1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/idioms.h" 14 #include "flang/Evaluate/common.h" 15 #include "flang/Evaluate/fold.h" 16 #include "flang/Evaluate/tools.h" 17 #include "flang/Parser/characters.h" 18 #include "flang/Parser/dump-parse-tree.h" 19 #include "flang/Parser/parse-tree-visitor.h" 20 #include "flang/Parser/parse-tree.h" 21 #include "flang/Semantics/scope.h" 22 #include "flang/Semantics/semantics.h" 23 #include "flang/Semantics/symbol.h" 24 #include "flang/Semantics/tools.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <functional> 28 #include <optional> 29 #include <set> 30 31 // Typedef for optional generic expressions (ubiquitous in this file) 32 using MaybeExpr = 33 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 34 35 // Much of the code that implements semantic analysis of expressions is 36 // tightly coupled with their typed representations in lib/Evaluate, 37 // and appears here in namespace Fortran::evaluate for convenience. 38 namespace Fortran::evaluate { 39 40 using common::LanguageFeature; 41 using common::NumericOperator; 42 using common::TypeCategory; 43 44 static inline std::string ToUpperCase(const std::string &str) { 45 return parser::ToUpperCaseLetters(str); 46 } 47 48 struct DynamicTypeWithLength : public DynamicType { 49 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 50 std::optional<Expr<SubscriptInteger>> LEN() const; 51 std::optional<Expr<SubscriptInteger>> length; 52 }; 53 54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 55 if (length) { 56 return length; 57 } 58 if (auto *lengthParam{charLength()}) { 59 if (const auto &len{lengthParam->GetExplicit()}) { 60 return ConvertToType<SubscriptInteger>(common::Clone(*len)); 61 } 62 } 63 return std::nullopt; // assumed or deferred length 64 } 65 66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 67 const std::optional<parser::TypeSpec> &spec) { 68 if (spec) { 69 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 70 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 71 // (viz., an intrinsic type with valid known kind or a non-polymorphic 72 // & non-ABSTRACT derived type). 73 if (const semantics::IntrinsicTypeSpec * 74 intrinsic{typeSpec->AsIntrinsic()}) { 75 TypeCategory category{intrinsic->category()}; 76 if (auto optKind{ToInt64(intrinsic->kind())}) { 77 int kind{static_cast<int>(*optKind)}; 78 if (category == TypeCategory::Character) { 79 const semantics::CharacterTypeSpec &cts{ 80 typeSpec->characterTypeSpec()}; 81 const semantics::ParamValue &len{cts.length()}; 82 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 83 // type guards, but not in array constructors. 84 return DynamicTypeWithLength{DynamicType{kind, len}}; 85 } else { 86 return DynamicTypeWithLength{DynamicType{category, kind}}; 87 } 88 } 89 } else if (const semantics::DerivedTypeSpec * 90 derived{typeSpec->AsDerived()}) { 91 return DynamicTypeWithLength{DynamicType{*derived}}; 92 } 93 } 94 } 95 return std::nullopt; 96 } 97 98 class ArgumentAnalyzer { 99 public: 100 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 101 : context_{context}, source_{context.GetContextualMessages().at()}, 102 isProcedureCall_{false} {} 103 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 104 bool isProcedureCall = false) 105 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 106 bool fatalErrors() const { return fatalErrors_; } 107 ActualArguments &&GetActuals() { 108 CHECK(!fatalErrors_); 109 return std::move(actuals_); 110 } 111 const Expr<SomeType> &GetExpr(std::size_t i) const { 112 return DEREF(actuals_.at(i).value().UnwrapExpr()); 113 } 114 Expr<SomeType> &&MoveExpr(std::size_t i) { 115 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 116 } 117 void Analyze(const common::Indirection<parser::Expr> &x) { 118 Analyze(x.value()); 119 } 120 void Analyze(const parser::Expr &x) { 121 actuals_.emplace_back(AnalyzeExpr(x)); 122 fatalErrors_ |= !actuals_.back(); 123 } 124 void Analyze(const parser::Variable &); 125 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 126 void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType); 127 128 bool IsIntrinsicRelational(RelationalOperator) const; 129 bool IsIntrinsicLogical() const; 130 bool IsIntrinsicNumeric(NumericOperator) const; 131 bool IsIntrinsicConcat() const; 132 133 bool CheckConformance() const; 134 135 // Find and return a user-defined operator or report an error. 136 // The provided message is used if there is no such operator. 137 MaybeExpr TryDefinedOp( 138 const char *, parser::MessageFixedText &&, bool isUserOp = false); 139 template <typename E> 140 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 141 return TryDefinedOp( 142 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 143 } 144 // Find and return a user-defined assignment 145 std::optional<ProcedureRef> TryDefinedAssignment(); 146 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 147 std::optional<DynamicType> GetType(std::size_t) const; 148 void Dump(llvm::raw_ostream &); 149 150 private: 151 MaybeExpr TryDefinedOp( 152 std::vector<const char *>, parser::MessageFixedText &&); 153 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 154 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 155 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 156 bool AreConformable() const; 157 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 158 void AddAssignmentConversion( 159 const DynamicType &lhsType, const DynamicType &rhsType); 160 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 161 int GetRank(std::size_t) const; 162 bool IsBOZLiteral(std::size_t i) const { 163 return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u); 164 } 165 void SayNoMatch(const std::string &, bool isAssignment = false); 166 std::string TypeAsFortran(std::size_t); 167 bool AnyUntypedOperand(); 168 169 ExpressionAnalyzer &context_; 170 ActualArguments actuals_; 171 parser::CharBlock source_; 172 bool fatalErrors_{false}; 173 const bool isProcedureCall_; // false for user-defined op or assignment 174 const Symbol *sawDefinedOp_{nullptr}; 175 }; 176 177 // Wraps a data reference in a typed Designator<>, and a procedure 178 // or procedure pointer reference in a ProcedureDesignator. 179 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 180 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 181 if (semantics::IsProcedure(symbol)) { 182 if (auto *component{std::get_if<Component>(&ref.u)}) { 183 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 184 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 185 DIE("unexpected alternative in DataRef"); 186 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 187 return Expr<SomeType>{ProcedureDesignator{symbol}}; 188 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 189 symbol.name().ToString())}) { 190 SpecificIntrinsic intrinsic{ 191 symbol.name().ToString(), std::move(*interface)}; 192 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 193 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 194 } else { 195 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 196 symbol.name()); 197 return std::nullopt; 198 } 199 } else if (auto dyType{DynamicType::From(symbol)}) { 200 return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); 201 } 202 return std::nullopt; 203 } 204 205 // Some subscript semantic checks must be deferred until all of the 206 // subscripts are in hand. 207 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 208 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 209 int symbolRank{symbol.Rank()}; 210 int subscripts{static_cast<int>(ref.size())}; 211 if (subscripts == 0) { 212 return std::nullopt; // error recovery 213 } else if (subscripts != symbolRank) { 214 if (symbolRank != 0) { 215 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 216 symbolRank, symbol.name(), subscripts); 217 } 218 return std::nullopt; 219 } else if (Component * component{ref.base().UnwrapComponent()}) { 220 int baseRank{component->base().Rank()}; 221 if (baseRank > 0) { 222 int subscriptRank{0}; 223 for (const auto &expr : ref.subscript()) { 224 subscriptRank += expr.Rank(); 225 } 226 if (subscriptRank > 0) { 227 Say("Subscripts of component '%s' of rank-%d derived type " 228 "array have rank %d but must all be scalar"_err_en_US, 229 symbol.name(), baseRank, subscriptRank); 230 return std::nullopt; 231 } 232 } 233 } else if (const auto *object{ 234 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 235 // C928 & C1002 236 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 237 if (!last->upper() && object->IsAssumedSize()) { 238 Say("Assumed-size array '%s' must have explicit final " 239 "subscript upper bound value"_err_en_US, 240 symbol.name()); 241 return std::nullopt; 242 } 243 } 244 } else { 245 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 246 // which, if not an object, must be a construct entity from 247 // SELECT TYPE/RANK or ASSOCIATE. 248 CHECK(symbol.has<semantics::AssocEntityDetails>()); 249 } 250 return Designate(DataRef{std::move(ref)}); 251 } 252 253 // Applies subscripts to a data reference. 254 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 255 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 256 if (subscripts.empty()) { 257 return std::nullopt; // error recovery 258 } 259 return std::visit( 260 common::visitors{ 261 [&](SymbolRef &&symbol) { 262 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 263 }, 264 [&](Component &&c) { 265 return CompleteSubscripts( 266 ArrayRef{std::move(c), std::move(subscripts)}); 267 }, 268 [&](auto &&) -> MaybeExpr { 269 DIE("bad base for ArrayRef"); 270 return std::nullopt; 271 }, 272 }, 273 std::move(dataRef.u)); 274 } 275 276 // Top-level checks for data references. 277 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 278 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 279 const Symbol &symbol{component->GetLastSymbol()}; 280 int componentRank{symbol.Rank()}; 281 if (componentRank > 0) { 282 int baseRank{component->base().Rank()}; 283 if (baseRank > 0) { 284 Say("Reference to whole rank-%d component '%%%s' of " 285 "rank-%d array of derived type is not allowed"_err_en_US, 286 componentRank, symbol.name(), baseRank); 287 } 288 } 289 } 290 return Designate(std::move(dataRef)); 291 } 292 293 // Parse tree correction after a substring S(j:k) was misparsed as an 294 // array section. N.B. Fortran substrings have to have a range, not a 295 // single index. 296 static void FixMisparsedSubstring(const parser::Designator &d) { 297 auto &mutate{const_cast<parser::Designator &>(d)}; 298 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 299 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 300 &dataRef->u)}) { 301 parser::ArrayElement &arrElement{ae->value()}; 302 if (!arrElement.subscripts.empty()) { 303 auto iter{arrElement.subscripts.begin()}; 304 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 305 if (!std::get<2>(triplet->t) /* no stride */ && 306 ++iter == arrElement.subscripts.end() /* one subscript */) { 307 if (Symbol * 308 symbol{std::visit( 309 common::visitors{ 310 [](parser::Name &n) { return n.symbol; }, 311 [](common::Indirection<parser::StructureComponent> 312 &sc) { return sc.value().component.symbol; }, 313 [](auto &) -> Symbol * { return nullptr; }, 314 }, 315 arrElement.base.u)}) { 316 const Symbol &ultimate{symbol->GetUltimate()}; 317 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 318 if (!ultimate.IsObjectArray() && 319 type->category() == semantics::DeclTypeSpec::Character) { 320 // The ambiguous S(j:k) was parsed as an array section 321 // reference, but it's now clear that it's a substring. 322 // Fix the parse tree in situ. 323 mutate.u = arrElement.ConvertToSubstring(); 324 } 325 } 326 } 327 } 328 } 329 } 330 } 331 } 332 } 333 334 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 335 auto restorer{GetContextualMessages().SetLocation(d.source)}; 336 FixMisparsedSubstring(d); 337 // These checks have to be deferred to these "top level" data-refs where 338 // we can be sure that there are no following subscripts (yet). 339 // Substrings have already been run through TopLevelChecks() and 340 // won't be returned by ExtractDataRef(). 341 if (MaybeExpr result{Analyze(d.u)}) { 342 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 343 return TopLevelChecks(std::move(*dataRef)); 344 } 345 return result; 346 } 347 return std::nullopt; 348 } 349 350 // A utility subroutine to repackage optional expressions of various levels 351 // of type specificity as fully general MaybeExpr values. 352 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 353 return AsGenericExpr(std::move(x)); 354 } 355 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 356 if (x) { 357 return AsMaybeExpr(std::move(*x)); 358 } 359 return std::nullopt; 360 } 361 362 // Type kind parameter values for literal constants. 363 int ExpressionAnalyzer::AnalyzeKindParam( 364 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 365 if (!kindParam) { 366 return defaultKind; 367 } 368 return std::visit( 369 common::visitors{ 370 [](std::uint64_t k) { return static_cast<int>(k); }, 371 [&](const parser::Scalar< 372 parser::Integer<parser::Constant<parser::Name>>> &n) { 373 if (MaybeExpr ie{Analyze(n)}) { 374 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 375 int iv = *i64; 376 if (iv == *i64) { 377 return iv; 378 } 379 } 380 } 381 return defaultKind; 382 }, 383 }, 384 kindParam->u); 385 } 386 387 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 388 struct IntTypeVisitor { 389 using Result = MaybeExpr; 390 using Types = IntegerTypes; 391 template <typename T> Result Test() { 392 if (T::kind >= kind) { 393 const char *p{digits.begin()}; 394 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 395 if (!value.overflow) { 396 if (T::kind > kind) { 397 if (!isDefaultKind || 398 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 399 return std::nullopt; 400 } else if (analyzer.context().ShouldWarn( 401 LanguageFeature::BigIntLiterals)) { 402 analyzer.Say(digits, 403 "Integer literal is too large for default INTEGER(KIND=%d); " 404 "assuming INTEGER(KIND=%d)"_en_US, 405 kind, T::kind); 406 } 407 } 408 return Expr<SomeType>{ 409 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 410 } 411 } 412 return std::nullopt; 413 } 414 ExpressionAnalyzer &analyzer; 415 parser::CharBlock digits; 416 int kind; 417 bool isDefaultKind; 418 }; 419 420 template <typename PARSED> 421 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 422 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 423 bool isDefaultKind{!kindParam}; 424 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 425 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 426 auto digits{std::get<parser::CharBlock>(x.t)}; 427 if (MaybeExpr result{common::SearchTypes( 428 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 429 return result; 430 } else if (isDefaultKind) { 431 Say(digits, 432 "Integer literal is too large for any allowable " 433 "kind of INTEGER"_err_en_US); 434 } else { 435 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 436 kind); 437 } 438 } 439 return std::nullopt; 440 } 441 442 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 443 auto restorer{ 444 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 445 return IntLiteralConstant(x); 446 } 447 448 MaybeExpr ExpressionAnalyzer::Analyze( 449 const parser::SignedIntLiteralConstant &x) { 450 auto restorer{GetContextualMessages().SetLocation(x.source)}; 451 return IntLiteralConstant(x); 452 } 453 454 template <typename TYPE> 455 Constant<TYPE> ReadRealLiteral( 456 parser::CharBlock source, FoldingContext &context) { 457 const char *p{source.begin()}; 458 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 459 CHECK(p == source.end()); 460 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 461 auto value{valWithFlags.value}; 462 if (context.flushSubnormalsToZero()) { 463 value = value.FlushSubnormalToZero(); 464 } 465 return {value}; 466 } 467 468 struct RealTypeVisitor { 469 using Result = std::optional<Expr<SomeReal>>; 470 using Types = RealTypes; 471 472 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 473 : kind{k}, literal{lit}, context{ctx} {} 474 475 template <typename T> Result Test() { 476 if (kind == T::kind) { 477 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 478 } 479 return std::nullopt; 480 } 481 482 int kind; 483 parser::CharBlock literal; 484 FoldingContext &context; 485 }; 486 487 // Reads a real literal constant and encodes it with the right kind. 488 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 489 // Use a local message context around the real literal for better 490 // provenance on any messages. 491 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 492 // If a kind parameter appears, it defines the kind of the literal and the 493 // letter used in an exponent part must be 'E' (e.g., the 'E' in 494 // "6.02214E+23"). In the absence of an explicit kind parameter, any 495 // exponent letter determines the kind. Otherwise, defaults apply. 496 auto &defaults{context_.defaultKinds()}; 497 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 498 const char *end{x.real.source.end()}; 499 char expoLetter{' '}; 500 std::optional<int> letterKind; 501 for (const char *p{x.real.source.begin()}; p < end; ++p) { 502 if (parser::IsLetter(*p)) { 503 expoLetter = *p; 504 switch (expoLetter) { 505 case 'e': 506 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 507 break; 508 case 'd': 509 letterKind = defaults.doublePrecisionKind(); 510 break; 511 case 'q': 512 letterKind = defaults.quadPrecisionKind(); 513 break; 514 default: 515 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 516 } 517 break; 518 } 519 } 520 if (letterKind) { 521 defaultKind = *letterKind; 522 } 523 // C716 requires 'E' as an exponent, but this is more useful 524 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 525 if (letterKind && kind != *letterKind && expoLetter != 'e') { 526 Say("Explicit kind parameter on real constant disagrees with " 527 "exponent letter '%c'"_en_US, 528 expoLetter); 529 } 530 auto result{common::SearchTypes( 531 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 532 if (!result) { // C717 533 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 534 } 535 return AsMaybeExpr(std::move(result)); 536 } 537 538 MaybeExpr ExpressionAnalyzer::Analyze( 539 const parser::SignedRealLiteralConstant &x) { 540 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 541 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 542 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 543 if (sign == parser::Sign::Negative) { 544 return AsGenericExpr(-std::move(realExpr)); 545 } 546 } 547 return result; 548 } 549 return std::nullopt; 550 } 551 552 MaybeExpr ExpressionAnalyzer::Analyze( 553 const parser::SignedComplexLiteralConstant &x) { 554 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 555 if (!result) { 556 return std::nullopt; 557 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 558 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 559 } else { 560 return result; 561 } 562 } 563 564 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 565 return Analyze(x.u); 566 } 567 568 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 569 return AsMaybeExpr( 570 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 571 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 572 } 573 574 // CHARACTER literal processing. 575 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 576 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 577 return std::nullopt; 578 } 579 switch (kind) { 580 case 1: 581 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 582 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 583 string, true)}); 584 case 2: 585 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 586 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 587 string, true)}); 588 case 4: 589 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 590 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 591 string, true)}); 592 default: 593 CRASH_NO_CASE; 594 } 595 } 596 597 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 598 int kind{ 599 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 600 auto value{std::get<std::string>(x.t)}; 601 return AnalyzeString(std::move(value), kind); 602 } 603 604 MaybeExpr ExpressionAnalyzer::Analyze( 605 const parser::HollerithLiteralConstant &x) { 606 int kind{GetDefaultKind(TypeCategory::Character)}; 607 auto value{x.v}; 608 return AnalyzeString(std::move(value), kind); 609 } 610 611 // .TRUE. and .FALSE. of various kinds 612 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 613 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 614 GetDefaultKind(TypeCategory::Logical))}; 615 bool value{std::get<bool>(x.t)}; 616 auto result{common::SearchTypes( 617 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 618 kind, std::move(value)})}; 619 if (!result) { 620 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 621 } 622 return result; 623 } 624 625 // BOZ typeless literals 626 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 627 const char *p{x.v.c_str()}; 628 std::uint64_t base{16}; 629 switch (*p++) { 630 case 'b': 631 base = 2; 632 break; 633 case 'o': 634 base = 8; 635 break; 636 case 'z': 637 break; 638 case 'x': 639 break; 640 default: 641 CRASH_NO_CASE; 642 } 643 CHECK(*p == '"'); 644 ++p; 645 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 646 if (*p != '"') { 647 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 648 x.v); // C7107, C7108 649 return std::nullopt; 650 } 651 if (value.overflow) { 652 Say("BOZ literal '%s' too large"_err_en_US, x.v); 653 return std::nullopt; 654 } 655 return AsGenericExpr(std::move(value.value)); 656 } 657 658 // Names and named constants 659 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 660 auto restorer{GetContextualMessages().SetLocation(n.source)}; 661 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 662 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 663 *kind, AsExpr(ImpliedDoIndex{n.source}))); 664 } else if (context_.HasError(n)) { 665 return std::nullopt; 666 } else if (!n.symbol) { 667 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 668 return std::nullopt; 669 } else { 670 const Symbol &ultimate{n.symbol->GetUltimate()}; 671 if (ultimate.has<semantics::TypeParamDetails>()) { 672 // A bare reference to a derived type parameter (within a parameterized 673 // derived type definition) 674 return Fold(ConvertToType( 675 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 676 } else { 677 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 678 if (const semantics::Scope * 679 pure{semantics::FindPureProcedureContaining( 680 context_.FindScope(n.source))}) { 681 SayAt(n, 682 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 683 n.source, DEREF(pure->symbol()).name()); 684 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 685 } 686 } 687 if (!isWholeAssumedSizeArrayOk_ && 688 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 689 AttachDeclaration( 690 SayAt(n, 691 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 692 n.source), 693 *n.symbol); 694 } 695 return Designate(DataRef{*n.symbol}); 696 } 697 } 698 } 699 700 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 701 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 702 if (MaybeExpr value{Analyze(n.v)}) { 703 Expr<SomeType> folded{Fold(std::move(*value))}; 704 if (IsConstantExpr(folded)) { 705 return folded; 706 } 707 Say(n.v.source, "must be a constant"_err_en_US); // C718 708 } 709 return std::nullopt; 710 } 711 712 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) { 713 return Expr<SomeType>{NullPointer{}}; 714 } 715 716 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 717 return Analyze(x.value()); 718 } 719 720 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 721 if (const auto &repeat{ 722 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 723 x.repetitions = -1; 724 if (MaybeExpr expr{Analyze(repeat->u)}) { 725 Expr<SomeType> folded{Fold(std::move(*expr))}; 726 if (auto value{ToInt64(folded)}) { 727 if (*value >= 0) { // C882 728 x.repetitions = *value; 729 } else { 730 Say(FindSourceLocation(repeat), 731 "Repeat count (%jd) for data value must not be negative"_err_en_US, 732 *value); 733 } 734 } 735 } 736 } 737 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 738 } 739 740 // Substring references 741 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 742 const std::optional<parser::ScalarIntExpr> &bound) { 743 if (bound) { 744 if (MaybeExpr expr{Analyze(*bound)}) { 745 if (expr->Rank() > 1) { 746 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 747 } 748 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 749 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 750 return {std::move(*ssIntExpr)}; 751 } 752 return {Expr<SubscriptInteger>{ 753 Convert<SubscriptInteger, TypeCategory::Integer>{ 754 std::move(*intExpr)}}}; 755 } else { 756 Say("substring bound expression is not INTEGER"_err_en_US); 757 } 758 } 759 } 760 return std::nullopt; 761 } 762 763 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 764 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 765 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 766 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 767 if (std::optional<DataRef> checked{ 768 ExtractDataRef(std::move(*newBaseExpr))}) { 769 const parser::SubstringRange &range{ 770 std::get<parser::SubstringRange>(ss.t)}; 771 std::optional<Expr<SubscriptInteger>> first{ 772 GetSubstringBound(std::get<0>(range.t))}; 773 std::optional<Expr<SubscriptInteger>> last{ 774 GetSubstringBound(std::get<1>(range.t))}; 775 const Symbol &symbol{checked->GetLastSymbol()}; 776 if (std::optional<DynamicType> dynamicType{ 777 DynamicType::From(symbol)}) { 778 if (dynamicType->category() == TypeCategory::Character) { 779 return WrapperHelper<TypeCategory::Character, Designator, 780 Substring>(dynamicType->kind(), 781 Substring{std::move(checked.value()), std::move(first), 782 std::move(last)}); 783 } 784 } 785 Say("substring may apply only to CHARACTER"_err_en_US); 786 } 787 } 788 } 789 } 790 return std::nullopt; 791 } 792 793 // CHARACTER literal substrings 794 MaybeExpr ExpressionAnalyzer::Analyze( 795 const parser::CharLiteralConstantSubstring &x) { 796 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 797 std::optional<Expr<SubscriptInteger>> lower{ 798 GetSubstringBound(std::get<0>(range.t))}; 799 std::optional<Expr<SubscriptInteger>> upper{ 800 GetSubstringBound(std::get<1>(range.t))}; 801 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 802 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 803 Expr<SubscriptInteger> length{ 804 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 805 charExpr->u)}; 806 if (!lower) { 807 lower = Expr<SubscriptInteger>{1}; 808 } 809 if (!upper) { 810 upper = Expr<SubscriptInteger>{ 811 static_cast<std::int64_t>(ToInt64(length).value())}; 812 } 813 return std::visit( 814 [&](auto &&ckExpr) -> MaybeExpr { 815 using Result = ResultType<decltype(ckExpr)>; 816 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 817 CHECK(DEREF(cp).size() == 1); 818 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 819 staticData->set_alignment(Result::kind) 820 .set_itemBytes(Result::kind) 821 .Push(cp->GetScalarValue().value()); 822 Substring substring{std::move(staticData), std::move(lower.value()), 823 std::move(upper.value())}; 824 return AsGenericExpr( 825 Expr<Result>{Designator<Result>{std::move(substring)}}); 826 }, 827 std::move(charExpr->u)); 828 } 829 } 830 return std::nullopt; 831 } 832 833 // Subscripted array references 834 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 835 MaybeExpr &&expr) { 836 if (expr) { 837 if (expr->Rank() > 1) { 838 Say("Subscript expression has rank %d greater than 1"_err_en_US, 839 expr->Rank()); 840 } 841 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 842 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 843 return std::move(*ssIntExpr); 844 } else { 845 return Expr<SubscriptInteger>{ 846 Convert<SubscriptInteger, TypeCategory::Integer>{ 847 std::move(*intExpr)}}; 848 } 849 } else { 850 Say("Subscript expression is not INTEGER"_err_en_US); 851 } 852 } 853 return std::nullopt; 854 } 855 856 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 857 const std::optional<parser::Subscript> &s) { 858 if (s) { 859 return AsSubscript(Analyze(*s)); 860 } else { 861 return std::nullopt; 862 } 863 } 864 865 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 866 const parser::SectionSubscript &ss) { 867 return std::visit( 868 common::visitors{ 869 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 870 const auto &lower{std::get<0>(t.t)}; 871 const auto &upper{std::get<1>(t.t)}; 872 const auto &stride{std::get<2>(t.t)}; 873 auto result{Triplet{ 874 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 875 if ((lower && !result.lower()) || (upper && !result.upper())) { 876 return std::nullopt; 877 } else { 878 return std::make_optional<Subscript>(result); 879 } 880 }, 881 [&](const auto &s) -> std::optional<Subscript> { 882 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 883 return Subscript{std::move(*subscriptExpr)}; 884 } else { 885 return std::nullopt; 886 } 887 }, 888 }, 889 ss.u); 890 } 891 892 // Empty result means an error occurred 893 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 894 const std::list<parser::SectionSubscript> &sss) { 895 bool error{false}; 896 std::vector<Subscript> subscripts; 897 for (const auto &s : sss) { 898 if (auto subscript{AnalyzeSectionSubscript(s)}) { 899 subscripts.emplace_back(std::move(*subscript)); 900 } else { 901 error = true; 902 } 903 } 904 return !error ? subscripts : std::vector<Subscript>{}; 905 } 906 907 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 908 MaybeExpr baseExpr; 909 { 910 auto restorer{AllowWholeAssumedSizeArray()}; 911 baseExpr = Analyze(ae.base); 912 } 913 if (baseExpr) { 914 if (ae.subscripts.empty()) { 915 // will be converted to function call later or error reported 916 } else if (baseExpr->Rank() == 0) { 917 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 918 if (!context_.HasError(symbol)) { 919 Say("'%s' is not an array"_err_en_US, symbol->name()); 920 context_.SetError(*symbol); 921 } 922 } 923 } else if (std::optional<DataRef> dataRef{ 924 ExtractDataRef(std::move(*baseExpr))}) { 925 return ApplySubscripts( 926 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 927 } else { 928 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 929 } 930 } 931 // error was reported: analyze subscripts without reporting more errors 932 auto restorer{GetContextualMessages().DiscardMessages()}; 933 AnalyzeSectionSubscripts(ae.subscripts); 934 return std::nullopt; 935 } 936 937 // Type parameter inquiries apply to data references, but don't depend 938 // on any trailing (co)subscripts. 939 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 940 return std::visit( 941 common::visitors{ 942 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 943 [](Component &&component) { 944 return NamedEntity{std::move(component)}; 945 }, 946 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 947 [](CoarrayRef &&coarrayRef) { 948 return NamedEntity{coarrayRef.GetLastSymbol()}; 949 }, 950 }, 951 std::move(designator.u)); 952 } 953 954 // Components of parent derived types are explicitly represented as such. 955 static std::optional<Component> CreateComponent( 956 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 957 if (&component.owner() == &scope) { 958 return Component{std::move(base), component}; 959 } 960 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 961 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 962 return CreateComponent( 963 DataRef{Component{std::move(base), *parentComponent}}, component, 964 *parentScope); 965 } 966 } 967 return std::nullopt; 968 } 969 970 // Derived type component references and type parameter inquiries 971 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 972 MaybeExpr base{Analyze(sc.base)}; 973 Symbol *sym{sc.component.symbol}; 974 if (!base || !sym || context_.HasError(sym)) { 975 return std::nullopt; 976 } 977 const auto &name{sc.component.source}; 978 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 979 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 980 if (sym->detailsIf<semantics::TypeParamDetails>()) { 981 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 982 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 983 if (dyType->category() == TypeCategory::Integer) { 984 auto restorer{GetContextualMessages().SetLocation(name)}; 985 return Fold(ConvertToType(*dyType, 986 AsGenericExpr(TypeParamInquiry{ 987 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 988 } 989 } 990 Say(name, "Type parameter is not INTEGER"_err_en_US); 991 } else { 992 Say(name, 993 "A type parameter inquiry must be applied to " 994 "a designator"_err_en_US); 995 } 996 } else if (!dtSpec || !dtSpec->scope()) { 997 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 998 return std::nullopt; 999 } else if (std::optional<DataRef> dataRef{ 1000 ExtractDataRef(std::move(*dtExpr))}) { 1001 if (auto component{ 1002 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1003 return Designate(DataRef{std::move(*component)}); 1004 } else { 1005 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1006 dtSpec->typeSymbol().name()); 1007 } 1008 } else { 1009 Say(name, 1010 "Base of component reference must be a data reference"_err_en_US); 1011 } 1012 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1013 // special part-ref: %re, %im, %kind, %len 1014 // Type errors are detected and reported in semantics. 1015 using MiscKind = semantics::MiscDetails::Kind; 1016 MiscKind kind{details->kind()}; 1017 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1018 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1019 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1020 Expr<SomeReal> realExpr{std::visit( 1021 [&](const auto &z) { 1022 using PartType = typename ResultType<decltype(z)>::Part; 1023 auto part{kind == MiscKind::ComplexPartRe 1024 ? ComplexPart::Part::RE 1025 : ComplexPart::Part::IM}; 1026 return AsCategoryExpr(Designator<PartType>{ 1027 ComplexPart{std::move(*dataRef), part}}); 1028 }, 1029 zExpr->u)}; 1030 return AsGenericExpr(std::move(realExpr)); 1031 } 1032 } 1033 } else if (kind == MiscKind::KindParamInquiry || 1034 kind == MiscKind::LenParamInquiry) { 1035 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1036 return MakeFunctionRef( 1037 name, ActualArguments{ActualArgument{std::move(*base)}}); 1038 } else { 1039 DIE("unexpected MiscDetails::Kind"); 1040 } 1041 } else { 1042 Say(name, "derived type required before component reference"_err_en_US); 1043 } 1044 return std::nullopt; 1045 } 1046 1047 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1048 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1049 DataRef *dataRef{&*maybeDataRef}; 1050 std::vector<Subscript> subscripts; 1051 SymbolVector reversed; 1052 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1053 subscripts = std::move(aRef->subscript()); 1054 reversed.push_back(aRef->GetLastSymbol()); 1055 if (Component * component{aRef->base().UnwrapComponent()}) { 1056 dataRef = &component->base(); 1057 } else { 1058 dataRef = nullptr; 1059 } 1060 } 1061 if (dataRef) { 1062 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1063 reversed.push_back(component->GetLastSymbol()); 1064 dataRef = &component->base(); 1065 } 1066 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1067 reversed.push_back(*baseSym); 1068 } else { 1069 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1070 } 1071 } 1072 std::vector<Expr<SubscriptInteger>> cosubscripts; 1073 bool cosubsOk{true}; 1074 for (const auto &cosub : 1075 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1076 MaybeExpr coex{Analyze(cosub)}; 1077 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1078 cosubscripts.push_back( 1079 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1080 } else { 1081 cosubsOk = false; 1082 } 1083 } 1084 if (cosubsOk && !reversed.empty()) { 1085 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1086 const Symbol &symbol{reversed.front()}; 1087 if (numCosubscripts != symbol.Corank()) { 1088 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1089 symbol.name(), symbol.Corank(), numCosubscripts); 1090 } 1091 } 1092 for (const auto &imageSelSpec : 1093 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1094 std::visit( 1095 common::visitors{ 1096 [&](const auto &x) { Analyze(x.v); }, 1097 }, 1098 imageSelSpec.u); 1099 } 1100 // Reverse the chain of symbols so that the base is first and coarray 1101 // ultimate component is last. 1102 if (cosubsOk) { 1103 return Designate( 1104 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1105 std::move(subscripts), std::move(cosubscripts)}}); 1106 } 1107 } 1108 return std::nullopt; 1109 } 1110 1111 int ExpressionAnalyzer::IntegerTypeSpecKind( 1112 const parser::IntegerTypeSpec &spec) { 1113 Expr<SubscriptInteger> value{ 1114 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1115 if (auto kind{ToInt64(value)}) { 1116 return static_cast<int>(*kind); 1117 } 1118 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1119 return GetDefaultKind(TypeCategory::Integer); 1120 } 1121 1122 // Array constructors 1123 1124 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1125 // all happen to have the same actual type T into one ArrayConstructor<T>. 1126 template <typename T> 1127 ArrayConstructorValues<T> MakeSpecific( 1128 ArrayConstructorValues<SomeType> &&from) { 1129 ArrayConstructorValues<T> to; 1130 for (ArrayConstructorValue<SomeType> &x : from) { 1131 std::visit( 1132 common::visitors{ 1133 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1134 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1135 to.Push(std::move(DEREF(typed))); 1136 }, 1137 [&](ImpliedDo<SomeType> &&impliedDo) { 1138 to.Push(ImpliedDo<T>{impliedDo.name(), 1139 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1140 std::move(impliedDo.stride()), 1141 MakeSpecific<T>(std::move(impliedDo.values()))}); 1142 }, 1143 }, 1144 std::move(x.u)); 1145 } 1146 return to; 1147 } 1148 1149 class ArrayConstructorContext { 1150 public: 1151 ArrayConstructorContext( 1152 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1153 : exprAnalyzer_{c}, type_{std::move(t)} {} 1154 1155 void Add(const parser::AcValue &); 1156 MaybeExpr ToExpr(); 1157 1158 // These interfaces allow *this to be used as a type visitor argument to 1159 // common::SearchTypes() to convert the array constructor to a typed 1160 // expression in ToExpr(). 1161 using Result = MaybeExpr; 1162 using Types = AllTypes; 1163 template <typename T> Result Test() { 1164 if (type_ && type_->category() == T::category) { 1165 if constexpr (T::category == TypeCategory::Derived) { 1166 if (type_->IsUnlimitedPolymorphic()) { 1167 return std::nullopt; 1168 } else { 1169 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1170 MakeSpecific<T>(std::move(values_))}); 1171 } 1172 } else if (type_->kind() == T::kind) { 1173 if constexpr (T::category == TypeCategory::Character) { 1174 if (auto len{type_->LEN()}) { 1175 return AsMaybeExpr(ArrayConstructor<T>{ 1176 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1177 } 1178 } else { 1179 return AsMaybeExpr( 1180 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1181 } 1182 } 1183 } 1184 return std::nullopt; 1185 } 1186 1187 private: 1188 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1189 1190 void Push(MaybeExpr &&); 1191 void Add(const parser::AcValue::Triplet &); 1192 void Add(const parser::Expr &); 1193 void Add(const parser::AcImpliedDo &); 1194 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1195 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1196 std::int64_t stride); 1197 1198 template <int KIND, typename A> 1199 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1200 const A &x) { 1201 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1202 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1203 return Fold(exprAnalyzer_.GetFoldingContext(), 1204 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1205 std::move(DEREF(intExpr)))); 1206 } 1207 return std::nullopt; 1208 } 1209 1210 // Nested array constructors all reference the same ExpressionAnalyzer, 1211 // which represents the nest of active implied DO loop indices. 1212 ExpressionAnalyzer &exprAnalyzer_; 1213 std::optional<DynamicTypeWithLength> type_; 1214 bool explicitType_{type_.has_value()}; 1215 std::optional<std::int64_t> constantLength_; 1216 ArrayConstructorValues<SomeType> values_; 1217 std::uint64_t messageDisplayedSet_{0}; 1218 }; 1219 1220 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1221 if (!x) { 1222 return; 1223 } 1224 if (auto dyType{x->GetType()}) { 1225 DynamicTypeWithLength xType{*dyType}; 1226 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1227 CHECK(xType.category() == TypeCategory::Character); 1228 xType.length = 1229 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1230 } 1231 if (!type_) { 1232 // If there is no explicit type-spec in an array constructor, the type 1233 // of the array is the declared type of all of the elements, which must 1234 // be well-defined and all match. 1235 // TODO: Possible language extension: use the most general type of 1236 // the values as the type of a numeric constructed array, convert all 1237 // of the other values to that type. Alternative: let the first value 1238 // determine the type, and convert the others to that type. 1239 CHECK(!explicitType_); 1240 type_ = std::move(xType); 1241 constantLength_ = ToInt64(type_->length); 1242 values_.Push(std::move(*x)); 1243 } else if (!explicitType_) { 1244 if (static_cast<const DynamicType &>(*type_) == 1245 static_cast<const DynamicType &>(xType)) { 1246 values_.Push(std::move(*x)); 1247 if (auto thisLen{ToInt64(xType.LEN())}) { 1248 if (constantLength_) { 1249 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1250 *thisLen != *constantLength_) { 1251 if (!(messageDisplayedSet_ & 1)) { 1252 exprAnalyzer_.Say( 1253 "Character literal in array constructor without explicit " 1254 "type has different length than earlier elements"_en_US); 1255 messageDisplayedSet_ |= 1; 1256 } 1257 } 1258 if (*thisLen > *constantLength_) { 1259 // Language extension: use the longest literal to determine the 1260 // length of the array constructor's character elements, not the 1261 // first, when there is no explicit type. 1262 *constantLength_ = *thisLen; 1263 type_->length = xType.LEN(); 1264 } 1265 } else { 1266 constantLength_ = *thisLen; 1267 type_->length = xType.LEN(); 1268 } 1269 } 1270 } else { 1271 if (!(messageDisplayedSet_ & 2)) { 1272 exprAnalyzer_.Say( 1273 "Values in array constructor must have the same declared type " 1274 "when no explicit type appears"_err_en_US); // C7110 1275 messageDisplayedSet_ |= 2; 1276 } 1277 } 1278 } else { 1279 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1280 values_.Push(std::move(*cast)); 1281 } else if (!(messageDisplayedSet_ & 4)) { 1282 exprAnalyzer_.Say( 1283 "Value in array constructor of type '%s' could not " 1284 "be converted to the type of the array '%s'"_err_en_US, 1285 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1286 messageDisplayedSet_ |= 4; 1287 } 1288 } 1289 } 1290 } 1291 1292 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1293 std::visit( 1294 common::visitors{ 1295 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1296 [&](const common::Indirection<parser::Expr> &expr) { 1297 Add(expr.value()); 1298 }, 1299 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1300 Add(impliedDo.value()); 1301 }, 1302 }, 1303 x.u); 1304 } 1305 1306 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1307 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1308 std::optional<Expr<ImpliedDoIntType>> lower{ 1309 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1310 std::optional<Expr<ImpliedDoIntType>> upper{ 1311 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1312 std::optional<Expr<ImpliedDoIntType>> stride{ 1313 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1314 if (lower && upper) { 1315 if (!stride) { 1316 stride = Expr<ImpliedDoIntType>{1}; 1317 } 1318 if (!type_) { 1319 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1320 } 1321 auto v{std::move(values_)}; 1322 parser::CharBlock anonymous; 1323 Push(Expr<SomeType>{ 1324 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1325 std::swap(v, values_); 1326 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1327 std::move(*upper), std::move(*stride), std::move(v)}); 1328 } 1329 } 1330 1331 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1332 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1333 if (MaybeExpr v{exprAnalyzer_.Analyze(expr)}) { 1334 if (auto exprType{v->GetType()}) { 1335 if (!(messageDisplayedSet_ & 8) && exprType->IsUnlimitedPolymorphic()) { 1336 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1337 "array constructor"_err_en_US); // C7113 1338 messageDisplayedSet_ |= 8; 1339 } 1340 } 1341 Push(std::move(*v)); 1342 } 1343 } 1344 1345 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1346 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1347 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1348 exprAnalyzer_.Analyze(bounds.name); 1349 parser::CharBlock name{bounds.name.thing.thing.source}; 1350 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1351 int kind{ImpliedDoIntType::kind}; 1352 if (const auto dynamicType{DynamicType::From(symbol)}) { 1353 kind = dynamicType->kind(); 1354 } 1355 if (!exprAnalyzer_.AddImpliedDo(name, kind)) { 1356 if (!(messageDisplayedSet_ & 0x20)) { 1357 exprAnalyzer_.SayAt(name, 1358 "Implied DO index is active in surrounding implied DO loop " 1359 "and may not have the same name"_err_en_US); // C7115 1360 messageDisplayedSet_ |= 0x20; 1361 } 1362 return; 1363 } 1364 std::optional<Expr<ImpliedDoIntType>> lower{ 1365 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1366 std::optional<Expr<ImpliedDoIntType>> upper{ 1367 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1368 if (lower && upper) { 1369 std::optional<Expr<ImpliedDoIntType>> stride{ 1370 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1371 if (!stride) { 1372 stride = Expr<ImpliedDoIntType>{1}; 1373 } 1374 // Check for constant bounds; the loop may require complete unrolling 1375 // of the parse tree if all bounds are constant in order to allow the 1376 // implied DO loop index to qualify as a constant expression. 1377 auto cLower{ToInt64(lower)}; 1378 auto cUpper{ToInt64(upper)}; 1379 auto cStride{ToInt64(stride)}; 1380 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1381 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1382 "The stride of an implied DO loop must not be zero"_err_en_US); 1383 messageDisplayedSet_ |= 0x10; 1384 } 1385 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1386 bool isNonemptyConstant{isConstant && 1387 ((*cStride > 0 && *cLower <= *cUpper) || 1388 (*cStride < 0 && *cLower >= *cUpper))}; 1389 bool unrollConstantLoop{false}; 1390 parser::Messages buffer; 1391 auto saveMessagesDisplayed{messageDisplayedSet_}; 1392 { 1393 auto messageRestorer{ 1394 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1395 auto v{std::move(values_)}; 1396 for (const auto &value : 1397 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1398 Add(value); 1399 } 1400 std::swap(v, values_); 1401 if (isNonemptyConstant && buffer.AnyFatalError()) { 1402 unrollConstantLoop = true; 1403 } else { 1404 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1405 std::move(*upper), std::move(*stride), std::move(v)}); 1406 } 1407 } 1408 if (unrollConstantLoop) { 1409 messageDisplayedSet_ = saveMessagesDisplayed; 1410 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1411 } else if (auto *messages{ 1412 exprAnalyzer_.GetContextualMessages().messages()}) { 1413 messages->Annex(std::move(buffer)); 1414 } 1415 } 1416 exprAnalyzer_.RemoveImpliedDo(name); 1417 } 1418 1419 // Fortran considers an implied DO index of an array constructor to be 1420 // a constant expression if the bounds of the implied DO loop are constant. 1421 // Usually this doesn't matter, but if we emitted spurious messages as a 1422 // result of not using constant values for the index while analyzing the 1423 // items, we need to do it again the "hard" way with multiple iterations over 1424 // the parse tree. 1425 void ArrayConstructorContext::UnrollConstantImpliedDo( 1426 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1427 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1428 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1429 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1430 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1431 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1432 at += stride) { 1433 for (const auto &value : 1434 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1435 Add(value); 1436 } 1437 } 1438 foldingContext.EndImpliedDo(name); 1439 } 1440 1441 MaybeExpr ArrayConstructorContext::ToExpr() { 1442 return common::SearchTypes(std::move(*this)); 1443 } 1444 1445 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1446 const parser::AcSpec &acSpec{array.v}; 1447 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1448 for (const parser::AcValue &value : acSpec.values) { 1449 acContext.Add(value); 1450 } 1451 return acContext.ToExpr(); 1452 } 1453 1454 MaybeExpr ExpressionAnalyzer::Analyze( 1455 const parser::StructureConstructor &structure) { 1456 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1457 parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; 1458 if (!parsedType.derivedTypeSpec) { 1459 return std::nullopt; 1460 } 1461 const auto &spec{*parsedType.derivedTypeSpec}; 1462 const Symbol &typeSymbol{spec.typeSymbol()}; 1463 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1464 return std::nullopt; // error recovery 1465 } 1466 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1467 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1468 1469 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1470 AttachDeclaration(Say(typeName, 1471 "ABSTRACT derived type '%s' may not be used in a " 1472 "structure constructor"_err_en_US, 1473 typeName), 1474 typeSymbol); // C7114 1475 } 1476 1477 // This iterator traverses all of the components in the derived type and its 1478 // parents. The symbols for whole parent components appear after their 1479 // own components and before the components of the types that extend them. 1480 // E.g., TYPE :: A; REAL X; END TYPE 1481 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1482 // produces the component list X, A, Y. 1483 // The order is important below because a structure constructor can 1484 // initialize X or A by name, but not both. 1485 auto components{semantics::OrderedComponentIterator{spec}}; 1486 auto nextAnonymous{components.begin()}; 1487 1488 std::set<parser::CharBlock> unavailable; 1489 bool anyKeyword{false}; 1490 StructureConstructor result{spec}; 1491 bool checkConflicts{true}; // until we hit one 1492 auto &messages{GetContextualMessages()}; 1493 1494 for (const auto &component : 1495 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1496 const parser::Expr &expr{ 1497 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1498 parser::CharBlock source{expr.source}; 1499 auto restorer{messages.SetLocation(source)}; 1500 const Symbol *symbol{nullptr}; 1501 MaybeExpr value{Analyze(expr)}; 1502 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1503 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1504 anyKeyword = true; 1505 source = kw->v.source; 1506 symbol = kw->v.symbol; 1507 if (!symbol) { 1508 auto componentIter{std::find_if(components.begin(), components.end(), 1509 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1510 if (componentIter != components.end()) { 1511 symbol = &*componentIter; 1512 } 1513 } 1514 if (!symbol) { // C7101 1515 Say(source, 1516 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1517 source, typeName); 1518 } 1519 } else { 1520 if (anyKeyword) { // C7100 1521 Say(source, 1522 "Value in structure constructor lacks a component name"_err_en_US); 1523 checkConflicts = false; // stem cascade 1524 } 1525 // Here's a regrettably common extension of the standard: anonymous 1526 // initialization of parent components, e.g., T(PT(1)) rather than 1527 // T(1) or T(PT=PT(1)). 1528 if (nextAnonymous == components.begin() && parentComponent && 1529 valueType == DynamicType::From(*parentComponent) && 1530 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1531 auto iter{ 1532 std::find(components.begin(), components.end(), *parentComponent)}; 1533 if (iter != components.end()) { 1534 symbol = parentComponent; 1535 nextAnonymous = ++iter; 1536 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1537 Say(source, 1538 "Whole parent component '%s' in structure " 1539 "constructor should not be anonymous"_en_US, 1540 symbol->name()); 1541 } 1542 } 1543 } 1544 while (!symbol && nextAnonymous != components.end()) { 1545 const Symbol &next{*nextAnonymous}; 1546 ++nextAnonymous; 1547 if (!next.test(Symbol::Flag::ParentComp)) { 1548 symbol = &next; 1549 } 1550 } 1551 if (!symbol) { 1552 Say(source, "Unexpected value in structure constructor"_err_en_US); 1553 } 1554 } 1555 if (symbol) { 1556 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1557 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1558 Say(source, *msg); 1559 } 1560 } 1561 if (checkConflicts) { 1562 auto componentIter{ 1563 std::find(components.begin(), components.end(), *symbol)}; 1564 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1565 // C797, C798 1566 Say(source, 1567 "Component '%s' conflicts with another component earlier in " 1568 "this structure constructor"_err_en_US, 1569 symbol->name()); 1570 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1571 // Make earlier components unavailable once a whole parent appears. 1572 for (auto it{components.begin()}; it != componentIter; ++it) { 1573 unavailable.insert(it->name()); 1574 } 1575 } else { 1576 // Make whole parent components unavailable after any of their 1577 // constituents appear. 1578 for (auto it{componentIter}; it != components.end(); ++it) { 1579 if (it->test(Symbol::Flag::ParentComp)) { 1580 unavailable.insert(it->name()); 1581 } 1582 } 1583 } 1584 } 1585 unavailable.insert(symbol->name()); 1586 if (value) { 1587 if (symbol->has<semantics::ProcEntityDetails>()) { 1588 CHECK(IsPointer(*symbol)); 1589 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1590 // C1594(4) 1591 const auto &innermost{context_.FindScope(expr.source)}; 1592 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1593 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1594 if (const Symbol * 1595 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1596 if (auto *msg{Say(expr.source, 1597 "Externally visible object '%s' may not be " 1598 "associated with pointer component '%s' in a " 1599 "pure procedure"_err_en_US, 1600 object->name(), pointer->name())}) { 1601 msg->Attach(object->name(), "Object declaration"_en_US) 1602 .Attach(pointer->name(), "Pointer declaration"_en_US); 1603 } 1604 } 1605 } 1606 } 1607 } else if (symbol->has<semantics::TypeParamDetails>()) { 1608 Say(expr.source, 1609 "Type parameter '%s' may not appear as a component " 1610 "of a structure constructor"_err_en_US, 1611 symbol->name()); 1612 continue; 1613 } else { 1614 Say(expr.source, 1615 "Component '%s' is neither a procedure pointer " 1616 "nor a data object"_err_en_US, 1617 symbol->name()); 1618 continue; 1619 } 1620 if (IsPointer(*symbol)) { 1621 semantics::CheckPointerAssignment( 1622 GetFoldingContext(), *symbol, *value); // C7104, C7105 1623 result.Add(*symbol, Fold(std::move(*value))); 1624 } else if (MaybeExpr converted{ 1625 ConvertToType(*symbol, std::move(*value))}) { 1626 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1627 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1628 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1629 AttachDeclaration( 1630 Say(expr.source, 1631 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1632 GetRank(*valueShape), symbol->name()), 1633 *symbol); 1634 } else if (CheckConformance(messages, *componentShape, 1635 *valueShape, "component", "value")) { 1636 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 && 1637 !IsExpandableScalar(*converted)) { 1638 AttachDeclaration( 1639 Say(expr.source, 1640 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1641 symbol->name()), 1642 *symbol); 1643 } else { 1644 result.Add(*symbol, std::move(*converted)); 1645 } 1646 } 1647 } else { 1648 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1649 } 1650 } else { 1651 AttachDeclaration( 1652 Say(expr.source, 1653 "Shape of component '%s' cannot be determined"_err_en_US, 1654 symbol->name()), 1655 *symbol); 1656 } 1657 } else if (IsAllocatable(*symbol) && 1658 std::holds_alternative<NullPointer>(value->u)) { 1659 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1660 } else if (auto symType{DynamicType::From(symbol)}) { 1661 if (valueType) { 1662 AttachDeclaration( 1663 Say(expr.source, 1664 "Value in structure constructor of type %s is " 1665 "incompatible with component '%s' of type %s"_err_en_US, 1666 valueType->AsFortran(), symbol->name(), 1667 symType->AsFortran()), 1668 *symbol); 1669 } else { 1670 AttachDeclaration( 1671 Say(expr.source, 1672 "Value in structure constructor is incompatible with " 1673 " component '%s' of type %s"_err_en_US, 1674 symbol->name(), symType->AsFortran()), 1675 *symbol); 1676 } 1677 } 1678 } 1679 } 1680 } 1681 1682 // Ensure that unmentioned component objects have default initializers. 1683 for (const Symbol &symbol : components) { 1684 if (!symbol.test(Symbol::Flag::ParentComp) && 1685 unavailable.find(symbol.name()) == unavailable.cend() && 1686 !IsAllocatable(symbol)) { 1687 if (const auto *details{ 1688 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1689 if (details->init()) { 1690 result.Add(symbol, common::Clone(*details->init())); 1691 } else { // C799 1692 AttachDeclaration(Say(typeName, 1693 "Structure constructor lacks a value for " 1694 "component '%s'"_err_en_US, 1695 symbol.name()), 1696 symbol); 1697 } 1698 } 1699 } 1700 } 1701 1702 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1703 } 1704 1705 static std::optional<parser::CharBlock> GetPassName( 1706 const semantics::Symbol &proc) { 1707 return std::visit( 1708 [](const auto &details) { 1709 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1710 std::decay_t<decltype(details)>>) { 1711 return details.passName(); 1712 } else { 1713 return std::optional<parser::CharBlock>{}; 1714 } 1715 }, 1716 proc.details()); 1717 } 1718 1719 static int GetPassIndex(const Symbol &proc) { 1720 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1721 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1722 const auto *interface{semantics::FindInterface(proc)}; 1723 if (!passName || !interface) { 1724 return 0; // first argument is passed-object 1725 } 1726 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1727 int index{0}; 1728 for (const auto *arg : subp.dummyArgs()) { 1729 if (arg && arg->name() == passName) { 1730 return index; 1731 } 1732 ++index; 1733 } 1734 DIE("PASS argument name not in dummy argument list"); 1735 } 1736 1737 // Injects an expression into an actual argument list as the "passed object" 1738 // for a type-bound procedure reference that is not NOPASS. Adds an 1739 // argument keyword if possible, but not when the passed object goes 1740 // before a positional argument. 1741 // e.g., obj%tbp(x) -> tbp(obj,x). 1742 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1743 const Symbol &component, bool isPassedObject = true) { 1744 if (component.attrs().test(semantics::Attr::NOPASS)) { 1745 return; 1746 } 1747 int passIndex{GetPassIndex(component)}; 1748 auto iter{actuals.begin()}; 1749 int at{0}; 1750 while (iter < actuals.end() && at < passIndex) { 1751 if (*iter && (*iter)->keyword()) { 1752 iter = actuals.end(); 1753 break; 1754 } 1755 ++iter; 1756 ++at; 1757 } 1758 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1759 passed.set_isPassedObject(isPassedObject); 1760 if (iter == actuals.end()) { 1761 if (auto passName{GetPassName(component)}) { 1762 passed.set_keyword(*passName); 1763 } 1764 } 1765 actuals.emplace(iter, std::move(passed)); 1766 } 1767 1768 // Return the compile-time resolution of a procedure binding, if possible. 1769 static const Symbol *GetBindingResolution( 1770 const std::optional<DynamicType> &baseType, const Symbol &component) { 1771 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1772 if (!binding) { 1773 return nullptr; 1774 } 1775 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1776 (!baseType || baseType->IsPolymorphic())) { 1777 return nullptr; 1778 } 1779 return &binding->symbol(); 1780 } 1781 1782 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1783 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1784 -> std::optional<CalleeAndArguments> { 1785 const parser::StructureComponent &sc{pcr.v.thing}; 1786 if (MaybeExpr base{Analyze(sc.base)}) { 1787 if (const Symbol * sym{sc.component.symbol}) { 1788 if (context_.HasError(sym)) { 1789 return std::nullopt; 1790 } 1791 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1792 if (sym->has<semantics::GenericDetails>()) { 1793 AdjustActuals adjustment{ 1794 [&](const Symbol &proc, ActualArguments &actuals) { 1795 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1796 AddPassArg(actuals, std::move(*dtExpr), proc); 1797 } 1798 return true; 1799 }}; 1800 sym = ResolveGeneric(*sym, arguments, adjustment); 1801 if (!sym) { 1802 EmitGenericResolutionError(*sc.component.symbol); 1803 return std::nullopt; 1804 } 1805 } 1806 if (const Symbol * 1807 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1808 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1809 return CalleeAndArguments{ 1810 ProcedureDesignator{*resolution}, std::move(arguments)}; 1811 } else if (std::optional<DataRef> dataRef{ 1812 ExtractDataRef(std::move(*dtExpr))}) { 1813 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1814 return CalleeAndArguments{ 1815 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1816 std::move(arguments)}; 1817 } else { 1818 AddPassArg(arguments, 1819 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1820 *sym); 1821 return CalleeAndArguments{ 1822 ProcedureDesignator{*sym}, std::move(arguments)}; 1823 } 1824 } 1825 } 1826 Say(sc.component.source, 1827 "Base of procedure component reference is not a derived-type object"_err_en_US); 1828 } 1829 } 1830 CHECK(!GetContextualMessages().empty()); 1831 return std::nullopt; 1832 } 1833 1834 // Can actual be argument associated with dummy? 1835 static bool CheckCompatibleArgument(bool isElemental, 1836 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1837 return std::visit( 1838 common::visitors{ 1839 [&](const characteristics::DummyDataObject &x) { 1840 characteristics::TypeAndShape dummyTypeAndShape{x.type}; 1841 if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) { 1842 return false; 1843 } else if (auto actualType{actual.GetType()}) { 1844 return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType); 1845 } else { 1846 return false; 1847 } 1848 }, 1849 [&](const characteristics::DummyProcedure &) { 1850 const auto *expr{actual.UnwrapExpr()}; 1851 return expr && IsProcedurePointer(*expr); 1852 }, 1853 [&](const characteristics::AlternateReturn &) { 1854 return actual.isAlternateReturn(); 1855 }, 1856 }, 1857 dummy.u); 1858 } 1859 1860 // Are the actual arguments compatible with the dummy arguments of procedure? 1861 static bool CheckCompatibleArguments( 1862 const characteristics::Procedure &procedure, 1863 const ActualArguments &actuals) { 1864 bool isElemental{procedure.IsElemental()}; 1865 const auto &dummies{procedure.dummyArguments}; 1866 CHECK(dummies.size() == actuals.size()); 1867 for (std::size_t i{0}; i < dummies.size(); ++i) { 1868 const characteristics::DummyArgument &dummy{dummies[i]}; 1869 const std::optional<ActualArgument> &actual{actuals[i]}; 1870 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1871 return false; 1872 } 1873 } 1874 return true; 1875 } 1876 1877 // Handles a forward reference to a module function from what must 1878 // be a specification expression. Return false if the symbol is 1879 // an invalid forward reference. 1880 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1881 if (context_.HasError(symbol)) { 1882 return false; 1883 } 1884 if (const auto *details{ 1885 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1886 if (details->kind() == semantics::SubprogramKind::Module) { 1887 // If this symbol is still a SubprogramNameDetails, we must be 1888 // checking a specification expression in a sibling module 1889 // procedure. Resolve its names now so that its interface 1890 // is known. 1891 semantics::ResolveSpecificationParts(context_, symbol); 1892 if (symbol.has<semantics::SubprogramNameDetails>()) { 1893 // When the symbol hasn't had its details updated, we must have 1894 // already been in the process of resolving the function's 1895 // specification part; but recursive function calls are not 1896 // allowed in specification parts (10.1.11 para 5). 1897 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1898 symbol.name()); 1899 context_.SetError(symbol); 1900 return false; 1901 } 1902 } else { // 10.1.11 para 4 1903 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1904 symbol.name()); 1905 context_.SetError(symbol); 1906 return false; 1907 } 1908 } 1909 return true; 1910 } 1911 1912 // Resolve a call to a generic procedure with given actual arguments. 1913 // adjustActuals is called on procedure bindings to handle pass arg. 1914 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1915 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1916 bool mightBeStructureConstructor) { 1917 const Symbol *elemental{nullptr}; // matching elemental specific proc 1918 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1919 for (const Symbol &specific : details.specificProcs()) { 1920 if (!ResolveForward(specific)) { 1921 continue; 1922 } 1923 if (std::optional<characteristics::Procedure> procedure{ 1924 characteristics::Procedure::Characterize( 1925 ProcedureDesignator{specific}, context_.intrinsics())}) { 1926 ActualArguments localActuals{actuals}; 1927 if (specific.has<semantics::ProcBindingDetails>()) { 1928 if (!adjustActuals.value()(specific, localActuals)) { 1929 continue; 1930 } 1931 } 1932 if (semantics::CheckInterfaceForGeneric( 1933 *procedure, localActuals, GetFoldingContext())) { 1934 if (CheckCompatibleArguments(*procedure, localActuals)) { 1935 if (!procedure->IsElemental()) { 1936 return &specific; // takes priority over elemental match 1937 } 1938 elemental = &specific; 1939 } 1940 } 1941 } 1942 } 1943 if (elemental) { 1944 return elemental; 1945 } 1946 // Check parent derived type 1947 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 1948 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 1949 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 1950 if (const Symbol * 1951 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 1952 return result; 1953 } 1954 } 1955 } 1956 } 1957 if (mightBeStructureConstructor && details.derivedType()) { 1958 return details.derivedType(); 1959 } 1960 return nullptr; 1961 } 1962 1963 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 1964 if (semantics::IsGenericDefinedOp(symbol)) { 1965 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 1966 symbol.name()); 1967 } else { 1968 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 1969 symbol.name()); 1970 } 1971 } 1972 1973 auto ExpressionAnalyzer::GetCalleeAndArguments( 1974 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 1975 bool isSubroutine, bool mightBeStructureConstructor) 1976 -> std::optional<CalleeAndArguments> { 1977 return std::visit( 1978 common::visitors{ 1979 [&](const parser::Name &name) { 1980 return GetCalleeAndArguments(name, std::move(arguments), 1981 isSubroutine, mightBeStructureConstructor); 1982 }, 1983 [&](const parser::ProcComponentRef &pcr) { 1984 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 1985 }, 1986 }, 1987 pd.u); 1988 } 1989 1990 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 1991 ActualArguments &&arguments, bool isSubroutine, 1992 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 1993 const Symbol *symbol{name.symbol}; 1994 if (context_.HasError(symbol)) { 1995 return std::nullopt; // also handles null symbol 1996 } 1997 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 1998 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 1999 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2000 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2001 arguments, GetFoldingContext())}) { 2002 return CalleeAndArguments{ 2003 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2004 std::move(specificCall->arguments)}; 2005 } 2006 } else { 2007 CheckForBadRecursion(name.source, ultimate); 2008 if (ultimate.has<semantics::GenericDetails>()) { 2009 ExpressionAnalyzer::AdjustActuals noAdjustment; 2010 symbol = ResolveGeneric( 2011 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 2012 } 2013 if (symbol) { 2014 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2015 if (mightBeStructureConstructor) { 2016 return CalleeAndArguments{ 2017 semantics::SymbolRef{*symbol}, std::move(arguments)}; 2018 } 2019 } else { 2020 return CalleeAndArguments{ 2021 ProcedureDesignator{*symbol}, std::move(arguments)}; 2022 } 2023 } else if (std::optional<SpecificCall> specificCall{ 2024 context_.intrinsics().Probe( 2025 CallCharacteristics{ 2026 ultimate.name().ToString(), isSubroutine}, 2027 arguments, GetFoldingContext())}) { 2028 // Generics can extend intrinsics 2029 return CalleeAndArguments{ 2030 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2031 std::move(specificCall->arguments)}; 2032 } else { 2033 EmitGenericResolutionError(*name.symbol); 2034 } 2035 } 2036 return std::nullopt; 2037 } 2038 2039 void ExpressionAnalyzer::CheckForBadRecursion( 2040 parser::CharBlock callSite, const semantics::Symbol &proc) { 2041 if (const auto *scope{proc.scope()}) { 2042 if (scope->sourceRange().Contains(callSite)) { 2043 parser::Message *msg{nullptr}; 2044 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2045 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2046 callSite); 2047 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2048 msg = Say( // 15.6.2.1(3) 2049 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2050 callSite); 2051 } 2052 AttachDeclaration(msg, proc); 2053 } 2054 } 2055 } 2056 2057 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2058 if (const auto *designator{ 2059 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2060 if (const auto *dataRef{ 2061 std::get_if<parser::DataRef>(&designator->value().u)}) { 2062 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2063 if (const Symbol * symbol{name->symbol}) { 2064 if (const auto *type{symbol->GetType()}) { 2065 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2066 return symbol; 2067 } 2068 } 2069 } 2070 } 2071 } 2072 } 2073 return nullptr; 2074 } 2075 2076 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2077 std::optional<parser::StructureConstructor> *structureConstructor) { 2078 const parser::Call &call{funcRef.v}; 2079 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2080 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2081 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2082 analyzer.Analyze(arg, false /* not subroutine call */); 2083 } 2084 if (analyzer.fatalErrors()) { 2085 return std::nullopt; 2086 } 2087 if (std::optional<CalleeAndArguments> callee{ 2088 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2089 analyzer.GetActuals(), false /* not subroutine */, 2090 true /* might be structure constructor */)}) { 2091 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2092 return MakeFunctionRef( 2093 call.source, std::move(*proc), std::move(callee->arguments)); 2094 } else if (structureConstructor) { 2095 // Structure constructor misparsed as function reference? 2096 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2097 const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)}; 2098 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2099 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2100 semantics::Scope &scope{context_.FindScope(name->source)}; 2101 semantics::DerivedTypeSpec dtSpec{ 2102 name->source, derivedType.GetUltimate()}; 2103 if (dtSpec.IsForwardReferenced()) { 2104 Say(call.source, 2105 "Cannot construct value for derived type '%s' " 2106 "before it is defined"_err_en_US, 2107 name->source); 2108 return std::nullopt; 2109 } 2110 const semantics::DeclTypeSpec &type{ 2111 semantics::FindOrInstantiateDerivedType( 2112 scope, std::move(dtSpec), context_)}; 2113 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2114 *structureConstructor = 2115 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2116 return Analyze(structureConstructor->value()); 2117 } 2118 } 2119 } 2120 return std::nullopt; 2121 } 2122 2123 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2124 const parser::Call &call{callStmt.v}; 2125 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2126 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2127 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2128 for (const auto &arg : actualArgList) { 2129 analyzer.Analyze(arg, true /* is subroutine call */); 2130 } 2131 if (!analyzer.fatalErrors()) { 2132 if (std::optional<CalleeAndArguments> callee{ 2133 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2134 analyzer.GetActuals(), true /* subroutine */)}) { 2135 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2136 CHECK(proc); 2137 if (CheckCall(call.source, *proc, callee->arguments)) { 2138 bool hasAlternateReturns{ 2139 callee->arguments.size() < actualArgList.size()}; 2140 callStmt.typedCall.Reset( 2141 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2142 hasAlternateReturns}, 2143 ProcedureRef::Deleter); 2144 } 2145 } 2146 } 2147 } 2148 2149 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2150 if (!x.typedAssignment) { 2151 ArgumentAnalyzer analyzer{*this}; 2152 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2153 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2154 if (analyzer.fatalErrors()) { 2155 x.typedAssignment.Reset( 2156 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2157 } else { 2158 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2159 Assignment assignment{analyzer.MoveExpr(0), analyzer.MoveExpr(1)}; 2160 if (procRef) { 2161 assignment.u = std::move(*procRef); 2162 } 2163 x.typedAssignment.Reset( 2164 new GenericAssignmentWrapper{std::move(assignment)}, 2165 GenericAssignmentWrapper::Deleter); 2166 } 2167 } 2168 return common::GetPtrFromOptional(x.typedAssignment->v); 2169 } 2170 2171 const Assignment *ExpressionAnalyzer::Analyze( 2172 const parser::PointerAssignmentStmt &x) { 2173 if (!x.typedAssignment) { 2174 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2175 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2176 if (!lhs || !rhs) { 2177 x.typedAssignment.Reset( 2178 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2179 } else { 2180 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2181 std::visit(common::visitors{ 2182 [&](const std::list<parser::BoundsRemapping> &list) { 2183 Assignment::BoundsRemapping bounds; 2184 for (const auto &elem : list) { 2185 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2186 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2187 if (lower && upper) { 2188 bounds.emplace_back(Fold(std::move(*lower)), 2189 Fold(std::move(*upper))); 2190 } 2191 } 2192 assignment.u = std::move(bounds); 2193 }, 2194 [&](const std::list<parser::BoundsSpec> &list) { 2195 Assignment::BoundsSpec bounds; 2196 for (const auto &bound : list) { 2197 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2198 bounds.emplace_back(Fold(std::move(*lower))); 2199 } 2200 } 2201 assignment.u = std::move(bounds); 2202 }, 2203 }, 2204 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2205 x.typedAssignment.Reset( 2206 new GenericAssignmentWrapper{std::move(assignment)}, 2207 GenericAssignmentWrapper::Deleter); 2208 } 2209 } 2210 return common::GetPtrFromOptional(x.typedAssignment->v); 2211 } 2212 2213 static bool IsExternalCalledImplicitly( 2214 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2215 if (const auto *symbol{proc.GetSymbol()}) { 2216 return symbol->has<semantics::SubprogramDetails>() && 2217 symbol->owner().IsGlobal() && 2218 (!symbol->scope() /*ENTRY*/ || 2219 !symbol->scope()->sourceRange().Contains(callSite)); 2220 } else { 2221 return false; 2222 } 2223 } 2224 2225 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2226 parser::CharBlock callSite, const ProcedureDesignator &proc, 2227 ActualArguments &arguments) { 2228 auto chars{ 2229 characteristics::Procedure::Characterize(proc, context_.intrinsics())}; 2230 if (chars) { 2231 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2232 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2233 Say(callSite, 2234 "References to the procedure '%s' require an explicit interface"_en_US, 2235 DEREF(proc.GetSymbol()).name()); 2236 } 2237 // Checks for ASSOCIATED() are done in intrinsic table processing 2238 bool procIsAssociated{false}; 2239 if (const SpecificIntrinsic * 2240 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2241 if (specificIntrinsic->name == "associated") { 2242 procIsAssociated = true; 2243 } 2244 } 2245 if (!procIsAssociated) { 2246 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2247 context_.FindScope(callSite), treatExternalAsImplicit, 2248 proc.GetSpecificIntrinsic()); 2249 const Symbol *procSymbol{proc.GetSymbol()}; 2250 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2251 if (const semantics::Scope * 2252 pure{semantics::FindPureProcedureContaining( 2253 context_.FindScope(callSite))}) { 2254 Say(callSite, 2255 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2256 procSymbol->name(), DEREF(pure->symbol()).name()); 2257 } 2258 } 2259 } 2260 } 2261 return chars; 2262 } 2263 2264 // Unary operations 2265 2266 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2267 if (MaybeExpr operand{Analyze(x.v.value())}) { 2268 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2269 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2270 if (semantics::IsProcedurePointer(*result)) { 2271 Say("A function reference that returns a procedure " 2272 "pointer may not be parenthesized"_err_en_US); // C1003 2273 } 2274 } 2275 } 2276 return Parenthesize(std::move(*operand)); 2277 } 2278 return std::nullopt; 2279 } 2280 2281 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2282 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2283 ArgumentAnalyzer analyzer{context}; 2284 analyzer.Analyze(x.v); 2285 if (analyzer.fatalErrors()) { 2286 return std::nullopt; 2287 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2288 if (opr == NumericOperator::Add) { 2289 return analyzer.MoveExpr(0); 2290 } else { 2291 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2292 } 2293 } else { 2294 return analyzer.TryDefinedOp(AsFortran(opr), 2295 "Operand of unary %s must be numeric; have %s"_err_en_US); 2296 } 2297 } 2298 2299 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2300 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2301 } 2302 2303 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2304 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2305 } 2306 2307 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2308 ArgumentAnalyzer analyzer{*this}; 2309 analyzer.Analyze(x.v); 2310 if (analyzer.fatalErrors()) { 2311 return std::nullopt; 2312 } else if (analyzer.IsIntrinsicLogical()) { 2313 return AsGenericExpr( 2314 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2315 } else { 2316 return analyzer.TryDefinedOp(LogicalOperator::Not, 2317 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2318 } 2319 } 2320 2321 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2322 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2323 // intrinsic function. 2324 // Use the actual source for the name of the call for error reporting. 2325 std::optional<ActualArgument> arg; 2326 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2327 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2328 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2329 arg = ActualArgument{std::move(*argExpr)}; 2330 } else { 2331 return std::nullopt; 2332 } 2333 parser::CharBlock at{GetContextualMessages().at()}; 2334 CHECK(at.size() >= 4); 2335 parser::CharBlock loc{at.begin() + 1, 3}; 2336 CHECK(loc == "loc"); 2337 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2338 } 2339 2340 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2341 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2342 ArgumentAnalyzer analyzer{*this, name.source}; 2343 analyzer.Analyze(std::get<1>(x.t)); 2344 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2345 "No operator %s defined for %s"_err_en_US, true); 2346 } 2347 2348 // Binary (dyadic) operations 2349 2350 template <template <typename> class OPR> 2351 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2352 const parser::Expr::IntrinsicBinary &x) { 2353 ArgumentAnalyzer analyzer{context}; 2354 analyzer.Analyze(std::get<0>(x.t)); 2355 analyzer.Analyze(std::get<1>(x.t)); 2356 if (analyzer.fatalErrors()) { 2357 return std::nullopt; 2358 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2359 analyzer.CheckConformance(); 2360 return NumericOperation<OPR>(context.GetContextualMessages(), 2361 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2362 context.GetDefaultKind(TypeCategory::Real)); 2363 } else { 2364 return analyzer.TryDefinedOp(AsFortran(opr), 2365 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2366 } 2367 } 2368 2369 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2370 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2371 } 2372 2373 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2374 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2375 } 2376 2377 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2378 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2379 } 2380 2381 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2382 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2383 } 2384 2385 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2386 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2387 } 2388 2389 MaybeExpr ExpressionAnalyzer::Analyze( 2390 const parser::Expr::ComplexConstructor &x) { 2391 auto re{Analyze(std::get<0>(x.t).value())}; 2392 auto im{Analyze(std::get<1>(x.t).value())}; 2393 if (re && im) { 2394 ConformabilityCheck(GetContextualMessages(), *re, *im); 2395 } 2396 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2397 std::move(im), GetDefaultKind(TypeCategory::Real))); 2398 } 2399 2400 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2401 ArgumentAnalyzer analyzer{*this}; 2402 analyzer.Analyze(std::get<0>(x.t)); 2403 analyzer.Analyze(std::get<1>(x.t)); 2404 if (analyzer.fatalErrors()) { 2405 return std::nullopt; 2406 } else if (analyzer.IsIntrinsicConcat()) { 2407 return std::visit( 2408 [&](auto &&x, auto &&y) -> MaybeExpr { 2409 using T = ResultType<decltype(x)>; 2410 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2411 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2412 } else { 2413 DIE("different types for intrinsic concat"); 2414 } 2415 }, 2416 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2417 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2418 } else { 2419 return analyzer.TryDefinedOp("//", 2420 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2421 } 2422 } 2423 2424 // The Name represents a user-defined intrinsic operator. 2425 // If the actuals match one of the specific procedures, return a function ref. 2426 // Otherwise report the error in messages. 2427 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2428 const parser::Name &name, ActualArguments &&actuals) { 2429 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2430 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2431 return MakeFunctionRef(name.source, 2432 std::move(std::get<ProcedureDesignator>(callee->u)), 2433 std::move(callee->arguments)); 2434 } else { 2435 return std::nullopt; 2436 } 2437 } 2438 2439 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2440 const parser::Expr::IntrinsicBinary &x) { 2441 ArgumentAnalyzer analyzer{context}; 2442 analyzer.Analyze(std::get<0>(x.t)); 2443 analyzer.Analyze(std::get<1>(x.t)); 2444 if (analyzer.fatalErrors()) { 2445 return std::nullopt; 2446 } else { 2447 if (IsNullPointer(analyzer.GetExpr(0)) || 2448 IsNullPointer(analyzer.GetExpr(1))) { 2449 context.Say("NULL() not allowed as an operand of a relational " 2450 "operator"_err_en_US); 2451 return std::nullopt; 2452 } 2453 analyzer.ConvertBOZ(0, analyzer.GetType(1)); 2454 analyzer.ConvertBOZ(1, analyzer.GetType(0)); 2455 if (analyzer.IsIntrinsicRelational(opr)) { 2456 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2457 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2458 } else { 2459 return analyzer.TryDefinedOp(opr, 2460 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2461 } 2462 } 2463 } 2464 2465 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2466 return RelationHelper(*this, RelationalOperator::LT, x); 2467 } 2468 2469 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2470 return RelationHelper(*this, RelationalOperator::LE, x); 2471 } 2472 2473 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2474 return RelationHelper(*this, RelationalOperator::EQ, x); 2475 } 2476 2477 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2478 return RelationHelper(*this, RelationalOperator::NE, x); 2479 } 2480 2481 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2482 return RelationHelper(*this, RelationalOperator::GE, x); 2483 } 2484 2485 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2486 return RelationHelper(*this, RelationalOperator::GT, x); 2487 } 2488 2489 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2490 const parser::Expr::IntrinsicBinary &x) { 2491 ArgumentAnalyzer analyzer{context}; 2492 analyzer.Analyze(std::get<0>(x.t)); 2493 analyzer.Analyze(std::get<1>(x.t)); 2494 if (analyzer.fatalErrors()) { 2495 return std::nullopt; 2496 } else if (analyzer.IsIntrinsicLogical()) { 2497 return AsGenericExpr(BinaryLogicalOperation(opr, 2498 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2499 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2500 } else { 2501 return analyzer.TryDefinedOp( 2502 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2503 } 2504 } 2505 2506 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2507 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2508 } 2509 2510 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2511 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2512 } 2513 2514 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2515 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2516 } 2517 2518 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2519 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2520 } 2521 2522 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2523 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2524 ArgumentAnalyzer analyzer{*this, name.source}; 2525 analyzer.Analyze(std::get<1>(x.t)); 2526 analyzer.Analyze(std::get<2>(x.t)); 2527 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2528 "No operator %s defined for %s and %s"_err_en_US, true); 2529 } 2530 2531 static void CheckFuncRefToArrayElementRefHasSubscripts( 2532 semantics::SemanticsContext &context, 2533 const parser::FunctionReference &funcRef) { 2534 // Emit message if the function reference fix will end up an array element 2535 // reference with no subscripts because it will not be possible to later tell 2536 // the difference in expressions between empty subscript list due to bad 2537 // subscripts error recovery or because the user did not put any. 2538 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2539 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2540 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2541 if (!name) { 2542 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2543 } 2544 auto &msg{context.Say(funcRef.v.source, 2545 name->symbol && name->symbol->Rank() == 0 2546 ? "'%s' is not a function"_err_en_US 2547 : "Reference to array '%s' with empty subscript list"_err_en_US, 2548 name->source)}; 2549 if (name->symbol) { 2550 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2551 msg.Attach(name->source, 2552 "A result variable must be declared with RESULT to allow recursive " 2553 "function calls"_en_US); 2554 } else { 2555 AttachDeclaration(&msg, *name->symbol); 2556 } 2557 } 2558 } 2559 } 2560 2561 // Converts, if appropriate, an original misparse of ambiguous syntax like 2562 // A(1) as a function reference into an array reference. 2563 // Misparse structure constructors are detected elsewhere after generic 2564 // function call resolution fails. 2565 template <typename... A> 2566 static void FixMisparsedFunctionReference( 2567 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2568 // The parse tree is updated in situ when resolving an ambiguous parse. 2569 using uType = std::decay_t<decltype(constU)>; 2570 auto &u{const_cast<uType &>(constU)}; 2571 if (auto *func{ 2572 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2573 parser::FunctionReference &funcRef{func->value()}; 2574 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2575 if (Symbol * 2576 origSymbol{ 2577 std::visit(common::visitors{ 2578 [&](parser::Name &name) { return name.symbol; }, 2579 [&](parser::ProcComponentRef &pcr) { 2580 return pcr.v.thing.component.symbol; 2581 }, 2582 }, 2583 proc.u)}) { 2584 Symbol &symbol{origSymbol->GetUltimate()}; 2585 if (symbol.has<semantics::ObjectEntityDetails>() || 2586 symbol.has<semantics::AssocEntityDetails>()) { 2587 // Note that expression in AssocEntityDetails cannot be a procedure 2588 // pointer as per C1105 so this cannot be a function reference. 2589 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2590 uType>) { 2591 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2592 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2593 } else { 2594 DIE("can't fix misparsed function as array reference"); 2595 } 2596 } 2597 } 2598 } 2599 } 2600 2601 // Common handling of parse tree node types that retain the 2602 // representation of the analyzed expression. 2603 template <typename PARSED> 2604 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2605 const PARSED &x, parser::CharBlock source) { 2606 if (useSavedTypedExprs_ && x.typedExpr) { 2607 return x.typedExpr->v; 2608 } 2609 auto restorer{GetContextualMessages().SetLocation(source)}; 2610 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2611 std::is_same_v<PARSED, parser::Variable>) { 2612 FixMisparsedFunctionReference(context_, x.u); 2613 } 2614 if (AssumedTypeDummy(x)) { // C710 2615 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2616 } else if (MaybeExpr result{Analyze(x.u)}) { 2617 SetExpr(x, Fold(std::move(*result))); 2618 return x.typedExpr->v; 2619 } 2620 ResetExpr(x); 2621 if (!context_.AnyFatalError()) { 2622 std::string buf; 2623 llvm::raw_string_ostream dump{buf}; 2624 parser::DumpTree(dump, x); 2625 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2626 dump.str()); 2627 } 2628 return std::nullopt; 2629 } 2630 2631 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2632 auto restorer{GetContextualMessages().SetLocation(expr.source)}; 2633 return ExprOrVariable(expr, expr.source); 2634 } 2635 2636 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2637 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; 2638 return ExprOrVariable(variable, variable.GetSource()); 2639 } 2640 2641 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2642 auto restorer{GetContextualMessages().SetLocation(x.source)}; 2643 return ExprOrVariable(x, x.source); 2644 } 2645 2646 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2647 TypeCategory category, 2648 const std::optional<parser::KindSelector> &selector) { 2649 int defaultKind{GetDefaultKind(category)}; 2650 if (!selector) { 2651 return Expr<SubscriptInteger>{defaultKind}; 2652 } 2653 return std::visit( 2654 common::visitors{ 2655 [&](const parser::ScalarIntConstantExpr &x) { 2656 if (MaybeExpr kind{Analyze(x)}) { 2657 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 2658 if (CheckIntrinsicKind(category, *code)) { 2659 return Expr<SubscriptInteger>{*code}; 2660 } 2661 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 2662 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2663 } 2664 } 2665 return Expr<SubscriptInteger>{defaultKind}; 2666 }, 2667 [&](const parser::KindSelector::StarSize &x) { 2668 std::intmax_t size = x.v; 2669 if (!CheckIntrinsicSize(category, size)) { 2670 size = defaultKind; 2671 } else if (category == TypeCategory::Complex) { 2672 size /= 2; 2673 } 2674 return Expr<SubscriptInteger>{size}; 2675 }, 2676 }, 2677 selector->u); 2678 } 2679 2680 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2681 return context_.GetDefaultKind(category); 2682 } 2683 2684 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2685 common::TypeCategory category) { 2686 return {category, GetDefaultKind(category)}; 2687 } 2688 2689 bool ExpressionAnalyzer::CheckIntrinsicKind( 2690 TypeCategory category, std::int64_t kind) { 2691 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2692 return true; 2693 } else { 2694 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2695 ToUpperCase(EnumToString(category)), kind); 2696 return false; 2697 } 2698 } 2699 2700 bool ExpressionAnalyzer::CheckIntrinsicSize( 2701 TypeCategory category, std::int64_t size) { 2702 if (category == TypeCategory::Complex) { 2703 // COMPLEX*16 == COMPLEX(KIND=8) 2704 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2705 return true; 2706 } 2707 } else if (IsValidKindOfIntrinsicType(category, size)) { 2708 return true; 2709 } 2710 Say("%s*%jd is not a supported type"_err_en_US, 2711 ToUpperCase(EnumToString(category)), size); 2712 return false; 2713 } 2714 2715 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 2716 return impliedDos_.insert(std::make_pair(name, kind)).second; 2717 } 2718 2719 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 2720 auto iter{impliedDos_.find(name)}; 2721 if (iter != impliedDos_.end()) { 2722 impliedDos_.erase(iter); 2723 } 2724 } 2725 2726 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 2727 parser::CharBlock name) const { 2728 auto iter{impliedDos_.find(name)}; 2729 if (iter != impliedDos_.cend()) { 2730 return {iter->second}; 2731 } else { 2732 return std::nullopt; 2733 } 2734 } 2735 2736 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 2737 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 2738 if (result) { 2739 if (auto type{result->GetType()}) { 2740 if (type->category() != category) { // C885 2741 Say(at, "Must have %s type, but is %s"_err_en_US, 2742 ToUpperCase(EnumToString(category)), 2743 ToUpperCase(type->AsFortran())); 2744 return false; 2745 } else if (defaultKind) { 2746 int kind{context_.GetDefaultKind(category)}; 2747 if (type->kind() != kind) { 2748 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 2749 kind, ToUpperCase(EnumToString(category)), 2750 ToUpperCase(type->AsFortran())); 2751 return false; 2752 } 2753 } 2754 } else { 2755 Say(at, "Must have %s type, but is typeless"_err_en_US, 2756 ToUpperCase(EnumToString(category))); 2757 return false; 2758 } 2759 } 2760 return true; 2761 } 2762 2763 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 2764 ProcedureDesignator &&proc, ActualArguments &&arguments) { 2765 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 2766 if (intrinsic->name == "null" && arguments.empty()) { 2767 return Expr<SomeType>{NullPointer{}}; 2768 } 2769 } 2770 if (const Symbol * symbol{proc.GetSymbol()}) { 2771 if (!ResolveForward(*symbol)) { 2772 return std::nullopt; 2773 } 2774 } 2775 if (auto chars{CheckCall(callSite, proc, arguments)}) { 2776 if (chars->functionResult) { 2777 const auto &result{*chars->functionResult}; 2778 if (result.IsProcedurePointer()) { 2779 return Expr<SomeType>{ 2780 ProcedureRef{std::move(proc), std::move(arguments)}}; 2781 } else { 2782 // Not a procedure pointer, so type and shape are known. 2783 return TypedWrapper<FunctionRef, ProcedureRef>( 2784 DEREF(result.GetTypeAndShape()).type(), 2785 ProcedureRef{std::move(proc), std::move(arguments)}); 2786 } 2787 } 2788 } 2789 return std::nullopt; 2790 } 2791 2792 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 2793 parser::CharBlock intrinsic, ActualArguments &&arguments) { 2794 if (std::optional<SpecificCall> specificCall{ 2795 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 2796 arguments, context_.foldingContext())}) { 2797 return MakeFunctionRef(intrinsic, 2798 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2799 std::move(specificCall->arguments)); 2800 } else { 2801 return std::nullopt; 2802 } 2803 } 2804 2805 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 2806 source_.ExtendToCover(x.GetSource()); 2807 if (MaybeExpr expr{context_.Analyze(x)}) { 2808 if (!IsConstantExpr(*expr)) { 2809 actuals_.emplace_back(std::move(*expr)); 2810 return; 2811 } 2812 const Symbol *symbol{GetLastSymbol(*expr)}; 2813 if (!symbol) { 2814 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 2815 x.GetSource()); 2816 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 2817 auto *msg{context_.SayAt(x, 2818 "Assignment to subprogram '%s' is not allowed"_err_en_US, 2819 symbol->name())}; 2820 if (subp->isFunction()) { 2821 const auto &result{subp->result().name()}; 2822 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 2823 } 2824 } else { 2825 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 2826 symbol->name()); 2827 } 2828 } 2829 fatalErrors_ = true; 2830 } 2831 2832 void ArgumentAnalyzer::Analyze( 2833 const parser::ActualArgSpec &arg, bool isSubroutine) { 2834 // TODO: Actual arguments that are procedures and procedure pointers need to 2835 // be detected and represented (they're not expressions). 2836 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 2837 std::optional<ActualArgument> actual; 2838 bool isAltReturn{false}; 2839 std::visit(common::visitors{ 2840 [&](const common::Indirection<parser::Expr> &x) { 2841 // TODO: Distinguish & handle procedure name and 2842 // proc-component-ref 2843 actual = AnalyzeExpr(x.value()); 2844 }, 2845 [&](const parser::AltReturnSpec &) { 2846 if (!isSubroutine) { 2847 context_.Say( 2848 "alternate return specification may not appear on" 2849 " function reference"_err_en_US); 2850 } 2851 isAltReturn = true; 2852 }, 2853 [&](const parser::ActualArg::PercentRef &) { 2854 context_.Say("TODO: %REF() argument"_err_en_US); 2855 }, 2856 [&](const parser::ActualArg::PercentVal &) { 2857 context_.Say("TODO: %VAL() argument"_err_en_US); 2858 }, 2859 }, 2860 std::get<parser::ActualArg>(arg.t).u); 2861 if (actual) { 2862 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 2863 actual->set_keyword(argKW->v.source); 2864 } 2865 actuals_.emplace_back(std::move(*actual)); 2866 } else if (!isAltReturn) { 2867 fatalErrors_ = true; 2868 } 2869 } 2870 2871 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 2872 CHECK(actuals_.size() == 2); 2873 return semantics::IsIntrinsicRelational( 2874 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2875 } 2876 2877 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 2878 std::optional<DynamicType> type0{GetType(0)}; 2879 if (actuals_.size() == 1) { 2880 if (IsBOZLiteral(0)) { 2881 return opr == NumericOperator::Add; 2882 } else { 2883 return type0 && semantics::IsIntrinsicNumeric(*type0); 2884 } 2885 } else { 2886 std::optional<DynamicType> type1{GetType(1)}; 2887 if (IsBOZLiteral(0) && type1) { 2888 auto cat1{type1->category()}; 2889 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 2890 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 2891 auto cat0{type0->category()}; 2892 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 2893 } else { 2894 return type0 && type1 && 2895 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 2896 } 2897 } 2898 } 2899 2900 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 2901 if (actuals_.size() == 1) { 2902 return semantics::IsIntrinsicLogical(*GetType(0)); 2903 return GetType(0)->category() == TypeCategory::Logical; 2904 } else { 2905 return semantics::IsIntrinsicLogical( 2906 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2907 } 2908 } 2909 2910 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 2911 return semantics::IsIntrinsicConcat( 2912 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2913 } 2914 2915 bool ArgumentAnalyzer::CheckConformance() const { 2916 if (actuals_.size() == 2) { 2917 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 2918 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 2919 if (lhs && rhs) { 2920 auto &foldingContext{context_.GetFoldingContext()}; 2921 auto lhShape{GetShape(foldingContext, *lhs)}; 2922 auto rhShape{GetShape(foldingContext, *rhs)}; 2923 if (lhShape && rhShape) { 2924 return evaluate::CheckConformance(foldingContext.messages(), *lhShape, 2925 *rhShape, "left operand", "right operand"); 2926 } 2927 } 2928 } 2929 return true; // no proven problem 2930 } 2931 2932 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2933 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 2934 if (AnyUntypedOperand()) { 2935 context_.Say( 2936 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2937 return std::nullopt; 2938 } 2939 { 2940 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2941 std::string oprNameString{ 2942 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 2943 parser::CharBlock oprName{oprNameString}; 2944 const auto &scope{context_.context().FindScope(source_)}; 2945 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 2946 parser::Name name{symbol->name(), symbol}; 2947 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 2948 return result; 2949 } 2950 sawDefinedOp_ = symbol; 2951 } 2952 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2953 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 2954 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 2955 return result; 2956 } 2957 } 2958 } 2959 } 2960 if (sawDefinedOp_) { 2961 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 2962 } else if (actuals_.size() == 1 || AreConformable()) { 2963 context_.Say( 2964 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2965 } else { 2966 context_.Say( 2967 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 2968 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 2969 } 2970 return std::nullopt; 2971 } 2972 2973 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2974 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 2975 for (std::size_t i{1}; i < oprs.size(); ++i) { 2976 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2977 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 2978 return result; 2979 } 2980 } 2981 return TryDefinedOp(oprs[0], std::move(error)); 2982 } 2983 2984 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 2985 ActualArguments localActuals{actuals_}; 2986 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 2987 if (!proc) { 2988 proc = &symbol; 2989 localActuals.at(passIndex).value().set_isPassedObject(); 2990 } 2991 CheckConformance(); 2992 return context_.MakeFunctionRef( 2993 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 2994 } 2995 2996 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 2997 using semantics::Tristate; 2998 const Expr<SomeType> &lhs{GetExpr(0)}; 2999 const Expr<SomeType> &rhs{GetExpr(1)}; 3000 std::optional<DynamicType> lhsType{lhs.GetType()}; 3001 std::optional<DynamicType> rhsType{rhs.GetType()}; 3002 int lhsRank{lhs.Rank()}; 3003 int rhsRank{rhs.Rank()}; 3004 Tristate isDefined{ 3005 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3006 if (isDefined == Tristate::No) { 3007 if (lhsType && rhsType) { 3008 AddAssignmentConversion(*lhsType, *rhsType); 3009 } 3010 return std::nullopt; // user-defined assignment not allowed for these args 3011 } 3012 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3013 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3014 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3015 return std::move(*procRef); 3016 } 3017 if (isDefined == Tristate::Yes) { 3018 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3019 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3020 SayNoMatch("ASSIGNMENT(=)", true); 3021 } 3022 } 3023 return std::nullopt; 3024 } 3025 3026 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3027 TypeCategory lhs, TypeCategory rhs) { 3028 if (!context_.context().languageFeatures().IsEnabled( 3029 common::LanguageFeature::LogicalIntegerAssignment)) { 3030 return false; 3031 } 3032 std::optional<parser::MessageFixedText> msg; 3033 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3034 // allow assignment to LOGICAL from INTEGER as a legacy extension 3035 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 3036 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3037 // ... and assignment to LOGICAL from INTEGER 3038 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 3039 } else { 3040 return false; 3041 } 3042 if (context_.context().languageFeatures().ShouldWarn( 3043 common::LanguageFeature::LogicalIntegerAssignment)) { 3044 context_.Say(std::move(*msg)); 3045 } 3046 return true; 3047 } 3048 3049 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3050 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3051 std::string oprNameString{"assignment(=)"}; 3052 parser::CharBlock oprName{oprNameString}; 3053 const Symbol *proc{nullptr}; 3054 const auto &scope{context_.context().FindScope(source_)}; 3055 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3056 ExpressionAnalyzer::AdjustActuals noAdjustment; 3057 if (const Symbol * 3058 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 3059 proc = specific; 3060 } else { 3061 context_.EmitGenericResolutionError(*symbol); 3062 } 3063 } 3064 int passedObjectIndex{-1}; 3065 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3066 if (const Symbol * specific{FindBoundOp(oprName, i)}) { 3067 if (const Symbol * 3068 resolution{GetBindingResolution(GetType(i), *specific)}) { 3069 proc = resolution; 3070 } else { 3071 proc = specific; 3072 passedObjectIndex = i; 3073 } 3074 } 3075 } 3076 if (!proc) { 3077 return std::nullopt; 3078 } 3079 ActualArguments actualsCopy{actuals_}; 3080 if (passedObjectIndex >= 0) { 3081 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3082 } 3083 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3084 } 3085 3086 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3087 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3088 << '\n'; 3089 for (const auto &actual : actuals_) { 3090 if (!actual.has_value()) { 3091 os << "- error\n"; 3092 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3093 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3094 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3095 expr->AsFortran(os << "- expr: ") << '\n'; 3096 } else { 3097 DIE("bad ActualArgument"); 3098 } 3099 } 3100 } 3101 3102 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3103 const parser::Expr &expr) { 3104 source_.ExtendToCover(expr.source); 3105 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3106 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3107 if (isProcedureCall_) { 3108 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 3109 } 3110 context_.SayAt(expr.source, 3111 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3112 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3113 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3114 return ActualArgument{std::move(*argExpr)}; 3115 } 3116 context_.SayAt(expr.source, 3117 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3118 : "Subroutine name is not allowed here"_err_en_US); 3119 } 3120 return std::nullopt; 3121 } 3122 3123 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3124 const parser::Expr &expr) { 3125 // If an expression's parse tree is a whole assumed-size array: 3126 // Expr -> Designator -> DataRef -> Name 3127 // treat it as a special case for argument passing and bypass 3128 // the C1002/C1014 constraint checking in expression semantics. 3129 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3130 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3131 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3132 return context_.Analyze(expr); 3133 } 3134 } 3135 return context_.Analyze(expr); 3136 } 3137 3138 bool ArgumentAnalyzer::AreConformable() const { 3139 CHECK(!fatalErrors_ && actuals_.size() == 2); 3140 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3141 } 3142 3143 // Look for a type-bound operator in the type of arg number passIndex. 3144 const Symbol *ArgumentAnalyzer::FindBoundOp( 3145 parser::CharBlock oprName, int passIndex) { 3146 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3147 if (!type || !type->scope()) { 3148 return nullptr; 3149 } 3150 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3151 if (!symbol) { 3152 return nullptr; 3153 } 3154 sawDefinedOp_ = symbol; 3155 ExpressionAnalyzer::AdjustActuals adjustment{ 3156 [&](const Symbol &proc, ActualArguments &) { 3157 return passIndex == GetPassIndex(proc); 3158 }}; 3159 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3160 if (!result) { 3161 context_.EmitGenericResolutionError(*symbol); 3162 } 3163 return result; 3164 } 3165 3166 // If there is an implicit conversion between intrinsic types, make it explicit 3167 void ArgumentAnalyzer::AddAssignmentConversion( 3168 const DynamicType &lhsType, const DynamicType &rhsType) { 3169 if (lhsType.category() == rhsType.category() && 3170 lhsType.kind() == rhsType.kind()) { 3171 // no conversion necessary 3172 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3173 actuals_[1] = ActualArgument{*rhsExpr}; 3174 } else { 3175 actuals_[1] = std::nullopt; 3176 } 3177 } 3178 3179 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3180 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3181 } 3182 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3183 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3184 } 3185 3186 // If the argument at index i is a BOZ literal, convert its type to match the 3187 // otherType. It it's REAL convert to REAL, otherwise convert to INTEGER. 3188 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3189 // is not currently supported. 3190 void ArgumentAnalyzer::ConvertBOZ( 3191 std::size_t i, std::optional<DynamicType> otherType) { 3192 if (IsBOZLiteral(i)) { 3193 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3194 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3195 if (otherType && otherType->category() == TypeCategory::Real) { 3196 MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>( 3197 context_.context().GetDefaultKind(TypeCategory::Real), 3198 std::move(*boz))}; 3199 actuals_[i] = std::move(*realExpr); 3200 } else { 3201 MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>( 3202 context_.context().GetDefaultKind(TypeCategory::Integer), 3203 std::move(*boz))}; 3204 actuals_[i] = std::move(*intExpr); 3205 } 3206 } 3207 } 3208 3209 // Report error resolving opr when there is a user-defined one available 3210 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3211 std::string type0{TypeAsFortran(0)}; 3212 auto rank0{actuals_[0]->Rank()}; 3213 if (actuals_.size() == 1) { 3214 if (rank0 > 0) { 3215 context_.Say("No intrinsic or user-defined %s matches " 3216 "rank %d array of %s"_err_en_US, 3217 opr, rank0, type0); 3218 } else { 3219 context_.Say("No intrinsic or user-defined %s matches " 3220 "operand type %s"_err_en_US, 3221 opr, type0); 3222 } 3223 } else { 3224 std::string type1{TypeAsFortran(1)}; 3225 auto rank1{actuals_[1]->Rank()}; 3226 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3227 context_.Say("No intrinsic or user-defined %s matches " 3228 "rank %d array of %s and rank %d array of %s"_err_en_US, 3229 opr, rank0, type0, rank1, type1); 3230 } else if (isAssignment && rank0 != rank1) { 3231 if (rank0 == 0) { 3232 context_.Say("No intrinsic or user-defined %s matches " 3233 "scalar %s and rank %d array of %s"_err_en_US, 3234 opr, type0, rank1, type1); 3235 } else { 3236 context_.Say("No intrinsic or user-defined %s matches " 3237 "rank %d array of %s and scalar %s"_err_en_US, 3238 opr, rank0, type0, type1); 3239 } 3240 } else { 3241 context_.Say("No intrinsic or user-defined %s matches " 3242 "operand types %s and %s"_err_en_US, 3243 opr, type0, type1); 3244 } 3245 } 3246 } 3247 3248 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3249 if (std::optional<DynamicType> type{GetType(i)}) { 3250 return type->category() == TypeCategory::Derived 3251 ? "TYPE("s + type->AsFortran() + ')' 3252 : type->category() == TypeCategory::Character 3253 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3254 : ToUpperCase(type->AsFortran()); 3255 } else { 3256 return "untyped"; 3257 } 3258 } 3259 3260 bool ArgumentAnalyzer::AnyUntypedOperand() { 3261 for (const auto &actual : actuals_) { 3262 if (!actual.value().GetType()) { 3263 return true; 3264 } 3265 } 3266 return false; 3267 } 3268 3269 } // namespace Fortran::evaluate 3270 3271 namespace Fortran::semantics { 3272 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3273 SemanticsContext &context, common::TypeCategory category, 3274 const std::optional<parser::KindSelector> &selector) { 3275 evaluate::ExpressionAnalyzer analyzer{context}; 3276 auto restorer{ 3277 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3278 return analyzer.AnalyzeKindSelector(category, selector); 3279 } 3280 3281 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3282 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3283 } 3284 3285 const evaluate::Assignment *AnalyzeAssignmentStmt( 3286 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3287 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3288 } 3289 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3290 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3291 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3292 } 3293 3294 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3295 3296 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3297 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3298 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3299 auto name{bounds.name.thing.thing}; 3300 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3301 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3302 if (dynamicType->category() == TypeCategory::Integer) { 3303 kind = dynamicType->kind(); 3304 } 3305 } 3306 exprAnalyzer_.AddImpliedDo(name.source, kind); 3307 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3308 exprAnalyzer_.RemoveImpliedDo(name.source); 3309 return false; 3310 } 3311 3312 bool ExprChecker::Walk(const parser::Program &program) { 3313 parser::Walk(program, *this); 3314 return !context_.AnyFatalError(); 3315 } 3316 } // namespace Fortran::semantics 3317