1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } else { 59 return GetCharLength(); 60 } 61 } 62 63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 64 const std::optional<parser::TypeSpec> &spec) { 65 if (spec) { 66 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 67 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 68 // (viz., an intrinsic type with valid known kind or a non-polymorphic 69 // & non-ABSTRACT derived type). 70 if (const semantics::IntrinsicTypeSpec * 71 intrinsic{typeSpec->AsIntrinsic()}) { 72 TypeCategory category{intrinsic->category()}; 73 if (auto optKind{ToInt64(intrinsic->kind())}) { 74 int kind{static_cast<int>(*optKind)}; 75 if (category == TypeCategory::Character) { 76 const semantics::CharacterTypeSpec &cts{ 77 typeSpec->characterTypeSpec()}; 78 const semantics::ParamValue &len{cts.length()}; 79 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 80 // type guards, but not in array constructors. 81 return DynamicTypeWithLength{DynamicType{kind, len}}; 82 } else { 83 return DynamicTypeWithLength{DynamicType{category, kind}}; 84 } 85 } 86 } else if (const semantics::DerivedTypeSpec * 87 derived{typeSpec->AsDerived()}) { 88 return DynamicTypeWithLength{DynamicType{*derived}}; 89 } 90 } 91 } 92 return std::nullopt; 93 } 94 95 // Utilities to set a source location, if we have one, on an actual argument, 96 // when it is statically present. 97 static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) { 98 x.set_sourceLocation(at); 99 } 100 static void SetArgSourceLocation( 101 std::optional<ActualArgument> &x, parser::CharBlock at) { 102 if (x) { 103 x->set_sourceLocation(at); 104 } 105 } 106 static void SetArgSourceLocation( 107 std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) { 108 if (x && at) { 109 x->set_sourceLocation(*at); 110 } 111 } 112 113 class ArgumentAnalyzer { 114 public: 115 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 116 : context_{context}, source_{context.GetContextualMessages().at()}, 117 isProcedureCall_{false} {} 118 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 119 bool isProcedureCall = false) 120 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 121 bool fatalErrors() const { return fatalErrors_; } 122 ActualArguments &&GetActuals() { 123 CHECK(!fatalErrors_); 124 return std::move(actuals_); 125 } 126 const Expr<SomeType> &GetExpr(std::size_t i) const { 127 return DEREF(actuals_.at(i).value().UnwrapExpr()); 128 } 129 Expr<SomeType> &&MoveExpr(std::size_t i) { 130 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 131 } 132 void Analyze(const common::Indirection<parser::Expr> &x) { 133 Analyze(x.value()); 134 } 135 void Analyze(const parser::Expr &x) { 136 actuals_.emplace_back(AnalyzeExpr(x)); 137 SetArgSourceLocation(actuals_.back(), x.source); 138 fatalErrors_ |= !actuals_.back(); 139 } 140 void Analyze(const parser::Variable &); 141 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 142 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 143 std::optional<DynamicType> otherType); 144 145 bool IsIntrinsicRelational( 146 RelationalOperator, const DynamicType &, const DynamicType &) const; 147 bool IsIntrinsicLogical() const; 148 bool IsIntrinsicNumeric(NumericOperator) const; 149 bool IsIntrinsicConcat() const; 150 151 bool CheckConformance(); 152 bool CheckForNullPointer(const char *where = "as an operand here"); 153 154 // Find and return a user-defined operator or report an error. 155 // The provided message is used if there is no such operator. 156 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 157 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 158 template <typename E> 159 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 160 return TryDefinedOp( 161 context_.context().languageFeatures().GetNames(opr), msg); 162 } 163 // Find and return a user-defined assignment 164 std::optional<ProcedureRef> TryDefinedAssignment(); 165 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 166 std::optional<DynamicType> GetType(std::size_t) const; 167 void Dump(llvm::raw_ostream &); 168 169 private: 170 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 171 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 172 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 173 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 174 bool AreConformable() const; 175 const Symbol *FindBoundOp( 176 parser::CharBlock, int passIndex, const Symbol *&definedOp); 177 void AddAssignmentConversion( 178 const DynamicType &lhsType, const DynamicType &rhsType); 179 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 180 int GetRank(std::size_t) const; 181 bool IsBOZLiteral(std::size_t i) const { 182 return evaluate::IsBOZLiteral(GetExpr(i)); 183 } 184 void SayNoMatch(const std::string &, bool isAssignment = false); 185 std::string TypeAsFortran(std::size_t); 186 bool AnyUntypedOrMissingOperand(); 187 188 ExpressionAnalyzer &context_; 189 ActualArguments actuals_; 190 parser::CharBlock source_; 191 bool fatalErrors_{false}; 192 const bool isProcedureCall_; // false for user-defined op or assignment 193 }; 194 195 // Wraps a data reference in a typed Designator<>, and a procedure 196 // or procedure pointer reference in a ProcedureDesignator. 197 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 198 const Symbol &last{ref.GetLastSymbol()}; 199 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 200 if (semantics::IsProcedure(symbol)) { 201 if (auto *component{std::get_if<Component>(&ref.u)}) { 202 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 203 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 204 DIE("unexpected alternative in DataRef"); 205 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 206 if (symbol.has<semantics::GenericDetails>()) { 207 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 208 } else { 209 return Expr<SomeType>{ProcedureDesignator{symbol}}; 210 } 211 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 212 symbol.name().ToString())}; 213 interface && !interface->isRestrictedSpecific) { 214 SpecificIntrinsic intrinsic{ 215 symbol.name().ToString(), std::move(*interface)}; 216 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 217 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 218 } else { 219 Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, 220 symbol.name()); 221 } 222 return std::nullopt; 223 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 224 return result; 225 } else { 226 if (!context_.HasError(last) && !context_.HasError(symbol)) { 227 AttachDeclaration( 228 Say("'%s' is not an object that can appear in an expression"_err_en_US, 229 last.name()), 230 symbol); 231 context_.SetError(last); 232 } 233 return std::nullopt; 234 } 235 } 236 237 // Some subscript semantic checks must be deferred until all of the 238 // subscripts are in hand. 239 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 240 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 241 int symbolRank{symbol.Rank()}; 242 int subscripts{static_cast<int>(ref.size())}; 243 if (subscripts == 0) { 244 return std::nullopt; // error recovery 245 } else if (subscripts != symbolRank) { 246 if (symbolRank != 0) { 247 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 248 symbolRank, symbol.name(), subscripts); 249 } 250 return std::nullopt; 251 } else if (Component * component{ref.base().UnwrapComponent()}) { 252 int baseRank{component->base().Rank()}; 253 if (baseRank > 0) { 254 int subscriptRank{0}; 255 for (const auto &expr : ref.subscript()) { 256 subscriptRank += expr.Rank(); 257 } 258 if (subscriptRank > 0) { // C919a 259 Say("Subscripts of component '%s' of rank-%d derived type " 260 "array have rank %d but must all be scalar"_err_en_US, 261 symbol.name(), baseRank, subscriptRank); 262 return std::nullopt; 263 } 264 } 265 } else if (const auto *object{ 266 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 267 // C928 & C1002 268 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 269 if (!last->upper() && object->IsAssumedSize()) { 270 Say("Assumed-size array '%s' must have explicit final " 271 "subscript upper bound value"_err_en_US, 272 symbol.name()); 273 return std::nullopt; 274 } 275 } 276 } else { 277 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 278 // which, if not an object, must be a construct entity from 279 // SELECT TYPE/RANK or ASSOCIATE. 280 CHECK(symbol.has<semantics::AssocEntityDetails>()); 281 } 282 return Designate(DataRef{std::move(ref)}); 283 } 284 285 // Applies subscripts to a data reference. 286 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 287 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 288 if (subscripts.empty()) { 289 return std::nullopt; // error recovery 290 } 291 return std::visit( 292 common::visitors{ 293 [&](SymbolRef &&symbol) { 294 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 295 }, 296 [&](Component &&c) { 297 return CompleteSubscripts( 298 ArrayRef{std::move(c), std::move(subscripts)}); 299 }, 300 [&](auto &&) -> MaybeExpr { 301 DIE("bad base for ArrayRef"); 302 return std::nullopt; 303 }, 304 }, 305 std::move(dataRef.u)); 306 } 307 308 // Top-level checks for data references. 309 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 310 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 311 const Symbol &symbol{component->GetLastSymbol()}; 312 int componentRank{symbol.Rank()}; 313 if (componentRank > 0) { 314 int baseRank{component->base().Rank()}; 315 if (baseRank > 0) { // C919a 316 Say("Reference to whole rank-%d component '%%%s' of " 317 "rank-%d array of derived type is not allowed"_err_en_US, 318 componentRank, symbol.name(), baseRank); 319 } 320 } 321 } 322 return Designate(std::move(dataRef)); 323 } 324 325 // Parse tree correction after a substring S(j:k) was misparsed as an 326 // array section. N.B. Fortran substrings have to have a range, not a 327 // single index. 328 static void FixMisparsedSubstring(const parser::Designator &d) { 329 auto &mutate{const_cast<parser::Designator &>(d)}; 330 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 331 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 332 &dataRef->u)}) { 333 parser::ArrayElement &arrElement{ae->value()}; 334 if (!arrElement.subscripts.empty()) { 335 auto iter{arrElement.subscripts.begin()}; 336 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 337 if (!std::get<2>(triplet->t) /* no stride */ && 338 ++iter == arrElement.subscripts.end() /* one subscript */) { 339 if (Symbol * 340 symbol{std::visit( 341 common::visitors{ 342 [](parser::Name &n) { return n.symbol; }, 343 [](common::Indirection<parser::StructureComponent> 344 &sc) { return sc.value().component.symbol; }, 345 [](auto &) -> Symbol * { return nullptr; }, 346 }, 347 arrElement.base.u)}) { 348 const Symbol &ultimate{symbol->GetUltimate()}; 349 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 350 if (!ultimate.IsObjectArray() && 351 type->category() == semantics::DeclTypeSpec::Character) { 352 // The ambiguous S(j:k) was parsed as an array section 353 // reference, but it's now clear that it's a substring. 354 // Fix the parse tree in situ. 355 mutate.u = arrElement.ConvertToSubstring(); 356 } 357 } 358 } 359 } 360 } 361 } 362 } 363 } 364 } 365 366 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 367 auto restorer{GetContextualMessages().SetLocation(d.source)}; 368 FixMisparsedSubstring(d); 369 // These checks have to be deferred to these "top level" data-refs where 370 // we can be sure that there are no following subscripts (yet). 371 // Substrings have already been run through TopLevelChecks() and 372 // won't be returned by ExtractDataRef(). 373 if (MaybeExpr result{Analyze(d.u)}) { 374 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 375 return TopLevelChecks(std::move(*dataRef)); 376 } 377 return result; 378 } 379 return std::nullopt; 380 } 381 382 // A utility subroutine to repackage optional expressions of various levels 383 // of type specificity as fully general MaybeExpr values. 384 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 385 return AsGenericExpr(std::move(x)); 386 } 387 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 388 if (x) { 389 return AsMaybeExpr(std::move(*x)); 390 } 391 return std::nullopt; 392 } 393 394 // Type kind parameter values for literal constants. 395 int ExpressionAnalyzer::AnalyzeKindParam( 396 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 397 if (!kindParam) { 398 return defaultKind; 399 } 400 return std::visit( 401 common::visitors{ 402 [](std::uint64_t k) { return static_cast<int>(k); }, 403 [&](const parser::Scalar< 404 parser::Integer<parser::Constant<parser::Name>>> &n) { 405 if (MaybeExpr ie{Analyze(n)}) { 406 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 407 int iv = *i64; 408 if (iv == *i64) { 409 return iv; 410 } 411 } 412 } 413 return defaultKind; 414 }, 415 }, 416 kindParam->u); 417 } 418 419 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 420 struct IntTypeVisitor { 421 using Result = MaybeExpr; 422 using Types = IntegerTypes; 423 template <typename T> Result Test() { 424 if (T::kind >= kind) { 425 const char *p{digits.begin()}; 426 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 427 if (!value.overflow) { 428 if (T::kind > kind) { 429 if (!isDefaultKind || 430 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 431 return std::nullopt; 432 } else if (analyzer.context().ShouldWarn( 433 LanguageFeature::BigIntLiterals)) { 434 analyzer.Say(digits, 435 "Integer literal is too large for default INTEGER(KIND=%d); " 436 "assuming INTEGER(KIND=%d)"_port_en_US, 437 kind, T::kind); 438 } 439 } 440 return Expr<SomeType>{ 441 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 442 } 443 } 444 return std::nullopt; 445 } 446 ExpressionAnalyzer &analyzer; 447 parser::CharBlock digits; 448 int kind; 449 bool isDefaultKind; 450 }; 451 452 template <typename PARSED> 453 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 454 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 455 bool isDefaultKind{!kindParam}; 456 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 457 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 458 auto digits{std::get<parser::CharBlock>(x.t)}; 459 if (MaybeExpr result{common::SearchTypes( 460 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 461 return result; 462 } else if (isDefaultKind) { 463 Say(digits, 464 "Integer literal is too large for any allowable " 465 "kind of INTEGER"_err_en_US); 466 } else { 467 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 468 kind); 469 } 470 } 471 return std::nullopt; 472 } 473 474 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 475 auto restorer{ 476 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 477 return IntLiteralConstant(x); 478 } 479 480 MaybeExpr ExpressionAnalyzer::Analyze( 481 const parser::SignedIntLiteralConstant &x) { 482 auto restorer{GetContextualMessages().SetLocation(x.source)}; 483 return IntLiteralConstant(x); 484 } 485 486 template <typename TYPE> 487 Constant<TYPE> ReadRealLiteral( 488 parser::CharBlock source, FoldingContext &context) { 489 const char *p{source.begin()}; 490 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 491 CHECK(p == source.end()); 492 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 493 auto value{valWithFlags.value}; 494 if (context.flushSubnormalsToZero()) { 495 value = value.FlushSubnormalToZero(); 496 } 497 return {value}; 498 } 499 500 struct RealTypeVisitor { 501 using Result = std::optional<Expr<SomeReal>>; 502 using Types = RealTypes; 503 504 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 505 : kind{k}, literal{lit}, context{ctx} {} 506 507 template <typename T> Result Test() { 508 if (kind == T::kind) { 509 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 510 } 511 return std::nullopt; 512 } 513 514 int kind; 515 parser::CharBlock literal; 516 FoldingContext &context; 517 }; 518 519 // Reads a real literal constant and encodes it with the right kind. 520 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 521 // Use a local message context around the real literal for better 522 // provenance on any messages. 523 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 524 // If a kind parameter appears, it defines the kind of the literal and the 525 // letter used in an exponent part must be 'E' (e.g., the 'E' in 526 // "6.02214E+23"). In the absence of an explicit kind parameter, any 527 // exponent letter determines the kind. Otherwise, defaults apply. 528 auto &defaults{context_.defaultKinds()}; 529 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 530 const char *end{x.real.source.end()}; 531 char expoLetter{' '}; 532 std::optional<int> letterKind; 533 for (const char *p{x.real.source.begin()}; p < end; ++p) { 534 if (parser::IsLetter(*p)) { 535 expoLetter = *p; 536 switch (expoLetter) { 537 case 'e': 538 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 539 break; 540 case 'd': 541 letterKind = defaults.doublePrecisionKind(); 542 break; 543 case 'q': 544 letterKind = defaults.quadPrecisionKind(); 545 break; 546 default: 547 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 548 } 549 break; 550 } 551 } 552 if (letterKind) { 553 defaultKind = *letterKind; 554 } 555 // C716 requires 'E' as an exponent, but this is more useful 556 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 557 if (letterKind && kind != *letterKind && expoLetter != 'e') { 558 Say("Explicit kind parameter on real constant disagrees with " 559 "exponent letter '%c'"_port_en_US, 560 expoLetter); 561 } 562 auto result{common::SearchTypes( 563 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 564 if (!result) { // C717 565 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 566 } 567 return AsMaybeExpr(std::move(result)); 568 } 569 570 MaybeExpr ExpressionAnalyzer::Analyze( 571 const parser::SignedRealLiteralConstant &x) { 572 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 573 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 574 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 575 if (sign == parser::Sign::Negative) { 576 return AsGenericExpr(-std::move(realExpr)); 577 } 578 } 579 return result; 580 } 581 return std::nullopt; 582 } 583 584 MaybeExpr ExpressionAnalyzer::Analyze( 585 const parser::SignedComplexLiteralConstant &x) { 586 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 587 if (!result) { 588 return std::nullopt; 589 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 590 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 591 } else { 592 return result; 593 } 594 } 595 596 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 597 return Analyze(x.u); 598 } 599 600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 601 return AsMaybeExpr( 602 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 603 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 604 } 605 606 // CHARACTER literal processing. 607 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 608 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 609 return std::nullopt; 610 } 611 switch (kind) { 612 case 1: 613 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 614 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 615 string, true)}); 616 case 2: 617 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 618 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 619 string, true)}); 620 case 4: 621 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 622 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 623 string, true)}); 624 default: 625 CRASH_NO_CASE; 626 } 627 } 628 629 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 630 int kind{ 631 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 632 auto value{std::get<std::string>(x.t)}; 633 return AnalyzeString(std::move(value), kind); 634 } 635 636 MaybeExpr ExpressionAnalyzer::Analyze( 637 const parser::HollerithLiteralConstant &x) { 638 int kind{GetDefaultKind(TypeCategory::Character)}; 639 auto value{x.v}; 640 return AnalyzeString(std::move(value), kind); 641 } 642 643 // .TRUE. and .FALSE. of various kinds 644 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 645 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 646 GetDefaultKind(TypeCategory::Logical))}; 647 bool value{std::get<bool>(x.t)}; 648 auto result{common::SearchTypes( 649 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 650 kind, std::move(value)})}; 651 if (!result) { 652 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 653 } 654 return result; 655 } 656 657 // BOZ typeless literals 658 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 659 const char *p{x.v.c_str()}; 660 std::uint64_t base{16}; 661 switch (*p++) { 662 case 'b': 663 base = 2; 664 break; 665 case 'o': 666 base = 8; 667 break; 668 case 'z': 669 break; 670 case 'x': 671 break; 672 default: 673 CRASH_NO_CASE; 674 } 675 CHECK(*p == '"'); 676 ++p; 677 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 678 if (*p != '"') { 679 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 680 x.v); // C7107, C7108 681 return std::nullopt; 682 } 683 if (value.overflow) { 684 Say("BOZ literal '%s' too large"_err_en_US, x.v); 685 return std::nullopt; 686 } 687 return AsGenericExpr(std::move(value.value)); 688 } 689 690 // Names and named constants 691 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 692 auto restorer{GetContextualMessages().SetLocation(n.source)}; 693 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 694 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 695 *kind, AsExpr(ImpliedDoIndex{n.source}))); 696 } else if (context_.HasError(n)) { 697 return std::nullopt; 698 } else if (!n.symbol) { 699 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 700 return std::nullopt; 701 } else { 702 const Symbol &ultimate{n.symbol->GetUltimate()}; 703 if (ultimate.has<semantics::TypeParamDetails>()) { 704 // A bare reference to a derived type parameter (within a parameterized 705 // derived type definition) 706 return Fold(ConvertToType( 707 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 708 } else { 709 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 710 if (const semantics::Scope * 711 pure{semantics::FindPureProcedureContaining( 712 context_.FindScope(n.source))}) { 713 SayAt(n, 714 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 715 n.source, DEREF(pure->symbol()).name()); 716 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 717 } 718 } 719 if (!isWholeAssumedSizeArrayOk_ && 720 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 721 AttachDeclaration( 722 SayAt(n, 723 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 724 n.source), 725 *n.symbol); 726 } 727 return Designate(DataRef{*n.symbol}); 728 } 729 } 730 } 731 732 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 733 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 734 if (MaybeExpr value{Analyze(n.v)}) { 735 Expr<SomeType> folded{Fold(std::move(*value))}; 736 if (IsConstantExpr(folded)) { 737 return folded; 738 } 739 Say(n.v.source, "must be a constant"_err_en_US); // C718 740 } 741 return std::nullopt; 742 } 743 744 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 745 if (MaybeExpr value{Analyze(n.v)}) { 746 // Subtle: when the NullInit is a DataStmtConstant, it might 747 // be a misparse of a structure constructor without parameters 748 // or components (e.g., T()). Checking the result to ensure 749 // that a "=>" data entity initializer actually resolved to 750 // a null pointer has to be done by the caller. 751 return Fold(std::move(*value)); 752 } 753 return std::nullopt; 754 } 755 756 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 757 return Analyze(x.value()); 758 } 759 760 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 761 if (const auto &repeat{ 762 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 763 x.repetitions = -1; 764 if (MaybeExpr expr{Analyze(repeat->u)}) { 765 Expr<SomeType> folded{Fold(std::move(*expr))}; 766 if (auto value{ToInt64(folded)}) { 767 if (*value >= 0) { // C882 768 x.repetitions = *value; 769 } else { 770 Say(FindSourceLocation(repeat), 771 "Repeat count (%jd) for data value must not be negative"_err_en_US, 772 *value); 773 } 774 } 775 } 776 } 777 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 778 } 779 780 // Substring references 781 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 782 const std::optional<parser::ScalarIntExpr> &bound) { 783 if (bound) { 784 if (MaybeExpr expr{Analyze(*bound)}) { 785 if (expr->Rank() > 1) { 786 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 787 } 788 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 789 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 790 return {std::move(*ssIntExpr)}; 791 } 792 return {Expr<SubscriptInteger>{ 793 Convert<SubscriptInteger, TypeCategory::Integer>{ 794 std::move(*intExpr)}}}; 795 } else { 796 Say("substring bound expression is not INTEGER"_err_en_US); 797 } 798 } 799 } 800 return std::nullopt; 801 } 802 803 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 804 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 805 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 806 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 807 if (std::optional<DataRef> checked{ 808 ExtractDataRef(std::move(*newBaseExpr))}) { 809 const parser::SubstringRange &range{ 810 std::get<parser::SubstringRange>(ss.t)}; 811 std::optional<Expr<SubscriptInteger>> first{ 812 GetSubstringBound(std::get<0>(range.t))}; 813 std::optional<Expr<SubscriptInteger>> last{ 814 GetSubstringBound(std::get<1>(range.t))}; 815 const Symbol &symbol{checked->GetLastSymbol()}; 816 if (std::optional<DynamicType> dynamicType{ 817 DynamicType::From(symbol)}) { 818 if (dynamicType->category() == TypeCategory::Character) { 819 return WrapperHelper<TypeCategory::Character, Designator, 820 Substring>(dynamicType->kind(), 821 Substring{std::move(checked.value()), std::move(first), 822 std::move(last)}); 823 } 824 } 825 Say("substring may apply only to CHARACTER"_err_en_US); 826 } 827 } 828 } 829 } 830 return std::nullopt; 831 } 832 833 // CHARACTER literal substrings 834 MaybeExpr ExpressionAnalyzer::Analyze( 835 const parser::CharLiteralConstantSubstring &x) { 836 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 837 std::optional<Expr<SubscriptInteger>> lower{ 838 GetSubstringBound(std::get<0>(range.t))}; 839 std::optional<Expr<SubscriptInteger>> upper{ 840 GetSubstringBound(std::get<1>(range.t))}; 841 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 842 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 843 Expr<SubscriptInteger> length{ 844 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 845 charExpr->u)}; 846 if (!lower) { 847 lower = Expr<SubscriptInteger>{1}; 848 } 849 if (!upper) { 850 upper = Expr<SubscriptInteger>{ 851 static_cast<std::int64_t>(ToInt64(length).value())}; 852 } 853 return std::visit( 854 [&](auto &&ckExpr) -> MaybeExpr { 855 using Result = ResultType<decltype(ckExpr)>; 856 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 857 CHECK(DEREF(cp).size() == 1); 858 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 859 staticData->set_alignment(Result::kind) 860 .set_itemBytes(Result::kind) 861 .Push(cp->GetScalarValue().value()); 862 Substring substring{std::move(staticData), std::move(lower.value()), 863 std::move(upper.value())}; 864 return AsGenericExpr( 865 Expr<Result>{Designator<Result>{std::move(substring)}}); 866 }, 867 std::move(charExpr->u)); 868 } 869 } 870 return std::nullopt; 871 } 872 873 // Subscripted array references 874 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 875 MaybeExpr &&expr) { 876 if (expr) { 877 if (expr->Rank() > 1) { 878 Say("Subscript expression has rank %d greater than 1"_err_en_US, 879 expr->Rank()); 880 } 881 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 882 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 883 return std::move(*ssIntExpr); 884 } else { 885 return Expr<SubscriptInteger>{ 886 Convert<SubscriptInteger, TypeCategory::Integer>{ 887 std::move(*intExpr)}}; 888 } 889 } else { 890 Say("Subscript expression is not INTEGER"_err_en_US); 891 } 892 } 893 return std::nullopt; 894 } 895 896 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 897 const std::optional<parser::Subscript> &s) { 898 if (s) { 899 return AsSubscript(Analyze(*s)); 900 } else { 901 return std::nullopt; 902 } 903 } 904 905 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 906 const parser::SectionSubscript &ss) { 907 return std::visit( 908 common::visitors{ 909 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 910 const auto &lower{std::get<0>(t.t)}; 911 const auto &upper{std::get<1>(t.t)}; 912 const auto &stride{std::get<2>(t.t)}; 913 auto result{Triplet{ 914 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 915 if ((lower && !result.lower()) || (upper && !result.upper())) { 916 return std::nullopt; 917 } else { 918 return std::make_optional<Subscript>(result); 919 } 920 }, 921 [&](const auto &s) -> std::optional<Subscript> { 922 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 923 return Subscript{std::move(*subscriptExpr)}; 924 } else { 925 return std::nullopt; 926 } 927 }, 928 }, 929 ss.u); 930 } 931 932 // Empty result means an error occurred 933 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 934 const std::list<parser::SectionSubscript> &sss) { 935 bool error{false}; 936 std::vector<Subscript> subscripts; 937 for (const auto &s : sss) { 938 if (auto subscript{AnalyzeSectionSubscript(s)}) { 939 subscripts.emplace_back(std::move(*subscript)); 940 } else { 941 error = true; 942 } 943 } 944 return !error ? subscripts : std::vector<Subscript>{}; 945 } 946 947 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 948 MaybeExpr baseExpr; 949 { 950 auto restorer{AllowWholeAssumedSizeArray()}; 951 baseExpr = Analyze(ae.base); 952 } 953 if (baseExpr) { 954 if (ae.subscripts.empty()) { 955 // will be converted to function call later or error reported 956 } else if (baseExpr->Rank() == 0) { 957 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 958 if (!context_.HasError(symbol)) { 959 if (inDataStmtConstant_) { 960 // Better error for NULL(X) with a MOLD= argument 961 Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US, 962 symbol->name()); 963 } else { 964 Say("'%s' is not an array"_err_en_US, symbol->name()); 965 } 966 context_.SetError(*symbol); 967 } 968 } 969 } else if (std::optional<DataRef> dataRef{ 970 ExtractDataRef(std::move(*baseExpr))}) { 971 return ApplySubscripts( 972 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 973 } else { 974 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 975 } 976 } 977 // error was reported: analyze subscripts without reporting more errors 978 auto restorer{GetContextualMessages().DiscardMessages()}; 979 AnalyzeSectionSubscripts(ae.subscripts); 980 return std::nullopt; 981 } 982 983 // Type parameter inquiries apply to data references, but don't depend 984 // on any trailing (co)subscripts. 985 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 986 return std::visit( 987 common::visitors{ 988 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 989 [](Component &&component) { 990 return NamedEntity{std::move(component)}; 991 }, 992 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 993 [](CoarrayRef &&coarrayRef) { 994 return NamedEntity{coarrayRef.GetLastSymbol()}; 995 }, 996 }, 997 std::move(designator.u)); 998 } 999 1000 // Components of parent derived types are explicitly represented as such. 1001 std::optional<Component> ExpressionAnalyzer::CreateComponent( 1002 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 1003 if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b 1004 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); 1005 } 1006 if (&component.owner() == &scope) { 1007 return Component{std::move(base), component}; 1008 } 1009 if (const Symbol * typeSymbol{scope.GetSymbol()}) { 1010 if (const Symbol * 1011 parentComponent{typeSymbol->GetParentComponent(&scope)}) { 1012 if (const auto *object{ 1013 parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) { 1014 if (const auto *parentType{object->type()}) { 1015 if (const semantics::Scope * 1016 parentScope{parentType->derivedTypeSpec().scope()}) { 1017 return CreateComponent( 1018 DataRef{Component{std::move(base), *parentComponent}}, 1019 component, *parentScope); 1020 } 1021 } 1022 } 1023 } 1024 } 1025 return std::nullopt; 1026 } 1027 1028 // Derived type component references and type parameter inquiries 1029 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 1030 MaybeExpr base{Analyze(sc.base)}; 1031 Symbol *sym{sc.component.symbol}; 1032 if (!base || !sym || context_.HasError(sym)) { 1033 return std::nullopt; 1034 } 1035 const auto &name{sc.component.source}; 1036 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1037 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1038 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1039 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1040 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1041 if (dyType->category() == TypeCategory::Integer) { 1042 auto restorer{GetContextualMessages().SetLocation(name)}; 1043 return Fold(ConvertToType(*dyType, 1044 AsGenericExpr(TypeParamInquiry{ 1045 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1046 } 1047 } 1048 Say(name, "Type parameter is not INTEGER"_err_en_US); 1049 } else { 1050 Say(name, 1051 "A type parameter inquiry must be applied to " 1052 "a designator"_err_en_US); 1053 } 1054 } else if (!dtSpec || !dtSpec->scope()) { 1055 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1056 return std::nullopt; 1057 } else if (std::optional<DataRef> dataRef{ 1058 ExtractDataRef(std::move(*dtExpr))}) { 1059 if (auto component{ 1060 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1061 return Designate(DataRef{std::move(*component)}); 1062 } else { 1063 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1064 dtSpec->typeSymbol().name()); 1065 } 1066 } else { 1067 Say(name, 1068 "Base of component reference must be a data reference"_err_en_US); 1069 } 1070 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1071 // special part-ref: %re, %im, %kind, %len 1072 // Type errors are detected and reported in semantics. 1073 using MiscKind = semantics::MiscDetails::Kind; 1074 MiscKind kind{details->kind()}; 1075 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1076 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1077 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1078 Expr<SomeReal> realExpr{std::visit( 1079 [&](const auto &z) { 1080 using PartType = typename ResultType<decltype(z)>::Part; 1081 auto part{kind == MiscKind::ComplexPartRe 1082 ? ComplexPart::Part::RE 1083 : ComplexPart::Part::IM}; 1084 return AsCategoryExpr(Designator<PartType>{ 1085 ComplexPart{std::move(*dataRef), part}}); 1086 }, 1087 zExpr->u)}; 1088 return AsGenericExpr(std::move(realExpr)); 1089 } 1090 } 1091 } else if (kind == MiscKind::KindParamInquiry || 1092 kind == MiscKind::LenParamInquiry) { 1093 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1094 ActualArgument arg{std::move(*base)}; 1095 SetArgSourceLocation(arg, name); 1096 return MakeFunctionRef(name, ActualArguments{std::move(arg)}); 1097 } else { 1098 DIE("unexpected MiscDetails::Kind"); 1099 } 1100 } else { 1101 Say(name, "derived type required before component reference"_err_en_US); 1102 } 1103 return std::nullopt; 1104 } 1105 1106 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1107 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1108 DataRef *dataRef{&*maybeDataRef}; 1109 std::vector<Subscript> subscripts; 1110 SymbolVector reversed; 1111 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1112 subscripts = std::move(aRef->subscript()); 1113 reversed.push_back(aRef->GetLastSymbol()); 1114 if (Component * component{aRef->base().UnwrapComponent()}) { 1115 dataRef = &component->base(); 1116 } else { 1117 dataRef = nullptr; 1118 } 1119 } 1120 if (dataRef) { 1121 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1122 reversed.push_back(component->GetLastSymbol()); 1123 dataRef = &component->base(); 1124 } 1125 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1126 reversed.push_back(*baseSym); 1127 } else { 1128 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1129 } 1130 } 1131 std::vector<Expr<SubscriptInteger>> cosubscripts; 1132 bool cosubsOk{true}; 1133 for (const auto &cosub : 1134 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1135 MaybeExpr coex{Analyze(cosub)}; 1136 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1137 cosubscripts.push_back( 1138 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1139 } else { 1140 cosubsOk = false; 1141 } 1142 } 1143 if (cosubsOk && !reversed.empty()) { 1144 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1145 const Symbol &symbol{reversed.front()}; 1146 if (numCosubscripts != symbol.Corank()) { 1147 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1148 symbol.name(), symbol.Corank(), numCosubscripts); 1149 } 1150 } 1151 for (const auto &imageSelSpec : 1152 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1153 std::visit( 1154 common::visitors{ 1155 [&](const auto &x) { Analyze(x.v); }, 1156 }, 1157 imageSelSpec.u); 1158 } 1159 // Reverse the chain of symbols so that the base is first and coarray 1160 // ultimate component is last. 1161 if (cosubsOk) { 1162 return Designate( 1163 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1164 std::move(subscripts), std::move(cosubscripts)}}); 1165 } 1166 } 1167 return std::nullopt; 1168 } 1169 1170 int ExpressionAnalyzer::IntegerTypeSpecKind( 1171 const parser::IntegerTypeSpec &spec) { 1172 Expr<SubscriptInteger> value{ 1173 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1174 if (auto kind{ToInt64(value)}) { 1175 return static_cast<int>(*kind); 1176 } 1177 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1178 return GetDefaultKind(TypeCategory::Integer); 1179 } 1180 1181 // Array constructors 1182 1183 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1184 // all happen to have the same actual type T into one ArrayConstructor<T>. 1185 template <typename T> 1186 ArrayConstructorValues<T> MakeSpecific( 1187 ArrayConstructorValues<SomeType> &&from) { 1188 ArrayConstructorValues<T> to; 1189 for (ArrayConstructorValue<SomeType> &x : from) { 1190 std::visit( 1191 common::visitors{ 1192 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1193 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1194 to.Push(std::move(DEREF(typed))); 1195 }, 1196 [&](ImpliedDo<SomeType> &&impliedDo) { 1197 to.Push(ImpliedDo<T>{impliedDo.name(), 1198 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1199 std::move(impliedDo.stride()), 1200 MakeSpecific<T>(std::move(impliedDo.values()))}); 1201 }, 1202 }, 1203 std::move(x.u)); 1204 } 1205 return to; 1206 } 1207 1208 class ArrayConstructorContext { 1209 public: 1210 ArrayConstructorContext( 1211 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1212 : exprAnalyzer_{c}, type_{std::move(t)} {} 1213 1214 void Add(const parser::AcValue &); 1215 MaybeExpr ToExpr(); 1216 1217 // These interfaces allow *this to be used as a type visitor argument to 1218 // common::SearchTypes() to convert the array constructor to a typed 1219 // expression in ToExpr(). 1220 using Result = MaybeExpr; 1221 using Types = AllTypes; 1222 template <typename T> Result Test() { 1223 if (type_ && type_->category() == T::category) { 1224 if constexpr (T::category == TypeCategory::Derived) { 1225 if (!type_->IsUnlimitedPolymorphic()) { 1226 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1227 MakeSpecific<T>(std::move(values_))}); 1228 } 1229 } else if (type_->kind() == T::kind) { 1230 if constexpr (T::category == TypeCategory::Character) { 1231 if (auto len{type_->LEN()}) { 1232 return AsMaybeExpr(ArrayConstructor<T>{ 1233 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1234 } 1235 } else { 1236 return AsMaybeExpr( 1237 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1238 } 1239 } 1240 } 1241 return std::nullopt; 1242 } 1243 1244 private: 1245 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1246 1247 void Push(MaybeExpr &&); 1248 void Add(const parser::AcValue::Triplet &); 1249 void Add(const parser::Expr &); 1250 void Add(const parser::AcImpliedDo &); 1251 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1252 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1253 std::int64_t stride); 1254 1255 template <int KIND, typename A> 1256 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1257 const A &x) { 1258 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1259 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1260 return Fold(exprAnalyzer_.GetFoldingContext(), 1261 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1262 std::move(DEREF(intExpr)))); 1263 } 1264 return std::nullopt; 1265 } 1266 1267 // Nested array constructors all reference the same ExpressionAnalyzer, 1268 // which represents the nest of active implied DO loop indices. 1269 ExpressionAnalyzer &exprAnalyzer_; 1270 std::optional<DynamicTypeWithLength> type_; 1271 bool explicitType_{type_.has_value()}; 1272 std::optional<std::int64_t> constantLength_; 1273 ArrayConstructorValues<SomeType> values_; 1274 std::uint64_t messageDisplayedSet_{0}; 1275 }; 1276 1277 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1278 if (!x) { 1279 return; 1280 } 1281 if (!type_) { 1282 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1283 // Treat an array constructor of BOZ as if default integer. 1284 if (exprAnalyzer_.context().ShouldWarn( 1285 common::LanguageFeature::BOZAsDefaultInteger)) { 1286 exprAnalyzer_.Say( 1287 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1288 } 1289 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1290 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1291 std::move(*boz))); 1292 } 1293 } 1294 std::optional<DynamicType> dyType{x->GetType()}; 1295 if (!dyType) { 1296 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1297 if (!type_) { 1298 // Treat an array constructor of BOZ as if default integer. 1299 if (exprAnalyzer_.context().ShouldWarn( 1300 common::LanguageFeature::BOZAsDefaultInteger)) { 1301 exprAnalyzer_.Say( 1302 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1303 } 1304 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1305 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1306 std::move(*boz))); 1307 dyType = x.value().GetType(); 1308 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1309 x = std::move(cast); 1310 dyType = *type_; 1311 } else { 1312 if (!(messageDisplayedSet_ & 0x80)) { 1313 exprAnalyzer_.Say( 1314 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1315 messageDisplayedSet_ |= 0x80; 1316 } 1317 return; 1318 } 1319 } else { // procedure name, &c. 1320 if (!(messageDisplayedSet_ & 0x40)) { 1321 exprAnalyzer_.Say( 1322 "Item is not suitable for use in an array constructor"_err_en_US); 1323 messageDisplayedSet_ |= 0x40; 1324 } 1325 return; 1326 } 1327 } else if (dyType->IsUnlimitedPolymorphic()) { 1328 if (!(messageDisplayedSet_ & 8)) { 1329 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1330 "array constructor"_err_en_US); // C7113 1331 messageDisplayedSet_ |= 8; 1332 } 1333 return; 1334 } 1335 DynamicTypeWithLength xType{dyType.value()}; 1336 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1337 CHECK(xType.category() == TypeCategory::Character); 1338 xType.length = 1339 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1340 } 1341 if (!type_) { 1342 // If there is no explicit type-spec in an array constructor, the type 1343 // of the array is the declared type of all of the elements, which must 1344 // be well-defined and all match. 1345 // TODO: Possible language extension: use the most general type of 1346 // the values as the type of a numeric constructed array, convert all 1347 // of the other values to that type. Alternative: let the first value 1348 // determine the type, and convert the others to that type. 1349 CHECK(!explicitType_); 1350 type_ = std::move(xType); 1351 constantLength_ = ToInt64(type_->length); 1352 values_.Push(std::move(*x)); 1353 } else if (!explicitType_) { 1354 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1355 values_.Push(std::move(*x)); 1356 if (auto thisLen{ToInt64(xType.LEN())}) { 1357 if (constantLength_) { 1358 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1359 *thisLen != *constantLength_) { 1360 if (!(messageDisplayedSet_ & 1)) { 1361 exprAnalyzer_.Say( 1362 "Character literal in array constructor without explicit " 1363 "type has different length than earlier elements"_port_en_US); 1364 messageDisplayedSet_ |= 1; 1365 } 1366 } 1367 if (*thisLen > *constantLength_) { 1368 // Language extension: use the longest literal to determine the 1369 // length of the array constructor's character elements, not the 1370 // first, when there is no explicit type. 1371 *constantLength_ = *thisLen; 1372 type_->length = xType.LEN(); 1373 } 1374 } else { 1375 constantLength_ = *thisLen; 1376 type_->length = xType.LEN(); 1377 } 1378 } 1379 } else { 1380 if (!(messageDisplayedSet_ & 2)) { 1381 exprAnalyzer_.Say( 1382 "Values in array constructor must have the same declared type " 1383 "when no explicit type appears"_err_en_US); // C7110 1384 messageDisplayedSet_ |= 2; 1385 } 1386 } 1387 } else { 1388 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1389 values_.Push(std::move(*cast)); 1390 } else if (!(messageDisplayedSet_ & 4)) { 1391 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1392 "be converted to the type of the array '%s'"_err_en_US, 1393 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1394 messageDisplayedSet_ |= 4; 1395 } 1396 } 1397 } 1398 1399 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1400 std::visit( 1401 common::visitors{ 1402 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1403 [&](const common::Indirection<parser::Expr> &expr) { 1404 Add(expr.value()); 1405 }, 1406 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1407 Add(impliedDo.value()); 1408 }, 1409 }, 1410 x.u); 1411 } 1412 1413 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1414 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1415 std::optional<Expr<ImpliedDoIntType>> lower{ 1416 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1417 std::optional<Expr<ImpliedDoIntType>> upper{ 1418 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1419 std::optional<Expr<ImpliedDoIntType>> stride{ 1420 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1421 if (lower && upper) { 1422 if (!stride) { 1423 stride = Expr<ImpliedDoIntType>{1}; 1424 } 1425 if (!type_) { 1426 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1427 } 1428 auto v{std::move(values_)}; 1429 parser::CharBlock anonymous; 1430 Push(Expr<SomeType>{ 1431 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1432 std::swap(v, values_); 1433 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1434 std::move(*upper), std::move(*stride), std::move(v)}); 1435 } 1436 } 1437 1438 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1439 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1440 Push(exprAnalyzer_.Analyze(expr)); 1441 } 1442 1443 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1444 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1445 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1446 exprAnalyzer_.Analyze(bounds.name); 1447 parser::CharBlock name{bounds.name.thing.thing.source}; 1448 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1449 int kind{ImpliedDoIntType::kind}; 1450 if (const auto dynamicType{DynamicType::From(symbol)}) { 1451 kind = dynamicType->kind(); 1452 } 1453 std::optional<Expr<ImpliedDoIntType>> lower{ 1454 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1455 std::optional<Expr<ImpliedDoIntType>> upper{ 1456 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1457 if (lower && upper) { 1458 std::optional<Expr<ImpliedDoIntType>> stride{ 1459 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1460 if (!stride) { 1461 stride = Expr<ImpliedDoIntType>{1}; 1462 } 1463 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1464 // Check for constant bounds; the loop may require complete unrolling 1465 // of the parse tree if all bounds are constant in order to allow the 1466 // implied DO loop index to qualify as a constant expression. 1467 auto cLower{ToInt64(lower)}; 1468 auto cUpper{ToInt64(upper)}; 1469 auto cStride{ToInt64(stride)}; 1470 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1471 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1472 "The stride of an implied DO loop must not be zero"_err_en_US); 1473 messageDisplayedSet_ |= 0x10; 1474 } 1475 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1476 bool isNonemptyConstant{isConstant && 1477 ((*cStride > 0 && *cLower <= *cUpper) || 1478 (*cStride < 0 && *cLower >= *cUpper))}; 1479 bool unrollConstantLoop{false}; 1480 parser::Messages buffer; 1481 auto saveMessagesDisplayed{messageDisplayedSet_}; 1482 { 1483 auto messageRestorer{ 1484 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1485 auto v{std::move(values_)}; 1486 for (const auto &value : 1487 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1488 Add(value); 1489 } 1490 std::swap(v, values_); 1491 if (isNonemptyConstant && buffer.AnyFatalError()) { 1492 unrollConstantLoop = true; 1493 } else { 1494 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1495 std::move(*upper), std::move(*stride), std::move(v)}); 1496 } 1497 } 1498 if (unrollConstantLoop) { 1499 messageDisplayedSet_ = saveMessagesDisplayed; 1500 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1501 } else if (auto *messages{ 1502 exprAnalyzer_.GetContextualMessages().messages()}) { 1503 messages->Annex(std::move(buffer)); 1504 } 1505 exprAnalyzer_.RemoveImpliedDo(name); 1506 } else if (!(messageDisplayedSet_ & 0x20)) { 1507 exprAnalyzer_.SayAt(name, 1508 "Implied DO index '%s' is active in a surrounding implied DO loop " 1509 "and may not have the same name"_err_en_US, 1510 name); // C7115 1511 messageDisplayedSet_ |= 0x20; 1512 } 1513 } 1514 } 1515 1516 // Fortran considers an implied DO index of an array constructor to be 1517 // a constant expression if the bounds of the implied DO loop are constant. 1518 // Usually this doesn't matter, but if we emitted spurious messages as a 1519 // result of not using constant values for the index while analyzing the 1520 // items, we need to do it again the "hard" way with multiple iterations over 1521 // the parse tree. 1522 void ArrayConstructorContext::UnrollConstantImpliedDo( 1523 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1524 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1525 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1526 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1527 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1528 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1529 at += stride) { 1530 for (const auto &value : 1531 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1532 Add(value); 1533 } 1534 } 1535 foldingContext.EndImpliedDo(name); 1536 } 1537 1538 MaybeExpr ArrayConstructorContext::ToExpr() { 1539 return common::SearchTypes(std::move(*this)); 1540 } 1541 1542 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1543 const parser::AcSpec &acSpec{array.v}; 1544 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1545 for (const parser::AcValue &value : acSpec.values) { 1546 acContext.Add(value); 1547 } 1548 return acContext.ToExpr(); 1549 } 1550 1551 MaybeExpr ExpressionAnalyzer::Analyze( 1552 const parser::StructureConstructor &structure) { 1553 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1554 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1555 parser::CharBlock &typeName{structureType.source}; 1556 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1557 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1558 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1559 if (!CheckIsValidForwardReference(dtSpec)) { 1560 return std::nullopt; 1561 } 1562 } 1563 } 1564 if (!parsedType.derivedTypeSpec) { 1565 return std::nullopt; 1566 } 1567 const auto &spec{*parsedType.derivedTypeSpec}; 1568 const Symbol &typeSymbol{spec.typeSymbol()}; 1569 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1570 return std::nullopt; // error recovery 1571 } 1572 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1573 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1574 1575 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1576 AttachDeclaration(Say(typeName, 1577 "ABSTRACT derived type '%s' may not be used in a " 1578 "structure constructor"_err_en_US, 1579 typeName), 1580 typeSymbol); // C7114 1581 } 1582 1583 // This iterator traverses all of the components in the derived type and its 1584 // parents. The symbols for whole parent components appear after their 1585 // own components and before the components of the types that extend them. 1586 // E.g., TYPE :: A; REAL X; END TYPE 1587 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1588 // produces the component list X, A, Y. 1589 // The order is important below because a structure constructor can 1590 // initialize X or A by name, but not both. 1591 auto components{semantics::OrderedComponentIterator{spec}}; 1592 auto nextAnonymous{components.begin()}; 1593 1594 std::set<parser::CharBlock> unavailable; 1595 bool anyKeyword{false}; 1596 StructureConstructor result{spec}; 1597 bool checkConflicts{true}; // until we hit one 1598 auto &messages{GetContextualMessages()}; 1599 1600 for (const auto &component : 1601 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1602 const parser::Expr &expr{ 1603 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1604 parser::CharBlock source{expr.source}; 1605 auto restorer{messages.SetLocation(source)}; 1606 const Symbol *symbol{nullptr}; 1607 MaybeExpr value{Analyze(expr)}; 1608 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1609 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1610 anyKeyword = true; 1611 source = kw->v.source; 1612 symbol = kw->v.symbol; 1613 if (!symbol) { 1614 auto componentIter{std::find_if(components.begin(), components.end(), 1615 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1616 if (componentIter != components.end()) { 1617 symbol = &*componentIter; 1618 } 1619 } 1620 if (!symbol) { // C7101 1621 Say(source, 1622 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1623 source, typeName); 1624 } 1625 } else { 1626 if (anyKeyword) { // C7100 1627 Say(source, 1628 "Value in structure constructor lacks a component name"_err_en_US); 1629 checkConflicts = false; // stem cascade 1630 } 1631 // Here's a regrettably common extension of the standard: anonymous 1632 // initialization of parent components, e.g., T(PT(1)) rather than 1633 // T(1) or T(PT=PT(1)). 1634 if (nextAnonymous == components.begin() && parentComponent && 1635 valueType == DynamicType::From(*parentComponent) && 1636 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1637 auto iter{ 1638 std::find(components.begin(), components.end(), *parentComponent)}; 1639 if (iter != components.end()) { 1640 symbol = parentComponent; 1641 nextAnonymous = ++iter; 1642 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1643 Say(source, 1644 "Whole parent component '%s' in structure " 1645 "constructor should not be anonymous"_port_en_US, 1646 symbol->name()); 1647 } 1648 } 1649 } 1650 while (!symbol && nextAnonymous != components.end()) { 1651 const Symbol &next{*nextAnonymous}; 1652 ++nextAnonymous; 1653 if (!next.test(Symbol::Flag::ParentComp)) { 1654 symbol = &next; 1655 } 1656 } 1657 if (!symbol) { 1658 Say(source, "Unexpected value in structure constructor"_err_en_US); 1659 } 1660 } 1661 if (symbol) { 1662 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1663 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1664 Say(source, *msg); 1665 } 1666 } 1667 if (checkConflicts) { 1668 auto componentIter{ 1669 std::find(components.begin(), components.end(), *symbol)}; 1670 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1671 // C797, C798 1672 Say(source, 1673 "Component '%s' conflicts with another component earlier in " 1674 "this structure constructor"_err_en_US, 1675 symbol->name()); 1676 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1677 // Make earlier components unavailable once a whole parent appears. 1678 for (auto it{components.begin()}; it != componentIter; ++it) { 1679 unavailable.insert(it->name()); 1680 } 1681 } else { 1682 // Make whole parent components unavailable after any of their 1683 // constituents appear. 1684 for (auto it{componentIter}; it != components.end(); ++it) { 1685 if (it->test(Symbol::Flag::ParentComp)) { 1686 unavailable.insert(it->name()); 1687 } 1688 } 1689 } 1690 } 1691 unavailable.insert(symbol->name()); 1692 if (value) { 1693 if (symbol->has<semantics::ProcEntityDetails>()) { 1694 CHECK(IsPointer(*symbol)); 1695 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1696 // C1594(4) 1697 const auto &innermost{context_.FindScope(expr.source)}; 1698 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1699 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1700 if (const Symbol * 1701 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1702 if (auto *msg{Say(expr.source, 1703 "Externally visible object '%s' may not be " 1704 "associated with pointer component '%s' in a " 1705 "pure procedure"_err_en_US, 1706 object->name(), pointer->name())}) { 1707 msg->Attach(object->name(), "Object declaration"_en_US) 1708 .Attach(pointer->name(), "Pointer declaration"_en_US); 1709 } 1710 } 1711 } 1712 } 1713 } else if (symbol->has<semantics::TypeParamDetails>()) { 1714 Say(expr.source, 1715 "Type parameter '%s' may not appear as a component " 1716 "of a structure constructor"_err_en_US, 1717 symbol->name()); 1718 continue; 1719 } else { 1720 Say(expr.source, 1721 "Component '%s' is neither a procedure pointer " 1722 "nor a data object"_err_en_US, 1723 symbol->name()); 1724 continue; 1725 } 1726 if (IsPointer(*symbol)) { 1727 semantics::CheckPointerAssignment( 1728 GetFoldingContext(), *symbol, *value); // C7104, C7105 1729 result.Add(*symbol, Fold(std::move(*value))); 1730 } else if (MaybeExpr converted{ 1731 ConvertToType(*symbol, std::move(*value))}) { 1732 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1733 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1734 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1735 AttachDeclaration( 1736 Say(expr.source, 1737 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1738 GetRank(*valueShape), symbol->name()), 1739 *symbol); 1740 } else { 1741 auto checked{ 1742 CheckConformance(messages, *componentShape, *valueShape, 1743 CheckConformanceFlags::RightIsExpandableDeferred, 1744 "component", "value")}; 1745 if (checked && *checked && GetRank(*componentShape) > 0 && 1746 GetRank(*valueShape) == 0 && 1747 !IsExpandableScalar(*converted)) { 1748 AttachDeclaration( 1749 Say(expr.source, 1750 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1751 symbol->name()), 1752 *symbol); 1753 } 1754 if (checked.value_or(true)) { 1755 result.Add(*symbol, std::move(*converted)); 1756 } 1757 } 1758 } else { 1759 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1760 } 1761 } else { 1762 AttachDeclaration( 1763 Say(expr.source, 1764 "Shape of component '%s' cannot be determined"_err_en_US, 1765 symbol->name()), 1766 *symbol); 1767 } 1768 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1769 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE. 1770 result.Add(*symbol, Expr<SomeType>{NullPointer{}}); 1771 } else if (auto symType{DynamicType::From(symbol)}) { 1772 if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() && 1773 valueType) { 1774 // ok 1775 } else if (valueType) { 1776 AttachDeclaration( 1777 Say(expr.source, 1778 "Value in structure constructor of type '%s' is " 1779 "incompatible with component '%s' of type '%s'"_err_en_US, 1780 valueType->AsFortran(), symbol->name(), 1781 symType->AsFortran()), 1782 *symbol); 1783 } else { 1784 AttachDeclaration( 1785 Say(expr.source, 1786 "Value in structure constructor is incompatible with " 1787 "component '%s' of type %s"_err_en_US, 1788 symbol->name(), symType->AsFortran()), 1789 *symbol); 1790 } 1791 } 1792 } 1793 } 1794 } 1795 1796 // Ensure that unmentioned component objects have default initializers. 1797 for (const Symbol &symbol : components) { 1798 if (!symbol.test(Symbol::Flag::ParentComp) && 1799 unavailable.find(symbol.name()) == unavailable.cend()) { 1800 if (IsAllocatable(symbol)) { 1801 // Set all remaining allocatables to explicit NULL() 1802 result.Add(symbol, Expr<SomeType>{NullPointer{}}); 1803 } else if (const auto *details{ 1804 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1805 if (details->init()) { 1806 result.Add(symbol, common::Clone(*details->init())); 1807 } else { // C799 1808 AttachDeclaration(Say(typeName, 1809 "Structure constructor lacks a value for " 1810 "component '%s'"_err_en_US, 1811 symbol.name()), 1812 symbol); 1813 } 1814 } 1815 } 1816 } 1817 1818 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1819 } 1820 1821 static std::optional<parser::CharBlock> GetPassName( 1822 const semantics::Symbol &proc) { 1823 return std::visit( 1824 [](const auto &details) { 1825 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1826 std::decay_t<decltype(details)>>) { 1827 return details.passName(); 1828 } else { 1829 return std::optional<parser::CharBlock>{}; 1830 } 1831 }, 1832 proc.details()); 1833 } 1834 1835 static int GetPassIndex(const Symbol &proc) { 1836 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1837 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1838 const auto *interface { semantics::FindInterface(proc) }; 1839 if (!passName || !interface) { 1840 return 0; // first argument is passed-object 1841 } 1842 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1843 int index{0}; 1844 for (const auto *arg : subp.dummyArgs()) { 1845 if (arg && arg->name() == passName) { 1846 return index; 1847 } 1848 ++index; 1849 } 1850 DIE("PASS argument name not in dummy argument list"); 1851 } 1852 1853 // Injects an expression into an actual argument list as the "passed object" 1854 // for a type-bound procedure reference that is not NOPASS. Adds an 1855 // argument keyword if possible, but not when the passed object goes 1856 // before a positional argument. 1857 // e.g., obj%tbp(x) -> tbp(obj,x). 1858 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1859 const Symbol &component, bool isPassedObject = true) { 1860 if (component.attrs().test(semantics::Attr::NOPASS)) { 1861 return; 1862 } 1863 int passIndex{GetPassIndex(component)}; 1864 auto iter{actuals.begin()}; 1865 int at{0}; 1866 while (iter < actuals.end() && at < passIndex) { 1867 if (*iter && (*iter)->keyword()) { 1868 iter = actuals.end(); 1869 break; 1870 } 1871 ++iter; 1872 ++at; 1873 } 1874 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1875 passed.set_isPassedObject(isPassedObject); 1876 if (iter == actuals.end()) { 1877 if (auto passName{GetPassName(component)}) { 1878 passed.set_keyword(*passName); 1879 } 1880 } 1881 actuals.emplace(iter, std::move(passed)); 1882 } 1883 1884 // Return the compile-time resolution of a procedure binding, if possible. 1885 static const Symbol *GetBindingResolution( 1886 const std::optional<DynamicType> &baseType, const Symbol &component) { 1887 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1888 if (!binding) { 1889 return nullptr; 1890 } 1891 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1892 (!baseType || baseType->IsPolymorphic())) { 1893 return nullptr; 1894 } 1895 return &binding->symbol(); 1896 } 1897 1898 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1899 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1900 -> std::optional<CalleeAndArguments> { 1901 const parser::StructureComponent &sc{pcr.v.thing}; 1902 if (MaybeExpr base{Analyze(sc.base)}) { 1903 if (const Symbol * sym{sc.component.symbol}) { 1904 if (context_.HasError(sym)) { 1905 return std::nullopt; 1906 } 1907 if (!IsProcedure(*sym)) { 1908 AttachDeclaration( 1909 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1910 sc.component.source), 1911 *sym); 1912 return std::nullopt; 1913 } 1914 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1915 if (sym->has<semantics::GenericDetails>()) { 1916 AdjustActuals adjustment{ 1917 [&](const Symbol &proc, ActualArguments &actuals) { 1918 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1919 AddPassArg(actuals, std::move(*dtExpr), proc); 1920 } 1921 return true; 1922 }}; 1923 auto pair{ResolveGeneric(*sym, arguments, adjustment)}; 1924 sym = pair.first; 1925 if (!sym) { 1926 EmitGenericResolutionError(*sc.component.symbol, pair.second); 1927 return std::nullopt; 1928 } 1929 } 1930 if (const Symbol * 1931 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1932 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1933 return CalleeAndArguments{ 1934 ProcedureDesignator{*resolution}, std::move(arguments)}; 1935 } else if (std::optional<DataRef> dataRef{ 1936 ExtractDataRef(std::move(*dtExpr))}) { 1937 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1938 return CalleeAndArguments{ 1939 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1940 std::move(arguments)}; 1941 } else { 1942 AddPassArg(arguments, 1943 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1944 *sym); 1945 return CalleeAndArguments{ 1946 ProcedureDesignator{*sym}, std::move(arguments)}; 1947 } 1948 } 1949 } 1950 Say(sc.component.source, 1951 "Base of procedure component reference is not a derived-type object"_err_en_US); 1952 } 1953 } 1954 CHECK(context_.AnyFatalError()); 1955 return std::nullopt; 1956 } 1957 1958 // Can actual be argument associated with dummy? 1959 static bool CheckCompatibleArgument(bool isElemental, 1960 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1961 const auto *expr{actual.UnwrapExpr()}; 1962 return std::visit( 1963 common::visitors{ 1964 [&](const characteristics::DummyDataObject &x) { 1965 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 1966 IsBareNullPointer(expr)) { 1967 // NULL() without MOLD= is compatible with any dummy data pointer 1968 // but cannot be allowed to lead to ambiguity. 1969 return true; 1970 } else if (!isElemental && actual.Rank() != x.type.Rank() && 1971 !x.type.attrs().test( 1972 characteristics::TypeAndShape::Attr::AssumedRank)) { 1973 return false; 1974 } else if (auto actualType{actual.GetType()}) { 1975 return x.type.type().IsTkCompatibleWith(*actualType); 1976 } 1977 return false; 1978 }, 1979 [&](const characteristics::DummyProcedure &) { 1980 return expr && IsProcedurePointerTarget(*expr); 1981 }, 1982 [&](const characteristics::AlternateReturn &) { 1983 return actual.isAlternateReturn(); 1984 }, 1985 }, 1986 dummy.u); 1987 } 1988 1989 // Are the actual arguments compatible with the dummy arguments of procedure? 1990 static bool CheckCompatibleArguments( 1991 const characteristics::Procedure &procedure, 1992 const ActualArguments &actuals) { 1993 bool isElemental{procedure.IsElemental()}; 1994 const auto &dummies{procedure.dummyArguments}; 1995 CHECK(dummies.size() == actuals.size()); 1996 for (std::size_t i{0}; i < dummies.size(); ++i) { 1997 const characteristics::DummyArgument &dummy{dummies[i]}; 1998 const std::optional<ActualArgument> &actual{actuals[i]}; 1999 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 2000 return false; 2001 } 2002 } 2003 return true; 2004 } 2005 2006 // Handles a forward reference to a module function from what must 2007 // be a specification expression. Return false if the symbol is 2008 // an invalid forward reference. 2009 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 2010 if (context_.HasError(symbol)) { 2011 return false; 2012 } 2013 if (const auto *details{ 2014 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 2015 if (details->kind() == semantics::SubprogramKind::Module) { 2016 // If this symbol is still a SubprogramNameDetails, we must be 2017 // checking a specification expression in a sibling module 2018 // procedure. Resolve its names now so that its interface 2019 // is known. 2020 semantics::ResolveSpecificationParts(context_, symbol); 2021 if (symbol.has<semantics::SubprogramNameDetails>()) { 2022 // When the symbol hasn't had its details updated, we must have 2023 // already been in the process of resolving the function's 2024 // specification part; but recursive function calls are not 2025 // allowed in specification parts (10.1.11 para 5). 2026 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 2027 symbol.name()); 2028 context_.SetError(symbol); 2029 return false; 2030 } 2031 } else { // 10.1.11 para 4 2032 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 2033 symbol.name()); 2034 context_.SetError(symbol); 2035 return false; 2036 } 2037 } 2038 return true; 2039 } 2040 2041 // Resolve a call to a generic procedure with given actual arguments. 2042 // adjustActuals is called on procedure bindings to handle pass arg. 2043 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 2044 const Symbol &symbol, const ActualArguments &actuals, 2045 const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) { 2046 const Symbol *elemental{nullptr}; // matching elemental specific proc 2047 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2048 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 2049 bool anyBareNullActual{ 2050 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2051 return IsBareNullPointer(iter->UnwrapExpr()); 2052 }) != actuals.end()}; 2053 for (const Symbol &specific : details.specificProcs()) { 2054 if (!ResolveForward(specific)) { 2055 continue; 2056 } 2057 if (std::optional<characteristics::Procedure> procedure{ 2058 characteristics::Procedure::Characterize( 2059 ProcedureDesignator{specific}, context_.foldingContext())}) { 2060 ActualArguments localActuals{actuals}; 2061 if (specific.has<semantics::ProcBindingDetails>()) { 2062 if (!adjustActuals.value()(specific, localActuals)) { 2063 continue; 2064 } 2065 } 2066 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, 2067 GetFoldingContext(), false /* no integer conversions */) && 2068 CheckCompatibleArguments(*procedure, localActuals)) { 2069 if ((procedure->IsElemental() && elemental) || 2070 (!procedure->IsElemental() && nonElemental)) { 2071 // 16.9.144(6): a bare NULL() is not allowed as an actual 2072 // argument to a generic procedure if the specific procedure 2073 // cannot be unambiguously distinguished 2074 return {nullptr, true /* due to NULL actuals */}; 2075 } 2076 if (!procedure->IsElemental()) { 2077 // takes priority over elemental match 2078 nonElemental = &specific; 2079 if (!anyBareNullActual) { 2080 break; // unambiguous case 2081 } 2082 } else { 2083 elemental = &specific; 2084 } 2085 } 2086 } 2087 } 2088 if (nonElemental) { 2089 return {&AccessSpecific(symbol, *nonElemental), false}; 2090 } else if (elemental) { 2091 return {&AccessSpecific(symbol, *elemental), false}; 2092 } 2093 // Check parent derived type 2094 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2095 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2096 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 2097 auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)}; 2098 if (pair.first) { 2099 return pair; 2100 } 2101 } 2102 } 2103 } 2104 if (mightBeStructureConstructor && details.derivedType()) { 2105 return {details.derivedType(), false}; 2106 } 2107 return {nullptr, false}; 2108 } 2109 2110 const Symbol &ExpressionAnalyzer::AccessSpecific( 2111 const Symbol &originalGeneric, const Symbol &specific) { 2112 if (const auto *hosted{ 2113 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2114 return AccessSpecific(hosted->symbol(), specific); 2115 } else if (const auto *used{ 2116 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2117 const auto &scope{originalGeneric.owner()}; 2118 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2119 if (const auto *useDetails{ 2120 iter->second->detailsIf<semantics::UseDetails>()}) { 2121 const Symbol &usedSymbol{useDetails->symbol()}; 2122 const auto *usedGeneric{ 2123 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2124 if (&usedSymbol == &specific || 2125 (usedGeneric && usedGeneric->specific() == &specific)) { 2126 return specific; 2127 } 2128 } 2129 } 2130 // Create a renaming USE of the specific procedure. 2131 auto rename{context_.SaveTempName( 2132 used->symbol().owner().GetName().value().ToString() + "$" + 2133 specific.name().ToString())}; 2134 return *const_cast<semantics::Scope &>(scope) 2135 .try_emplace(rename, specific.attrs(), 2136 semantics::UseDetails{rename, specific}) 2137 .first->second; 2138 } else { 2139 return specific; 2140 } 2141 } 2142 2143 void ExpressionAnalyzer::EmitGenericResolutionError( 2144 const Symbol &symbol, bool dueToNullActuals) { 2145 Say(dueToNullActuals 2146 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2147 : semantics::IsGenericDefinedOp(symbol) 2148 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2149 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2150 symbol.name()); 2151 } 2152 2153 auto ExpressionAnalyzer::GetCalleeAndArguments( 2154 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2155 bool isSubroutine, bool mightBeStructureConstructor) 2156 -> std::optional<CalleeAndArguments> { 2157 return std::visit( 2158 common::visitors{ 2159 [&](const parser::Name &name) { 2160 return GetCalleeAndArguments(name, std::move(arguments), 2161 isSubroutine, mightBeStructureConstructor); 2162 }, 2163 [&](const parser::ProcComponentRef &pcr) { 2164 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2165 }, 2166 }, 2167 pd.u); 2168 } 2169 2170 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2171 ActualArguments &&arguments, bool isSubroutine, 2172 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2173 const Symbol *symbol{name.symbol}; 2174 if (context_.HasError(symbol)) { 2175 return std::nullopt; // also handles null symbol 2176 } 2177 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2178 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2179 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2180 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2181 arguments, GetFoldingContext())}) { 2182 CheckBadExplicitType(*specificCall, *symbol); 2183 return CalleeAndArguments{ 2184 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2185 std::move(specificCall->arguments)}; 2186 } 2187 } else { 2188 CheckForBadRecursion(name.source, ultimate); 2189 bool dueToNullActual{false}; 2190 if (ultimate.has<semantics::GenericDetails>()) { 2191 ExpressionAnalyzer::AdjustActuals noAdjustment; 2192 auto pair{ResolveGeneric( 2193 *symbol, arguments, noAdjustment, mightBeStructureConstructor)}; 2194 symbol = pair.first; 2195 dueToNullActual = pair.second; 2196 } 2197 if (symbol) { 2198 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2199 if (mightBeStructureConstructor) { 2200 return CalleeAndArguments{ 2201 semantics::SymbolRef{*symbol}, std::move(arguments)}; 2202 } 2203 } else if (IsProcedure(*symbol)) { 2204 return CalleeAndArguments{ 2205 ProcedureDesignator{*symbol}, std::move(arguments)}; 2206 } 2207 if (!context_.HasError(*symbol)) { 2208 AttachDeclaration( 2209 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2210 name.source), 2211 *symbol); 2212 } 2213 } else if (std::optional<SpecificCall> specificCall{ 2214 context_.intrinsics().Probe( 2215 CallCharacteristics{ 2216 ultimate.name().ToString(), isSubroutine}, 2217 arguments, GetFoldingContext())}) { 2218 // Generics can extend intrinsics 2219 return CalleeAndArguments{ 2220 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2221 std::move(specificCall->arguments)}; 2222 } else { 2223 EmitGenericResolutionError(*name.symbol, dueToNullActual); 2224 } 2225 } 2226 return std::nullopt; 2227 } 2228 2229 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2230 // generic intrinsic function "has no effect" on the result type of a 2231 // call to that intrinsic. So one can declare "character*8 cos" and 2232 // still get a real result from "cos(1.)". This is a dangerous feature, 2233 // especially since implementations are free to extend their sets of 2234 // intrinsics, and in doing so might clash with a name in a program. 2235 // So we emit a warning in this situation, and perhaps it should be an 2236 // error -- any correctly working program can silence the message by 2237 // simply deleting the pointless type declaration. 2238 void ExpressionAnalyzer::CheckBadExplicitType( 2239 const SpecificCall &call, const Symbol &intrinsic) { 2240 if (intrinsic.GetUltimate().GetType()) { 2241 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2242 if (const auto &result{procedure.functionResult}) { 2243 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2244 if (auto declared{ 2245 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2246 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2247 if (auto *msg{Say( 2248 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_warn_en_US, 2249 typeAndShape->AsFortran(), intrinsic.name(), 2250 declared->AsFortran())}) { 2251 msg->Attach(intrinsic.name(), 2252 "Ignored declaration of intrinsic function '%s'"_en_US, 2253 intrinsic.name()); 2254 } 2255 } 2256 } 2257 } 2258 } 2259 } 2260 } 2261 2262 void ExpressionAnalyzer::CheckForBadRecursion( 2263 parser::CharBlock callSite, const semantics::Symbol &proc) { 2264 if (const auto *scope{proc.scope()}) { 2265 if (scope->sourceRange().Contains(callSite)) { 2266 parser::Message *msg{nullptr}; 2267 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2268 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2269 callSite); 2270 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2271 msg = Say( // 15.6.2.1(3) 2272 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2273 callSite); 2274 } 2275 AttachDeclaration(msg, proc); 2276 } 2277 } 2278 } 2279 2280 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2281 if (const auto *designator{ 2282 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2283 if (const auto *dataRef{ 2284 std::get_if<parser::DataRef>(&designator->value().u)}) { 2285 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2286 return AssumedTypeDummy(*name); 2287 } 2288 } 2289 } 2290 return nullptr; 2291 } 2292 template <> 2293 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2294 if (const Symbol * symbol{name.symbol}) { 2295 if (const auto *type{symbol->GetType()}) { 2296 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2297 return symbol; 2298 } 2299 } 2300 } 2301 return nullptr; 2302 } 2303 template <typename A> 2304 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2305 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2306 // point it is is not guaranteed that it has been checked the object has 2307 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2308 // returned. 2309 return std::visit( 2310 common::visitors{ 2311 [&](const parser::StructureComponent &x) { 2312 return AssumedTypeDummy(x.component); 2313 }, 2314 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2315 }, 2316 object.u); 2317 } 2318 template <> 2319 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2320 const parser::AllocateObject &x) { 2321 return AssumedTypePointerOrAllocatableDummy(x); 2322 } 2323 template <> 2324 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2325 const parser::PointerObject &x) { 2326 return AssumedTypePointerOrAllocatableDummy(x); 2327 } 2328 2329 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2330 const semantics::DerivedTypeSpec &dtSpec) { 2331 if (dtSpec.IsForwardReferenced()) { 2332 Say("Cannot construct value for derived type '%s' " 2333 "before it is defined"_err_en_US, 2334 dtSpec.name()); 2335 return false; 2336 } 2337 return true; 2338 } 2339 2340 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2341 std::optional<parser::StructureConstructor> *structureConstructor) { 2342 const parser::Call &call{funcRef.v}; 2343 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2344 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2345 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2346 analyzer.Analyze(arg, false /* not subroutine call */); 2347 } 2348 if (analyzer.fatalErrors()) { 2349 return std::nullopt; 2350 } 2351 if (std::optional<CalleeAndArguments> callee{ 2352 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2353 analyzer.GetActuals(), false /* not subroutine */, 2354 true /* might be structure constructor */)}) { 2355 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2356 return MakeFunctionRef( 2357 call.source, std::move(*proc), std::move(callee->arguments)); 2358 } 2359 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2360 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2361 if (structureConstructor) { 2362 // Structure constructor misparsed as function reference? 2363 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2364 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2365 semantics::Scope &scope{context_.FindScope(name->source)}; 2366 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2367 if (!CheckIsValidForwardReference(dtSpec)) { 2368 return std::nullopt; 2369 } 2370 const semantics::DeclTypeSpec &type{ 2371 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2372 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2373 *structureConstructor = 2374 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2375 return Analyze(structureConstructor->value()); 2376 } 2377 } 2378 if (!context_.HasError(symbol)) { 2379 AttachDeclaration( 2380 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2381 symbol.name()), 2382 symbol); 2383 context_.SetError(symbol); 2384 } 2385 } 2386 return std::nullopt; 2387 } 2388 2389 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2390 for (const auto &arg : args) { 2391 if (arg && arg->isAlternateReturn()) { 2392 return true; 2393 } 2394 } 2395 return false; 2396 } 2397 2398 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2399 const parser::Call &call{callStmt.v}; 2400 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2401 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2402 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2403 for (const auto &arg : actualArgList) { 2404 analyzer.Analyze(arg, true /* is subroutine call */); 2405 } 2406 if (!analyzer.fatalErrors()) { 2407 if (std::optional<CalleeAndArguments> callee{ 2408 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2409 analyzer.GetActuals(), true /* subroutine */)}) { 2410 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2411 CHECK(proc); 2412 if (CheckCall(call.source, *proc, callee->arguments)) { 2413 callStmt.typedCall.Reset( 2414 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2415 HasAlternateReturns(callee->arguments)}, 2416 ProcedureRef::Deleter); 2417 return; 2418 } 2419 } 2420 if (!context_.AnyFatalError()) { 2421 std::string buf; 2422 llvm::raw_string_ostream dump{buf}; 2423 parser::DumpTree(dump, callStmt); 2424 Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US, 2425 dump.str()); 2426 } 2427 } 2428 } 2429 2430 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2431 if (!x.typedAssignment) { 2432 ArgumentAnalyzer analyzer{*this}; 2433 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2434 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2435 std::optional<Assignment> assignment; 2436 if (!analyzer.fatalErrors()) { 2437 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2438 if (!procRef) { 2439 analyzer.CheckForNullPointer( 2440 "in a non-pointer intrinsic assignment statement"); 2441 } 2442 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2443 if (procRef) { 2444 assignment->u = std::move(*procRef); 2445 } 2446 } 2447 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2448 GenericAssignmentWrapper::Deleter); 2449 } 2450 return common::GetPtrFromOptional(x.typedAssignment->v); 2451 } 2452 2453 const Assignment *ExpressionAnalyzer::Analyze( 2454 const parser::PointerAssignmentStmt &x) { 2455 if (!x.typedAssignment) { 2456 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2457 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2458 if (!lhs || !rhs) { 2459 x.typedAssignment.Reset( 2460 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2461 } else { 2462 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2463 std::visit(common::visitors{ 2464 [&](const std::list<parser::BoundsRemapping> &list) { 2465 Assignment::BoundsRemapping bounds; 2466 for (const auto &elem : list) { 2467 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2468 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2469 if (lower && upper) { 2470 bounds.emplace_back(Fold(std::move(*lower)), 2471 Fold(std::move(*upper))); 2472 } 2473 } 2474 assignment.u = std::move(bounds); 2475 }, 2476 [&](const std::list<parser::BoundsSpec> &list) { 2477 Assignment::BoundsSpec bounds; 2478 for (const auto &bound : list) { 2479 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2480 bounds.emplace_back(Fold(std::move(*lower))); 2481 } 2482 } 2483 assignment.u = std::move(bounds); 2484 }, 2485 }, 2486 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2487 x.typedAssignment.Reset( 2488 new GenericAssignmentWrapper{std::move(assignment)}, 2489 GenericAssignmentWrapper::Deleter); 2490 } 2491 } 2492 return common::GetPtrFromOptional(x.typedAssignment->v); 2493 } 2494 2495 static bool IsExternalCalledImplicitly( 2496 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2497 if (const auto *symbol{proc.GetSymbol()}) { 2498 return symbol->has<semantics::SubprogramDetails>() && 2499 symbol->owner().IsGlobal() && 2500 (!symbol->scope() /*ENTRY*/ || 2501 !symbol->scope()->sourceRange().Contains(callSite)); 2502 } else { 2503 return false; 2504 } 2505 } 2506 2507 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2508 parser::CharBlock callSite, const ProcedureDesignator &proc, 2509 ActualArguments &arguments) { 2510 auto chars{characteristics::Procedure::Characterize( 2511 proc, context_.foldingContext())}; 2512 if (chars) { 2513 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2514 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2515 Say(callSite, 2516 "References to the procedure '%s' require an explicit interface"_err_en_US, 2517 DEREF(proc.GetSymbol()).name()); 2518 } 2519 // Checks for ASSOCIATED() are done in intrinsic table processing 2520 bool procIsAssociated{false}; 2521 if (const SpecificIntrinsic * 2522 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2523 if (specificIntrinsic->name == "associated") { 2524 procIsAssociated = true; 2525 } 2526 } 2527 if (!procIsAssociated) { 2528 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2529 context_.FindScope(callSite), treatExternalAsImplicit, 2530 proc.GetSpecificIntrinsic()); 2531 const Symbol *procSymbol{proc.GetSymbol()}; 2532 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2533 if (const semantics::Scope * 2534 pure{semantics::FindPureProcedureContaining( 2535 context_.FindScope(callSite))}) { 2536 Say(callSite, 2537 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2538 procSymbol->name(), DEREF(pure->symbol()).name()); 2539 } 2540 } 2541 } 2542 } 2543 return chars; 2544 } 2545 2546 // Unary operations 2547 2548 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2549 if (MaybeExpr operand{Analyze(x.v.value())}) { 2550 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2551 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2552 if (semantics::IsProcedurePointer(*result)) { 2553 Say("A function reference that returns a procedure " 2554 "pointer may not be parenthesized"_err_en_US); // C1003 2555 } 2556 } 2557 } 2558 return Parenthesize(std::move(*operand)); 2559 } 2560 return std::nullopt; 2561 } 2562 2563 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2564 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2565 ArgumentAnalyzer analyzer{context}; 2566 analyzer.Analyze(x.v); 2567 if (!analyzer.fatalErrors()) { 2568 if (analyzer.IsIntrinsicNumeric(opr)) { 2569 analyzer.CheckForNullPointer(); 2570 if (opr == NumericOperator::Add) { 2571 return analyzer.MoveExpr(0); 2572 } else { 2573 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2574 } 2575 } else { 2576 return analyzer.TryDefinedOp(AsFortran(opr), 2577 "Operand of unary %s must be numeric; have %s"_err_en_US); 2578 } 2579 } 2580 return std::nullopt; 2581 } 2582 2583 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2584 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2585 } 2586 2587 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2588 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2589 } 2590 2591 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2592 ArgumentAnalyzer analyzer{*this}; 2593 analyzer.Analyze(x.v); 2594 if (!analyzer.fatalErrors()) { 2595 if (analyzer.IsIntrinsicLogical()) { 2596 analyzer.CheckForNullPointer(); 2597 return AsGenericExpr( 2598 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2599 } else { 2600 return analyzer.TryDefinedOp(LogicalOperator::Not, 2601 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2602 } 2603 } 2604 return std::nullopt; 2605 } 2606 2607 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2608 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2609 // intrinsic function. 2610 // Use the actual source for the name of the call for error reporting. 2611 std::optional<ActualArgument> arg; 2612 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2613 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2614 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2615 arg = ActualArgument{std::move(*argExpr)}; 2616 } else { 2617 return std::nullopt; 2618 } 2619 parser::CharBlock at{GetContextualMessages().at()}; 2620 CHECK(at.size() >= 4); 2621 parser::CharBlock loc{at.begin() + 1, 3}; 2622 CHECK(loc == "loc"); 2623 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2624 } 2625 2626 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2627 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2628 ArgumentAnalyzer analyzer{*this, name.source}; 2629 analyzer.Analyze(std::get<1>(x.t)); 2630 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2631 "No operator %s defined for %s"_err_en_US, nullptr, true); 2632 } 2633 2634 // Binary (dyadic) operations 2635 2636 template <template <typename> class OPR> 2637 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2638 const parser::Expr::IntrinsicBinary &x) { 2639 ArgumentAnalyzer analyzer{context}; 2640 analyzer.Analyze(std::get<0>(x.t)); 2641 analyzer.Analyze(std::get<1>(x.t)); 2642 if (!analyzer.fatalErrors()) { 2643 if (analyzer.IsIntrinsicNumeric(opr)) { 2644 analyzer.CheckForNullPointer(); 2645 analyzer.CheckConformance(); 2646 return NumericOperation<OPR>(context.GetContextualMessages(), 2647 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2648 context.GetDefaultKind(TypeCategory::Real)); 2649 } else { 2650 return analyzer.TryDefinedOp(AsFortran(opr), 2651 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2652 } 2653 } 2654 return std::nullopt; 2655 } 2656 2657 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2658 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2659 } 2660 2661 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2662 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2663 } 2664 2665 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2666 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2667 } 2668 2669 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2670 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2671 } 2672 2673 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2674 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2675 } 2676 2677 MaybeExpr ExpressionAnalyzer::Analyze( 2678 const parser::Expr::ComplexConstructor &x) { 2679 auto re{Analyze(std::get<0>(x.t).value())}; 2680 auto im{Analyze(std::get<1>(x.t).value())}; 2681 if (re && im) { 2682 ConformabilityCheck(GetContextualMessages(), *re, *im); 2683 } 2684 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2685 std::move(im), GetDefaultKind(TypeCategory::Real))); 2686 } 2687 2688 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2689 ArgumentAnalyzer analyzer{*this}; 2690 analyzer.Analyze(std::get<0>(x.t)); 2691 analyzer.Analyze(std::get<1>(x.t)); 2692 if (!analyzer.fatalErrors()) { 2693 if (analyzer.IsIntrinsicConcat()) { 2694 analyzer.CheckForNullPointer(); 2695 return std::visit( 2696 [&](auto &&x, auto &&y) -> MaybeExpr { 2697 using T = ResultType<decltype(x)>; 2698 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2699 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2700 } else { 2701 DIE("different types for intrinsic concat"); 2702 } 2703 }, 2704 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2705 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2706 } else { 2707 return analyzer.TryDefinedOp("//", 2708 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2709 } 2710 } 2711 return std::nullopt; 2712 } 2713 2714 // The Name represents a user-defined intrinsic operator. 2715 // If the actuals match one of the specific procedures, return a function ref. 2716 // Otherwise report the error in messages. 2717 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2718 const parser::Name &name, ActualArguments &&actuals) { 2719 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2720 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2721 return MakeFunctionRef(name.source, 2722 std::move(std::get<ProcedureDesignator>(callee->u)), 2723 std::move(callee->arguments)); 2724 } else { 2725 return std::nullopt; 2726 } 2727 } 2728 2729 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2730 const parser::Expr::IntrinsicBinary &x) { 2731 ArgumentAnalyzer analyzer{context}; 2732 analyzer.Analyze(std::get<0>(x.t)); 2733 analyzer.Analyze(std::get<1>(x.t)); 2734 if (!analyzer.fatalErrors()) { 2735 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2736 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2737 analyzer.ConvertBOZ(leftType, 0, rightType); 2738 analyzer.ConvertBOZ(rightType, 1, leftType); 2739 if (leftType && rightType && 2740 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2741 analyzer.CheckForNullPointer("as a relational operand"); 2742 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2743 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2744 } else { 2745 return analyzer.TryDefinedOp(opr, 2746 leftType && leftType->category() == TypeCategory::Logical && 2747 rightType && rightType->category() == TypeCategory::Logical 2748 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2749 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2750 } 2751 } 2752 return std::nullopt; 2753 } 2754 2755 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2756 return RelationHelper(*this, RelationalOperator::LT, x); 2757 } 2758 2759 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2760 return RelationHelper(*this, RelationalOperator::LE, x); 2761 } 2762 2763 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2764 return RelationHelper(*this, RelationalOperator::EQ, x); 2765 } 2766 2767 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2768 return RelationHelper(*this, RelationalOperator::NE, x); 2769 } 2770 2771 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2772 return RelationHelper(*this, RelationalOperator::GE, x); 2773 } 2774 2775 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2776 return RelationHelper(*this, RelationalOperator::GT, x); 2777 } 2778 2779 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2780 const parser::Expr::IntrinsicBinary &x) { 2781 ArgumentAnalyzer analyzer{context}; 2782 analyzer.Analyze(std::get<0>(x.t)); 2783 analyzer.Analyze(std::get<1>(x.t)); 2784 if (!analyzer.fatalErrors()) { 2785 if (analyzer.IsIntrinsicLogical()) { 2786 analyzer.CheckForNullPointer("as a logical operand"); 2787 return AsGenericExpr(BinaryLogicalOperation(opr, 2788 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2789 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2790 } else { 2791 return analyzer.TryDefinedOp( 2792 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2793 } 2794 } 2795 return std::nullopt; 2796 } 2797 2798 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2799 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2800 } 2801 2802 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2803 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2804 } 2805 2806 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2807 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2808 } 2809 2810 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2811 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2812 } 2813 2814 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2815 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2816 ArgumentAnalyzer analyzer{*this, name.source}; 2817 analyzer.Analyze(std::get<1>(x.t)); 2818 analyzer.Analyze(std::get<2>(x.t)); 2819 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2820 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2821 } 2822 2823 // Returns true if a parsed function reference should be converted 2824 // into an array element reference. 2825 static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context, 2826 const parser::FunctionReference &funcRef) { 2827 // Emit message if the function reference fix will end up an array element 2828 // reference with no subscripts, or subscripts on a scalar, because it will 2829 // not be possible to later distinguish in expressions between an empty 2830 // subscript list due to bad subscripts error recovery or because the 2831 // user did not put any. 2832 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2833 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2834 if (!name) { 2835 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2836 } 2837 if (!name->symbol) { 2838 return false; 2839 } else if (name->symbol->Rank() == 0) { 2840 if (const Symbol * 2841 function{ 2842 semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) { 2843 auto &msg{context.Say(funcRef.v.source, 2844 "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US, 2845 name->source)}; 2846 AttachDeclaration(&msg, *function); 2847 name->symbol = const_cast<Symbol *>(function); 2848 } 2849 return false; 2850 } else { 2851 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2852 auto &msg{context.Say(funcRef.v.source, 2853 "Reference to array '%s' with empty subscript list"_err_en_US, 2854 name->source)}; 2855 if (name->symbol) { 2856 AttachDeclaration(&msg, *name->symbol); 2857 } 2858 } 2859 return true; 2860 } 2861 } 2862 2863 // Converts, if appropriate, an original misparse of ambiguous syntax like 2864 // A(1) as a function reference into an array reference. 2865 // Misparsed structure constructors are detected elsewhere after generic 2866 // function call resolution fails. 2867 template <typename... A> 2868 static void FixMisparsedFunctionReference( 2869 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2870 // The parse tree is updated in situ when resolving an ambiguous parse. 2871 using uType = std::decay_t<decltype(constU)>; 2872 auto &u{const_cast<uType &>(constU)}; 2873 if (auto *func{ 2874 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2875 parser::FunctionReference &funcRef{func->value()}; 2876 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2877 if (Symbol * 2878 origSymbol{ 2879 std::visit(common::visitors{ 2880 [&](parser::Name &name) { return name.symbol; }, 2881 [&](parser::ProcComponentRef &pcr) { 2882 return pcr.v.thing.component.symbol; 2883 }, 2884 }, 2885 proc.u)}) { 2886 Symbol &symbol{origSymbol->GetUltimate()}; 2887 if (symbol.has<semantics::ObjectEntityDetails>() || 2888 symbol.has<semantics::AssocEntityDetails>()) { 2889 // Note that expression in AssocEntityDetails cannot be a procedure 2890 // pointer as per C1105 so this cannot be a function reference. 2891 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2892 uType>) { 2893 if (CheckFuncRefToArrayElement(context, funcRef)) { 2894 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2895 } 2896 } else { 2897 DIE("can't fix misparsed function as array reference"); 2898 } 2899 } 2900 } 2901 } 2902 } 2903 2904 // Common handling of parse tree node types that retain the 2905 // representation of the analyzed expression. 2906 template <typename PARSED> 2907 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2908 const PARSED &x, parser::CharBlock source) { 2909 if (useSavedTypedExprs_ && x.typedExpr) { 2910 return x.typedExpr->v; 2911 } 2912 auto restorer{GetContextualMessages().SetLocation(source)}; 2913 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2914 std::is_same_v<PARSED, parser::Variable>) { 2915 FixMisparsedFunctionReference(context_, x.u); 2916 } 2917 if (AssumedTypeDummy(x)) { // C710 2918 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2919 ResetExpr(x); 2920 return std::nullopt; 2921 } 2922 MaybeExpr result; 2923 if constexpr (common::HasMember<parser::StructureConstructor, 2924 std::decay_t<decltype(x.u)>> && 2925 common::HasMember<common::Indirection<parser::FunctionReference>, 2926 std::decay_t<decltype(x.u)>>) { 2927 if (const auto *funcRef{ 2928 std::get_if<common::Indirection<parser::FunctionReference>>( 2929 &x.u)}) { 2930 // Function references in Exprs might turn out to be misparsed structure 2931 // constructors; we have to try generic procedure resolution 2932 // first to be sure. 2933 std::optional<parser::StructureConstructor> ctor; 2934 result = Analyze(funcRef->value(), &ctor); 2935 if (result && ctor) { 2936 // A misparsed function reference is really a structure 2937 // constructor. Repair the parse tree in situ. 2938 const_cast<PARSED &>(x).u = std::move(*ctor); 2939 } 2940 } else { 2941 result = Analyze(x.u); 2942 } 2943 } else { 2944 result = Analyze(x.u); 2945 } 2946 if (result) { 2947 SetExpr(x, Fold(std::move(*result))); 2948 return x.typedExpr->v; 2949 } else { 2950 ResetExpr(x); 2951 if (!context_.AnyFatalError()) { 2952 std::string buf; 2953 llvm::raw_string_ostream dump{buf}; 2954 parser::DumpTree(dump, x); 2955 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2956 dump.str()); 2957 } 2958 return std::nullopt; 2959 } 2960 } 2961 2962 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2963 return ExprOrVariable(expr, expr.source); 2964 } 2965 2966 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2967 return ExprOrVariable(variable, variable.GetSource()); 2968 } 2969 2970 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 2971 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 2972 if (!useSavedTypedExprs_ || !var->typedExpr) { 2973 parser::CharBlock source{var->GetSource()}; 2974 auto restorer{GetContextualMessages().SetLocation(source)}; 2975 FixMisparsedFunctionReference(context_, var->u); 2976 if (const auto *funcRef{ 2977 std::get_if<common::Indirection<parser::FunctionReference>>( 2978 &var->u)}) { 2979 // A Selector that parsed as a Variable might turn out during analysis 2980 // to actually be a structure constructor. In that case, repair the 2981 // Variable parse tree node into an Expr 2982 std::optional<parser::StructureConstructor> ctor; 2983 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 2984 if (ctor) { 2985 auto &writable{const_cast<parser::Selector &>(selector)}; 2986 writable.u = parser::Expr{std::move(*ctor)}; 2987 auto &expr{std::get<parser::Expr>(writable.u)}; 2988 expr.source = source; 2989 SetExpr(expr, Fold(std::move(*result))); 2990 return expr.typedExpr->v; 2991 } else { 2992 SetExpr(*var, Fold(std::move(*result))); 2993 return var->typedExpr->v; 2994 } 2995 } else { 2996 ResetExpr(*var); 2997 if (context_.AnyFatalError()) { 2998 return std::nullopt; 2999 } 3000 } 3001 } 3002 } 3003 } 3004 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 3005 return Analyze(selector.u); 3006 } 3007 3008 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 3009 auto restorer{common::ScopedSet(inDataStmtConstant_, true)}; 3010 return ExprOrVariable(x, x.source); 3011 } 3012 3013 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 3014 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3015 } 3016 3017 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 3018 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3019 } 3020 3021 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 3022 TypeCategory category, 3023 const std::optional<parser::KindSelector> &selector) { 3024 int defaultKind{GetDefaultKind(category)}; 3025 if (!selector) { 3026 return Expr<SubscriptInteger>{defaultKind}; 3027 } 3028 return std::visit( 3029 common::visitors{ 3030 [&](const parser::ScalarIntConstantExpr &x) { 3031 if (MaybeExpr kind{Analyze(x)}) { 3032 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 3033 if (CheckIntrinsicKind(category, *code)) { 3034 return Expr<SubscriptInteger>{*code}; 3035 } 3036 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 3037 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 3038 } 3039 } 3040 return Expr<SubscriptInteger>{defaultKind}; 3041 }, 3042 [&](const parser::KindSelector::StarSize &x) { 3043 std::intmax_t size = x.v; 3044 if (!CheckIntrinsicSize(category, size)) { 3045 size = defaultKind; 3046 } else if (category == TypeCategory::Complex) { 3047 size /= 2; 3048 } 3049 return Expr<SubscriptInteger>{size}; 3050 }, 3051 }, 3052 selector->u); 3053 } 3054 3055 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 3056 return context_.GetDefaultKind(category); 3057 } 3058 3059 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 3060 common::TypeCategory category) { 3061 return {category, GetDefaultKind(category)}; 3062 } 3063 3064 bool ExpressionAnalyzer::CheckIntrinsicKind( 3065 TypeCategory category, std::int64_t kind) { 3066 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 3067 return true; 3068 } else { 3069 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3070 ToUpperCase(EnumToString(category)), kind); 3071 return false; 3072 } 3073 } 3074 3075 bool ExpressionAnalyzer::CheckIntrinsicSize( 3076 TypeCategory category, std::int64_t size) { 3077 if (category == TypeCategory::Complex) { 3078 // COMPLEX*16 == COMPLEX(KIND=8) 3079 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 3080 return true; 3081 } 3082 } else if (IsValidKindOfIntrinsicType(category, size)) { 3083 return true; 3084 } 3085 Say("%s*%jd is not a supported type"_err_en_US, 3086 ToUpperCase(EnumToString(category)), size); 3087 return false; 3088 } 3089 3090 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3091 return impliedDos_.insert(std::make_pair(name, kind)).second; 3092 } 3093 3094 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3095 auto iter{impliedDos_.find(name)}; 3096 if (iter != impliedDos_.end()) { 3097 impliedDos_.erase(iter); 3098 } 3099 } 3100 3101 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3102 parser::CharBlock name) const { 3103 auto iter{impliedDos_.find(name)}; 3104 if (iter != impliedDos_.cend()) { 3105 return {iter->second}; 3106 } else { 3107 return std::nullopt; 3108 } 3109 } 3110 3111 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3112 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3113 if (result) { 3114 if (auto type{result->GetType()}) { 3115 if (type->category() != category) { // C885 3116 Say(at, "Must have %s type, but is %s"_err_en_US, 3117 ToUpperCase(EnumToString(category)), 3118 ToUpperCase(type->AsFortran())); 3119 return false; 3120 } else if (defaultKind) { 3121 int kind{context_.GetDefaultKind(category)}; 3122 if (type->kind() != kind) { 3123 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3124 kind, ToUpperCase(EnumToString(category)), 3125 ToUpperCase(type->AsFortran())); 3126 return false; 3127 } 3128 } 3129 } else { 3130 Say(at, "Must have %s type, but is typeless"_err_en_US, 3131 ToUpperCase(EnumToString(category))); 3132 return false; 3133 } 3134 } 3135 return true; 3136 } 3137 3138 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3139 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3140 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3141 if (intrinsic->characteristics.value().attrs.test( 3142 characteristics::Procedure::Attr::NullPointer) && 3143 arguments.empty()) { 3144 return Expr<SomeType>{NullPointer{}}; 3145 } 3146 } 3147 if (const Symbol * symbol{proc.GetSymbol()}) { 3148 if (!ResolveForward(*symbol)) { 3149 return std::nullopt; 3150 } 3151 } 3152 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3153 if (chars->functionResult) { 3154 const auto &result{*chars->functionResult}; 3155 if (result.IsProcedurePointer()) { 3156 return Expr<SomeType>{ 3157 ProcedureRef{std::move(proc), std::move(arguments)}}; 3158 } else { 3159 // Not a procedure pointer, so type and shape are known. 3160 return TypedWrapper<FunctionRef, ProcedureRef>( 3161 DEREF(result.GetTypeAndShape()).type(), 3162 ProcedureRef{std::move(proc), std::move(arguments)}); 3163 } 3164 } else { 3165 Say("Function result characteristics are not known"_err_en_US); 3166 } 3167 } 3168 return std::nullopt; 3169 } 3170 3171 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3172 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3173 if (std::optional<SpecificCall> specificCall{ 3174 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3175 arguments, GetFoldingContext())}) { 3176 return MakeFunctionRef(intrinsic, 3177 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3178 std::move(specificCall->arguments)); 3179 } else { 3180 return std::nullopt; 3181 } 3182 } 3183 3184 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3185 source_.ExtendToCover(x.GetSource()); 3186 if (MaybeExpr expr{context_.Analyze(x)}) { 3187 if (!IsConstantExpr(*expr)) { 3188 actuals_.emplace_back(std::move(*expr)); 3189 SetArgSourceLocation(actuals_.back(), x.GetSource()); 3190 return; 3191 } 3192 const Symbol *symbol{GetLastSymbol(*expr)}; 3193 if (!symbol) { 3194 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3195 x.GetSource()); 3196 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3197 auto *msg{context_.SayAt(x, 3198 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3199 symbol->name())}; 3200 if (subp->isFunction()) { 3201 const auto &result{subp->result().name()}; 3202 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 3203 } 3204 } else { 3205 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3206 symbol->name()); 3207 } 3208 } 3209 fatalErrors_ = true; 3210 } 3211 3212 void ArgumentAnalyzer::Analyze( 3213 const parser::ActualArgSpec &arg, bool isSubroutine) { 3214 // TODO: Actual arguments that are procedures and procedure pointers need to 3215 // be detected and represented (they're not expressions). 3216 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3217 std::optional<ActualArgument> actual; 3218 std::visit( 3219 common::visitors{ 3220 [&](const common::Indirection<parser::Expr> &x) { 3221 actual = AnalyzeExpr(x.value()); 3222 SetArgSourceLocation(actual, x.value().source); 3223 }, 3224 [&](const parser::AltReturnSpec &label) { 3225 if (!isSubroutine) { 3226 context_.Say("alternate return specification may not appear on" 3227 " function reference"_err_en_US); 3228 } 3229 actual = ActualArgument(label.v); 3230 }, 3231 [&](const parser::ActualArg::PercentRef &) { 3232 context_.Say( 3233 "not yet implemented: %REF() intrinsic for arguments"_err_en_US); 3234 }, 3235 [&](const parser::ActualArg::PercentVal &) { 3236 context_.Say( 3237 "not yet implemetned: %VAL() intrinsic for arguments"_err_en_US); 3238 }, 3239 }, 3240 std::get<parser::ActualArg>(arg.t).u); 3241 if (actual) { 3242 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3243 actual->set_keyword(argKW->v.source); 3244 } 3245 actuals_.emplace_back(std::move(*actual)); 3246 } else { 3247 fatalErrors_ = true; 3248 } 3249 } 3250 3251 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3252 const DynamicType &leftType, const DynamicType &rightType) const { 3253 CHECK(actuals_.size() == 2); 3254 return semantics::IsIntrinsicRelational( 3255 opr, leftType, GetRank(0), rightType, GetRank(1)); 3256 } 3257 3258 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3259 std::optional<DynamicType> leftType{GetType(0)}; 3260 if (actuals_.size() == 1) { 3261 if (IsBOZLiteral(0)) { 3262 return opr == NumericOperator::Add; // unary '+' 3263 } else { 3264 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3265 } 3266 } else { 3267 std::optional<DynamicType> rightType{GetType(1)}; 3268 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3269 auto cat1{rightType->category()}; 3270 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3271 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3272 auto cat0{leftType->category()}; 3273 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3274 } else { 3275 return leftType && rightType && 3276 semantics::IsIntrinsicNumeric( 3277 *leftType, GetRank(0), *rightType, GetRank(1)); 3278 } 3279 } 3280 } 3281 3282 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3283 if (std::optional<DynamicType> leftType{GetType(0)}) { 3284 if (actuals_.size() == 1) { 3285 return semantics::IsIntrinsicLogical(*leftType); 3286 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3287 return semantics::IsIntrinsicLogical( 3288 *leftType, GetRank(0), *rightType, GetRank(1)); 3289 } 3290 } 3291 return false; 3292 } 3293 3294 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3295 if (std::optional<DynamicType> leftType{GetType(0)}) { 3296 if (std::optional<DynamicType> rightType{GetType(1)}) { 3297 return semantics::IsIntrinsicConcat( 3298 *leftType, GetRank(0), *rightType, GetRank(1)); 3299 } 3300 } 3301 return false; 3302 } 3303 3304 bool ArgumentAnalyzer::CheckConformance() { 3305 if (actuals_.size() == 2) { 3306 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3307 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3308 if (lhs && rhs) { 3309 auto &foldingContext{context_.GetFoldingContext()}; 3310 auto lhShape{GetShape(foldingContext, *lhs)}; 3311 auto rhShape{GetShape(foldingContext, *rhs)}; 3312 if (lhShape && rhShape) { 3313 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3314 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3315 "left operand", "right operand") 3316 .value_or(false /*fail when conformance is not known now*/)) { 3317 fatalErrors_ = true; 3318 return false; 3319 } 3320 } 3321 } 3322 } 3323 return true; // no proven problem 3324 } 3325 3326 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3327 for (const std::optional<ActualArgument> &arg : actuals_) { 3328 if (arg) { 3329 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3330 if (IsNullPointer(*expr)) { 3331 context_.Say( 3332 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3333 fatalErrors_ = true; 3334 return false; 3335 } 3336 } 3337 } 3338 } 3339 return true; 3340 } 3341 3342 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3343 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3344 bool isUserOp) { 3345 if (AnyUntypedOrMissingOperand()) { 3346 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3347 return std::nullopt; 3348 } 3349 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3350 if (!definedOpSymbolPtr) { 3351 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3352 } 3353 { 3354 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3355 std::string oprNameString{ 3356 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3357 parser::CharBlock oprName{oprNameString}; 3358 const auto &scope{context_.context().FindScope(source_)}; 3359 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3360 *definedOpSymbolPtr = symbol; 3361 parser::Name name{symbol->name(), symbol}; 3362 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3363 return result; 3364 } 3365 } 3366 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3367 if (const Symbol * 3368 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3369 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3370 return result; 3371 } 3372 } 3373 } 3374 } 3375 if (*definedOpSymbolPtr) { 3376 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3377 } else if (actuals_.size() == 1 || AreConformable()) { 3378 if (CheckForNullPointer()) { 3379 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3380 } 3381 } else { 3382 context_.Say( 3383 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3384 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3385 } 3386 return std::nullopt; 3387 } 3388 3389 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3390 std::vector<const char *> oprs, parser::MessageFixedText error) { 3391 const Symbol *definedOpSymbolPtr{nullptr}; 3392 for (std::size_t i{1}; i < oprs.size(); ++i) { 3393 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3394 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3395 return result; 3396 } 3397 } 3398 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3399 } 3400 3401 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3402 ActualArguments localActuals{actuals_}; 3403 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3404 if (!proc) { 3405 proc = &symbol; 3406 localActuals.at(passIndex).value().set_isPassedObject(); 3407 } 3408 CheckConformance(); 3409 return context_.MakeFunctionRef( 3410 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3411 } 3412 3413 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3414 using semantics::Tristate; 3415 const Expr<SomeType> &lhs{GetExpr(0)}; 3416 const Expr<SomeType> &rhs{GetExpr(1)}; 3417 std::optional<DynamicType> lhsType{lhs.GetType()}; 3418 std::optional<DynamicType> rhsType{rhs.GetType()}; 3419 int lhsRank{lhs.Rank()}; 3420 int rhsRank{rhs.Rank()}; 3421 Tristate isDefined{ 3422 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3423 if (isDefined == Tristate::No) { 3424 if (lhsType && rhsType) { 3425 AddAssignmentConversion(*lhsType, *rhsType); 3426 } 3427 return std::nullopt; // user-defined assignment not allowed for these args 3428 } 3429 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3430 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3431 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3432 context_.Say( 3433 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3434 DEREF(procRef->proc().GetSymbol()).name()); 3435 } 3436 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3437 return std::move(*procRef); 3438 } 3439 if (isDefined == Tristate::Yes) { 3440 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3441 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3442 SayNoMatch("ASSIGNMENT(=)", true); 3443 } 3444 } 3445 return std::nullopt; 3446 } 3447 3448 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3449 TypeCategory lhs, TypeCategory rhs) { 3450 if (!context_.context().languageFeatures().IsEnabled( 3451 common::LanguageFeature::LogicalIntegerAssignment)) { 3452 return false; 3453 } 3454 std::optional<parser::MessageFixedText> msg; 3455 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3456 // allow assignment to LOGICAL from INTEGER as a legacy extension 3457 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_port_en_US; 3458 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3459 // ... and assignment to LOGICAL from INTEGER 3460 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_port_en_US; 3461 } else { 3462 return false; 3463 } 3464 if (context_.context().languageFeatures().ShouldWarn( 3465 common::LanguageFeature::LogicalIntegerAssignment)) { 3466 context_.Say(std::move(*msg)); 3467 } 3468 return true; 3469 } 3470 3471 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3472 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3473 std::string oprNameString{"assignment(=)"}; 3474 parser::CharBlock oprName{oprNameString}; 3475 const Symbol *proc{nullptr}; 3476 const auto &scope{context_.context().FindScope(source_)}; 3477 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3478 ExpressionAnalyzer::AdjustActuals noAdjustment; 3479 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}; 3480 if (pair.first) { 3481 proc = pair.first; 3482 } else { 3483 context_.EmitGenericResolutionError(*symbol, pair.second); 3484 } 3485 } 3486 int passedObjectIndex{-1}; 3487 const Symbol *definedOpSymbol{nullptr}; 3488 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3489 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3490 if (const Symbol * 3491 resolution{GetBindingResolution(GetType(i), *specific)}) { 3492 proc = resolution; 3493 } else { 3494 proc = specific; 3495 passedObjectIndex = i; 3496 } 3497 } 3498 } 3499 if (!proc) { 3500 return std::nullopt; 3501 } 3502 ActualArguments actualsCopy{actuals_}; 3503 if (passedObjectIndex >= 0) { 3504 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3505 } 3506 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3507 } 3508 3509 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3510 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3511 << '\n'; 3512 for (const auto &actual : actuals_) { 3513 if (!actual.has_value()) { 3514 os << "- error\n"; 3515 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3516 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3517 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3518 expr->AsFortran(os << "- expr: ") << '\n'; 3519 } else { 3520 DIE("bad ActualArgument"); 3521 } 3522 } 3523 } 3524 3525 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3526 const parser::Expr &expr) { 3527 source_.ExtendToCover(expr.source); 3528 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3529 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3530 if (isProcedureCall_) { 3531 ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}}; 3532 SetArgSourceLocation(arg, expr.source); 3533 return std::move(arg); 3534 } 3535 context_.SayAt(expr.source, 3536 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3537 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3538 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3539 ActualArgument arg{std::move(*argExpr)}; 3540 SetArgSourceLocation(arg, expr.source); 3541 return std::move(arg); 3542 } 3543 context_.SayAt(expr.source, 3544 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3545 : "Subroutine name is not allowed here"_err_en_US); 3546 } 3547 return std::nullopt; 3548 } 3549 3550 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3551 const parser::Expr &expr) { 3552 // If an expression's parse tree is a whole assumed-size array: 3553 // Expr -> Designator -> DataRef -> Name 3554 // treat it as a special case for argument passing and bypass 3555 // the C1002/C1014 constraint checking in expression semantics. 3556 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3557 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3558 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3559 return context_.Analyze(expr); 3560 } 3561 } 3562 return context_.Analyze(expr); 3563 } 3564 3565 bool ArgumentAnalyzer::AreConformable() const { 3566 CHECK(actuals_.size() == 2); 3567 return actuals_[0] && actuals_[1] && 3568 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3569 } 3570 3571 // Look for a type-bound operator in the type of arg number passIndex. 3572 const Symbol *ArgumentAnalyzer::FindBoundOp( 3573 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3574 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3575 if (!type || !type->scope()) { 3576 return nullptr; 3577 } 3578 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3579 if (!symbol) { 3580 return nullptr; 3581 } 3582 definedOp = symbol; 3583 ExpressionAnalyzer::AdjustActuals adjustment{ 3584 [&](const Symbol &proc, ActualArguments &) { 3585 return passIndex == GetPassIndex(proc); 3586 }}; 3587 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3588 if (!pair.first) { 3589 context_.EmitGenericResolutionError(*symbol, pair.second); 3590 } 3591 return pair.first; 3592 } 3593 3594 // If there is an implicit conversion between intrinsic types, make it explicit 3595 void ArgumentAnalyzer::AddAssignmentConversion( 3596 const DynamicType &lhsType, const DynamicType &rhsType) { 3597 if (lhsType.category() == rhsType.category() && 3598 (lhsType.category() == TypeCategory::Derived || 3599 lhsType.kind() == rhsType.kind())) { 3600 // no conversion necessary 3601 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3602 std::optional<parser::CharBlock> source; 3603 if (actuals_[1]) { 3604 source = actuals_[1]->sourceLocation(); 3605 } 3606 actuals_[1] = ActualArgument{*rhsExpr}; 3607 SetArgSourceLocation(actuals_[1], source); 3608 } else { 3609 actuals_[1] = std::nullopt; 3610 } 3611 } 3612 3613 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3614 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3615 } 3616 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3617 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3618 } 3619 3620 // If the argument at index i is a BOZ literal, convert its type to match the 3621 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3622 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3623 // is not currently supported. 3624 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3625 std::size_t i, std::optional<DynamicType> otherType) { 3626 if (IsBOZLiteral(i)) { 3627 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3628 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3629 if (otherType && otherType->category() == TypeCategory::Real) { 3630 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3631 MaybeExpr realExpr{ 3632 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3633 actuals_[i] = std::move(*realExpr); 3634 thisType.emplace(TypeCategory::Real, kind); 3635 } else { 3636 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3637 MaybeExpr intExpr{ 3638 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3639 actuals_[i] = std::move(*intExpr); 3640 thisType.emplace(TypeCategory::Integer, kind); 3641 } 3642 } 3643 } 3644 3645 // Report error resolving opr when there is a user-defined one available 3646 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3647 std::string type0{TypeAsFortran(0)}; 3648 auto rank0{actuals_[0]->Rank()}; 3649 if (actuals_.size() == 1) { 3650 if (rank0 > 0) { 3651 context_.Say("No intrinsic or user-defined %s matches " 3652 "rank %d array of %s"_err_en_US, 3653 opr, rank0, type0); 3654 } else { 3655 context_.Say("No intrinsic or user-defined %s matches " 3656 "operand type %s"_err_en_US, 3657 opr, type0); 3658 } 3659 } else { 3660 std::string type1{TypeAsFortran(1)}; 3661 auto rank1{actuals_[1]->Rank()}; 3662 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3663 context_.Say("No intrinsic or user-defined %s matches " 3664 "rank %d array of %s and rank %d array of %s"_err_en_US, 3665 opr, rank0, type0, rank1, type1); 3666 } else if (isAssignment && rank0 != rank1) { 3667 if (rank0 == 0) { 3668 context_.Say("No intrinsic or user-defined %s matches " 3669 "scalar %s and rank %d array of %s"_err_en_US, 3670 opr, type0, rank1, type1); 3671 } else { 3672 context_.Say("No intrinsic or user-defined %s matches " 3673 "rank %d array of %s and scalar %s"_err_en_US, 3674 opr, rank0, type0, type1); 3675 } 3676 } else { 3677 context_.Say("No intrinsic or user-defined %s matches " 3678 "operand types %s and %s"_err_en_US, 3679 opr, type0, type1); 3680 } 3681 } 3682 } 3683 3684 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3685 if (i >= actuals_.size() || !actuals_[i]) { 3686 return "missing argument"; 3687 } else if (std::optional<DynamicType> type{GetType(i)}) { 3688 return type->IsAssumedType() ? "TYPE(*)"s 3689 : type->IsUnlimitedPolymorphic() ? "CLASS(*)"s 3690 : type->IsPolymorphic() ? "CLASS("s + type->AsFortran() + ')' 3691 : type->category() == TypeCategory::Derived 3692 ? "TYPE("s + type->AsFortran() + ')' 3693 : type->category() == TypeCategory::Character 3694 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3695 : ToUpperCase(type->AsFortran()); 3696 } else { 3697 return "untyped"; 3698 } 3699 } 3700 3701 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3702 for (const auto &actual : actuals_) { 3703 if (!actual || 3704 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3705 return true; 3706 } 3707 } 3708 return false; 3709 } 3710 } // namespace Fortran::evaluate 3711 3712 namespace Fortran::semantics { 3713 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3714 SemanticsContext &context, common::TypeCategory category, 3715 const std::optional<parser::KindSelector> &selector) { 3716 evaluate::ExpressionAnalyzer analyzer{context}; 3717 auto restorer{ 3718 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3719 return analyzer.AnalyzeKindSelector(category, selector); 3720 } 3721 3722 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3723 3724 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3725 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3726 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3727 auto name{bounds.name.thing.thing}; 3728 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3729 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3730 if (dynamicType->category() == TypeCategory::Integer) { 3731 kind = dynamicType->kind(); 3732 } 3733 } 3734 exprAnalyzer_.AddImpliedDo(name.source, kind); 3735 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3736 exprAnalyzer_.RemoveImpliedDo(name.source); 3737 return false; 3738 } 3739 3740 bool ExprChecker::Walk(const parser::Program &program) { 3741 parser::Walk(program, *this); 3742 return !context_.AnyFatalError(); 3743 } 3744 } // namespace Fortran::semantics 3745