1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/idioms.h"
14 #include "flang/Evaluate/common.h"
15 #include "flang/Evaluate/fold.h"
16 #include "flang/Evaluate/tools.h"
17 #include "flang/Parser/characters.h"
18 #include "flang/Parser/dump-parse-tree.h"
19 #include "flang/Parser/parse-tree-visitor.h"
20 #include "flang/Parser/parse-tree.h"
21 #include "flang/Semantics/scope.h"
22 #include "flang/Semantics/semantics.h"
23 #include "flang/Semantics/symbol.h"
24 #include "flang/Semantics/tools.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <functional>
28 #include <optional>
29 #include <set>
30 
31 // Typedef for optional generic expressions (ubiquitous in this file)
32 using MaybeExpr =
33     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
34 
35 // Much of the code that implements semantic analysis of expressions is
36 // tightly coupled with their typed representations in lib/Evaluate,
37 // and appears here in namespace Fortran::evaluate for convenience.
38 namespace Fortran::evaluate {
39 
40 using common::LanguageFeature;
41 using common::NumericOperator;
42 using common::TypeCategory;
43 
44 static inline std::string ToUpperCase(const std::string &str) {
45   return parser::ToUpperCaseLetters(str);
46 }
47 
48 struct DynamicTypeWithLength : public DynamicType {
49   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
50   std::optional<Expr<SubscriptInteger>> LEN() const;
51   std::optional<Expr<SubscriptInteger>> length;
52 };
53 
54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
55   if (length) {
56     return length;
57   }
58   if (auto *lengthParam{charLength()}) {
59     if (const auto &len{lengthParam->GetExplicit()}) {
60       return ConvertToType<SubscriptInteger>(common::Clone(*len));
61     }
62   }
63   return std::nullopt; // assumed or deferred length
64 }
65 
66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
67     const std::optional<parser::TypeSpec> &spec) {
68   if (spec) {
69     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
70       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
71       // (viz., an intrinsic type with valid known kind or a non-polymorphic
72       // & non-ABSTRACT derived type).
73       if (const semantics::IntrinsicTypeSpec *
74           intrinsic{typeSpec->AsIntrinsic()}) {
75         TypeCategory category{intrinsic->category()};
76         if (auto optKind{ToInt64(intrinsic->kind())}) {
77           int kind{static_cast<int>(*optKind)};
78           if (category == TypeCategory::Character) {
79             const semantics::CharacterTypeSpec &cts{
80                 typeSpec->characterTypeSpec()};
81             const semantics::ParamValue &len{cts.length()};
82             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
83             // type guards, but not in array constructors.
84             return DynamicTypeWithLength{DynamicType{kind, len}};
85           } else {
86             return DynamicTypeWithLength{DynamicType{category, kind}};
87           }
88         }
89       } else if (const semantics::DerivedTypeSpec *
90           derived{typeSpec->AsDerived()}) {
91         return DynamicTypeWithLength{DynamicType{*derived}};
92       }
93     }
94   }
95   return std::nullopt;
96 }
97 
98 class ArgumentAnalyzer {
99 public:
100   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
101       : context_{context}, allowAssumedType_{false} {}
102   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
103       bool allowAssumedType = false)
104       : context_{context}, source_{source}, allowAssumedType_{
105                                                 allowAssumedType} {}
106   bool fatalErrors() const { return fatalErrors_; }
107   ActualArguments &&GetActuals() {
108     CHECK(!fatalErrors_);
109     return std::move(actuals_);
110   }
111   const Expr<SomeType> &GetExpr(std::size_t i) const {
112     return DEREF(actuals_.at(i).value().UnwrapExpr());
113   }
114   Expr<SomeType> &&MoveExpr(std::size_t i) {
115     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
116   }
117   void Analyze(const common::Indirection<parser::Expr> &x) {
118     Analyze(x.value());
119   }
120   void Analyze(const parser::Expr &x) {
121     actuals_.emplace_back(AnalyzeExpr(x));
122     fatalErrors_ |= !actuals_.back();
123   }
124   void Analyze(const parser::Variable &);
125   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
126   void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType);
127 
128   bool IsIntrinsicRelational(RelationalOperator) const;
129   bool IsIntrinsicLogical() const;
130   bool IsIntrinsicNumeric(NumericOperator) const;
131   bool IsIntrinsicConcat() const;
132 
133   // Find and return a user-defined operator or report an error.
134   // The provided message is used if there is no such operator.
135   MaybeExpr TryDefinedOp(
136       const char *, parser::MessageFixedText &&, bool isUserOp = false);
137   template <typename E>
138   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) {
139     return TryDefinedOp(
140         context_.context().languageFeatures().GetNames(opr), std::move(msg));
141   }
142   // Find and return a user-defined assignment
143   std::optional<ProcedureRef> TryDefinedAssignment();
144   std::optional<ProcedureRef> GetDefinedAssignmentProc();
145   std::optional<DynamicType> GetType(std::size_t) const;
146   void Dump(llvm::raw_ostream &);
147 
148 private:
149   MaybeExpr TryDefinedOp(
150       std::vector<const char *>, parser::MessageFixedText &&);
151   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
152   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
153   bool AreConformable() const;
154   const Symbol *FindBoundOp(parser::CharBlock, int passIndex);
155   void AddAssignmentConversion(
156       const DynamicType &lhsType, const DynamicType &rhsType);
157   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
158   int GetRank(std::size_t) const;
159   bool IsBOZLiteral(std::size_t i) const {
160     return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u);
161   }
162   void SayNoMatch(const std::string &, bool isAssignment = false);
163   std::string TypeAsFortran(std::size_t);
164   bool AnyUntypedOperand();
165 
166   ExpressionAnalyzer &context_;
167   ActualArguments actuals_;
168   parser::CharBlock source_;
169   bool fatalErrors_{false};
170   const bool allowAssumedType_;
171   const Symbol *sawDefinedOp_{nullptr};
172 };
173 
174 // Wraps a data reference in a typed Designator<>, and a procedure
175 // or procedure pointer reference in a ProcedureDesignator.
176 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
177   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
178   if (semantics::IsProcedure(symbol)) {
179     if (auto *component{std::get_if<Component>(&ref.u)}) {
180       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
181     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
182       DIE("unexpected alternative in DataRef");
183     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
184       return Expr<SomeType>{ProcedureDesignator{symbol}};
185     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
186                    symbol.name().ToString())}) {
187       SpecificIntrinsic intrinsic{
188           symbol.name().ToString(), std::move(*interface)};
189       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
190       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
191     } else {
192       Say("'%s' is not a specific intrinsic procedure"_err_en_US,
193           symbol.name());
194       return std::nullopt;
195     }
196   } else if (auto dyType{DynamicType::From(symbol)}) {
197     return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref));
198   }
199   return std::nullopt;
200 }
201 
202 // Some subscript semantic checks must be deferred until all of the
203 // subscripts are in hand.
204 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
205   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
206   const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()};
207   int symbolRank{symbol.Rank()};
208   int subscripts{static_cast<int>(ref.size())};
209   if (subscripts == 0) {
210     // nothing to check
211   } else if (subscripts != symbolRank) {
212     if (symbolRank != 0) {
213       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
214           symbolRank, symbol.name(), subscripts);
215     }
216     return std::nullopt;
217   } else if (Component * component{ref.base().UnwrapComponent()}) {
218     int baseRank{component->base().Rank()};
219     if (baseRank > 0) {
220       int subscriptRank{0};
221       for (const auto &expr : ref.subscript()) {
222         subscriptRank += expr.Rank();
223       }
224       if (subscriptRank > 0) {
225         Say("Subscripts of component '%s' of rank-%d derived type "
226             "array have rank %d but must all be scalar"_err_en_US,
227             symbol.name(), baseRank, subscriptRank);
228         return std::nullopt;
229       }
230     }
231   } else if (object) {
232     // C928 & C1002
233     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
234       if (!last->upper() && object->IsAssumedSize()) {
235         Say("Assumed-size array '%s' must have explicit final "
236             "subscript upper bound value"_err_en_US,
237             symbol.name());
238         return std::nullopt;
239       }
240     }
241   }
242   return Designate(DataRef{std::move(ref)});
243 }
244 
245 // Applies subscripts to a data reference.
246 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
247     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
248   return std::visit(
249       common::visitors{
250           [&](SymbolRef &&symbol) {
251             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
252           },
253           [&](Component &&c) {
254             return CompleteSubscripts(
255                 ArrayRef{std::move(c), std::move(subscripts)});
256           },
257           [&](auto &&) -> MaybeExpr {
258             DIE("bad base for ArrayRef");
259             return std::nullopt;
260           },
261       },
262       std::move(dataRef.u));
263 }
264 
265 // Top-level checks for data references.
266 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
267   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
268     const Symbol &symbol{component->GetLastSymbol()};
269     int componentRank{symbol.Rank()};
270     if (componentRank > 0) {
271       int baseRank{component->base().Rank()};
272       if (baseRank > 0) {
273         Say("Reference to whole rank-%d component '%%%s' of "
274             "rank-%d array of derived type is not allowed"_err_en_US,
275             componentRank, symbol.name(), baseRank);
276       }
277     }
278   }
279   return Designate(std::move(dataRef));
280 }
281 
282 // Parse tree correction after a substring S(j:k) was misparsed as an
283 // array section.  N.B. Fortran substrings have to have a range, not a
284 // single index.
285 static void FixMisparsedSubstring(const parser::Designator &d) {
286   auto &mutate{const_cast<parser::Designator &>(d)};
287   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
288     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
289             &dataRef->u)}) {
290       parser::ArrayElement &arrElement{ae->value()};
291       if (!arrElement.subscripts.empty()) {
292         auto iter{arrElement.subscripts.begin()};
293         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
294           if (!std::get<2>(triplet->t) /* no stride */ &&
295               ++iter == arrElement.subscripts.end() /* one subscript */) {
296             if (Symbol *
297                 symbol{std::visit(
298                     common::visitors{
299                         [](parser::Name &n) { return n.symbol; },
300                         [](common::Indirection<parser::StructureComponent>
301                                 &sc) { return sc.value().component.symbol; },
302                         [](auto &) -> Symbol * { return nullptr; },
303                     },
304                     arrElement.base.u)}) {
305               const Symbol &ultimate{symbol->GetUltimate()};
306               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
307                 if (!ultimate.IsObjectArray() &&
308                     type->category() == semantics::DeclTypeSpec::Character) {
309                   // The ambiguous S(j:k) was parsed as an array section
310                   // reference, but it's now clear that it's a substring.
311                   // Fix the parse tree in situ.
312                   mutate.u = arrElement.ConvertToSubstring();
313                 }
314               }
315             }
316           }
317         }
318       }
319     }
320   }
321 }
322 
323 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
324   auto restorer{GetContextualMessages().SetLocation(d.source)};
325   FixMisparsedSubstring(d);
326   // These checks have to be deferred to these "top level" data-refs where
327   // we can be sure that there are no following subscripts (yet).
328   // Substrings have already been run through TopLevelChecks() and
329   // won't be returned by ExtractDataRef().
330   if (MaybeExpr result{Analyze(d.u)}) {
331     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
332       return TopLevelChecks(std::move(*dataRef));
333     }
334     return result;
335   }
336   return std::nullopt;
337 }
338 
339 // A utility subroutine to repackage optional expressions of various levels
340 // of type specificity as fully general MaybeExpr values.
341 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
342   return AsGenericExpr(std::move(x));
343 }
344 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
345   if (x) {
346     return AsMaybeExpr(std::move(*x));
347   }
348   return std::nullopt;
349 }
350 
351 // Type kind parameter values for literal constants.
352 int ExpressionAnalyzer::AnalyzeKindParam(
353     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
354   if (!kindParam) {
355     return defaultKind;
356   }
357   return std::visit(
358       common::visitors{
359           [](std::uint64_t k) { return static_cast<int>(k); },
360           [&](const parser::Scalar<
361               parser::Integer<parser::Constant<parser::Name>>> &n) {
362             if (MaybeExpr ie{Analyze(n)}) {
363               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
364                 int iv = *i64;
365                 if (iv == *i64) {
366                   return iv;
367                 }
368               }
369             }
370             return defaultKind;
371           },
372       },
373       kindParam->u);
374 }
375 
376 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
377 struct IntTypeVisitor {
378   using Result = MaybeExpr;
379   using Types = IntegerTypes;
380   template <typename T> Result Test() {
381     if (T::kind >= kind) {
382       const char *p{digits.begin()};
383       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
384       if (!value.overflow) {
385         if (T::kind > kind) {
386           if (!isDefaultKind ||
387               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
388             return std::nullopt;
389           } else if (analyzer.context().ShouldWarn(
390                          LanguageFeature::BigIntLiterals)) {
391             analyzer.Say(digits,
392                 "Integer literal is too large for default INTEGER(KIND=%d); "
393                 "assuming INTEGER(KIND=%d)"_en_US,
394                 kind, T::kind);
395           }
396         }
397         return Expr<SomeType>{
398             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
399       }
400     }
401     return std::nullopt;
402   }
403   ExpressionAnalyzer &analyzer;
404   parser::CharBlock digits;
405   int kind;
406   bool isDefaultKind;
407 };
408 
409 template <typename PARSED>
410 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
411   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
412   bool isDefaultKind{!kindParam};
413   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
414   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
415     auto digits{std::get<parser::CharBlock>(x.t)};
416     if (MaybeExpr result{common::SearchTypes(
417             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
418       return result;
419     } else if (isDefaultKind) {
420       Say(digits,
421           "Integer literal is too large for any allowable "
422           "kind of INTEGER"_err_en_US);
423     } else {
424       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
425           kind);
426     }
427   }
428   return std::nullopt;
429 }
430 
431 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
432   auto restorer{
433       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
434   return IntLiteralConstant(x);
435 }
436 
437 MaybeExpr ExpressionAnalyzer::Analyze(
438     const parser::SignedIntLiteralConstant &x) {
439   auto restorer{GetContextualMessages().SetLocation(x.source)};
440   return IntLiteralConstant(x);
441 }
442 
443 template <typename TYPE>
444 Constant<TYPE> ReadRealLiteral(
445     parser::CharBlock source, FoldingContext &context) {
446   const char *p{source.begin()};
447   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
448   CHECK(p == source.end());
449   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
450   auto value{valWithFlags.value};
451   if (context.flushSubnormalsToZero()) {
452     value = value.FlushSubnormalToZero();
453   }
454   return {value};
455 }
456 
457 struct RealTypeVisitor {
458   using Result = std::optional<Expr<SomeReal>>;
459   using Types = RealTypes;
460 
461   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
462       : kind{k}, literal{lit}, context{ctx} {}
463 
464   template <typename T> Result Test() {
465     if (kind == T::kind) {
466       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
467     }
468     return std::nullopt;
469   }
470 
471   int kind;
472   parser::CharBlock literal;
473   FoldingContext &context;
474 };
475 
476 // Reads a real literal constant and encodes it with the right kind.
477 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
478   // Use a local message context around the real literal for better
479   // provenance on any messages.
480   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
481   // If a kind parameter appears, it defines the kind of the literal and the
482   // letter used in an exponent part must be 'E' (e.g., the 'E' in
483   // "6.02214E+23").  In the absence of an explicit kind parameter, any
484   // exponent letter determines the kind.  Otherwise, defaults apply.
485   auto &defaults{context_.defaultKinds()};
486   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
487   const char *end{x.real.source.end()};
488   char expoLetter{' '};
489   std::optional<int> letterKind;
490   for (const char *p{x.real.source.begin()}; p < end; ++p) {
491     if (parser::IsLetter(*p)) {
492       expoLetter = *p;
493       switch (expoLetter) {
494       case 'e':
495         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
496         break;
497       case 'd':
498         letterKind = defaults.doublePrecisionKind();
499         break;
500       case 'q':
501         letterKind = defaults.quadPrecisionKind();
502         break;
503       default:
504         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
505       }
506       break;
507     }
508   }
509   if (letterKind) {
510     defaultKind = *letterKind;
511   }
512   // C716 requires 'E' as an exponent, but this is more useful
513   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
514   if (letterKind && kind != *letterKind && expoLetter != 'e') {
515     Say("Explicit kind parameter on real constant disagrees with "
516         "exponent letter '%c'"_en_US,
517         expoLetter);
518   }
519   auto result{common::SearchTypes(
520       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
521   if (!result) { // C717
522     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
523   }
524   return AsMaybeExpr(std::move(result));
525 }
526 
527 MaybeExpr ExpressionAnalyzer::Analyze(
528     const parser::SignedRealLiteralConstant &x) {
529   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
530     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
531     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
532       if (sign == parser::Sign::Negative) {
533         return AsGenericExpr(-std::move(realExpr));
534       }
535     }
536     return result;
537   }
538   return std::nullopt;
539 }
540 
541 MaybeExpr ExpressionAnalyzer::Analyze(
542     const parser::SignedComplexLiteralConstant &x) {
543   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
544   if (!result) {
545     return std::nullopt;
546   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
547     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
548   } else {
549     return result;
550   }
551 }
552 
553 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
554   return Analyze(x.u);
555 }
556 
557 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
558   return AsMaybeExpr(
559       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
560           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
561 }
562 
563 // CHARACTER literal processing.
564 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
565   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
566     return std::nullopt;
567   }
568   switch (kind) {
569   case 1:
570     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
571         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
572             string, true)});
573   case 2:
574     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
575         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
576             string, true)});
577   case 4:
578     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
579         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
580             string, true)});
581   default:
582     CRASH_NO_CASE;
583   }
584 }
585 
586 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
587   int kind{
588       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
589   auto value{std::get<std::string>(x.t)};
590   return AnalyzeString(std::move(value), kind);
591 }
592 
593 MaybeExpr ExpressionAnalyzer::Analyze(
594     const parser::HollerithLiteralConstant &x) {
595   int kind{GetDefaultKind(TypeCategory::Character)};
596   auto value{x.v};
597   return AnalyzeString(std::move(value), kind);
598 }
599 
600 // .TRUE. and .FALSE. of various kinds
601 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
602   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
603       GetDefaultKind(TypeCategory::Logical))};
604   bool value{std::get<bool>(x.t)};
605   auto result{common::SearchTypes(
606       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
607           kind, std::move(value)})};
608   if (!result) {
609     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
610   }
611   return result;
612 }
613 
614 // BOZ typeless literals
615 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
616   const char *p{x.v.c_str()};
617   std::uint64_t base{16};
618   switch (*p++) {
619   case 'b':
620     base = 2;
621     break;
622   case 'o':
623     base = 8;
624     break;
625   case 'z':
626     break;
627   case 'x':
628     break;
629   default:
630     CRASH_NO_CASE;
631   }
632   CHECK(*p == '"');
633   ++p;
634   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
635   if (*p != '"') {
636     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
637         x.v); // C7107, C7108
638     return std::nullopt;
639   }
640   if (value.overflow) {
641     Say("BOZ literal '%s' too large"_err_en_US, x.v);
642     return std::nullopt;
643   }
644   return AsGenericExpr(std::move(value.value));
645 }
646 
647 // For use with SearchTypes to create a TypeParamInquiry with the
648 // right integer kind.
649 struct TypeParamInquiryVisitor {
650   using Result = std::optional<Expr<SomeInteger>>;
651   using Types = IntegerTypes;
652   TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol &param)
653       : kind{k}, base{std::move(b)}, parameter{param} {}
654   TypeParamInquiryVisitor(int k, const Symbol &param)
655       : kind{k}, parameter{param} {}
656   template <typename T> Result Test() {
657     if (kind == T::kind) {
658       return Expr<SomeInteger>{
659           Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}};
660     }
661     return std::nullopt;
662   }
663   int kind;
664   std::optional<NamedEntity> base;
665   const Symbol &parameter;
666 };
667 
668 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry(
669     const Symbol *symbol) {
670   if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) {
671     if (dyType->category() == TypeCategory::Integer) {
672       return common::SearchTypes(
673           TypeParamInquiryVisitor{dyType->kind(), *symbol});
674     }
675   }
676   return std::nullopt;
677 }
678 
679 // Names and named constants
680 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
681   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
682     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
683         *kind, AsExpr(ImpliedDoIndex{n.source})));
684   } else if (context_.HasError(n) || !n.symbol) {
685     return std::nullopt;
686   } else {
687     const Symbol &ultimate{n.symbol->GetUltimate()};
688     if (ultimate.has<semantics::TypeParamDetails>()) {
689       // A bare reference to a derived type parameter (within a parameterized
690       // derived type definition)
691       return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate));
692     } else {
693       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
694         if (const semantics::Scope *
695             pure{semantics::FindPureProcedureContaining(
696                 context_.FindScope(n.source))}) {
697           SayAt(n,
698               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
699               n.source, DEREF(pure->symbol()).name());
700           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
701         }
702       }
703       return Designate(DataRef{*n.symbol});
704     }
705   }
706 }
707 
708 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
709   if (MaybeExpr value{Analyze(n.v)}) {
710     Expr<SomeType> folded{Fold(std::move(*value))};
711     if (IsConstantExpr(folded)) {
712       return folded;
713     }
714     Say(n.v.source, "must be a constant"_err_en_US); // C718
715   }
716   return std::nullopt;
717 }
718 
719 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) {
720   return Expr<SomeType>{NullPointer{}};
721 }
722 
723 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
724   return Analyze(x.value());
725 }
726 
727 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
728   if (const auto &repeat{
729           std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
730     x.repetitions = -1;
731     if (MaybeExpr expr{Analyze(repeat->u)}) {
732       Expr<SomeType> folded{Fold(std::move(*expr))};
733       if (auto value{ToInt64(folded)}) {
734         if (*value >= 0) { // C882
735           x.repetitions = *value;
736         } else {
737           Say(FindSourceLocation(repeat),
738               "Repeat count (%jd) for data value must not be negative"_err_en_US,
739               *value);
740         }
741       }
742     }
743   }
744   return Analyze(std::get<parser::DataStmtConstant>(x.t));
745 }
746 
747 // Substring references
748 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
749     const std::optional<parser::ScalarIntExpr> &bound) {
750   if (bound) {
751     if (MaybeExpr expr{Analyze(*bound)}) {
752       if (expr->Rank() > 1) {
753         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
754       }
755       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
756         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
757           return {std::move(*ssIntExpr)};
758         }
759         return {Expr<SubscriptInteger>{
760             Convert<SubscriptInteger, TypeCategory::Integer>{
761                 std::move(*intExpr)}}};
762       } else {
763         Say("substring bound expression is not INTEGER"_err_en_US);
764       }
765     }
766   }
767   return std::nullopt;
768 }
769 
770 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
771   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
772     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
773       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
774         if (std::optional<DataRef> checked{
775                 ExtractDataRef(std::move(*newBaseExpr))}) {
776           const parser::SubstringRange &range{
777               std::get<parser::SubstringRange>(ss.t)};
778           std::optional<Expr<SubscriptInteger>> first{
779               GetSubstringBound(std::get<0>(range.t))};
780           std::optional<Expr<SubscriptInteger>> last{
781               GetSubstringBound(std::get<1>(range.t))};
782           const Symbol &symbol{checked->GetLastSymbol()};
783           if (std::optional<DynamicType> dynamicType{
784                   DynamicType::From(symbol)}) {
785             if (dynamicType->category() == TypeCategory::Character) {
786               return WrapperHelper<TypeCategory::Character, Designator,
787                   Substring>(dynamicType->kind(),
788                   Substring{std::move(checked.value()), std::move(first),
789                       std::move(last)});
790             }
791           }
792           Say("substring may apply only to CHARACTER"_err_en_US);
793         }
794       }
795     }
796   }
797   return std::nullopt;
798 }
799 
800 // CHARACTER literal substrings
801 MaybeExpr ExpressionAnalyzer::Analyze(
802     const parser::CharLiteralConstantSubstring &x) {
803   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
804   std::optional<Expr<SubscriptInteger>> lower{
805       GetSubstringBound(std::get<0>(range.t))};
806   std::optional<Expr<SubscriptInteger>> upper{
807       GetSubstringBound(std::get<1>(range.t))};
808   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
809     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
810       Expr<SubscriptInteger> length{
811           std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
812               charExpr->u)};
813       if (!lower) {
814         lower = Expr<SubscriptInteger>{1};
815       }
816       if (!upper) {
817         upper = Expr<SubscriptInteger>{
818             static_cast<std::int64_t>(ToInt64(length).value())};
819       }
820       return std::visit(
821           [&](auto &&ckExpr) -> MaybeExpr {
822             using Result = ResultType<decltype(ckExpr)>;
823             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
824             CHECK(DEREF(cp).size() == 1);
825             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
826             staticData->set_alignment(Result::kind)
827                 .set_itemBytes(Result::kind)
828                 .Push(cp->GetScalarValue().value());
829             Substring substring{std::move(staticData), std::move(lower.value()),
830                 std::move(upper.value())};
831             return AsGenericExpr(
832                 Expr<Result>{Designator<Result>{std::move(substring)}});
833           },
834           std::move(charExpr->u));
835     }
836   }
837   return std::nullopt;
838 }
839 
840 // Subscripted array references
841 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
842     MaybeExpr &&expr) {
843   if (expr) {
844     if (expr->Rank() > 1) {
845       Say("Subscript expression has rank %d greater than 1"_err_en_US,
846           expr->Rank());
847     }
848     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
849       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
850         return std::move(*ssIntExpr);
851       } else {
852         return Expr<SubscriptInteger>{
853             Convert<SubscriptInteger, TypeCategory::Integer>{
854                 std::move(*intExpr)}};
855       }
856     } else {
857       Say("Subscript expression is not INTEGER"_err_en_US);
858     }
859   }
860   return std::nullopt;
861 }
862 
863 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
864     const std::optional<parser::Subscript> &s) {
865   if (s) {
866     return AsSubscript(Analyze(*s));
867   } else {
868     return std::nullopt;
869   }
870 }
871 
872 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
873     const parser::SectionSubscript &ss) {
874   return std::visit(common::visitors{
875                         [&](const parser::SubscriptTriplet &t) {
876                           return std::make_optional<Subscript>(
877                               Triplet{TripletPart(std::get<0>(t.t)),
878                                   TripletPart(std::get<1>(t.t)),
879                                   TripletPart(std::get<2>(t.t))});
880                         },
881                         [&](const auto &s) -> std::optional<Subscript> {
882                           if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
883                             return Subscript{std::move(*subscriptExpr)};
884                           } else {
885                             return std::nullopt;
886                           }
887                         },
888                     },
889       ss.u);
890 }
891 
892 // Empty result means an error occurred
893 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
894     const std::list<parser::SectionSubscript> &sss) {
895   bool error{false};
896   std::vector<Subscript> subscripts;
897   for (const auto &s : sss) {
898     if (auto subscript{AnalyzeSectionSubscript(s)}) {
899       subscripts.emplace_back(std::move(*subscript));
900     } else {
901       error = true;
902     }
903   }
904   return !error ? subscripts : std::vector<Subscript>{};
905 }
906 
907 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
908   if (MaybeExpr baseExpr{Analyze(ae.base)}) {
909     if (ae.subscripts.empty()) {
910       // will be converted to function call later or error reported
911       return std::nullopt;
912     } else if (baseExpr->Rank() == 0) {
913       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
914         if (!context_.HasError(symbol)) {
915           Say("'%s' is not an array"_err_en_US, symbol->name());
916           context_.SetError(const_cast<Symbol &>(*symbol));
917         }
918       }
919     } else if (std::optional<DataRef> dataRef{
920                    ExtractDataRef(std::move(*baseExpr))}) {
921       return ApplySubscripts(
922           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
923     } else {
924       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
925     }
926   }
927   // error was reported: analyze subscripts without reporting more errors
928   auto restorer{GetContextualMessages().DiscardMessages()};
929   AnalyzeSectionSubscripts(ae.subscripts);
930   return std::nullopt;
931 }
932 
933 // Type parameter inquiries apply to data references, but don't depend
934 // on any trailing (co)subscripts.
935 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
936   return std::visit(
937       common::visitors{
938           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
939           [](Component &&component) {
940             return NamedEntity{std::move(component)};
941           },
942           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
943           [](CoarrayRef &&coarrayRef) {
944             return NamedEntity{coarrayRef.GetLastSymbol()};
945           },
946       },
947       std::move(designator.u));
948 }
949 
950 // Components of parent derived types are explicitly represented as such.
951 static std::optional<Component> CreateComponent(
952     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
953   if (&component.owner() == &scope) {
954     return Component{std::move(base), component};
955   }
956   if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) {
957     if (const Symbol * parentComponent{parentScope->GetSymbol()}) {
958       return CreateComponent(
959           DataRef{Component{std::move(base), *parentComponent}}, component,
960           *parentScope);
961     }
962   }
963   return std::nullopt;
964 }
965 
966 // Derived type component references and type parameter inquiries
967 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
968   MaybeExpr base{Analyze(sc.base)};
969   if (!base) {
970     return std::nullopt;
971   }
972   Symbol *sym{sc.component.symbol};
973   if (context_.HasError(sym)) {
974     return std::nullopt;
975   }
976   const auto &name{sc.component.source};
977   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
978     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
979     if (sym->detailsIf<semantics::TypeParamDetails>()) {
980       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
981         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
982           if (dyType->category() == TypeCategory::Integer) {
983             return AsMaybeExpr(
984                 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(),
985                     IgnoreAnySubscripts(std::move(*designator)), *sym}));
986           }
987         }
988         Say(name, "Type parameter is not INTEGER"_err_en_US);
989       } else {
990         Say(name,
991             "A type parameter inquiry must be applied to "
992             "a designator"_err_en_US);
993       }
994     } else if (!dtSpec || !dtSpec->scope()) {
995       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
996       return std::nullopt;
997     } else if (std::optional<DataRef> dataRef{
998                    ExtractDataRef(std::move(*dtExpr))}) {
999       if (auto component{
1000               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
1001         return Designate(DataRef{std::move(*component)});
1002       } else {
1003         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1004             dtSpec->typeSymbol().name());
1005       }
1006     } else {
1007       Say(name,
1008           "Base of component reference must be a data reference"_err_en_US);
1009     }
1010   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1011     // special part-ref: %re, %im, %kind, %len
1012     // Type errors are detected and reported in semantics.
1013     using MiscKind = semantics::MiscDetails::Kind;
1014     MiscKind kind{details->kind()};
1015     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1016       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1017         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
1018           Expr<SomeReal> realExpr{std::visit(
1019               [&](const auto &z) {
1020                 using PartType = typename ResultType<decltype(z)>::Part;
1021                 auto part{kind == MiscKind::ComplexPartRe
1022                         ? ComplexPart::Part::RE
1023                         : ComplexPart::Part::IM};
1024                 return AsCategoryExpr(Designator<PartType>{
1025                     ComplexPart{std::move(*dataRef), part}});
1026               },
1027               zExpr->u)};
1028           return AsGenericExpr(std::move(realExpr));
1029         }
1030       }
1031     } else if (kind == MiscKind::KindParamInquiry ||
1032         kind == MiscKind::LenParamInquiry) {
1033       // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
1034       return MakeFunctionRef(
1035           name, ActualArguments{ActualArgument{std::move(*base)}});
1036     } else {
1037       DIE("unexpected MiscDetails::Kind");
1038     }
1039   } else {
1040     Say(name, "derived type required before component reference"_err_en_US);
1041   }
1042   return std::nullopt;
1043 }
1044 
1045 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1046   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1047     DataRef *dataRef{&*maybeDataRef};
1048     std::vector<Subscript> subscripts;
1049     SymbolVector reversed;
1050     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1051       subscripts = std::move(aRef->subscript());
1052       reversed.push_back(aRef->GetLastSymbol());
1053       if (Component * component{aRef->base().UnwrapComponent()}) {
1054         dataRef = &component->base();
1055       } else {
1056         dataRef = nullptr;
1057       }
1058     }
1059     if (dataRef) {
1060       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1061         reversed.push_back(component->GetLastSymbol());
1062         dataRef = &component->base();
1063       }
1064       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1065         reversed.push_back(*baseSym);
1066       } else {
1067         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1068       }
1069     }
1070     std::vector<Expr<SubscriptInteger>> cosubscripts;
1071     bool cosubsOk{true};
1072     for (const auto &cosub :
1073         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1074       MaybeExpr coex{Analyze(cosub)};
1075       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1076         cosubscripts.push_back(
1077             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1078       } else {
1079         cosubsOk = false;
1080       }
1081     }
1082     if (cosubsOk && !reversed.empty()) {
1083       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1084       const Symbol &symbol{reversed.front()};
1085       if (numCosubscripts != symbol.Corank()) {
1086         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1087             symbol.name(), symbol.Corank(), numCosubscripts);
1088       }
1089     }
1090     for (const auto &imageSelSpec :
1091         std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1092       std::visit(
1093           common::visitors{
1094               [&](const auto &x) { Analyze(x.v); },
1095           },
1096           imageSelSpec.u);
1097     }
1098     // Reverse the chain of symbols so that the base is first and coarray
1099     // ultimate component is last.
1100     if (cosubsOk) {
1101       return Designate(
1102           DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1103               std::move(subscripts), std::move(cosubscripts)}});
1104     }
1105   }
1106   return std::nullopt;
1107 }
1108 
1109 int ExpressionAnalyzer::IntegerTypeSpecKind(
1110     const parser::IntegerTypeSpec &spec) {
1111   Expr<SubscriptInteger> value{
1112       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1113   if (auto kind{ToInt64(value)}) {
1114     return static_cast<int>(*kind);
1115   }
1116   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1117   return GetDefaultKind(TypeCategory::Integer);
1118 }
1119 
1120 // Array constructors
1121 
1122 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1123 // all happen to have the same actual type T into one ArrayConstructor<T>.
1124 template <typename T>
1125 ArrayConstructorValues<T> MakeSpecific(
1126     ArrayConstructorValues<SomeType> &&from) {
1127   ArrayConstructorValues<T> to;
1128   for (ArrayConstructorValue<SomeType> &x : from) {
1129     std::visit(
1130         common::visitors{
1131             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1132               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1133               to.Push(std::move(DEREF(typed)));
1134             },
1135             [&](ImpliedDo<SomeType> &&impliedDo) {
1136               to.Push(ImpliedDo<T>{impliedDo.name(),
1137                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1138                   std::move(impliedDo.stride()),
1139                   MakeSpecific<T>(std::move(impliedDo.values()))});
1140             },
1141         },
1142         std::move(x.u));
1143   }
1144   return to;
1145 }
1146 
1147 class ArrayConstructorContext {
1148 public:
1149   ArrayConstructorContext(
1150       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1151       : exprAnalyzer_{c}, type_{std::move(t)} {}
1152 
1153   void Add(const parser::AcValue &);
1154   MaybeExpr ToExpr();
1155 
1156   // These interfaces allow *this to be used as a type visitor argument to
1157   // common::SearchTypes() to convert the array constructor to a typed
1158   // expression in ToExpr().
1159   using Result = MaybeExpr;
1160   using Types = AllTypes;
1161   template <typename T> Result Test() {
1162     if (type_ && type_->category() == T::category) {
1163       if constexpr (T::category == TypeCategory::Derived) {
1164         if (type_->IsUnlimitedPolymorphic()) {
1165           return std::nullopt;
1166         } else {
1167           return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1168               MakeSpecific<T>(std::move(values_))});
1169         }
1170       } else if (type_->kind() == T::kind) {
1171         if constexpr (T::category == TypeCategory::Character) {
1172           if (auto len{type_->LEN()}) {
1173             return AsMaybeExpr(ArrayConstructor<T>{
1174                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1175           }
1176         } else {
1177           return AsMaybeExpr(
1178               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1179         }
1180       }
1181     }
1182     return std::nullopt;
1183   }
1184 
1185 private:
1186   void Push(MaybeExpr &&);
1187 
1188   template <int KIND, typename A>
1189   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1190       const A &x) {
1191     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1192       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1193       return ConvertToType<Type<TypeCategory::Integer, KIND>>(
1194           std::move(DEREF(intExpr)));
1195     }
1196     return std::nullopt;
1197   }
1198 
1199   // Nested array constructors all reference the same ExpressionAnalyzer,
1200   // which represents the nest of active implied DO loop indices.
1201   ExpressionAnalyzer &exprAnalyzer_;
1202   std::optional<DynamicTypeWithLength> type_;
1203   bool explicitType_{type_.has_value()};
1204   std::optional<std::int64_t> constantLength_;
1205   ArrayConstructorValues<SomeType> values_;
1206   bool messageDisplayedOnce{false};
1207 };
1208 
1209 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1210   if (!x) {
1211     return;
1212   }
1213   if (auto dyType{x->GetType()}) {
1214     DynamicTypeWithLength xType{*dyType};
1215     if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1216       CHECK(xType.category() == TypeCategory::Character);
1217       xType.length =
1218           std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1219     }
1220     if (!type_) {
1221       // If there is no explicit type-spec in an array constructor, the type
1222       // of the array is the declared type of all of the elements, which must
1223       // be well-defined and all match.
1224       // TODO: Possible language extension: use the most general type of
1225       // the values as the type of a numeric constructed array, convert all
1226       // of the other values to that type.  Alternative: let the first value
1227       // determine the type, and convert the others to that type.
1228       CHECK(!explicitType_);
1229       type_ = std::move(xType);
1230       constantLength_ = ToInt64(type_->length);
1231       values_.Push(std::move(*x));
1232     } else if (!explicitType_) {
1233       if (static_cast<const DynamicType &>(*type_) ==
1234           static_cast<const DynamicType &>(xType)) {
1235         values_.Push(std::move(*x));
1236         if (auto thisLen{ToInt64(xType.LEN())}) {
1237           if (constantLength_) {
1238             if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1239                 *thisLen != *constantLength_) {
1240               exprAnalyzer_.Say(
1241                   "Character literal in array constructor without explicit "
1242                   "type has different length than earlier element"_en_US);
1243             }
1244             if (*thisLen > *constantLength_) {
1245               // Language extension: use the longest literal to determine the
1246               // length of the array constructor's character elements, not the
1247               // first, when there is no explicit type.
1248               *constantLength_ = *thisLen;
1249               type_->length = xType.LEN();
1250             }
1251           } else {
1252             constantLength_ = *thisLen;
1253             type_->length = xType.LEN();
1254           }
1255         }
1256       } else {
1257         if (!messageDisplayedOnce) {
1258           exprAnalyzer_.Say(
1259               "Values in array constructor must have the same declared type "
1260               "when no explicit type appears"_err_en_US); // C7110
1261           messageDisplayedOnce = true;
1262         }
1263       }
1264     } else {
1265       if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1266         values_.Push(std::move(*cast));
1267       } else {
1268         exprAnalyzer_.Say(
1269             "Value in array constructor of type '%s' could not "
1270             "be converted to the type of the array '%s'"_err_en_US,
1271             x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
1272       }
1273     }
1274   }
1275 }
1276 
1277 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1278   using IntType = ResultType<ImpliedDoIndex>;
1279   std::visit(
1280       common::visitors{
1281           [&](const parser::AcValue::Triplet &triplet) {
1282             // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1283             std::optional<Expr<IntType>> lower{
1284                 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))};
1285             std::optional<Expr<IntType>> upper{
1286                 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))};
1287             std::optional<Expr<IntType>> stride{
1288                 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))};
1289             if (lower && upper) {
1290               if (!stride) {
1291                 stride = Expr<IntType>{1};
1292               }
1293               if (!type_) {
1294                 type_ = DynamicTypeWithLength{IntType::GetType()};
1295               }
1296               auto v{std::move(values_)};
1297               parser::CharBlock anonymous;
1298               Push(Expr<SomeType>{
1299                   Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}});
1300               std::swap(v, values_);
1301               values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1302                   std::move(*upper), std::move(*stride), std::move(v)});
1303             }
1304           },
1305           [&](const common::Indirection<parser::Expr> &expr) {
1306             auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(
1307                 expr.value().source)};
1308             if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) {
1309               if (auto exprType{v->GetType()}) {
1310                 if (exprType->IsUnlimitedPolymorphic()) {
1311                   exprAnalyzer_.Say(
1312                       "Cannot have an unlimited polymorphic value in an "
1313                       "array constructor"_err_en_US); // C7113
1314                 }
1315               }
1316               Push(std::move(*v));
1317             }
1318           },
1319           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1320             const auto &control{
1321                 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)};
1322             const auto &bounds{
1323                 std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1324             exprAnalyzer_.Analyze(bounds.name);
1325             parser::CharBlock name{bounds.name.thing.thing.source};
1326             const Symbol *symbol{bounds.name.thing.thing.symbol};
1327             int kind{IntType::kind};
1328             if (const auto dynamicType{DynamicType::From(symbol)}) {
1329               kind = dynamicType->kind();
1330             }
1331             if (exprAnalyzer_.AddImpliedDo(name, kind)) {
1332               std::optional<Expr<IntType>> lower{
1333                   GetSpecificIntExpr<IntType::kind>(bounds.lower)};
1334               std::optional<Expr<IntType>> upper{
1335                   GetSpecificIntExpr<IntType::kind>(bounds.upper)};
1336               if (lower && upper) {
1337                 std::optional<Expr<IntType>> stride{
1338                     GetSpecificIntExpr<IntType::kind>(bounds.step)};
1339                 auto v{std::move(values_)};
1340                 for (const auto &value :
1341                     std::get<std::list<parser::AcValue>>(impliedDo.value().t)) {
1342                   Add(value);
1343                 }
1344                 if (!stride) {
1345                   stride = Expr<IntType>{1};
1346                 }
1347                 std::swap(v, values_);
1348                 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1349                     std::move(*upper), std::move(*stride), std::move(v)});
1350               }
1351               exprAnalyzer_.RemoveImpliedDo(name);
1352             } else {
1353               exprAnalyzer_.SayAt(name,
1354                   "Implied DO index is active in surrounding implied DO loop "
1355                   "and may not have the same name"_err_en_US); // C7115
1356             }
1357           },
1358       },
1359       x.u);
1360 }
1361 
1362 MaybeExpr ArrayConstructorContext::ToExpr() {
1363   return common::SearchTypes(std::move(*this));
1364 }
1365 
1366 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1367   const parser::AcSpec &acSpec{array.v};
1368   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1369   for (const parser::AcValue &value : acSpec.values) {
1370     acContext.Add(value);
1371   }
1372   return acContext.ToExpr();
1373 }
1374 
1375 MaybeExpr ExpressionAnalyzer::Analyze(
1376     const parser::StructureConstructor &structure) {
1377   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1378   parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source};
1379   if (!parsedType.derivedTypeSpec) {
1380     return std::nullopt;
1381   }
1382   const auto &spec{*parsedType.derivedTypeSpec};
1383   const Symbol &typeSymbol{spec.typeSymbol()};
1384   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1385     return std::nullopt; // error recovery
1386   }
1387   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1388   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1389 
1390   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1391     AttachDeclaration(Say(typeName,
1392                           "ABSTRACT derived type '%s' may not be used in a "
1393                           "structure constructor"_err_en_US,
1394                           typeName),
1395         typeSymbol); // C7114
1396   }
1397 
1398   // This iterator traverses all of the components in the derived type and its
1399   // parents.  The symbols for whole parent components appear after their
1400   // own components and before the components of the types that extend them.
1401   // E.g., TYPE :: A; REAL X; END TYPE
1402   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1403   // produces the component list X, A, Y.
1404   // The order is important below because a structure constructor can
1405   // initialize X or A by name, but not both.
1406   auto components{semantics::OrderedComponentIterator{spec}};
1407   auto nextAnonymous{components.begin()};
1408 
1409   std::set<parser::CharBlock> unavailable;
1410   bool anyKeyword{false};
1411   StructureConstructor result{spec};
1412   bool checkConflicts{true}; // until we hit one
1413   auto &messages{GetContextualMessages()};
1414 
1415   for (const auto &component :
1416       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1417     const parser::Expr &expr{
1418         std::get<parser::ComponentDataSource>(component.t).v.value()};
1419     parser::CharBlock source{expr.source};
1420     auto restorer{messages.SetLocation(source)};
1421     const Symbol *symbol{nullptr};
1422     MaybeExpr value{Analyze(expr)};
1423     std::optional<DynamicType> valueType{DynamicType::From(value)};
1424     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1425       anyKeyword = true;
1426       source = kw->v.source;
1427       symbol = kw->v.symbol;
1428       if (!symbol) {
1429         auto componentIter{std::find_if(components.begin(), components.end(),
1430             [=](const Symbol &symbol) { return symbol.name() == source; })};
1431         if (componentIter != components.end()) {
1432           symbol = &*componentIter;
1433         }
1434       }
1435       if (!symbol) { // C7101
1436         Say(source,
1437             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1438             source, typeName);
1439       }
1440     } else {
1441       if (anyKeyword) { // C7100
1442         Say(source,
1443             "Value in structure constructor lacks a component name"_err_en_US);
1444         checkConflicts = false; // stem cascade
1445       }
1446       // Here's a regrettably common extension of the standard: anonymous
1447       // initialization of parent components, e.g., T(PT(1)) rather than
1448       // T(1) or T(PT=PT(1)).
1449       if (nextAnonymous == components.begin() && parentComponent &&
1450           valueType == DynamicType::From(*parentComponent) &&
1451           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1452         auto iter{
1453             std::find(components.begin(), components.end(), *parentComponent)};
1454         if (iter != components.end()) {
1455           symbol = parentComponent;
1456           nextAnonymous = ++iter;
1457           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1458             Say(source,
1459                 "Whole parent component '%s' in structure "
1460                 "constructor should not be anonymous"_en_US,
1461                 symbol->name());
1462           }
1463         }
1464       }
1465       while (!symbol && nextAnonymous != components.end()) {
1466         const Symbol &next{*nextAnonymous};
1467         ++nextAnonymous;
1468         if (!next.test(Symbol::Flag::ParentComp)) {
1469           symbol = &next;
1470         }
1471       }
1472       if (!symbol) {
1473         Say(source, "Unexpected value in structure constructor"_err_en_US);
1474       }
1475     }
1476     if (symbol) {
1477       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1478         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1479           Say(source, *msg);
1480         }
1481       }
1482       if (checkConflicts) {
1483         auto componentIter{
1484             std::find(components.begin(), components.end(), *symbol)};
1485         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1486           // C797, C798
1487           Say(source,
1488               "Component '%s' conflicts with another component earlier in "
1489               "this structure constructor"_err_en_US,
1490               symbol->name());
1491         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1492           // Make earlier components unavailable once a whole parent appears.
1493           for (auto it{components.begin()}; it != componentIter; ++it) {
1494             unavailable.insert(it->name());
1495           }
1496         } else {
1497           // Make whole parent components unavailable after any of their
1498           // constituents appear.
1499           for (auto it{componentIter}; it != components.end(); ++it) {
1500             if (it->test(Symbol::Flag::ParentComp)) {
1501               unavailable.insert(it->name());
1502             }
1503           }
1504         }
1505       }
1506       unavailable.insert(symbol->name());
1507       if (value) {
1508         if (symbol->has<semantics::ProcEntityDetails>()) {
1509           CHECK(IsPointer(*symbol));
1510         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1511           // C1594(4)
1512           const auto &innermost{context_.FindScope(expr.source)};
1513           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1514             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1515               if (const Symbol *
1516                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1517                 if (auto *msg{Say(expr.source,
1518                         "Externally visible object '%s' may not be "
1519                         "associated with pointer component '%s' in a "
1520                         "pure procedure"_err_en_US,
1521                         object->name(), pointer->name())}) {
1522                   msg->Attach(object->name(), "Object declaration"_en_US)
1523                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1524                 }
1525               }
1526             }
1527           }
1528         } else if (symbol->has<semantics::TypeParamDetails>()) {
1529           Say(expr.source,
1530               "Type parameter '%s' may not appear as a component "
1531               "of a structure constructor"_err_en_US,
1532               symbol->name());
1533           continue;
1534         } else {
1535           Say(expr.source,
1536               "Component '%s' is neither a procedure pointer "
1537               "nor a data object"_err_en_US,
1538               symbol->name());
1539           continue;
1540         }
1541         if (IsPointer(*symbol)) {
1542           semantics::CheckPointerAssignment(
1543               GetFoldingContext(), *symbol, *value); // C7104, C7105
1544           result.Add(*symbol, Fold(std::move(*value)));
1545         } else if (MaybeExpr converted{
1546                        ConvertToType(*symbol, std::move(*value))}) {
1547           if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
1548             if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
1549               if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
1550                 AttachDeclaration(
1551                     Say(expr.source,
1552                         "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
1553                         symbol->name()),
1554                     *symbol);
1555               } else if (CheckConformance(messages, *componentShape,
1556                              *valueShape, "component", "value")) {
1557                 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 &&
1558                     !IsExpandableScalar(*converted)) {
1559                   AttachDeclaration(
1560                       Say(expr.source,
1561                           "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
1562                           symbol->name()),
1563                       *symbol);
1564                 } else {
1565                   result.Add(*symbol, std::move(*converted));
1566                 }
1567               }
1568             } else {
1569               Say(expr.source, "Shape of value cannot be determined"_err_en_US);
1570             }
1571           } else {
1572             AttachDeclaration(
1573                 Say(expr.source,
1574                     "Shape of component '%s' cannot be determined"_err_en_US,
1575                     symbol->name()),
1576                 *symbol);
1577           }
1578         } else if (IsAllocatable(*symbol) &&
1579             std::holds_alternative<NullPointer>(value->u)) {
1580           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE
1581         } else if (auto symType{DynamicType::From(symbol)}) {
1582           if (valueType) {
1583             AttachDeclaration(
1584                 Say(expr.source,
1585                     "Value in structure constructor of type %s is "
1586                     "incompatible with component '%s' of type %s"_err_en_US,
1587                     valueType->AsFortran(), symbol->name(),
1588                     symType->AsFortran()),
1589                 *symbol);
1590           } else {
1591             AttachDeclaration(
1592                 Say(expr.source,
1593                     "Value in structure constructor is incompatible with "
1594                     " component '%s' of type %s"_err_en_US,
1595                     symbol->name(), symType->AsFortran()),
1596                 *symbol);
1597           }
1598         }
1599       }
1600     }
1601   }
1602 
1603   // Ensure that unmentioned component objects have default initializers.
1604   for (const Symbol &symbol : components) {
1605     if (!symbol.test(Symbol::Flag::ParentComp) &&
1606         unavailable.find(symbol.name()) == unavailable.cend() &&
1607         !IsAllocatable(symbol)) {
1608       if (const auto *details{
1609               symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1610         if (details->init()) {
1611           result.Add(symbol, common::Clone(*details->init()));
1612         } else { // C799
1613           AttachDeclaration(Say(typeName,
1614                                 "Structure constructor lacks a value for "
1615                                 "component '%s'"_err_en_US,
1616                                 symbol.name()),
1617               symbol);
1618         }
1619       }
1620     }
1621   }
1622 
1623   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1624 }
1625 
1626 static std::optional<parser::CharBlock> GetPassName(
1627     const semantics::Symbol &proc) {
1628   return std::visit(
1629       [](const auto &details) {
1630         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1631                           std::decay_t<decltype(details)>>) {
1632           return details.passName();
1633         } else {
1634           return std::optional<parser::CharBlock>{};
1635         }
1636       },
1637       proc.details());
1638 }
1639 
1640 static int GetPassIndex(const Symbol &proc) {
1641   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1642   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1643   const auto *interface{semantics::FindInterface(proc)};
1644   if (!passName || !interface) {
1645     return 0; // first argument is passed-object
1646   }
1647   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1648   int index{0};
1649   for (const auto *arg : subp.dummyArgs()) {
1650     if (arg && arg->name() == passName) {
1651       return index;
1652     }
1653     ++index;
1654   }
1655   DIE("PASS argument name not in dummy argument list");
1656 }
1657 
1658 // Injects an expression into an actual argument list as the "passed object"
1659 // for a type-bound procedure reference that is not NOPASS.  Adds an
1660 // argument keyword if possible, but not when the passed object goes
1661 // before a positional argument.
1662 // e.g., obj%tbp(x) -> tbp(obj,x).
1663 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1664     const Symbol &component, bool isPassedObject = true) {
1665   if (component.attrs().test(semantics::Attr::NOPASS)) {
1666     return;
1667   }
1668   int passIndex{GetPassIndex(component)};
1669   auto iter{actuals.begin()};
1670   int at{0};
1671   while (iter < actuals.end() && at < passIndex) {
1672     if (*iter && (*iter)->keyword()) {
1673       iter = actuals.end();
1674       break;
1675     }
1676     ++iter;
1677     ++at;
1678   }
1679   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1680   passed.set_isPassedObject(isPassedObject);
1681   if (iter == actuals.end()) {
1682     if (auto passName{GetPassName(component)}) {
1683       passed.set_keyword(*passName);
1684     }
1685   }
1686   actuals.emplace(iter, std::move(passed));
1687 }
1688 
1689 // Return the compile-time resolution of a procedure binding, if possible.
1690 static const Symbol *GetBindingResolution(
1691     const std::optional<DynamicType> &baseType, const Symbol &component) {
1692   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1693   if (!binding) {
1694     return nullptr;
1695   }
1696   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1697       (!baseType || baseType->IsPolymorphic())) {
1698     return nullptr;
1699   }
1700   return &binding->symbol();
1701 }
1702 
1703 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1704     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1705     -> std::optional<CalleeAndArguments> {
1706   const parser::StructureComponent &sc{pcr.v.thing};
1707   const auto &name{sc.component.source};
1708   if (MaybeExpr base{Analyze(sc.base)}) {
1709     if (const Symbol * sym{sc.component.symbol}) {
1710       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1711         if (sym->has<semantics::GenericDetails>()) {
1712           AdjustActuals adjustment{
1713               [&](const Symbol &proc, ActualArguments &actuals) {
1714                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1715                   AddPassArg(actuals, std::move(*dtExpr), proc);
1716                 }
1717                 return true;
1718               }};
1719           sym = ResolveGeneric(*sym, arguments, adjustment);
1720           if (!sym) {
1721             EmitGenericResolutionError(*sc.component.symbol);
1722             return std::nullopt;
1723           }
1724         }
1725         if (const Symbol *
1726             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1727           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1728           return CalleeAndArguments{
1729               ProcedureDesignator{*resolution}, std::move(arguments)};
1730         } else if (std::optional<DataRef> dataRef{
1731                        ExtractDataRef(std::move(*dtExpr))}) {
1732           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1733             return CalleeAndArguments{
1734                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1735                 std::move(arguments)};
1736           } else {
1737             AddPassArg(arguments,
1738                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1739                 *sym);
1740             return CalleeAndArguments{
1741                 ProcedureDesignator{*sym}, std::move(arguments)};
1742           }
1743         }
1744       }
1745       Say(name,
1746           "Base of procedure component reference is not a derived-type object"_err_en_US);
1747     }
1748   }
1749   CHECK(!GetContextualMessages().empty());
1750   return std::nullopt;
1751 }
1752 
1753 // Can actual be argument associated with dummy?
1754 static bool CheckCompatibleArgument(bool isElemental,
1755     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1756   return std::visit(
1757       common::visitors{
1758           [&](const characteristics::DummyDataObject &x) {
1759             characteristics::TypeAndShape dummyTypeAndShape{x.type};
1760             if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) {
1761               return false;
1762             } else if (auto actualType{actual.GetType()}) {
1763               return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType);
1764             } else {
1765               return false;
1766             }
1767           },
1768           [&](const characteristics::DummyProcedure &) {
1769             const auto *expr{actual.UnwrapExpr()};
1770             return expr && IsProcedurePointer(*expr);
1771           },
1772           [&](const characteristics::AlternateReturn &) {
1773             return actual.isAlternateReturn();
1774           },
1775       },
1776       dummy.u);
1777 }
1778 
1779 // Are the actual arguments compatible with the dummy arguments of procedure?
1780 static bool CheckCompatibleArguments(
1781     const characteristics::Procedure &procedure,
1782     const ActualArguments &actuals) {
1783   bool isElemental{procedure.IsElemental()};
1784   const auto &dummies{procedure.dummyArguments};
1785   CHECK(dummies.size() == actuals.size());
1786   for (std::size_t i{0}; i < dummies.size(); ++i) {
1787     const characteristics::DummyArgument &dummy{dummies[i]};
1788     const std::optional<ActualArgument> &actual{actuals[i]};
1789     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1790       return false;
1791     }
1792   }
1793   return true;
1794 }
1795 
1796 // Handles a forward reference to a module function from what must
1797 // be a specification expression.  Return false if the symbol is
1798 // an invalid forward reference.
1799 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
1800   if (context_.HasError(symbol)) {
1801     return false;
1802   }
1803   if (const auto *details{
1804           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
1805     if (details->kind() == semantics::SubprogramKind::Module) {
1806       // If this symbol is still a SubprogramNameDetails, we must be
1807       // checking a specification expression in a sibling module
1808       // procedure.  Resolve its names now so that its interface
1809       // is known.
1810       semantics::ResolveSpecificationParts(context_, symbol);
1811       if (symbol.has<semantics::SubprogramNameDetails>()) {
1812         // When the symbol hasn't had its details updated, we must have
1813         // already been in the process of resolving the function's
1814         // specification part; but recursive function calls are not
1815         // allowed in specification parts (10.1.11 para 5).
1816         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
1817             symbol.name());
1818         context_.SetError(const_cast<Symbol &>(symbol));
1819         return false;
1820       }
1821     } else { // 10.1.11 para 4
1822       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
1823           symbol.name());
1824       context_.SetError(const_cast<Symbol &>(symbol));
1825       return false;
1826     }
1827   }
1828   return true;
1829 }
1830 
1831 // Resolve a call to a generic procedure with given actual arguments.
1832 // adjustActuals is called on procedure bindings to handle pass arg.
1833 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol,
1834     const ActualArguments &actuals, const AdjustActuals &adjustActuals,
1835     bool mightBeStructureConstructor) {
1836   const Symbol *elemental{nullptr}; // matching elemental specific proc
1837   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
1838   for (const Symbol &specific : details.specificProcs()) {
1839     if (!ResolveForward(specific)) {
1840       continue;
1841     }
1842     if (std::optional<characteristics::Procedure> procedure{
1843             characteristics::Procedure::Characterize(
1844                 ProcedureDesignator{specific}, context_.intrinsics())}) {
1845       ActualArguments localActuals{actuals};
1846       if (specific.has<semantics::ProcBindingDetails>()) {
1847         if (!adjustActuals.value()(specific, localActuals)) {
1848           continue;
1849         }
1850       }
1851       if (semantics::CheckInterfaceForGeneric(
1852               *procedure, localActuals, GetFoldingContext())) {
1853         if (CheckCompatibleArguments(*procedure, localActuals)) {
1854           if (!procedure->IsElemental()) {
1855             return &specific; // takes priority over elemental match
1856           }
1857           elemental = &specific;
1858         }
1859       }
1860     }
1861   }
1862   if (elemental) {
1863     return elemental;
1864   }
1865   // Check parent derived type
1866   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
1867     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
1868       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
1869         if (const Symbol *
1870             result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) {
1871           return result;
1872         }
1873       }
1874     }
1875   }
1876   if (mightBeStructureConstructor && details.derivedType()) {
1877     return details.derivedType();
1878   }
1879   return nullptr;
1880 }
1881 
1882 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) {
1883   if (semantics::IsGenericDefinedOp(symbol)) {
1884     Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US,
1885         symbol.name());
1886   } else {
1887     Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
1888         symbol.name());
1889   }
1890 }
1891 
1892 auto ExpressionAnalyzer::GetCalleeAndArguments(
1893     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
1894     bool isSubroutine, bool mightBeStructureConstructor)
1895     -> std::optional<CalleeAndArguments> {
1896   return std::visit(
1897       common::visitors{
1898           [&](const parser::Name &name) {
1899             return GetCalleeAndArguments(name, std::move(arguments),
1900                 isSubroutine, mightBeStructureConstructor);
1901           },
1902           [&](const parser::ProcComponentRef &pcr) {
1903             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
1904           },
1905       },
1906       pd.u);
1907 }
1908 
1909 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
1910     ActualArguments &&arguments, bool isSubroutine,
1911     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
1912   const Symbol *symbol{name.symbol};
1913   if (context_.HasError(symbol)) {
1914     return std::nullopt; // also handles null symbol
1915   }
1916   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
1917   if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
1918     if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
1919             CallCharacteristics{ultimate.name().ToString(), isSubroutine},
1920             arguments, GetFoldingContext())}) {
1921       return CalleeAndArguments{
1922           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
1923           std::move(specificCall->arguments)};
1924     }
1925   } else {
1926     CheckForBadRecursion(name.source, ultimate);
1927     if (ultimate.has<semantics::GenericDetails>()) {
1928       ExpressionAnalyzer::AdjustActuals noAdjustment;
1929       symbol = ResolveGeneric(
1930           *symbol, arguments, noAdjustment, mightBeStructureConstructor);
1931     }
1932     if (symbol) {
1933       if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
1934         if (mightBeStructureConstructor) {
1935           return CalleeAndArguments{
1936               semantics::SymbolRef{*symbol}, std::move(arguments)};
1937         }
1938       } else {
1939         return CalleeAndArguments{
1940             ProcedureDesignator{*symbol}, std::move(arguments)};
1941       }
1942     } else if (std::optional<SpecificCall> specificCall{
1943                    context_.intrinsics().Probe(
1944                        CallCharacteristics{
1945                            ultimate.name().ToString(), isSubroutine},
1946                        arguments, GetFoldingContext())}) {
1947       // Generics can extend intrinsics
1948       return CalleeAndArguments{
1949           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
1950           std::move(specificCall->arguments)};
1951     } else {
1952       EmitGenericResolutionError(*name.symbol);
1953     }
1954   }
1955   return std::nullopt;
1956 }
1957 
1958 void ExpressionAnalyzer::CheckForBadRecursion(
1959     parser::CharBlock callSite, const semantics::Symbol &proc) {
1960   if (const auto *scope{proc.scope()}) {
1961     if (scope->sourceRange().Contains(callSite)) {
1962       parser::Message *msg{nullptr};
1963       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
1964         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
1965             callSite);
1966       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
1967         msg = Say( // 15.6.2.1(3)
1968             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
1969             callSite);
1970       }
1971       AttachDeclaration(msg, proc);
1972     }
1973   }
1974 }
1975 
1976 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
1977   if (const auto *designator{
1978           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
1979     if (const auto *dataRef{
1980             std::get_if<parser::DataRef>(&designator->value().u)}) {
1981       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
1982         if (const Symbol * symbol{name->symbol}) {
1983           if (const auto *type{symbol->GetType()}) {
1984             if (type->category() == semantics::DeclTypeSpec::TypeStar) {
1985               return symbol;
1986             }
1987           }
1988         }
1989       }
1990     }
1991   }
1992   return nullptr;
1993 }
1994 
1995 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
1996     std::optional<parser::StructureConstructor> *structureConstructor) {
1997   const parser::Call &call{funcRef.v};
1998   auto restorer{GetContextualMessages().SetLocation(call.source)};
1999   ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */};
2000   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
2001     analyzer.Analyze(arg, false /* not subroutine call */);
2002   }
2003   if (analyzer.fatalErrors()) {
2004     return std::nullopt;
2005   }
2006   if (std::optional<CalleeAndArguments> callee{
2007           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2008               analyzer.GetActuals(), false /* not subroutine */,
2009               true /* might be structure constructor */)}) {
2010     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
2011       return MakeFunctionRef(
2012           call.source, std::move(*proc), std::move(callee->arguments));
2013     } else if (structureConstructor) {
2014       // Structure constructor misparsed as function reference?
2015       CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
2016       const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)};
2017       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
2018       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
2019         semantics::Scope &scope{context_.FindScope(name->source)};
2020         const semantics::DeclTypeSpec &type{
2021             semantics::FindOrInstantiateDerivedType(scope,
2022                 semantics::DerivedTypeSpec{
2023                     name->source, derivedType.GetUltimate()},
2024                 context_)};
2025         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
2026         *structureConstructor =
2027             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
2028         return Analyze(structureConstructor->value());
2029       }
2030     }
2031   }
2032   return std::nullopt;
2033 }
2034 
2035 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
2036   const parser::Call &call{callStmt.v};
2037   auto restorer{GetContextualMessages().SetLocation(call.source)};
2038   ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */};
2039   const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
2040   for (const auto &arg : actualArgList) {
2041     analyzer.Analyze(arg, true /* is subroutine call */);
2042   }
2043   if (!analyzer.fatalErrors()) {
2044     if (std::optional<CalleeAndArguments> callee{
2045             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2046                 analyzer.GetActuals(), true /* subroutine */)}) {
2047       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
2048       CHECK(proc);
2049       if (CheckCall(call.source, *proc, callee->arguments)) {
2050         bool hasAlternateReturns{
2051             callee->arguments.size() < actualArgList.size()};
2052         callStmt.typedCall.Reset(
2053             new ProcedureRef{std::move(*proc), std::move(callee->arguments),
2054                 hasAlternateReturns},
2055             ProcedureRef::Deleter);
2056       }
2057     }
2058   }
2059 }
2060 
2061 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
2062   if (!x.typedAssignment) {
2063     ArgumentAnalyzer analyzer{*this};
2064     analyzer.Analyze(std::get<parser::Variable>(x.t));
2065     analyzer.Analyze(std::get<parser::Expr>(x.t));
2066     if (analyzer.fatalErrors()) {
2067       x.typedAssignment.Reset(
2068           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2069     } else {
2070       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
2071       Assignment assignment{
2072           Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))};
2073       if (procRef) {
2074         assignment.u = std::move(*procRef);
2075       }
2076       x.typedAssignment.Reset(
2077           new GenericAssignmentWrapper{std::move(assignment)},
2078           GenericAssignmentWrapper::Deleter);
2079     }
2080   }
2081   return common::GetPtrFromOptional(x.typedAssignment->v);
2082 }
2083 
2084 const Assignment *ExpressionAnalyzer::Analyze(
2085     const parser::PointerAssignmentStmt &x) {
2086   if (!x.typedAssignment) {
2087     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2088     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2089     if (!lhs || !rhs) {
2090       x.typedAssignment.Reset(
2091           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2092     } else {
2093       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2094       std::visit(common::visitors{
2095                      [&](const std::list<parser::BoundsRemapping> &list) {
2096                        Assignment::BoundsRemapping bounds;
2097                        for (const auto &elem : list) {
2098                          auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2099                          auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2100                          if (lower && upper) {
2101                            bounds.emplace_back(Fold(std::move(*lower)),
2102                                Fold(std::move(*upper)));
2103                          }
2104                        }
2105                        assignment.u = std::move(bounds);
2106                      },
2107                      [&](const std::list<parser::BoundsSpec> &list) {
2108                        Assignment::BoundsSpec bounds;
2109                        for (const auto &bound : list) {
2110                          if (auto lower{AsSubscript(Analyze(bound.v))}) {
2111                            bounds.emplace_back(Fold(std::move(*lower)));
2112                          }
2113                        }
2114                        assignment.u = std::move(bounds);
2115                      },
2116                  },
2117           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2118       x.typedAssignment.Reset(
2119           new GenericAssignmentWrapper{std::move(assignment)},
2120           GenericAssignmentWrapper::Deleter);
2121     }
2122   }
2123   return common::GetPtrFromOptional(x.typedAssignment->v);
2124 }
2125 
2126 static bool IsExternalCalledImplicitly(
2127     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2128   if (const auto *symbol{proc.GetSymbol()}) {
2129     return symbol->has<semantics::SubprogramDetails>() &&
2130         symbol->owner().IsGlobal() &&
2131         (!symbol->scope() /*ENTRY*/ ||
2132             !symbol->scope()->sourceRange().Contains(callSite));
2133   } else {
2134     return false;
2135   }
2136 }
2137 
2138 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2139     parser::CharBlock callSite, const ProcedureDesignator &proc,
2140     ActualArguments &arguments) {
2141   auto chars{
2142       characteristics::Procedure::Characterize(proc, context_.intrinsics())};
2143   if (chars) {
2144     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2145     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2146       Say(callSite,
2147           "References to the procedure '%s' require an explicit interface"_en_US,
2148           DEREF(proc.GetSymbol()).name());
2149     }
2150     semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2151         context_.FindScope(callSite), treatExternalAsImplicit);
2152     const Symbol *procSymbol{proc.GetSymbol()};
2153     if (procSymbol && !IsPureProcedure(*procSymbol)) {
2154       if (const semantics::Scope *
2155           pure{semantics::FindPureProcedureContaining(
2156               context_.FindScope(callSite))}) {
2157         Say(callSite,
2158             "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2159             procSymbol->name(), DEREF(pure->symbol()).name());
2160       }
2161     }
2162   }
2163   return chars;
2164 }
2165 
2166 // Unary operations
2167 
2168 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2169   if (MaybeExpr operand{Analyze(x.v.value())}) {
2170     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2171       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2172         if (semantics::IsProcedurePointer(*result)) {
2173           Say("A function reference that returns a procedure "
2174               "pointer may not be parenthesized"_err_en_US); // C1003
2175         }
2176       }
2177     }
2178     return Parenthesize(std::move(*operand));
2179   }
2180   return std::nullopt;
2181 }
2182 
2183 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2184     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2185   ArgumentAnalyzer analyzer{context};
2186   analyzer.Analyze(x.v);
2187   if (analyzer.fatalErrors()) {
2188     return std::nullopt;
2189   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2190     if (opr == NumericOperator::Add) {
2191       return analyzer.MoveExpr(0);
2192     } else {
2193       return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2194     }
2195   } else {
2196     return analyzer.TryDefinedOp(AsFortran(opr),
2197         "Operand of unary %s must be numeric; have %s"_err_en_US);
2198   }
2199 }
2200 
2201 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2202   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2203 }
2204 
2205 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2206   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2207 }
2208 
2209 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2210   ArgumentAnalyzer analyzer{*this};
2211   analyzer.Analyze(x.v);
2212   if (analyzer.fatalErrors()) {
2213     return std::nullopt;
2214   } else if (analyzer.IsIntrinsicLogical()) {
2215     return AsGenericExpr(
2216         LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2217   } else {
2218     return analyzer.TryDefinedOp(LogicalOperator::Not,
2219         "Operand of %s must be LOGICAL; have %s"_err_en_US);
2220   }
2221 }
2222 
2223 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2224   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2225   // intrinsic function.
2226   // Use the actual source for the name of the call for error reporting.
2227   std::optional<ActualArgument> arg;
2228   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2229     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2230   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2231     arg = ActualArgument{std::move(*argExpr)};
2232   } else {
2233     return std::nullopt;
2234   }
2235   parser::CharBlock at{GetContextualMessages().at()};
2236   CHECK(at.size() >= 4);
2237   parser::CharBlock loc{at.begin() + 1, 3};
2238   CHECK(loc == "loc");
2239   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2240 }
2241 
2242 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2243   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2244   ArgumentAnalyzer analyzer{*this, name.source};
2245   analyzer.Analyze(std::get<1>(x.t));
2246   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2247       "No operator %s defined for %s"_err_en_US, true);
2248 }
2249 
2250 // Binary (dyadic) operations
2251 
2252 template <template <typename> class OPR>
2253 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2254     const parser::Expr::IntrinsicBinary &x) {
2255   ArgumentAnalyzer analyzer{context};
2256   analyzer.Analyze(std::get<0>(x.t));
2257   analyzer.Analyze(std::get<1>(x.t));
2258   if (analyzer.fatalErrors()) {
2259     return std::nullopt;
2260   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2261     return NumericOperation<OPR>(context.GetContextualMessages(),
2262         analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2263         context.GetDefaultKind(TypeCategory::Real));
2264   } else {
2265     return analyzer.TryDefinedOp(AsFortran(opr),
2266         "Operands of %s must be numeric; have %s and %s"_err_en_US);
2267   }
2268 }
2269 
2270 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2271   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2272 }
2273 
2274 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2275   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2276 }
2277 
2278 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2279   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2280 }
2281 
2282 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2283   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2284 }
2285 
2286 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2287   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2288 }
2289 
2290 MaybeExpr ExpressionAnalyzer::Analyze(
2291     const parser::Expr::ComplexConstructor &x) {
2292   auto re{Analyze(std::get<0>(x.t).value())};
2293   auto im{Analyze(std::get<1>(x.t).value())};
2294   if (re && im) {
2295     ConformabilityCheck(GetContextualMessages(), *re, *im);
2296   }
2297   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2298       std::move(im), GetDefaultKind(TypeCategory::Real)));
2299 }
2300 
2301 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2302   ArgumentAnalyzer analyzer{*this};
2303   analyzer.Analyze(std::get<0>(x.t));
2304   analyzer.Analyze(std::get<1>(x.t));
2305   if (analyzer.fatalErrors()) {
2306     return std::nullopt;
2307   } else if (analyzer.IsIntrinsicConcat()) {
2308     return std::visit(
2309         [&](auto &&x, auto &&y) -> MaybeExpr {
2310           using T = ResultType<decltype(x)>;
2311           if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2312             return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2313           } else {
2314             DIE("different types for intrinsic concat");
2315           }
2316         },
2317         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2318         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2319   } else {
2320     return analyzer.TryDefinedOp("//",
2321         "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2322   }
2323 }
2324 
2325 // The Name represents a user-defined intrinsic operator.
2326 // If the actuals match one of the specific procedures, return a function ref.
2327 // Otherwise report the error in messages.
2328 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2329     const parser::Name &name, ActualArguments &&actuals) {
2330   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2331     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2332     return MakeFunctionRef(name.source,
2333         std::move(std::get<ProcedureDesignator>(callee->u)),
2334         std::move(callee->arguments));
2335   } else {
2336     return std::nullopt;
2337   }
2338 }
2339 
2340 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2341     const parser::Expr::IntrinsicBinary &x) {
2342   ArgumentAnalyzer analyzer{context};
2343   analyzer.Analyze(std::get<0>(x.t));
2344   analyzer.Analyze(std::get<1>(x.t));
2345   if (analyzer.fatalErrors()) {
2346     return std::nullopt;
2347   } else {
2348     analyzer.ConvertBOZ(0, analyzer.GetType(1));
2349     analyzer.ConvertBOZ(1, analyzer.GetType(0));
2350     if (analyzer.IsIntrinsicRelational(opr)) {
2351       return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2352           analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2353     } else {
2354       return analyzer.TryDefinedOp(opr,
2355           "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2356     }
2357   }
2358 }
2359 
2360 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2361   return RelationHelper(*this, RelationalOperator::LT, x);
2362 }
2363 
2364 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2365   return RelationHelper(*this, RelationalOperator::LE, x);
2366 }
2367 
2368 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2369   return RelationHelper(*this, RelationalOperator::EQ, x);
2370 }
2371 
2372 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2373   return RelationHelper(*this, RelationalOperator::NE, x);
2374 }
2375 
2376 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2377   return RelationHelper(*this, RelationalOperator::GE, x);
2378 }
2379 
2380 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2381   return RelationHelper(*this, RelationalOperator::GT, x);
2382 }
2383 
2384 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2385     const parser::Expr::IntrinsicBinary &x) {
2386   ArgumentAnalyzer analyzer{context};
2387   analyzer.Analyze(std::get<0>(x.t));
2388   analyzer.Analyze(std::get<1>(x.t));
2389   if (analyzer.fatalErrors()) {
2390     return std::nullopt;
2391   } else if (analyzer.IsIntrinsicLogical()) {
2392     return AsGenericExpr(BinaryLogicalOperation(opr,
2393         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2394         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2395   } else {
2396     return analyzer.TryDefinedOp(
2397         opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2398   }
2399 }
2400 
2401 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2402   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2403 }
2404 
2405 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2406   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2407 }
2408 
2409 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2410   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2411 }
2412 
2413 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2414   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2415 }
2416 
2417 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2418   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2419   ArgumentAnalyzer analyzer{*this, name.source};
2420   analyzer.Analyze(std::get<1>(x.t));
2421   analyzer.Analyze(std::get<2>(x.t));
2422   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2423       "No operator %s defined for %s and %s"_err_en_US, true);
2424 }
2425 
2426 static void CheckFuncRefToArrayElementRefHasSubscripts(
2427     semantics::SemanticsContext &context,
2428     const parser::FunctionReference &funcRef) {
2429   // Emit message if the function reference fix will end up an array element
2430   // reference with no subscripts because it will not be possible to later tell
2431   // the difference in expressions between empty subscript list due to bad
2432   // subscripts error recovery or because the user did not put any.
2433   if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2434     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2435     const auto *name{std::get_if<parser::Name>(&proc.u)};
2436     if (!name) {
2437       name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2438     }
2439     auto &msg{context.Say(funcRef.v.source,
2440         name->symbol && name->symbol->Rank() == 0
2441             ? "'%s' is not a function"_err_en_US
2442             : "Reference to array '%s' with empty subscript list"_err_en_US,
2443         name->source)};
2444     if (name->symbol) {
2445       if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) {
2446         msg.Attach(name->source,
2447             "A result variable must be declared with RESULT to allow recursive "
2448             "function calls"_en_US);
2449       } else {
2450         AttachDeclaration(&msg, *name->symbol);
2451       }
2452     }
2453   }
2454 }
2455 
2456 // Converts, if appropriate, an original misparse of ambiguous syntax like
2457 // A(1) as a function reference into an array reference.
2458 // Misparse structure constructors are detected elsewhere after generic
2459 // function call resolution fails.
2460 template <typename... A>
2461 static void FixMisparsedFunctionReference(
2462     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2463   // The parse tree is updated in situ when resolving an ambiguous parse.
2464   using uType = std::decay_t<decltype(constU)>;
2465   auto &u{const_cast<uType &>(constU)};
2466   if (auto *func{
2467           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2468     parser::FunctionReference &funcRef{func->value()};
2469     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2470     if (Symbol *
2471         origSymbol{
2472             std::visit(common::visitors{
2473                            [&](parser::Name &name) { return name.symbol; },
2474                            [&](parser::ProcComponentRef &pcr) {
2475                              return pcr.v.thing.component.symbol;
2476                            },
2477                        },
2478                 proc.u)}) {
2479       Symbol &symbol{origSymbol->GetUltimate()};
2480       if (symbol.has<semantics::ObjectEntityDetails>() ||
2481           symbol.has<semantics::AssocEntityDetails>()) {
2482         // Note that expression in AssocEntityDetails cannot be a procedure
2483         // pointer as per C1105 so this cannot be a function reference.
2484         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2485                           uType>) {
2486           CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef);
2487           u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2488         } else {
2489           DIE("can't fix misparsed function as array reference");
2490         }
2491       }
2492     }
2493   }
2494 }
2495 
2496 // Common handling of parse tree node types that retain the
2497 // representation of the analyzed expression.
2498 template <typename PARSED>
2499 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) {
2500   if (x.typedExpr) {
2501     return x.typedExpr->v;
2502   }
2503   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2504       std::is_same_v<PARSED, parser::Variable>) {
2505     FixMisparsedFunctionReference(context_, x.u);
2506   }
2507   if (AssumedTypeDummy(x)) { // C710
2508     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2509   } else if (MaybeExpr result{evaluate::Fold(foldingContext_, Analyze(x.u))}) {
2510     SetExpr(x, std::move(*result));
2511     return x.typedExpr->v;
2512   }
2513   ResetExpr(x);
2514   if (!context_.AnyFatalError()) {
2515     std::string buf;
2516     llvm::raw_string_ostream dump{buf};
2517     parser::DumpTree(dump, x);
2518     Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2519         dump.str());
2520   }
2521   fatalErrors_ = true;
2522   return std::nullopt;
2523 }
2524 
2525 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2526   auto restorer{GetContextualMessages().SetLocation(expr.source)};
2527   return ExprOrVariable(expr);
2528 }
2529 
2530 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2531   auto restorer{GetContextualMessages().SetLocation(variable.GetSource())};
2532   return ExprOrVariable(variable);
2533 }
2534 
2535 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
2536   auto restorer{GetContextualMessages().SetLocation(x.source)};
2537   return ExprOrVariable(x);
2538 }
2539 
2540 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
2541     TypeCategory category,
2542     const std::optional<parser::KindSelector> &selector) {
2543   int defaultKind{GetDefaultKind(category)};
2544   if (!selector) {
2545     return Expr<SubscriptInteger>{defaultKind};
2546   }
2547   return std::visit(
2548       common::visitors{
2549           [&](const parser::ScalarIntConstantExpr &x) {
2550             if (MaybeExpr kind{Analyze(x)}) {
2551               Expr<SomeType> folded{Fold(std::move(*kind))};
2552               if (std::optional<std::int64_t> code{ToInt64(folded)}) {
2553                 if (CheckIntrinsicKind(category, *code)) {
2554                   return Expr<SubscriptInteger>{*code};
2555                 }
2556               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) {
2557                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
2558               }
2559             }
2560             return Expr<SubscriptInteger>{defaultKind};
2561           },
2562           [&](const parser::KindSelector::StarSize &x) {
2563             std::intmax_t size = x.v;
2564             if (!CheckIntrinsicSize(category, size)) {
2565               size = defaultKind;
2566             } else if (category == TypeCategory::Complex) {
2567               size /= 2;
2568             }
2569             return Expr<SubscriptInteger>{size};
2570           },
2571       },
2572       selector->u);
2573 }
2574 
2575 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
2576   return context_.GetDefaultKind(category);
2577 }
2578 
2579 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
2580     common::TypeCategory category) {
2581   return {category, GetDefaultKind(category)};
2582 }
2583 
2584 bool ExpressionAnalyzer::CheckIntrinsicKind(
2585     TypeCategory category, std::int64_t kind) {
2586   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
2587     return true;
2588   } else {
2589     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
2590         ToUpperCase(EnumToString(category)), kind);
2591     return false;
2592   }
2593 }
2594 
2595 bool ExpressionAnalyzer::CheckIntrinsicSize(
2596     TypeCategory category, std::int64_t size) {
2597   if (category == TypeCategory::Complex) {
2598     // COMPLEX*16 == COMPLEX(KIND=8)
2599     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
2600       return true;
2601     }
2602   } else if (IsValidKindOfIntrinsicType(category, size)) {
2603     return true;
2604   }
2605   Say("%s*%jd is not a supported type"_err_en_US,
2606       ToUpperCase(EnumToString(category)), size);
2607   return false;
2608 }
2609 
2610 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
2611   return impliedDos_.insert(std::make_pair(name, kind)).second;
2612 }
2613 
2614 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
2615   auto iter{impliedDos_.find(name)};
2616   if (iter != impliedDos_.end()) {
2617     impliedDos_.erase(iter);
2618   }
2619 }
2620 
2621 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
2622     parser::CharBlock name) const {
2623   auto iter{impliedDos_.find(name)};
2624   if (iter != impliedDos_.cend()) {
2625     return {iter->second};
2626   } else {
2627     return std::nullopt;
2628   }
2629 }
2630 
2631 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
2632     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
2633   if (result) {
2634     if (auto type{result->GetType()}) {
2635       if (type->category() != category) { // C885
2636         Say(at, "Must have %s type, but is %s"_err_en_US,
2637             ToUpperCase(EnumToString(category)),
2638             ToUpperCase(type->AsFortran()));
2639         return false;
2640       } else if (defaultKind) {
2641         int kind{context_.GetDefaultKind(category)};
2642         if (type->kind() != kind) {
2643           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
2644               kind, ToUpperCase(EnumToString(category)),
2645               ToUpperCase(type->AsFortran()));
2646           return false;
2647         }
2648       }
2649     } else {
2650       Say(at, "Must have %s type, but is typeless"_err_en_US,
2651           ToUpperCase(EnumToString(category)));
2652       return false;
2653     }
2654   }
2655   return true;
2656 }
2657 
2658 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
2659     ProcedureDesignator &&proc, ActualArguments &&arguments) {
2660   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
2661     if (intrinsic->name == "null" && arguments.empty()) {
2662       return Expr<SomeType>{NullPointer{}};
2663     }
2664   }
2665   if (const Symbol * symbol{proc.GetSymbol()}) {
2666     if (!ResolveForward(*symbol)) {
2667       return std::nullopt;
2668     }
2669   }
2670   if (auto chars{CheckCall(callSite, proc, arguments)}) {
2671     if (chars->functionResult) {
2672       const auto &result{*chars->functionResult};
2673       if (result.IsProcedurePointer()) {
2674         return Expr<SomeType>{
2675             ProcedureRef{std::move(proc), std::move(arguments)}};
2676       } else {
2677         // Not a procedure pointer, so type and shape are known.
2678         return TypedWrapper<FunctionRef, ProcedureRef>(
2679             DEREF(result.GetTypeAndShape()).type(),
2680             ProcedureRef{std::move(proc), std::move(arguments)});
2681       }
2682     }
2683   }
2684   return std::nullopt;
2685 }
2686 
2687 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
2688     parser::CharBlock intrinsic, ActualArguments &&arguments) {
2689   if (std::optional<SpecificCall> specificCall{
2690           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
2691               arguments, context_.foldingContext())}) {
2692     return MakeFunctionRef(intrinsic,
2693         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2694         std::move(specificCall->arguments));
2695   } else {
2696     return std::nullopt;
2697   }
2698 }
2699 
2700 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
2701   source_.ExtendToCover(x.GetSource());
2702   if (MaybeExpr expr{context_.Analyze(x)}) {
2703     if (!IsConstantExpr(*expr)) {
2704       actuals_.emplace_back(std::move(*expr));
2705       return;
2706     }
2707     const Symbol *symbol{GetFirstSymbol(*expr)};
2708     context_.Say(x.GetSource(),
2709         "Assignment to constant '%s' is not allowed"_err_en_US,
2710         symbol ? symbol->name() : x.GetSource());
2711   }
2712   fatalErrors_ = true;
2713 }
2714 
2715 void ArgumentAnalyzer::Analyze(
2716     const parser::ActualArgSpec &arg, bool isSubroutine) {
2717   // TODO: C1002: Allow a whole assumed-size array to appear if the dummy
2718   // argument would accept it.  Handle by special-casing the context
2719   // ActualArg -> Variable -> Designator.
2720   // TODO: Actual arguments that are procedures and procedure pointers need to
2721   // be detected and represented (they're not expressions).
2722   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
2723   std::optional<ActualArgument> actual;
2724   bool isAltReturn{false};
2725   std::visit(common::visitors{
2726                  [&](const common::Indirection<parser::Expr> &x) {
2727                    // TODO: Distinguish & handle procedure name and
2728                    // proc-component-ref
2729                    actual = AnalyzeExpr(x.value());
2730                  },
2731                  [&](const parser::AltReturnSpec &) {
2732                    if (!isSubroutine) {
2733                      context_.Say(
2734                          "alternate return specification may not appear on"
2735                          " function reference"_err_en_US);
2736                    }
2737                    isAltReturn = true;
2738                  },
2739                  [&](const parser::ActualArg::PercentRef &) {
2740                    context_.Say("TODO: %REF() argument"_err_en_US);
2741                  },
2742                  [&](const parser::ActualArg::PercentVal &) {
2743                    context_.Say("TODO: %VAL() argument"_err_en_US);
2744                  },
2745              },
2746       std::get<parser::ActualArg>(arg.t).u);
2747   if (actual) {
2748     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
2749       actual->set_keyword(argKW->v.source);
2750     }
2751     actuals_.emplace_back(std::move(*actual));
2752   } else if (!isAltReturn) {
2753     fatalErrors_ = true;
2754   }
2755 }
2756 
2757 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const {
2758   CHECK(actuals_.size() == 2);
2759   return semantics::IsIntrinsicRelational(
2760       opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2761 }
2762 
2763 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
2764   std::optional<DynamicType> type0{GetType(0)};
2765   if (actuals_.size() == 1) {
2766     if (IsBOZLiteral(0)) {
2767       return opr == NumericOperator::Add;
2768     } else {
2769       return type0 && semantics::IsIntrinsicNumeric(*type0);
2770     }
2771   } else {
2772     std::optional<DynamicType> type1{GetType(1)};
2773     if (IsBOZLiteral(0) && type1) {
2774       auto cat1{type1->category()};
2775       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
2776     } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ
2777       auto cat0{type0->category()};
2778       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
2779     } else {
2780       return type0 && type1 &&
2781           semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1));
2782     }
2783   }
2784 }
2785 
2786 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
2787   if (actuals_.size() == 1) {
2788     return semantics::IsIntrinsicLogical(*GetType(0));
2789     return GetType(0)->category() == TypeCategory::Logical;
2790   } else {
2791     return semantics::IsIntrinsicLogical(
2792         *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2793   }
2794 }
2795 
2796 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
2797   return semantics::IsIntrinsicConcat(
2798       *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2799 }
2800 
2801 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
2802     const char *opr, parser::MessageFixedText &&error, bool isUserOp) {
2803   if (AnyUntypedOperand()) {
2804     context_.Say(
2805         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
2806     return std::nullopt;
2807   }
2808   {
2809     auto restorer{context_.GetContextualMessages().DiscardMessages()};
2810     std::string oprNameString{
2811         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
2812     parser::CharBlock oprName{oprNameString};
2813     const auto &scope{context_.context().FindScope(source_)};
2814     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
2815       parser::Name name{symbol->name(), symbol};
2816       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
2817         return result;
2818       }
2819       sawDefinedOp_ = symbol;
2820     }
2821     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
2822       if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) {
2823         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
2824           return result;
2825         }
2826       }
2827     }
2828   }
2829   if (sawDefinedOp_) {
2830     SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString()));
2831   } else if (actuals_.size() == 1 || AreConformable()) {
2832     context_.Say(
2833         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
2834   } else {
2835     context_.Say(
2836         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
2837         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
2838   }
2839   return std::nullopt;
2840 }
2841 
2842 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
2843     std::vector<const char *> oprs, parser::MessageFixedText &&error) {
2844   for (std::size_t i{1}; i < oprs.size(); ++i) {
2845     auto restorer{context_.GetContextualMessages().DiscardMessages()};
2846     if (auto result{TryDefinedOp(oprs[i], std::move(error))}) {
2847       return result;
2848     }
2849   }
2850   return TryDefinedOp(oprs[0], std::move(error));
2851 }
2852 
2853 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
2854   ActualArguments localActuals{actuals_};
2855   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
2856   if (!proc) {
2857     proc = &symbol;
2858     localActuals.at(passIndex).value().set_isPassedObject();
2859   }
2860   return context_.MakeFunctionRef(
2861       source_, ProcedureDesignator{*proc}, std::move(localActuals));
2862 }
2863 
2864 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
2865   using semantics::Tristate;
2866   const Expr<SomeType> &lhs{GetExpr(0)};
2867   const Expr<SomeType> &rhs{GetExpr(1)};
2868   std::optional<DynamicType> lhsType{lhs.GetType()};
2869   std::optional<DynamicType> rhsType{rhs.GetType()};
2870   int lhsRank{lhs.Rank()};
2871   int rhsRank{rhs.Rank()};
2872   Tristate isDefined{
2873       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
2874   if (isDefined == Tristate::No) {
2875     if (lhsType && rhsType) {
2876       AddAssignmentConversion(*lhsType, *rhsType);
2877     }
2878     return std::nullopt; // user-defined assignment not allowed for these args
2879   }
2880   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
2881   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
2882     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
2883     return std::move(*procRef);
2884   }
2885   if (isDefined == Tristate::Yes) {
2886     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
2887         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
2888       SayNoMatch("ASSIGNMENT(=)", true);
2889     }
2890   }
2891   return std::nullopt;
2892 }
2893 
2894 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
2895     TypeCategory lhs, TypeCategory rhs) {
2896   if (!context_.context().languageFeatures().IsEnabled(
2897           common::LanguageFeature::LogicalIntegerAssignment)) {
2898     return false;
2899   }
2900   std::optional<parser::MessageFixedText> msg;
2901   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
2902     // allow assignment to LOGICAL from INTEGER as a legacy extension
2903     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US;
2904   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
2905     // ... and assignment to LOGICAL from INTEGER
2906     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US;
2907   } else {
2908     return false;
2909   }
2910   if (context_.context().languageFeatures().ShouldWarn(
2911           common::LanguageFeature::LogicalIntegerAssignment)) {
2912     context_.Say(std::move(*msg));
2913   }
2914   return true;
2915 }
2916 
2917 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
2918   auto restorer{context_.GetContextualMessages().DiscardMessages()};
2919   std::string oprNameString{"assignment(=)"};
2920   parser::CharBlock oprName{oprNameString};
2921   const Symbol *proc{nullptr};
2922   const auto &scope{context_.context().FindScope(source_)};
2923   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
2924     ExpressionAnalyzer::AdjustActuals noAdjustment;
2925     if (const Symbol *
2926         specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) {
2927       proc = specific;
2928     } else {
2929       context_.EmitGenericResolutionError(*symbol);
2930     }
2931   }
2932   for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
2933     if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) {
2934       proc = specific;
2935     }
2936   }
2937   if (proc) {
2938     ActualArguments actualsCopy{actuals_};
2939     actualsCopy[1]->Parenthesize();
2940     return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
2941   } else {
2942     return std::nullopt;
2943   }
2944 }
2945 
2946 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
2947   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
2948      << '\n';
2949   for (const auto &actual : actuals_) {
2950     if (!actual.has_value()) {
2951       os << "- error\n";
2952     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
2953       os << "- assumed type: " << symbol->name().ToString() << '\n';
2954     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
2955       expr->AsFortran(os << "- expr: ") << '\n';
2956     } else {
2957       DIE("bad ActualArgument");
2958     }
2959   }
2960 }
2961 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
2962     const parser::Expr &expr) {
2963   source_.ExtendToCover(expr.source);
2964   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
2965     expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
2966     if (allowAssumedType_) {
2967       return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2968     } else {
2969       context_.SayAt(expr.source,
2970           "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2971       return std::nullopt;
2972     }
2973   } else if (MaybeExpr argExpr{context_.Analyze(expr)}) {
2974     return ActualArgument{context_.Fold(std::move(*argExpr))};
2975   } else {
2976     return std::nullopt;
2977   }
2978 }
2979 
2980 bool ArgumentAnalyzer::AreConformable() const {
2981   CHECK(!fatalErrors_ && actuals_.size() == 2);
2982   return evaluate::AreConformable(*actuals_[0], *actuals_[1]);
2983 }
2984 
2985 // Look for a type-bound operator in the type of arg number passIndex.
2986 const Symbol *ArgumentAnalyzer::FindBoundOp(
2987     parser::CharBlock oprName, int passIndex) {
2988   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
2989   if (!type || !type->scope()) {
2990     return nullptr;
2991   }
2992   const Symbol *symbol{type->scope()->FindComponent(oprName)};
2993   if (!symbol) {
2994     return nullptr;
2995   }
2996   sawDefinedOp_ = symbol;
2997   ExpressionAnalyzer::AdjustActuals adjustment{
2998       [&](const Symbol &proc, ActualArguments &) {
2999         return passIndex == GetPassIndex(proc);
3000       }};
3001   const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
3002   if (!result) {
3003     context_.EmitGenericResolutionError(*symbol);
3004   }
3005   return result;
3006 }
3007 
3008 // If there is an implicit conversion between intrinsic types, make it explicit
3009 void ArgumentAnalyzer::AddAssignmentConversion(
3010     const DynamicType &lhsType, const DynamicType &rhsType) {
3011   if (lhsType.category() == rhsType.category() &&
3012       lhsType.kind() == rhsType.kind()) {
3013     // no conversion necessary
3014   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
3015     actuals_[1] = ActualArgument{*rhsExpr};
3016   } else {
3017     actuals_[1] = std::nullopt;
3018   }
3019 }
3020 
3021 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
3022   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
3023 }
3024 int ArgumentAnalyzer::GetRank(std::size_t i) const {
3025   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
3026 }
3027 
3028 // If the argument at index i is a BOZ literal, convert its type to match the
3029 // otherType.  It it's REAL convert to REAL, otherwise convert to INTEGER.
3030 // Note that IBM supports comparing BOZ literals to CHARACTER operands.  That
3031 // is not currently supported.
3032 void ArgumentAnalyzer::ConvertBOZ(
3033     std::size_t i, std::optional<DynamicType> otherType) {
3034   if (IsBOZLiteral(i)) {
3035     Expr<SomeType> &&argExpr{MoveExpr(i)};
3036     auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
3037     if (otherType && otherType->category() == TypeCategory::Real) {
3038       MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>(
3039           context_.context().GetDefaultKind(TypeCategory::Real),
3040           std::move(*boz))};
3041       actuals_[i] = std::move(*realExpr);
3042     } else {
3043       MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>(
3044           context_.context().GetDefaultKind(TypeCategory::Integer),
3045           std::move(*boz))};
3046       actuals_[i] = std::move(*intExpr);
3047     }
3048   }
3049 }
3050 
3051 // Report error resolving opr when there is a user-defined one available
3052 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
3053   std::string type0{TypeAsFortran(0)};
3054   auto rank0{actuals_[0]->Rank()};
3055   if (actuals_.size() == 1) {
3056     if (rank0 > 0) {
3057       context_.Say("No intrinsic or user-defined %s matches "
3058                    "rank %d array of %s"_err_en_US,
3059           opr, rank0, type0);
3060     } else {
3061       context_.Say("No intrinsic or user-defined %s matches "
3062                    "operand type %s"_err_en_US,
3063           opr, type0);
3064     }
3065   } else {
3066     std::string type1{TypeAsFortran(1)};
3067     auto rank1{actuals_[1]->Rank()};
3068     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
3069       context_.Say("No intrinsic or user-defined %s matches "
3070                    "rank %d array of %s and rank %d array of %s"_err_en_US,
3071           opr, rank0, type0, rank1, type1);
3072     } else if (isAssignment && rank0 != rank1) {
3073       if (rank0 == 0) {
3074         context_.Say("No intrinsic or user-defined %s matches "
3075                      "scalar %s and rank %d array of %s"_err_en_US,
3076             opr, type0, rank1, type1);
3077       } else {
3078         context_.Say("No intrinsic or user-defined %s matches "
3079                      "rank %d array of %s and scalar %s"_err_en_US,
3080             opr, rank0, type0, type1);
3081       }
3082     } else {
3083       context_.Say("No intrinsic or user-defined %s matches "
3084                    "operand types %s and %s"_err_en_US,
3085           opr, type0, type1);
3086     }
3087   }
3088 }
3089 
3090 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
3091   if (std::optional<DynamicType> type{GetType(i)}) {
3092     return type->category() == TypeCategory::Derived
3093         ? "TYPE("s + type->AsFortran() + ')'
3094         : type->category() == TypeCategory::Character
3095         ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
3096         : ToUpperCase(type->AsFortran());
3097   } else {
3098     return "untyped";
3099   }
3100 }
3101 
3102 bool ArgumentAnalyzer::AnyUntypedOperand() {
3103   for (const auto &actual : actuals_) {
3104     if (!actual.value().GetType()) {
3105       return true;
3106     }
3107   }
3108   return false;
3109 }
3110 
3111 } // namespace Fortran::evaluate
3112 
3113 namespace Fortran::semantics {
3114 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
3115     SemanticsContext &context, common::TypeCategory category,
3116     const std::optional<parser::KindSelector> &selector) {
3117   evaluate::ExpressionAnalyzer analyzer{context};
3118   auto restorer{
3119       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3120   return analyzer.AnalyzeKindSelector(category, selector);
3121 }
3122 
3123 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) {
3124   evaluate::ExpressionAnalyzer{context}.Analyze(call);
3125 }
3126 
3127 const evaluate::Assignment *AnalyzeAssignmentStmt(
3128     SemanticsContext &context, const parser::AssignmentStmt &stmt) {
3129   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3130 }
3131 const evaluate::Assignment *AnalyzePointerAssignmentStmt(
3132     SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) {
3133   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3134 }
3135 
3136 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3137 
3138 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
3139   parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
3140   const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
3141   auto name{bounds.name.thing.thing};
3142   int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
3143   if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
3144     if (dynamicType->category() == TypeCategory::Integer) {
3145       kind = dynamicType->kind();
3146     }
3147   }
3148   exprAnalyzer_.AddImpliedDo(name.source, kind);
3149   parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
3150   exprAnalyzer_.RemoveImpliedDo(name.source);
3151   return false;
3152 }
3153 
3154 bool ExprChecker::Walk(const parser::Program &program) {
3155   parser::Walk(program, *this);
3156   return !context_.AnyFatalError();
3157 }
3158 } // namespace Fortran::semantics
3159