1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/idioms.h" 14 #include "flang/Evaluate/common.h" 15 #include "flang/Evaluate/fold.h" 16 #include "flang/Evaluate/tools.h" 17 #include "flang/Parser/characters.h" 18 #include "flang/Parser/dump-parse-tree.h" 19 #include "flang/Parser/parse-tree-visitor.h" 20 #include "flang/Parser/parse-tree.h" 21 #include "flang/Semantics/scope.h" 22 #include "flang/Semantics/semantics.h" 23 #include "flang/Semantics/symbol.h" 24 #include "flang/Semantics/tools.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <functional> 28 #include <optional> 29 #include <set> 30 31 // Typedef for optional generic expressions (ubiquitous in this file) 32 using MaybeExpr = 33 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 34 35 // Much of the code that implements semantic analysis of expressions is 36 // tightly coupled with their typed representations in lib/Evaluate, 37 // and appears here in namespace Fortran::evaluate for convenience. 38 namespace Fortran::evaluate { 39 40 using common::LanguageFeature; 41 using common::NumericOperator; 42 using common::TypeCategory; 43 44 static inline std::string ToUpperCase(const std::string &str) { 45 return parser::ToUpperCaseLetters(str); 46 } 47 48 struct DynamicTypeWithLength : public DynamicType { 49 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 50 std::optional<Expr<SubscriptInteger>> LEN() const; 51 std::optional<Expr<SubscriptInteger>> length; 52 }; 53 54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 55 if (length) { 56 return length; 57 } 58 if (auto *lengthParam{charLength()}) { 59 if (const auto &len{lengthParam->GetExplicit()}) { 60 return ConvertToType<SubscriptInteger>(common::Clone(*len)); 61 } 62 } 63 return std::nullopt; // assumed or deferred length 64 } 65 66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 67 const std::optional<parser::TypeSpec> &spec) { 68 if (spec) { 69 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 70 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 71 // (viz., an intrinsic type with valid known kind or a non-polymorphic 72 // & non-ABSTRACT derived type). 73 if (const semantics::IntrinsicTypeSpec * 74 intrinsic{typeSpec->AsIntrinsic()}) { 75 TypeCategory category{intrinsic->category()}; 76 if (auto optKind{ToInt64(intrinsic->kind())}) { 77 int kind{static_cast<int>(*optKind)}; 78 if (category == TypeCategory::Character) { 79 const semantics::CharacterTypeSpec &cts{ 80 typeSpec->characterTypeSpec()}; 81 const semantics::ParamValue &len{cts.length()}; 82 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 83 // type guards, but not in array constructors. 84 return DynamicTypeWithLength{DynamicType{kind, len}}; 85 } else { 86 return DynamicTypeWithLength{DynamicType{category, kind}}; 87 } 88 } 89 } else if (const semantics::DerivedTypeSpec * 90 derived{typeSpec->AsDerived()}) { 91 return DynamicTypeWithLength{DynamicType{*derived}}; 92 } 93 } 94 } 95 return std::nullopt; 96 } 97 98 // Wraps a object in an explicitly typed representation (e.g., Designator<> 99 // or FunctionRef<>) that has been instantiated on a dynamically chosen type. 100 template <TypeCategory CATEGORY, template <typename> typename WRAPPER, 101 typename WRAPPED> 102 common::IfNoLvalue<MaybeExpr, WRAPPED> WrapperHelper(int kind, WRAPPED &&x) { 103 return common::SearchTypes( 104 TypeKindVisitor<CATEGORY, WRAPPER, WRAPPED>{kind, std::move(x)}); 105 } 106 107 template <template <typename> typename WRAPPER, typename WRAPPED> 108 common::IfNoLvalue<MaybeExpr, WRAPPED> TypedWrapper( 109 const DynamicType &dyType, WRAPPED &&x) { 110 switch (dyType.category()) { 111 SWITCH_COVERS_ALL_CASES 112 case TypeCategory::Integer: 113 return WrapperHelper<TypeCategory::Integer, WRAPPER, WRAPPED>( 114 dyType.kind(), std::move(x)); 115 case TypeCategory::Real: 116 return WrapperHelper<TypeCategory::Real, WRAPPER, WRAPPED>( 117 dyType.kind(), std::move(x)); 118 case TypeCategory::Complex: 119 return WrapperHelper<TypeCategory::Complex, WRAPPER, WRAPPED>( 120 dyType.kind(), std::move(x)); 121 case TypeCategory::Character: 122 return WrapperHelper<TypeCategory::Character, WRAPPER, WRAPPED>( 123 dyType.kind(), std::move(x)); 124 case TypeCategory::Logical: 125 return WrapperHelper<TypeCategory::Logical, WRAPPER, WRAPPED>( 126 dyType.kind(), std::move(x)); 127 case TypeCategory::Derived: 128 return AsGenericExpr(Expr<SomeDerived>{WRAPPER<SomeDerived>{std::move(x)}}); 129 } 130 } 131 132 class ArgumentAnalyzer { 133 public: 134 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 135 : context_{context}, allowAssumedType_{false} {} 136 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 137 bool allowAssumedType = false) 138 : context_{context}, source_{source}, allowAssumedType_{ 139 allowAssumedType} {} 140 bool fatalErrors() const { return fatalErrors_; } 141 ActualArguments &&GetActuals() { 142 CHECK(!fatalErrors_); 143 return std::move(actuals_); 144 } 145 const Expr<SomeType> &GetExpr(std::size_t i) const { 146 return DEREF(actuals_.at(i).value().UnwrapExpr()); 147 } 148 Expr<SomeType> &&MoveExpr(std::size_t i) { 149 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 150 } 151 void Analyze(const common::Indirection<parser::Expr> &x) { 152 Analyze(x.value()); 153 } 154 void Analyze(const parser::Expr &x) { 155 actuals_.emplace_back(AnalyzeExpr(x)); 156 fatalErrors_ |= !actuals_.back(); 157 } 158 void Analyze(const parser::Variable &); 159 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 160 161 bool IsIntrinsicRelational(RelationalOperator) const; 162 bool IsIntrinsicLogical() const; 163 bool IsIntrinsicNumeric(NumericOperator) const; 164 bool IsIntrinsicConcat() const; 165 166 // Find and return a user-defined operator or report an error. 167 // The provided message is used if there is no such operator. 168 MaybeExpr TryDefinedOp( 169 const char *, parser::MessageFixedText &&, bool isUserOp = false); 170 template <typename E> 171 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 172 return TryDefinedOp( 173 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 174 } 175 // Find and return a user-defined assignment 176 std::optional<ProcedureRef> TryDefinedAssignment(); 177 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 178 void Dump(llvm::raw_ostream &); 179 180 private: 181 MaybeExpr TryDefinedOp( 182 std::vector<const char *>, parser::MessageFixedText &&); 183 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 184 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 185 bool AreConformable() const; 186 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 187 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 188 std::optional<DynamicType> GetType(std::size_t) const; 189 int GetRank(std::size_t) const; 190 bool IsBOZLiteral(std::size_t i) const { 191 return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u); 192 } 193 void SayNoMatch(const std::string &, bool isAssignment = false); 194 std::string TypeAsFortran(std::size_t); 195 bool AnyUntypedOperand(); 196 197 ExpressionAnalyzer &context_; 198 ActualArguments actuals_; 199 parser::CharBlock source_; 200 bool fatalErrors_{false}; 201 const bool allowAssumedType_; 202 const Symbol *sawDefinedOp_{nullptr}; 203 }; 204 205 // Wraps a data reference in a typed Designator<>, and a procedure 206 // or procedure pointer reference in a ProcedureDesignator. 207 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 208 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 209 if (semantics::IsProcedure(symbol)) { 210 if (auto *component{std::get_if<Component>(&ref.u)}) { 211 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 212 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 213 DIE("unexpected alternative in DataRef"); 214 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 215 return Expr<SomeType>{ProcedureDesignator{symbol}}; 216 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 217 symbol.name().ToString())}) { 218 SpecificIntrinsic intrinsic{ 219 symbol.name().ToString(), std::move(*interface)}; 220 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 221 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 222 } else { 223 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 224 symbol.name()); 225 return std::nullopt; 226 } 227 } else if (auto dyType{DynamicType::From(symbol)}) { 228 return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); 229 } 230 return std::nullopt; 231 } 232 233 // Some subscript semantic checks must be deferred until all of the 234 // subscripts are in hand. 235 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 236 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 237 const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 238 int symbolRank{symbol.Rank()}; 239 int subscripts{static_cast<int>(ref.size())}; 240 if (subscripts == 0) { 241 // nothing to check 242 } else if (subscripts != symbolRank) { 243 if (symbolRank != 0) { 244 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 245 symbolRank, symbol.name(), subscripts); 246 } 247 return std::nullopt; 248 } else if (Component * component{ref.base().UnwrapComponent()}) { 249 int baseRank{component->base().Rank()}; 250 if (baseRank > 0) { 251 int subscriptRank{0}; 252 for (const auto &expr : ref.subscript()) { 253 subscriptRank += expr.Rank(); 254 } 255 if (subscriptRank > 0) { 256 Say("Subscripts of component '%s' of rank-%d derived type " 257 "array have rank %d but must all be scalar"_err_en_US, 258 symbol.name(), baseRank, subscriptRank); 259 return std::nullopt; 260 } 261 } 262 } else if (object) { 263 // C928 & C1002 264 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 265 if (!last->upper() && object->IsAssumedSize()) { 266 Say("Assumed-size array '%s' must have explicit final " 267 "subscript upper bound value"_err_en_US, 268 symbol.name()); 269 return std::nullopt; 270 } 271 } 272 } 273 return Designate(DataRef{std::move(ref)}); 274 } 275 276 // Applies subscripts to a data reference. 277 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 278 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 279 return std::visit( 280 common::visitors{ 281 [&](SymbolRef &&symbol) { 282 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 283 }, 284 [&](Component &&c) { 285 return CompleteSubscripts( 286 ArrayRef{std::move(c), std::move(subscripts)}); 287 }, 288 [&](auto &&) -> MaybeExpr { 289 DIE("bad base for ArrayRef"); 290 return std::nullopt; 291 }, 292 }, 293 std::move(dataRef.u)); 294 } 295 296 // Top-level checks for data references. 297 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 298 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 299 const Symbol &symbol{component->GetLastSymbol()}; 300 int componentRank{symbol.Rank()}; 301 if (componentRank > 0) { 302 int baseRank{component->base().Rank()}; 303 if (baseRank > 0) { 304 Say("Reference to whole rank-%d component '%%%s' of " 305 "rank-%d array of derived type is not allowed"_err_en_US, 306 componentRank, symbol.name(), baseRank); 307 } 308 } 309 } 310 return Designate(std::move(dataRef)); 311 } 312 313 // Parse tree correction after a substring S(j:k) was misparsed as an 314 // array section. N.B. Fortran substrings have to have a range, not a 315 // single index. 316 static void FixMisparsedSubstring(const parser::Designator &d) { 317 auto &mutate{const_cast<parser::Designator &>(d)}; 318 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 319 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 320 &dataRef->u)}) { 321 parser::ArrayElement &arrElement{ae->value()}; 322 if (!arrElement.subscripts.empty()) { 323 auto iter{arrElement.subscripts.begin()}; 324 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 325 if (!std::get<2>(triplet->t) /* no stride */ && 326 ++iter == arrElement.subscripts.end() /* one subscript */) { 327 if (Symbol * 328 symbol{std::visit( 329 common::visitors{ 330 [](parser::Name &n) { return n.symbol; }, 331 [](common::Indirection<parser::StructureComponent> 332 &sc) { return sc.value().component.symbol; }, 333 [](auto &) -> Symbol * { return nullptr; }, 334 }, 335 arrElement.base.u)}) { 336 const Symbol &ultimate{symbol->GetUltimate()}; 337 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 338 if (!ultimate.IsObjectArray() && 339 type->category() == semantics::DeclTypeSpec::Character) { 340 // The ambiguous S(j:k) was parsed as an array section 341 // reference, but it's now clear that it's a substring. 342 // Fix the parse tree in situ. 343 mutate.u = arrElement.ConvertToSubstring(); 344 } 345 } 346 } 347 } 348 } 349 } 350 } 351 } 352 } 353 354 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 355 auto restorer{GetContextualMessages().SetLocation(d.source)}; 356 FixMisparsedSubstring(d); 357 // These checks have to be deferred to these "top level" data-refs where 358 // we can be sure that there are no following subscripts (yet). 359 // Substrings have already been run through TopLevelChecks() and 360 // won't be returned by ExtractDataRef(). 361 if (MaybeExpr result{Analyze(d.u)}) { 362 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 363 return TopLevelChecks(std::move(*dataRef)); 364 } 365 return result; 366 } 367 return std::nullopt; 368 } 369 370 // A utility subroutine to repackage optional expressions of various levels 371 // of type specificity as fully general MaybeExpr values. 372 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 373 return std::make_optional(AsGenericExpr(std::move(x))); 374 } 375 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 376 if (x) { 377 return AsMaybeExpr(std::move(*x)); 378 } 379 return std::nullopt; 380 } 381 382 // Type kind parameter values for literal constants. 383 int ExpressionAnalyzer::AnalyzeKindParam( 384 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 385 if (!kindParam) { 386 return defaultKind; 387 } 388 return std::visit( 389 common::visitors{ 390 [](std::uint64_t k) { return static_cast<int>(k); }, 391 [&](const parser::Scalar< 392 parser::Integer<parser::Constant<parser::Name>>> &n) { 393 if (MaybeExpr ie{Analyze(n)}) { 394 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 395 int iv = *i64; 396 if (iv == *i64) { 397 return iv; 398 } 399 } 400 } 401 return defaultKind; 402 }, 403 }, 404 kindParam->u); 405 } 406 407 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 408 struct IntTypeVisitor { 409 using Result = MaybeExpr; 410 using Types = IntegerTypes; 411 template <typename T> Result Test() { 412 if (T::kind >= kind) { 413 const char *p{digits.begin()}; 414 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 415 if (!value.overflow) { 416 if (T::kind > kind) { 417 if (!isDefaultKind || 418 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 419 return std::nullopt; 420 } else if (analyzer.context().ShouldWarn( 421 LanguageFeature::BigIntLiterals)) { 422 analyzer.Say(digits, 423 "Integer literal is too large for default INTEGER(KIND=%d); " 424 "assuming INTEGER(KIND=%d)"_en_US, 425 kind, T::kind); 426 } 427 } 428 return Expr<SomeType>{ 429 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 430 } 431 } 432 return std::nullopt; 433 } 434 ExpressionAnalyzer &analyzer; 435 parser::CharBlock digits; 436 int kind; 437 bool isDefaultKind; 438 }; 439 440 template <typename PARSED> 441 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 442 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 443 bool isDefaultKind{!kindParam}; 444 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 445 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 446 auto digits{std::get<parser::CharBlock>(x.t)}; 447 if (MaybeExpr result{common::SearchTypes( 448 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 449 return result; 450 } else if (isDefaultKind) { 451 Say(digits, 452 "Integer literal is too large for any allowable " 453 "kind of INTEGER"_err_en_US); 454 } else { 455 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 456 kind); 457 } 458 } 459 return std::nullopt; 460 } 461 462 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 463 auto restorer{ 464 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 465 return IntLiteralConstant(x); 466 } 467 468 MaybeExpr ExpressionAnalyzer::Analyze( 469 const parser::SignedIntLiteralConstant &x) { 470 auto restorer{GetContextualMessages().SetLocation(x.source)}; 471 return IntLiteralConstant(x); 472 } 473 474 template <typename TYPE> 475 Constant<TYPE> ReadRealLiteral( 476 parser::CharBlock source, FoldingContext &context) { 477 const char *p{source.begin()}; 478 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 479 CHECK(p == source.end()); 480 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 481 auto value{valWithFlags.value}; 482 if (context.flushSubnormalsToZero()) { 483 value = value.FlushSubnormalToZero(); 484 } 485 return {value}; 486 } 487 488 struct RealTypeVisitor { 489 using Result = std::optional<Expr<SomeReal>>; 490 using Types = RealTypes; 491 492 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 493 : kind{k}, literal{lit}, context{ctx} {} 494 495 template <typename T> Result Test() { 496 if (kind == T::kind) { 497 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 498 } 499 return std::nullopt; 500 } 501 502 int kind; 503 parser::CharBlock literal; 504 FoldingContext &context; 505 }; 506 507 // Reads a real literal constant and encodes it with the right kind. 508 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 509 // Use a local message context around the real literal for better 510 // provenance on any messages. 511 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 512 // If a kind parameter appears, it defines the kind of the literal and the 513 // letter used in an exponent part must be 'E' (e.g., the 'E' in 514 // "6.02214E+23"). In the absence of an explicit kind parameter, any 515 // exponent letter determines the kind. Otherwise, defaults apply. 516 auto &defaults{context_.defaultKinds()}; 517 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 518 const char *end{x.real.source.end()}; 519 char expoLetter{' '}; 520 std::optional<int> letterKind; 521 for (const char *p{x.real.source.begin()}; p < end; ++p) { 522 if (parser::IsLetter(*p)) { 523 expoLetter = *p; 524 switch (expoLetter) { 525 case 'e': 526 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 527 break; 528 case 'd': 529 letterKind = defaults.doublePrecisionKind(); 530 break; 531 case 'q': 532 letterKind = defaults.quadPrecisionKind(); 533 break; 534 default: 535 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 536 } 537 break; 538 } 539 } 540 if (letterKind) { 541 defaultKind = *letterKind; 542 } 543 // C716 requires 'E' as an exponent, but this is more useful 544 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 545 if (letterKind && kind != *letterKind && expoLetter != 'e') { 546 Say("Explicit kind parameter on real constant disagrees with " 547 "exponent letter '%c'"_en_US, 548 expoLetter); 549 } 550 auto result{common::SearchTypes( 551 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 552 if (!result) { // C717 553 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 554 } 555 return AsMaybeExpr(std::move(result)); 556 } 557 558 MaybeExpr ExpressionAnalyzer::Analyze( 559 const parser::SignedRealLiteralConstant &x) { 560 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 561 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 562 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 563 if (sign == parser::Sign::Negative) { 564 return {AsGenericExpr(-std::move(realExpr))}; 565 } 566 } 567 return result; 568 } 569 return std::nullopt; 570 } 571 572 MaybeExpr ExpressionAnalyzer::Analyze( 573 const parser::SignedComplexLiteralConstant &x) { 574 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 575 if (!result) { 576 return std::nullopt; 577 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 578 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 579 } else { 580 return result; 581 } 582 } 583 584 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 585 return Analyze(x.u); 586 } 587 588 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 589 return AsMaybeExpr( 590 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 591 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 592 } 593 594 // CHARACTER literal processing. 595 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 596 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 597 return std::nullopt; 598 } 599 switch (kind) { 600 case 1: 601 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 602 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 603 string, true)}); 604 case 2: 605 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 606 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 607 string, true)}); 608 case 4: 609 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 610 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 611 string, true)}); 612 default: 613 CRASH_NO_CASE; 614 } 615 } 616 617 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 618 int kind{ 619 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 620 auto value{std::get<std::string>(x.t)}; 621 return AnalyzeString(std::move(value), kind); 622 } 623 624 MaybeExpr ExpressionAnalyzer::Analyze( 625 const parser::HollerithLiteralConstant &x) { 626 int kind{GetDefaultKind(TypeCategory::Character)}; 627 auto value{x.v}; 628 return AnalyzeString(std::move(value), kind); 629 } 630 631 // .TRUE. and .FALSE. of various kinds 632 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 633 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 634 GetDefaultKind(TypeCategory::Logical))}; 635 bool value{std::get<bool>(x.t)}; 636 auto result{common::SearchTypes( 637 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 638 kind, std::move(value)})}; 639 if (!result) { 640 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 641 } 642 return result; 643 } 644 645 // BOZ typeless literals 646 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 647 const char *p{x.v.c_str()}; 648 std::uint64_t base{16}; 649 switch (*p++) { 650 case 'b': 651 base = 2; 652 break; 653 case 'o': 654 base = 8; 655 break; 656 case 'z': 657 break; 658 case 'x': 659 break; 660 default: 661 CRASH_NO_CASE; 662 } 663 CHECK(*p == '"'); 664 ++p; 665 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 666 if (*p != '"') { 667 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, x.v); 668 return std::nullopt; 669 } 670 if (value.overflow) { 671 Say("BOZ literal '%s' too large"_err_en_US, x.v); 672 return std::nullopt; 673 } 674 return AsGenericExpr(std::move(value.value)); 675 } 676 677 // For use with SearchTypes to create a TypeParamInquiry with the 678 // right integer kind. 679 struct TypeParamInquiryVisitor { 680 using Result = std::optional<Expr<SomeInteger>>; 681 using Types = IntegerTypes; 682 TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol ¶m) 683 : kind{k}, base{std::move(b)}, parameter{param} {} 684 TypeParamInquiryVisitor(int k, const Symbol ¶m) 685 : kind{k}, parameter{param} {} 686 template <typename T> Result Test() { 687 if (kind == T::kind) { 688 return Expr<SomeInteger>{ 689 Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}}; 690 } 691 return std::nullopt; 692 } 693 int kind; 694 std::optional<NamedEntity> base; 695 const Symbol ¶meter; 696 }; 697 698 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry( 699 const Symbol *symbol) { 700 if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) { 701 if (dyType->category() == TypeCategory::Integer) { 702 return common::SearchTypes( 703 TypeParamInquiryVisitor{dyType->kind(), *symbol}); 704 } 705 } 706 return std::nullopt; 707 } 708 709 // Names and named constants 710 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 711 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 712 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 713 *kind, AsExpr(ImpliedDoIndex{n.source}))); 714 } else if (context_.HasError(n) || !n.symbol) { 715 return std::nullopt; 716 } else { 717 const Symbol &ultimate{n.symbol->GetUltimate()}; 718 if (ultimate.has<semantics::TypeParamDetails>()) { 719 // A bare reference to a derived type parameter (within a parameterized 720 // derived type definition) 721 return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate)); 722 } else { 723 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 724 if (const semantics::Scope * 725 pure{semantics::FindPureProcedureContaining( 726 context_.FindScope(n.source))}) { 727 SayAt(n, 728 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 729 n.source, DEREF(pure->symbol()).name()); 730 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 731 } 732 } 733 return Designate(DataRef{*n.symbol}); 734 } 735 } 736 } 737 738 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 739 if (MaybeExpr value{Analyze(n.v)}) { 740 Expr<SomeType> folded{Fold(std::move(*value))}; 741 if (IsConstantExpr(folded)) { 742 return {folded}; 743 } 744 Say(n.v.source, "must be a constant"_err_en_US); // C718 745 } 746 return std::nullopt; 747 } 748 749 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) { 750 return Expr<SomeType>{NullPointer{}}; 751 } 752 753 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 754 return Analyze(x.value()); 755 } 756 757 // Substring references 758 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 759 const std::optional<parser::ScalarIntExpr> &bound) { 760 if (bound) { 761 if (MaybeExpr expr{Analyze(*bound)}) { 762 if (expr->Rank() > 1) { 763 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 764 } 765 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 766 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 767 return {std::move(*ssIntExpr)}; 768 } 769 return {Expr<SubscriptInteger>{ 770 Convert<SubscriptInteger, TypeCategory::Integer>{ 771 std::move(*intExpr)}}}; 772 } else { 773 Say("substring bound expression is not INTEGER"_err_en_US); 774 } 775 } 776 } 777 return std::nullopt; 778 } 779 780 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 781 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 782 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 783 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 784 if (std::optional<DataRef> checked{ 785 ExtractDataRef(std::move(*newBaseExpr))}) { 786 const parser::SubstringRange &range{ 787 std::get<parser::SubstringRange>(ss.t)}; 788 std::optional<Expr<SubscriptInteger>> first{ 789 GetSubstringBound(std::get<0>(range.t))}; 790 std::optional<Expr<SubscriptInteger>> last{ 791 GetSubstringBound(std::get<1>(range.t))}; 792 const Symbol &symbol{checked->GetLastSymbol()}; 793 if (std::optional<DynamicType> dynamicType{ 794 DynamicType::From(symbol)}) { 795 if (dynamicType->category() == TypeCategory::Character) { 796 return WrapperHelper<TypeCategory::Character, Designator, 797 Substring>(dynamicType->kind(), 798 Substring{std::move(checked.value()), std::move(first), 799 std::move(last)}); 800 } 801 } 802 Say("substring may apply only to CHARACTER"_err_en_US); 803 } 804 } 805 } 806 } 807 return std::nullopt; 808 } 809 810 // CHARACTER literal substrings 811 MaybeExpr ExpressionAnalyzer::Analyze( 812 const parser::CharLiteralConstantSubstring &x) { 813 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 814 std::optional<Expr<SubscriptInteger>> lower{ 815 GetSubstringBound(std::get<0>(range.t))}; 816 std::optional<Expr<SubscriptInteger>> upper{ 817 GetSubstringBound(std::get<1>(range.t))}; 818 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 819 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 820 Expr<SubscriptInteger> length{ 821 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 822 charExpr->u)}; 823 if (!lower) { 824 lower = Expr<SubscriptInteger>{1}; 825 } 826 if (!upper) { 827 upper = Expr<SubscriptInteger>{ 828 static_cast<std::int64_t>(ToInt64(length).value())}; 829 } 830 return std::visit( 831 [&](auto &&ckExpr) -> MaybeExpr { 832 using Result = ResultType<decltype(ckExpr)>; 833 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 834 CHECK(DEREF(cp).size() == 1); 835 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 836 staticData->set_alignment(Result::kind) 837 .set_itemBytes(Result::kind) 838 .Push(cp->GetScalarValue().value()); 839 Substring substring{std::move(staticData), std::move(lower.value()), 840 std::move(upper.value())}; 841 return AsGenericExpr(Expr<SomeCharacter>{ 842 Expr<Result>{Designator<Result>{std::move(substring)}}}); 843 }, 844 std::move(charExpr->u)); 845 } 846 } 847 return std::nullopt; 848 } 849 850 // Subscripted array references 851 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 852 MaybeExpr &&expr) { 853 if (expr) { 854 if (expr->Rank() > 1) { 855 Say("Subscript expression has rank %d greater than 1"_err_en_US, 856 expr->Rank()); 857 } 858 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 859 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 860 return std::move(*ssIntExpr); 861 } else { 862 return Expr<SubscriptInteger>{ 863 Convert<SubscriptInteger, TypeCategory::Integer>{ 864 std::move(*intExpr)}}; 865 } 866 } else { 867 Say("Subscript expression is not INTEGER"_err_en_US); 868 } 869 } 870 return std::nullopt; 871 } 872 873 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 874 const std::optional<parser::Subscript> &s) { 875 if (s) { 876 return AsSubscript(Analyze(*s)); 877 } else { 878 return std::nullopt; 879 } 880 } 881 882 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 883 const parser::SectionSubscript &ss) { 884 return std::visit(common::visitors{ 885 [&](const parser::SubscriptTriplet &t) { 886 return std::make_optional<Subscript>( 887 Triplet{TripletPart(std::get<0>(t.t)), 888 TripletPart(std::get<1>(t.t)), 889 TripletPart(std::get<2>(t.t))}); 890 }, 891 [&](const auto &s) -> std::optional<Subscript> { 892 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 893 return Subscript{std::move(*subscriptExpr)}; 894 } else { 895 return std::nullopt; 896 } 897 }, 898 }, 899 ss.u); 900 } 901 902 // Empty result means an error occurred 903 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 904 const std::list<parser::SectionSubscript> &sss) { 905 bool error{false}; 906 std::vector<Subscript> subscripts; 907 for (const auto &s : sss) { 908 if (auto subscript{AnalyzeSectionSubscript(s)}) { 909 subscripts.emplace_back(std::move(*subscript)); 910 } else { 911 error = true; 912 } 913 } 914 return !error ? subscripts : std::vector<Subscript>{}; 915 } 916 917 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 918 if (MaybeExpr baseExpr{Analyze(ae.base)}) { 919 if (ae.subscripts.empty()) { 920 // will be converted to function call later or error reported 921 return std::nullopt; 922 } else if (baseExpr->Rank() == 0) { 923 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 924 Say("'%s' is not an array"_err_en_US, symbol->name()); 925 } 926 } else if (std::optional<DataRef> dataRef{ 927 ExtractDataRef(std::move(*baseExpr))}) { 928 return ApplySubscripts( 929 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 930 } else { 931 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 932 } 933 } 934 // error was reported: analyze subscripts without reporting more errors 935 auto restorer{GetContextualMessages().DiscardMessages()}; 936 AnalyzeSectionSubscripts(ae.subscripts); 937 return std::nullopt; 938 } 939 940 // Type parameter inquiries apply to data references, but don't depend 941 // on any trailing (co)subscripts. 942 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 943 return std::visit( 944 common::visitors{ 945 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 946 [](Component &&component) { 947 return NamedEntity{std::move(component)}; 948 }, 949 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 950 [](CoarrayRef &&coarrayRef) { 951 return NamedEntity{coarrayRef.GetLastSymbol()}; 952 }, 953 }, 954 std::move(designator.u)); 955 } 956 957 // Components of parent derived types are explicitly represented as such. 958 static std::optional<Component> CreateComponent( 959 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 960 if (&component.owner() == &scope) { 961 return Component{std::move(base), component}; 962 } 963 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 964 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 965 return CreateComponent( 966 DataRef{Component{std::move(base), *parentComponent}}, component, 967 *parentScope); 968 } 969 } 970 return std::nullopt; 971 } 972 973 // Derived type component references and type parameter inquiries 974 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 975 MaybeExpr base{Analyze(sc.base)}; 976 if (!base) { 977 return std::nullopt; 978 } 979 Symbol *sym{sc.component.symbol}; 980 if (context_.HasError(sym)) { 981 return std::nullopt; 982 } 983 const auto &name{sc.component.source}; 984 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 985 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 986 if (sym->detailsIf<semantics::TypeParamDetails>()) { 987 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 988 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 989 if (dyType->category() == TypeCategory::Integer) { 990 return AsMaybeExpr( 991 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(), 992 IgnoreAnySubscripts(std::move(*designator)), *sym})); 993 } 994 } 995 Say(name, "Type parameter is not INTEGER"_err_en_US); 996 } else { 997 Say(name, 998 "A type parameter inquiry must be applied to " 999 "a designator"_err_en_US); 1000 } 1001 } else if (!dtSpec || !dtSpec->scope()) { 1002 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1003 return std::nullopt; 1004 } else if (std::optional<DataRef> dataRef{ 1005 ExtractDataRef(std::move(*dtExpr))}) { 1006 if (auto component{ 1007 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1008 return Designate(DataRef{std::move(*component)}); 1009 } else { 1010 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1011 dtSpec->typeSymbol().name()); 1012 } 1013 } else { 1014 Say(name, 1015 "Base of component reference must be a data reference"_err_en_US); 1016 } 1017 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1018 // special part-ref: %re, %im, %kind, %len 1019 // Type errors are detected and reported in semantics. 1020 using MiscKind = semantics::MiscDetails::Kind; 1021 MiscKind kind{details->kind()}; 1022 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1023 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1024 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1025 Expr<SomeReal> realExpr{std::visit( 1026 [&](const auto &z) { 1027 using PartType = typename ResultType<decltype(z)>::Part; 1028 auto part{kind == MiscKind::ComplexPartRe 1029 ? ComplexPart::Part::RE 1030 : ComplexPart::Part::IM}; 1031 return AsCategoryExpr(Designator<PartType>{ 1032 ComplexPart{std::move(*dataRef), part}}); 1033 }, 1034 zExpr->u)}; 1035 return {AsGenericExpr(std::move(realExpr))}; 1036 } 1037 } 1038 } else if (kind == MiscKind::KindParamInquiry || 1039 kind == MiscKind::LenParamInquiry) { 1040 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1041 return MakeFunctionRef( 1042 name, ActualArguments{ActualArgument{std::move(*base)}}); 1043 } else { 1044 DIE("unexpected MiscDetails::Kind"); 1045 } 1046 } else { 1047 Say(name, "derived type required before component reference"_err_en_US); 1048 } 1049 return std::nullopt; 1050 } 1051 1052 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1053 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1054 DataRef *dataRef{&*maybeDataRef}; 1055 std::vector<Subscript> subscripts; 1056 SymbolVector reversed; 1057 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1058 subscripts = std::move(aRef->subscript()); 1059 reversed.push_back(aRef->GetLastSymbol()); 1060 if (Component * component{aRef->base().UnwrapComponent()}) { 1061 dataRef = &component->base(); 1062 } else { 1063 dataRef = nullptr; 1064 } 1065 } 1066 if (dataRef) { 1067 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1068 reversed.push_back(component->GetLastSymbol()); 1069 dataRef = &component->base(); 1070 } 1071 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1072 reversed.push_back(*baseSym); 1073 } else { 1074 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1075 } 1076 } 1077 std::vector<Expr<SubscriptInteger>> cosubscripts; 1078 bool cosubsOk{true}; 1079 for (const auto &cosub : 1080 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1081 MaybeExpr coex{Analyze(cosub)}; 1082 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1083 cosubscripts.push_back( 1084 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1085 } else { 1086 cosubsOk = false; 1087 } 1088 } 1089 if (cosubsOk && !reversed.empty()) { 1090 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1091 const Symbol &symbol{reversed.front()}; 1092 if (numCosubscripts != symbol.Corank()) { 1093 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1094 symbol.name(), symbol.Corank(), numCosubscripts); 1095 } 1096 } 1097 // TODO: stat=/team=/team_number= 1098 // Reverse the chain of symbols so that the base is first and coarray 1099 // ultimate component is last. 1100 return Designate( 1101 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1102 std::move(subscripts), std::move(cosubscripts)}}); 1103 } 1104 return std::nullopt; 1105 } 1106 1107 int ExpressionAnalyzer::IntegerTypeSpecKind( 1108 const parser::IntegerTypeSpec &spec) { 1109 Expr<SubscriptInteger> value{ 1110 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1111 if (auto kind{ToInt64(value)}) { 1112 return static_cast<int>(*kind); 1113 } 1114 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1115 return GetDefaultKind(TypeCategory::Integer); 1116 } 1117 1118 // Array constructors 1119 1120 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1121 // all happen to have the same actual type T into one ArrayConstructor<T>. 1122 template <typename T> 1123 ArrayConstructorValues<T> MakeSpecific( 1124 ArrayConstructorValues<SomeType> &&from) { 1125 ArrayConstructorValues<T> to; 1126 for (ArrayConstructorValue<SomeType> &x : from) { 1127 std::visit( 1128 common::visitors{ 1129 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1130 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1131 to.Push(std::move(DEREF(typed))); 1132 }, 1133 [&](ImpliedDo<SomeType> &&impliedDo) { 1134 to.Push(ImpliedDo<T>{impliedDo.name(), 1135 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1136 std::move(impliedDo.stride()), 1137 MakeSpecific<T>(std::move(impliedDo.values()))}); 1138 }, 1139 }, 1140 std::move(x.u)); 1141 } 1142 return to; 1143 } 1144 1145 class ArrayConstructorContext { 1146 public: 1147 ArrayConstructorContext( 1148 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1149 : exprAnalyzer_{c}, type_{std::move(t)} {} 1150 1151 void Add(const parser::AcValue &); 1152 MaybeExpr ToExpr(); 1153 1154 // These interfaces allow *this to be used as a type visitor argument to 1155 // common::SearchTypes() to convert the array constructor to a typed 1156 // expression in ToExpr(). 1157 using Result = MaybeExpr; 1158 using Types = AllTypes; 1159 template <typename T> Result Test() { 1160 if (type_ && type_->category() == T::category) { 1161 if constexpr (T::category == TypeCategory::Derived) { 1162 return AsMaybeExpr(ArrayConstructor<T>{ 1163 type_->GetDerivedTypeSpec(), MakeSpecific<T>(std::move(values_))}); 1164 } else if (type_->kind() == T::kind) { 1165 if constexpr (T::category == TypeCategory::Character) { 1166 if (auto len{type_->LEN()}) { 1167 return AsMaybeExpr(ArrayConstructor<T>{ 1168 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1169 } 1170 } else { 1171 return AsMaybeExpr( 1172 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1173 } 1174 } 1175 } 1176 return std::nullopt; 1177 } 1178 1179 private: 1180 void Push(MaybeExpr &&); 1181 1182 template <int KIND, typename A> 1183 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1184 const A &x) { 1185 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1186 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1187 return ConvertToType<Type<TypeCategory::Integer, KIND>>( 1188 std::move(DEREF(intExpr))); 1189 } 1190 return std::nullopt; 1191 } 1192 1193 // Nested array constructors all reference the same ExpressionAnalyzer, 1194 // which represents the nest of active implied DO loop indices. 1195 ExpressionAnalyzer &exprAnalyzer_; 1196 std::optional<DynamicTypeWithLength> type_; 1197 bool explicitType_{type_.has_value()}; 1198 std::optional<std::int64_t> constantLength_; 1199 ArrayConstructorValues<SomeType> values_; 1200 }; 1201 1202 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1203 if (!x) { 1204 return; 1205 } 1206 if (auto dyType{x->GetType()}) { 1207 DynamicTypeWithLength xType{*dyType}; 1208 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1209 CHECK(xType.category() == TypeCategory::Character); 1210 xType.length = 1211 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1212 } 1213 if (!type_) { 1214 // If there is no explicit type-spec in an array constructor, the type 1215 // of the array is the declared type of all of the elements, which must 1216 // be well-defined and all match. 1217 // TODO: Possible language extension: use the most general type of 1218 // the values as the type of a numeric constructed array, convert all 1219 // of the other values to that type. Alternative: let the first value 1220 // determine the type, and convert the others to that type. 1221 CHECK(!explicitType_); 1222 type_ = std::move(xType); 1223 constantLength_ = ToInt64(type_->length); 1224 values_.Push(std::move(*x)); 1225 } else if (!explicitType_) { 1226 if (static_cast<const DynamicType &>(*type_) == 1227 static_cast<const DynamicType &>(xType)) { 1228 values_.Push(std::move(*x)); 1229 if (auto thisLen{ToInt64(xType.LEN())}) { 1230 if (constantLength_) { 1231 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1232 *thisLen != *constantLength_) { 1233 exprAnalyzer_.Say( 1234 "Character literal in array constructor without explicit " 1235 "type has different length than earlier element"_en_US); 1236 } 1237 if (*thisLen > *constantLength_) { 1238 // Language extension: use the longest literal to determine the 1239 // length of the array constructor's character elements, not the 1240 // first, when there is no explicit type. 1241 *constantLength_ = *thisLen; 1242 type_->length = xType.LEN(); 1243 } 1244 } else { 1245 constantLength_ = *thisLen; 1246 type_->length = xType.LEN(); 1247 } 1248 } 1249 } else { 1250 exprAnalyzer_.Say( 1251 "Values in array constructor must have the same declared type " 1252 "when no explicit type appears"_err_en_US); 1253 } 1254 } else { 1255 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1256 values_.Push(std::move(*cast)); 1257 } else { 1258 exprAnalyzer_.Say( 1259 "Value in array constructor could not be converted to the type " 1260 "of the array"_err_en_US); 1261 } 1262 } 1263 } 1264 } 1265 1266 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1267 using IntType = ResultType<ImpliedDoIndex>; 1268 std::visit( 1269 common::visitors{ 1270 [&](const parser::AcValue::Triplet &triplet) { 1271 // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1272 std::optional<Expr<IntType>> lower{ 1273 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))}; 1274 std::optional<Expr<IntType>> upper{ 1275 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))}; 1276 std::optional<Expr<IntType>> stride{ 1277 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))}; 1278 if (lower && upper) { 1279 if (!stride) { 1280 stride = Expr<IntType>{1}; 1281 } 1282 if (!type_) { 1283 type_ = DynamicTypeWithLength{IntType::GetType()}; 1284 } 1285 auto v{std::move(values_)}; 1286 parser::CharBlock anonymous; 1287 Push(Expr<SomeType>{ 1288 Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}}); 1289 std::swap(v, values_); 1290 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1291 std::move(*upper), std::move(*stride), std::move(v)}); 1292 } 1293 }, 1294 [&](const common::Indirection<parser::Expr> &expr) { 1295 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation( 1296 expr.value().source)}; 1297 if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) { 1298 Push(std::move(*v)); 1299 } 1300 }, 1301 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1302 const auto &control{ 1303 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)}; 1304 const auto &bounds{ 1305 std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1306 exprAnalyzer_.Analyze(bounds.name); 1307 parser::CharBlock name{bounds.name.thing.thing.source}; 1308 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1309 int kind{IntType::kind}; 1310 if (const auto dynamicType{DynamicType::From(symbol)}) { 1311 kind = dynamicType->kind(); 1312 } 1313 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1314 std::optional<Expr<IntType>> lower{ 1315 GetSpecificIntExpr<IntType::kind>(bounds.lower)}; 1316 std::optional<Expr<IntType>> upper{ 1317 GetSpecificIntExpr<IntType::kind>(bounds.upper)}; 1318 if (lower && upper) { 1319 std::optional<Expr<IntType>> stride{ 1320 GetSpecificIntExpr<IntType::kind>(bounds.step)}; 1321 auto v{std::move(values_)}; 1322 for (const auto &value : 1323 std::get<std::list<parser::AcValue>>(impliedDo.value().t)) { 1324 Add(value); 1325 } 1326 if (!stride) { 1327 stride = Expr<IntType>{1}; 1328 } 1329 std::swap(v, values_); 1330 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1331 std::move(*upper), std::move(*stride), std::move(v)}); 1332 } 1333 exprAnalyzer_.RemoveImpliedDo(name); 1334 } else { 1335 exprAnalyzer_.SayAt(name, 1336 "Implied DO index is active in surrounding implied DO loop " 1337 "and may not have the same name"_err_en_US); 1338 } 1339 }, 1340 }, 1341 x.u); 1342 } 1343 1344 MaybeExpr ArrayConstructorContext::ToExpr() { 1345 return common::SearchTypes(std::move(*this)); 1346 } 1347 1348 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1349 const parser::AcSpec &acSpec{array.v}; 1350 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1351 for (const parser::AcValue &value : acSpec.values) { 1352 acContext.Add(value); 1353 } 1354 return acContext.ToExpr(); 1355 } 1356 1357 MaybeExpr ExpressionAnalyzer::Analyze( 1358 const parser::StructureConstructor &structure) { 1359 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1360 parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; 1361 if (!parsedType.derivedTypeSpec) { 1362 return std::nullopt; 1363 } 1364 const auto &spec{*parsedType.derivedTypeSpec}; 1365 const Symbol &typeSymbol{spec.typeSymbol()}; 1366 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1367 return std::nullopt; // error recovery 1368 } 1369 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1370 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1371 1372 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1373 AttachDeclaration(Say(typeName, 1374 "ABSTRACT derived type '%s' may not be used in a " 1375 "structure constructor"_err_en_US, 1376 typeName), 1377 typeSymbol); 1378 } 1379 1380 // This iterator traverses all of the components in the derived type and its 1381 // parents. The symbols for whole parent components appear after their 1382 // own components and before the components of the types that extend them. 1383 // E.g., TYPE :: A; REAL X; END TYPE 1384 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1385 // produces the component list X, A, Y. 1386 // The order is important below because a structure constructor can 1387 // initialize X or A by name, but not both. 1388 auto components{semantics::OrderedComponentIterator{spec}}; 1389 auto nextAnonymous{components.begin()}; 1390 1391 std::set<parser::CharBlock> unavailable; 1392 bool anyKeyword{false}; 1393 StructureConstructor result{spec}; 1394 bool checkConflicts{true}; // until we hit one 1395 1396 for (const auto &component : 1397 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1398 const parser::Expr &expr{ 1399 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1400 parser::CharBlock source{expr.source}; 1401 auto &messages{GetContextualMessages()}; 1402 auto restorer{messages.SetLocation(source)}; 1403 const Symbol *symbol{nullptr}; 1404 MaybeExpr value{Analyze(expr)}; 1405 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1406 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1407 anyKeyword = true; 1408 source = kw->v.source; 1409 symbol = kw->v.symbol; 1410 if (!symbol) { 1411 auto componentIter{std::find_if(components.begin(), components.end(), 1412 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1413 if (componentIter != components.end()) { 1414 symbol = &*componentIter; 1415 } 1416 } 1417 if (!symbol) { // C7101 1418 Say(source, 1419 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1420 source, typeName); 1421 } 1422 } else { 1423 if (anyKeyword) { // C7100 1424 Say(source, 1425 "Value in structure constructor lacks a component name"_err_en_US); 1426 checkConflicts = false; // stem cascade 1427 } 1428 // Here's a regrettably common extension of the standard: anonymous 1429 // initialization of parent components, e.g., T(PT(1)) rather than 1430 // T(1) or T(PT=PT(1)). 1431 if (nextAnonymous == components.begin() && parentComponent && 1432 valueType == DynamicType::From(*parentComponent) && 1433 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1434 auto iter{ 1435 std::find(components.begin(), components.end(), *parentComponent)}; 1436 if (iter != components.end()) { 1437 symbol = parentComponent; 1438 nextAnonymous = ++iter; 1439 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1440 Say(source, 1441 "Whole parent component '%s' in structure " 1442 "constructor should not be anonymous"_en_US, 1443 symbol->name()); 1444 } 1445 } 1446 } 1447 while (!symbol && nextAnonymous != components.end()) { 1448 const Symbol &next{*nextAnonymous}; 1449 ++nextAnonymous; 1450 if (!next.test(Symbol::Flag::ParentComp)) { 1451 symbol = &next; 1452 } 1453 } 1454 if (!symbol) { 1455 Say(source, "Unexpected value in structure constructor"_err_en_US); 1456 } 1457 } 1458 if (symbol) { 1459 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1460 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1461 Say(source, *msg); 1462 } 1463 } 1464 if (checkConflicts) { 1465 auto componentIter{ 1466 std::find(components.begin(), components.end(), *symbol)}; 1467 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1468 // C797, C798 1469 Say(source, 1470 "Component '%s' conflicts with another component earlier in " 1471 "this structure constructor"_err_en_US, 1472 symbol->name()); 1473 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1474 // Make earlier components unavailable once a whole parent appears. 1475 for (auto it{components.begin()}; it != componentIter; ++it) { 1476 unavailable.insert(it->name()); 1477 } 1478 } else { 1479 // Make whole parent components unavailable after any of their 1480 // constituents appear. 1481 for (auto it{componentIter}; it != components.end(); ++it) { 1482 if (it->test(Symbol::Flag::ParentComp)) { 1483 unavailable.insert(it->name()); 1484 } 1485 } 1486 } 1487 } 1488 unavailable.insert(symbol->name()); 1489 if (value) { 1490 if (symbol->has<semantics::ProcEntityDetails>()) { 1491 CHECK(IsPointer(*symbol)); 1492 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1493 // C1594(4) 1494 const auto &innermost{context_.FindScope(expr.source)}; 1495 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1496 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1497 if (const Symbol * 1498 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1499 if (auto *msg{Say(expr.source, 1500 "Externally visible object '%s' may not be " 1501 "associated with pointer component '%s' in a " 1502 "pure procedure"_err_en_US, 1503 object->name(), pointer->name())}) { 1504 msg->Attach(object->name(), "Object declaration"_en_US) 1505 .Attach(pointer->name(), "Pointer declaration"_en_US); 1506 } 1507 } 1508 } 1509 } 1510 } else if (symbol->has<semantics::TypeParamDetails>()) { 1511 Say(expr.source, 1512 "Type parameter '%s' may not appear as a component " 1513 "of a structure constructor"_err_en_US, 1514 symbol->name()); 1515 continue; 1516 } else { 1517 Say(expr.source, 1518 "Component '%s' is neither a procedure pointer " 1519 "nor a data object"_err_en_US, 1520 symbol->name()); 1521 continue; 1522 } 1523 if (IsPointer(*symbol)) { 1524 semantics::CheckPointerAssignment( 1525 GetFoldingContext(), *symbol, *value); // C7104, C7105 1526 result.Add(*symbol, Fold(std::move(*value))); 1527 } else if (MaybeExpr converted{ 1528 ConvertToType(*symbol, std::move(*value))}) { 1529 result.Add(*symbol, std::move(*converted)); 1530 } else if (IsAllocatable(*symbol) && 1531 std::holds_alternative<NullPointer>(value->u)) { 1532 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1533 } else if (auto symType{DynamicType::From(symbol)}) { 1534 if (valueType) { 1535 AttachDeclaration( 1536 Say(expr.source, 1537 "Value in structure constructor of type %s is " 1538 "incompatible with component '%s' of type %s"_err_en_US, 1539 valueType->AsFortran(), symbol->name(), 1540 symType->AsFortran()), 1541 *symbol); 1542 } else { 1543 AttachDeclaration( 1544 Say(expr.source, 1545 "Value in structure constructor is incompatible with " 1546 " component '%s' of type %s"_err_en_US, 1547 symbol->name(), symType->AsFortran()), 1548 *symbol); 1549 } 1550 } 1551 } 1552 } 1553 } 1554 1555 // Ensure that unmentioned component objects have default initializers. 1556 for (const Symbol &symbol : components) { 1557 if (!symbol.test(Symbol::Flag::ParentComp) && 1558 unavailable.find(symbol.name()) == unavailable.cend() && 1559 !IsAllocatable(symbol)) { 1560 if (const auto *details{ 1561 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1562 if (details->init()) { 1563 result.Add(symbol, common::Clone(*details->init())); 1564 } else { // C799 1565 AttachDeclaration(Say(typeName, 1566 "Structure constructor lacks a value for " 1567 "component '%s'"_err_en_US, 1568 symbol.name()), 1569 symbol); 1570 } 1571 } 1572 } 1573 } 1574 1575 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1576 } 1577 1578 static std::optional<parser::CharBlock> GetPassName( 1579 const semantics::Symbol &proc) { 1580 return std::visit( 1581 [](const auto &details) { 1582 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1583 std::decay_t<decltype(details)>>) { 1584 return details.passName(); 1585 } else { 1586 return std::optional<parser::CharBlock>{}; 1587 } 1588 }, 1589 proc.details()); 1590 } 1591 1592 static int GetPassIndex(const Symbol &proc) { 1593 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1594 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1595 const auto *interface{semantics::FindInterface(proc)}; 1596 if (!passName || !interface) { 1597 return 0; // first argument is passed-object 1598 } 1599 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1600 int index{0}; 1601 for (const auto *arg : subp.dummyArgs()) { 1602 if (arg && arg->name() == passName) { 1603 return index; 1604 } 1605 ++index; 1606 } 1607 DIE("PASS argument name not in dummy argument list"); 1608 } 1609 1610 // Injects an expression into an actual argument list as the "passed object" 1611 // for a type-bound procedure reference that is not NOPASS. Adds an 1612 // argument keyword if possible, but not when the passed object goes 1613 // before a positional argument. 1614 // e.g., obj%tbp(x) -> tbp(obj,x). 1615 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1616 const Symbol &component, bool isPassedObject = true) { 1617 if (component.attrs().test(semantics::Attr::NOPASS)) { 1618 return; 1619 } 1620 int passIndex{GetPassIndex(component)}; 1621 auto iter{actuals.begin()}; 1622 int at{0}; 1623 while (iter < actuals.end() && at < passIndex) { 1624 if (*iter && (*iter)->keyword()) { 1625 iter = actuals.end(); 1626 break; 1627 } 1628 ++iter; 1629 ++at; 1630 } 1631 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1632 passed.set_isPassedObject(isPassedObject); 1633 if (iter == actuals.end()) { 1634 if (auto passName{GetPassName(component)}) { 1635 passed.set_keyword(*passName); 1636 } 1637 } 1638 actuals.emplace(iter, std::move(passed)); 1639 } 1640 1641 // Return the compile-time resolution of a procedure binding, if possible. 1642 static const Symbol *GetBindingResolution( 1643 const std::optional<DynamicType> &baseType, const Symbol &component) { 1644 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1645 if (!binding) { 1646 return nullptr; 1647 } 1648 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1649 (!baseType || baseType->IsPolymorphic())) { 1650 return nullptr; 1651 } 1652 return &binding->symbol(); 1653 } 1654 1655 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1656 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1657 -> std::optional<CalleeAndArguments> { 1658 const parser::StructureComponent &sc{pcr.v.thing}; 1659 const auto &name{sc.component.source}; 1660 if (MaybeExpr base{Analyze(sc.base)}) { 1661 if (const Symbol * sym{sc.component.symbol}) { 1662 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1663 if (sym->has<semantics::GenericDetails>()) { 1664 AdjustActuals adjustment{ 1665 [&](const Symbol &proc, ActualArguments &actuals) { 1666 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1667 AddPassArg(actuals, std::move(*dtExpr), proc); 1668 } 1669 return true; 1670 }}; 1671 sym = ResolveGeneric(*sym, arguments, adjustment); 1672 if (!sym) { 1673 EmitGenericResolutionError(*sc.component.symbol); 1674 return std::nullopt; 1675 } 1676 } 1677 if (const Symbol * 1678 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1679 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1680 return CalleeAndArguments{ 1681 ProcedureDesignator{*resolution}, std::move(arguments)}; 1682 } else if (std::optional<DataRef> dataRef{ 1683 ExtractDataRef(std::move(*dtExpr))}) { 1684 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1685 return CalleeAndArguments{ 1686 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1687 std::move(arguments)}; 1688 } else { 1689 AddPassArg(arguments, 1690 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1691 *sym); 1692 return CalleeAndArguments{ 1693 ProcedureDesignator{*sym}, std::move(arguments)}; 1694 } 1695 } 1696 } 1697 Say(name, 1698 "Base of procedure component reference is not a derived-type object"_err_en_US); 1699 } 1700 } 1701 CHECK(!GetContextualMessages().empty()); 1702 return std::nullopt; 1703 } 1704 1705 // Can actual be argument associated with dummy? 1706 static bool CheckCompatibleArgument(bool isElemental, 1707 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1708 return std::visit( 1709 common::visitors{ 1710 [&](const characteristics::DummyDataObject &x) { 1711 characteristics::TypeAndShape dummyTypeAndShape{x.type}; 1712 if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) { 1713 return false; 1714 } else if (auto actualType{actual.GetType()}) { 1715 return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType); 1716 } else { 1717 return false; 1718 } 1719 }, 1720 [&](const characteristics::DummyProcedure &) { 1721 const auto *expr{actual.UnwrapExpr()}; 1722 return expr && IsProcedurePointer(*expr); 1723 }, 1724 [&](const characteristics::AlternateReturn &) { 1725 return actual.isAlternateReturn(); 1726 }, 1727 }, 1728 dummy.u); 1729 } 1730 1731 // Are the actual arguments compatible with the dummy arguments of procedure? 1732 static bool CheckCompatibleArguments( 1733 const characteristics::Procedure &procedure, 1734 const ActualArguments &actuals) { 1735 bool isElemental{procedure.IsElemental()}; 1736 const auto &dummies{procedure.dummyArguments}; 1737 CHECK(dummies.size() == actuals.size()); 1738 for (std::size_t i{0}; i < dummies.size(); ++i) { 1739 const characteristics::DummyArgument &dummy{dummies[i]}; 1740 const std::optional<ActualArgument> &actual{actuals[i]}; 1741 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1742 return false; 1743 } 1744 } 1745 return true; 1746 } 1747 1748 // Handles a forward reference to a module function from what must 1749 // be a specification expression. Return false if the symbol is 1750 // an invalid forward reference. 1751 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1752 if (context_.HasError(symbol)) { 1753 return false; 1754 } 1755 if (const auto *details{ 1756 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1757 if (details->kind() == semantics::SubprogramKind::Module) { 1758 // If this symbol is still a SubprogramNameDetails, we must be 1759 // checking a specification expression in a sibling module 1760 // procedure. Resolve its names now so that its interface 1761 // is known. 1762 semantics::ResolveSpecificationParts(context_, symbol); 1763 if (symbol.has<semantics::SubprogramNameDetails>()) { 1764 // When the symbol hasn't had its details updated, we must have 1765 // already been in the process of resolving the function's 1766 // specification part; but recursive function calls are not 1767 // allowed in specification parts (10.1.11 para 5). 1768 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1769 symbol.name()); 1770 context_.SetError(const_cast<Symbol &>(symbol)); 1771 return false; 1772 } 1773 } else { // 10.1.11 para 4 1774 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1775 symbol.name()); 1776 context_.SetError(const_cast<Symbol &>(symbol)); 1777 return false; 1778 } 1779 } 1780 return true; 1781 } 1782 1783 // Resolve a call to a generic procedure with given actual arguments. 1784 // adjustActuals is called on procedure bindings to handle pass arg. 1785 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1786 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1787 bool mightBeStructureConstructor) { 1788 const Symbol *elemental{nullptr}; // matching elemental specific proc 1789 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1790 for (const Symbol &specific : details.specificProcs()) { 1791 if (!ResolveForward(specific)) { 1792 continue; 1793 } 1794 if (std::optional<characteristics::Procedure> procedure{ 1795 characteristics::Procedure::Characterize( 1796 ProcedureDesignator{specific}, context_.intrinsics())}) { 1797 ActualArguments localActuals{actuals}; 1798 if (specific.has<semantics::ProcBindingDetails>()) { 1799 if (!adjustActuals.value()(specific, localActuals)) { 1800 continue; 1801 } 1802 } 1803 if (semantics::CheckInterfaceForGeneric( 1804 *procedure, localActuals, GetFoldingContext())) { 1805 if (CheckCompatibleArguments(*procedure, localActuals)) { 1806 if (!procedure->IsElemental()) { 1807 return &specific; // takes priority over elemental match 1808 } 1809 elemental = &specific; 1810 } 1811 } 1812 } 1813 } 1814 if (elemental) { 1815 return elemental; 1816 } 1817 // Check parent derived type 1818 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 1819 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 1820 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 1821 if (const Symbol * 1822 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 1823 return result; 1824 } 1825 } 1826 } 1827 } 1828 if (mightBeStructureConstructor && details.derivedType()) { 1829 return details.derivedType(); 1830 } 1831 return nullptr; 1832 } 1833 1834 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 1835 if (semantics::IsGenericDefinedOp(symbol)) { 1836 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 1837 symbol.name()); 1838 } else { 1839 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 1840 symbol.name()); 1841 } 1842 } 1843 1844 auto ExpressionAnalyzer::GetCalleeAndArguments( 1845 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 1846 bool isSubroutine, bool mightBeStructureConstructor) 1847 -> std::optional<CalleeAndArguments> { 1848 return std::visit( 1849 common::visitors{ 1850 [&](const parser::Name &name) { 1851 return GetCalleeAndArguments(name, std::move(arguments), 1852 isSubroutine, mightBeStructureConstructor); 1853 }, 1854 [&](const parser::ProcComponentRef &pcr) { 1855 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 1856 }, 1857 }, 1858 pd.u); 1859 } 1860 1861 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 1862 ActualArguments &&arguments, bool isSubroutine, 1863 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 1864 const Symbol *symbol{name.symbol}; 1865 if (context_.HasError(symbol)) { 1866 return std::nullopt; // also handles null symbol 1867 } 1868 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 1869 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 1870 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 1871 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 1872 arguments, GetFoldingContext())}) { 1873 return CalleeAndArguments{ 1874 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1875 std::move(specificCall->arguments)}; 1876 } 1877 } else { 1878 CheckForBadRecursion(name.source, ultimate); 1879 if (ultimate.has<semantics::GenericDetails>()) { 1880 ExpressionAnalyzer::AdjustActuals noAdjustment; 1881 symbol = ResolveGeneric( 1882 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 1883 } 1884 if (symbol) { 1885 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 1886 if (mightBeStructureConstructor) { 1887 return CalleeAndArguments{ 1888 semantics::SymbolRef{*symbol}, std::move(arguments)}; 1889 } 1890 } else { 1891 return CalleeAndArguments{ 1892 ProcedureDesignator{*symbol}, std::move(arguments)}; 1893 } 1894 } else if (std::optional<SpecificCall> specificCall{ 1895 context_.intrinsics().Probe( 1896 CallCharacteristics{ 1897 ultimate.name().ToString(), isSubroutine}, 1898 arguments, GetFoldingContext())}) { 1899 // Generics can extend intrinsics 1900 return CalleeAndArguments{ 1901 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1902 std::move(specificCall->arguments)}; 1903 } else { 1904 EmitGenericResolutionError(*name.symbol); 1905 } 1906 } 1907 return std::nullopt; 1908 } 1909 1910 void ExpressionAnalyzer::CheckForBadRecursion( 1911 parser::CharBlock callSite, const semantics::Symbol &proc) { 1912 if (const auto *scope{proc.scope()}) { 1913 if (scope->sourceRange().Contains(callSite)) { 1914 parser::Message *msg{nullptr}; 1915 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 1916 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 1917 callSite); 1918 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 1919 msg = Say( // 15.6.2.1(3) 1920 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 1921 callSite); 1922 } 1923 AttachDeclaration(msg, proc); 1924 } 1925 } 1926 } 1927 1928 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 1929 if (const auto *designator{ 1930 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 1931 if (const auto *dataRef{ 1932 std::get_if<parser::DataRef>(&designator->value().u)}) { 1933 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 1934 if (const Symbol * symbol{name->symbol}) { 1935 if (const auto *type{symbol->GetType()}) { 1936 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 1937 return symbol; 1938 } 1939 } 1940 } 1941 } 1942 } 1943 } 1944 return nullptr; 1945 } 1946 1947 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 1948 std::optional<parser::StructureConstructor> *structureConstructor) { 1949 const parser::Call &call{funcRef.v}; 1950 auto restorer{GetContextualMessages().SetLocation(call.source)}; 1951 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 1952 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 1953 analyzer.Analyze(arg, false /* not subroutine call */); 1954 } 1955 if (analyzer.fatalErrors()) { 1956 return std::nullopt; 1957 } 1958 if (std::optional<CalleeAndArguments> callee{ 1959 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 1960 analyzer.GetActuals(), false /* not subroutine */, 1961 true /* might be structure constructor */)}) { 1962 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 1963 return MakeFunctionRef( 1964 call.source, std::move(*proc), std::move(callee->arguments)); 1965 } else if (structureConstructor) { 1966 // Structure constructor misparsed as function reference? 1967 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 1968 const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)}; 1969 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 1970 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 1971 semantics::Scope &scope{context_.FindScope(name->source)}; 1972 const semantics::DeclTypeSpec &type{ 1973 semantics::FindOrInstantiateDerivedType(scope, 1974 semantics::DerivedTypeSpec{ 1975 name->source, derivedType.GetUltimate()}, 1976 context_)}; 1977 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 1978 *structureConstructor = 1979 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 1980 return Analyze(structureConstructor->value()); 1981 } 1982 } 1983 } 1984 return std::nullopt; 1985 } 1986 1987 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 1988 const parser::Call &call{callStmt.v}; 1989 auto restorer{GetContextualMessages().SetLocation(call.source)}; 1990 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 1991 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 1992 analyzer.Analyze(arg, true /* is subroutine call */); 1993 } 1994 if (!analyzer.fatalErrors()) { 1995 if (std::optional<CalleeAndArguments> callee{ 1996 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 1997 analyzer.GetActuals(), true /* subroutine */)}) { 1998 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 1999 CHECK(proc); 2000 if (CheckCall(call.source, *proc, callee->arguments)) { 2001 callStmt.typedCall.reset( 2002 new ProcedureRef{std::move(*proc), std::move(callee->arguments)}); 2003 } 2004 } 2005 } 2006 } 2007 2008 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2009 if (!x.typedAssignment) { 2010 ArgumentAnalyzer analyzer{*this}; 2011 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2012 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2013 if (analyzer.fatalErrors()) { 2014 x.typedAssignment.reset(new GenericAssignmentWrapper{}); 2015 } else { 2016 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2017 Assignment assignment{ 2018 Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))}; 2019 if (procRef) { 2020 assignment.u = std::move(*procRef); 2021 } 2022 x.typedAssignment.reset( 2023 new GenericAssignmentWrapper{std::move(assignment)}); 2024 } 2025 } 2026 return common::GetPtrFromOptional(x.typedAssignment->v); 2027 } 2028 2029 const Assignment *ExpressionAnalyzer::Analyze( 2030 const parser::PointerAssignmentStmt &x) { 2031 if (!x.typedAssignment) { 2032 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2033 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2034 if (!lhs || !rhs) { 2035 x.typedAssignment.reset(new GenericAssignmentWrapper{}); 2036 } else { 2037 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2038 std::visit(common::visitors{ 2039 [&](const std::list<parser::BoundsRemapping> &list) { 2040 Assignment::BoundsRemapping bounds; 2041 for (const auto &elem : list) { 2042 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2043 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2044 if (lower && upper) { 2045 bounds.emplace_back(Fold(std::move(*lower)), 2046 Fold(std::move(*upper))); 2047 } 2048 } 2049 assignment.u = std::move(bounds); 2050 }, 2051 [&](const std::list<parser::BoundsSpec> &list) { 2052 Assignment::BoundsSpec bounds; 2053 for (const auto &bound : list) { 2054 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2055 bounds.emplace_back(Fold(std::move(*lower))); 2056 } 2057 } 2058 assignment.u = std::move(bounds); 2059 }, 2060 }, 2061 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2062 x.typedAssignment.reset( 2063 new GenericAssignmentWrapper{std::move(assignment)}); 2064 } 2065 } 2066 return common::GetPtrFromOptional(x.typedAssignment->v); 2067 } 2068 2069 static bool IsExternalCalledImplicitly( 2070 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2071 if (const auto *symbol{proc.GetSymbol()}) { 2072 return symbol->has<semantics::SubprogramDetails>() && 2073 symbol->owner().IsGlobal() && 2074 (!symbol->scope() /*ENTRY*/ || 2075 !symbol->scope()->sourceRange().Contains(callSite)); 2076 } else { 2077 return false; 2078 } 2079 } 2080 2081 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2082 parser::CharBlock callSite, const ProcedureDesignator &proc, 2083 ActualArguments &arguments) { 2084 auto chars{ 2085 characteristics::Procedure::Characterize(proc, context_.intrinsics())}; 2086 if (chars) { 2087 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2088 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2089 Say(callSite, 2090 "References to the procedure '%s' require an explicit interface"_en_US, 2091 DEREF(proc.GetSymbol()).name()); 2092 } 2093 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2094 context_.FindScope(callSite), treatExternalAsImplicit); 2095 const Symbol *procSymbol{proc.GetSymbol()}; 2096 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2097 if (const semantics::Scope * 2098 pure{semantics::FindPureProcedureContaining( 2099 context_.FindScope(callSite))}) { 2100 Say(callSite, 2101 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2102 procSymbol->name(), DEREF(pure->symbol()).name()); 2103 } 2104 } 2105 } 2106 return chars; 2107 } 2108 2109 // Unary operations 2110 2111 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2112 if (MaybeExpr operand{Analyze(x.v.value())}) { 2113 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2114 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2115 if (semantics::IsProcedurePointer(*result)) { 2116 Say("A function reference that returns a procedure " 2117 "pointer may not be parenthesized"_err_en_US); // C1003 2118 } 2119 } 2120 } 2121 return Parenthesize(std::move(*operand)); 2122 } 2123 return std::nullopt; 2124 } 2125 2126 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2127 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2128 ArgumentAnalyzer analyzer{context}; 2129 analyzer.Analyze(x.v); 2130 if (analyzer.fatalErrors()) { 2131 return std::nullopt; 2132 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2133 if (opr == NumericOperator::Add) { 2134 return analyzer.MoveExpr(0); 2135 } else { 2136 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2137 } 2138 } else { 2139 return analyzer.TryDefinedOp(AsFortran(opr), 2140 "Operand of unary %s must be numeric; have %s"_err_en_US); 2141 } 2142 } 2143 2144 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2145 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2146 } 2147 2148 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2149 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2150 } 2151 2152 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2153 ArgumentAnalyzer analyzer{*this}; 2154 analyzer.Analyze(x.v); 2155 if (analyzer.fatalErrors()) { 2156 return std::nullopt; 2157 } else if (analyzer.IsIntrinsicLogical()) { 2158 return AsGenericExpr( 2159 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2160 } else { 2161 return analyzer.TryDefinedOp(LogicalOperator::Not, 2162 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2163 } 2164 } 2165 2166 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2167 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2168 // intrinsic function. 2169 // Use the actual source for the name of the call for error reporting. 2170 std::optional<ActualArgument> arg; 2171 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2172 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2173 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2174 arg = ActualArgument{std::move(*argExpr)}; 2175 } else { 2176 return std::nullopt; 2177 } 2178 parser::CharBlock at{GetContextualMessages().at()}; 2179 CHECK(at.size() >= 4); 2180 parser::CharBlock loc{at.begin() + 1, 3}; 2181 CHECK(loc == "loc"); 2182 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2183 } 2184 2185 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2186 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2187 ArgumentAnalyzer analyzer{*this, name.source}; 2188 analyzer.Analyze(std::get<1>(x.t)); 2189 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2190 "No operator %s defined for %s"_err_en_US, true); 2191 } 2192 2193 // Binary (dyadic) operations 2194 2195 template <template <typename> class OPR> 2196 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2197 const parser::Expr::IntrinsicBinary &x) { 2198 ArgumentAnalyzer analyzer{context}; 2199 analyzer.Analyze(std::get<0>(x.t)); 2200 analyzer.Analyze(std::get<1>(x.t)); 2201 if (analyzer.fatalErrors()) { 2202 return std::nullopt; 2203 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2204 return NumericOperation<OPR>(context.GetContextualMessages(), 2205 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2206 context.GetDefaultKind(TypeCategory::Real)); 2207 } else { 2208 return analyzer.TryDefinedOp(AsFortran(opr), 2209 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2210 } 2211 } 2212 2213 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2214 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2215 } 2216 2217 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2218 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2219 } 2220 2221 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2222 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2223 } 2224 2225 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2226 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2227 } 2228 2229 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2230 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2231 } 2232 2233 MaybeExpr ExpressionAnalyzer::Analyze( 2234 const parser::Expr::ComplexConstructor &x) { 2235 auto re{Analyze(std::get<0>(x.t).value())}; 2236 auto im{Analyze(std::get<1>(x.t).value())}; 2237 if (re && im) { 2238 ConformabilityCheck(GetContextualMessages(), *re, *im); 2239 } 2240 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2241 std::move(im), GetDefaultKind(TypeCategory::Real))); 2242 } 2243 2244 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2245 ArgumentAnalyzer analyzer{*this}; 2246 analyzer.Analyze(std::get<0>(x.t)); 2247 analyzer.Analyze(std::get<1>(x.t)); 2248 if (analyzer.fatalErrors()) { 2249 return std::nullopt; 2250 } else if (analyzer.IsIntrinsicConcat()) { 2251 return std::visit( 2252 [&](auto &&x, auto &&y) -> MaybeExpr { 2253 using T = ResultType<decltype(x)>; 2254 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2255 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2256 } else { 2257 DIE("different types for intrinsic concat"); 2258 } 2259 }, 2260 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2261 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2262 } else { 2263 return analyzer.TryDefinedOp("//", 2264 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2265 } 2266 } 2267 2268 // The Name represents a user-defined intrinsic operator. 2269 // If the actuals match one of the specific procedures, return a function ref. 2270 // Otherwise report the error in messages. 2271 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2272 const parser::Name &name, ActualArguments &&actuals) { 2273 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2274 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2275 return MakeFunctionRef(name.source, 2276 std::move(std::get<ProcedureDesignator>(callee->u)), 2277 std::move(callee->arguments)); 2278 } else { 2279 return std::nullopt; 2280 } 2281 } 2282 2283 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2284 const parser::Expr::IntrinsicBinary &x) { 2285 ArgumentAnalyzer analyzer{context}; 2286 analyzer.Analyze(std::get<0>(x.t)); 2287 analyzer.Analyze(std::get<1>(x.t)); 2288 if (analyzer.fatalErrors()) { 2289 return std::nullopt; 2290 } else if (analyzer.IsIntrinsicRelational(opr)) { 2291 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2292 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2293 } else { 2294 return analyzer.TryDefinedOp(opr, 2295 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2296 } 2297 } 2298 2299 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2300 return RelationHelper(*this, RelationalOperator::LT, x); 2301 } 2302 2303 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2304 return RelationHelper(*this, RelationalOperator::LE, x); 2305 } 2306 2307 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2308 return RelationHelper(*this, RelationalOperator::EQ, x); 2309 } 2310 2311 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2312 return RelationHelper(*this, RelationalOperator::NE, x); 2313 } 2314 2315 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2316 return RelationHelper(*this, RelationalOperator::GE, x); 2317 } 2318 2319 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2320 return RelationHelper(*this, RelationalOperator::GT, x); 2321 } 2322 2323 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2324 const parser::Expr::IntrinsicBinary &x) { 2325 ArgumentAnalyzer analyzer{context}; 2326 analyzer.Analyze(std::get<0>(x.t)); 2327 analyzer.Analyze(std::get<1>(x.t)); 2328 if (analyzer.fatalErrors()) { 2329 return std::nullopt; 2330 } else if (analyzer.IsIntrinsicLogical()) { 2331 return AsGenericExpr(BinaryLogicalOperation(opr, 2332 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2333 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2334 } else { 2335 return analyzer.TryDefinedOp( 2336 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2337 } 2338 } 2339 2340 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2341 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2342 } 2343 2344 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2345 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2346 } 2347 2348 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2349 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2350 } 2351 2352 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2353 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2354 } 2355 2356 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2357 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2358 ArgumentAnalyzer analyzer{*this, name.source}; 2359 analyzer.Analyze(std::get<1>(x.t)); 2360 analyzer.Analyze(std::get<2>(x.t)); 2361 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2362 "No operator %s defined for %s and %s"_err_en_US, true); 2363 } 2364 2365 static void CheckFuncRefToArrayElementRefHasSubscripts( 2366 semantics::SemanticsContext &context, 2367 const parser::FunctionReference &funcRef) { 2368 // Emit message if the function reference fix will end up an array element 2369 // reference with no subscripts because it will not be possible to later tell 2370 // the difference in expressions between empty subscript list due to bad 2371 // subscripts error recovery or because the user did not put any. 2372 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2373 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2374 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2375 if (!name) { 2376 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2377 } 2378 auto &msg{context.Say(funcRef.v.source, 2379 name->symbol && name->symbol->Rank() == 0 2380 ? "'%s' is not a function"_err_en_US 2381 : "Reference to array '%s' with empty subscript list"_err_en_US, 2382 name->source)}; 2383 if (name->symbol) { 2384 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2385 msg.Attach(name->source, 2386 "A result variable must be declared with RESULT to allow recursive " 2387 "function calls"_en_US); 2388 } else { 2389 AttachDeclaration(&msg, *name->symbol); 2390 } 2391 } 2392 } 2393 } 2394 2395 // Converts, if appropriate, an original misparse of ambiguous syntax like 2396 // A(1) as a function reference into an array reference. 2397 // Misparse structure constructors are detected elsewhere after generic 2398 // function call resolution fails. 2399 template <typename... A> 2400 static void FixMisparsedFunctionReference( 2401 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2402 // The parse tree is updated in situ when resolving an ambiguous parse. 2403 using uType = std::decay_t<decltype(constU)>; 2404 auto &u{const_cast<uType &>(constU)}; 2405 if (auto *func{ 2406 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2407 parser::FunctionReference &funcRef{func->value()}; 2408 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2409 if (Symbol * 2410 origSymbol{ 2411 std::visit(common::visitors{ 2412 [&](parser::Name &name) { return name.symbol; }, 2413 [&](parser::ProcComponentRef &pcr) { 2414 return pcr.v.thing.component.symbol; 2415 }, 2416 }, 2417 proc.u)}) { 2418 Symbol &symbol{origSymbol->GetUltimate()}; 2419 if (symbol.has<semantics::ObjectEntityDetails>() || 2420 symbol.has<semantics::AssocEntityDetails>()) { 2421 // Note that expression in AssocEntityDetails cannot be a procedure 2422 // pointer as per C1105 so this cannot be a function reference. 2423 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2424 uType>) { 2425 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2426 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2427 } else { 2428 DIE("can't fix misparsed function as array reference"); 2429 } 2430 } 2431 } 2432 } 2433 } 2434 2435 // Common handling of parse tree node types that retain the 2436 // representation of the analyzed expression. 2437 template <typename PARSED> 2438 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) { 2439 if (x.typedExpr) { 2440 return x.typedExpr->v; 2441 } 2442 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2443 std::is_same_v<PARSED, parser::Variable>) { 2444 FixMisparsedFunctionReference(context_, x.u); 2445 } 2446 if (AssumedTypeDummy(x)) { // C710 2447 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2448 } else if (MaybeExpr result{evaluate::Fold(foldingContext_, Analyze(x.u))}) { 2449 SetExpr(x, std::move(*result)); 2450 return x.typedExpr->v; 2451 } 2452 ResetExpr(x); 2453 if (!context_.AnyFatalError()) { 2454 std::string buf; 2455 llvm::raw_string_ostream dump{buf}; 2456 parser::DumpTree(dump, x); 2457 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2458 dump.str()); 2459 } 2460 fatalErrors_ = true; 2461 return std::nullopt; 2462 } 2463 2464 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2465 auto restorer{GetContextualMessages().SetLocation(expr.source)}; 2466 return ExprOrVariable(expr); 2467 } 2468 2469 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2470 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; 2471 return ExprOrVariable(variable); 2472 } 2473 2474 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2475 auto restorer{GetContextualMessages().SetLocation(x.source)}; 2476 return ExprOrVariable(x); 2477 } 2478 2479 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2480 TypeCategory category, 2481 const std::optional<parser::KindSelector> &selector) { 2482 int defaultKind{GetDefaultKind(category)}; 2483 if (!selector) { 2484 return Expr<SubscriptInteger>{defaultKind}; 2485 } 2486 return std::visit( 2487 common::visitors{ 2488 [&](const parser::ScalarIntConstantExpr &x) { 2489 if (MaybeExpr kind{Analyze(x)}) { 2490 Expr<SomeType> folded{Fold(std::move(*kind))}; 2491 if (std::optional<std::int64_t> code{ToInt64(folded)}) { 2492 if (CheckIntrinsicKind(category, *code)) { 2493 return Expr<SubscriptInteger>{*code}; 2494 } 2495 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) { 2496 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2497 } 2498 } 2499 return Expr<SubscriptInteger>{defaultKind}; 2500 }, 2501 [&](const parser::KindSelector::StarSize &x) { 2502 std::intmax_t size = x.v; 2503 if (!CheckIntrinsicSize(category, size)) { 2504 size = defaultKind; 2505 } else if (category == TypeCategory::Complex) { 2506 size /= 2; 2507 } 2508 return Expr<SubscriptInteger>{size}; 2509 }, 2510 }, 2511 selector->u); 2512 } 2513 2514 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2515 return context_.GetDefaultKind(category); 2516 } 2517 2518 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2519 common::TypeCategory category) { 2520 return {category, GetDefaultKind(category)}; 2521 } 2522 2523 bool ExpressionAnalyzer::CheckIntrinsicKind( 2524 TypeCategory category, std::int64_t kind) { 2525 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2526 return true; 2527 } else { 2528 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2529 ToUpperCase(EnumToString(category)), kind); 2530 return false; 2531 } 2532 } 2533 2534 bool ExpressionAnalyzer::CheckIntrinsicSize( 2535 TypeCategory category, std::int64_t size) { 2536 if (category == TypeCategory::Complex) { 2537 // COMPLEX*16 == COMPLEX(KIND=8) 2538 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2539 return true; 2540 } 2541 } else if (IsValidKindOfIntrinsicType(category, size)) { 2542 return true; 2543 } 2544 Say("%s*%jd is not a supported type"_err_en_US, 2545 ToUpperCase(EnumToString(category)), size); 2546 return false; 2547 } 2548 2549 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 2550 return impliedDos_.insert(std::make_pair(name, kind)).second; 2551 } 2552 2553 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 2554 auto iter{impliedDos_.find(name)}; 2555 if (iter != impliedDos_.end()) { 2556 impliedDos_.erase(iter); 2557 } 2558 } 2559 2560 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 2561 parser::CharBlock name) const { 2562 auto iter{impliedDos_.find(name)}; 2563 if (iter != impliedDos_.cend()) { 2564 return {iter->second}; 2565 } else { 2566 return std::nullopt; 2567 } 2568 } 2569 2570 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 2571 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 2572 if (result) { 2573 if (auto type{result->GetType()}) { 2574 if (type->category() != category) { // C885 2575 Say(at, "Must have %s type, but is %s"_err_en_US, 2576 ToUpperCase(EnumToString(category)), 2577 ToUpperCase(type->AsFortran())); 2578 return false; 2579 } else if (defaultKind) { 2580 int kind{context_.GetDefaultKind(category)}; 2581 if (type->kind() != kind) { 2582 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 2583 kind, ToUpperCase(EnumToString(category)), 2584 ToUpperCase(type->AsFortran())); 2585 return false; 2586 } 2587 } 2588 } else { 2589 Say(at, "Must have %s type, but is typeless"_err_en_US, 2590 ToUpperCase(EnumToString(category))); 2591 return false; 2592 } 2593 } 2594 return true; 2595 } 2596 2597 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 2598 ProcedureDesignator &&proc, ActualArguments &&arguments) { 2599 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 2600 if (intrinsic->name == "null" && arguments.empty()) { 2601 return Expr<SomeType>{NullPointer{}}; 2602 } 2603 } 2604 if (const Symbol * symbol{proc.GetSymbol()}) { 2605 if (!ResolveForward(*symbol)) { 2606 return std::nullopt; 2607 } 2608 } 2609 if (auto chars{CheckCall(callSite, proc, arguments)}) { 2610 if (chars->functionResult) { 2611 const auto &result{*chars->functionResult}; 2612 if (result.IsProcedurePointer()) { 2613 return Expr<SomeType>{ 2614 ProcedureRef{std::move(proc), std::move(arguments)}}; 2615 } else { 2616 // Not a procedure pointer, so type and shape are known. 2617 return TypedWrapper<FunctionRef, ProcedureRef>( 2618 DEREF(result.GetTypeAndShape()).type(), 2619 ProcedureRef{std::move(proc), std::move(arguments)}); 2620 } 2621 } 2622 } 2623 return std::nullopt; 2624 } 2625 2626 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 2627 parser::CharBlock intrinsic, ActualArguments &&arguments) { 2628 if (std::optional<SpecificCall> specificCall{ 2629 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 2630 arguments, context_.foldingContext())}) { 2631 return MakeFunctionRef(intrinsic, 2632 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2633 std::move(specificCall->arguments)); 2634 } else { 2635 return std::nullopt; 2636 } 2637 } 2638 2639 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 2640 source_.ExtendToCover(x.GetSource()); 2641 if (MaybeExpr expr{context_.Analyze(x)}) { 2642 if (!IsConstantExpr(*expr)) { 2643 actuals_.emplace_back(std::move(*expr)); 2644 return; 2645 } 2646 const Symbol *symbol{GetFirstSymbol(*expr)}; 2647 context_.Say(x.GetSource(), 2648 "Assignment to constant '%s' is not allowed"_err_en_US, 2649 symbol ? symbol->name() : x.GetSource()); 2650 } 2651 fatalErrors_ = true; 2652 } 2653 2654 void ArgumentAnalyzer::Analyze( 2655 const parser::ActualArgSpec &arg, bool isSubroutine) { 2656 // TODO: C1002: Allow a whole assumed-size array to appear if the dummy 2657 // argument would accept it. Handle by special-casing the context 2658 // ActualArg -> Variable -> Designator. 2659 // TODO: Actual arguments that are procedures and procedure pointers need to 2660 // be detected and represented (they're not expressions). 2661 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 2662 std::optional<ActualArgument> actual; 2663 std::visit(common::visitors{ 2664 [&](const common::Indirection<parser::Expr> &x) { 2665 // TODO: Distinguish & handle procedure name and 2666 // proc-component-ref 2667 actual = AnalyzeExpr(x.value()); 2668 }, 2669 [&](const parser::AltReturnSpec &) { 2670 if (!isSubroutine) { 2671 context_.Say( 2672 "alternate return specification may not appear on" 2673 " function reference"_err_en_US); 2674 } 2675 }, 2676 [&](const parser::ActualArg::PercentRef &) { 2677 context_.Say("TODO: %REF() argument"_err_en_US); 2678 }, 2679 [&](const parser::ActualArg::PercentVal &) { 2680 context_.Say("TODO: %VAL() argument"_err_en_US); 2681 }, 2682 }, 2683 std::get<parser::ActualArg>(arg.t).u); 2684 if (actual) { 2685 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 2686 actual->set_keyword(argKW->v.source); 2687 } 2688 actuals_.emplace_back(std::move(*actual)); 2689 } else { 2690 fatalErrors_ = true; 2691 } 2692 } 2693 2694 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 2695 CHECK(actuals_.size() == 2); 2696 return semantics::IsIntrinsicRelational( 2697 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2698 } 2699 2700 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 2701 std::optional<DynamicType> type0{GetType(0)}; 2702 if (actuals_.size() == 1) { 2703 if (IsBOZLiteral(0)) { 2704 return opr == NumericOperator::Add; 2705 } else { 2706 return type0 && semantics::IsIntrinsicNumeric(*type0); 2707 } 2708 } else { 2709 std::optional<DynamicType> type1{GetType(1)}; 2710 if (IsBOZLiteral(0) && type1) { 2711 auto cat1{type1->category()}; 2712 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 2713 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 2714 auto cat0{type0->category()}; 2715 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 2716 } else { 2717 return type0 && type1 && 2718 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 2719 } 2720 } 2721 } 2722 2723 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 2724 if (actuals_.size() == 1) { 2725 return semantics::IsIntrinsicLogical(*GetType(0)); 2726 return GetType(0)->category() == TypeCategory::Logical; 2727 } else { 2728 return semantics::IsIntrinsicLogical( 2729 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2730 } 2731 } 2732 2733 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 2734 return semantics::IsIntrinsicConcat( 2735 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2736 } 2737 2738 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2739 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 2740 if (AnyUntypedOperand()) { 2741 context_.Say( 2742 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2743 return std::nullopt; 2744 } 2745 { 2746 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2747 std::string oprNameString{ 2748 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 2749 parser::CharBlock oprName{oprNameString}; 2750 const auto &scope{context_.context().FindScope(source_)}; 2751 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 2752 parser::Name name{symbol->name(), symbol}; 2753 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 2754 return result; 2755 } 2756 sawDefinedOp_ = symbol; 2757 } 2758 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2759 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 2760 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 2761 return result; 2762 } 2763 } 2764 } 2765 } 2766 if (sawDefinedOp_) { 2767 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 2768 } else if (actuals_.size() == 1 || AreConformable()) { 2769 context_.Say( 2770 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2771 } else { 2772 context_.Say( 2773 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 2774 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 2775 } 2776 return std::nullopt; 2777 } 2778 2779 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2780 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 2781 for (std::size_t i{1}; i < oprs.size(); ++i) { 2782 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2783 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 2784 return result; 2785 } 2786 } 2787 return TryDefinedOp(oprs[0], std::move(error)); 2788 } 2789 2790 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 2791 ActualArguments localActuals{actuals_}; 2792 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 2793 if (!proc) { 2794 proc = &symbol; 2795 localActuals.at(passIndex).value().set_isPassedObject(); 2796 } 2797 return context_.MakeFunctionRef( 2798 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 2799 } 2800 2801 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 2802 using semantics::Tristate; 2803 const Expr<SomeType> &lhs{GetExpr(0)}; 2804 const Expr<SomeType> &rhs{GetExpr(1)}; 2805 std::optional<DynamicType> lhsType{lhs.GetType()}; 2806 std::optional<DynamicType> rhsType{rhs.GetType()}; 2807 int lhsRank{lhs.Rank()}; 2808 int rhsRank{rhs.Rank()}; 2809 Tristate isDefined{ 2810 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 2811 if (isDefined == Tristate::No) { 2812 return std::nullopt; // user-defined assignment not allowed for these args 2813 } 2814 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 2815 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 2816 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 2817 return std::move(*procRef); 2818 } 2819 if (isDefined == Tristate::Yes) { 2820 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 2821 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 2822 SayNoMatch("ASSIGNMENT(=)", true); 2823 } 2824 } 2825 return std::nullopt; 2826 } 2827 2828 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 2829 TypeCategory lhs, TypeCategory rhs) { 2830 if (!context_.context().languageFeatures().IsEnabled( 2831 common::LanguageFeature::LogicalIntegerAssignment)) { 2832 return false; 2833 } 2834 std::optional<parser::MessageFixedText> msg; 2835 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 2836 // allow assignment to LOGICAL from INTEGER as a legacy extension 2837 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 2838 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 2839 // ... and assignment to LOGICAL from INTEGER 2840 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 2841 } else { 2842 return false; 2843 } 2844 if (context_.context().languageFeatures().ShouldWarn( 2845 common::LanguageFeature::LogicalIntegerAssignment)) { 2846 context_.Say(std::move(*msg)); 2847 } 2848 return true; 2849 } 2850 2851 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 2852 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2853 std::string oprNameString{"assignment(=)"}; 2854 parser::CharBlock oprName{oprNameString}; 2855 const Symbol *proc{nullptr}; 2856 const auto &scope{context_.context().FindScope(source_)}; 2857 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 2858 ExpressionAnalyzer::AdjustActuals noAdjustment; 2859 if (const Symbol * 2860 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 2861 proc = specific; 2862 } else { 2863 context_.EmitGenericResolutionError(*symbol); 2864 } 2865 } 2866 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2867 if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) { 2868 proc = specific; 2869 } 2870 } 2871 if (proc) { 2872 ActualArguments actualsCopy{actuals_}; 2873 actualsCopy[1]->Parenthesize(); 2874 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 2875 } else { 2876 return std::nullopt; 2877 } 2878 } 2879 2880 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 2881 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 2882 << '\n'; 2883 for (const auto &actual : actuals_) { 2884 if (!actual.has_value()) { 2885 os << "- error\n"; 2886 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 2887 os << "- assumed type: " << symbol->name().ToString() << '\n'; 2888 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 2889 expr->AsFortran(os << "- expr: ") << '\n'; 2890 } else { 2891 DIE("bad ActualArgument"); 2892 } 2893 } 2894 } 2895 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 2896 const parser::Expr &expr) { 2897 source_.ExtendToCover(expr.source); 2898 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 2899 expr.typedExpr.reset(new GenericExprWrapper{}); 2900 if (allowAssumedType_) { 2901 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2902 } else { 2903 context_.SayAt(expr.source, 2904 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2905 return std::nullopt; 2906 } 2907 } else if (MaybeExpr argExpr{context_.Analyze(expr)}) { 2908 return ActualArgument{context_.Fold(std::move(*argExpr))}; 2909 } else { 2910 return std::nullopt; 2911 } 2912 } 2913 2914 bool ArgumentAnalyzer::AreConformable() const { 2915 CHECK(!fatalErrors_ && actuals_.size() == 2); 2916 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 2917 } 2918 2919 // Look for a type-bound operator in the type of arg number passIndex. 2920 const Symbol *ArgumentAnalyzer::FindBoundOp( 2921 parser::CharBlock oprName, int passIndex) { 2922 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 2923 if (!type || !type->scope()) { 2924 return nullptr; 2925 } 2926 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 2927 if (!symbol) { 2928 return nullptr; 2929 } 2930 sawDefinedOp_ = symbol; 2931 ExpressionAnalyzer::AdjustActuals adjustment{ 2932 [&](const Symbol &proc, ActualArguments &) { 2933 return passIndex == GetPassIndex(proc); 2934 }}; 2935 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 2936 if (!result) { 2937 context_.EmitGenericResolutionError(*symbol); 2938 } 2939 return result; 2940 } 2941 2942 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 2943 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 2944 } 2945 int ArgumentAnalyzer::GetRank(std::size_t i) const { 2946 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 2947 } 2948 2949 // Report error resolving opr when there is a user-defined one available 2950 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 2951 std::string type0{TypeAsFortran(0)}; 2952 auto rank0{actuals_[0]->Rank()}; 2953 if (actuals_.size() == 1) { 2954 if (rank0 > 0) { 2955 context_.Say("No intrinsic or user-defined %s matches " 2956 "rank %d array of %s"_err_en_US, 2957 opr, rank0, type0); 2958 } else { 2959 context_.Say("No intrinsic or user-defined %s matches " 2960 "operand type %s"_err_en_US, 2961 opr, type0); 2962 } 2963 } else { 2964 std::string type1{TypeAsFortran(1)}; 2965 auto rank1{actuals_[1]->Rank()}; 2966 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 2967 context_.Say("No intrinsic or user-defined %s matches " 2968 "rank %d array of %s and rank %d array of %s"_err_en_US, 2969 opr, rank0, type0, rank1, type1); 2970 } else if (isAssignment && rank0 != rank1) { 2971 if (rank0 == 0) { 2972 context_.Say("No intrinsic or user-defined %s matches " 2973 "scalar %s and rank %d array of %s"_err_en_US, 2974 opr, type0, rank1, type1); 2975 } else { 2976 context_.Say("No intrinsic or user-defined %s matches " 2977 "rank %d array of %s and scalar %s"_err_en_US, 2978 opr, rank0, type0, type1); 2979 } 2980 } else { 2981 context_.Say("No intrinsic or user-defined %s matches " 2982 "operand types %s and %s"_err_en_US, 2983 opr, type0, type1); 2984 } 2985 } 2986 } 2987 2988 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 2989 if (std::optional<DynamicType> type{GetType(i)}) { 2990 return type->category() == TypeCategory::Derived 2991 ? "TYPE("s + type->AsFortran() + ')' 2992 : type->category() == TypeCategory::Character 2993 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 2994 : ToUpperCase(type->AsFortran()); 2995 } else { 2996 return "untyped"; 2997 } 2998 } 2999 3000 bool ArgumentAnalyzer::AnyUntypedOperand() { 3001 for (const auto &actual : actuals_) { 3002 if (!actual.value().GetType()) { 3003 return true; 3004 } 3005 } 3006 return false; 3007 } 3008 3009 } // namespace Fortran::evaluate 3010 3011 namespace Fortran::semantics { 3012 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3013 SemanticsContext &context, common::TypeCategory category, 3014 const std::optional<parser::KindSelector> &selector) { 3015 evaluate::ExpressionAnalyzer analyzer{context}; 3016 auto restorer{ 3017 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3018 return analyzer.AnalyzeKindSelector(category, selector); 3019 } 3020 3021 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3022 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3023 } 3024 3025 const evaluate::Assignment *AnalyzeAssignmentStmt( 3026 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3027 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3028 } 3029 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3030 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3031 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3032 } 3033 3034 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3035 3036 bool ExprChecker::Walk(const parser::Program &program) { 3037 parser::Walk(program, *this); 3038 return !context_.AnyFatalError(); 3039 } 3040 } // namespace Fortran::semantics 3041