1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } else { 59 return GetCharLength(); 60 } 61 } 62 63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 64 const std::optional<parser::TypeSpec> &spec) { 65 if (spec) { 66 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 67 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 68 // (viz., an intrinsic type with valid known kind or a non-polymorphic 69 // & non-ABSTRACT derived type). 70 if (const semantics::IntrinsicTypeSpec * 71 intrinsic{typeSpec->AsIntrinsic()}) { 72 TypeCategory category{intrinsic->category()}; 73 if (auto optKind{ToInt64(intrinsic->kind())}) { 74 int kind{static_cast<int>(*optKind)}; 75 if (category == TypeCategory::Character) { 76 const semantics::CharacterTypeSpec &cts{ 77 typeSpec->characterTypeSpec()}; 78 const semantics::ParamValue &len{cts.length()}; 79 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 80 // type guards, but not in array constructors. 81 return DynamicTypeWithLength{DynamicType{kind, len}}; 82 } else { 83 return DynamicTypeWithLength{DynamicType{category, kind}}; 84 } 85 } 86 } else if (const semantics::DerivedTypeSpec * 87 derived{typeSpec->AsDerived()}) { 88 return DynamicTypeWithLength{DynamicType{*derived}}; 89 } 90 } 91 } 92 return std::nullopt; 93 } 94 95 // Utilities to set a source location, if we have one, on an actual argument, 96 // when it is statically present. 97 static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) { 98 x.set_sourceLocation(at); 99 } 100 static void SetArgSourceLocation( 101 std::optional<ActualArgument> &x, parser::CharBlock at) { 102 if (x) { 103 x->set_sourceLocation(at); 104 } 105 } 106 static void SetArgSourceLocation( 107 std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) { 108 if (x && at) { 109 x->set_sourceLocation(*at); 110 } 111 } 112 113 class ArgumentAnalyzer { 114 public: 115 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 116 : context_{context}, source_{context.GetContextualMessages().at()}, 117 isProcedureCall_{false} {} 118 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 119 bool isProcedureCall = false) 120 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 121 bool fatalErrors() const { return fatalErrors_; } 122 ActualArguments &&GetActuals() { 123 CHECK(!fatalErrors_); 124 return std::move(actuals_); 125 } 126 const Expr<SomeType> &GetExpr(std::size_t i) const { 127 return DEREF(actuals_.at(i).value().UnwrapExpr()); 128 } 129 Expr<SomeType> &&MoveExpr(std::size_t i) { 130 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 131 } 132 void Analyze(const common::Indirection<parser::Expr> &x) { 133 Analyze(x.value()); 134 } 135 void Analyze(const parser::Expr &x) { 136 actuals_.emplace_back(AnalyzeExpr(x)); 137 SetArgSourceLocation(actuals_.back(), x.source); 138 fatalErrors_ |= !actuals_.back(); 139 } 140 void Analyze(const parser::Variable &); 141 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 142 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 143 std::optional<DynamicType> otherType); 144 145 bool IsIntrinsicRelational( 146 RelationalOperator, const DynamicType &, const DynamicType &) const; 147 bool IsIntrinsicLogical() const; 148 bool IsIntrinsicNumeric(NumericOperator) const; 149 bool IsIntrinsicConcat() const; 150 151 bool CheckConformance(); 152 bool CheckForNullPointer(const char *where = "as an operand here"); 153 154 // Find and return a user-defined operator or report an error. 155 // The provided message is used if there is no such operator. 156 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 157 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 158 template <typename E> 159 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 160 return TryDefinedOp( 161 context_.context().languageFeatures().GetNames(opr), msg); 162 } 163 // Find and return a user-defined assignment 164 std::optional<ProcedureRef> TryDefinedAssignment(); 165 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 166 std::optional<DynamicType> GetType(std::size_t) const; 167 void Dump(llvm::raw_ostream &); 168 169 private: 170 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 171 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 172 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 173 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 174 bool AreConformable() const; 175 const Symbol *FindBoundOp( 176 parser::CharBlock, int passIndex, const Symbol *&definedOp); 177 void AddAssignmentConversion( 178 const DynamicType &lhsType, const DynamicType &rhsType); 179 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 180 int GetRank(std::size_t) const; 181 bool IsBOZLiteral(std::size_t i) const { 182 return evaluate::IsBOZLiteral(GetExpr(i)); 183 } 184 void SayNoMatch(const std::string &, bool isAssignment = false); 185 std::string TypeAsFortran(std::size_t); 186 bool AnyUntypedOrMissingOperand(); 187 188 ExpressionAnalyzer &context_; 189 ActualArguments actuals_; 190 parser::CharBlock source_; 191 bool fatalErrors_{false}; 192 const bool isProcedureCall_; // false for user-defined op or assignment 193 }; 194 195 // Wraps a data reference in a typed Designator<>, and a procedure 196 // or procedure pointer reference in a ProcedureDesignator. 197 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 198 const Symbol &last{ref.GetLastSymbol()}; 199 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 200 if (semantics::IsProcedure(symbol)) { 201 if (auto *component{std::get_if<Component>(&ref.u)}) { 202 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 203 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 204 DIE("unexpected alternative in DataRef"); 205 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 206 if (symbol.has<semantics::GenericDetails>()) { 207 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 208 } else { 209 return Expr<SomeType>{ProcedureDesignator{symbol}}; 210 } 211 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 212 symbol.name().ToString())}; 213 interface && !interface->isRestrictedSpecific) { 214 SpecificIntrinsic intrinsic{ 215 symbol.name().ToString(), std::move(*interface)}; 216 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 217 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 218 } else { 219 Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, 220 symbol.name()); 221 } 222 return std::nullopt; 223 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 224 return result; 225 } else { 226 if (!context_.HasError(last) && !context_.HasError(symbol)) { 227 AttachDeclaration( 228 Say("'%s' is not an object that can appear in an expression"_err_en_US, 229 last.name()), 230 symbol); 231 context_.SetError(last); 232 } 233 return std::nullopt; 234 } 235 } 236 237 // Some subscript semantic checks must be deferred until all of the 238 // subscripts are in hand. 239 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 240 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 241 int symbolRank{symbol.Rank()}; 242 int subscripts{static_cast<int>(ref.size())}; 243 if (subscripts == 0) { 244 return std::nullopt; // error recovery 245 } else if (subscripts != symbolRank) { 246 if (symbolRank != 0) { 247 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 248 symbolRank, symbol.name(), subscripts); 249 } 250 return std::nullopt; 251 } else if (Component * component{ref.base().UnwrapComponent()}) { 252 int baseRank{component->base().Rank()}; 253 if (baseRank > 0) { 254 int subscriptRank{0}; 255 for (const auto &expr : ref.subscript()) { 256 subscriptRank += expr.Rank(); 257 } 258 if (subscriptRank > 0) { // C919a 259 Say("Subscripts of component '%s' of rank-%d derived type " 260 "array have rank %d but must all be scalar"_err_en_US, 261 symbol.name(), baseRank, subscriptRank); 262 return std::nullopt; 263 } 264 } 265 } else if (const auto *object{ 266 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 267 // C928 & C1002 268 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 269 if (!last->upper() && object->IsAssumedSize()) { 270 Say("Assumed-size array '%s' must have explicit final " 271 "subscript upper bound value"_err_en_US, 272 symbol.name()); 273 return std::nullopt; 274 } 275 } 276 } else { 277 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 278 // which, if not an object, must be a construct entity from 279 // SELECT TYPE/RANK or ASSOCIATE. 280 CHECK(symbol.has<semantics::AssocEntityDetails>()); 281 } 282 return Designate(DataRef{std::move(ref)}); 283 } 284 285 // Applies subscripts to a data reference. 286 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 287 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 288 if (subscripts.empty()) { 289 return std::nullopt; // error recovery 290 } 291 return common::visit( 292 common::visitors{ 293 [&](SymbolRef &&symbol) { 294 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 295 }, 296 [&](Component &&c) { 297 return CompleteSubscripts( 298 ArrayRef{std::move(c), std::move(subscripts)}); 299 }, 300 [&](auto &&) -> MaybeExpr { 301 DIE("bad base for ArrayRef"); 302 return std::nullopt; 303 }, 304 }, 305 std::move(dataRef.u)); 306 } 307 308 // Top-level checks for data references. 309 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 310 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 311 const Symbol &symbol{component->GetLastSymbol()}; 312 int componentRank{symbol.Rank()}; 313 if (componentRank > 0) { 314 int baseRank{component->base().Rank()}; 315 if (baseRank > 0) { // C919a 316 Say("Reference to whole rank-%d component '%%%s' of " 317 "rank-%d array of derived type is not allowed"_err_en_US, 318 componentRank, symbol.name(), baseRank); 319 } 320 } 321 } 322 return Designate(std::move(dataRef)); 323 } 324 325 // Parse tree correction after a substring S(j:k) was misparsed as an 326 // array section. N.B. Fortran substrings have to have a range, not a 327 // single index. 328 static void FixMisparsedSubstring(const parser::Designator &d) { 329 auto &mutate{const_cast<parser::Designator &>(d)}; 330 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 331 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 332 &dataRef->u)}) { 333 parser::ArrayElement &arrElement{ae->value()}; 334 if (!arrElement.subscripts.empty()) { 335 auto iter{arrElement.subscripts.begin()}; 336 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 337 if (!std::get<2>(triplet->t) /* no stride */ && 338 ++iter == arrElement.subscripts.end() /* one subscript */) { 339 if (Symbol * 340 symbol{common::visit( 341 common::visitors{ 342 [](parser::Name &n) { return n.symbol; }, 343 [](common::Indirection<parser::StructureComponent> 344 &sc) { return sc.value().component.symbol; }, 345 [](auto &) -> Symbol * { return nullptr; }, 346 }, 347 arrElement.base.u)}) { 348 const Symbol &ultimate{symbol->GetUltimate()}; 349 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 350 if (!ultimate.IsObjectArray() && 351 type->category() == semantics::DeclTypeSpec::Character) { 352 // The ambiguous S(j:k) was parsed as an array section 353 // reference, but it's now clear that it's a substring. 354 // Fix the parse tree in situ. 355 mutate.u = arrElement.ConvertToSubstring(); 356 } 357 } 358 } 359 } 360 } 361 } 362 } 363 } 364 } 365 366 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 367 auto restorer{GetContextualMessages().SetLocation(d.source)}; 368 FixMisparsedSubstring(d); 369 // These checks have to be deferred to these "top level" data-refs where 370 // we can be sure that there are no following subscripts (yet). 371 // Substrings have already been run through TopLevelChecks() and 372 // won't be returned by ExtractDataRef(). 373 if (MaybeExpr result{Analyze(d.u)}) { 374 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 375 return TopLevelChecks(std::move(*dataRef)); 376 } 377 return result; 378 } 379 return std::nullopt; 380 } 381 382 // A utility subroutine to repackage optional expressions of various levels 383 // of type specificity as fully general MaybeExpr values. 384 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 385 return AsGenericExpr(std::move(x)); 386 } 387 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 388 if (x) { 389 return AsMaybeExpr(std::move(*x)); 390 } 391 return std::nullopt; 392 } 393 394 // Type kind parameter values for literal constants. 395 int ExpressionAnalyzer::AnalyzeKindParam( 396 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 397 if (!kindParam) { 398 return defaultKind; 399 } 400 return common::visit( 401 common::visitors{ 402 [](std::uint64_t k) { return static_cast<int>(k); }, 403 [&](const parser::Scalar< 404 parser::Integer<parser::Constant<parser::Name>>> &n) { 405 if (MaybeExpr ie{Analyze(n)}) { 406 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 407 int iv = *i64; 408 if (iv == *i64) { 409 return iv; 410 } 411 } 412 } 413 return defaultKind; 414 }, 415 }, 416 kindParam->u); 417 } 418 419 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 420 struct IntTypeVisitor { 421 using Result = MaybeExpr; 422 using Types = IntegerTypes; 423 template <typename T> Result Test() { 424 if (T::kind >= kind) { 425 const char *p{digits.begin()}; 426 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 427 if (!value.overflow) { 428 if (T::kind > kind) { 429 if (!isDefaultKind || 430 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 431 return std::nullopt; 432 } else if (analyzer.context().ShouldWarn( 433 LanguageFeature::BigIntLiterals)) { 434 analyzer.Say(digits, 435 "Integer literal is too large for default INTEGER(KIND=%d); " 436 "assuming INTEGER(KIND=%d)"_port_en_US, 437 kind, T::kind); 438 } 439 } 440 return Expr<SomeType>{ 441 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 442 } 443 } 444 return std::nullopt; 445 } 446 ExpressionAnalyzer &analyzer; 447 parser::CharBlock digits; 448 int kind; 449 bool isDefaultKind; 450 }; 451 452 template <typename PARSED> 453 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 454 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 455 bool isDefaultKind{!kindParam}; 456 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 457 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 458 auto digits{std::get<parser::CharBlock>(x.t)}; 459 if (MaybeExpr result{common::SearchTypes( 460 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 461 return result; 462 } else if (isDefaultKind) { 463 Say(digits, 464 "Integer literal is too large for any allowable " 465 "kind of INTEGER"_err_en_US); 466 } else { 467 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 468 kind); 469 } 470 } 471 return std::nullopt; 472 } 473 474 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 475 auto restorer{ 476 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 477 return IntLiteralConstant(x); 478 } 479 480 MaybeExpr ExpressionAnalyzer::Analyze( 481 const parser::SignedIntLiteralConstant &x) { 482 auto restorer{GetContextualMessages().SetLocation(x.source)}; 483 return IntLiteralConstant(x); 484 } 485 486 template <typename TYPE> 487 Constant<TYPE> ReadRealLiteral( 488 parser::CharBlock source, FoldingContext &context) { 489 const char *p{source.begin()}; 490 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 491 CHECK(p == source.end()); 492 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 493 auto value{valWithFlags.value}; 494 if (context.flushSubnormalsToZero()) { 495 value = value.FlushSubnormalToZero(); 496 } 497 return {value}; 498 } 499 500 struct RealTypeVisitor { 501 using Result = std::optional<Expr<SomeReal>>; 502 using Types = RealTypes; 503 504 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 505 : kind{k}, literal{lit}, context{ctx} {} 506 507 template <typename T> Result Test() { 508 if (kind == T::kind) { 509 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 510 } 511 return std::nullopt; 512 } 513 514 int kind; 515 parser::CharBlock literal; 516 FoldingContext &context; 517 }; 518 519 // Reads a real literal constant and encodes it with the right kind. 520 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 521 // Use a local message context around the real literal for better 522 // provenance on any messages. 523 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 524 // If a kind parameter appears, it defines the kind of the literal and the 525 // letter used in an exponent part must be 'E' (e.g., the 'E' in 526 // "6.02214E+23"). In the absence of an explicit kind parameter, any 527 // exponent letter determines the kind. Otherwise, defaults apply. 528 auto &defaults{context_.defaultKinds()}; 529 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 530 const char *end{x.real.source.end()}; 531 char expoLetter{' '}; 532 std::optional<int> letterKind; 533 for (const char *p{x.real.source.begin()}; p < end; ++p) { 534 if (parser::IsLetter(*p)) { 535 expoLetter = *p; 536 switch (expoLetter) { 537 case 'e': 538 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 539 break; 540 case 'd': 541 letterKind = defaults.doublePrecisionKind(); 542 break; 543 case 'q': 544 letterKind = defaults.quadPrecisionKind(); 545 break; 546 default: 547 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 548 } 549 break; 550 } 551 } 552 if (letterKind) { 553 defaultKind = *letterKind; 554 } 555 // C716 requires 'E' as an exponent, but this is more useful 556 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 557 if (letterKind && kind != *letterKind && expoLetter != 'e') { 558 Say("Explicit kind parameter on real constant disagrees with " 559 "exponent letter '%c'"_port_en_US, 560 expoLetter); 561 } 562 auto result{common::SearchTypes( 563 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 564 if (!result) { // C717 565 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 566 } 567 return AsMaybeExpr(std::move(result)); 568 } 569 570 MaybeExpr ExpressionAnalyzer::Analyze( 571 const parser::SignedRealLiteralConstant &x) { 572 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 573 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 574 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 575 if (sign == parser::Sign::Negative) { 576 return AsGenericExpr(-std::move(realExpr)); 577 } 578 } 579 return result; 580 } 581 return std::nullopt; 582 } 583 584 MaybeExpr ExpressionAnalyzer::Analyze( 585 const parser::SignedComplexLiteralConstant &x) { 586 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 587 if (!result) { 588 return std::nullopt; 589 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 590 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 591 } else { 592 return result; 593 } 594 } 595 596 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 597 return Analyze(x.u); 598 } 599 600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 601 return AsMaybeExpr( 602 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 603 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 604 } 605 606 // CHARACTER literal processing. 607 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 608 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 609 return std::nullopt; 610 } 611 switch (kind) { 612 case 1: 613 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 614 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 615 string, true)}); 616 case 2: 617 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 618 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 619 string, true)}); 620 case 4: 621 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 622 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 623 string, true)}); 624 default: 625 CRASH_NO_CASE; 626 } 627 } 628 629 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 630 int kind{ 631 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 632 auto value{std::get<std::string>(x.t)}; 633 return AnalyzeString(std::move(value), kind); 634 } 635 636 MaybeExpr ExpressionAnalyzer::Analyze( 637 const parser::HollerithLiteralConstant &x) { 638 int kind{GetDefaultKind(TypeCategory::Character)}; 639 auto value{x.v}; 640 return AnalyzeString(std::move(value), kind); 641 } 642 643 // .TRUE. and .FALSE. of various kinds 644 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 645 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 646 GetDefaultKind(TypeCategory::Logical))}; 647 bool value{std::get<bool>(x.t)}; 648 auto result{common::SearchTypes( 649 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 650 kind, std::move(value)})}; 651 if (!result) { 652 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 653 } 654 return result; 655 } 656 657 // BOZ typeless literals 658 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 659 const char *p{x.v.c_str()}; 660 std::uint64_t base{16}; 661 switch (*p++) { 662 case 'b': 663 base = 2; 664 break; 665 case 'o': 666 base = 8; 667 break; 668 case 'z': 669 break; 670 case 'x': 671 break; 672 default: 673 CRASH_NO_CASE; 674 } 675 CHECK(*p == '"'); 676 ++p; 677 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 678 if (*p != '"') { 679 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 680 x.v); // C7107, C7108 681 return std::nullopt; 682 } 683 if (value.overflow) { 684 Say("BOZ literal '%s' too large"_err_en_US, x.v); 685 return std::nullopt; 686 } 687 return AsGenericExpr(std::move(value.value)); 688 } 689 690 // Names and named constants 691 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 692 auto restorer{GetContextualMessages().SetLocation(n.source)}; 693 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 694 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 695 *kind, AsExpr(ImpliedDoIndex{n.source}))); 696 } 697 if (context_.HasError(n.symbol)) { // includes case of no symbol 698 return std::nullopt; 699 } else { 700 const Symbol &ultimate{n.symbol->GetUltimate()}; 701 if (ultimate.has<semantics::TypeParamDetails>()) { 702 // A bare reference to a derived type parameter (within a parameterized 703 // derived type definition) 704 return Fold(ConvertToType( 705 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 706 } else { 707 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 708 if (const semantics::Scope * 709 pure{semantics::FindPureProcedureContaining( 710 context_.FindScope(n.source))}) { 711 SayAt(n, 712 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 713 n.source, DEREF(pure->symbol()).name()); 714 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 715 } 716 } 717 if (!isWholeAssumedSizeArrayOk_ && 718 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 719 AttachDeclaration( 720 SayAt(n, 721 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 722 n.source), 723 *n.symbol); 724 } 725 return Designate(DataRef{*n.symbol}); 726 } 727 } 728 } 729 730 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 731 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 732 if (MaybeExpr value{Analyze(n.v)}) { 733 Expr<SomeType> folded{Fold(std::move(*value))}; 734 if (IsConstantExpr(folded)) { 735 return folded; 736 } 737 Say(n.v.source, "must be a constant"_err_en_US); // C718 738 } 739 return std::nullopt; 740 } 741 742 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 743 if (MaybeExpr value{Analyze(n.v)}) { 744 // Subtle: when the NullInit is a DataStmtConstant, it might 745 // be a misparse of a structure constructor without parameters 746 // or components (e.g., T()). Checking the result to ensure 747 // that a "=>" data entity initializer actually resolved to 748 // a null pointer has to be done by the caller. 749 return Fold(std::move(*value)); 750 } 751 return std::nullopt; 752 } 753 754 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 755 return Analyze(x.value()); 756 } 757 758 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 759 if (const auto &repeat{ 760 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 761 x.repetitions = -1; 762 if (MaybeExpr expr{Analyze(repeat->u)}) { 763 Expr<SomeType> folded{Fold(std::move(*expr))}; 764 if (auto value{ToInt64(folded)}) { 765 if (*value >= 0) { // C882 766 x.repetitions = *value; 767 } else { 768 Say(FindSourceLocation(repeat), 769 "Repeat count (%jd) for data value must not be negative"_err_en_US, 770 *value); 771 } 772 } 773 } 774 } 775 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 776 } 777 778 // Substring references 779 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 780 const std::optional<parser::ScalarIntExpr> &bound) { 781 if (bound) { 782 if (MaybeExpr expr{Analyze(*bound)}) { 783 if (expr->Rank() > 1) { 784 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 785 } 786 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 787 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 788 return {std::move(*ssIntExpr)}; 789 } 790 return {Expr<SubscriptInteger>{ 791 Convert<SubscriptInteger, TypeCategory::Integer>{ 792 std::move(*intExpr)}}}; 793 } else { 794 Say("substring bound expression is not INTEGER"_err_en_US); 795 } 796 } 797 } 798 return std::nullopt; 799 } 800 801 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 802 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 803 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 804 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 805 if (std::optional<DataRef> checked{ 806 ExtractDataRef(std::move(*newBaseExpr))}) { 807 const parser::SubstringRange &range{ 808 std::get<parser::SubstringRange>(ss.t)}; 809 std::optional<Expr<SubscriptInteger>> first{ 810 GetSubstringBound(std::get<0>(range.t))}; 811 std::optional<Expr<SubscriptInteger>> last{ 812 GetSubstringBound(std::get<1>(range.t))}; 813 const Symbol &symbol{checked->GetLastSymbol()}; 814 if (std::optional<DynamicType> dynamicType{ 815 DynamicType::From(symbol)}) { 816 if (dynamicType->category() == TypeCategory::Character) { 817 return WrapperHelper<TypeCategory::Character, Designator, 818 Substring>(dynamicType->kind(), 819 Substring{std::move(checked.value()), std::move(first), 820 std::move(last)}); 821 } 822 } 823 Say("substring may apply only to CHARACTER"_err_en_US); 824 } 825 } 826 } 827 } 828 return std::nullopt; 829 } 830 831 // CHARACTER literal substrings 832 MaybeExpr ExpressionAnalyzer::Analyze( 833 const parser::CharLiteralConstantSubstring &x) { 834 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 835 std::optional<Expr<SubscriptInteger>> lower{ 836 GetSubstringBound(std::get<0>(range.t))}; 837 std::optional<Expr<SubscriptInteger>> upper{ 838 GetSubstringBound(std::get<1>(range.t))}; 839 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 840 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 841 Expr<SubscriptInteger> length{ 842 common::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 843 charExpr->u)}; 844 if (!lower) { 845 lower = Expr<SubscriptInteger>{1}; 846 } 847 if (!upper) { 848 upper = Expr<SubscriptInteger>{ 849 static_cast<std::int64_t>(ToInt64(length).value())}; 850 } 851 return common::visit( 852 [&](auto &&ckExpr) -> MaybeExpr { 853 using Result = ResultType<decltype(ckExpr)>; 854 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 855 CHECK(DEREF(cp).size() == 1); 856 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 857 staticData->set_alignment(Result::kind) 858 .set_itemBytes(Result::kind) 859 .Push(cp->GetScalarValue().value()); 860 Substring substring{std::move(staticData), std::move(lower.value()), 861 std::move(upper.value())}; 862 return AsGenericExpr( 863 Expr<Result>{Designator<Result>{std::move(substring)}}); 864 }, 865 std::move(charExpr->u)); 866 } 867 } 868 return std::nullopt; 869 } 870 871 // Subscripted array references 872 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 873 MaybeExpr &&expr) { 874 if (expr) { 875 if (expr->Rank() > 1) { 876 Say("Subscript expression has rank %d greater than 1"_err_en_US, 877 expr->Rank()); 878 } 879 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 880 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 881 return std::move(*ssIntExpr); 882 } else { 883 return Expr<SubscriptInteger>{ 884 Convert<SubscriptInteger, TypeCategory::Integer>{ 885 std::move(*intExpr)}}; 886 } 887 } else { 888 Say("Subscript expression is not INTEGER"_err_en_US); 889 } 890 } 891 return std::nullopt; 892 } 893 894 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 895 const std::optional<parser::Subscript> &s) { 896 if (s) { 897 return AsSubscript(Analyze(*s)); 898 } else { 899 return std::nullopt; 900 } 901 } 902 903 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 904 const parser::SectionSubscript &ss) { 905 return common::visit( 906 common::visitors{ 907 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 908 const auto &lower{std::get<0>(t.t)}; 909 const auto &upper{std::get<1>(t.t)}; 910 const auto &stride{std::get<2>(t.t)}; 911 auto result{Triplet{ 912 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 913 if ((lower && !result.lower()) || (upper && !result.upper())) { 914 return std::nullopt; 915 } else { 916 return std::make_optional<Subscript>(result); 917 } 918 }, 919 [&](const auto &s) -> std::optional<Subscript> { 920 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 921 return Subscript{std::move(*subscriptExpr)}; 922 } else { 923 return std::nullopt; 924 } 925 }, 926 }, 927 ss.u); 928 } 929 930 // Empty result means an error occurred 931 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 932 const std::list<parser::SectionSubscript> &sss) { 933 bool error{false}; 934 std::vector<Subscript> subscripts; 935 for (const auto &s : sss) { 936 if (auto subscript{AnalyzeSectionSubscript(s)}) { 937 subscripts.emplace_back(std::move(*subscript)); 938 } else { 939 error = true; 940 } 941 } 942 return !error ? subscripts : std::vector<Subscript>{}; 943 } 944 945 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 946 MaybeExpr baseExpr; 947 { 948 auto restorer{AllowWholeAssumedSizeArray()}; 949 baseExpr = Analyze(ae.base); 950 } 951 if (baseExpr) { 952 if (ae.subscripts.empty()) { 953 // will be converted to function call later or error reported 954 } else if (baseExpr->Rank() == 0) { 955 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 956 if (!context_.HasError(symbol)) { 957 if (inDataStmtConstant_) { 958 // Better error for NULL(X) with a MOLD= argument 959 Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US, 960 symbol->name()); 961 } else { 962 Say("'%s' is not an array"_err_en_US, symbol->name()); 963 } 964 context_.SetError(*symbol); 965 } 966 } 967 } else if (std::optional<DataRef> dataRef{ 968 ExtractDataRef(std::move(*baseExpr))}) { 969 return ApplySubscripts( 970 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 971 } else { 972 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 973 } 974 } 975 // error was reported: analyze subscripts without reporting more errors 976 auto restorer{GetContextualMessages().DiscardMessages()}; 977 AnalyzeSectionSubscripts(ae.subscripts); 978 return std::nullopt; 979 } 980 981 // Type parameter inquiries apply to data references, but don't depend 982 // on any trailing (co)subscripts. 983 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 984 return common::visit( 985 common::visitors{ 986 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 987 [](Component &&component) { 988 return NamedEntity{std::move(component)}; 989 }, 990 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 991 [](CoarrayRef &&coarrayRef) { 992 return NamedEntity{coarrayRef.GetLastSymbol()}; 993 }, 994 }, 995 std::move(designator.u)); 996 } 997 998 // Components of parent derived types are explicitly represented as such. 999 std::optional<Component> ExpressionAnalyzer::CreateComponent( 1000 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 1001 if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b 1002 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); 1003 } 1004 if (&component.owner() == &scope) { 1005 return Component{std::move(base), component}; 1006 } 1007 if (const Symbol * typeSymbol{scope.GetSymbol()}) { 1008 if (const Symbol * 1009 parentComponent{typeSymbol->GetParentComponent(&scope)}) { 1010 if (const auto *object{ 1011 parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) { 1012 if (const auto *parentType{object->type()}) { 1013 if (const semantics::Scope * 1014 parentScope{parentType->derivedTypeSpec().scope()}) { 1015 return CreateComponent( 1016 DataRef{Component{std::move(base), *parentComponent}}, 1017 component, *parentScope); 1018 } 1019 } 1020 } 1021 } 1022 } 1023 return std::nullopt; 1024 } 1025 1026 // Derived type component references and type parameter inquiries 1027 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 1028 MaybeExpr base{Analyze(sc.base)}; 1029 Symbol *sym{sc.component.symbol}; 1030 if (!base || !sym || context_.HasError(sym)) { 1031 return std::nullopt; 1032 } 1033 const auto &name{sc.component.source}; 1034 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1035 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1036 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1037 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1038 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1039 if (dyType->category() == TypeCategory::Integer) { 1040 auto restorer{GetContextualMessages().SetLocation(name)}; 1041 return Fold(ConvertToType(*dyType, 1042 AsGenericExpr(TypeParamInquiry{ 1043 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1044 } 1045 } 1046 Say(name, "Type parameter is not INTEGER"_err_en_US); 1047 } else { 1048 Say(name, 1049 "A type parameter inquiry must be applied to " 1050 "a designator"_err_en_US); 1051 } 1052 } else if (!dtSpec || !dtSpec->scope()) { 1053 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1054 return std::nullopt; 1055 } else if (std::optional<DataRef> dataRef{ 1056 ExtractDataRef(std::move(*dtExpr))}) { 1057 if (auto component{ 1058 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1059 return Designate(DataRef{std::move(*component)}); 1060 } else { 1061 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1062 dtSpec->typeSymbol().name()); 1063 } 1064 } else { 1065 Say(name, 1066 "Base of component reference must be a data reference"_err_en_US); 1067 } 1068 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1069 // special part-ref: %re, %im, %kind, %len 1070 // Type errors on the base of %re/%im/%len are detected and 1071 // reported in name resolution. 1072 using MiscKind = semantics::MiscDetails::Kind; 1073 MiscKind kind{details->kind()}; 1074 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1075 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1076 if (std::optional<DataRef> dataRef{ExtractDataRef(*zExpr)}) { 1077 // Represent %RE/%IM as a designator 1078 Expr<SomeReal> realExpr{common::visit( 1079 [&](const auto &z) { 1080 using PartType = typename ResultType<decltype(z)>::Part; 1081 auto part{kind == MiscKind::ComplexPartRe 1082 ? ComplexPart::Part::RE 1083 : ComplexPart::Part::IM}; 1084 return AsCategoryExpr(Designator<PartType>{ 1085 ComplexPart{std::move(*dataRef), part}}); 1086 }, 1087 zExpr->u)}; 1088 return AsGenericExpr(std::move(realExpr)); 1089 } 1090 } 1091 } else if (kind == MiscKind::KindParamInquiry || 1092 kind == MiscKind::LenParamInquiry) { 1093 ActualArgument arg{std::move(*base)}; 1094 SetArgSourceLocation(arg, name); 1095 return MakeFunctionRef(name, ActualArguments{std::move(arg)}); 1096 } else { 1097 DIE("unexpected MiscDetails::Kind"); 1098 } 1099 } else { 1100 Say(name, "derived type required before component reference"_err_en_US); 1101 } 1102 return std::nullopt; 1103 } 1104 1105 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1106 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1107 DataRef *dataRef{&*maybeDataRef}; 1108 std::vector<Subscript> subscripts; 1109 SymbolVector reversed; 1110 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1111 subscripts = std::move(aRef->subscript()); 1112 reversed.push_back(aRef->GetLastSymbol()); 1113 if (Component * component{aRef->base().UnwrapComponent()}) { 1114 dataRef = &component->base(); 1115 } else { 1116 dataRef = nullptr; 1117 } 1118 } 1119 if (dataRef) { 1120 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1121 reversed.push_back(component->GetLastSymbol()); 1122 dataRef = &component->base(); 1123 } 1124 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1125 reversed.push_back(*baseSym); 1126 } else { 1127 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1128 } 1129 } 1130 std::vector<Expr<SubscriptInteger>> cosubscripts; 1131 bool cosubsOk{true}; 1132 for (const auto &cosub : 1133 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1134 MaybeExpr coex{Analyze(cosub)}; 1135 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1136 cosubscripts.push_back( 1137 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1138 } else { 1139 cosubsOk = false; 1140 } 1141 } 1142 if (cosubsOk && !reversed.empty()) { 1143 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1144 const Symbol &symbol{reversed.front()}; 1145 if (numCosubscripts != symbol.Corank()) { 1146 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1147 symbol.name(), symbol.Corank(), numCosubscripts); 1148 } 1149 } 1150 for (const auto &imageSelSpec : 1151 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1152 common::visit( 1153 common::visitors{ 1154 [&](const auto &x) { Analyze(x.v); }, 1155 }, 1156 imageSelSpec.u); 1157 } 1158 // Reverse the chain of symbols so that the base is first and coarray 1159 // ultimate component is last. 1160 if (cosubsOk) { 1161 return Designate( 1162 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1163 std::move(subscripts), std::move(cosubscripts)}}); 1164 } 1165 } 1166 return std::nullopt; 1167 } 1168 1169 int ExpressionAnalyzer::IntegerTypeSpecKind( 1170 const parser::IntegerTypeSpec &spec) { 1171 Expr<SubscriptInteger> value{ 1172 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1173 if (auto kind{ToInt64(value)}) { 1174 return static_cast<int>(*kind); 1175 } 1176 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1177 return GetDefaultKind(TypeCategory::Integer); 1178 } 1179 1180 // Array constructors 1181 1182 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1183 // all happen to have the same actual type T into one ArrayConstructor<T>. 1184 template <typename T> 1185 ArrayConstructorValues<T> MakeSpecific( 1186 ArrayConstructorValues<SomeType> &&from) { 1187 ArrayConstructorValues<T> to; 1188 for (ArrayConstructorValue<SomeType> &x : from) { 1189 common::visit( 1190 common::visitors{ 1191 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1192 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1193 to.Push(std::move(DEREF(typed))); 1194 }, 1195 [&](ImpliedDo<SomeType> &&impliedDo) { 1196 to.Push(ImpliedDo<T>{impliedDo.name(), 1197 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1198 std::move(impliedDo.stride()), 1199 MakeSpecific<T>(std::move(impliedDo.values()))}); 1200 }, 1201 }, 1202 std::move(x.u)); 1203 } 1204 return to; 1205 } 1206 1207 class ArrayConstructorContext { 1208 public: 1209 ArrayConstructorContext( 1210 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1211 : exprAnalyzer_{c}, type_{std::move(t)} {} 1212 1213 void Add(const parser::AcValue &); 1214 MaybeExpr ToExpr(); 1215 1216 // These interfaces allow *this to be used as a type visitor argument to 1217 // common::SearchTypes() to convert the array constructor to a typed 1218 // expression in ToExpr(). 1219 using Result = MaybeExpr; 1220 using Types = AllTypes; 1221 template <typename T> Result Test() { 1222 if (type_ && type_->category() == T::category) { 1223 if constexpr (T::category == TypeCategory::Derived) { 1224 if (!type_->IsUnlimitedPolymorphic()) { 1225 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1226 MakeSpecific<T>(std::move(values_))}); 1227 } 1228 } else if (type_->kind() == T::kind) { 1229 if constexpr (T::category == TypeCategory::Character) { 1230 if (auto len{type_->LEN()}) { 1231 return AsMaybeExpr(ArrayConstructor<T>{ 1232 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1233 } 1234 } else { 1235 return AsMaybeExpr( 1236 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1237 } 1238 } 1239 } 1240 return std::nullopt; 1241 } 1242 1243 private: 1244 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1245 1246 void Push(MaybeExpr &&); 1247 void Add(const parser::AcValue::Triplet &); 1248 void Add(const parser::Expr &); 1249 void Add(const parser::AcImpliedDo &); 1250 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1251 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1252 std::int64_t stride); 1253 1254 template <int KIND, typename A> 1255 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1256 const A &x) { 1257 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1258 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1259 return Fold(exprAnalyzer_.GetFoldingContext(), 1260 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1261 std::move(DEREF(intExpr)))); 1262 } 1263 return std::nullopt; 1264 } 1265 1266 // Nested array constructors all reference the same ExpressionAnalyzer, 1267 // which represents the nest of active implied DO loop indices. 1268 ExpressionAnalyzer &exprAnalyzer_; 1269 std::optional<DynamicTypeWithLength> type_; 1270 bool explicitType_{type_.has_value()}; 1271 std::optional<std::int64_t> constantLength_; 1272 ArrayConstructorValues<SomeType> values_; 1273 std::uint64_t messageDisplayedSet_{0}; 1274 }; 1275 1276 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1277 if (!x) { 1278 return; 1279 } 1280 if (!type_) { 1281 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1282 // Treat an array constructor of BOZ as if default integer. 1283 if (exprAnalyzer_.context().ShouldWarn( 1284 common::LanguageFeature::BOZAsDefaultInteger)) { 1285 exprAnalyzer_.Say( 1286 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1287 } 1288 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1289 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1290 std::move(*boz))); 1291 } 1292 } 1293 std::optional<DynamicType> dyType{x->GetType()}; 1294 if (!dyType) { 1295 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1296 if (!type_) { 1297 // Treat an array constructor of BOZ as if default integer. 1298 if (exprAnalyzer_.context().ShouldWarn( 1299 common::LanguageFeature::BOZAsDefaultInteger)) { 1300 exprAnalyzer_.Say( 1301 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1302 } 1303 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1304 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1305 std::move(*boz))); 1306 dyType = x.value().GetType(); 1307 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1308 x = std::move(cast); 1309 dyType = *type_; 1310 } else { 1311 if (!(messageDisplayedSet_ & 0x80)) { 1312 exprAnalyzer_.Say( 1313 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1314 messageDisplayedSet_ |= 0x80; 1315 } 1316 return; 1317 } 1318 } else { // procedure name, &c. 1319 if (!(messageDisplayedSet_ & 0x40)) { 1320 exprAnalyzer_.Say( 1321 "Item is not suitable for use in an array constructor"_err_en_US); 1322 messageDisplayedSet_ |= 0x40; 1323 } 1324 return; 1325 } 1326 } else if (dyType->IsUnlimitedPolymorphic()) { 1327 if (!(messageDisplayedSet_ & 8)) { 1328 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1329 "array constructor"_err_en_US); // C7113 1330 messageDisplayedSet_ |= 8; 1331 } 1332 return; 1333 } 1334 DynamicTypeWithLength xType{dyType.value()}; 1335 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1336 CHECK(xType.category() == TypeCategory::Character); 1337 xType.length = 1338 common::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1339 } 1340 if (!type_) { 1341 // If there is no explicit type-spec in an array constructor, the type 1342 // of the array is the declared type of all of the elements, which must 1343 // be well-defined and all match. 1344 // TODO: Possible language extension: use the most general type of 1345 // the values as the type of a numeric constructed array, convert all 1346 // of the other values to that type. Alternative: let the first value 1347 // determine the type, and convert the others to that type. 1348 CHECK(!explicitType_); 1349 type_ = std::move(xType); 1350 constantLength_ = ToInt64(type_->length); 1351 values_.Push(std::move(*x)); 1352 } else if (!explicitType_) { 1353 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1354 values_.Push(std::move(*x)); 1355 if (auto thisLen{ToInt64(xType.LEN())}) { 1356 if (constantLength_) { 1357 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1358 *thisLen != *constantLength_) { 1359 if (!(messageDisplayedSet_ & 1)) { 1360 exprAnalyzer_.Say( 1361 "Character literal in array constructor without explicit " 1362 "type has different length than earlier elements"_port_en_US); 1363 messageDisplayedSet_ |= 1; 1364 } 1365 } 1366 if (*thisLen > *constantLength_) { 1367 // Language extension: use the longest literal to determine the 1368 // length of the array constructor's character elements, not the 1369 // first, when there is no explicit type. 1370 *constantLength_ = *thisLen; 1371 type_->length = xType.LEN(); 1372 } 1373 } else { 1374 constantLength_ = *thisLen; 1375 type_->length = xType.LEN(); 1376 } 1377 } 1378 } else { 1379 if (!(messageDisplayedSet_ & 2)) { 1380 exprAnalyzer_.Say( 1381 "Values in array constructor must have the same declared type " 1382 "when no explicit type appears"_err_en_US); // C7110 1383 messageDisplayedSet_ |= 2; 1384 } 1385 } 1386 } else { 1387 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1388 values_.Push(std::move(*cast)); 1389 } else if (!(messageDisplayedSet_ & 4)) { 1390 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1391 "be converted to the type of the array '%s'"_err_en_US, 1392 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1393 messageDisplayedSet_ |= 4; 1394 } 1395 } 1396 } 1397 1398 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1399 common::visit( 1400 common::visitors{ 1401 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1402 [&](const common::Indirection<parser::Expr> &expr) { 1403 Add(expr.value()); 1404 }, 1405 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1406 Add(impliedDo.value()); 1407 }, 1408 }, 1409 x.u); 1410 } 1411 1412 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1413 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1414 std::optional<Expr<ImpliedDoIntType>> lower{ 1415 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1416 std::optional<Expr<ImpliedDoIntType>> upper{ 1417 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1418 std::optional<Expr<ImpliedDoIntType>> stride{ 1419 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1420 if (lower && upper) { 1421 if (!stride) { 1422 stride = Expr<ImpliedDoIntType>{1}; 1423 } 1424 if (!type_) { 1425 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1426 } 1427 auto v{std::move(values_)}; 1428 parser::CharBlock anonymous; 1429 Push(Expr<SomeType>{ 1430 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1431 std::swap(v, values_); 1432 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1433 std::move(*upper), std::move(*stride), std::move(v)}); 1434 } 1435 } 1436 1437 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1438 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1439 Push(exprAnalyzer_.Analyze(expr)); 1440 } 1441 1442 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1443 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1444 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1445 exprAnalyzer_.Analyze(bounds.name); 1446 parser::CharBlock name{bounds.name.thing.thing.source}; 1447 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1448 int kind{ImpliedDoIntType::kind}; 1449 if (const auto dynamicType{DynamicType::From(symbol)}) { 1450 kind = dynamicType->kind(); 1451 } 1452 std::optional<Expr<ImpliedDoIntType>> lower{ 1453 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1454 std::optional<Expr<ImpliedDoIntType>> upper{ 1455 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1456 if (lower && upper) { 1457 std::optional<Expr<ImpliedDoIntType>> stride{ 1458 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1459 if (!stride) { 1460 stride = Expr<ImpliedDoIntType>{1}; 1461 } 1462 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1463 // Check for constant bounds; the loop may require complete unrolling 1464 // of the parse tree if all bounds are constant in order to allow the 1465 // implied DO loop index to qualify as a constant expression. 1466 auto cLower{ToInt64(lower)}; 1467 auto cUpper{ToInt64(upper)}; 1468 auto cStride{ToInt64(stride)}; 1469 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1470 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1471 "The stride of an implied DO loop must not be zero"_err_en_US); 1472 messageDisplayedSet_ |= 0x10; 1473 } 1474 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1475 bool isNonemptyConstant{isConstant && 1476 ((*cStride > 0 && *cLower <= *cUpper) || 1477 (*cStride < 0 && *cLower >= *cUpper))}; 1478 bool unrollConstantLoop{false}; 1479 parser::Messages buffer; 1480 auto saveMessagesDisplayed{messageDisplayedSet_}; 1481 { 1482 auto messageRestorer{ 1483 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1484 auto v{std::move(values_)}; 1485 for (const auto &value : 1486 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1487 Add(value); 1488 } 1489 std::swap(v, values_); 1490 if (isNonemptyConstant && buffer.AnyFatalError()) { 1491 unrollConstantLoop = true; 1492 } else { 1493 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1494 std::move(*upper), std::move(*stride), std::move(v)}); 1495 } 1496 } 1497 if (unrollConstantLoop) { 1498 messageDisplayedSet_ = saveMessagesDisplayed; 1499 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1500 } else if (auto *messages{ 1501 exprAnalyzer_.GetContextualMessages().messages()}) { 1502 messages->Annex(std::move(buffer)); 1503 } 1504 exprAnalyzer_.RemoveImpliedDo(name); 1505 } else if (!(messageDisplayedSet_ & 0x20)) { 1506 exprAnalyzer_.SayAt(name, 1507 "Implied DO index '%s' is active in a surrounding implied DO loop " 1508 "and may not have the same name"_err_en_US, 1509 name); // C7115 1510 messageDisplayedSet_ |= 0x20; 1511 } 1512 } 1513 } 1514 1515 // Fortran considers an implied DO index of an array constructor to be 1516 // a constant expression if the bounds of the implied DO loop are constant. 1517 // Usually this doesn't matter, but if we emitted spurious messages as a 1518 // result of not using constant values for the index while analyzing the 1519 // items, we need to do it again the "hard" way with multiple iterations over 1520 // the parse tree. 1521 void ArrayConstructorContext::UnrollConstantImpliedDo( 1522 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1523 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1524 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1525 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1526 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1527 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1528 at += stride) { 1529 for (const auto &value : 1530 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1531 Add(value); 1532 } 1533 } 1534 foldingContext.EndImpliedDo(name); 1535 } 1536 1537 MaybeExpr ArrayConstructorContext::ToExpr() { 1538 return common::SearchTypes(std::move(*this)); 1539 } 1540 1541 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1542 const parser::AcSpec &acSpec{array.v}; 1543 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1544 for (const parser::AcValue &value : acSpec.values) { 1545 acContext.Add(value); 1546 } 1547 return acContext.ToExpr(); 1548 } 1549 1550 MaybeExpr ExpressionAnalyzer::Analyze( 1551 const parser::StructureConstructor &structure) { 1552 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1553 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1554 parser::CharBlock &typeName{structureType.source}; 1555 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1556 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1557 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1558 if (!CheckIsValidForwardReference(dtSpec)) { 1559 return std::nullopt; 1560 } 1561 } 1562 } 1563 if (!parsedType.derivedTypeSpec) { 1564 return std::nullopt; 1565 } 1566 const auto &spec{*parsedType.derivedTypeSpec}; 1567 const Symbol &typeSymbol{spec.typeSymbol()}; 1568 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1569 return std::nullopt; // error recovery 1570 } 1571 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1572 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1573 1574 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1575 AttachDeclaration(Say(typeName, 1576 "ABSTRACT derived type '%s' may not be used in a " 1577 "structure constructor"_err_en_US, 1578 typeName), 1579 typeSymbol); // C7114 1580 } 1581 1582 // This iterator traverses all of the components in the derived type and its 1583 // parents. The symbols for whole parent components appear after their 1584 // own components and before the components of the types that extend them. 1585 // E.g., TYPE :: A; REAL X; END TYPE 1586 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1587 // produces the component list X, A, Y. 1588 // The order is important below because a structure constructor can 1589 // initialize X or A by name, but not both. 1590 auto components{semantics::OrderedComponentIterator{spec}}; 1591 auto nextAnonymous{components.begin()}; 1592 1593 std::set<parser::CharBlock> unavailable; 1594 bool anyKeyword{false}; 1595 StructureConstructor result{spec}; 1596 bool checkConflicts{true}; // until we hit one 1597 auto &messages{GetContextualMessages()}; 1598 1599 for (const auto &component : 1600 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1601 const parser::Expr &expr{ 1602 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1603 parser::CharBlock source{expr.source}; 1604 auto restorer{messages.SetLocation(source)}; 1605 const Symbol *symbol{nullptr}; 1606 MaybeExpr value{Analyze(expr)}; 1607 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1608 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1609 anyKeyword = true; 1610 source = kw->v.source; 1611 symbol = kw->v.symbol; 1612 if (!symbol) { 1613 auto componentIter{std::find_if(components.begin(), components.end(), 1614 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1615 if (componentIter != components.end()) { 1616 symbol = &*componentIter; 1617 } 1618 } 1619 if (!symbol) { // C7101 1620 Say(source, 1621 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1622 source, typeName); 1623 } 1624 } else { 1625 if (anyKeyword) { // C7100 1626 Say(source, 1627 "Value in structure constructor lacks a component name"_err_en_US); 1628 checkConflicts = false; // stem cascade 1629 } 1630 // Here's a regrettably common extension of the standard: anonymous 1631 // initialization of parent components, e.g., T(PT(1)) rather than 1632 // T(1) or T(PT=PT(1)). 1633 if (nextAnonymous == components.begin() && parentComponent && 1634 valueType == DynamicType::From(*parentComponent) && 1635 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1636 auto iter{ 1637 std::find(components.begin(), components.end(), *parentComponent)}; 1638 if (iter != components.end()) { 1639 symbol = parentComponent; 1640 nextAnonymous = ++iter; 1641 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1642 Say(source, 1643 "Whole parent component '%s' in structure " 1644 "constructor should not be anonymous"_port_en_US, 1645 symbol->name()); 1646 } 1647 } 1648 } 1649 while (!symbol && nextAnonymous != components.end()) { 1650 const Symbol &next{*nextAnonymous}; 1651 ++nextAnonymous; 1652 if (!next.test(Symbol::Flag::ParentComp)) { 1653 symbol = &next; 1654 } 1655 } 1656 if (!symbol) { 1657 Say(source, "Unexpected value in structure constructor"_err_en_US); 1658 } 1659 } 1660 if (symbol) { 1661 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1662 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1663 Say(source, *msg); 1664 } 1665 } 1666 if (checkConflicts) { 1667 auto componentIter{ 1668 std::find(components.begin(), components.end(), *symbol)}; 1669 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1670 // C797, C798 1671 Say(source, 1672 "Component '%s' conflicts with another component earlier in " 1673 "this structure constructor"_err_en_US, 1674 symbol->name()); 1675 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1676 // Make earlier components unavailable once a whole parent appears. 1677 for (auto it{components.begin()}; it != componentIter; ++it) { 1678 unavailable.insert(it->name()); 1679 } 1680 } else { 1681 // Make whole parent components unavailable after any of their 1682 // constituents appear. 1683 for (auto it{componentIter}; it != components.end(); ++it) { 1684 if (it->test(Symbol::Flag::ParentComp)) { 1685 unavailable.insert(it->name()); 1686 } 1687 } 1688 } 1689 } 1690 unavailable.insert(symbol->name()); 1691 if (value) { 1692 if (symbol->has<semantics::ProcEntityDetails>()) { 1693 CHECK(IsPointer(*symbol)); 1694 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1695 // C1594(4) 1696 const auto &innermost{context_.FindScope(expr.source)}; 1697 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1698 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1699 if (const Symbol * 1700 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1701 if (auto *msg{Say(expr.source, 1702 "Externally visible object '%s' may not be " 1703 "associated with pointer component '%s' in a " 1704 "pure procedure"_err_en_US, 1705 object->name(), pointer->name())}) { 1706 msg->Attach(object->name(), "Object declaration"_en_US) 1707 .Attach(pointer->name(), "Pointer declaration"_en_US); 1708 } 1709 } 1710 } 1711 } 1712 } else if (symbol->has<semantics::TypeParamDetails>()) { 1713 Say(expr.source, 1714 "Type parameter '%s' may not appear as a component " 1715 "of a structure constructor"_err_en_US, 1716 symbol->name()); 1717 continue; 1718 } else { 1719 Say(expr.source, 1720 "Component '%s' is neither a procedure pointer " 1721 "nor a data object"_err_en_US, 1722 symbol->name()); 1723 continue; 1724 } 1725 if (IsPointer(*symbol)) { 1726 semantics::CheckPointerAssignment( 1727 GetFoldingContext(), *symbol, *value); // C7104, C7105 1728 result.Add(*symbol, Fold(std::move(*value))); 1729 } else if (MaybeExpr converted{ 1730 ConvertToType(*symbol, std::move(*value))}) { 1731 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1732 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1733 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1734 AttachDeclaration( 1735 Say(expr.source, 1736 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1737 GetRank(*valueShape), symbol->name()), 1738 *symbol); 1739 } else { 1740 auto checked{ 1741 CheckConformance(messages, *componentShape, *valueShape, 1742 CheckConformanceFlags::RightIsExpandableDeferred, 1743 "component", "value")}; 1744 if (checked && *checked && GetRank(*componentShape) > 0 && 1745 GetRank(*valueShape) == 0 && 1746 !IsExpandableScalar(*converted)) { 1747 AttachDeclaration( 1748 Say(expr.source, 1749 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1750 symbol->name()), 1751 *symbol); 1752 } 1753 if (checked.value_or(true)) { 1754 result.Add(*symbol, std::move(*converted)); 1755 } 1756 } 1757 } else { 1758 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1759 } 1760 } else { 1761 AttachDeclaration( 1762 Say(expr.source, 1763 "Shape of component '%s' cannot be determined"_err_en_US, 1764 symbol->name()), 1765 *symbol); 1766 } 1767 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1768 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE. 1769 result.Add(*symbol, Expr<SomeType>{NullPointer{}}); 1770 } else if (auto symType{DynamicType::From(symbol)}) { 1771 if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() && 1772 valueType) { 1773 // ok 1774 } else if (valueType) { 1775 AttachDeclaration( 1776 Say(expr.source, 1777 "Value in structure constructor of type '%s' is " 1778 "incompatible with component '%s' of type '%s'"_err_en_US, 1779 valueType->AsFortran(), symbol->name(), 1780 symType->AsFortran()), 1781 *symbol); 1782 } else { 1783 AttachDeclaration( 1784 Say(expr.source, 1785 "Value in structure constructor is incompatible with " 1786 "component '%s' of type %s"_err_en_US, 1787 symbol->name(), symType->AsFortran()), 1788 *symbol); 1789 } 1790 } 1791 } 1792 } 1793 } 1794 1795 // Ensure that unmentioned component objects have default initializers. 1796 for (const Symbol &symbol : components) { 1797 if (!symbol.test(Symbol::Flag::ParentComp) && 1798 unavailable.find(symbol.name()) == unavailable.cend()) { 1799 if (IsAllocatable(symbol)) { 1800 // Set all remaining allocatables to explicit NULL() 1801 result.Add(symbol, Expr<SomeType>{NullPointer{}}); 1802 } else if (const auto *details{ 1803 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1804 if (details->init()) { 1805 result.Add(symbol, common::Clone(*details->init())); 1806 } else { // C799 1807 AttachDeclaration(Say(typeName, 1808 "Structure constructor lacks a value for " 1809 "component '%s'"_err_en_US, 1810 symbol.name()), 1811 symbol); 1812 } 1813 } 1814 } 1815 } 1816 1817 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1818 } 1819 1820 static std::optional<parser::CharBlock> GetPassName( 1821 const semantics::Symbol &proc) { 1822 return common::visit( 1823 [](const auto &details) { 1824 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1825 std::decay_t<decltype(details)>>) { 1826 return details.passName(); 1827 } else { 1828 return std::optional<parser::CharBlock>{}; 1829 } 1830 }, 1831 proc.details()); 1832 } 1833 1834 static int GetPassIndex(const Symbol &proc) { 1835 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1836 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1837 const auto *interface { semantics::FindInterface(proc) }; 1838 if (!passName || !interface) { 1839 return 0; // first argument is passed-object 1840 } 1841 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1842 int index{0}; 1843 for (const auto *arg : subp.dummyArgs()) { 1844 if (arg && arg->name() == passName) { 1845 return index; 1846 } 1847 ++index; 1848 } 1849 DIE("PASS argument name not in dummy argument list"); 1850 } 1851 1852 // Injects an expression into an actual argument list as the "passed object" 1853 // for a type-bound procedure reference that is not NOPASS. Adds an 1854 // argument keyword if possible, but not when the passed object goes 1855 // before a positional argument. 1856 // e.g., obj%tbp(x) -> tbp(obj,x). 1857 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1858 const Symbol &component, bool isPassedObject = true) { 1859 if (component.attrs().test(semantics::Attr::NOPASS)) { 1860 return; 1861 } 1862 int passIndex{GetPassIndex(component)}; 1863 auto iter{actuals.begin()}; 1864 int at{0}; 1865 while (iter < actuals.end() && at < passIndex) { 1866 if (*iter && (*iter)->keyword()) { 1867 iter = actuals.end(); 1868 break; 1869 } 1870 ++iter; 1871 ++at; 1872 } 1873 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1874 passed.set_isPassedObject(isPassedObject); 1875 if (iter == actuals.end()) { 1876 if (auto passName{GetPassName(component)}) { 1877 passed.set_keyword(*passName); 1878 } 1879 } 1880 actuals.emplace(iter, std::move(passed)); 1881 } 1882 1883 // Return the compile-time resolution of a procedure binding, if possible. 1884 static const Symbol *GetBindingResolution( 1885 const std::optional<DynamicType> &baseType, const Symbol &component) { 1886 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1887 if (!binding) { 1888 return nullptr; 1889 } 1890 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1891 (!baseType || baseType->IsPolymorphic())) { 1892 return nullptr; 1893 } 1894 return &binding->symbol(); 1895 } 1896 1897 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1898 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1899 -> std::optional<CalleeAndArguments> { 1900 const parser::StructureComponent &sc{pcr.v.thing}; 1901 if (MaybeExpr base{Analyze(sc.base)}) { 1902 if (const Symbol * sym{sc.component.symbol}) { 1903 if (context_.HasError(sym)) { 1904 return std::nullopt; 1905 } 1906 if (!IsProcedure(*sym)) { 1907 AttachDeclaration( 1908 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1909 sc.component.source), 1910 *sym); 1911 return std::nullopt; 1912 } 1913 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1914 if (sym->has<semantics::GenericDetails>()) { 1915 AdjustActuals adjustment{ 1916 [&](const Symbol &proc, ActualArguments &actuals) { 1917 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1918 AddPassArg(actuals, std::move(*dtExpr), proc); 1919 } 1920 return true; 1921 }}; 1922 auto pair{ResolveGeneric(*sym, arguments, adjustment)}; 1923 sym = pair.first; 1924 if (sym) { 1925 // re-resolve the name to the specific binding 1926 sc.component.symbol = const_cast<Symbol *>(sym); 1927 } else { 1928 EmitGenericResolutionError(*sc.component.symbol, pair.second); 1929 return std::nullopt; 1930 } 1931 } 1932 if (const Symbol * 1933 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1934 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1935 return CalleeAndArguments{ 1936 ProcedureDesignator{*resolution}, std::move(arguments)}; 1937 } else if (std::optional<DataRef> dataRef{ 1938 ExtractDataRef(std::move(*dtExpr))}) { 1939 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1940 return CalleeAndArguments{ 1941 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1942 std::move(arguments)}; 1943 } else { 1944 AddPassArg(arguments, 1945 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1946 *sym); 1947 return CalleeAndArguments{ 1948 ProcedureDesignator{*sym}, std::move(arguments)}; 1949 } 1950 } 1951 } 1952 Say(sc.component.source, 1953 "Base of procedure component reference is not a derived-type object"_err_en_US); 1954 } 1955 } 1956 CHECK(context_.AnyFatalError()); 1957 return std::nullopt; 1958 } 1959 1960 // Can actual be argument associated with dummy? 1961 static bool CheckCompatibleArgument(bool isElemental, 1962 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1963 const auto *expr{actual.UnwrapExpr()}; 1964 return common::visit( 1965 common::visitors{ 1966 [&](const characteristics::DummyDataObject &x) { 1967 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 1968 IsBareNullPointer(expr)) { 1969 // NULL() without MOLD= is compatible with any dummy data pointer 1970 // but cannot be allowed to lead to ambiguity. 1971 return true; 1972 } else if (!isElemental && actual.Rank() != x.type.Rank() && 1973 !x.type.attrs().test( 1974 characteristics::TypeAndShape::Attr::AssumedRank)) { 1975 return false; 1976 } else if (auto actualType{actual.GetType()}) { 1977 return x.type.type().IsTkCompatibleWith(*actualType); 1978 } 1979 return false; 1980 }, 1981 [&](const characteristics::DummyProcedure &) { 1982 return expr && IsProcedurePointerTarget(*expr); 1983 }, 1984 [&](const characteristics::AlternateReturn &) { 1985 return actual.isAlternateReturn(); 1986 }, 1987 }, 1988 dummy.u); 1989 } 1990 1991 // Are the actual arguments compatible with the dummy arguments of procedure? 1992 static bool CheckCompatibleArguments( 1993 const characteristics::Procedure &procedure, 1994 const ActualArguments &actuals) { 1995 bool isElemental{procedure.IsElemental()}; 1996 const auto &dummies{procedure.dummyArguments}; 1997 CHECK(dummies.size() == actuals.size()); 1998 for (std::size_t i{0}; i < dummies.size(); ++i) { 1999 const characteristics::DummyArgument &dummy{dummies[i]}; 2000 const std::optional<ActualArgument> &actual{actuals[i]}; 2001 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 2002 return false; 2003 } 2004 } 2005 return true; 2006 } 2007 2008 // Handles a forward reference to a module function from what must 2009 // be a specification expression. Return false if the symbol is 2010 // an invalid forward reference. 2011 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 2012 if (context_.HasError(symbol)) { 2013 return false; 2014 } 2015 if (const auto *details{ 2016 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 2017 if (details->kind() == semantics::SubprogramKind::Module) { 2018 // If this symbol is still a SubprogramNameDetails, we must be 2019 // checking a specification expression in a sibling module 2020 // procedure. Resolve its names now so that its interface 2021 // is known. 2022 semantics::ResolveSpecificationParts(context_, symbol); 2023 if (symbol.has<semantics::SubprogramNameDetails>()) { 2024 // When the symbol hasn't had its details updated, we must have 2025 // already been in the process of resolving the function's 2026 // specification part; but recursive function calls are not 2027 // allowed in specification parts (10.1.11 para 5). 2028 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 2029 symbol.name()); 2030 context_.SetError(symbol); 2031 return false; 2032 } 2033 } else { // 10.1.11 para 4 2034 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 2035 symbol.name()); 2036 context_.SetError(symbol); 2037 return false; 2038 } 2039 } 2040 return true; 2041 } 2042 2043 // Resolve a call to a generic procedure with given actual arguments. 2044 // adjustActuals is called on procedure bindings to handle pass arg. 2045 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 2046 const Symbol &symbol, const ActualArguments &actuals, 2047 const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) { 2048 const Symbol *elemental{nullptr}; // matching elemental specific proc 2049 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2050 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 2051 bool anyBareNullActual{ 2052 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2053 return IsBareNullPointer(iter->UnwrapExpr()); 2054 }) != actuals.end()}; 2055 for (const Symbol &specific : details.specificProcs()) { 2056 if (!ResolveForward(specific)) { 2057 continue; 2058 } 2059 if (std::optional<characteristics::Procedure> procedure{ 2060 characteristics::Procedure::Characterize( 2061 ProcedureDesignator{specific}, context_.foldingContext())}) { 2062 ActualArguments localActuals{actuals}; 2063 if (specific.has<semantics::ProcBindingDetails>()) { 2064 if (!adjustActuals.value()(specific, localActuals)) { 2065 continue; 2066 } 2067 } 2068 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, 2069 GetFoldingContext(), false /* no integer conversions */) && 2070 CheckCompatibleArguments(*procedure, localActuals)) { 2071 if ((procedure->IsElemental() && elemental) || 2072 (!procedure->IsElemental() && nonElemental)) { 2073 // 16.9.144(6): a bare NULL() is not allowed as an actual 2074 // argument to a generic procedure if the specific procedure 2075 // cannot be unambiguously distinguished 2076 return {nullptr, true /* due to NULL actuals */}; 2077 } 2078 if (!procedure->IsElemental()) { 2079 // takes priority over elemental match 2080 nonElemental = &specific; 2081 if (!anyBareNullActual) { 2082 break; // unambiguous case 2083 } 2084 } else { 2085 elemental = &specific; 2086 } 2087 } 2088 } 2089 } 2090 if (nonElemental) { 2091 return {&AccessSpecific(symbol, *nonElemental), false}; 2092 } else if (elemental) { 2093 return {&AccessSpecific(symbol, *elemental), false}; 2094 } 2095 // Check parent derived type 2096 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2097 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2098 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 2099 auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)}; 2100 if (pair.first) { 2101 return pair; 2102 } 2103 } 2104 } 2105 } 2106 if (mightBeStructureConstructor && details.derivedType()) { 2107 return {details.derivedType(), false}; 2108 } 2109 return {nullptr, false}; 2110 } 2111 2112 const Symbol &ExpressionAnalyzer::AccessSpecific( 2113 const Symbol &originalGeneric, const Symbol &specific) { 2114 if (const auto *hosted{ 2115 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2116 return AccessSpecific(hosted->symbol(), specific); 2117 } else if (const auto *used{ 2118 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2119 const auto &scope{originalGeneric.owner()}; 2120 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2121 if (const auto *useDetails{ 2122 iter->second->detailsIf<semantics::UseDetails>()}) { 2123 const Symbol &usedSymbol{useDetails->symbol()}; 2124 const auto *usedGeneric{ 2125 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2126 if (&usedSymbol == &specific || 2127 (usedGeneric && usedGeneric->specific() == &specific)) { 2128 return specific; 2129 } 2130 } 2131 } 2132 // Create a renaming USE of the specific procedure. 2133 auto rename{context_.SaveTempName( 2134 used->symbol().owner().GetName().value().ToString() + "$" + 2135 specific.name().ToString())}; 2136 return *const_cast<semantics::Scope &>(scope) 2137 .try_emplace(rename, specific.attrs(), 2138 semantics::UseDetails{rename, specific}) 2139 .first->second; 2140 } else { 2141 return specific; 2142 } 2143 } 2144 2145 void ExpressionAnalyzer::EmitGenericResolutionError( 2146 const Symbol &symbol, bool dueToNullActuals) { 2147 Say(dueToNullActuals 2148 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2149 : semantics::IsGenericDefinedOp(symbol) 2150 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2151 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2152 symbol.name()); 2153 } 2154 2155 auto ExpressionAnalyzer::GetCalleeAndArguments( 2156 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2157 bool isSubroutine, bool mightBeStructureConstructor) 2158 -> std::optional<CalleeAndArguments> { 2159 return common::visit( 2160 common::visitors{ 2161 [&](const parser::Name &name) { 2162 return GetCalleeAndArguments(name, std::move(arguments), 2163 isSubroutine, mightBeStructureConstructor); 2164 }, 2165 [&](const parser::ProcComponentRef &pcr) { 2166 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2167 }, 2168 }, 2169 pd.u); 2170 } 2171 2172 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2173 ActualArguments &&arguments, bool isSubroutine, 2174 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2175 const Symbol *symbol{name.symbol}; 2176 if (context_.HasError(symbol)) { 2177 return std::nullopt; // also handles null symbol 2178 } 2179 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2180 CheckForBadRecursion(name.source, ultimate); 2181 bool dueToNullActual{false}; 2182 bool isGenericInterface{ultimate.has<semantics::GenericDetails>()}; 2183 const Symbol *resolution{nullptr}; 2184 if (isGenericInterface) { 2185 ExpressionAnalyzer::AdjustActuals noAdjustment; 2186 auto pair{ResolveGeneric( 2187 *symbol, arguments, noAdjustment, mightBeStructureConstructor)}; 2188 resolution = pair.first; 2189 dueToNullActual = pair.second; 2190 if (resolution) { 2191 // re-resolve name to the specific procedure 2192 name.symbol = const_cast<Symbol *>(resolution); 2193 } 2194 } 2195 if (!resolution) { 2196 // Not generic, or no resolution; may be intrinsic 2197 bool isIntrinsic{symbol->attrs().test(semantics::Attr::INTRINSIC)}; 2198 if (!isIntrinsic && !isGenericInterface) { 2199 resolution = symbol; 2200 } else if (std::optional<SpecificCall> specificCall{ 2201 context_.intrinsics().Probe( 2202 CallCharacteristics{ 2203 ultimate.name().ToString(), isSubroutine}, 2204 arguments, GetFoldingContext())}) { 2205 CheckBadExplicitType(*specificCall, *symbol); 2206 return CalleeAndArguments{ 2207 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2208 std::move(specificCall->arguments)}; 2209 } else { 2210 if (isGenericInterface) { 2211 EmitGenericResolutionError(*symbol, dueToNullActual); 2212 } 2213 return std::nullopt; 2214 } 2215 } 2216 if (resolution->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2217 if (mightBeStructureConstructor) { 2218 return CalleeAndArguments{ 2219 semantics::SymbolRef{*resolution}, std::move(arguments)}; 2220 } 2221 } else if (IsProcedure(*resolution)) { 2222 return CalleeAndArguments{ 2223 ProcedureDesignator{*resolution}, std::move(arguments)}; 2224 } 2225 if (!context_.HasError(*resolution)) { 2226 AttachDeclaration( 2227 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2228 name.source), 2229 *resolution); 2230 } 2231 return std::nullopt; 2232 } 2233 2234 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2235 // generic intrinsic function "has no effect" on the result type of a 2236 // call to that intrinsic. So one can declare "character*8 cos" and 2237 // still get a real result from "cos(1.)". This is a dangerous feature, 2238 // especially since implementations are free to extend their sets of 2239 // intrinsics, and in doing so might clash with a name in a program. 2240 // So we emit a warning in this situation, and perhaps it should be an 2241 // error -- any correctly working program can silence the message by 2242 // simply deleting the pointless type declaration. 2243 void ExpressionAnalyzer::CheckBadExplicitType( 2244 const SpecificCall &call, const Symbol &intrinsic) { 2245 if (intrinsic.GetUltimate().GetType()) { 2246 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2247 if (const auto &result{procedure.functionResult}) { 2248 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2249 if (auto declared{ 2250 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2251 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2252 if (auto *msg{Say( 2253 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_warn_en_US, 2254 typeAndShape->AsFortran(), intrinsic.name(), 2255 declared->AsFortran())}) { 2256 msg->Attach(intrinsic.name(), 2257 "Ignored declaration of intrinsic function '%s'"_en_US, 2258 intrinsic.name()); 2259 } 2260 } 2261 } 2262 } 2263 } 2264 } 2265 } 2266 2267 void ExpressionAnalyzer::CheckForBadRecursion( 2268 parser::CharBlock callSite, const semantics::Symbol &proc) { 2269 if (const auto *scope{proc.scope()}) { 2270 if (scope->sourceRange().Contains(callSite)) { 2271 parser::Message *msg{nullptr}; 2272 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2273 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2274 callSite); 2275 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2276 // TODO: Also catch assumed PDT type parameters 2277 msg = Say( // 15.6.2.1(3) 2278 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2279 callSite); 2280 } 2281 AttachDeclaration(msg, proc); 2282 } 2283 } 2284 } 2285 2286 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2287 if (const auto *designator{ 2288 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2289 if (const auto *dataRef{ 2290 std::get_if<parser::DataRef>(&designator->value().u)}) { 2291 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2292 return AssumedTypeDummy(*name); 2293 } 2294 } 2295 } 2296 return nullptr; 2297 } 2298 template <> 2299 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2300 if (const Symbol * symbol{name.symbol}) { 2301 if (const auto *type{symbol->GetType()}) { 2302 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2303 return symbol; 2304 } 2305 } 2306 } 2307 return nullptr; 2308 } 2309 template <typename A> 2310 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2311 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2312 // point it is is not guaranteed that it has been checked the object has 2313 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2314 // returned. 2315 return common::visit( 2316 common::visitors{ 2317 [&](const parser::StructureComponent &x) { 2318 return AssumedTypeDummy(x.component); 2319 }, 2320 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2321 }, 2322 object.u); 2323 } 2324 template <> 2325 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2326 const parser::AllocateObject &x) { 2327 return AssumedTypePointerOrAllocatableDummy(x); 2328 } 2329 template <> 2330 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2331 const parser::PointerObject &x) { 2332 return AssumedTypePointerOrAllocatableDummy(x); 2333 } 2334 2335 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2336 const semantics::DerivedTypeSpec &dtSpec) { 2337 if (dtSpec.IsForwardReferenced()) { 2338 Say("Cannot construct value for derived type '%s' " 2339 "before it is defined"_err_en_US, 2340 dtSpec.name()); 2341 return false; 2342 } 2343 return true; 2344 } 2345 2346 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2347 std::optional<parser::StructureConstructor> *structureConstructor) { 2348 const parser::Call &call{funcRef.v}; 2349 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2350 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2351 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2352 analyzer.Analyze(arg, false /* not subroutine call */); 2353 } 2354 if (analyzer.fatalErrors()) { 2355 return std::nullopt; 2356 } 2357 if (std::optional<CalleeAndArguments> callee{ 2358 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2359 analyzer.GetActuals(), false /* not subroutine */, 2360 true /* might be structure constructor */)}) { 2361 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2362 return MakeFunctionRef( 2363 call.source, std::move(*proc), std::move(callee->arguments)); 2364 } 2365 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2366 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2367 if (structureConstructor) { 2368 // Structure constructor misparsed as function reference? 2369 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2370 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2371 semantics::Scope &scope{context_.FindScope(name->source)}; 2372 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2373 if (!CheckIsValidForwardReference(dtSpec)) { 2374 return std::nullopt; 2375 } 2376 const semantics::DeclTypeSpec &type{ 2377 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2378 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2379 *structureConstructor = 2380 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2381 return Analyze(structureConstructor->value()); 2382 } 2383 } 2384 if (!context_.HasError(symbol)) { 2385 AttachDeclaration( 2386 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2387 symbol.name()), 2388 symbol); 2389 context_.SetError(symbol); 2390 } 2391 } 2392 return std::nullopt; 2393 } 2394 2395 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2396 for (const auto &arg : args) { 2397 if (arg && arg->isAlternateReturn()) { 2398 return true; 2399 } 2400 } 2401 return false; 2402 } 2403 2404 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2405 const parser::Call &call{callStmt.v}; 2406 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2407 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2408 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2409 for (const auto &arg : actualArgList) { 2410 analyzer.Analyze(arg, true /* is subroutine call */); 2411 } 2412 if (!analyzer.fatalErrors()) { 2413 if (std::optional<CalleeAndArguments> callee{ 2414 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2415 analyzer.GetActuals(), true /* subroutine */)}) { 2416 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2417 CHECK(proc); 2418 if (CheckCall(call.source, *proc, callee->arguments)) { 2419 callStmt.typedCall.Reset( 2420 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2421 HasAlternateReturns(callee->arguments)}, 2422 ProcedureRef::Deleter); 2423 return; 2424 } 2425 } 2426 if (!context_.AnyFatalError()) { 2427 std::string buf; 2428 llvm::raw_string_ostream dump{buf}; 2429 parser::DumpTree(dump, callStmt); 2430 Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US, 2431 dump.str()); 2432 } 2433 } 2434 } 2435 2436 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2437 if (!x.typedAssignment) { 2438 ArgumentAnalyzer analyzer{*this}; 2439 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2440 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2441 std::optional<Assignment> assignment; 2442 if (!analyzer.fatalErrors()) { 2443 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2444 if (!procRef) { 2445 analyzer.CheckForNullPointer( 2446 "in a non-pointer intrinsic assignment statement"); 2447 } 2448 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2449 if (procRef) { 2450 assignment->u = std::move(*procRef); 2451 } 2452 } 2453 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2454 GenericAssignmentWrapper::Deleter); 2455 } 2456 return common::GetPtrFromOptional(x.typedAssignment->v); 2457 } 2458 2459 const Assignment *ExpressionAnalyzer::Analyze( 2460 const parser::PointerAssignmentStmt &x) { 2461 if (!x.typedAssignment) { 2462 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2463 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2464 if (!lhs || !rhs) { 2465 x.typedAssignment.Reset( 2466 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2467 } else { 2468 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2469 common::visit( 2470 common::visitors{ 2471 [&](const std::list<parser::BoundsRemapping> &list) { 2472 Assignment::BoundsRemapping bounds; 2473 for (const auto &elem : list) { 2474 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2475 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2476 if (lower && upper) { 2477 bounds.emplace_back( 2478 Fold(std::move(*lower)), Fold(std::move(*upper))); 2479 } 2480 } 2481 assignment.u = std::move(bounds); 2482 }, 2483 [&](const std::list<parser::BoundsSpec> &list) { 2484 Assignment::BoundsSpec bounds; 2485 for (const auto &bound : list) { 2486 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2487 bounds.emplace_back(Fold(std::move(*lower))); 2488 } 2489 } 2490 assignment.u = std::move(bounds); 2491 }, 2492 }, 2493 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2494 x.typedAssignment.Reset( 2495 new GenericAssignmentWrapper{std::move(assignment)}, 2496 GenericAssignmentWrapper::Deleter); 2497 } 2498 } 2499 return common::GetPtrFromOptional(x.typedAssignment->v); 2500 } 2501 2502 static bool IsExternalCalledImplicitly( 2503 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2504 if (const auto *symbol{proc.GetSymbol()}) { 2505 return symbol->has<semantics::SubprogramDetails>() && 2506 symbol->owner().IsGlobal() && 2507 (!symbol->scope() /*ENTRY*/ || 2508 !symbol->scope()->sourceRange().Contains(callSite)); 2509 } else { 2510 return false; 2511 } 2512 } 2513 2514 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2515 parser::CharBlock callSite, const ProcedureDesignator &proc, 2516 ActualArguments &arguments) { 2517 auto chars{characteristics::Procedure::Characterize( 2518 proc, context_.foldingContext())}; 2519 if (chars) { 2520 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2521 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2522 Say(callSite, 2523 "References to the procedure '%s' require an explicit interface"_err_en_US, 2524 DEREF(proc.GetSymbol()).name()); 2525 } 2526 // Checks for ASSOCIATED() are done in intrinsic table processing 2527 const SpecificIntrinsic *specificIntrinsic{proc.GetSpecificIntrinsic()}; 2528 bool procIsAssociated{ 2529 specificIntrinsic && specificIntrinsic->name == "associated"}; 2530 if (!procIsAssociated) { 2531 const Symbol *procSymbol{proc.GetSymbol()}; 2532 bool procIsDummy{procSymbol && IsDummy(*procSymbol)}; 2533 if (chars->functionResult && 2534 chars->functionResult->IsAssumedLengthCharacter() && 2535 !specificIntrinsic && !procIsDummy) { 2536 Say(callSite, 2537 "Assumed-length character function must be defined with a length to be called"_err_en_US); 2538 } 2539 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2540 context_.FindScope(callSite), treatExternalAsImplicit, 2541 specificIntrinsic); 2542 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2543 if (const semantics::Scope * 2544 pure{semantics::FindPureProcedureContaining( 2545 context_.FindScope(callSite))}) { 2546 Say(callSite, 2547 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2548 procSymbol->name(), DEREF(pure->symbol()).name()); 2549 } 2550 } 2551 } 2552 } 2553 return chars; 2554 } 2555 2556 // Unary operations 2557 2558 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2559 if (MaybeExpr operand{Analyze(x.v.value())}) { 2560 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2561 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2562 if (semantics::IsProcedurePointer(*result)) { 2563 Say("A function reference that returns a procedure " 2564 "pointer may not be parenthesized"_err_en_US); // C1003 2565 } 2566 } 2567 } 2568 return Parenthesize(std::move(*operand)); 2569 } 2570 return std::nullopt; 2571 } 2572 2573 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2574 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2575 ArgumentAnalyzer analyzer{context}; 2576 analyzer.Analyze(x.v); 2577 if (!analyzer.fatalErrors()) { 2578 if (analyzer.IsIntrinsicNumeric(opr)) { 2579 analyzer.CheckForNullPointer(); 2580 if (opr == NumericOperator::Add) { 2581 return analyzer.MoveExpr(0); 2582 } else { 2583 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2584 } 2585 } else { 2586 return analyzer.TryDefinedOp(AsFortran(opr), 2587 "Operand of unary %s must be numeric; have %s"_err_en_US); 2588 } 2589 } 2590 return std::nullopt; 2591 } 2592 2593 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2594 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2595 } 2596 2597 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2598 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2599 } 2600 2601 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2602 ArgumentAnalyzer analyzer{*this}; 2603 analyzer.Analyze(x.v); 2604 if (!analyzer.fatalErrors()) { 2605 if (analyzer.IsIntrinsicLogical()) { 2606 analyzer.CheckForNullPointer(); 2607 return AsGenericExpr( 2608 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2609 } else { 2610 return analyzer.TryDefinedOp(LogicalOperator::Not, 2611 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2612 } 2613 } 2614 return std::nullopt; 2615 } 2616 2617 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2618 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2619 // intrinsic function. 2620 // Use the actual source for the name of the call for error reporting. 2621 std::optional<ActualArgument> arg; 2622 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2623 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2624 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2625 arg = ActualArgument{std::move(*argExpr)}; 2626 } else { 2627 return std::nullopt; 2628 } 2629 parser::CharBlock at{GetContextualMessages().at()}; 2630 CHECK(at.size() >= 4); 2631 parser::CharBlock loc{at.begin() + 1, 3}; 2632 CHECK(loc == "loc"); 2633 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2634 } 2635 2636 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2637 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2638 ArgumentAnalyzer analyzer{*this, name.source}; 2639 analyzer.Analyze(std::get<1>(x.t)); 2640 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2641 "No operator %s defined for %s"_err_en_US, nullptr, true); 2642 } 2643 2644 // Binary (dyadic) operations 2645 2646 template <template <typename> class OPR> 2647 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2648 const parser::Expr::IntrinsicBinary &x) { 2649 ArgumentAnalyzer analyzer{context}; 2650 analyzer.Analyze(std::get<0>(x.t)); 2651 analyzer.Analyze(std::get<1>(x.t)); 2652 if (!analyzer.fatalErrors()) { 2653 if (analyzer.IsIntrinsicNumeric(opr)) { 2654 analyzer.CheckForNullPointer(); 2655 analyzer.CheckConformance(); 2656 return NumericOperation<OPR>(context.GetContextualMessages(), 2657 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2658 context.GetDefaultKind(TypeCategory::Real)); 2659 } else { 2660 return analyzer.TryDefinedOp(AsFortran(opr), 2661 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2662 } 2663 } 2664 return std::nullopt; 2665 } 2666 2667 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2668 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2669 } 2670 2671 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2672 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2673 } 2674 2675 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2676 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2677 } 2678 2679 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2680 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2681 } 2682 2683 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2684 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2685 } 2686 2687 MaybeExpr ExpressionAnalyzer::Analyze( 2688 const parser::Expr::ComplexConstructor &x) { 2689 auto re{Analyze(std::get<0>(x.t).value())}; 2690 auto im{Analyze(std::get<1>(x.t).value())}; 2691 if (re && im) { 2692 ConformabilityCheck(GetContextualMessages(), *re, *im); 2693 } 2694 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2695 std::move(im), GetDefaultKind(TypeCategory::Real))); 2696 } 2697 2698 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2699 ArgumentAnalyzer analyzer{*this}; 2700 analyzer.Analyze(std::get<0>(x.t)); 2701 analyzer.Analyze(std::get<1>(x.t)); 2702 if (!analyzer.fatalErrors()) { 2703 if (analyzer.IsIntrinsicConcat()) { 2704 analyzer.CheckForNullPointer(); 2705 return common::visit( 2706 [&](auto &&x, auto &&y) -> MaybeExpr { 2707 using T = ResultType<decltype(x)>; 2708 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2709 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2710 } else { 2711 DIE("different types for intrinsic concat"); 2712 } 2713 }, 2714 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2715 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2716 } else { 2717 return analyzer.TryDefinedOp("//", 2718 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2719 } 2720 } 2721 return std::nullopt; 2722 } 2723 2724 // The Name represents a user-defined intrinsic operator. 2725 // If the actuals match one of the specific procedures, return a function ref. 2726 // Otherwise report the error in messages. 2727 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2728 const parser::Name &name, ActualArguments &&actuals) { 2729 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2730 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2731 return MakeFunctionRef(name.source, 2732 std::move(std::get<ProcedureDesignator>(callee->u)), 2733 std::move(callee->arguments)); 2734 } else { 2735 return std::nullopt; 2736 } 2737 } 2738 2739 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2740 const parser::Expr::IntrinsicBinary &x) { 2741 ArgumentAnalyzer analyzer{context}; 2742 analyzer.Analyze(std::get<0>(x.t)); 2743 analyzer.Analyze(std::get<1>(x.t)); 2744 if (!analyzer.fatalErrors()) { 2745 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2746 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2747 analyzer.ConvertBOZ(leftType, 0, rightType); 2748 analyzer.ConvertBOZ(rightType, 1, leftType); 2749 if (leftType && rightType && 2750 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2751 analyzer.CheckForNullPointer("as a relational operand"); 2752 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2753 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2754 } else { 2755 return analyzer.TryDefinedOp(opr, 2756 leftType && leftType->category() == TypeCategory::Logical && 2757 rightType && rightType->category() == TypeCategory::Logical 2758 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2759 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2760 } 2761 } 2762 return std::nullopt; 2763 } 2764 2765 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2766 return RelationHelper(*this, RelationalOperator::LT, x); 2767 } 2768 2769 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2770 return RelationHelper(*this, RelationalOperator::LE, x); 2771 } 2772 2773 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2774 return RelationHelper(*this, RelationalOperator::EQ, x); 2775 } 2776 2777 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2778 return RelationHelper(*this, RelationalOperator::NE, x); 2779 } 2780 2781 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2782 return RelationHelper(*this, RelationalOperator::GE, x); 2783 } 2784 2785 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2786 return RelationHelper(*this, RelationalOperator::GT, x); 2787 } 2788 2789 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2790 const parser::Expr::IntrinsicBinary &x) { 2791 ArgumentAnalyzer analyzer{context}; 2792 analyzer.Analyze(std::get<0>(x.t)); 2793 analyzer.Analyze(std::get<1>(x.t)); 2794 if (!analyzer.fatalErrors()) { 2795 if (analyzer.IsIntrinsicLogical()) { 2796 analyzer.CheckForNullPointer("as a logical operand"); 2797 return AsGenericExpr(BinaryLogicalOperation(opr, 2798 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2799 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2800 } else { 2801 return analyzer.TryDefinedOp( 2802 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2803 } 2804 } 2805 return std::nullopt; 2806 } 2807 2808 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2809 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2810 } 2811 2812 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2813 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2814 } 2815 2816 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2817 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2818 } 2819 2820 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2821 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2822 } 2823 2824 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2825 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2826 ArgumentAnalyzer analyzer{*this, name.source}; 2827 analyzer.Analyze(std::get<1>(x.t)); 2828 analyzer.Analyze(std::get<2>(x.t)); 2829 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2830 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2831 } 2832 2833 // Returns true if a parsed function reference should be converted 2834 // into an array element reference. 2835 static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context, 2836 const parser::FunctionReference &funcRef) { 2837 // Emit message if the function reference fix will end up an array element 2838 // reference with no subscripts, or subscripts on a scalar, because it will 2839 // not be possible to later distinguish in expressions between an empty 2840 // subscript list due to bad subscripts error recovery or because the 2841 // user did not put any. 2842 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2843 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2844 if (!name) { 2845 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2846 } 2847 if (!name->symbol) { 2848 return false; 2849 } else if (name->symbol->Rank() == 0) { 2850 if (const Symbol * 2851 function{ 2852 semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) { 2853 auto &msg{context.Say(funcRef.v.source, 2854 "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US, 2855 name->source)}; 2856 AttachDeclaration(&msg, *function); 2857 name->symbol = const_cast<Symbol *>(function); 2858 } 2859 return false; 2860 } else { 2861 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2862 auto &msg{context.Say(funcRef.v.source, 2863 "Reference to array '%s' with empty subscript list"_err_en_US, 2864 name->source)}; 2865 if (name->symbol) { 2866 AttachDeclaration(&msg, *name->symbol); 2867 } 2868 } 2869 return true; 2870 } 2871 } 2872 2873 // Converts, if appropriate, an original misparse of ambiguous syntax like 2874 // A(1) as a function reference into an array reference. 2875 // Misparsed structure constructors are detected elsewhere after generic 2876 // function call resolution fails. 2877 template <typename... A> 2878 static void FixMisparsedFunctionReference( 2879 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2880 // The parse tree is updated in situ when resolving an ambiguous parse. 2881 using uType = std::decay_t<decltype(constU)>; 2882 auto &u{const_cast<uType &>(constU)}; 2883 if (auto *func{ 2884 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2885 parser::FunctionReference &funcRef{func->value()}; 2886 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2887 if (Symbol * 2888 origSymbol{ 2889 common::visit(common::visitors{ 2890 [&](parser::Name &name) { return name.symbol; }, 2891 [&](parser::ProcComponentRef &pcr) { 2892 return pcr.v.thing.component.symbol; 2893 }, 2894 }, 2895 proc.u)}) { 2896 Symbol &symbol{origSymbol->GetUltimate()}; 2897 if (symbol.has<semantics::ObjectEntityDetails>() || 2898 symbol.has<semantics::AssocEntityDetails>()) { 2899 // Note that expression in AssocEntityDetails cannot be a procedure 2900 // pointer as per C1105 so this cannot be a function reference. 2901 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2902 uType>) { 2903 if (CheckFuncRefToArrayElement(context, funcRef)) { 2904 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2905 } 2906 } else { 2907 DIE("can't fix misparsed function as array reference"); 2908 } 2909 } 2910 } 2911 } 2912 } 2913 2914 // Common handling of parse tree node types that retain the 2915 // representation of the analyzed expression. 2916 template <typename PARSED> 2917 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2918 const PARSED &x, parser::CharBlock source) { 2919 if (useSavedTypedExprs_ && x.typedExpr) { 2920 return x.typedExpr->v; 2921 } 2922 auto restorer{GetContextualMessages().SetLocation(source)}; 2923 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2924 std::is_same_v<PARSED, parser::Variable>) { 2925 FixMisparsedFunctionReference(context_, x.u); 2926 } 2927 if (AssumedTypeDummy(x)) { // C710 2928 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2929 ResetExpr(x); 2930 return std::nullopt; 2931 } 2932 MaybeExpr result; 2933 if constexpr (common::HasMember<parser::StructureConstructor, 2934 std::decay_t<decltype(x.u)>> && 2935 common::HasMember<common::Indirection<parser::FunctionReference>, 2936 std::decay_t<decltype(x.u)>>) { 2937 if (const auto *funcRef{ 2938 std::get_if<common::Indirection<parser::FunctionReference>>( 2939 &x.u)}) { 2940 // Function references in Exprs might turn out to be misparsed structure 2941 // constructors; we have to try generic procedure resolution 2942 // first to be sure. 2943 std::optional<parser::StructureConstructor> ctor; 2944 result = Analyze(funcRef->value(), &ctor); 2945 if (result && ctor) { 2946 // A misparsed function reference is really a structure 2947 // constructor. Repair the parse tree in situ. 2948 const_cast<PARSED &>(x).u = std::move(*ctor); 2949 } 2950 } else { 2951 result = Analyze(x.u); 2952 } 2953 } else { 2954 result = Analyze(x.u); 2955 } 2956 if (result) { 2957 SetExpr(x, Fold(std::move(*result))); 2958 return x.typedExpr->v; 2959 } else { 2960 ResetExpr(x); 2961 if (!context_.AnyFatalError()) { 2962 std::string buf; 2963 llvm::raw_string_ostream dump{buf}; 2964 parser::DumpTree(dump, x); 2965 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2966 dump.str()); 2967 } 2968 return std::nullopt; 2969 } 2970 } 2971 2972 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2973 return ExprOrVariable(expr, expr.source); 2974 } 2975 2976 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2977 return ExprOrVariable(variable, variable.GetSource()); 2978 } 2979 2980 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 2981 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 2982 if (!useSavedTypedExprs_ || !var->typedExpr) { 2983 parser::CharBlock source{var->GetSource()}; 2984 auto restorer{GetContextualMessages().SetLocation(source)}; 2985 FixMisparsedFunctionReference(context_, var->u); 2986 if (const auto *funcRef{ 2987 std::get_if<common::Indirection<parser::FunctionReference>>( 2988 &var->u)}) { 2989 // A Selector that parsed as a Variable might turn out during analysis 2990 // to actually be a structure constructor. In that case, repair the 2991 // Variable parse tree node into an Expr 2992 std::optional<parser::StructureConstructor> ctor; 2993 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 2994 if (ctor) { 2995 auto &writable{const_cast<parser::Selector &>(selector)}; 2996 writable.u = parser::Expr{std::move(*ctor)}; 2997 auto &expr{std::get<parser::Expr>(writable.u)}; 2998 expr.source = source; 2999 SetExpr(expr, Fold(std::move(*result))); 3000 return expr.typedExpr->v; 3001 } else { 3002 SetExpr(*var, Fold(std::move(*result))); 3003 return var->typedExpr->v; 3004 } 3005 } else { 3006 ResetExpr(*var); 3007 if (context_.AnyFatalError()) { 3008 return std::nullopt; 3009 } 3010 } 3011 } 3012 } 3013 } 3014 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 3015 return Analyze(selector.u); 3016 } 3017 3018 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 3019 auto restorer{common::ScopedSet(inDataStmtConstant_, true)}; 3020 return ExprOrVariable(x, x.source); 3021 } 3022 3023 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 3024 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3025 } 3026 3027 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 3028 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3029 } 3030 3031 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 3032 TypeCategory category, 3033 const std::optional<parser::KindSelector> &selector) { 3034 int defaultKind{GetDefaultKind(category)}; 3035 if (!selector) { 3036 return Expr<SubscriptInteger>{defaultKind}; 3037 } 3038 return common::visit( 3039 common::visitors{ 3040 [&](const parser::ScalarIntConstantExpr &x) { 3041 if (MaybeExpr kind{Analyze(x)}) { 3042 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 3043 if (CheckIntrinsicKind(category, *code)) { 3044 return Expr<SubscriptInteger>{*code}; 3045 } 3046 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 3047 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 3048 } 3049 } 3050 return Expr<SubscriptInteger>{defaultKind}; 3051 }, 3052 [&](const parser::KindSelector::StarSize &x) { 3053 std::intmax_t size = x.v; 3054 if (!CheckIntrinsicSize(category, size)) { 3055 size = defaultKind; 3056 } else if (category == TypeCategory::Complex) { 3057 size /= 2; 3058 } 3059 return Expr<SubscriptInteger>{size}; 3060 }, 3061 }, 3062 selector->u); 3063 } 3064 3065 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 3066 return context_.GetDefaultKind(category); 3067 } 3068 3069 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 3070 common::TypeCategory category) { 3071 return {category, GetDefaultKind(category)}; 3072 } 3073 3074 bool ExpressionAnalyzer::CheckIntrinsicKind( 3075 TypeCategory category, std::int64_t kind) { 3076 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 3077 return true; 3078 } else { 3079 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3080 ToUpperCase(EnumToString(category)), kind); 3081 return false; 3082 } 3083 } 3084 3085 bool ExpressionAnalyzer::CheckIntrinsicSize( 3086 TypeCategory category, std::int64_t size) { 3087 if (category == TypeCategory::Complex) { 3088 // COMPLEX*16 == COMPLEX(KIND=8) 3089 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 3090 return true; 3091 } 3092 } else if (IsValidKindOfIntrinsicType(category, size)) { 3093 return true; 3094 } 3095 Say("%s*%jd is not a supported type"_err_en_US, 3096 ToUpperCase(EnumToString(category)), size); 3097 return false; 3098 } 3099 3100 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3101 return impliedDos_.insert(std::make_pair(name, kind)).second; 3102 } 3103 3104 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3105 auto iter{impliedDos_.find(name)}; 3106 if (iter != impliedDos_.end()) { 3107 impliedDos_.erase(iter); 3108 } 3109 } 3110 3111 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3112 parser::CharBlock name) const { 3113 auto iter{impliedDos_.find(name)}; 3114 if (iter != impliedDos_.cend()) { 3115 return {iter->second}; 3116 } else { 3117 return std::nullopt; 3118 } 3119 } 3120 3121 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3122 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3123 if (result) { 3124 if (auto type{result->GetType()}) { 3125 if (type->category() != category) { // C885 3126 Say(at, "Must have %s type, but is %s"_err_en_US, 3127 ToUpperCase(EnumToString(category)), 3128 ToUpperCase(type->AsFortran())); 3129 return false; 3130 } else if (defaultKind) { 3131 int kind{context_.GetDefaultKind(category)}; 3132 if (type->kind() != kind) { 3133 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3134 kind, ToUpperCase(EnumToString(category)), 3135 ToUpperCase(type->AsFortran())); 3136 return false; 3137 } 3138 } 3139 } else { 3140 Say(at, "Must have %s type, but is typeless"_err_en_US, 3141 ToUpperCase(EnumToString(category))); 3142 return false; 3143 } 3144 } 3145 return true; 3146 } 3147 3148 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3149 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3150 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3151 if (intrinsic->characteristics.value().attrs.test( 3152 characteristics::Procedure::Attr::NullPointer) && 3153 arguments.empty()) { 3154 return Expr<SomeType>{NullPointer{}}; 3155 } 3156 } 3157 if (const Symbol * symbol{proc.GetSymbol()}) { 3158 if (!ResolveForward(*symbol)) { 3159 return std::nullopt; 3160 } 3161 } 3162 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3163 if (chars->functionResult) { 3164 const auto &result{*chars->functionResult}; 3165 if (result.IsProcedurePointer()) { 3166 return Expr<SomeType>{ 3167 ProcedureRef{std::move(proc), std::move(arguments)}}; 3168 } else { 3169 // Not a procedure pointer, so type and shape are known. 3170 return TypedWrapper<FunctionRef, ProcedureRef>( 3171 DEREF(result.GetTypeAndShape()).type(), 3172 ProcedureRef{std::move(proc), std::move(arguments)}); 3173 } 3174 } else { 3175 Say("Function result characteristics are not known"_err_en_US); 3176 } 3177 } 3178 return std::nullopt; 3179 } 3180 3181 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3182 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3183 if (std::optional<SpecificCall> specificCall{ 3184 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3185 arguments, GetFoldingContext())}) { 3186 return MakeFunctionRef(intrinsic, 3187 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3188 std::move(specificCall->arguments)); 3189 } else { 3190 return std::nullopt; 3191 } 3192 } 3193 3194 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3195 source_.ExtendToCover(x.GetSource()); 3196 if (MaybeExpr expr{context_.Analyze(x)}) { 3197 if (!IsConstantExpr(*expr)) { 3198 actuals_.emplace_back(std::move(*expr)); 3199 SetArgSourceLocation(actuals_.back(), x.GetSource()); 3200 return; 3201 } 3202 const Symbol *symbol{GetLastSymbol(*expr)}; 3203 if (!symbol) { 3204 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3205 x.GetSource()); 3206 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3207 auto *msg{context_.SayAt(x, 3208 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3209 symbol->name())}; 3210 if (subp->isFunction()) { 3211 const auto &result{subp->result().name()}; 3212 msg->Attach(result, "Function result is '%s'"_en_US, result); 3213 } 3214 } else { 3215 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3216 symbol->name()); 3217 } 3218 } 3219 fatalErrors_ = true; 3220 } 3221 3222 void ArgumentAnalyzer::Analyze( 3223 const parser::ActualArgSpec &arg, bool isSubroutine) { 3224 // TODO: Actual arguments that are procedures and procedure pointers need to 3225 // be detected and represented (they're not expressions). 3226 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3227 std::optional<ActualArgument> actual; 3228 common::visit( 3229 common::visitors{ 3230 [&](const common::Indirection<parser::Expr> &x) { 3231 actual = AnalyzeExpr(x.value()); 3232 SetArgSourceLocation(actual, x.value().source); 3233 }, 3234 [&](const parser::AltReturnSpec &label) { 3235 if (!isSubroutine) { 3236 context_.Say("alternate return specification may not appear on" 3237 " function reference"_err_en_US); 3238 } 3239 actual = ActualArgument(label.v); 3240 }, 3241 [&](const parser::ActualArg::PercentRef &) { 3242 context_.Say("%REF() intrinsic for arguments"_todo_en_US); 3243 }, 3244 [&](const parser::ActualArg::PercentVal &) { 3245 context_.Say("%VAL() intrinsic for arguments"_todo_en_US); 3246 }, 3247 }, 3248 std::get<parser::ActualArg>(arg.t).u); 3249 if (actual) { 3250 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3251 actual->set_keyword(argKW->v.source); 3252 } 3253 actuals_.emplace_back(std::move(*actual)); 3254 } else { 3255 fatalErrors_ = true; 3256 } 3257 } 3258 3259 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3260 const DynamicType &leftType, const DynamicType &rightType) const { 3261 CHECK(actuals_.size() == 2); 3262 return semantics::IsIntrinsicRelational( 3263 opr, leftType, GetRank(0), rightType, GetRank(1)); 3264 } 3265 3266 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3267 std::optional<DynamicType> leftType{GetType(0)}; 3268 if (actuals_.size() == 1) { 3269 if (IsBOZLiteral(0)) { 3270 return opr == NumericOperator::Add; // unary '+' 3271 } else { 3272 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3273 } 3274 } else { 3275 std::optional<DynamicType> rightType{GetType(1)}; 3276 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3277 auto cat1{rightType->category()}; 3278 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3279 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3280 auto cat0{leftType->category()}; 3281 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3282 } else { 3283 return leftType && rightType && 3284 semantics::IsIntrinsicNumeric( 3285 *leftType, GetRank(0), *rightType, GetRank(1)); 3286 } 3287 } 3288 } 3289 3290 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3291 if (std::optional<DynamicType> leftType{GetType(0)}) { 3292 if (actuals_.size() == 1) { 3293 return semantics::IsIntrinsicLogical(*leftType); 3294 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3295 return semantics::IsIntrinsicLogical( 3296 *leftType, GetRank(0), *rightType, GetRank(1)); 3297 } 3298 } 3299 return false; 3300 } 3301 3302 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3303 if (std::optional<DynamicType> leftType{GetType(0)}) { 3304 if (std::optional<DynamicType> rightType{GetType(1)}) { 3305 return semantics::IsIntrinsicConcat( 3306 *leftType, GetRank(0), *rightType, GetRank(1)); 3307 } 3308 } 3309 return false; 3310 } 3311 3312 bool ArgumentAnalyzer::CheckConformance() { 3313 if (actuals_.size() == 2) { 3314 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3315 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3316 if (lhs && rhs) { 3317 auto &foldingContext{context_.GetFoldingContext()}; 3318 auto lhShape{GetShape(foldingContext, *lhs)}; 3319 auto rhShape{GetShape(foldingContext, *rhs)}; 3320 if (lhShape && rhShape) { 3321 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3322 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3323 "left operand", "right operand") 3324 .value_or(false /*fail when conformance is not known now*/)) { 3325 fatalErrors_ = true; 3326 return false; 3327 } 3328 } 3329 } 3330 } 3331 return true; // no proven problem 3332 } 3333 3334 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3335 for (const std::optional<ActualArgument> &arg : actuals_) { 3336 if (arg) { 3337 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3338 if (IsNullPointer(*expr)) { 3339 context_.Say( 3340 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3341 fatalErrors_ = true; 3342 return false; 3343 } 3344 } 3345 } 3346 } 3347 return true; 3348 } 3349 3350 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3351 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3352 bool isUserOp) { 3353 if (AnyUntypedOrMissingOperand()) { 3354 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3355 return std::nullopt; 3356 } 3357 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3358 if (!definedOpSymbolPtr) { 3359 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3360 } 3361 { 3362 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3363 std::string oprNameString{ 3364 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3365 parser::CharBlock oprName{oprNameString}; 3366 const auto &scope{context_.context().FindScope(source_)}; 3367 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3368 *definedOpSymbolPtr = symbol; 3369 parser::Name name{symbol->name(), symbol}; 3370 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3371 return result; 3372 } 3373 } 3374 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3375 if (const Symbol * 3376 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3377 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3378 return result; 3379 } 3380 } 3381 } 3382 } 3383 if (*definedOpSymbolPtr) { 3384 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3385 } else if (actuals_.size() == 1 || AreConformable()) { 3386 if (CheckForNullPointer()) { 3387 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3388 } 3389 } else { 3390 context_.Say( 3391 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3392 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3393 } 3394 return std::nullopt; 3395 } 3396 3397 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3398 std::vector<const char *> oprs, parser::MessageFixedText error) { 3399 const Symbol *definedOpSymbolPtr{nullptr}; 3400 for (std::size_t i{1}; i < oprs.size(); ++i) { 3401 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3402 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3403 return result; 3404 } 3405 } 3406 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3407 } 3408 3409 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3410 ActualArguments localActuals{actuals_}; 3411 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3412 if (!proc) { 3413 proc = &symbol; 3414 localActuals.at(passIndex).value().set_isPassedObject(); 3415 } 3416 CheckConformance(); 3417 return context_.MakeFunctionRef( 3418 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3419 } 3420 3421 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3422 using semantics::Tristate; 3423 const Expr<SomeType> &lhs{GetExpr(0)}; 3424 const Expr<SomeType> &rhs{GetExpr(1)}; 3425 std::optional<DynamicType> lhsType{lhs.GetType()}; 3426 std::optional<DynamicType> rhsType{rhs.GetType()}; 3427 int lhsRank{lhs.Rank()}; 3428 int rhsRank{rhs.Rank()}; 3429 Tristate isDefined{ 3430 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3431 if (isDefined == Tristate::No) { 3432 if (lhsType && rhsType) { 3433 AddAssignmentConversion(*lhsType, *rhsType); 3434 } 3435 return std::nullopt; // user-defined assignment not allowed for these args 3436 } 3437 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3438 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3439 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3440 context_.Say( 3441 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3442 DEREF(procRef->proc().GetSymbol()).name()); 3443 } 3444 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3445 return std::move(*procRef); 3446 } 3447 if (isDefined == Tristate::Yes) { 3448 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3449 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3450 SayNoMatch("ASSIGNMENT(=)", true); 3451 } 3452 } 3453 return std::nullopt; 3454 } 3455 3456 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3457 TypeCategory lhs, TypeCategory rhs) { 3458 if (!context_.context().languageFeatures().IsEnabled( 3459 common::LanguageFeature::LogicalIntegerAssignment)) { 3460 return false; 3461 } 3462 std::optional<parser::MessageFixedText> msg; 3463 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3464 // allow assignment to LOGICAL from INTEGER as a legacy extension 3465 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_port_en_US; 3466 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3467 // ... and assignment to LOGICAL from INTEGER 3468 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_port_en_US; 3469 } else { 3470 return false; 3471 } 3472 if (context_.context().languageFeatures().ShouldWarn( 3473 common::LanguageFeature::LogicalIntegerAssignment)) { 3474 context_.Say(std::move(*msg)); 3475 } 3476 return true; 3477 } 3478 3479 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3480 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3481 std::string oprNameString{"assignment(=)"}; 3482 parser::CharBlock oprName{oprNameString}; 3483 const Symbol *proc{nullptr}; 3484 const auto &scope{context_.context().FindScope(source_)}; 3485 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3486 ExpressionAnalyzer::AdjustActuals noAdjustment; 3487 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}; 3488 if (pair.first) { 3489 proc = pair.first; 3490 } else { 3491 context_.EmitGenericResolutionError(*symbol, pair.second); 3492 } 3493 } 3494 int passedObjectIndex{-1}; 3495 const Symbol *definedOpSymbol{nullptr}; 3496 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3497 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3498 if (const Symbol * 3499 resolution{GetBindingResolution(GetType(i), *specific)}) { 3500 proc = resolution; 3501 } else { 3502 proc = specific; 3503 passedObjectIndex = i; 3504 } 3505 } 3506 } 3507 if (!proc) { 3508 return std::nullopt; 3509 } 3510 ActualArguments actualsCopy{actuals_}; 3511 if (passedObjectIndex >= 0) { 3512 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3513 } 3514 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3515 } 3516 3517 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3518 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3519 << '\n'; 3520 for (const auto &actual : actuals_) { 3521 if (!actual.has_value()) { 3522 os << "- error\n"; 3523 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3524 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3525 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3526 expr->AsFortran(os << "- expr: ") << '\n'; 3527 } else { 3528 DIE("bad ActualArgument"); 3529 } 3530 } 3531 } 3532 3533 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3534 const parser::Expr &expr) { 3535 source_.ExtendToCover(expr.source); 3536 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3537 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3538 if (isProcedureCall_) { 3539 ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}}; 3540 SetArgSourceLocation(arg, expr.source); 3541 return std::move(arg); 3542 } 3543 context_.SayAt(expr.source, 3544 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3545 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3546 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3547 ActualArgument arg{std::move(*argExpr)}; 3548 SetArgSourceLocation(arg, expr.source); 3549 return std::move(arg); 3550 } 3551 context_.SayAt(expr.source, 3552 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3553 : "Subroutine name is not allowed here"_err_en_US); 3554 } 3555 return std::nullopt; 3556 } 3557 3558 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3559 const parser::Expr &expr) { 3560 // If an expression's parse tree is a whole assumed-size array: 3561 // Expr -> Designator -> DataRef -> Name 3562 // treat it as a special case for argument passing and bypass 3563 // the C1002/C1014 constraint checking in expression semantics. 3564 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3565 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3566 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3567 return context_.Analyze(expr); 3568 } 3569 } 3570 return context_.Analyze(expr); 3571 } 3572 3573 bool ArgumentAnalyzer::AreConformable() const { 3574 CHECK(actuals_.size() == 2); 3575 return actuals_[0] && actuals_[1] && 3576 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3577 } 3578 3579 // Look for a type-bound operator in the type of arg number passIndex. 3580 const Symbol *ArgumentAnalyzer::FindBoundOp( 3581 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3582 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3583 if (!type || !type->scope()) { 3584 return nullptr; 3585 } 3586 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3587 if (!symbol) { 3588 return nullptr; 3589 } 3590 definedOp = symbol; 3591 ExpressionAnalyzer::AdjustActuals adjustment{ 3592 [&](const Symbol &proc, ActualArguments &) { 3593 return passIndex == GetPassIndex(proc); 3594 }}; 3595 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3596 if (!pair.first) { 3597 context_.EmitGenericResolutionError(*symbol, pair.second); 3598 } 3599 return pair.first; 3600 } 3601 3602 // If there is an implicit conversion between intrinsic types, make it explicit 3603 void ArgumentAnalyzer::AddAssignmentConversion( 3604 const DynamicType &lhsType, const DynamicType &rhsType) { 3605 if (lhsType.category() == rhsType.category() && 3606 (lhsType.category() == TypeCategory::Derived || 3607 lhsType.kind() == rhsType.kind())) { 3608 // no conversion necessary 3609 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3610 std::optional<parser::CharBlock> source; 3611 if (actuals_[1]) { 3612 source = actuals_[1]->sourceLocation(); 3613 } 3614 actuals_[1] = ActualArgument{*rhsExpr}; 3615 SetArgSourceLocation(actuals_[1], source); 3616 } else { 3617 actuals_[1] = std::nullopt; 3618 } 3619 } 3620 3621 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3622 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3623 } 3624 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3625 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3626 } 3627 3628 // If the argument at index i is a BOZ literal, convert its type to match the 3629 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3630 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3631 // is not currently supported. 3632 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3633 std::size_t i, std::optional<DynamicType> otherType) { 3634 if (IsBOZLiteral(i)) { 3635 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3636 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3637 if (otherType && otherType->category() == TypeCategory::Real) { 3638 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3639 MaybeExpr realExpr{ 3640 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3641 actuals_[i] = std::move(*realExpr); 3642 thisType.emplace(TypeCategory::Real, kind); 3643 } else { 3644 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3645 MaybeExpr intExpr{ 3646 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3647 actuals_[i] = std::move(*intExpr); 3648 thisType.emplace(TypeCategory::Integer, kind); 3649 } 3650 } 3651 } 3652 3653 // Report error resolving opr when there is a user-defined one available 3654 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3655 std::string type0{TypeAsFortran(0)}; 3656 auto rank0{actuals_[0]->Rank()}; 3657 if (actuals_.size() == 1) { 3658 if (rank0 > 0) { 3659 context_.Say("No intrinsic or user-defined %s matches " 3660 "rank %d array of %s"_err_en_US, 3661 opr, rank0, type0); 3662 } else { 3663 context_.Say("No intrinsic or user-defined %s matches " 3664 "operand type %s"_err_en_US, 3665 opr, type0); 3666 } 3667 } else { 3668 std::string type1{TypeAsFortran(1)}; 3669 auto rank1{actuals_[1]->Rank()}; 3670 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3671 context_.Say("No intrinsic or user-defined %s matches " 3672 "rank %d array of %s and rank %d array of %s"_err_en_US, 3673 opr, rank0, type0, rank1, type1); 3674 } else if (isAssignment && rank0 != rank1) { 3675 if (rank0 == 0) { 3676 context_.Say("No intrinsic or user-defined %s matches " 3677 "scalar %s and rank %d array of %s"_err_en_US, 3678 opr, type0, rank1, type1); 3679 } else { 3680 context_.Say("No intrinsic or user-defined %s matches " 3681 "rank %d array of %s and scalar %s"_err_en_US, 3682 opr, rank0, type0, type1); 3683 } 3684 } else { 3685 context_.Say("No intrinsic or user-defined %s matches " 3686 "operand types %s and %s"_err_en_US, 3687 opr, type0, type1); 3688 } 3689 } 3690 } 3691 3692 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3693 if (i >= actuals_.size() || !actuals_[i]) { 3694 return "missing argument"; 3695 } else if (std::optional<DynamicType> type{GetType(i)}) { 3696 return type->IsAssumedType() ? "TYPE(*)"s 3697 : type->IsUnlimitedPolymorphic() ? "CLASS(*)"s 3698 : type->IsPolymorphic() ? "CLASS("s + type->AsFortran() + ')' 3699 : type->category() == TypeCategory::Derived 3700 ? "TYPE("s + type->AsFortran() + ')' 3701 : type->category() == TypeCategory::Character 3702 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3703 : ToUpperCase(type->AsFortran()); 3704 } else { 3705 return "untyped"; 3706 } 3707 } 3708 3709 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3710 for (const auto &actual : actuals_) { 3711 if (!actual || 3712 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3713 return true; 3714 } 3715 } 3716 return false; 3717 } 3718 } // namespace Fortran::evaluate 3719 3720 namespace Fortran::semantics { 3721 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3722 SemanticsContext &context, common::TypeCategory category, 3723 const std::optional<parser::KindSelector> &selector) { 3724 evaluate::ExpressionAnalyzer analyzer{context}; 3725 auto restorer{ 3726 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3727 return analyzer.AnalyzeKindSelector(category, selector); 3728 } 3729 3730 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3731 3732 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3733 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3734 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3735 auto name{bounds.name.thing.thing}; 3736 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3737 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3738 if (dynamicType->category() == TypeCategory::Integer) { 3739 kind = dynamicType->kind(); 3740 } 3741 } 3742 exprAnalyzer_.AddImpliedDo(name.source, kind); 3743 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3744 exprAnalyzer_.RemoveImpliedDo(name.source); 3745 return false; 3746 } 3747 3748 bool ExprChecker::Walk(const parser::Program &program) { 3749 parser::Walk(program, *this); 3750 return !context_.AnyFatalError(); 3751 } 3752 } // namespace Fortran::semantics 3753