(d.source)};
336   FixMisparsedSubstring(d);
337   // These checks have to be deferred to these "top level" data-refs where
338   // we can be sure that there are no following subscripts (yet).
339   // Substrings have already been run through TopLevelChecks() and
340   // won't be returned by ExtractDataRef().
341   if (MaybeExpr result{Analyze(d.u)}) {
342     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
343       return TopLevelChecks(std::move(*dataRef));
344     }
345     return result;
346   }
347   return std::nullopt;
348 }
349 
350 // A utility subroutine to repackage optional expressions of various levels
351 // of type specificity as fully general MaybeExpr values.
352 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
353   return AsGenericExpr(std::move(x));
354 }
355 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
356   if (x) {
357     return AsMaybeExpr(std::move(*x));
358   }
359   return std::nullopt;
360 }
361 
362 // Type kind parameter values for literal constants.
363 int ExpressionAnalyzer::AnalyzeKindParam(
364     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
365   if (!kindParam) {
366     return defaultKind;
367   }
368   return std::visit(
369       common::visitors{
370           [](std::uint64_t k) { return static_cast<int>(k); },
371           [&](const parser::Scalar<
372               parser::Integer<parser::Constant<parser::Name>>> &n) {
373             if (MaybeExpr ie{Analyze(n)}) {
374               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
375                 int iv = *i64;
376                 if (iv == *i64) {
377                   return iv;
378                 }
379               }
380             }
381             return defaultKind;
382           },
383       },
384       kindParam->u);
385 }
386 
387 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
388 struct IntTypeVisitor {
389   using Result = MaybeExpr;
390   using Types = IntegerTypes;
391   template <typename T> Result Test() {
392     if (T::kind >= kind) {
393       const char *p{digits.begin()};
394       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
395       if (!value.overflow) {
396         if (T::kind > kind) {
397           if (!isDefaultKind ||
398               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
399             return std::nullopt;
400           } else if (analyzer.context().ShouldWarn(
401                          LanguageFeature::BigIntLiterals)) {
402             analyzer.Say(digits,
403                 "Integer literal is too large for default INTEGER(KIND=%d); "
404                 "assuming INTEGER(KIND=%d)"_en_US,
405                 kind, T::kind);
406           }
407         }
408         return Expr<SomeType>{
409             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
410       }
411     }
412     return std::nullopt;
413   }
414   ExpressionAnalyzer &analyzer;
415   parser::CharBlock digits;
416   int kind;
417   bool isDefaultKind;
418 };
419 
420 template <typename PARSED>
421 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
422   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
423   bool isDefaultKind{!kindParam};
424   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
425   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
426     auto digits{std::get<parser::CharBlock>(x.t)};
427     if (MaybeExpr result{common::SearchTypes(
428             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
429       return result;
430     } else if (isDefaultKind) {
431       Say(digits,
432           "Integer literal is too large for any allowable "
433           "kind of INTEGER"_err_en_US);
434     } else {
435       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
436           kind);
437     }
438   }
439   return std::nullopt;
440 }
441 
442 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
443   auto restorer{
444       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
445   return IntLiteralConstant(x);
446 }
447 
448 MaybeExpr ExpressionAnalyzer::Analyze(
449     const parser::SignedIntLiteralConstant &x) {
450   auto restorer{GetContextualMessages().SetLocation(x.source)};
451   return IntLiteralConstant(x);
452 }
453 
454 template <typename TYPE>
455 Constant<TYPE> ReadRealLiteral(
456     parser::CharBlock source, FoldingContext &context) {
457   const char *p{source.begin()};
458   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
459   CHECK(p == source.end());
460   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
461   auto value{valWithFlags.value};
462   if (context.flushSubnormalsToZero()) {
463     value = value.FlushSubnormalToZero();
464   }
465   return {value};
466 }
467 
468 struct RealTypeVisitor {
469   using Result = std::optional<Expr<SomeReal>>;
470   using Types = RealTypes;
471 
472   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
473       : kind{k}, literal{lit}, context{ctx} {}
474 
475   template <typename T> Result Test() {
476     if (kind == T::kind) {
477       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
478     }
479     return std::nullopt;
480   }
481 
482   int kind;
483   parser::CharBlock literal;
484   FoldingContext &context;
485 };
486 
487 // Reads a real literal constant and encodes it with the right kind.
488 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
489   // Use a local message context around the real literal for better
490   // provenance on any messages.
491   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
492   // If a kind parameter appears, it defines the kind of the literal and the
493   // letter used in an exponent part must be 'E' (e.g., the 'E' in
494   // "6.02214E+23").  In the absence of an explicit kind parameter, any
495   // exponent letter determines the kind.  Otherwise, defaults apply.
496   auto &defaults{context_.defaultKinds()};
497   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
498   const char *end{x.real.source.end()};
499   char expoLetter{' '};
500   std::optional<int> letterKind;
501   for (const char *p{x.real.source.begin()}; p < end; ++p) {
502     if (parser::IsLetter(*p)) {
503       expoLetter = *p;
504       switch (expoLetter) {
505       case 'e':
506         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
507         break;
508       case 'd':
509         letterKind = defaults.doublePrecisionKind();
510         break;
511       case 'q':
512         letterKind = defaults.quadPrecisionKind();
513         break;
514       default:
515         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
516       }
517       break;
518     }
519   }
520   if (letterKind) {
521     defaultKind = *letterKind;
522   }
523   // C716 requires 'E' as an exponent, but this is more useful
524   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
525   if (letterKind && kind != *letterKind && expoLetter != 'e') {
526     Say("Explicit kind parameter on real constant disagrees with "
527         "exponent letter '%c'"_en_US,
528         expoLetter);
529   }
530   auto result{common::SearchTypes(
531       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
532   if (!result) { // C717
533     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
534   }
535   return AsMaybeExpr(std::move(result));
536 }
537 
538 MaybeExpr ExpressionAnalyzer::Analyze(
539     const parser::SignedRealLiteralConstant &x) {
540   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
541     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
542     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
543       if (sign == parser::Sign::Negative) {
544         return AsGenericExpr(-std::move(realExpr));
545       }
546     }
547     return result;
548   }
549   return std::nullopt;
550 }
551 
552 MaybeExpr ExpressionAnalyzer::Analyze(
553     const parser::SignedComplexLiteralConstant &x) {
554   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
555   if (!result) {
556     return std::nullopt;
557   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
558     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
559   } else {
560     return result;
561   }
562 }
563 
564 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
565   return Analyze(x.u);
566 }
567 
568 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
569   return AsMaybeExpr(
570       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
571           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
572 }
573 
574 // CHARACTER literal processing.
575 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
576   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
577     return std::nullopt;
578   }
579   switch (kind) {
580   case 1:
581     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
582         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
583             string, true)});
584   case 2:
585     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
586         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
587             string, true)});
588   case 4:
589     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
590         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
591             string, true)});
592   default:
593     CRASH_NO_CASE;
594   }
595 }
596 
597 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
598   int kind{
599       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
600   auto value{std::get<std::string>(x.t)};
601   return AnalyzeString(std::move(value), kind);
602 }
603 
604 MaybeExpr ExpressionAnalyzer::Analyze(
605     const parser::HollerithLiteralConstant &x) {
606   int kind{GetDefaultKind(TypeCategory::Character)};
607   auto value{x.v};
608   return AnalyzeString(std::move(value), kind);
609 }
610 
611 // .TRUE. and .FALSE. of various kinds
612 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
613   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
614       GetDefaultKind(TypeCategory::Logical))};
615   bool value{std::get<bool>(x.t)};
616   auto result{common::SearchTypes(
617       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
618           kind, std::move(value)})};
619   if (!result) {
620     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
621   }
622   return result;
623 }
624 
625 // BOZ typeless literals
626 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
627   const char *p{x.v.c_str()};
628   std::uint64_t base{16};
629   switch (*p++) {
630   case 'b':
631     base = 2;
632     break;
633   case 'o':
634     base = 8;
635     break;
636   case 'z':
637     break;
638   case 'x':
639     break;
640   default:
641     CRASH_NO_CASE;
642   }
643   CHECK(*p == '"');
644   ++p;
645   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
646   if (*p != '"') {
647     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
648         x.v); // C7107, C7108
649     return std::nullopt;
650   }
651   if (value.overflow) {
652     Say("BOZ literal '%s' too large"_err_en_US, x.v);
653     return std::nullopt;
654   }
655   return AsGenericExpr(std::move(value.value));
656 }
657 
658 // Names and named constants
659 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
660   auto restorer{GetContextualMessages().SetLocation(n.source)};
661   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
662     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
663         *kind, AsExpr(ImpliedDoIndex{n.source})));
664   } else if (context_.HasError(n)) {
665     return std::nullopt;
666   } else if (!n.symbol) {
667     SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source);
668     return std::nullopt;
669   } else {
670     const Symbol &ultimate{n.symbol->GetUltimate()};
671     if (ultimate.has<semantics::TypeParamDetails>()) {
672       // A bare reference to a derived type parameter (within a parameterized
673       // derived type definition)
674       return Fold(ConvertToType(
675           ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate})));
676     } else {
677       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
678         if (const semantics::Scope *
679             pure{semantics::FindPureProcedureContaining(
680                 context_.FindScope(n.source))}) {
681           SayAt(n,
682               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
683               n.source, DEREF(pure->symbol()).name());
684           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
685         }
686       }
687       if (!isWholeAssumedSizeArrayOk_ &&
688           semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231
689         AttachDeclaration(
690             SayAt(n,
691                 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US,
692                 n.source),
693             *n.symbol);
694       }
695       return Designate(DataRef{*n.symbol});
696     }
697   }
698 }
699 
700 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
701   auto restorer{GetContextualMessages().SetLocation(n.v.source)};
702   if (MaybeExpr value{Analyze(n.v)}) {
703     Expr<SomeType> folded{Fold(std::move(*value))};
704     if (IsConstantExpr(folded)) {
705       return folded;
706     }
707     Say(n.v.source, "must be a constant"_err_en_US); // C718
708   }
709   return std::nullopt;
710 }
711 
712 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) {
713   if (MaybeExpr value{Analyze(n.v)}) {
714     // Subtle: when the NullInit is a DataStmtConstant, it might
715     // be a misparse of a structure constructor without parameters
716     // or components (e.g., T()).  Checking the result to ensure
717     // that a "=>" data entity initializer actually resolved to
718     // a null pointer has to be done by the caller.
719     return Fold(std::move(*value));
720   }
721   return std::nullopt;
722 }
723 
724 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
725   return Analyze(x.value());
726 }
727 
728 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
729   if (const auto &repeat{
730           std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
731     x.repetitions = -1;
732     if (MaybeExpr expr{Analyze(repeat->u)}) {
733       Expr<SomeType> folded{Fold(std::move(*expr))};
734       if (auto value{ToInt64(folded)}) {
735         if (*value >= 0) { // C882
736           x.repetitions = *value;
737         } else {
738           Say(FindSourceLocation(repeat),
739               "Repeat count (%jd) for data value must not be negative"_err_en_US,
740               *value);
741         }
742       }
743     }
744   }
745   return Analyze(std::get<parser::DataStmtConstant>(x.t));
746 }
747 
748 // Substring references
749 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
750     const std::optional<parser::ScalarIntExpr> &bound) {
751   if (bound) {
752     if (MaybeExpr expr{Analyze(*bound)}) {
753       if (expr->Rank() > 1) {
754         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
755       }
756       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
757         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
758           return {std::move(*ssIntExpr)};
759         }
760         return {Expr<SubscriptInteger>{
761             Convert<SubscriptInteger, TypeCategory::Integer>{
762                 std::move(*intExpr)}}};
763       } else {
764         Say("substring bound expression is not INTEGER"_err_en_US);
765       }
766     }
767   }
768   return std::nullopt;
769 }
770 
771 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
772   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
773     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
774       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
775         if (std::optional<DataRef> checked{
776                 ExtractDataRef(std::move(*newBaseExpr))}) {
777           const parser::SubstringRange &range{
778               std::get<parser::SubstringRange>(ss.t)};
779           std::optional<Expr<SubscriptInteger>> first{
780               GetSubstringBound(std::get<0>(range.t))};
781           std::optional<Expr<SubscriptInteger>> last{
782               GetSubstringBound(std::get<1>(range.t))};
783           const Symbol &symbol{checked->GetLastSymbol()};
784           if (std::optional<DynamicType> dynamicType{
785                   DynamicType::From(symbol)}) {
786             if (dynamicType->category() == TypeCategory::Character) {
787               return WrapperHelper<TypeCategory::Character, Designator,
788                   Substring>(dynamicType->kind(),
789                   Substring{std::move(checked.value()), std::move(first),
790                       std::move(last)});
791             }
792           }
793           Say("substring may apply only to CHARACTER"_err_en_US);
794         }
795       }
796     }
797   }
798   return std::nullopt;
799 }
800 
801 // CHARACTER literal substrings
802 MaybeExpr ExpressionAnalyzer::Analyze(
803     const parser::CharLiteralConstantSubstring &x) {
804   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
805   std::optional<Expr<SubscriptInteger>> lower{
806       GetSubstringBound(std::get<0>(range.t))};
807   std::optional<Expr<SubscriptInteger>> upper{
808       GetSubstringBound(std::get<1>(range.t))};
809   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
810     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
811       Expr<SubscriptInteger> length{
812           std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
813               charExpr->u)};
814       if (!lower) {
815         lower = Expr<SubscriptInteger>{1};
816       }
817       if (!upper) {
818         upper = Expr<SubscriptInteger>{
819             static_cast<std::int64_t>(ToInt64(length).value())};
820       }
821       return std::visit(
822           [&](auto &&ckExpr) -> MaybeExpr {
823             using Result = ResultType<decltype(ckExpr)>;
824             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
825             CHECK(DEREF(cp).size() == 1);
826             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
827             staticData->set_alignment(Result::kind)
828                 .set_itemBytes(Result::kind)
829                 .Push(cp->GetScalarValue().value());
830             Substring substring{std::move(staticData), std::move(lower.value()),
831                 std::move(upper.value())};
832             return AsGenericExpr(
833                 Expr<Result>{Designator<Result>{std::move(substring)}});
834           },
835           std::move(charExpr->u));
836     }
837   }
838   return std::nullopt;
839 }
840 
841 // Subscripted array references
842 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
843     MaybeExpr &&expr) {
844   if (expr) {
845     if (expr->Rank() > 1) {
846       Say("Subscript expression has rank %d greater than 1"_err_en_US,
847           expr->Rank());
848     }
849     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
850       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
851         return std::move(*ssIntExpr);
852       } else {
853         return Expr<SubscriptInteger>{
854             Convert<SubscriptInteger, TypeCategory::Integer>{
855                 std::move(*intExpr)}};
856       }
857     } else {
858       Say("Subscript expression is not INTEGER"_err_en_US);
859     }
860   }
861   return std::nullopt;
862 }
863 
864 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
865     const std::optional<parser::Subscript> &s) {
866   if (s) {
867     return AsSubscript(Analyze(*s));
868   } else {
869     return std::nullopt;
870   }
871 }
872 
873 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
874     const parser::SectionSubscript &ss) {
875   return std::visit(
876       common::visitors{
877           [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
878             const auto &lower{std::get<0>(t.t)};
879             const auto &upper{std::get<1>(t.t)};
880             const auto &stride{std::get<2>(t.t)};
881             auto result{Triplet{
882                 TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
883             if ((lower && !result.lower()) || (upper && !result.upper())) {
884               return std::nullopt;
885             } else {
886               return std::make_optional<Subscript>(result);
887             }
888           },
889           [&](const auto &s) -> std::optional<Subscript> {
890             if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
891               return Subscript{std::move(*subscriptExpr)};
892             } else {
893               return std::nullopt;
894             }
895           },
896       },
897       ss.u);
898 }
899 
900 // Empty result means an error occurred
901 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
902     const std::list<parser::SectionSubscript> &sss) {
903   bool error{false};
904   std::vector<Subscript> subscripts;
905   for (const auto &s : sss) {
906     if (auto subscript{AnalyzeSectionSubscript(s)}) {
907       subscripts.emplace_back(std::move(*subscript));
908     } else {
909       error = true;
910     }
911   }
912   return !error ? subscripts : std::vector<Subscript>{};
913 }
914 
915 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
916   MaybeExpr baseExpr;
917   {
918     auto restorer{AllowWholeAssumedSizeArray()};
919     baseExpr = Analyze(ae.base);
920   }
921   if (baseExpr) {
922     if (ae.subscripts.empty()) {
923       // will be converted to function call later or error reported
924     } else if (baseExpr->Rank() == 0) {
925       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
926         if (!context_.HasError(symbol)) {
927           Say("'%s' is not an array"_err_en_US, symbol->name());
928           context_.SetError(*symbol);
929         }
930       }
931     } else if (std::optional<DataRef> dataRef{
932                    ExtractDataRef(std::move(*baseExpr))}) {
933       return ApplySubscripts(
934           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
935     } else {
936       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
937     }
938   }
939   // error was reported: analyze subscripts without reporting more errors
940   auto restorer{GetContextualMessages().DiscardMessages()};
941   AnalyzeSectionSubscripts(ae.subscripts);
942   return std::nullopt;
943 }
944 
945 // Type parameter inquiries apply to data references, but don't depend
946 // on any trailing (co)subscripts.
947 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
948   return std::visit(
949       common::visitors{
950           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
951           [](Component &&component) {
952             return NamedEntity{std::move(component)};
953           },
954           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
955           [](CoarrayRef &&coarrayRef) {
956             return NamedEntity{coarrayRef.GetLastSymbol()};
957           },
958       },
959       std::move(designator.u));
960 }
961 
962 // Components of parent derived types are explicitly represented as such.
963 static std::optional<Component> CreateComponent(
964     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
965   if (&component.owner() == &scope) {
966     return Component{std::move(base), component};
967   }
968   if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) {
969     if (const Symbol * parentComponent{parentScope->GetSymbol()}) {
970       return CreateComponent(
971           DataRef{Component{std::move(base), *parentComponent}}, component,
972           *parentScope);
973     }
974   }
975   return std::nullopt;
976 }
977 
978 // Derived type component references and type parameter inquiries
979 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
980   MaybeExpr base{Analyze(sc.base)};
981   Symbol *sym{sc.component.symbol};
982   if (!base || !sym || context_.HasError(sym)) {
983     return std::nullopt;
984   }
985   const auto &name{sc.component.source};
986   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
987     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
988     if (sym->detailsIf<semantics::TypeParamDetails>()) {
989       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
990         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
991           if (dyType->category() == TypeCategory::Integer) {
992             auto restorer{GetContextualMessages().SetLocation(name)};
993             return Fold(ConvertToType(*dyType,
994                 AsGenericExpr(TypeParamInquiry{
995                     IgnoreAnySubscripts(std::move(*designator)), *sym})));
996           }
997         }
998         Say(name, "Type parameter is not INTEGER"_err_en_US);
999       } else {
1000         Say(name,
1001             "A type parameter inquiry must be applied to "
1002             "a designator"_err_en_US);
1003       }
1004     } else if (!dtSpec || !dtSpec->scope()) {
1005       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
1006       return std::nullopt;
1007     } else if (std::optional<DataRef> dataRef{
1008                    ExtractDataRef(std::move(*dtExpr))}) {
1009       if (auto component{
1010               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
1011         return Designate(DataRef{std::move(*component)});
1012       } else {
1013         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1014             dtSpec->typeSymbol().name());
1015       }
1016     } else {
1017       Say(name,
1018           "Base of component reference must be a data reference"_err_en_US);
1019     }
1020   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1021     // special part-ref: %re, %im, %kind, %len
1022     // Type errors are detected and reported in semantics.
1023     using MiscKind = semantics::MiscDetails::Kind;
1024     MiscKind kind{details->kind()};
1025     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1026       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1027         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
1028           Expr<SomeReal> realExpr{std::visit(
1029               [&](const auto &z) {
1030                 using PartType = typename ResultType<decltype(z)>::Part;
1031                 auto part{kind == MiscKind::ComplexPartRe
1032                         ? ComplexPart::Part::RE
1033                         : ComplexPart::Part::IM};
1034                 return AsCategoryExpr(Designator<PartType>{
1035                     ComplexPart{std::move(*dataRef), part}});
1036               },
1037               zExpr->u)};
1038           return AsGenericExpr(std::move(realExpr));
1039         }
1040       }
1041     } else if (kind == MiscKind::KindParamInquiry ||
1042         kind == MiscKind::LenParamInquiry) {
1043       // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
1044       return MakeFunctionRef(
1045           name, ActualArguments{ActualArgument{std::move(*base)}});
1046     } else {
1047       DIE("unexpected MiscDetails::Kind");
1048     }
1049   } else {
1050     Say(name, "derived type required before component reference"_err_en_US);
1051   }
1052   return std::nullopt;
1053 }
1054 
1055 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1056   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1057     DataRef *dataRef{&*maybeDataRef};
1058     std::vector<Subscript> subscripts;
1059     SymbolVector reversed;
1060     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1061       subscripts = std::move(aRef->subscript());
1062       reversed.push_back(aRef->GetLastSymbol());
1063       if (Component * component{aRef->base().UnwrapComponent()}) {
1064         dataRef = &component->base();
1065       } else {
1066         dataRef = nullptr;
1067       }
1068     }
1069     if (dataRef) {
1070       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1071         reversed.push_back(component->GetLastSymbol());
1072         dataRef = &component->base();
1073       }
1074       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1075         reversed.push_back(*baseSym);
1076       } else {
1077         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1078       }
1079     }
1080     std::vector<Expr<SubscriptInteger>> cosubscripts;
1081     bool cosubsOk{true};
1082     for (const auto &cosub :
1083         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1084       MaybeExpr coex{Analyze(cosub)};
1085       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1086         cosubscripts.push_back(
1087             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1088       } else {
1089         cosubsOk = false;
1090       }
1091     }
1092     if (cosubsOk && !reversed.empty()) {
1093       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1094       const Symbol &symbol{reversed.front()};
1095       if (numCosubscripts != symbol.Corank()) {
1096         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1097             symbol.name(), symbol.Corank(), numCosubscripts);
1098       }
1099     }
1100     for (const auto &imageSelSpec :
1101         std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1102       std::visit(
1103           common::visitors{
1104               [&](const auto &x) { Analyze(x.v); },
1105           },
1106           imageSelSpec.u);
1107     }
1108     // Reverse the chain of symbols so that the base is first and coarray
1109     // ultimate component is last.
1110     if (cosubsOk) {
1111       return Designate(
1112           DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1113               std::move(subscripts), std::move(cosubscripts)}});
1114     }
1115   }
1116   return std::nullopt;
1117 }
1118 
1119 int ExpressionAnalyzer::IntegerTypeSpecKind(
1120     const parser::IntegerTypeSpec &spec) {
1121   Expr<SubscriptInteger> value{
1122       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1123   if (auto kind{ToInt64(value)}) {
1124     return static_cast<int>(*kind);
1125   }
1126   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1127   return GetDefaultKind(TypeCategory::Integer);
1128 }
1129 
1130 // Array constructors
1131 
1132 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1133 // all happen to have the same actual type T into one ArrayConstructor<T>.
1134 template <typename T>
1135 ArrayConstructorValues<T> MakeSpecific(
1136     ArrayConstructorValues<SomeType> &&from) {
1137   ArrayConstructorValues<T> to;
1138   for (ArrayConstructorValue<SomeType> &x : from) {
1139     std::visit(
1140         common::visitors{
1141             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1142               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1143               to.Push(std::move(DEREF(typed)));
1144             },
1145             [&](ImpliedDo<SomeType> &&impliedDo) {
1146               to.Push(ImpliedDo<T>{impliedDo.name(),
1147                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1148                   std::move(impliedDo.stride()),
1149                   MakeSpecific<T>(std::move(impliedDo.values()))});
1150             },
1151         },
1152         std::move(x.u));
1153   }
1154   return to;
1155 }
1156 
1157 class ArrayConstructorContext {
1158 public:
1159   ArrayConstructorContext(
1160       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1161       : exprAnalyzer_{c}, type_{std::move(t)} {}
1162 
1163   void Add(const parser::AcValue &);
1164   MaybeExpr ToExpr();
1165 
1166   // These interfaces allow *this to be used as a type visitor argument to
1167   // common::SearchTypes() to convert the array constructor to a typed
1168   // expression in ToExpr().
1169   using Result = MaybeExpr;
1170   using Types = AllTypes;
1171   template <typename T> Result Test() {
1172     if (type_ && type_->category() == T::category) {
1173       if constexpr (T::category == TypeCategory::Derived) {
1174         if (type_->IsUnlimitedPolymorphic()) {
1175           return std::nullopt;
1176         } else {
1177           return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1178               MakeSpecific<T>(std::move(values_))});
1179         }
1180       } else if (type_->kind() == T::kind) {
1181         if constexpr (T::category == TypeCategory::Character) {
1182           if (auto len{type_->LEN()}) {
1183             return AsMaybeExpr(ArrayConstructor<T>{
1184                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1185           }
1186         } else {
1187           return AsMaybeExpr(
1188               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1189         }
1190       }
1191     }
1192     return std::nullopt;
1193   }
1194 
1195 private:
1196   using ImpliedDoIntType = ResultType<ImpliedDoIndex>;
1197 
1198   void Push(MaybeExpr &&);
1199   void Add(const parser::AcValue::Triplet &);
1200   void Add(const parser::Expr &);
1201   void Add(const parser::AcImpliedDo &);
1202   void UnrollConstantImpliedDo(const parser::AcImpliedDo &,
1203       parser::CharBlock name, std::int64_t lower, std::int64_t upper,
1204       std::int64_t stride);
1205 
1206   template <int KIND, typename A>
1207   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1208       const A &x) {
1209     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1210       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1211       return Fold(exprAnalyzer_.GetFoldingContext(),
1212           ConvertToType<Type<TypeCategory::Integer, KIND>>(
1213               std::move(DEREF(intExpr))));
1214     }
1215     return std::nullopt;
1216   }
1217 
1218   // Nested array constructors all reference the same ExpressionAnalyzer,
1219   // which represents the nest of active implied DO loop indices.
1220   ExpressionAnalyzer &exprAnalyzer_;
1221   std::optional<DynamicTypeWithLength> type_;
1222   bool explicitType_{type_.has_value()};
1223   std::optional<std::int64_t> constantLength_;
1224   ArrayConstructorValues<SomeType> values_;
1225   std::uint64_t messageDisplayedSet_{0};
1226 };
1227 
1228 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1229   if (!x) {
1230     return;
1231   }
1232   if (auto dyType{x->GetType()}) {
1233     DynamicTypeWithLength xType{*dyType};
1234     if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1235       CHECK(xType.category() == TypeCategory::Character);
1236       xType.length =
1237           std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1238     }
1239     if (!type_) {
1240       // If there is no explicit type-spec in an array constructor, the type
1241       // of the array is the declared type of all of the elements, which must
1242       // be well-defined and all match.
1243       // TODO: Possible language extension: use the most general type of
1244       // the values as the type of a numeric constructed array, convert all
1245       // of the other values to that type.  Alternative: let the first value
1246       // determine the type, and convert the others to that type.
1247       CHECK(!explicitType_);
1248       type_ = std::move(xType);
1249       constantLength_ = ToInt64(type_->length);
1250       values_.Push(std::move(*x));
1251     } else if (!explicitType_) {
1252       if (static_cast<const DynamicType &>(*type_) ==
1253           static_cast<const DynamicType &>(xType)) {
1254         values_.Push(std::move(*x));
1255         if (auto thisLen{ToInt64(xType.LEN())}) {
1256           if (constantLength_) {
1257             if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1258                 *thisLen != *constantLength_) {
1259               if (!(messageDisplayedSet_ & 1)) {
1260                 exprAnalyzer_.Say(
1261                     "Character literal in array constructor without explicit "
1262                     "type has different length than earlier elements"_en_US);
1263                 messageDisplayedSet_ |= 1;
1264               }
1265             }
1266             if (*thisLen > *constantLength_) {
1267               // Language extension: use the longest literal to determine the
1268               // length of the array constructor's character elements, not the
1269               // first, when there is no explicit type.
1270               *constantLength_ = *thisLen;
1271               type_->length = xType.LEN();
1272             }
1273           } else {
1274             constantLength_ = *thisLen;
1275             type_->length = xType.LEN();
1276           }
1277         }
1278       } else {
1279         if (!(messageDisplayedSet_ & 2)) {
1280           exprAnalyzer_.Say(
1281               "Values in array constructor must have the same declared type "
1282               "when no explicit type appears"_err_en_US); // C7110
1283           messageDisplayedSet_ |= 2;
1284         }
1285       }
1286     } else {
1287       if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1288         values_.Push(std::move(*cast));
1289       } else if (!(messageDisplayedSet_ & 4)) {
1290         exprAnalyzer_.Say(
1291             "Value in array constructor of type '%s' could not "
1292             "be converted to the type of the array '%s'"_err_en_US,
1293             x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
1294         messageDisplayedSet_ |= 4;
1295       }
1296     }
1297   }
1298 }
1299 
1300 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1301   std::visit(
1302       common::visitors{
1303           [&](const parser::AcValue::Triplet &triplet) { Add(triplet); },
1304           [&](const common::Indirection<parser::Expr> &expr) {
1305             Add(expr.value());
1306           },
1307           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1308             Add(impliedDo.value());
1309           },
1310       },
1311       x.u);
1312 }
1313 
1314 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1315 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) {
1316   std::optional<Expr<ImpliedDoIntType>> lower{
1317       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))};
1318   std::optional<Expr<ImpliedDoIntType>> upper{
1319       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))};
1320   std::optional<Expr<ImpliedDoIntType>> stride{
1321       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))};
1322   if (lower && upper) {
1323     if (!stride) {
1324       stride = Expr<ImpliedDoIntType>{1};
1325     }
1326     if (!type_) {
1327       type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()};
1328     }
1329     auto v{std::move(values_)};
1330     parser::CharBlock anonymous;
1331     Push(Expr<SomeType>{
1332         Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}});
1333     std::swap(v, values_);
1334     values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1335         std::move(*upper), std::move(*stride), std::move(v)});
1336   }
1337 }
1338 
1339 void ArrayConstructorContext::Add(const parser::Expr &expr) {
1340   auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)};
1341   if (MaybeExpr v{exprAnalyzer_.Analyze(expr)}) {
1342     if (auto exprType{v->GetType()}) {
1343       if (!(messageDisplayedSet_ & 8) && exprType->IsUnlimitedPolymorphic()) {
1344         exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an "
1345                           "array constructor"_err_en_US); // C7113
1346         messageDisplayedSet_ |= 8;
1347       }
1348     }
1349     Push(std::move(*v));
1350   }
1351 }
1352 
1353 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) {
1354   const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)};
1355   const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1356   exprAnalyzer_.Analyze(bounds.name);
1357   parser::CharBlock name{bounds.name.thing.thing.source};
1358   const Symbol *symbol{bounds.name.thing.thing.symbol};
1359   int kind{ImpliedDoIntType::kind};
1360   if (const auto dynamicType{DynamicType::From(symbol)}) {
1361     kind = dynamicType->kind();
1362   }
1363   if (!exprAnalyzer_.AddImpliedDo(name, kind)) {
1364     if (!(messageDisplayedSet_ & 0x20)) {
1365       exprAnalyzer_.SayAt(name,
1366           "Implied DO index is active in surrounding implied DO loop "
1367           "and may not have the same name"_err_en_US); // C7115
1368       messageDisplayedSet_ |= 0x20;
1369     }
1370     return;
1371   }
1372   std::optional<Expr<ImpliedDoIntType>> lower{
1373       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)};
1374   std::optional<Expr<ImpliedDoIntType>> upper{
1375       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)};
1376   if (lower && upper) {
1377     std::optional<Expr<ImpliedDoIntType>> stride{
1378         GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)};
1379     if (!stride) {
1380       stride = Expr<ImpliedDoIntType>{1};
1381     }
1382     // Check for constant bounds; the loop may require complete unrolling
1383     // of the parse tree if all bounds are constant in order to allow the
1384     // implied DO loop index to qualify as a constant expression.
1385     auto cLower{ToInt64(lower)};
1386     auto cUpper{ToInt64(upper)};
1387     auto cStride{ToInt64(stride)};
1388     if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) {
1389       exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source,
1390           "The stride of an implied DO loop must not be zero"_err_en_US);
1391       messageDisplayedSet_ |= 0x10;
1392     }
1393     bool isConstant{cLower && cUpper && cStride && *cStride != 0};
1394     bool isNonemptyConstant{isConstant &&
1395         ((*cStride > 0 && *cLower <= *cUpper) ||
1396             (*cStride < 0 && *cLower >= *cUpper))};
1397     bool unrollConstantLoop{false};
1398     parser::Messages buffer;
1399     auto saveMessagesDisplayed{messageDisplayedSet_};
1400     {
1401       auto messageRestorer{
1402           exprAnalyzer_.GetContextualMessages().SetMessages(buffer)};
1403       auto v{std::move(values_)};
1404       for (const auto &value :
1405           std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1406         Add(value);
1407       }
1408       std::swap(v, values_);
1409       if (isNonemptyConstant && buffer.AnyFatalError()) {
1410         unrollConstantLoop = true;
1411       } else {
1412         values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1413             std::move(*upper), std::move(*stride), std::move(v)});
1414       }
1415     }
1416     if (unrollConstantLoop) {
1417       messageDisplayedSet_ = saveMessagesDisplayed;
1418       UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride);
1419     } else if (auto *messages{
1420                    exprAnalyzer_.GetContextualMessages().messages()}) {
1421       messages->Annex(std::move(buffer));
1422     }
1423   }
1424   exprAnalyzer_.RemoveImpliedDo(name);
1425 }
1426 
1427 // Fortran considers an implied DO index of an array constructor to be
1428 // a constant expression if the bounds of the implied DO loop are constant.
1429 // Usually this doesn't matter, but if we emitted spurious messages as a
1430 // result of not using constant values for the index while analyzing the
1431 // items, we need to do it again the "hard" way with multiple iterations over
1432 // the parse tree.
1433 void ArrayConstructorContext::UnrollConstantImpliedDo(
1434     const parser::AcImpliedDo &impliedDo, parser::CharBlock name,
1435     std::int64_t lower, std::int64_t upper, std::int64_t stride) {
1436   auto &foldingContext{exprAnalyzer_.GetFoldingContext()};
1437   auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()};
1438   for (auto &at{foldingContext.StartImpliedDo(name, lower)};
1439        (stride > 0 && at <= upper) || (stride < 0 && at >= upper);
1440        at += stride) {
1441     for (const auto &value :
1442         std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1443       Add(value);
1444     }
1445   }
1446   foldingContext.EndImpliedDo(name);
1447 }
1448 
1449 MaybeExpr ArrayConstructorContext::ToExpr() {
1450   return common::SearchTypes(std::move(*this));
1451 }
1452 
1453 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1454   const parser::AcSpec &acSpec{array.v};
1455   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1456   for (const parser::AcValue &value : acSpec.values) {
1457     acContext.Add(value);
1458   }
1459   return acContext.ToExpr();
1460 }
1461 
1462 MaybeExpr ExpressionAnalyzer::Analyze(
1463     const parser::StructureConstructor &structure) {
1464   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1465   parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source};
1466   if (!parsedType.derivedTypeSpec) {
1467     return std::nullopt;
1468   }
1469   const auto &spec{*parsedType.derivedTypeSpec};
1470   const Symbol &typeSymbol{spec.typeSymbol()};
1471   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1472     return std::nullopt; // error recovery
1473   }
1474   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1475   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1476 
1477   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1478     AttachDeclaration(Say(typeName,
1479                           "ABSTRACT derived type '%s' may not be used in a "
1480                           "structure constructor"_err_en_US,
1481                           typeName),
1482         typeSymbol); // C7114
1483   }
1484 
1485   // This iterator traverses all of the components in the derived type and its
1486   // parents.  The symbols for whole parent components appear after their
1487   // own components and before the components of the types that extend them.
1488   // E.g., TYPE :: A; REAL X; END TYPE
1489   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1490   // produces the component list X, A, Y.
1491   // The order is important below because a structure constructor can
1492   // initialize X or A by name, but not both.
1493   auto components{semantics::OrderedComponentIterator{spec}};
1494   auto nextAnonymous{components.begin()};
1495 
1496   std::set<parser::CharBlock> unavailable;
1497   bool anyKeyword{false};
1498   StructureConstructor result{spec};
1499   bool checkConflicts{true}; // until we hit one
1500   auto &messages{GetContextualMessages()};
1501 
1502   for (const auto &component :
1503       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1504     const parser::Expr &expr{
1505         std::get<parser::ComponentDataSource>(component.t).v.value()};
1506     parser::CharBlock source{expr.source};
1507     auto restorer{messages.SetLocation(source)};
1508     const Symbol *symbol{nullptr};
1509     MaybeExpr value{Analyze(expr)};
1510     std::optional<DynamicType> valueType{DynamicType::From(value)};
1511     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1512       anyKeyword = true;
1513       source = kw->v.source;
1514       symbol = kw->v.symbol;
1515       if (!symbol) {
1516         auto componentIter{std::find_if(components.begin(), components.end(),
1517             [=](const Symbol &symbol) { return symbol.name() == source; })};
1518         if (componentIter != components.end()) {
1519           symbol = &*componentIter;
1520         }
1521       }
1522       if (!symbol) { // C7101
1523         Say(source,
1524             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1525             source, typeName);
1526       }
1527     } else {
1528       if (anyKeyword) { // C7100
1529         Say(source,
1530             "Value in structure constructor lacks a component name"_err_en_US);
1531         checkConflicts = false; // stem cascade
1532       }
1533       // Here's a regrettably common extension of the standard: anonymous
1534       // initialization of parent components, e.g., T(PT(1)) rather than
1535       // T(1) or T(PT=PT(1)).
1536       if (nextAnonymous == components.begin() && parentComponent &&
1537           valueType == DynamicType::From(*parentComponent) &&
1538           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1539         auto iter{
1540             std::find(components.begin(), components.end(), *parentComponent)};
1541         if (iter != components.end()) {
1542           symbol = parentComponent;
1543           nextAnonymous = ++iter;
1544           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1545             Say(source,
1546                 "Whole parent component '%s' in structure "
1547                 "constructor should not be anonymous"_en_US,
1548                 symbol->name());
1549           }
1550         }
1551       }
1552       while (!symbol && nextAnonymous != components.end()) {
1553         const Symbol &next{*nextAnonymous};
1554         ++nextAnonymous;
1555         if (!next.test(Symbol::Flag::ParentComp)) {
1556           symbol = &next;
1557         }
1558       }
1559       if (!symbol) {
1560         Say(source, "Unexpected value in structure constructor"_err_en_US);
1561       }
1562     }
1563     if (symbol) {
1564       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1565         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1566           Say(source, *msg);
1567         }
1568       }
1569       if (checkConflicts) {
1570         auto componentIter{
1571             std::find(components.begin(), components.end(), *symbol)};
1572         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1573           // C797, C798
1574           Say(source,
1575               "Component '%s' conflicts with another component earlier in "
1576               "this structure constructor"_err_en_US,
1577               symbol->name());
1578         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1579           // Make earlier components unavailable once a whole parent appears.
1580           for (auto it{components.begin()}; it != componentIter; ++it) {
1581             unavailable.insert(it->name());
1582           }
1583         } else {
1584           // Make whole parent components unavailable after any of their
1585           // constituents appear.
1586           for (auto it{componentIter}; it != components.end(); ++it) {
1587             if (it->test(Symbol::Flag::ParentComp)) {
1588               unavailable.insert(it->name());
1589             }
1590           }
1591         }
1592       }
1593       unavailable.insert(symbol->name());
1594       if (value) {
1595         if (symbol->has<semantics::ProcEntityDetails>()) {
1596           CHECK(IsPointer(*symbol));
1597         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1598           // C1594(4)
1599           const auto &innermost{context_.FindScope(expr.source)};
1600           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1601             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1602               if (const Symbol *
1603                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1604                 if (auto *msg{Say(expr.source,
1605                         "Externally visible object '%s' may not be "
1606                         "associated with pointer component '%s' in a "
1607                         "pure procedure"_err_en_US,
1608                         object->name(), pointer->name())}) {
1609                   msg->Attach(object->name(), "Object declaration"_en_US)
1610                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1611                 }
1612               }
1613             }
1614           }
1615         } else if (symbol->has<semantics::TypeParamDetails>()) {
1616           Say(expr.source,
1617               "Type parameter '%s' may not appear as a component "
1618               "of a structure constructor"_err_en_US,
1619               symbol->name());
1620           continue;
1621         } else {
1622           Say(expr.source,
1623               "Component '%s' is neither a procedure pointer "
1624               "nor a data object"_err_en_US,
1625               symbol->name());
1626           continue;
1627         }
1628         if (IsPointer(*symbol)) {
1629           semantics::CheckPointerAssignment(
1630               GetFoldingContext(), *symbol, *value); // C7104, C7105
1631           result.Add(*symbol, Fold(std::move(*value)));
1632         } else if (MaybeExpr converted{
1633                        ConvertToType(*symbol, std::move(*value))}) {
1634           if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
1635             if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
1636               if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
1637                 AttachDeclaration(
1638                     Say(expr.source,
1639                         "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
1640                         GetRank(*valueShape), symbol->name()),
1641                     *symbol);
1642               } else if (CheckConformance(messages, *componentShape,
1643                              *valueShape, "component", "value")) {
1644                 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 &&
1645                     !IsExpandableScalar(*converted)) {
1646                   AttachDeclaration(
1647                       Say(expr.source,
1648                           "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
1649                           symbol->name()),
1650                       *symbol);
1651                 } else {
1652                   result.Add(*symbol, std::move(*converted));
1653                 }
1654               }
1655             } else {
1656               Say(expr.source, "Shape of value cannot be determined"_err_en_US);
1657             }
1658           } else {
1659             AttachDeclaration(
1660                 Say(expr.source,
1661                     "Shape of component '%s' cannot be determined"_err_en_US,
1662                     symbol->name()),
1663                 *symbol);
1664           }
1665         } else if (IsAllocatable(*symbol) &&
1666             std::holds_alternative<NullPointer>(value->u)) {
1667           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE
1668         } else if (auto symType{DynamicType::From(symbol)}) {
1669           if (valueType) {
1670             AttachDeclaration(
1671                 Say(expr.source,
1672                     "Value in structure constructor of type %s is "
1673                     "incompatible with component '%s' of type %s"_err_en_US,
1674                     valueType->AsFortran(), symbol->name(),
1675                     symType->AsFortran()),
1676                 *symbol);
1677           } else {
1678             AttachDeclaration(
1679                 Say(expr.source,
1680                     "Value in structure constructor is incompatible with "
1681                     " component '%s' of type %s"_err_en_US,
1682                     symbol->name(), symType->AsFortran()),
1683                 *symbol);
1684           }
1685         }
1686       }
1687     }
1688   }
1689 
1690   // Ensure that unmentioned component objects have default initializers.
1691   for (const Symbol &symbol : components) {
1692     if (!symbol.test(Symbol::Flag::ParentComp) &&
1693         unavailable.find(symbol.name()) == unavailable.cend() &&
1694         !IsAllocatable(symbol)) {
1695       if (const auto *details{
1696               symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1697         if (details->init()) {
1698           result.Add(symbol, common::Clone(*details->init()));
1699         } else { // C799
1700           AttachDeclaration(Say(typeName,
1701                                 "Structure constructor lacks a value for "
1702                                 "component '%s'"_err_en_US,
1703                                 symbol.name()),
1704               symbol);
1705         }
1706       }
1707     }
1708   }
1709 
1710   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1711 }
1712 
1713 static std::optional<parser::CharBlock> GetPassName(
1714     const semantics::Symbol &proc) {
1715   return std::visit(
1716       [](const auto &details) {
1717         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1718                           std::decay_t<decltype(details)>>) {
1719           return details.passName();
1720         } else {
1721           return std::optional<parser::CharBlock>{};
1722         }
1723       },
1724       proc.details());
1725 }
1726 
1727 static int GetPassIndex(const Symbol &proc) {
1728   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1729   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1730   const auto *interface{semantics::FindInterface(proc)};
1731   if (!passName || !interface) {
1732     return 0; // first argument is passed-object
1733   }
1734   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1735   int index{0};
1736   for (const auto *arg : subp.dummyArgs()) {
1737     if (arg && arg->name() == passName) {
1738       return index;
1739     }
1740     ++index;
1741   }
1742   DIE("PASS argument name not in dummy argument list");
1743 }
1744 
1745 // Injects an expression into an actual argument list as the "passed object"
1746 // for a type-bound procedure reference that is not NOPASS.  Adds an
1747 // argument keyword if possible, but not when the passed object goes
1748 // before a positional argument.
1749 // e.g., obj%tbp(x) -> tbp(obj,x).
1750 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1751     const Symbol &component, bool isPassedObject = true) {
1752   if (component.attrs().test(semantics::Attr::NOPASS)) {
1753     return;
1754   }
1755   int passIndex{GetPassIndex(component)};
1756   auto iter{actuals.begin()};
1757   int at{0};
1758   while (iter < actuals.end() && at < passIndex) {
1759     if (*iter && (*iter)->keyword()) {
1760       iter = actuals.end();
1761       break;
1762     }
1763     ++iter;
1764     ++at;
1765   }
1766   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1767   passed.set_isPassedObject(isPassedObject);
1768   if (iter == actuals.end()) {
1769     if (auto passName{GetPassName(component)}) {
1770       passed.set_keyword(*passName);
1771     }
1772   }
1773   actuals.emplace(iter, std::move(passed));
1774 }
1775 
1776 // Return the compile-time resolution of a procedure binding, if possible.
1777 static const Symbol *GetBindingResolution(
1778     const std::optional<DynamicType> &baseType, const Symbol &component) {
1779   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1780   if (!binding) {
1781     return nullptr;
1782   }
1783   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1784       (!baseType || baseType->IsPolymorphic())) {
1785     return nullptr;
1786   }
1787   return &binding->symbol();
1788 }
1789 
1790 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1791     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1792     -> std::optional<CalleeAndArguments> {
1793   const parser::StructureComponent &sc{pcr.v.thing};
1794   if (MaybeExpr base{Analyze(sc.base)}) {
1795     if (const Symbol * sym{sc.component.symbol}) {
1796       if (context_.HasError(sym)) {
1797         return std::nullopt;
1798       }
1799       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1800         if (sym->has<semantics::GenericDetails>()) {
1801           AdjustActuals adjustment{
1802               [&](const Symbol &proc, ActualArguments &actuals) {
1803                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1804                   AddPassArg(actuals, std::move(*dtExpr), proc);
1805                 }
1806                 return true;
1807               }};
1808           sym = ResolveGeneric(*sym, arguments, adjustment);
1809           if (!sym) {
1810             EmitGenericResolutionError(*sc.component.symbol);
1811             return std::nullopt;
1812           }
1813         }
1814         if (const Symbol *
1815             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1816           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1817           return CalleeAndArguments{
1818               ProcedureDesignator{*resolution}, std::move(arguments)};
1819         } else if (std::optional<DataRef> dataRef{
1820                        ExtractDataRef(std::move(*dtExpr))}) {
1821           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1822             return CalleeAndArguments{
1823                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1824                 std::move(arguments)};
1825           } else {
1826             AddPassArg(arguments,
1827                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1828                 *sym);
1829             return CalleeAndArguments{
1830                 ProcedureDesignator{*sym}, std::move(arguments)};
1831           }
1832         }
1833       }
1834       Say(sc.component.source,
1835           "Base of procedure component reference is not a derived-type object"_err_en_US);
1836     }
1837   }
1838   CHECK(!GetContextualMessages().empty());
1839   return std::nullopt;
1840 }
1841 
1842 // Can actual be argument associated with dummy?
1843 static bool CheckCompatibleArgument(bool isElemental,
1844     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1845   return std::visit(
1846       common::visitors{
1847           [&](const characteristics::DummyDataObject &x) {
1848             characteristics::TypeAndShape dummyTypeAndShape{x.type};
1849             if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) {
1850               return false;
1851             } else if (auto actualType{actual.GetType()}) {
1852               return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType);
1853             } else {
1854               return false;
1855             }
1856           },
1857           [&](const characteristics::DummyProcedure &) {
1858             const auto *expr{actual.UnwrapExpr()};
1859             return expr && IsProcedurePointer(*expr);
1860           },
1861           [&](const characteristics::AlternateReturn &) {
1862             return actual.isAlternateReturn();
1863           },
1864       },
1865       dummy.u);
1866 }
1867 
1868 // Are the actual arguments compatible with the dummy arguments of procedure?
1869 static bool CheckCompatibleArguments(
1870     const characteristics::Procedure &procedure,
1871     const ActualArguments &actuals) {
1872   bool isElemental{procedure.IsElemental()};
1873   const auto &dummies{procedure.dummyArguments};
1874   CHECK(dummies.size() == actuals.size());
1875   for (std::size_t i{0}; i < dummies.size(); ++i) {
1876     const characteristics::DummyArgument &dummy{dummies[i]};
1877     const std::optional<ActualArgument> &actual{actuals[i]};
1878     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1879       return false;
1880     }
1881   }
1882   return true;
1883 }
1884 
1885 // Handles a forward reference to a module function from what must
1886 // be a specification expression.  Return false if the symbol is
1887 // an invalid forward reference.
1888 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
1889   if (context_.HasError(symbol)) {
1890     return false;
1891   }
1892   if (const auto *details{
1893           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
1894     if (details->kind() == semantics::SubprogramKind::Module) {
1895       // If this symbol is still a SubprogramNameDetails, we must be
1896       // checking a specification expression in a sibling module
1897       // procedure.  Resolve its names now so that its interface
1898       // is known.
1899       semantics::ResolveSpecificationParts(context_, symbol);
1900       if (symbol.has<semantics::SubprogramNameDetails>()) {
1901         // When the symbol hasn't had its details updated, we must have
1902         // already been in the process of resolving the function's
1903         // specification part; but recursive function calls are not
1904         // allowed in specification parts (10.1.11 para 5).
1905         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
1906             symbol.name());
1907         context_.SetError(symbol);
1908         return false;
1909       }
1910     } else { // 10.1.11 para 4
1911       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
1912           symbol.name());
1913       context_.SetError(symbol);
1914       return false;
1915     }
1916   }
1917   return true;
1918 }
1919 
1920 // Resolve a call to a generic procedure with given actual arguments.
1921 // adjustActuals is called on procedure bindings to handle pass arg.
1922 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol,
1923     const ActualArguments &actuals, const AdjustActuals &adjustActuals,
1924     bool mightBeStructureConstructor) {
1925   const Symbol *elemental{nullptr}; // matching elemental specific proc
1926   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
1927   for (const Symbol &specific : details.specificProcs()) {
1928     if (!ResolveForward(specific)) {
1929       continue;
1930     }
1931     if (std::optional<characteristics::Procedure> procedure{
1932             characteristics::Procedure::Characterize(
1933                 ProcedureDesignator{specific}, context_.intrinsics())}) {
1934       ActualArguments localActuals{actuals};
1935       if (specific.has<semantics::ProcBindingDetails>()) {
1936         if (!adjustActuals.value()(specific, localActuals)) {
1937           continue;
1938         }
1939       }
1940       if (semantics::CheckInterfaceForGeneric(
1941               *procedure, localActuals, GetFoldingContext())) {
1942         if (CheckCompatibleArguments(*procedure, localActuals)) {
1943           if (!procedure->IsElemental()) {
1944             return &specific; // takes priority over elemental match
1945           }
1946           elemental = &specific;
1947         }
1948       }
1949     }
1950   }
1951   if (elemental) {
1952     return elemental;
1953   }
1954   // Check parent derived type
1955   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
1956     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
1957       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
1958         if (const Symbol *
1959             result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) {
1960           return result;
1961         }
1962       }
1963     }
1964   }
1965   if (mightBeStructureConstructor && details.derivedType()) {
1966     return details.derivedType();
1967   }
1968   return nullptr;
1969 }
1970 
1971 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) {
1972   if (semantics::IsGenericDefinedOp(symbol)) {
1973     Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US,
1974         symbol.name());
1975   } else {
1976     Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
1977         symbol.name());
1978   }
1979 }
1980 
1981 auto ExpressionAnalyzer::GetCalleeAndArguments(
1982     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
1983     bool isSubroutine, bool mightBeStructureConstructor)
1984     -> std::optional<CalleeAndArguments> {
1985   return std::visit(
1986       common::visitors{
1987           [&](const parser::Name &name) {
1988             return GetCalleeAndArguments(name, std::move(arguments),
1989                 isSubroutine, mightBeStructureConstructor);
1990           },
1991           [&](const parser::ProcComponentRef &pcr) {
1992             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
1993           },
1994       },
1995       pd.u);
1996 }
1997 
1998 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
1999     ActualArguments &&arguments, bool isSubroutine,
2000     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
2001   const Symbol *symbol{name.symbol};
2002   if (context_.HasError(symbol)) {
2003     return std::nullopt; // also handles null symbol
2004   }
2005   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
2006   if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
2007     if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
2008             CallCharacteristics{ultimate.name().ToString(), isSubroutine},
2009             arguments, GetFoldingContext())}) {
2010       return CalleeAndArguments{
2011           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2012           std::move(specificCall->arguments)};
2013     }
2014   } else {
2015     CheckForBadRecursion(name.source, ultimate);
2016     if (ultimate.has<semantics::GenericDetails>()) {
2017       ExpressionAnalyzer::AdjustActuals noAdjustment;
2018       symbol = ResolveGeneric(
2019           *symbol, arguments, noAdjustment, mightBeStructureConstructor);
2020     }
2021     if (symbol) {
2022       if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
2023         if (mightBeStructureConstructor) {
2024           return CalleeAndArguments{
2025               semantics::SymbolRef{*symbol}, std::move(arguments)};
2026         }
2027       } else {
2028         return CalleeAndArguments{
2029             ProcedureDesignator{*symbol}, std::move(arguments)};
2030       }
2031     } else if (std::optional<SpecificCall> specificCall{
2032                    context_.intrinsics().Probe(
2033                        CallCharacteristics{
2034                            ultimate.name().ToString(), isSubroutine},
2035                        arguments, GetFoldingContext())}) {
2036       // Generics can extend intrinsics
2037       return CalleeAndArguments{
2038           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2039           std::move(specificCall->arguments)};
2040     } else {
2041       EmitGenericResolutionError(*name.symbol);
2042     }
2043   }
2044   return std::nullopt;
2045 }
2046 
2047 void ExpressionAnalyzer::CheckForBadRecursion(
2048     parser::CharBlock callSite, const semantics::Symbol &proc) {
2049   if (const auto *scope{proc.scope()}) {
2050     if (scope->sourceRange().Contains(callSite)) {
2051       parser::Message *msg{nullptr};
2052       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
2053         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
2054             callSite);
2055       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
2056         msg = Say( // 15.6.2.1(3)
2057             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
2058             callSite);
2059       }
2060       AttachDeclaration(msg, proc);
2061     }
2062   }
2063 }
2064 
2065 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
2066   if (const auto *designator{
2067           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
2068     if (const auto *dataRef{
2069             std::get_if<parser::DataRef>(&designator->value().u)}) {
2070       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
2071         if (const Symbol * symbol{name->symbol}) {
2072           if (const auto *type{symbol->GetType()}) {
2073             if (type->category() == semantics::DeclTypeSpec::TypeStar) {
2074               return symbol;
2075             }
2076           }
2077         }
2078       }
2079     }
2080   }
2081   return nullptr;
2082 }
2083 
2084 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
2085     std::optional<parser::StructureConstructor> *structureConstructor) {
2086   const parser::Call &call{funcRef.v};
2087   auto restorer{GetContextualMessages().SetLocation(call.source)};
2088   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2089   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
2090     analyzer.Analyze(arg, false /* not subroutine call */);
2091   }
2092   if (analyzer.fatalErrors()) {
2093     return std::nullopt;
2094   }
2095   if (std::optional<CalleeAndArguments> callee{
2096           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2097               analyzer.GetActuals(), false /* not subroutine */,
2098               true /* might be structure constructor */)}) {
2099     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
2100       return MakeFunctionRef(
2101           call.source, std::move(*proc), std::move(callee->arguments));
2102     } else if (structureConstructor) {
2103       // Structure constructor misparsed as function reference?
2104       CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
2105       const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)};
2106       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
2107       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
2108         semantics::Scope &scope{context_.FindScope(name->source)};
2109         semantics::DerivedTypeSpec dtSpec{
2110             name->source, derivedType.GetUltimate()};
2111         if (dtSpec.IsForwardReferenced()) {
2112           Say(call.source,
2113               "Cannot construct value for derived type '%s' "
2114               "before it is defined"_err_en_US,
2115               name->source);
2116           return std::nullopt;
2117         }
2118         const semantics::DeclTypeSpec &type{
2119             semantics::FindOrInstantiateDerivedType(
2120                 scope, std::move(dtSpec), context_)};
2121         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
2122         *structureConstructor =
2123             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
2124         return Analyze(structureConstructor->value());
2125       }
2126     }
2127   }
2128   return std::nullopt;
2129 }
2130 
2131 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
2132   const parser::Call &call{callStmt.v};
2133   auto restorer{GetContextualMessages().SetLocation(call.source)};
2134   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2135   const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
2136   for (const auto &arg : actualArgList) {
2137     analyzer.Analyze(arg, true /* is subroutine call */);
2138   }
2139   if (!analyzer.fatalErrors()) {
2140     if (std::optional<CalleeAndArguments> callee{
2141             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2142                 analyzer.GetActuals(), true /* subroutine */)}) {
2143       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
2144       CHECK(proc);
2145       if (CheckCall(call.source, *proc, callee->arguments)) {
2146         bool hasAlternateReturns{
2147             callee->arguments.size() < actualArgList.size()};
2148         callStmt.typedCall.Reset(
2149             new ProcedureRef{std::move(*proc), std::move(callee->arguments),
2150                 hasAlternateReturns},
2151             ProcedureRef::Deleter);
2152       }
2153     }
2154   }
2155 }
2156 
2157 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
2158   if (!x.typedAssignment) {
2159     ArgumentAnalyzer analyzer{*this};
2160     analyzer.Analyze(std::get<parser::Variable>(x.t));
2161     analyzer.Analyze(std::get<parser::Expr>(x.t));
2162     if (analyzer.fatalErrors()) {
2163       x.typedAssignment.Reset(
2164           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2165     } else {
2166       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
2167       Assignment assignment{analyzer.MoveExpr(0), analyzer.MoveExpr(1)};
2168       if (procRef) {
2169         assignment.u = std::move(*procRef);
2170       }
2171       x.typedAssignment.Reset(
2172           new GenericAssignmentWrapper{std::move(assignment)},
2173           GenericAssignmentWrapper::Deleter);
2174     }
2175   }
2176   return common::GetPtrFromOptional(x.typedAssignment->v);
2177 }
2178 
2179 const Assignment *ExpressionAnalyzer::Analyze(
2180     const parser::PointerAssignmentStmt &x) {
2181   if (!x.typedAssignment) {
2182     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2183     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2184     if (!lhs || !rhs) {
2185       x.typedAssignment.Reset(
2186           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2187     } else {
2188       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2189       std::visit(common::visitors{
2190                      [&](const std::list<parser::BoundsRemapping> &list) {
2191                        Assignment::BoundsRemapping bounds;
2192                        for (const auto &elem : list) {
2193                          auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2194                          auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2195                          if (lower && upper) {
2196                            bounds.emplace_back(Fold(std::move(*lower)),
2197                                Fold(std::move(*upper)));
2198                          }
2199                        }
2200                        assignment.u = std::move(bounds);
2201                      },
2202                      [&](const std::list<parser::BoundsSpec> &list) {
2203                        Assignment::BoundsSpec bounds;
2204                        for (const auto &bound : list) {
2205                          if (auto lower{AsSubscript(Analyze(bound.v))}) {
2206                            bounds.emplace_back(Fold(std::move(*lower)));
2207                          }
2208                        }
2209                        assignment.u = std::move(bounds);
2210                      },
2211                  },
2212           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2213       x.typedAssignment.Reset(
2214           new GenericAssignmentWrapper{std::move(assignment)},
2215           GenericAssignmentWrapper::Deleter);
2216     }
2217   }
2218   return common::GetPtrFromOptional(x.typedAssignment->v);
2219 }
2220 
2221 static bool IsExternalCalledImplicitly(
2222     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2223   if (const auto *symbol{proc.GetSymbol()}) {
2224     return symbol->has<semantics::SubprogramDetails>() &&
2225         symbol->owner().IsGlobal() &&
2226         (!symbol->scope() /*ENTRY*/ ||
2227             !symbol->scope()->sourceRange().Contains(callSite));
2228   } else {
2229     return false;
2230   }
2231 }
2232 
2233 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2234     parser::CharBlock callSite, const ProcedureDesignator &proc,
2235     ActualArguments &arguments) {
2236   auto chars{
2237       characteristics::Procedure::Characterize(proc, context_.intrinsics())};
2238   if (chars) {
2239     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2240     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2241       Say(callSite,
2242           "References to the procedure '%s' require an explicit interface"_en_US,
2243           DEREF(proc.GetSymbol()).name());
2244     }
2245     // Checks for ASSOCIATED() are done in intrinsic table processing
2246     bool procIsAssociated{false};
2247     if (const SpecificIntrinsic *
2248         specificIntrinsic{proc.GetSpecificIntrinsic()}) {
2249       if (specificIntrinsic->name == "associated") {
2250         procIsAssociated = true;
2251       }
2252     }
2253     if (!procIsAssociated) {
2254       semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2255           context_.FindScope(callSite), treatExternalAsImplicit,
2256           proc.GetSpecificIntrinsic());
2257       const Symbol *procSymbol{proc.GetSymbol()};
2258       if (procSymbol && !IsPureProcedure(*procSymbol)) {
2259         if (const semantics::Scope *
2260             pure{semantics::FindPureProcedureContaining(
2261                 context_.FindScope(callSite))}) {
2262           Say(callSite,
2263               "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2264               procSymbol->name(), DEREF(pure->symbol()).name());
2265         }
2266       }
2267     }
2268   }
2269   return chars;
2270 }
2271 
2272 // Unary operations
2273 
2274 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2275   if (MaybeExpr operand{Analyze(x.v.value())}) {
2276     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2277       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2278         if (semantics::IsProcedurePointer(*result)) {
2279           Say("A function reference that returns a procedure "
2280               "pointer may not be parenthesized"_err_en_US); // C1003
2281         }
2282       }
2283     }
2284     return Parenthesize(std::move(*operand));
2285   }
2286   return std::nullopt;
2287 }
2288 
2289 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2290     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2291   ArgumentAnalyzer analyzer{context};
2292   analyzer.Analyze(x.v);
2293   if (analyzer.fatalErrors()) {
2294     return std::nullopt;
2295   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2296     if (opr == NumericOperator::Add) {
2297       return analyzer.MoveExpr(0);
2298     } else {
2299       return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2300     }
2301   } else {
2302     return analyzer.TryDefinedOp(AsFortran(opr),
2303         "Operand of unary %s must be numeric; have %s"_err_en_US);
2304   }
2305 }
2306 
2307 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2308   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2309 }
2310 
2311 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2312   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2313 }
2314 
2315 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2316   ArgumentAnalyzer analyzer{*this};
2317   analyzer.Analyze(x.v);
2318   if (analyzer.fatalErrors()) {
2319     return std::nullopt;
2320   } else if (analyzer.IsIntrinsicLogical()) {
2321     return AsGenericExpr(
2322         LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2323   } else {
2324     return analyzer.TryDefinedOp(LogicalOperator::Not,
2325         "Operand of %s must be LOGICAL; have %s"_err_en_US);
2326   }
2327 }
2328 
2329 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2330   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2331   // intrinsic function.
2332   // Use the actual source for the name of the call for error reporting.
2333   std::optional<ActualArgument> arg;
2334   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2335     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2336   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2337     arg = ActualArgument{std::move(*argExpr)};
2338   } else {
2339     return std::nullopt;
2340   }
2341   parser::CharBlock at{GetContextualMessages().at()};
2342   CHECK(at.size() >= 4);
2343   parser::CharBlock loc{at.begin() + 1, 3};
2344   CHECK(loc == "loc");
2345   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2346 }
2347 
2348 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2349   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2350   ArgumentAnalyzer analyzer{*this, name.source};
2351   analyzer.Analyze(std::get<1>(x.t));
2352   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2353       "No operator %s defined for %s"_err_en_US, true);
2354 }
2355 
2356 // Binary (dyadic) operations
2357 
2358 template <template <typename> class OPR>
2359 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2360     const parser::Expr::IntrinsicBinary &x) {
2361   ArgumentAnalyzer analyzer{context};
2362   analyzer.Analyze(std::get<0>(x.t));
2363   analyzer.Analyze(std::get<1>(x.t));
2364   if (analyzer.fatalErrors()) {
2365     return std::nullopt;
2366   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2367     analyzer.CheckConformance();
2368     return NumericOperation<OPR>(context.GetContextualMessages(),
2369         analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2370         context.GetDefaultKind(TypeCategory::Real));
2371   } else {
2372     return analyzer.TryDefinedOp(AsFortran(opr),
2373         "Operands of %s must be numeric; have %s and %s"_err_en_US);
2374   }
2375 }
2376 
2377 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2378   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2379 }
2380 
2381 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2382   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2383 }
2384 
2385 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2386   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2387 }
2388 
2389 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2390   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2391 }
2392 
2393 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2394   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2395 }
2396 
2397 MaybeExpr ExpressionAnalyzer::Analyze(
2398     const parser::Expr::ComplexConstructor &x) {
2399   auto re{Analyze(std::get<0>(x.t).value())};
2400   auto im{Analyze(std::get<1>(x.t).value())};
2401   if (re && im) {
2402     ConformabilityCheck(GetContextualMessages(), *re, *im);
2403   }
2404   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2405       std::move(im), GetDefaultKind(TypeCategory::Real)));
2406 }
2407 
2408 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2409   ArgumentAnalyzer analyzer{*this};
2410   analyzer.Analyze(std::get<0>(x.t));
2411   analyzer.Analyze(std::get<1>(x.t));
2412   if (analyzer.fatalErrors()) {
2413     return std::nullopt;
2414   } else if (analyzer.IsIntrinsicConcat()) {
2415     return std::visit(
2416         [&](auto &&x, auto &&y) -> MaybeExpr {
2417           using T = ResultType<decltype(x)>;
2418           if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2419             return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2420           } else {
2421             DIE("different types for intrinsic concat");
2422           }
2423         },
2424         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2425         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2426   } else {
2427     return analyzer.TryDefinedOp("//",
2428         "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2429   }
2430 }
2431 
2432 // The Name represents a user-defined intrinsic operator.
2433 // If the actuals match one of the specific procedures, return a function ref.
2434 // Otherwise report the error in messages.
2435 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2436     const parser::Name &name, ActualArguments &&actuals) {
2437   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2438     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2439     return MakeFunctionRef(name.source,
2440         std::move(std::get<ProcedureDesignator>(callee->u)),
2441         std::move(callee->arguments));
2442   } else {
2443     return std::nullopt;
2444   }
2445 }
2446 
2447 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2448     const parser::Expr::IntrinsicBinary &x) {
2449   ArgumentAnalyzer analyzer{context};
2450   analyzer.Analyze(std::get<0>(x.t));
2451   analyzer.Analyze(std::get<1>(x.t));
2452   if (analyzer.fatalErrors()) {
2453     return std::nullopt;
2454   } else {
2455     if (IsNullPointer(analyzer.GetExpr(0)) ||
2456         IsNullPointer(analyzer.GetExpr(1))) {
2457       context.Say("NULL() not allowed as an operand of a relational "
2458                   "operator"_err_en_US);
2459       return std::nullopt;
2460     }
2461     std::optional<DynamicType> leftType{analyzer.GetType(0)};
2462     std::optional<DynamicType> rightType{analyzer.GetType(1)};
2463     analyzer.ConvertBOZ(0, rightType);
2464     analyzer.ConvertBOZ(1, leftType);
2465     if (analyzer.IsIntrinsicRelational(opr)) {
2466       return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2467           analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2468     } else if (leftType && leftType->category() == TypeCategory::Logical &&
2469         rightType && rightType->category() == TypeCategory::Logical) {
2470       context.Say("LOGICAL operands must be compared using .EQV. or "
2471                   ".NEQV."_err_en_US);
2472       return std::nullopt;
2473     } else {
2474       return analyzer.TryDefinedOp(opr,
2475           "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2476     }
2477   }
2478 }
2479 
2480 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2481   return RelationHelper(*this, RelationalOperator::LT, x);
2482 }
2483 
2484 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2485   return RelationHelper(*this, RelationalOperator::LE, x);
2486 }
2487 
2488 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2489   return RelationHelper(*this, RelationalOperator::EQ, x);
2490 }
2491 
2492 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2493   return RelationHelper(*this, RelationalOperator::NE, x);
2494 }
2495 
2496 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2497   return RelationHelper(*this, RelationalOperator::GE, x);
2498 }
2499 
2500 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2501   return RelationHelper(*this, RelationalOperator::GT, x);
2502 }
2503 
2504 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2505     const parser::Expr::IntrinsicBinary &x) {
2506   ArgumentAnalyzer analyzer{context};
2507   analyzer.Analyze(std::get<0>(x.t));
2508   analyzer.Analyze(std::get<1>(x.t));
2509   if (analyzer.fatalErrors()) {
2510     return std::nullopt;
2511   } else if (analyzer.IsIntrinsicLogical()) {
2512     return AsGenericExpr(BinaryLogicalOperation(opr,
2513         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2514         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2515   } else {
2516     return analyzer.TryDefinedOp(
2517         opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2518   }
2519 }
2520 
2521 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2522   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2523 }
2524 
2525 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2526   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2527 }
2528 
2529 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2530   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2531 }
2532 
2533 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2534   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2535 }
2536 
2537 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2538   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2539   ArgumentAnalyzer analyzer{*this, name.source};
2540   analyzer.Analyze(std::get<1>(x.t));
2541   analyzer.Analyze(std::get<2>(x.t));
2542   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2543       "No operator %s defined for %s and %s"_err_en_US, true);
2544 }
2545 
2546 static void CheckFuncRefToArrayElementRefHasSubscripts(
2547     semantics::SemanticsContext &context,
2548     const parser::FunctionReference &funcRef) {
2549   // Emit message if the function reference fix will end up an array element
2550   // reference with no subscripts because it will not be possible to later tell
2551   // the difference in expressions between empty subscript list due to bad
2552   // subscripts error recovery or because the user did not put any.
2553   if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2554     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2555     const auto *name{std::get_if<parser::Name>(&proc.u)};
2556     if (!name) {
2557       name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2558     }
2559     auto &msg{context.Say(funcRef.v.source,
2560         name->symbol && name->symbol->Rank() == 0
2561             ? "'%s' is not a function"_err_en_US
2562             : "Reference to array '%s' with empty subscript list"_err_en_US,
2563         name->source)};
2564     if (name->symbol) {
2565       if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) {
2566         msg.Attach(name->source,
2567             "A result variable must be declared with RESULT to allow recursive "
2568             "function calls"_en_US);
2569       } else {
2570         AttachDeclaration(&msg, *name->symbol);
2571       }
2572     }
2573   }
2574 }
2575 
2576 // Converts, if appropriate, an original misparse of ambiguous syntax like
2577 // A(1) as a function reference into an array reference.
2578 // Misparse structure constructors are detected elsewhere after generic
2579 // function call resolution fails.
2580 template <typename... A>
2581 static void FixMisparsedFunctionReference(
2582     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2583   // The parse tree is updated in situ when resolving an ambiguous parse.
2584   using uType = std::decay_t<decltype(constU)>;
2585   auto &u{const_cast<uType &>(constU)};
2586   if (auto *func{
2587           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2588     parser::FunctionReference &funcRef{func->value()};
2589     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2590     if (Symbol *
2591         origSymbol{
2592             std::visit(common::visitors{
2593                            [&](parser::Name &name) { return name.symbol; },
2594                            [&](parser::ProcComponentRef &pcr) {
2595                              return pcr.v.thing.component.symbol;
2596                            },
2597                        },
2598                 proc.u)}) {
2599       Symbol &symbol{origSymbol->GetUltimate()};
2600       if (symbol.has<semantics::ObjectEntityDetails>() ||
2601           symbol.has<semantics::AssocEntityDetails>()) {
2602         // Note that expression in AssocEntityDetails cannot be a procedure
2603         // pointer as per C1105 so this cannot be a function reference.
2604         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2605                           uType>) {
2606           CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef);
2607           u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2608         } else {
2609           DIE("can't fix misparsed function as array reference");
2610         }
2611       }
2612     }
2613   }
2614 }
2615 
2616 // Common handling of parse tree node types that retain the
2617 // representation of the analyzed expression.
2618 template <typename PARSED>
2619 MaybeExpr ExpressionAnalyzer::ExprOrVariable(
2620     const PARSED &x, parser::CharBlock source) {
2621   if (useSavedTypedExprs_ && x.typedExpr) {
2622     return x.typedExpr->v;
2623   }
2624   auto restorer{GetContextualMessages().SetLocation(source)};
2625   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2626       std::is_same_v<PARSED, parser::Variable>) {
2627     FixMisparsedFunctionReference(context_, x.u);
2628   }
2629   if (AssumedTypeDummy(x)) { // C710
2630     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2631   } else if (MaybeExpr result{Analyze(x.u)}) {
2632     SetExpr(x, Fold(std::move(*result)));
2633     return x.typedExpr->v;
2634   }
2635   ResetExpr(x);
2636   if (!context_.AnyFatalError()) {
2637     std::string buf;
2638     llvm::raw_string_ostream dump{buf};
2639     parser::DumpTree(dump, x);
2640     Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2641         dump.str());
2642   }
2643   return std::nullopt;
2644 }
2645 
2646 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2647   auto restorer{GetContextualMessages().SetLocation(expr.source)};
2648   return ExprOrVariable(expr, expr.source);
2649 }
2650 
2651 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2652   auto restorer{GetContextualMessages().SetLocation(variable.GetSource())};
2653   return ExprOrVariable(variable, variable.GetSource());
2654 }
2655 
2656 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
2657   auto restorer{GetContextualMessages().SetLocation(x.source)};
2658   return ExprOrVariable(x, x.source);
2659 }
2660 
2661 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
2662     TypeCategory category,
2663     const std::optional<parser::KindSelector> &selector) {
2664   int defaultKind{GetDefaultKind(category)};
2665   if (!selector) {
2666     return Expr<SubscriptInteger>{defaultKind};
2667   }
2668   return std::visit(
2669       common::visitors{
2670           [&](const parser::ScalarIntConstantExpr &x) {
2671             if (MaybeExpr kind{Analyze(x)}) {
2672               if (std::optional<std::int64_t> code{ToInt64(*kind)}) {
2673                 if (CheckIntrinsicKind(category, *code)) {
2674                   return Expr<SubscriptInteger>{*code};
2675                 }
2676               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) {
2677                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
2678               }
2679             }
2680             return Expr<SubscriptInteger>{defaultKind};
2681           },
2682           [&](const parser::KindSelector::StarSize &x) {
2683             std::intmax_t size = x.v;
2684             if (!CheckIntrinsicSize(category, size)) {
2685               size = defaultKind;
2686             } else if (category == TypeCategory::Complex) {
2687               size /= 2;
2688             }
2689             return Expr<SubscriptInteger>{size};
2690           },
2691       },
2692       selector->u);
2693 }
2694 
2695 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
2696   return context_.GetDefaultKind(category);
2697 }
2698 
2699 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
2700     common::TypeCategory category) {
2701   return {category, GetDefaultKind(category)};
2702 }
2703 
2704 bool ExpressionAnalyzer::CheckIntrinsicKind(
2705     TypeCategory category, std::int64_t kind) {
2706   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
2707     return true;
2708   } else {
2709     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
2710         ToUpperCase(EnumToString(category)), kind);
2711     return false;
2712   }
2713 }
2714 
2715 bool ExpressionAnalyzer::CheckIntrinsicSize(
2716     TypeCategory category, std::int64_t size) {
2717   if (category == TypeCategory::Complex) {
2718     // COMPLEX*16 == COMPLEX(KIND=8)
2719     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
2720       return true;
2721     }
2722   } else if (IsValidKindOfIntrinsicType(category, size)) {
2723     return true;
2724   }
2725   Say("%s*%jd is not a supported type"_err_en_US,
2726       ToUpperCase(EnumToString(category)), size);
2727   return false;
2728 }
2729 
2730 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
2731   return impliedDos_.insert(std::make_pair(name, kind)).second;
2732 }
2733 
2734 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
2735   auto iter{impliedDos_.find(name)};
2736   if (iter != impliedDos_.end()) {
2737     impliedDos_.erase(iter);
2738   }
2739 }
2740 
2741 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
2742     parser::CharBlock name) const {
2743   auto iter{impliedDos_.find(name)};
2744   if (iter != impliedDos_.cend()) {
2745     return {iter->second};
2746   } else {
2747     return std::nullopt;
2748   }
2749 }
2750 
2751 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
2752     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
2753   if (result) {
2754     if (auto type{result->GetType()}) {
2755       if (type->category() != category) { // C885
2756         Say(at, "Must have %s type, but is %s"_err_en_US,
2757             ToUpperCase(EnumToString(category)),
2758             ToUpperCase(type->AsFortran()));
2759         return false;
2760       } else if (defaultKind) {
2761         int kind{context_.GetDefaultKind(category)};
2762         if (type->kind() != kind) {
2763           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
2764               kind, ToUpperCase(EnumToString(category)),
2765               ToUpperCase(type->AsFortran()));
2766           return false;
2767         }
2768       }
2769     } else {
2770       Say(at, "Must have %s type, but is typeless"_err_en_US,
2771           ToUpperCase(EnumToString(category)));
2772       return false;
2773     }
2774   }
2775   return true;
2776 }
2777 
2778 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
2779     ProcedureDesignator &&proc, ActualArguments &&arguments) {
2780   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
2781     if (intrinsic->name == "null" && arguments.empty()) {
2782       return Expr<SomeType>{NullPointer{}};
2783     }
2784   }
2785   if (const Symbol * symbol{proc.GetSymbol()}) {
2786     if (!ResolveForward(*symbol)) {
2787       return std::nullopt;
2788     }
2789   }
2790   if (auto chars{CheckCall(callSite, proc, arguments)}) {
2791     if (chars->functionResult) {
2792       const auto &result{*chars->functionResult};
2793       if (result.IsProcedurePointer()) {
2794         return Expr<SomeType>{
2795             ProcedureRef{std::move(proc), std::move(arguments)}};
2796       } else {
2797         // Not a procedure pointer, so type and shape are known.
2798         return TypedWrapper<FunctionRef, ProcedureRef>(
2799             DEREF(result.GetTypeAndShape()).type(),
2800             ProcedureRef{std::move(proc), std::move(arguments)});
2801       }
2802     }
2803   }
2804   return std::nullopt;
2805 }
2806 
2807 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
2808     parser::CharBlock intrinsic, ActualArguments &&arguments) {
2809   if (std::optional<SpecificCall> specificCall{
2810           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
2811               arguments, context_.foldingContext())}) {
2812     return MakeFunctionRef(intrinsic,
2813         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2814         std::move(specificCall->arguments));
2815   } else {
2816     return std::nullopt;
2817   }
2818 }
2819 
2820 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
2821   source_.ExtendToCover(x.GetSource());
2822   if (MaybeExpr expr{context_.Analyze(x)}) {
2823     if (!IsConstantExpr(*expr)) {
2824       actuals_.emplace_back(std::move(*expr));
2825       return;
2826     }
2827     const Symbol *symbol{GetLastSymbol(*expr)};
2828     if (!symbol) {
2829       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
2830           x.GetSource());
2831     } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
2832       auto *msg{context_.SayAt(x,
2833           "Assignment to subprogram '%s' is not allowed"_err_en_US,
2834           symbol->name())};
2835       if (subp->isFunction()) {
2836         const auto &result{subp->result().name()};
2837         msg->Attach(result, "Function result is '%s'"_err_en_US, result);
2838       }
2839     } else {
2840       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
2841           symbol->name());
2842     }
2843   }
2844   fatalErrors_ = true;
2845 }
2846 
2847 void ArgumentAnalyzer::Analyze(
2848     const parser::ActualArgSpec &arg, bool isSubroutine) {
2849   // TODO: Actual arguments that are procedures and procedure pointers need to
2850   // be detected and represented (they're not expressions).
2851   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
2852   std::optional<ActualArgument> actual;
2853   bool isAltReturn{false};
2854   std::visit(common::visitors{
2855                  [&](const common::Indirection<parser::Expr> &x) {
2856                    // TODO: Distinguish & handle procedure name and
2857                    // proc-component-ref
2858                    actual = AnalyzeExpr(x.value());
2859                  },
2860                  [&](const parser::AltReturnSpec &) {
2861                    if (!isSubroutine) {
2862                      context_.Say(
2863                          "alternate return specification may not appear on"
2864                          " function reference"_err_en_US);
2865                    }
2866                    isAltReturn = true;
2867                  },
2868                  [&](const parser::ActualArg::PercentRef &) {
2869                    context_.Say("TODO: %REF() argument"_err_en_US);
2870                  },
2871                  [&](const parser::ActualArg::PercentVal &) {
2872                    context_.Say("TODO: %VAL() argument"_err_en_US);
2873                  },
2874              },
2875       std::get<parser::ActualArg>(arg.t).u);
2876   if (actual) {
2877     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
2878       actual->set_keyword(argKW->v.source);
2879     }
2880     actuals_.emplace_back(std::move(*actual));
2881   } else if (!isAltReturn) {
2882     fatalErrors_ = true;
2883   }
2884 }
2885 
2886 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const {
2887   CHECK(actuals_.size() == 2);
2888   return semantics::IsIntrinsicRelational(
2889       opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2890 }
2891 
2892 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
2893   std::optional<DynamicType> type0{GetType(0)};
2894   if (actuals_.size() == 1) {
2895     if (IsBOZLiteral(0)) {
2896       return opr == NumericOperator::Add;
2897     } else {
2898       return type0 && semantics::IsIntrinsicNumeric(*type0);
2899     }
2900   } else {
2901     std::optional<DynamicType> type1{GetType(1)};
2902     if (IsBOZLiteral(0) && type1) {
2903       auto cat1{type1->category()};
2904       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
2905     } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ
2906       auto cat0{type0->category()};
2907       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
2908     } else {
2909       return type0 && type1 &&
2910           semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1));
2911     }
2912   }
2913 }
2914 
2915 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
2916   if (actuals_.size() == 1) {
2917     return semantics::IsIntrinsicLogical(*GetType(0));
2918     return GetType(0)->category() == TypeCategory::Logical;
2919   } else {
2920     return semantics::IsIntrinsicLogical(
2921         *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2922   }
2923 }
2924 
2925 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
2926   return semantics::IsIntrinsicConcat(
2927       *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2928 }
2929 
2930 bool ArgumentAnalyzer::CheckConformance() const {
2931   if (actuals_.size() == 2) {
2932     const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
2933     const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
2934     if (lhs && rhs) {
2935       auto &foldingContext{context_.GetFoldingContext()};
2936       auto lhShape{GetShape(foldingContext, *lhs)};
2937       auto rhShape{GetShape(foldingContext, *rhs)};
2938       if (lhShape && rhShape) {
2939         return evaluate::CheckConformance(foldingContext.messages(), *lhShape,
2940             *rhShape, "left operand", "right operand");
2941       }
2942     }
2943   }
2944   return true; // no proven problem
2945 }
2946 
2947 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
2948     const char *opr, parser::MessageFixedText &&error, bool isUserOp) {
2949   if (AnyUntypedOperand()) {
2950     context_.Say(
2951         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
2952     return std::nullopt;
2953   }
2954   {
2955     auto restorer{context_.GetContextualMessages().DiscardMessages()};
2956     std::string oprNameString{
2957         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
2958     parser::CharBlock oprName{oprNameString};
2959     const auto &scope{context_.context().FindScope(source_)};
2960     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
2961       parser::Name name{symbol->name(), symbol};
2962       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
2963         return result;
2964       }
2965       sawDefinedOp_ = symbol;
2966     }
2967     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
2968       if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) {
2969         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
2970           return result;
2971         }
2972       }
2973     }
2974   }
2975   if (sawDefinedOp_) {
2976     SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString()));
2977   } else if (actuals_.size() == 1 || AreConformable()) {
2978     context_.Say(
2979         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
2980   } else {
2981     context_.Say(
2982         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
2983         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
2984   }
2985   return std::nullopt;
2986 }
2987 
2988 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
2989     std::vector<const char *> oprs, parser::MessageFixedText &&error) {
2990   for (std::size_t i{1}; i < oprs.size(); ++i) {
2991     auto restorer{context_.GetContextualMessages().DiscardMessages()};
2992     if (auto result{TryDefinedOp(oprs[i], std::move(error))}) {
2993       return result;
2994     }
2995   }
2996   return TryDefinedOp(oprs[0], std::move(error));
2997 }
2998 
2999 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
3000   ActualArguments localActuals{actuals_};
3001   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
3002   if (!proc) {
3003     proc = &symbol;
3004     localActuals.at(passIndex).value().set_isPassedObject();
3005   }
3006   CheckConformance();
3007   return context_.MakeFunctionRef(
3008       source_, ProcedureDesignator{*proc}, std::move(localActuals));
3009 }
3010 
3011 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
3012   using semantics::Tristate;
3013   const Expr<SomeType> &lhs{GetExpr(0)};
3014   const Expr<SomeType> &rhs{GetExpr(1)};
3015   std::optional<DynamicType> lhsType{lhs.GetType()};
3016   std::optional<DynamicType> rhsType{rhs.GetType()};
3017   int lhsRank{lhs.Rank()};
3018   int rhsRank{rhs.Rank()};
3019   Tristate isDefined{
3020       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
3021   if (isDefined == Tristate::No) {
3022     if (lhsType && rhsType) {
3023       AddAssignmentConversion(*lhsType, *rhsType);
3024     }
3025     return std::nullopt; // user-defined assignment not allowed for these args
3026   }
3027   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
3028   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
3029     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
3030     return std::move(*procRef);
3031   }
3032   if (isDefined == Tristate::Yes) {
3033     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
3034         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
3035       SayNoMatch("ASSIGNMENT(=)", true);
3036     }
3037   }
3038   return std::nullopt;
3039 }
3040 
3041 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
3042     TypeCategory lhs, TypeCategory rhs) {
3043   if (!context_.context().languageFeatures().IsEnabled(
3044           common::LanguageFeature::LogicalIntegerAssignment)) {
3045     return false;
3046   }
3047   std::optional<parser::MessageFixedText> msg;
3048   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
3049     // allow assignment to LOGICAL from INTEGER as a legacy extension
3050     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US;
3051   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
3052     // ... and assignment to LOGICAL from INTEGER
3053     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US;
3054   } else {
3055     return false;
3056   }
3057   if (context_.context().languageFeatures().ShouldWarn(
3058           common::LanguageFeature::LogicalIntegerAssignment)) {
3059     context_.Say(std::move(*msg));
3060   }
3061   return true;
3062 }
3063 
3064 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
3065   auto restorer{context_.GetContextualMessages().DiscardMessages()};
3066   std::string oprNameString{"assignment(=)"};
3067   parser::CharBlock oprName{oprNameString};
3068   const Symbol *proc{nullptr};
3069   const auto &scope{context_.context().FindScope(source_)};
3070   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
3071     ExpressionAnalyzer::AdjustActuals noAdjustment;
3072     if (const Symbol *
3073         specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) {
3074       proc = specific;
3075     } else {
3076       context_.EmitGenericResolutionError(*symbol);
3077     }
3078   }
3079   int passedObjectIndex{-1};
3080   for (std::size_t i{0}; i < actuals_.size(); ++i) {
3081     if (const Symbol * specific{FindBoundOp(oprName, i)}) {
3082       if (const Symbol *
3083           resolution{GetBindingResolution(GetType(i), *specific)}) {
3084         proc = resolution;
3085       } else {
3086         proc = specific;
3087         passedObjectIndex = i;
3088       }
3089     }
3090   }
3091   if (!proc) {
3092     return std::nullopt;
3093   }
3094   ActualArguments actualsCopy{actuals_};
3095   if (passedObjectIndex >= 0) {
3096     actualsCopy[passedObjectIndex]->set_isPassedObject();
3097   }
3098   return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
3099 }
3100 
3101 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
3102   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
3103      << '\n';
3104   for (const auto &actual : actuals_) {
3105     if (!actual.has_value()) {
3106       os << "- error\n";
3107     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
3108       os << "- assumed type: " << symbol->name().ToString() << '\n';
3109     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
3110       expr->AsFortran(os << "- expr: ") << '\n';
3111     } else {
3112       DIE("bad ActualArgument");
3113     }
3114   }
3115 }
3116 
3117 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
3118     const parser::Expr &expr) {
3119   source_.ExtendToCover(expr.source);
3120   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
3121     expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
3122     if (isProcedureCall_) {
3123       return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
3124     }
3125     context_.SayAt(expr.source,
3126         "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
3127   } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) {
3128     if (isProcedureCall_ || !IsProcedure(*argExpr)) {
3129       return ActualArgument{std::move(*argExpr)};
3130     }
3131     context_.SayAt(expr.source,
3132         IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US
3133                              : "Subroutine name is not allowed here"_err_en_US);
3134   }
3135   return std::nullopt;
3136 }
3137 
3138 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray(
3139     const parser::Expr &expr) {
3140   // If an expression's parse tree is a whole assumed-size array:
3141   //   Expr -> Designator -> DataRef -> Name
3142   // treat it as a special case for argument passing and bypass
3143   // the C1002/C1014 constraint checking in expression semantics.
3144   if (const auto *name{parser::Unwrap<parser::Name>(expr)}) {
3145     if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) {
3146       auto restorer{context_.AllowWholeAssumedSizeArray()};
3147       return context_.Analyze(expr);
3148     }
3149   }
3150   return context_.Analyze(expr);
3151 }
3152 
3153 bool ArgumentAnalyzer::AreConformable() const {
3154   CHECK(!fatalErrors_ && actuals_.size() == 2);
3155   return evaluate::AreConformable(*actuals_[0], *actuals_[1]);
3156 }
3157 
3158 // Look for a type-bound operator in the type of arg number passIndex.
3159 const Symbol *ArgumentAnalyzer::FindBoundOp(
3160     parser::CharBlock oprName, int passIndex) {
3161   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
3162   if (!type || !type->scope()) {
3163     return nullptr;
3164   }
3165   const Symbol *symbol{type->scope()->FindComponent(oprName)};
3166   if (!symbol) {
3167     return nullptr;
3168   }
3169   sawDefinedOp_ = symbol;
3170   ExpressionAnalyzer::AdjustActuals adjustment{
3171       [&](const Symbol &proc, ActualArguments &) {
3172         return passIndex == GetPassIndex(proc);
3173       }};
3174   const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
3175   if (!result) {
3176     context_.EmitGenericResolutionError(*symbol);
3177   }
3178   return result;
3179 }
3180 
3181 // If there is an implicit conversion between intrinsic types, make it explicit
3182 void ArgumentAnalyzer::AddAssignmentConversion(
3183     const DynamicType &lhsType, const DynamicType &rhsType) {
3184   if (lhsType.category() == rhsType.category() &&
3185       lhsType.kind() == rhsType.kind()) {
3186     // no conversion necessary
3187   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
3188     actuals_[1] = ActualArgument{*rhsExpr};
3189   } else {
3190     actuals_[1] = std::nullopt;
3191   }
3192 }
3193 
3194 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
3195   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
3196 }
3197 int ArgumentAnalyzer::GetRank(std::size_t i) const {
3198   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
3199 }
3200 
3201 // If the argument at index i is a BOZ literal, convert its type to match the
3202 // otherType.  It it's REAL convert to REAL, otherwise convert to INTEGER.
3203 // Note that IBM supports comparing BOZ literals to CHARACTER operands.  That
3204 // is not currently supported.
3205 void ArgumentAnalyzer::ConvertBOZ(
3206     std::size_t i, std::optional<DynamicType> otherType) {
3207   if (IsBOZLiteral(i)) {
3208     Expr<SomeType> &&argExpr{MoveExpr(i)};
3209     auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
3210     if (otherType && otherType->category() == TypeCategory::Real) {
3211       MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>(
3212           context_.context().GetDefaultKind(TypeCategory::Real),
3213           std::move(*boz))};
3214       actuals_[i] = std::move(*realExpr);
3215     } else {
3216       MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>(
3217           context_.context().GetDefaultKind(TypeCategory::Integer),
3218           std::move(*boz))};
3219       actuals_[i] = std::move(*intExpr);
3220     }
3221   }
3222 }
3223 
3224 // Report error resolving opr when there is a user-defined one available
3225 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
3226   std::string type0{TypeAsFortran(0)};
3227   auto rank0{actuals_[0]->Rank()};
3228   if (actuals_.size() == 1) {
3229     if (rank0 > 0) {
3230       context_.Say("No intrinsic or user-defined %s matches "
3231                    "rank %d array of %s"_err_en_US,
3232           opr, rank0, type0);
3233     } else {
3234       context_.Say("No intrinsic or user-defined %s matches "
3235                    "operand type %s"_err_en_US,
3236           opr, type0);
3237     }
3238   } else {
3239     std::string type1{TypeAsFortran(1)};
3240     auto rank1{actuals_[1]->Rank()};
3241     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
3242       context_.Say("No intrinsic or user-defined %s matches "
3243                    "rank %d array of %s and rank %d array of %s"_err_en_US,
3244           opr, rank0, type0, rank1, type1);
3245     } else if (isAssignment && rank0 != rank1) {
3246       if (rank0 == 0) {
3247         context_.Say("No intrinsic or user-defined %s matches "
3248                      "scalar %s and rank %d array of %s"_err_en_US,
3249             opr, type0, rank1, type1);
3250       } else {
3251         context_.Say("No intrinsic or user-defined %s matches "
3252                      "rank %d array of %s and scalar %s"_err_en_US,
3253             opr, rank0, type0, type1);
3254       }
3255     } else {
3256       context_.Say("No intrinsic or user-defined %s matches "
3257                    "operand types %s and %s"_err_en_US,
3258           opr, type0, type1);
3259     }
3260   }
3261 }
3262 
3263 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
3264   if (std::optional<DynamicType> type{GetType(i)}) {
3265     return type->category() == TypeCategory::Derived
3266         ? "TYPE("s + type->AsFortran() + ')'
3267         : type->category() == TypeCategory::Character
3268         ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
3269         : ToUpperCase(type->AsFortran());
3270   } else {
3271     return "untyped";
3272   }
3273 }
3274 
3275 bool ArgumentAnalyzer::AnyUntypedOperand() {
3276   for (const auto &actual : actuals_) {
3277     if (!actual.value().GetType()) {
3278       return true;
3279     }
3280   }
3281   return false;
3282 }
3283 
3284 } // namespace Fortran::evaluate
3285 
3286 namespace Fortran::semantics {
3287 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
3288     SemanticsContext &context, common::TypeCategory category,
3289     const std::optional<parser::KindSelector> &selector) {
3290   evaluate::ExpressionAnalyzer analyzer{context};
3291   auto restorer{
3292       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3293   return analyzer.AnalyzeKindSelector(category, selector);
3294 }
3295 
3296 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) {
3297   evaluate::ExpressionAnalyzer{context}.Analyze(call);
3298 }
3299 
3300 const evaluate::Assignment *AnalyzeAssignmentStmt(
3301     SemanticsContext &context, const parser::AssignmentStmt &stmt) {
3302   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3303 }
3304 const evaluate::Assignment *AnalyzePointerAssignmentStmt(
3305     SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) {
3306   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3307 }
3308 
3309 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3310 
3311 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
3312   parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
3313   const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
3314   auto name{bounds.name.thing.thing};
3315   int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
3316   if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
3317     if (dynamicType->category() == TypeCategory::Integer) {
3318       kind = dynamicType->kind();
3319     }
3320   }
3321   exprAnalyzer_.AddImpliedDo(name.source, kind);
3322   parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
3323   exprAnalyzer_.RemoveImpliedDo(name.source);
3324   return false;
3325 }
3326 
3327 bool ExprChecker::Walk(const parser::Program &program) {
3328   parser::Walk(program, *this);
3329   return !context_.AnyFatalError();
3330 }
3331 } // namespace Fortran::semantics
3332