1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/idioms.h" 14 #include "flang/Evaluate/common.h" 15 #include "flang/Evaluate/fold.h" 16 #include "flang/Evaluate/tools.h" 17 #include "flang/Parser/characters.h" 18 #include "flang/Parser/dump-parse-tree.h" 19 #include "flang/Parser/parse-tree-visitor.h" 20 #include "flang/Parser/parse-tree.h" 21 #include "flang/Semantics/scope.h" 22 #include "flang/Semantics/semantics.h" 23 #include "flang/Semantics/symbol.h" 24 #include "flang/Semantics/tools.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <functional> 28 #include <optional> 29 #include <set> 30 31 // Typedef for optional generic expressions (ubiquitous in this file) 32 using MaybeExpr = 33 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 34 35 // Much of the code that implements semantic analysis of expressions is 36 // tightly coupled with their typed representations in lib/Evaluate, 37 // and appears here in namespace Fortran::evaluate for convenience. 38 namespace Fortran::evaluate { 39 40 using common::LanguageFeature; 41 using common::NumericOperator; 42 using common::TypeCategory; 43 44 static inline std::string ToUpperCase(const std::string &str) { 45 return parser::ToUpperCaseLetters(str); 46 } 47 48 struct DynamicTypeWithLength : public DynamicType { 49 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 50 std::optional<Expr<SubscriptInteger>> LEN() const; 51 std::optional<Expr<SubscriptInteger>> length; 52 }; 53 54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 55 if (length) { 56 return length; 57 } 58 if (auto *lengthParam{charLength()}) { 59 if (const auto &len{lengthParam->GetExplicit()}) { 60 return ConvertToType<SubscriptInteger>(common::Clone(*len)); 61 } 62 } 63 return std::nullopt; // assumed or deferred length 64 } 65 66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 67 const std::optional<parser::TypeSpec> &spec) { 68 if (spec) { 69 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 70 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 71 // (viz., an intrinsic type with valid known kind or a non-polymorphic 72 // & non-ABSTRACT derived type). 73 if (const semantics::IntrinsicTypeSpec * 74 intrinsic{typeSpec->AsIntrinsic()}) { 75 TypeCategory category{intrinsic->category()}; 76 if (auto optKind{ToInt64(intrinsic->kind())}) { 77 int kind{static_cast<int>(*optKind)}; 78 if (category == TypeCategory::Character) { 79 const semantics::CharacterTypeSpec &cts{ 80 typeSpec->characterTypeSpec()}; 81 const semantics::ParamValue &len{cts.length()}; 82 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 83 // type guards, but not in array constructors. 84 return DynamicTypeWithLength{DynamicType{kind, len}}; 85 } else { 86 return DynamicTypeWithLength{DynamicType{category, kind}}; 87 } 88 } 89 } else if (const semantics::DerivedTypeSpec * 90 derived{typeSpec->AsDerived()}) { 91 return DynamicTypeWithLength{DynamicType{*derived}}; 92 } 93 } 94 } 95 return std::nullopt; 96 } 97 98 class ArgumentAnalyzer { 99 public: 100 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 101 : context_{context}, isProcedureCall_{false} {} 102 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 103 bool isProcedureCall = false) 104 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 105 bool fatalErrors() const { return fatalErrors_; } 106 ActualArguments &&GetActuals() { 107 CHECK(!fatalErrors_); 108 return std::move(actuals_); 109 } 110 const Expr<SomeType> &GetExpr(std::size_t i) const { 111 return DEREF(actuals_.at(i).value().UnwrapExpr()); 112 } 113 Expr<SomeType> &&MoveExpr(std::size_t i) { 114 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 115 } 116 void Analyze(const common::Indirection<parser::Expr> &x) { 117 Analyze(x.value()); 118 } 119 void Analyze(const parser::Expr &x) { 120 actuals_.emplace_back(AnalyzeExpr(x)); 121 fatalErrors_ |= !actuals_.back(); 122 } 123 void Analyze(const parser::Variable &); 124 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 125 void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType); 126 127 bool IsIntrinsicRelational(RelationalOperator) const; 128 bool IsIntrinsicLogical() const; 129 bool IsIntrinsicNumeric(NumericOperator) const; 130 bool IsIntrinsicConcat() const; 131 132 bool CheckConformance() const; 133 134 // Find and return a user-defined operator or report an error. 135 // The provided message is used if there is no such operator. 136 MaybeExpr TryDefinedOp( 137 const char *, parser::MessageFixedText &&, bool isUserOp = false); 138 template <typename E> 139 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 140 return TryDefinedOp( 141 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 142 } 143 // Find and return a user-defined assignment 144 std::optional<ProcedureRef> TryDefinedAssignment(); 145 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 146 std::optional<DynamicType> GetType(std::size_t) const; 147 void Dump(llvm::raw_ostream &); 148 149 private: 150 MaybeExpr TryDefinedOp( 151 std::vector<const char *>, parser::MessageFixedText &&); 152 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 153 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 154 bool AreConformable() const; 155 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 156 void AddAssignmentConversion( 157 const DynamicType &lhsType, const DynamicType &rhsType); 158 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 159 int GetRank(std::size_t) const; 160 bool IsBOZLiteral(std::size_t i) const { 161 return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u); 162 } 163 void SayNoMatch(const std::string &, bool isAssignment = false); 164 std::string TypeAsFortran(std::size_t); 165 bool AnyUntypedOperand(); 166 167 ExpressionAnalyzer &context_; 168 ActualArguments actuals_; 169 parser::CharBlock source_; 170 bool fatalErrors_{false}; 171 const bool isProcedureCall_; // false for user-defined op or assignment 172 const Symbol *sawDefinedOp_{nullptr}; 173 }; 174 175 // Wraps a data reference in a typed Designator<>, and a procedure 176 // or procedure pointer reference in a ProcedureDesignator. 177 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 178 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 179 if (semantics::IsProcedure(symbol)) { 180 if (auto *component{std::get_if<Component>(&ref.u)}) { 181 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 182 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 183 DIE("unexpected alternative in DataRef"); 184 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 185 return Expr<SomeType>{ProcedureDesignator{symbol}}; 186 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 187 symbol.name().ToString())}) { 188 SpecificIntrinsic intrinsic{ 189 symbol.name().ToString(), std::move(*interface)}; 190 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 191 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 192 } else { 193 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 194 symbol.name()); 195 return std::nullopt; 196 } 197 } else if (auto dyType{DynamicType::From(symbol)}) { 198 return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); 199 } 200 return std::nullopt; 201 } 202 203 // Some subscript semantic checks must be deferred until all of the 204 // subscripts are in hand. 205 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 206 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 207 const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 208 int symbolRank{symbol.Rank()}; 209 int subscripts{static_cast<int>(ref.size())}; 210 if (subscripts == 0) { 211 // nothing to check 212 } else if (subscripts != symbolRank) { 213 if (symbolRank != 0) { 214 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 215 symbolRank, symbol.name(), subscripts); 216 } 217 return std::nullopt; 218 } else if (Component * component{ref.base().UnwrapComponent()}) { 219 int baseRank{component->base().Rank()}; 220 if (baseRank > 0) { 221 int subscriptRank{0}; 222 for (const auto &expr : ref.subscript()) { 223 subscriptRank += expr.Rank(); 224 } 225 if (subscriptRank > 0) { 226 Say("Subscripts of component '%s' of rank-%d derived type " 227 "array have rank %d but must all be scalar"_err_en_US, 228 symbol.name(), baseRank, subscriptRank); 229 return std::nullopt; 230 } 231 } 232 } else if (object) { 233 // C928 & C1002 234 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 235 if (!last->upper() && object->IsAssumedSize()) { 236 Say("Assumed-size array '%s' must have explicit final " 237 "subscript upper bound value"_err_en_US, 238 symbol.name()); 239 return std::nullopt; 240 } 241 } 242 } 243 return Designate(DataRef{std::move(ref)}); 244 } 245 246 // Applies subscripts to a data reference. 247 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 248 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 249 return std::visit( 250 common::visitors{ 251 [&](SymbolRef &&symbol) { 252 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 253 }, 254 [&](Component &&c) { 255 return CompleteSubscripts( 256 ArrayRef{std::move(c), std::move(subscripts)}); 257 }, 258 [&](auto &&) -> MaybeExpr { 259 DIE("bad base for ArrayRef"); 260 return std::nullopt; 261 }, 262 }, 263 std::move(dataRef.u)); 264 } 265 266 // Top-level checks for data references. 267 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 268 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 269 const Symbol &symbol{component->GetLastSymbol()}; 270 int componentRank{symbol.Rank()}; 271 if (componentRank > 0) { 272 int baseRank{component->base().Rank()}; 273 if (baseRank > 0) { 274 Say("Reference to whole rank-%d component '%%%s' of " 275 "rank-%d array of derived type is not allowed"_err_en_US, 276 componentRank, symbol.name(), baseRank); 277 } 278 } 279 } 280 return Designate(std::move(dataRef)); 281 } 282 283 // Parse tree correction after a substring S(j:k) was misparsed as an 284 // array section. N.B. Fortran substrings have to have a range, not a 285 // single index. 286 static void FixMisparsedSubstring(const parser::Designator &d) { 287 auto &mutate{const_cast<parser::Designator &>(d)}; 288 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 289 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 290 &dataRef->u)}) { 291 parser::ArrayElement &arrElement{ae->value()}; 292 if (!arrElement.subscripts.empty()) { 293 auto iter{arrElement.subscripts.begin()}; 294 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 295 if (!std::get<2>(triplet->t) /* no stride */ && 296 ++iter == arrElement.subscripts.end() /* one subscript */) { 297 if (Symbol * 298 symbol{std::visit( 299 common::visitors{ 300 [](parser::Name &n) { return n.symbol; }, 301 [](common::Indirection<parser::StructureComponent> 302 &sc) { return sc.value().component.symbol; }, 303 [](auto &) -> Symbol * { return nullptr; }, 304 }, 305 arrElement.base.u)}) { 306 const Symbol &ultimate{symbol->GetUltimate()}; 307 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 308 if (!ultimate.IsObjectArray() && 309 type->category() == semantics::DeclTypeSpec::Character) { 310 // The ambiguous S(j:k) was parsed as an array section 311 // reference, but it's now clear that it's a substring. 312 // Fix the parse tree in situ. 313 mutate.u = arrElement.ConvertToSubstring(); 314 } 315 } 316 } 317 } 318 } 319 } 320 } 321 } 322 } 323 324 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 325 auto restorer{GetContextualMessages().SetLocation(d.source)}; 326 FixMisparsedSubstring(d); 327 // These checks have to be deferred to these "top level" data-refs where 328 // we can be sure that there are no following subscripts (yet). 329 // Substrings have already been run through TopLevelChecks() and 330 // won't be returned by ExtractDataRef(). 331 if (MaybeExpr result{Analyze(d.u)}) { 332 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 333 return TopLevelChecks(std::move(*dataRef)); 334 } 335 return result; 336 } 337 return std::nullopt; 338 } 339 340 // A utility subroutine to repackage optional expressions of various levels 341 // of type specificity as fully general MaybeExpr values. 342 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 343 return AsGenericExpr(std::move(x)); 344 } 345 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 346 if (x) { 347 return AsMaybeExpr(std::move(*x)); 348 } 349 return std::nullopt; 350 } 351 352 // Type kind parameter values for literal constants. 353 int ExpressionAnalyzer::AnalyzeKindParam( 354 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 355 if (!kindParam) { 356 return defaultKind; 357 } 358 return std::visit( 359 common::visitors{ 360 [](std::uint64_t k) { return static_cast<int>(k); }, 361 [&](const parser::Scalar< 362 parser::Integer<parser::Constant<parser::Name>>> &n) { 363 if (MaybeExpr ie{Analyze(n)}) { 364 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 365 int iv = *i64; 366 if (iv == *i64) { 367 return iv; 368 } 369 } 370 } 371 return defaultKind; 372 }, 373 }, 374 kindParam->u); 375 } 376 377 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 378 struct IntTypeVisitor { 379 using Result = MaybeExpr; 380 using Types = IntegerTypes; 381 template <typename T> Result Test() { 382 if (T::kind >= kind) { 383 const char *p{digits.begin()}; 384 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 385 if (!value.overflow) { 386 if (T::kind > kind) { 387 if (!isDefaultKind || 388 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 389 return std::nullopt; 390 } else if (analyzer.context().ShouldWarn( 391 LanguageFeature::BigIntLiterals)) { 392 analyzer.Say(digits, 393 "Integer literal is too large for default INTEGER(KIND=%d); " 394 "assuming INTEGER(KIND=%d)"_en_US, 395 kind, T::kind); 396 } 397 } 398 return Expr<SomeType>{ 399 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 400 } 401 } 402 return std::nullopt; 403 } 404 ExpressionAnalyzer &analyzer; 405 parser::CharBlock digits; 406 int kind; 407 bool isDefaultKind; 408 }; 409 410 template <typename PARSED> 411 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 412 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 413 bool isDefaultKind{!kindParam}; 414 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 415 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 416 auto digits{std::get<parser::CharBlock>(x.t)}; 417 if (MaybeExpr result{common::SearchTypes( 418 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 419 return result; 420 } else if (isDefaultKind) { 421 Say(digits, 422 "Integer literal is too large for any allowable " 423 "kind of INTEGER"_err_en_US); 424 } else { 425 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 426 kind); 427 } 428 } 429 return std::nullopt; 430 } 431 432 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 433 auto restorer{ 434 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 435 return IntLiteralConstant(x); 436 } 437 438 MaybeExpr ExpressionAnalyzer::Analyze( 439 const parser::SignedIntLiteralConstant &x) { 440 auto restorer{GetContextualMessages().SetLocation(x.source)}; 441 return IntLiteralConstant(x); 442 } 443 444 template <typename TYPE> 445 Constant<TYPE> ReadRealLiteral( 446 parser::CharBlock source, FoldingContext &context) { 447 const char *p{source.begin()}; 448 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 449 CHECK(p == source.end()); 450 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 451 auto value{valWithFlags.value}; 452 if (context.flushSubnormalsToZero()) { 453 value = value.FlushSubnormalToZero(); 454 } 455 return {value}; 456 } 457 458 struct RealTypeVisitor { 459 using Result = std::optional<Expr<SomeReal>>; 460 using Types = RealTypes; 461 462 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 463 : kind{k}, literal{lit}, context{ctx} {} 464 465 template <typename T> Result Test() { 466 if (kind == T::kind) { 467 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 468 } 469 return std::nullopt; 470 } 471 472 int kind; 473 parser::CharBlock literal; 474 FoldingContext &context; 475 }; 476 477 // Reads a real literal constant and encodes it with the right kind. 478 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 479 // Use a local message context around the real literal for better 480 // provenance on any messages. 481 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 482 // If a kind parameter appears, it defines the kind of the literal and the 483 // letter used in an exponent part must be 'E' (e.g., the 'E' in 484 // "6.02214E+23"). In the absence of an explicit kind parameter, any 485 // exponent letter determines the kind. Otherwise, defaults apply. 486 auto &defaults{context_.defaultKinds()}; 487 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 488 const char *end{x.real.source.end()}; 489 char expoLetter{' '}; 490 std::optional<int> letterKind; 491 for (const char *p{x.real.source.begin()}; p < end; ++p) { 492 if (parser::IsLetter(*p)) { 493 expoLetter = *p; 494 switch (expoLetter) { 495 case 'e': 496 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 497 break; 498 case 'd': 499 letterKind = defaults.doublePrecisionKind(); 500 break; 501 case 'q': 502 letterKind = defaults.quadPrecisionKind(); 503 break; 504 default: 505 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 506 } 507 break; 508 } 509 } 510 if (letterKind) { 511 defaultKind = *letterKind; 512 } 513 // C716 requires 'E' as an exponent, but this is more useful 514 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 515 if (letterKind && kind != *letterKind && expoLetter != 'e') { 516 Say("Explicit kind parameter on real constant disagrees with " 517 "exponent letter '%c'"_en_US, 518 expoLetter); 519 } 520 auto result{common::SearchTypes( 521 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 522 if (!result) { // C717 523 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 524 } 525 return AsMaybeExpr(std::move(result)); 526 } 527 528 MaybeExpr ExpressionAnalyzer::Analyze( 529 const parser::SignedRealLiteralConstant &x) { 530 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 531 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 532 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 533 if (sign == parser::Sign::Negative) { 534 return AsGenericExpr(-std::move(realExpr)); 535 } 536 } 537 return result; 538 } 539 return std::nullopt; 540 } 541 542 MaybeExpr ExpressionAnalyzer::Analyze( 543 const parser::SignedComplexLiteralConstant &x) { 544 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 545 if (!result) { 546 return std::nullopt; 547 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 548 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 549 } else { 550 return result; 551 } 552 } 553 554 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 555 return Analyze(x.u); 556 } 557 558 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 559 return AsMaybeExpr( 560 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 561 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 562 } 563 564 // CHARACTER literal processing. 565 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 566 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 567 return std::nullopt; 568 } 569 switch (kind) { 570 case 1: 571 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 572 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 573 string, true)}); 574 case 2: 575 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 576 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 577 string, true)}); 578 case 4: 579 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 580 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 581 string, true)}); 582 default: 583 CRASH_NO_CASE; 584 } 585 } 586 587 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 588 int kind{ 589 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 590 auto value{std::get<std::string>(x.t)}; 591 return AnalyzeString(std::move(value), kind); 592 } 593 594 MaybeExpr ExpressionAnalyzer::Analyze( 595 const parser::HollerithLiteralConstant &x) { 596 int kind{GetDefaultKind(TypeCategory::Character)}; 597 auto value{x.v}; 598 return AnalyzeString(std::move(value), kind); 599 } 600 601 // .TRUE. and .FALSE. of various kinds 602 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 603 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 604 GetDefaultKind(TypeCategory::Logical))}; 605 bool value{std::get<bool>(x.t)}; 606 auto result{common::SearchTypes( 607 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 608 kind, std::move(value)})}; 609 if (!result) { 610 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 611 } 612 return result; 613 } 614 615 // BOZ typeless literals 616 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 617 const char *p{x.v.c_str()}; 618 std::uint64_t base{16}; 619 switch (*p++) { 620 case 'b': 621 base = 2; 622 break; 623 case 'o': 624 base = 8; 625 break; 626 case 'z': 627 break; 628 case 'x': 629 break; 630 default: 631 CRASH_NO_CASE; 632 } 633 CHECK(*p == '"'); 634 ++p; 635 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 636 if (*p != '"') { 637 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 638 x.v); // C7107, C7108 639 return std::nullopt; 640 } 641 if (value.overflow) { 642 Say("BOZ literal '%s' too large"_err_en_US, x.v); 643 return std::nullopt; 644 } 645 return AsGenericExpr(std::move(value.value)); 646 } 647 648 // Names and named constants 649 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 650 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 651 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 652 *kind, AsExpr(ImpliedDoIndex{n.source}))); 653 } else if (context_.HasError(n)) { 654 return std::nullopt; 655 } else if (!n.symbol) { 656 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 657 return std::nullopt; 658 } else { 659 const Symbol &ultimate{n.symbol->GetUltimate()}; 660 if (ultimate.has<semantics::TypeParamDetails>()) { 661 // A bare reference to a derived type parameter (within a parameterized 662 // derived type definition) 663 return Fold(ConvertToType( 664 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 665 } else { 666 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 667 if (const semantics::Scope * 668 pure{semantics::FindPureProcedureContaining( 669 context_.FindScope(n.source))}) { 670 SayAt(n, 671 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 672 n.source, DEREF(pure->symbol()).name()); 673 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 674 } 675 } 676 return Designate(DataRef{*n.symbol}); 677 } 678 } 679 } 680 681 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 682 if (MaybeExpr value{Analyze(n.v)}) { 683 Expr<SomeType> folded{Fold(std::move(*value))}; 684 if (IsConstantExpr(folded)) { 685 return folded; 686 } 687 Say(n.v.source, "must be a constant"_err_en_US); // C718 688 } 689 return std::nullopt; 690 } 691 692 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) { 693 return Expr<SomeType>{NullPointer{}}; 694 } 695 696 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 697 return Analyze(x.value()); 698 } 699 700 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 701 if (const auto &repeat{ 702 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 703 x.repetitions = -1; 704 if (MaybeExpr expr{Analyze(repeat->u)}) { 705 Expr<SomeType> folded{Fold(std::move(*expr))}; 706 if (auto value{ToInt64(folded)}) { 707 if (*value >= 0) { // C882 708 x.repetitions = *value; 709 } else { 710 Say(FindSourceLocation(repeat), 711 "Repeat count (%jd) for data value must not be negative"_err_en_US, 712 *value); 713 } 714 } 715 } 716 } 717 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 718 } 719 720 // Substring references 721 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 722 const std::optional<parser::ScalarIntExpr> &bound) { 723 if (bound) { 724 if (MaybeExpr expr{Analyze(*bound)}) { 725 if (expr->Rank() > 1) { 726 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 727 } 728 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 729 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 730 return {std::move(*ssIntExpr)}; 731 } 732 return {Expr<SubscriptInteger>{ 733 Convert<SubscriptInteger, TypeCategory::Integer>{ 734 std::move(*intExpr)}}}; 735 } else { 736 Say("substring bound expression is not INTEGER"_err_en_US); 737 } 738 } 739 } 740 return std::nullopt; 741 } 742 743 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 744 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 745 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 746 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 747 if (std::optional<DataRef> checked{ 748 ExtractDataRef(std::move(*newBaseExpr))}) { 749 const parser::SubstringRange &range{ 750 std::get<parser::SubstringRange>(ss.t)}; 751 std::optional<Expr<SubscriptInteger>> first{ 752 GetSubstringBound(std::get<0>(range.t))}; 753 std::optional<Expr<SubscriptInteger>> last{ 754 GetSubstringBound(std::get<1>(range.t))}; 755 const Symbol &symbol{checked->GetLastSymbol()}; 756 if (std::optional<DynamicType> dynamicType{ 757 DynamicType::From(symbol)}) { 758 if (dynamicType->category() == TypeCategory::Character) { 759 return WrapperHelper<TypeCategory::Character, Designator, 760 Substring>(dynamicType->kind(), 761 Substring{std::move(checked.value()), std::move(first), 762 std::move(last)}); 763 } 764 } 765 Say("substring may apply only to CHARACTER"_err_en_US); 766 } 767 } 768 } 769 } 770 return std::nullopt; 771 } 772 773 // CHARACTER literal substrings 774 MaybeExpr ExpressionAnalyzer::Analyze( 775 const parser::CharLiteralConstantSubstring &x) { 776 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 777 std::optional<Expr<SubscriptInteger>> lower{ 778 GetSubstringBound(std::get<0>(range.t))}; 779 std::optional<Expr<SubscriptInteger>> upper{ 780 GetSubstringBound(std::get<1>(range.t))}; 781 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 782 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 783 Expr<SubscriptInteger> length{ 784 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 785 charExpr->u)}; 786 if (!lower) { 787 lower = Expr<SubscriptInteger>{1}; 788 } 789 if (!upper) { 790 upper = Expr<SubscriptInteger>{ 791 static_cast<std::int64_t>(ToInt64(length).value())}; 792 } 793 return std::visit( 794 [&](auto &&ckExpr) -> MaybeExpr { 795 using Result = ResultType<decltype(ckExpr)>; 796 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 797 CHECK(DEREF(cp).size() == 1); 798 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 799 staticData->set_alignment(Result::kind) 800 .set_itemBytes(Result::kind) 801 .Push(cp->GetScalarValue().value()); 802 Substring substring{std::move(staticData), std::move(lower.value()), 803 std::move(upper.value())}; 804 return AsGenericExpr( 805 Expr<Result>{Designator<Result>{std::move(substring)}}); 806 }, 807 std::move(charExpr->u)); 808 } 809 } 810 return std::nullopt; 811 } 812 813 // Subscripted array references 814 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 815 MaybeExpr &&expr) { 816 if (expr) { 817 if (expr->Rank() > 1) { 818 Say("Subscript expression has rank %d greater than 1"_err_en_US, 819 expr->Rank()); 820 } 821 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 822 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 823 return std::move(*ssIntExpr); 824 } else { 825 return Expr<SubscriptInteger>{ 826 Convert<SubscriptInteger, TypeCategory::Integer>{ 827 std::move(*intExpr)}}; 828 } 829 } else { 830 Say("Subscript expression is not INTEGER"_err_en_US); 831 } 832 } 833 return std::nullopt; 834 } 835 836 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 837 const std::optional<parser::Subscript> &s) { 838 if (s) { 839 return AsSubscript(Analyze(*s)); 840 } else { 841 return std::nullopt; 842 } 843 } 844 845 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 846 const parser::SectionSubscript &ss) { 847 return std::visit( 848 common::visitors{ 849 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 850 const auto &lower{std::get<0>(t.t)}; 851 const auto &upper{std::get<1>(t.t)}; 852 const auto &stride{std::get<2>(t.t)}; 853 auto result{Triplet{ 854 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 855 if ((lower && !result.lower()) || (upper && !result.upper())) { 856 return std::nullopt; 857 } else { 858 return std::make_optional<Subscript>(result); 859 } 860 }, 861 [&](const auto &s) -> std::optional<Subscript> { 862 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 863 return Subscript{std::move(*subscriptExpr)}; 864 } else { 865 return std::nullopt; 866 } 867 }, 868 }, 869 ss.u); 870 } 871 872 // Empty result means an error occurred 873 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 874 const std::list<parser::SectionSubscript> &sss) { 875 bool error{false}; 876 std::vector<Subscript> subscripts; 877 for (const auto &s : sss) { 878 if (auto subscript{AnalyzeSectionSubscript(s)}) { 879 subscripts.emplace_back(std::move(*subscript)); 880 } else { 881 error = true; 882 } 883 } 884 return !error ? subscripts : std::vector<Subscript>{}; 885 } 886 887 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 888 if (MaybeExpr baseExpr{Analyze(ae.base)}) { 889 if (ae.subscripts.empty()) { 890 // will be converted to function call later or error reported 891 return std::nullopt; 892 } else if (baseExpr->Rank() == 0) { 893 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 894 if (!context_.HasError(symbol)) { 895 Say("'%s' is not an array"_err_en_US, symbol->name()); 896 context_.SetError(*symbol); 897 } 898 } 899 } else if (std::optional<DataRef> dataRef{ 900 ExtractDataRef(std::move(*baseExpr))}) { 901 return ApplySubscripts( 902 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 903 } else { 904 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 905 } 906 } 907 // error was reported: analyze subscripts without reporting more errors 908 auto restorer{GetContextualMessages().DiscardMessages()}; 909 AnalyzeSectionSubscripts(ae.subscripts); 910 return std::nullopt; 911 } 912 913 // Type parameter inquiries apply to data references, but don't depend 914 // on any trailing (co)subscripts. 915 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 916 return std::visit( 917 common::visitors{ 918 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 919 [](Component &&component) { 920 return NamedEntity{std::move(component)}; 921 }, 922 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 923 [](CoarrayRef &&coarrayRef) { 924 return NamedEntity{coarrayRef.GetLastSymbol()}; 925 }, 926 }, 927 std::move(designator.u)); 928 } 929 930 // Components of parent derived types are explicitly represented as such. 931 static std::optional<Component> CreateComponent( 932 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 933 if (&component.owner() == &scope) { 934 return Component{std::move(base), component}; 935 } 936 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 937 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 938 return CreateComponent( 939 DataRef{Component{std::move(base), *parentComponent}}, component, 940 *parentScope); 941 } 942 } 943 return std::nullopt; 944 } 945 946 // Derived type component references and type parameter inquiries 947 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 948 MaybeExpr base{Analyze(sc.base)}; 949 if (!base) { 950 return std::nullopt; 951 } 952 Symbol *sym{sc.component.symbol}; 953 if (context_.HasError(sym)) { 954 return std::nullopt; 955 } 956 const auto &name{sc.component.source}; 957 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 958 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 959 if (sym->detailsIf<semantics::TypeParamDetails>()) { 960 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 961 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 962 if (dyType->category() == TypeCategory::Integer) { 963 return Fold(ConvertToType(*dyType, 964 AsGenericExpr(TypeParamInquiry{ 965 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 966 } 967 } 968 Say(name, "Type parameter is not INTEGER"_err_en_US); 969 } else { 970 Say(name, 971 "A type parameter inquiry must be applied to " 972 "a designator"_err_en_US); 973 } 974 } else if (!dtSpec || !dtSpec->scope()) { 975 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 976 return std::nullopt; 977 } else if (std::optional<DataRef> dataRef{ 978 ExtractDataRef(std::move(*dtExpr))}) { 979 if (auto component{ 980 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 981 return Designate(DataRef{std::move(*component)}); 982 } else { 983 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 984 dtSpec->typeSymbol().name()); 985 } 986 } else { 987 Say(name, 988 "Base of component reference must be a data reference"_err_en_US); 989 } 990 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 991 // special part-ref: %re, %im, %kind, %len 992 // Type errors are detected and reported in semantics. 993 using MiscKind = semantics::MiscDetails::Kind; 994 MiscKind kind{details->kind()}; 995 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 996 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 997 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 998 Expr<SomeReal> realExpr{std::visit( 999 [&](const auto &z) { 1000 using PartType = typename ResultType<decltype(z)>::Part; 1001 auto part{kind == MiscKind::ComplexPartRe 1002 ? ComplexPart::Part::RE 1003 : ComplexPart::Part::IM}; 1004 return AsCategoryExpr(Designator<PartType>{ 1005 ComplexPart{std::move(*dataRef), part}}); 1006 }, 1007 zExpr->u)}; 1008 return AsGenericExpr(std::move(realExpr)); 1009 } 1010 } 1011 } else if (kind == MiscKind::KindParamInquiry || 1012 kind == MiscKind::LenParamInquiry) { 1013 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1014 return MakeFunctionRef( 1015 name, ActualArguments{ActualArgument{std::move(*base)}}); 1016 } else { 1017 DIE("unexpected MiscDetails::Kind"); 1018 } 1019 } else { 1020 Say(name, "derived type required before component reference"_err_en_US); 1021 } 1022 return std::nullopt; 1023 } 1024 1025 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1026 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1027 DataRef *dataRef{&*maybeDataRef}; 1028 std::vector<Subscript> subscripts; 1029 SymbolVector reversed; 1030 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1031 subscripts = std::move(aRef->subscript()); 1032 reversed.push_back(aRef->GetLastSymbol()); 1033 if (Component * component{aRef->base().UnwrapComponent()}) { 1034 dataRef = &component->base(); 1035 } else { 1036 dataRef = nullptr; 1037 } 1038 } 1039 if (dataRef) { 1040 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1041 reversed.push_back(component->GetLastSymbol()); 1042 dataRef = &component->base(); 1043 } 1044 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1045 reversed.push_back(*baseSym); 1046 } else { 1047 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1048 } 1049 } 1050 std::vector<Expr<SubscriptInteger>> cosubscripts; 1051 bool cosubsOk{true}; 1052 for (const auto &cosub : 1053 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1054 MaybeExpr coex{Analyze(cosub)}; 1055 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1056 cosubscripts.push_back( 1057 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1058 } else { 1059 cosubsOk = false; 1060 } 1061 } 1062 if (cosubsOk && !reversed.empty()) { 1063 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1064 const Symbol &symbol{reversed.front()}; 1065 if (numCosubscripts != symbol.Corank()) { 1066 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1067 symbol.name(), symbol.Corank(), numCosubscripts); 1068 } 1069 } 1070 for (const auto &imageSelSpec : 1071 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1072 std::visit( 1073 common::visitors{ 1074 [&](const auto &x) { Analyze(x.v); }, 1075 }, 1076 imageSelSpec.u); 1077 } 1078 // Reverse the chain of symbols so that the base is first and coarray 1079 // ultimate component is last. 1080 if (cosubsOk) { 1081 return Designate( 1082 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1083 std::move(subscripts), std::move(cosubscripts)}}); 1084 } 1085 } 1086 return std::nullopt; 1087 } 1088 1089 int ExpressionAnalyzer::IntegerTypeSpecKind( 1090 const parser::IntegerTypeSpec &spec) { 1091 Expr<SubscriptInteger> value{ 1092 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1093 if (auto kind{ToInt64(value)}) { 1094 return static_cast<int>(*kind); 1095 } 1096 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1097 return GetDefaultKind(TypeCategory::Integer); 1098 } 1099 1100 // Array constructors 1101 1102 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1103 // all happen to have the same actual type T into one ArrayConstructor<T>. 1104 template <typename T> 1105 ArrayConstructorValues<T> MakeSpecific( 1106 ArrayConstructorValues<SomeType> &&from) { 1107 ArrayConstructorValues<T> to; 1108 for (ArrayConstructorValue<SomeType> &x : from) { 1109 std::visit( 1110 common::visitors{ 1111 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1112 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1113 to.Push(std::move(DEREF(typed))); 1114 }, 1115 [&](ImpliedDo<SomeType> &&impliedDo) { 1116 to.Push(ImpliedDo<T>{impliedDo.name(), 1117 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1118 std::move(impliedDo.stride()), 1119 MakeSpecific<T>(std::move(impliedDo.values()))}); 1120 }, 1121 }, 1122 std::move(x.u)); 1123 } 1124 return to; 1125 } 1126 1127 class ArrayConstructorContext { 1128 public: 1129 ArrayConstructorContext( 1130 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1131 : exprAnalyzer_{c}, type_{std::move(t)} {} 1132 1133 void Add(const parser::AcValue &); 1134 MaybeExpr ToExpr(); 1135 1136 // These interfaces allow *this to be used as a type visitor argument to 1137 // common::SearchTypes() to convert the array constructor to a typed 1138 // expression in ToExpr(). 1139 using Result = MaybeExpr; 1140 using Types = AllTypes; 1141 template <typename T> Result Test() { 1142 if (type_ && type_->category() == T::category) { 1143 if constexpr (T::category == TypeCategory::Derived) { 1144 if (type_->IsUnlimitedPolymorphic()) { 1145 return std::nullopt; 1146 } else { 1147 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1148 MakeSpecific<T>(std::move(values_))}); 1149 } 1150 } else if (type_->kind() == T::kind) { 1151 if constexpr (T::category == TypeCategory::Character) { 1152 if (auto len{type_->LEN()}) { 1153 return AsMaybeExpr(ArrayConstructor<T>{ 1154 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1155 } 1156 } else { 1157 return AsMaybeExpr( 1158 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1159 } 1160 } 1161 } 1162 return std::nullopt; 1163 } 1164 1165 private: 1166 void Push(MaybeExpr &&); 1167 1168 template <int KIND, typename A> 1169 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1170 const A &x) { 1171 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1172 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1173 return ConvertToType<Type<TypeCategory::Integer, KIND>>( 1174 std::move(DEREF(intExpr))); 1175 } 1176 return std::nullopt; 1177 } 1178 1179 // Nested array constructors all reference the same ExpressionAnalyzer, 1180 // which represents the nest of active implied DO loop indices. 1181 ExpressionAnalyzer &exprAnalyzer_; 1182 std::optional<DynamicTypeWithLength> type_; 1183 bool explicitType_{type_.has_value()}; 1184 std::optional<std::int64_t> constantLength_; 1185 ArrayConstructorValues<SomeType> values_; 1186 bool messageDisplayedOnce{false}; 1187 }; 1188 1189 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1190 if (!x) { 1191 return; 1192 } 1193 if (auto dyType{x->GetType()}) { 1194 DynamicTypeWithLength xType{*dyType}; 1195 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1196 CHECK(xType.category() == TypeCategory::Character); 1197 xType.length = 1198 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1199 } 1200 if (!type_) { 1201 // If there is no explicit type-spec in an array constructor, the type 1202 // of the array is the declared type of all of the elements, which must 1203 // be well-defined and all match. 1204 // TODO: Possible language extension: use the most general type of 1205 // the values as the type of a numeric constructed array, convert all 1206 // of the other values to that type. Alternative: let the first value 1207 // determine the type, and convert the others to that type. 1208 CHECK(!explicitType_); 1209 type_ = std::move(xType); 1210 constantLength_ = ToInt64(type_->length); 1211 values_.Push(std::move(*x)); 1212 } else if (!explicitType_) { 1213 if (static_cast<const DynamicType &>(*type_) == 1214 static_cast<const DynamicType &>(xType)) { 1215 values_.Push(std::move(*x)); 1216 if (auto thisLen{ToInt64(xType.LEN())}) { 1217 if (constantLength_) { 1218 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1219 *thisLen != *constantLength_) { 1220 exprAnalyzer_.Say( 1221 "Character literal in array constructor without explicit " 1222 "type has different length than earlier element"_en_US); 1223 } 1224 if (*thisLen > *constantLength_) { 1225 // Language extension: use the longest literal to determine the 1226 // length of the array constructor's character elements, not the 1227 // first, when there is no explicit type. 1228 *constantLength_ = *thisLen; 1229 type_->length = xType.LEN(); 1230 } 1231 } else { 1232 constantLength_ = *thisLen; 1233 type_->length = xType.LEN(); 1234 } 1235 } 1236 } else { 1237 if (!messageDisplayedOnce) { 1238 exprAnalyzer_.Say( 1239 "Values in array constructor must have the same declared type " 1240 "when no explicit type appears"_err_en_US); // C7110 1241 messageDisplayedOnce = true; 1242 } 1243 } 1244 } else { 1245 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1246 values_.Push(std::move(*cast)); 1247 } else { 1248 exprAnalyzer_.Say( 1249 "Value in array constructor of type '%s' could not " 1250 "be converted to the type of the array '%s'"_err_en_US, 1251 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1252 } 1253 } 1254 } 1255 } 1256 1257 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1258 using IntType = ResultType<ImpliedDoIndex>; 1259 std::visit( 1260 common::visitors{ 1261 [&](const parser::AcValue::Triplet &triplet) { 1262 // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1263 std::optional<Expr<IntType>> lower{ 1264 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))}; 1265 std::optional<Expr<IntType>> upper{ 1266 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))}; 1267 std::optional<Expr<IntType>> stride{ 1268 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))}; 1269 if (lower && upper) { 1270 if (!stride) { 1271 stride = Expr<IntType>{1}; 1272 } 1273 if (!type_) { 1274 type_ = DynamicTypeWithLength{IntType::GetType()}; 1275 } 1276 auto v{std::move(values_)}; 1277 parser::CharBlock anonymous; 1278 Push(Expr<SomeType>{ 1279 Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}}); 1280 std::swap(v, values_); 1281 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1282 std::move(*upper), std::move(*stride), std::move(v)}); 1283 } 1284 }, 1285 [&](const common::Indirection<parser::Expr> &expr) { 1286 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation( 1287 expr.value().source)}; 1288 if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) { 1289 if (auto exprType{v->GetType()}) { 1290 if (exprType->IsUnlimitedPolymorphic()) { 1291 exprAnalyzer_.Say( 1292 "Cannot have an unlimited polymorphic value in an " 1293 "array constructor"_err_en_US); // C7113 1294 } 1295 } 1296 Push(std::move(*v)); 1297 } 1298 }, 1299 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1300 const auto &control{ 1301 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)}; 1302 const auto &bounds{ 1303 std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1304 exprAnalyzer_.Analyze(bounds.name); 1305 parser::CharBlock name{bounds.name.thing.thing.source}; 1306 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1307 int kind{IntType::kind}; 1308 if (const auto dynamicType{DynamicType::From(symbol)}) { 1309 kind = dynamicType->kind(); 1310 } 1311 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1312 std::optional<Expr<IntType>> lower{ 1313 GetSpecificIntExpr<IntType::kind>(bounds.lower)}; 1314 std::optional<Expr<IntType>> upper{ 1315 GetSpecificIntExpr<IntType::kind>(bounds.upper)}; 1316 if (lower && upper) { 1317 std::optional<Expr<IntType>> stride{ 1318 GetSpecificIntExpr<IntType::kind>(bounds.step)}; 1319 auto v{std::move(values_)}; 1320 for (const auto &value : 1321 std::get<std::list<parser::AcValue>>(impliedDo.value().t)) { 1322 Add(value); 1323 } 1324 if (!stride) { 1325 stride = Expr<IntType>{1}; 1326 } 1327 std::swap(v, values_); 1328 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1329 std::move(*upper), std::move(*stride), std::move(v)}); 1330 } 1331 exprAnalyzer_.RemoveImpliedDo(name); 1332 } else { 1333 exprAnalyzer_.SayAt(name, 1334 "Implied DO index is active in surrounding implied DO loop " 1335 "and may not have the same name"_err_en_US); // C7115 1336 } 1337 }, 1338 }, 1339 x.u); 1340 } 1341 1342 MaybeExpr ArrayConstructorContext::ToExpr() { 1343 return common::SearchTypes(std::move(*this)); 1344 } 1345 1346 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1347 const parser::AcSpec &acSpec{array.v}; 1348 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1349 for (const parser::AcValue &value : acSpec.values) { 1350 acContext.Add(value); 1351 } 1352 return acContext.ToExpr(); 1353 } 1354 1355 MaybeExpr ExpressionAnalyzer::Analyze( 1356 const parser::StructureConstructor &structure) { 1357 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1358 parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; 1359 if (!parsedType.derivedTypeSpec) { 1360 return std::nullopt; 1361 } 1362 const auto &spec{*parsedType.derivedTypeSpec}; 1363 const Symbol &typeSymbol{spec.typeSymbol()}; 1364 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1365 return std::nullopt; // error recovery 1366 } 1367 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1368 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1369 1370 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1371 AttachDeclaration(Say(typeName, 1372 "ABSTRACT derived type '%s' may not be used in a " 1373 "structure constructor"_err_en_US, 1374 typeName), 1375 typeSymbol); // C7114 1376 } 1377 1378 // This iterator traverses all of the components in the derived type and its 1379 // parents. The symbols for whole parent components appear after their 1380 // own components and before the components of the types that extend them. 1381 // E.g., TYPE :: A; REAL X; END TYPE 1382 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1383 // produces the component list X, A, Y. 1384 // The order is important below because a structure constructor can 1385 // initialize X or A by name, but not both. 1386 auto components{semantics::OrderedComponentIterator{spec}}; 1387 auto nextAnonymous{components.begin()}; 1388 1389 std::set<parser::CharBlock> unavailable; 1390 bool anyKeyword{false}; 1391 StructureConstructor result{spec}; 1392 bool checkConflicts{true}; // until we hit one 1393 auto &messages{GetContextualMessages()}; 1394 1395 for (const auto &component : 1396 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1397 const parser::Expr &expr{ 1398 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1399 parser::CharBlock source{expr.source}; 1400 auto restorer{messages.SetLocation(source)}; 1401 const Symbol *symbol{nullptr}; 1402 MaybeExpr value{Analyze(expr)}; 1403 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1404 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1405 anyKeyword = true; 1406 source = kw->v.source; 1407 symbol = kw->v.symbol; 1408 if (!symbol) { 1409 auto componentIter{std::find_if(components.begin(), components.end(), 1410 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1411 if (componentIter != components.end()) { 1412 symbol = &*componentIter; 1413 } 1414 } 1415 if (!symbol) { // C7101 1416 Say(source, 1417 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1418 source, typeName); 1419 } 1420 } else { 1421 if (anyKeyword) { // C7100 1422 Say(source, 1423 "Value in structure constructor lacks a component name"_err_en_US); 1424 checkConflicts = false; // stem cascade 1425 } 1426 // Here's a regrettably common extension of the standard: anonymous 1427 // initialization of parent components, e.g., T(PT(1)) rather than 1428 // T(1) or T(PT=PT(1)). 1429 if (nextAnonymous == components.begin() && parentComponent && 1430 valueType == DynamicType::From(*parentComponent) && 1431 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1432 auto iter{ 1433 std::find(components.begin(), components.end(), *parentComponent)}; 1434 if (iter != components.end()) { 1435 symbol = parentComponent; 1436 nextAnonymous = ++iter; 1437 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1438 Say(source, 1439 "Whole parent component '%s' in structure " 1440 "constructor should not be anonymous"_en_US, 1441 symbol->name()); 1442 } 1443 } 1444 } 1445 while (!symbol && nextAnonymous != components.end()) { 1446 const Symbol &next{*nextAnonymous}; 1447 ++nextAnonymous; 1448 if (!next.test(Symbol::Flag::ParentComp)) { 1449 symbol = &next; 1450 } 1451 } 1452 if (!symbol) { 1453 Say(source, "Unexpected value in structure constructor"_err_en_US); 1454 } 1455 } 1456 if (symbol) { 1457 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1458 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1459 Say(source, *msg); 1460 } 1461 } 1462 if (checkConflicts) { 1463 auto componentIter{ 1464 std::find(components.begin(), components.end(), *symbol)}; 1465 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1466 // C797, C798 1467 Say(source, 1468 "Component '%s' conflicts with another component earlier in " 1469 "this structure constructor"_err_en_US, 1470 symbol->name()); 1471 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1472 // Make earlier components unavailable once a whole parent appears. 1473 for (auto it{components.begin()}; it != componentIter; ++it) { 1474 unavailable.insert(it->name()); 1475 } 1476 } else { 1477 // Make whole parent components unavailable after any of their 1478 // constituents appear. 1479 for (auto it{componentIter}; it != components.end(); ++it) { 1480 if (it->test(Symbol::Flag::ParentComp)) { 1481 unavailable.insert(it->name()); 1482 } 1483 } 1484 } 1485 } 1486 unavailable.insert(symbol->name()); 1487 if (value) { 1488 if (symbol->has<semantics::ProcEntityDetails>()) { 1489 CHECK(IsPointer(*symbol)); 1490 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1491 // C1594(4) 1492 const auto &innermost{context_.FindScope(expr.source)}; 1493 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1494 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1495 if (const Symbol * 1496 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1497 if (auto *msg{Say(expr.source, 1498 "Externally visible object '%s' may not be " 1499 "associated with pointer component '%s' in a " 1500 "pure procedure"_err_en_US, 1501 object->name(), pointer->name())}) { 1502 msg->Attach(object->name(), "Object declaration"_en_US) 1503 .Attach(pointer->name(), "Pointer declaration"_en_US); 1504 } 1505 } 1506 } 1507 } 1508 } else if (symbol->has<semantics::TypeParamDetails>()) { 1509 Say(expr.source, 1510 "Type parameter '%s' may not appear as a component " 1511 "of a structure constructor"_err_en_US, 1512 symbol->name()); 1513 continue; 1514 } else { 1515 Say(expr.source, 1516 "Component '%s' is neither a procedure pointer " 1517 "nor a data object"_err_en_US, 1518 symbol->name()); 1519 continue; 1520 } 1521 if (IsPointer(*symbol)) { 1522 semantics::CheckPointerAssignment( 1523 GetFoldingContext(), *symbol, *value); // C7104, C7105 1524 result.Add(*symbol, Fold(std::move(*value))); 1525 } else if (MaybeExpr converted{ 1526 ConvertToType(*symbol, std::move(*value))}) { 1527 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1528 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1529 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1530 AttachDeclaration( 1531 Say(expr.source, 1532 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1533 GetRank(*valueShape), symbol->name()), 1534 *symbol); 1535 } else if (CheckConformance(messages, *componentShape, 1536 *valueShape, "component", "value")) { 1537 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 && 1538 !IsExpandableScalar(*converted)) { 1539 AttachDeclaration( 1540 Say(expr.source, 1541 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1542 symbol->name()), 1543 *symbol); 1544 } else { 1545 result.Add(*symbol, std::move(*converted)); 1546 } 1547 } 1548 } else { 1549 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1550 } 1551 } else { 1552 AttachDeclaration( 1553 Say(expr.source, 1554 "Shape of component '%s' cannot be determined"_err_en_US, 1555 symbol->name()), 1556 *symbol); 1557 } 1558 } else if (IsAllocatable(*symbol) && 1559 std::holds_alternative<NullPointer>(value->u)) { 1560 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1561 } else if (auto symType{DynamicType::From(symbol)}) { 1562 if (valueType) { 1563 AttachDeclaration( 1564 Say(expr.source, 1565 "Value in structure constructor of type %s is " 1566 "incompatible with component '%s' of type %s"_err_en_US, 1567 valueType->AsFortran(), symbol->name(), 1568 symType->AsFortran()), 1569 *symbol); 1570 } else { 1571 AttachDeclaration( 1572 Say(expr.source, 1573 "Value in structure constructor is incompatible with " 1574 " component '%s' of type %s"_err_en_US, 1575 symbol->name(), symType->AsFortran()), 1576 *symbol); 1577 } 1578 } 1579 } 1580 } 1581 } 1582 1583 // Ensure that unmentioned component objects have default initializers. 1584 for (const Symbol &symbol : components) { 1585 if (!symbol.test(Symbol::Flag::ParentComp) && 1586 unavailable.find(symbol.name()) == unavailable.cend() && 1587 !IsAllocatable(symbol)) { 1588 if (const auto *details{ 1589 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1590 if (details->init()) { 1591 result.Add(symbol, common::Clone(*details->init())); 1592 } else { // C799 1593 AttachDeclaration(Say(typeName, 1594 "Structure constructor lacks a value for " 1595 "component '%s'"_err_en_US, 1596 symbol.name()), 1597 symbol); 1598 } 1599 } 1600 } 1601 } 1602 1603 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1604 } 1605 1606 static std::optional<parser::CharBlock> GetPassName( 1607 const semantics::Symbol &proc) { 1608 return std::visit( 1609 [](const auto &details) { 1610 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1611 std::decay_t<decltype(details)>>) { 1612 return details.passName(); 1613 } else { 1614 return std::optional<parser::CharBlock>{}; 1615 } 1616 }, 1617 proc.details()); 1618 } 1619 1620 static int GetPassIndex(const Symbol &proc) { 1621 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1622 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1623 const auto *interface{semantics::FindInterface(proc)}; 1624 if (!passName || !interface) { 1625 return 0; // first argument is passed-object 1626 } 1627 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1628 int index{0}; 1629 for (const auto *arg : subp.dummyArgs()) { 1630 if (arg && arg->name() == passName) { 1631 return index; 1632 } 1633 ++index; 1634 } 1635 DIE("PASS argument name not in dummy argument list"); 1636 } 1637 1638 // Injects an expression into an actual argument list as the "passed object" 1639 // for a type-bound procedure reference that is not NOPASS. Adds an 1640 // argument keyword if possible, but not when the passed object goes 1641 // before a positional argument. 1642 // e.g., obj%tbp(x) -> tbp(obj,x). 1643 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1644 const Symbol &component, bool isPassedObject = true) { 1645 if (component.attrs().test(semantics::Attr::NOPASS)) { 1646 return; 1647 } 1648 int passIndex{GetPassIndex(component)}; 1649 auto iter{actuals.begin()}; 1650 int at{0}; 1651 while (iter < actuals.end() && at < passIndex) { 1652 if (*iter && (*iter)->keyword()) { 1653 iter = actuals.end(); 1654 break; 1655 } 1656 ++iter; 1657 ++at; 1658 } 1659 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1660 passed.set_isPassedObject(isPassedObject); 1661 if (iter == actuals.end()) { 1662 if (auto passName{GetPassName(component)}) { 1663 passed.set_keyword(*passName); 1664 } 1665 } 1666 actuals.emplace(iter, std::move(passed)); 1667 } 1668 1669 // Return the compile-time resolution of a procedure binding, if possible. 1670 static const Symbol *GetBindingResolution( 1671 const std::optional<DynamicType> &baseType, const Symbol &component) { 1672 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1673 if (!binding) { 1674 return nullptr; 1675 } 1676 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1677 (!baseType || baseType->IsPolymorphic())) { 1678 return nullptr; 1679 } 1680 return &binding->symbol(); 1681 } 1682 1683 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1684 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1685 -> std::optional<CalleeAndArguments> { 1686 const parser::StructureComponent &sc{pcr.v.thing}; 1687 const auto &name{sc.component.source}; 1688 if (MaybeExpr base{Analyze(sc.base)}) { 1689 if (const Symbol * sym{sc.component.symbol}) { 1690 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1691 if (sym->has<semantics::GenericDetails>()) { 1692 AdjustActuals adjustment{ 1693 [&](const Symbol &proc, ActualArguments &actuals) { 1694 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1695 AddPassArg(actuals, std::move(*dtExpr), proc); 1696 } 1697 return true; 1698 }}; 1699 sym = ResolveGeneric(*sym, arguments, adjustment); 1700 if (!sym) { 1701 EmitGenericResolutionError(*sc.component.symbol); 1702 return std::nullopt; 1703 } 1704 } 1705 if (const Symbol * 1706 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1707 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1708 return CalleeAndArguments{ 1709 ProcedureDesignator{*resolution}, std::move(arguments)}; 1710 } else if (std::optional<DataRef> dataRef{ 1711 ExtractDataRef(std::move(*dtExpr))}) { 1712 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1713 return CalleeAndArguments{ 1714 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1715 std::move(arguments)}; 1716 } else { 1717 AddPassArg(arguments, 1718 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1719 *sym); 1720 return CalleeAndArguments{ 1721 ProcedureDesignator{*sym}, std::move(arguments)}; 1722 } 1723 } 1724 } 1725 Say(name, 1726 "Base of procedure component reference is not a derived-type object"_err_en_US); 1727 } 1728 } 1729 CHECK(!GetContextualMessages().empty()); 1730 return std::nullopt; 1731 } 1732 1733 // Can actual be argument associated with dummy? 1734 static bool CheckCompatibleArgument(bool isElemental, 1735 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1736 return std::visit( 1737 common::visitors{ 1738 [&](const characteristics::DummyDataObject &x) { 1739 characteristics::TypeAndShape dummyTypeAndShape{x.type}; 1740 if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) { 1741 return false; 1742 } else if (auto actualType{actual.GetType()}) { 1743 return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType); 1744 } else { 1745 return false; 1746 } 1747 }, 1748 [&](const characteristics::DummyProcedure &) { 1749 const auto *expr{actual.UnwrapExpr()}; 1750 return expr && IsProcedurePointer(*expr); 1751 }, 1752 [&](const characteristics::AlternateReturn &) { 1753 return actual.isAlternateReturn(); 1754 }, 1755 }, 1756 dummy.u); 1757 } 1758 1759 // Are the actual arguments compatible with the dummy arguments of procedure? 1760 static bool CheckCompatibleArguments( 1761 const characteristics::Procedure &procedure, 1762 const ActualArguments &actuals) { 1763 bool isElemental{procedure.IsElemental()}; 1764 const auto &dummies{procedure.dummyArguments}; 1765 CHECK(dummies.size() == actuals.size()); 1766 for (std::size_t i{0}; i < dummies.size(); ++i) { 1767 const characteristics::DummyArgument &dummy{dummies[i]}; 1768 const std::optional<ActualArgument> &actual{actuals[i]}; 1769 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1770 return false; 1771 } 1772 } 1773 return true; 1774 } 1775 1776 // Handles a forward reference to a module function from what must 1777 // be a specification expression. Return false if the symbol is 1778 // an invalid forward reference. 1779 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1780 if (context_.HasError(symbol)) { 1781 return false; 1782 } 1783 if (const auto *details{ 1784 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1785 if (details->kind() == semantics::SubprogramKind::Module) { 1786 // If this symbol is still a SubprogramNameDetails, we must be 1787 // checking a specification expression in a sibling module 1788 // procedure. Resolve its names now so that its interface 1789 // is known. 1790 semantics::ResolveSpecificationParts(context_, symbol); 1791 if (symbol.has<semantics::SubprogramNameDetails>()) { 1792 // When the symbol hasn't had its details updated, we must have 1793 // already been in the process of resolving the function's 1794 // specification part; but recursive function calls are not 1795 // allowed in specification parts (10.1.11 para 5). 1796 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1797 symbol.name()); 1798 context_.SetError(symbol); 1799 return false; 1800 } 1801 } else { // 10.1.11 para 4 1802 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1803 symbol.name()); 1804 context_.SetError(symbol); 1805 return false; 1806 } 1807 } 1808 return true; 1809 } 1810 1811 // Resolve a call to a generic procedure with given actual arguments. 1812 // adjustActuals is called on procedure bindings to handle pass arg. 1813 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1814 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1815 bool mightBeStructureConstructor) { 1816 const Symbol *elemental{nullptr}; // matching elemental specific proc 1817 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1818 for (const Symbol &specific : details.specificProcs()) { 1819 if (!ResolveForward(specific)) { 1820 continue; 1821 } 1822 if (std::optional<characteristics::Procedure> procedure{ 1823 characteristics::Procedure::Characterize( 1824 ProcedureDesignator{specific}, context_.intrinsics())}) { 1825 ActualArguments localActuals{actuals}; 1826 if (specific.has<semantics::ProcBindingDetails>()) { 1827 if (!adjustActuals.value()(specific, localActuals)) { 1828 continue; 1829 } 1830 } 1831 if (semantics::CheckInterfaceForGeneric( 1832 *procedure, localActuals, GetFoldingContext())) { 1833 if (CheckCompatibleArguments(*procedure, localActuals)) { 1834 if (!procedure->IsElemental()) { 1835 return &specific; // takes priority over elemental match 1836 } 1837 elemental = &specific; 1838 } 1839 } 1840 } 1841 } 1842 if (elemental) { 1843 return elemental; 1844 } 1845 // Check parent derived type 1846 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 1847 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 1848 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 1849 if (const Symbol * 1850 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 1851 return result; 1852 } 1853 } 1854 } 1855 } 1856 if (mightBeStructureConstructor && details.derivedType()) { 1857 return details.derivedType(); 1858 } 1859 return nullptr; 1860 } 1861 1862 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 1863 if (semantics::IsGenericDefinedOp(symbol)) { 1864 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 1865 symbol.name()); 1866 } else { 1867 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 1868 symbol.name()); 1869 } 1870 } 1871 1872 auto ExpressionAnalyzer::GetCalleeAndArguments( 1873 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 1874 bool isSubroutine, bool mightBeStructureConstructor) 1875 -> std::optional<CalleeAndArguments> { 1876 return std::visit( 1877 common::visitors{ 1878 [&](const parser::Name &name) { 1879 return GetCalleeAndArguments(name, std::move(arguments), 1880 isSubroutine, mightBeStructureConstructor); 1881 }, 1882 [&](const parser::ProcComponentRef &pcr) { 1883 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 1884 }, 1885 }, 1886 pd.u); 1887 } 1888 1889 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 1890 ActualArguments &&arguments, bool isSubroutine, 1891 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 1892 const Symbol *symbol{name.symbol}; 1893 if (context_.HasError(symbol)) { 1894 return std::nullopt; // also handles null symbol 1895 } 1896 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 1897 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 1898 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 1899 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 1900 arguments, GetFoldingContext())}) { 1901 return CalleeAndArguments{ 1902 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1903 std::move(specificCall->arguments)}; 1904 } 1905 } else { 1906 CheckForBadRecursion(name.source, ultimate); 1907 if (ultimate.has<semantics::GenericDetails>()) { 1908 ExpressionAnalyzer::AdjustActuals noAdjustment; 1909 symbol = ResolveGeneric( 1910 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 1911 } 1912 if (symbol) { 1913 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 1914 if (mightBeStructureConstructor) { 1915 return CalleeAndArguments{ 1916 semantics::SymbolRef{*symbol}, std::move(arguments)}; 1917 } 1918 } else { 1919 return CalleeAndArguments{ 1920 ProcedureDesignator{*symbol}, std::move(arguments)}; 1921 } 1922 } else if (std::optional<SpecificCall> specificCall{ 1923 context_.intrinsics().Probe( 1924 CallCharacteristics{ 1925 ultimate.name().ToString(), isSubroutine}, 1926 arguments, GetFoldingContext())}) { 1927 // Generics can extend intrinsics 1928 return CalleeAndArguments{ 1929 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1930 std::move(specificCall->arguments)}; 1931 } else { 1932 EmitGenericResolutionError(*name.symbol); 1933 } 1934 } 1935 return std::nullopt; 1936 } 1937 1938 void ExpressionAnalyzer::CheckForBadRecursion( 1939 parser::CharBlock callSite, const semantics::Symbol &proc) { 1940 if (const auto *scope{proc.scope()}) { 1941 if (scope->sourceRange().Contains(callSite)) { 1942 parser::Message *msg{nullptr}; 1943 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 1944 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 1945 callSite); 1946 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 1947 msg = Say( // 15.6.2.1(3) 1948 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 1949 callSite); 1950 } 1951 AttachDeclaration(msg, proc); 1952 } 1953 } 1954 } 1955 1956 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 1957 if (const auto *designator{ 1958 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 1959 if (const auto *dataRef{ 1960 std::get_if<parser::DataRef>(&designator->value().u)}) { 1961 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 1962 if (const Symbol * symbol{name->symbol}) { 1963 if (const auto *type{symbol->GetType()}) { 1964 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 1965 return symbol; 1966 } 1967 } 1968 } 1969 } 1970 } 1971 } 1972 return nullptr; 1973 } 1974 1975 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 1976 std::optional<parser::StructureConstructor> *structureConstructor) { 1977 const parser::Call &call{funcRef.v}; 1978 auto restorer{GetContextualMessages().SetLocation(call.source)}; 1979 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 1980 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 1981 analyzer.Analyze(arg, false /* not subroutine call */); 1982 } 1983 if (analyzer.fatalErrors()) { 1984 return std::nullopt; 1985 } 1986 if (std::optional<CalleeAndArguments> callee{ 1987 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 1988 analyzer.GetActuals(), false /* not subroutine */, 1989 true /* might be structure constructor */)}) { 1990 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 1991 return MakeFunctionRef( 1992 call.source, std::move(*proc), std::move(callee->arguments)); 1993 } else if (structureConstructor) { 1994 // Structure constructor misparsed as function reference? 1995 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 1996 const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)}; 1997 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 1998 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 1999 semantics::Scope &scope{context_.FindScope(name->source)}; 2000 const semantics::DeclTypeSpec &type{ 2001 semantics::FindOrInstantiateDerivedType(scope, 2002 semantics::DerivedTypeSpec{ 2003 name->source, derivedType.GetUltimate()}, 2004 context_)}; 2005 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2006 *structureConstructor = 2007 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2008 return Analyze(structureConstructor->value()); 2009 } 2010 } 2011 } 2012 return std::nullopt; 2013 } 2014 2015 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2016 const parser::Call &call{callStmt.v}; 2017 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2018 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2019 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2020 for (const auto &arg : actualArgList) { 2021 analyzer.Analyze(arg, true /* is subroutine call */); 2022 } 2023 if (!analyzer.fatalErrors()) { 2024 if (std::optional<CalleeAndArguments> callee{ 2025 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2026 analyzer.GetActuals(), true /* subroutine */)}) { 2027 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2028 CHECK(proc); 2029 if (CheckCall(call.source, *proc, callee->arguments)) { 2030 bool hasAlternateReturns{ 2031 callee->arguments.size() < actualArgList.size()}; 2032 callStmt.typedCall.Reset( 2033 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2034 hasAlternateReturns}, 2035 ProcedureRef::Deleter); 2036 } 2037 } 2038 } 2039 } 2040 2041 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2042 if (!x.typedAssignment) { 2043 ArgumentAnalyzer analyzer{*this}; 2044 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2045 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2046 if (analyzer.fatalErrors()) { 2047 x.typedAssignment.Reset( 2048 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2049 } else { 2050 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2051 Assignment assignment{ 2052 Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))}; 2053 if (procRef) { 2054 assignment.u = std::move(*procRef); 2055 } 2056 x.typedAssignment.Reset( 2057 new GenericAssignmentWrapper{std::move(assignment)}, 2058 GenericAssignmentWrapper::Deleter); 2059 } 2060 } 2061 return common::GetPtrFromOptional(x.typedAssignment->v); 2062 } 2063 2064 const Assignment *ExpressionAnalyzer::Analyze( 2065 const parser::PointerAssignmentStmt &x) { 2066 if (!x.typedAssignment) { 2067 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2068 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2069 if (!lhs || !rhs) { 2070 x.typedAssignment.Reset( 2071 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2072 } else { 2073 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2074 std::visit(common::visitors{ 2075 [&](const std::list<parser::BoundsRemapping> &list) { 2076 Assignment::BoundsRemapping bounds; 2077 for (const auto &elem : list) { 2078 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2079 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2080 if (lower && upper) { 2081 bounds.emplace_back(Fold(std::move(*lower)), 2082 Fold(std::move(*upper))); 2083 } 2084 } 2085 assignment.u = std::move(bounds); 2086 }, 2087 [&](const std::list<parser::BoundsSpec> &list) { 2088 Assignment::BoundsSpec bounds; 2089 for (const auto &bound : list) { 2090 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2091 bounds.emplace_back(Fold(std::move(*lower))); 2092 } 2093 } 2094 assignment.u = std::move(bounds); 2095 }, 2096 }, 2097 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2098 x.typedAssignment.Reset( 2099 new GenericAssignmentWrapper{std::move(assignment)}, 2100 GenericAssignmentWrapper::Deleter); 2101 } 2102 } 2103 return common::GetPtrFromOptional(x.typedAssignment->v); 2104 } 2105 2106 static bool IsExternalCalledImplicitly( 2107 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2108 if (const auto *symbol{proc.GetSymbol()}) { 2109 return symbol->has<semantics::SubprogramDetails>() && 2110 symbol->owner().IsGlobal() && 2111 (!symbol->scope() /*ENTRY*/ || 2112 !symbol->scope()->sourceRange().Contains(callSite)); 2113 } else { 2114 return false; 2115 } 2116 } 2117 2118 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2119 parser::CharBlock callSite, const ProcedureDesignator &proc, 2120 ActualArguments &arguments) { 2121 auto chars{ 2122 characteristics::Procedure::Characterize(proc, context_.intrinsics())}; 2123 if (chars) { 2124 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2125 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2126 Say(callSite, 2127 "References to the procedure '%s' require an explicit interface"_en_US, 2128 DEREF(proc.GetSymbol()).name()); 2129 } 2130 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2131 context_.FindScope(callSite), treatExternalAsImplicit); 2132 const Symbol *procSymbol{proc.GetSymbol()}; 2133 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2134 if (const semantics::Scope * 2135 pure{semantics::FindPureProcedureContaining( 2136 context_.FindScope(callSite))}) { 2137 Say(callSite, 2138 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2139 procSymbol->name(), DEREF(pure->symbol()).name()); 2140 } 2141 } 2142 } 2143 return chars; 2144 } 2145 2146 // Unary operations 2147 2148 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2149 if (MaybeExpr operand{Analyze(x.v.value())}) { 2150 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2151 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2152 if (semantics::IsProcedurePointer(*result)) { 2153 Say("A function reference that returns a procedure " 2154 "pointer may not be parenthesized"_err_en_US); // C1003 2155 } 2156 } 2157 } 2158 return Parenthesize(std::move(*operand)); 2159 } 2160 return std::nullopt; 2161 } 2162 2163 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2164 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2165 ArgumentAnalyzer analyzer{context}; 2166 analyzer.Analyze(x.v); 2167 if (analyzer.fatalErrors()) { 2168 return std::nullopt; 2169 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2170 if (opr == NumericOperator::Add) { 2171 return analyzer.MoveExpr(0); 2172 } else { 2173 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2174 } 2175 } else { 2176 return analyzer.TryDefinedOp(AsFortran(opr), 2177 "Operand of unary %s must be numeric; have %s"_err_en_US); 2178 } 2179 } 2180 2181 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2182 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2183 } 2184 2185 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2186 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2187 } 2188 2189 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2190 ArgumentAnalyzer analyzer{*this}; 2191 analyzer.Analyze(x.v); 2192 if (analyzer.fatalErrors()) { 2193 return std::nullopt; 2194 } else if (analyzer.IsIntrinsicLogical()) { 2195 return AsGenericExpr( 2196 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2197 } else { 2198 return analyzer.TryDefinedOp(LogicalOperator::Not, 2199 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2200 } 2201 } 2202 2203 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2204 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2205 // intrinsic function. 2206 // Use the actual source for the name of the call for error reporting. 2207 std::optional<ActualArgument> arg; 2208 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2209 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2210 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2211 arg = ActualArgument{std::move(*argExpr)}; 2212 } else { 2213 return std::nullopt; 2214 } 2215 parser::CharBlock at{GetContextualMessages().at()}; 2216 CHECK(at.size() >= 4); 2217 parser::CharBlock loc{at.begin() + 1, 3}; 2218 CHECK(loc == "loc"); 2219 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2220 } 2221 2222 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2223 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2224 ArgumentAnalyzer analyzer{*this, name.source}; 2225 analyzer.Analyze(std::get<1>(x.t)); 2226 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2227 "No operator %s defined for %s"_err_en_US, true); 2228 } 2229 2230 // Binary (dyadic) operations 2231 2232 template <template <typename> class OPR> 2233 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2234 const parser::Expr::IntrinsicBinary &x) { 2235 ArgumentAnalyzer analyzer{context}; 2236 analyzer.Analyze(std::get<0>(x.t)); 2237 analyzer.Analyze(std::get<1>(x.t)); 2238 if (analyzer.fatalErrors()) { 2239 return std::nullopt; 2240 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2241 analyzer.CheckConformance(); 2242 return NumericOperation<OPR>(context.GetContextualMessages(), 2243 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2244 context.GetDefaultKind(TypeCategory::Real)); 2245 } else { 2246 return analyzer.TryDefinedOp(AsFortran(opr), 2247 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2248 } 2249 } 2250 2251 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2252 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2253 } 2254 2255 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2256 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2257 } 2258 2259 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2260 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2261 } 2262 2263 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2264 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2265 } 2266 2267 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2268 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2269 } 2270 2271 MaybeExpr ExpressionAnalyzer::Analyze( 2272 const parser::Expr::ComplexConstructor &x) { 2273 auto re{Analyze(std::get<0>(x.t).value())}; 2274 auto im{Analyze(std::get<1>(x.t).value())}; 2275 if (re && im) { 2276 ConformabilityCheck(GetContextualMessages(), *re, *im); 2277 } 2278 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2279 std::move(im), GetDefaultKind(TypeCategory::Real))); 2280 } 2281 2282 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2283 ArgumentAnalyzer analyzer{*this}; 2284 analyzer.Analyze(std::get<0>(x.t)); 2285 analyzer.Analyze(std::get<1>(x.t)); 2286 if (analyzer.fatalErrors()) { 2287 return std::nullopt; 2288 } else if (analyzer.IsIntrinsicConcat()) { 2289 return std::visit( 2290 [&](auto &&x, auto &&y) -> MaybeExpr { 2291 using T = ResultType<decltype(x)>; 2292 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2293 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2294 } else { 2295 DIE("different types for intrinsic concat"); 2296 } 2297 }, 2298 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2299 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2300 } else { 2301 return analyzer.TryDefinedOp("//", 2302 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2303 } 2304 } 2305 2306 // The Name represents a user-defined intrinsic operator. 2307 // If the actuals match one of the specific procedures, return a function ref. 2308 // Otherwise report the error in messages. 2309 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2310 const parser::Name &name, ActualArguments &&actuals) { 2311 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2312 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2313 return MakeFunctionRef(name.source, 2314 std::move(std::get<ProcedureDesignator>(callee->u)), 2315 std::move(callee->arguments)); 2316 } else { 2317 return std::nullopt; 2318 } 2319 } 2320 2321 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2322 const parser::Expr::IntrinsicBinary &x) { 2323 ArgumentAnalyzer analyzer{context}; 2324 analyzer.Analyze(std::get<0>(x.t)); 2325 analyzer.Analyze(std::get<1>(x.t)); 2326 if (analyzer.fatalErrors()) { 2327 return std::nullopt; 2328 } else { 2329 analyzer.ConvertBOZ(0, analyzer.GetType(1)); 2330 analyzer.ConvertBOZ(1, analyzer.GetType(0)); 2331 if (analyzer.IsIntrinsicRelational(opr)) { 2332 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2333 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2334 } else { 2335 return analyzer.TryDefinedOp(opr, 2336 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2337 } 2338 } 2339 } 2340 2341 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2342 return RelationHelper(*this, RelationalOperator::LT, x); 2343 } 2344 2345 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2346 return RelationHelper(*this, RelationalOperator::LE, x); 2347 } 2348 2349 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2350 return RelationHelper(*this, RelationalOperator::EQ, x); 2351 } 2352 2353 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2354 return RelationHelper(*this, RelationalOperator::NE, x); 2355 } 2356 2357 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2358 return RelationHelper(*this, RelationalOperator::GE, x); 2359 } 2360 2361 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2362 return RelationHelper(*this, RelationalOperator::GT, x); 2363 } 2364 2365 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2366 const parser::Expr::IntrinsicBinary &x) { 2367 ArgumentAnalyzer analyzer{context}; 2368 analyzer.Analyze(std::get<0>(x.t)); 2369 analyzer.Analyze(std::get<1>(x.t)); 2370 if (analyzer.fatalErrors()) { 2371 return std::nullopt; 2372 } else if (analyzer.IsIntrinsicLogical()) { 2373 return AsGenericExpr(BinaryLogicalOperation(opr, 2374 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2375 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2376 } else { 2377 return analyzer.TryDefinedOp( 2378 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2379 } 2380 } 2381 2382 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2383 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2384 } 2385 2386 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2387 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2388 } 2389 2390 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2391 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2392 } 2393 2394 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2395 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2396 } 2397 2398 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2399 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2400 ArgumentAnalyzer analyzer{*this, name.source}; 2401 analyzer.Analyze(std::get<1>(x.t)); 2402 analyzer.Analyze(std::get<2>(x.t)); 2403 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2404 "No operator %s defined for %s and %s"_err_en_US, true); 2405 } 2406 2407 static void CheckFuncRefToArrayElementRefHasSubscripts( 2408 semantics::SemanticsContext &context, 2409 const parser::FunctionReference &funcRef) { 2410 // Emit message if the function reference fix will end up an array element 2411 // reference with no subscripts because it will not be possible to later tell 2412 // the difference in expressions between empty subscript list due to bad 2413 // subscripts error recovery or because the user did not put any. 2414 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2415 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2416 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2417 if (!name) { 2418 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2419 } 2420 auto &msg{context.Say(funcRef.v.source, 2421 name->symbol && name->symbol->Rank() == 0 2422 ? "'%s' is not a function"_err_en_US 2423 : "Reference to array '%s' with empty subscript list"_err_en_US, 2424 name->source)}; 2425 if (name->symbol) { 2426 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2427 msg.Attach(name->source, 2428 "A result variable must be declared with RESULT to allow recursive " 2429 "function calls"_en_US); 2430 } else { 2431 AttachDeclaration(&msg, *name->symbol); 2432 } 2433 } 2434 } 2435 } 2436 2437 // Converts, if appropriate, an original misparse of ambiguous syntax like 2438 // A(1) as a function reference into an array reference. 2439 // Misparse structure constructors are detected elsewhere after generic 2440 // function call resolution fails. 2441 template <typename... A> 2442 static void FixMisparsedFunctionReference( 2443 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2444 // The parse tree is updated in situ when resolving an ambiguous parse. 2445 using uType = std::decay_t<decltype(constU)>; 2446 auto &u{const_cast<uType &>(constU)}; 2447 if (auto *func{ 2448 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2449 parser::FunctionReference &funcRef{func->value()}; 2450 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2451 if (Symbol * 2452 origSymbol{ 2453 std::visit(common::visitors{ 2454 [&](parser::Name &name) { return name.symbol; }, 2455 [&](parser::ProcComponentRef &pcr) { 2456 return pcr.v.thing.component.symbol; 2457 }, 2458 }, 2459 proc.u)}) { 2460 Symbol &symbol{origSymbol->GetUltimate()}; 2461 if (symbol.has<semantics::ObjectEntityDetails>() || 2462 symbol.has<semantics::AssocEntityDetails>()) { 2463 // Note that expression in AssocEntityDetails cannot be a procedure 2464 // pointer as per C1105 so this cannot be a function reference. 2465 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2466 uType>) { 2467 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2468 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2469 } else { 2470 DIE("can't fix misparsed function as array reference"); 2471 } 2472 } 2473 } 2474 } 2475 } 2476 2477 // Common handling of parse tree node types that retain the 2478 // representation of the analyzed expression. 2479 template <typename PARSED> 2480 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) { 2481 if (x.typedExpr) { 2482 return x.typedExpr->v; 2483 } 2484 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2485 std::is_same_v<PARSED, parser::Variable>) { 2486 FixMisparsedFunctionReference(context_, x.u); 2487 } 2488 if (AssumedTypeDummy(x)) { // C710 2489 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2490 } else if (MaybeExpr result{evaluate::Fold(foldingContext_, Analyze(x.u))}) { 2491 SetExpr(x, std::move(*result)); 2492 return x.typedExpr->v; 2493 } 2494 ResetExpr(x); 2495 if (!context_.AnyFatalError()) { 2496 std::string buf; 2497 llvm::raw_string_ostream dump{buf}; 2498 parser::DumpTree(dump, x); 2499 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2500 dump.str()); 2501 } 2502 fatalErrors_ = true; 2503 return std::nullopt; 2504 } 2505 2506 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2507 auto restorer{GetContextualMessages().SetLocation(expr.source)}; 2508 return ExprOrVariable(expr); 2509 } 2510 2511 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2512 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; 2513 return ExprOrVariable(variable); 2514 } 2515 2516 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2517 auto restorer{GetContextualMessages().SetLocation(x.source)}; 2518 return ExprOrVariable(x); 2519 } 2520 2521 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2522 TypeCategory category, 2523 const std::optional<parser::KindSelector> &selector) { 2524 int defaultKind{GetDefaultKind(category)}; 2525 if (!selector) { 2526 return Expr<SubscriptInteger>{defaultKind}; 2527 } 2528 return std::visit( 2529 common::visitors{ 2530 [&](const parser::ScalarIntConstantExpr &x) { 2531 if (MaybeExpr kind{Analyze(x)}) { 2532 Expr<SomeType> folded{Fold(std::move(*kind))}; 2533 if (std::optional<std::int64_t> code{ToInt64(folded)}) { 2534 if (CheckIntrinsicKind(category, *code)) { 2535 return Expr<SubscriptInteger>{*code}; 2536 } 2537 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) { 2538 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2539 } 2540 } 2541 return Expr<SubscriptInteger>{defaultKind}; 2542 }, 2543 [&](const parser::KindSelector::StarSize &x) { 2544 std::intmax_t size = x.v; 2545 if (!CheckIntrinsicSize(category, size)) { 2546 size = defaultKind; 2547 } else if (category == TypeCategory::Complex) { 2548 size /= 2; 2549 } 2550 return Expr<SubscriptInteger>{size}; 2551 }, 2552 }, 2553 selector->u); 2554 } 2555 2556 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2557 return context_.GetDefaultKind(category); 2558 } 2559 2560 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2561 common::TypeCategory category) { 2562 return {category, GetDefaultKind(category)}; 2563 } 2564 2565 bool ExpressionAnalyzer::CheckIntrinsicKind( 2566 TypeCategory category, std::int64_t kind) { 2567 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2568 return true; 2569 } else { 2570 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2571 ToUpperCase(EnumToString(category)), kind); 2572 return false; 2573 } 2574 } 2575 2576 bool ExpressionAnalyzer::CheckIntrinsicSize( 2577 TypeCategory category, std::int64_t size) { 2578 if (category == TypeCategory::Complex) { 2579 // COMPLEX*16 == COMPLEX(KIND=8) 2580 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2581 return true; 2582 } 2583 } else if (IsValidKindOfIntrinsicType(category, size)) { 2584 return true; 2585 } 2586 Say("%s*%jd is not a supported type"_err_en_US, 2587 ToUpperCase(EnumToString(category)), size); 2588 return false; 2589 } 2590 2591 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 2592 return impliedDos_.insert(std::make_pair(name, kind)).second; 2593 } 2594 2595 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 2596 auto iter{impliedDos_.find(name)}; 2597 if (iter != impliedDos_.end()) { 2598 impliedDos_.erase(iter); 2599 } 2600 } 2601 2602 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 2603 parser::CharBlock name) const { 2604 auto iter{impliedDos_.find(name)}; 2605 if (iter != impliedDos_.cend()) { 2606 return {iter->second}; 2607 } else { 2608 return std::nullopt; 2609 } 2610 } 2611 2612 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 2613 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 2614 if (result) { 2615 if (auto type{result->GetType()}) { 2616 if (type->category() != category) { // C885 2617 Say(at, "Must have %s type, but is %s"_err_en_US, 2618 ToUpperCase(EnumToString(category)), 2619 ToUpperCase(type->AsFortran())); 2620 return false; 2621 } else if (defaultKind) { 2622 int kind{context_.GetDefaultKind(category)}; 2623 if (type->kind() != kind) { 2624 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 2625 kind, ToUpperCase(EnumToString(category)), 2626 ToUpperCase(type->AsFortran())); 2627 return false; 2628 } 2629 } 2630 } else { 2631 Say(at, "Must have %s type, but is typeless"_err_en_US, 2632 ToUpperCase(EnumToString(category))); 2633 return false; 2634 } 2635 } 2636 return true; 2637 } 2638 2639 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 2640 ProcedureDesignator &&proc, ActualArguments &&arguments) { 2641 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 2642 if (intrinsic->name == "null" && arguments.empty()) { 2643 return Expr<SomeType>{NullPointer{}}; 2644 } 2645 } 2646 if (const Symbol * symbol{proc.GetSymbol()}) { 2647 if (!ResolveForward(*symbol)) { 2648 return std::nullopt; 2649 } 2650 } 2651 if (auto chars{CheckCall(callSite, proc, arguments)}) { 2652 if (chars->functionResult) { 2653 const auto &result{*chars->functionResult}; 2654 if (result.IsProcedurePointer()) { 2655 return Expr<SomeType>{ 2656 ProcedureRef{std::move(proc), std::move(arguments)}}; 2657 } else { 2658 // Not a procedure pointer, so type and shape are known. 2659 return TypedWrapper<FunctionRef, ProcedureRef>( 2660 DEREF(result.GetTypeAndShape()).type(), 2661 ProcedureRef{std::move(proc), std::move(arguments)}); 2662 } 2663 } 2664 } 2665 return std::nullopt; 2666 } 2667 2668 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 2669 parser::CharBlock intrinsic, ActualArguments &&arguments) { 2670 if (std::optional<SpecificCall> specificCall{ 2671 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 2672 arguments, context_.foldingContext())}) { 2673 return MakeFunctionRef(intrinsic, 2674 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2675 std::move(specificCall->arguments)); 2676 } else { 2677 return std::nullopt; 2678 } 2679 } 2680 2681 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 2682 source_.ExtendToCover(x.GetSource()); 2683 if (MaybeExpr expr{context_.Analyze(x)}) { 2684 if (!IsConstantExpr(*expr)) { 2685 actuals_.emplace_back(std::move(*expr)); 2686 return; 2687 } 2688 const Symbol *symbol{GetLastSymbol(*expr)}; 2689 if (!symbol) { 2690 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 2691 x.GetSource()); 2692 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 2693 auto *msg{context_.SayAt(x, 2694 "Assignment to subprogram '%s' is not allowed"_err_en_US, 2695 symbol->name())}; 2696 if (subp->isFunction()) { 2697 const auto &result{subp->result().name()}; 2698 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 2699 } 2700 } else { 2701 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 2702 symbol->name()); 2703 } 2704 } 2705 fatalErrors_ = true; 2706 } 2707 2708 void ArgumentAnalyzer::Analyze( 2709 const parser::ActualArgSpec &arg, bool isSubroutine) { 2710 // TODO: C1002: Allow a whole assumed-size array to appear if the dummy 2711 // argument would accept it. Handle by special-casing the context 2712 // ActualArg -> Variable -> Designator. 2713 // TODO: Actual arguments that are procedures and procedure pointers need to 2714 // be detected and represented (they're not expressions). 2715 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 2716 std::optional<ActualArgument> actual; 2717 bool isAltReturn{false}; 2718 std::visit(common::visitors{ 2719 [&](const common::Indirection<parser::Expr> &x) { 2720 // TODO: Distinguish & handle procedure name and 2721 // proc-component-ref 2722 actual = AnalyzeExpr(x.value()); 2723 }, 2724 [&](const parser::AltReturnSpec &) { 2725 if (!isSubroutine) { 2726 context_.Say( 2727 "alternate return specification may not appear on" 2728 " function reference"_err_en_US); 2729 } 2730 isAltReturn = true; 2731 }, 2732 [&](const parser::ActualArg::PercentRef &) { 2733 context_.Say("TODO: %REF() argument"_err_en_US); 2734 }, 2735 [&](const parser::ActualArg::PercentVal &) { 2736 context_.Say("TODO: %VAL() argument"_err_en_US); 2737 }, 2738 }, 2739 std::get<parser::ActualArg>(arg.t).u); 2740 if (actual) { 2741 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 2742 actual->set_keyword(argKW->v.source); 2743 } 2744 actuals_.emplace_back(std::move(*actual)); 2745 } else if (!isAltReturn) { 2746 fatalErrors_ = true; 2747 } 2748 } 2749 2750 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 2751 CHECK(actuals_.size() == 2); 2752 return semantics::IsIntrinsicRelational( 2753 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2754 } 2755 2756 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 2757 std::optional<DynamicType> type0{GetType(0)}; 2758 if (actuals_.size() == 1) { 2759 if (IsBOZLiteral(0)) { 2760 return opr == NumericOperator::Add; 2761 } else { 2762 return type0 && semantics::IsIntrinsicNumeric(*type0); 2763 } 2764 } else { 2765 std::optional<DynamicType> type1{GetType(1)}; 2766 if (IsBOZLiteral(0) && type1) { 2767 auto cat1{type1->category()}; 2768 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 2769 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 2770 auto cat0{type0->category()}; 2771 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 2772 } else { 2773 return type0 && type1 && 2774 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 2775 } 2776 } 2777 } 2778 2779 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 2780 if (actuals_.size() == 1) { 2781 return semantics::IsIntrinsicLogical(*GetType(0)); 2782 return GetType(0)->category() == TypeCategory::Logical; 2783 } else { 2784 return semantics::IsIntrinsicLogical( 2785 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2786 } 2787 } 2788 2789 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 2790 return semantics::IsIntrinsicConcat( 2791 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2792 } 2793 2794 bool ArgumentAnalyzer::CheckConformance() const { 2795 if (actuals_.size() == 2) { 2796 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 2797 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 2798 if (lhs && rhs) { 2799 auto &foldingContext{context_.GetFoldingContext()}; 2800 auto lhShape{GetShape(foldingContext, *lhs)}; 2801 auto rhShape{GetShape(foldingContext, *rhs)}; 2802 if (lhShape && rhShape) { 2803 return evaluate::CheckConformance(foldingContext.messages(), *lhShape, 2804 *rhShape, "left operand", "right operand"); 2805 } 2806 } 2807 } 2808 return true; // no proven problem 2809 } 2810 2811 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2812 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 2813 if (AnyUntypedOperand()) { 2814 context_.Say( 2815 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2816 return std::nullopt; 2817 } 2818 { 2819 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2820 std::string oprNameString{ 2821 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 2822 parser::CharBlock oprName{oprNameString}; 2823 const auto &scope{context_.context().FindScope(source_)}; 2824 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 2825 parser::Name name{symbol->name(), symbol}; 2826 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 2827 return result; 2828 } 2829 sawDefinedOp_ = symbol; 2830 } 2831 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2832 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 2833 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 2834 return result; 2835 } 2836 } 2837 } 2838 } 2839 if (sawDefinedOp_) { 2840 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 2841 } else if (actuals_.size() == 1 || AreConformable()) { 2842 context_.Say( 2843 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2844 } else { 2845 context_.Say( 2846 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 2847 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 2848 } 2849 return std::nullopt; 2850 } 2851 2852 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2853 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 2854 for (std::size_t i{1}; i < oprs.size(); ++i) { 2855 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2856 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 2857 return result; 2858 } 2859 } 2860 return TryDefinedOp(oprs[0], std::move(error)); 2861 } 2862 2863 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 2864 ActualArguments localActuals{actuals_}; 2865 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 2866 if (!proc) { 2867 proc = &symbol; 2868 localActuals.at(passIndex).value().set_isPassedObject(); 2869 } 2870 CheckConformance(); 2871 return context_.MakeFunctionRef( 2872 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 2873 } 2874 2875 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 2876 using semantics::Tristate; 2877 const Expr<SomeType> &lhs{GetExpr(0)}; 2878 const Expr<SomeType> &rhs{GetExpr(1)}; 2879 std::optional<DynamicType> lhsType{lhs.GetType()}; 2880 std::optional<DynamicType> rhsType{rhs.GetType()}; 2881 int lhsRank{lhs.Rank()}; 2882 int rhsRank{rhs.Rank()}; 2883 Tristate isDefined{ 2884 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 2885 if (isDefined == Tristate::No) { 2886 if (lhsType && rhsType) { 2887 AddAssignmentConversion(*lhsType, *rhsType); 2888 } 2889 return std::nullopt; // user-defined assignment not allowed for these args 2890 } 2891 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 2892 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 2893 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 2894 return std::move(*procRef); 2895 } 2896 if (isDefined == Tristate::Yes) { 2897 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 2898 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 2899 SayNoMatch("ASSIGNMENT(=)", true); 2900 } 2901 } 2902 return std::nullopt; 2903 } 2904 2905 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 2906 TypeCategory lhs, TypeCategory rhs) { 2907 if (!context_.context().languageFeatures().IsEnabled( 2908 common::LanguageFeature::LogicalIntegerAssignment)) { 2909 return false; 2910 } 2911 std::optional<parser::MessageFixedText> msg; 2912 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 2913 // allow assignment to LOGICAL from INTEGER as a legacy extension 2914 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 2915 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 2916 // ... and assignment to LOGICAL from INTEGER 2917 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 2918 } else { 2919 return false; 2920 } 2921 if (context_.context().languageFeatures().ShouldWarn( 2922 common::LanguageFeature::LogicalIntegerAssignment)) { 2923 context_.Say(std::move(*msg)); 2924 } 2925 return true; 2926 } 2927 2928 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 2929 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2930 std::string oprNameString{"assignment(=)"}; 2931 parser::CharBlock oprName{oprNameString}; 2932 const Symbol *proc{nullptr}; 2933 const auto &scope{context_.context().FindScope(source_)}; 2934 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 2935 ExpressionAnalyzer::AdjustActuals noAdjustment; 2936 if (const Symbol * 2937 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 2938 proc = specific; 2939 } else { 2940 context_.EmitGenericResolutionError(*symbol); 2941 } 2942 } 2943 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2944 if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) { 2945 proc = specific; 2946 } 2947 } 2948 if (proc) { 2949 ActualArguments actualsCopy{actuals_}; 2950 actualsCopy[1]->Parenthesize(); 2951 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 2952 } else { 2953 return std::nullopt; 2954 } 2955 } 2956 2957 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 2958 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 2959 << '\n'; 2960 for (const auto &actual : actuals_) { 2961 if (!actual.has_value()) { 2962 os << "- error\n"; 2963 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 2964 os << "- assumed type: " << symbol->name().ToString() << '\n'; 2965 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 2966 expr->AsFortran(os << "- expr: ") << '\n'; 2967 } else { 2968 DIE("bad ActualArgument"); 2969 } 2970 } 2971 } 2972 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 2973 const parser::Expr &expr) { 2974 source_.ExtendToCover(expr.source); 2975 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 2976 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 2977 if (isProcedureCall_) { 2978 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2979 } else { 2980 context_.SayAt(expr.source, 2981 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2982 return std::nullopt; 2983 } 2984 } else if (MaybeExpr argExpr{context_.Analyze(expr)}) { 2985 if (!isProcedureCall_ && IsProcedure(*argExpr)) { 2986 if (IsFunction(*argExpr)) { 2987 context_.SayAt( 2988 expr.source, "Function call must have argument list"_err_en_US); 2989 } else { 2990 context_.SayAt( 2991 expr.source, "Subroutine name is not allowed here"_err_en_US); 2992 } 2993 return std::nullopt; 2994 } 2995 return ActualArgument{context_.Fold(std::move(*argExpr))}; 2996 } else { 2997 return std::nullopt; 2998 } 2999 } 3000 3001 bool ArgumentAnalyzer::AreConformable() const { 3002 CHECK(!fatalErrors_ && actuals_.size() == 2); 3003 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3004 } 3005 3006 // Look for a type-bound operator in the type of arg number passIndex. 3007 const Symbol *ArgumentAnalyzer::FindBoundOp( 3008 parser::CharBlock oprName, int passIndex) { 3009 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3010 if (!type || !type->scope()) { 3011 return nullptr; 3012 } 3013 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3014 if (!symbol) { 3015 return nullptr; 3016 } 3017 sawDefinedOp_ = symbol; 3018 ExpressionAnalyzer::AdjustActuals adjustment{ 3019 [&](const Symbol &proc, ActualArguments &) { 3020 return passIndex == GetPassIndex(proc); 3021 }}; 3022 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3023 if (!result) { 3024 context_.EmitGenericResolutionError(*symbol); 3025 } 3026 return result; 3027 } 3028 3029 // If there is an implicit conversion between intrinsic types, make it explicit 3030 void ArgumentAnalyzer::AddAssignmentConversion( 3031 const DynamicType &lhsType, const DynamicType &rhsType) { 3032 if (lhsType.category() == rhsType.category() && 3033 lhsType.kind() == rhsType.kind()) { 3034 // no conversion necessary 3035 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3036 actuals_[1] = ActualArgument{*rhsExpr}; 3037 } else { 3038 actuals_[1] = std::nullopt; 3039 } 3040 } 3041 3042 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3043 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3044 } 3045 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3046 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3047 } 3048 3049 // If the argument at index i is a BOZ literal, convert its type to match the 3050 // otherType. It it's REAL convert to REAL, otherwise convert to INTEGER. 3051 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3052 // is not currently supported. 3053 void ArgumentAnalyzer::ConvertBOZ( 3054 std::size_t i, std::optional<DynamicType> otherType) { 3055 if (IsBOZLiteral(i)) { 3056 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3057 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3058 if (otherType && otherType->category() == TypeCategory::Real) { 3059 MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>( 3060 context_.context().GetDefaultKind(TypeCategory::Real), 3061 std::move(*boz))}; 3062 actuals_[i] = std::move(*realExpr); 3063 } else { 3064 MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>( 3065 context_.context().GetDefaultKind(TypeCategory::Integer), 3066 std::move(*boz))}; 3067 actuals_[i] = std::move(*intExpr); 3068 } 3069 } 3070 } 3071 3072 // Report error resolving opr when there is a user-defined one available 3073 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3074 std::string type0{TypeAsFortran(0)}; 3075 auto rank0{actuals_[0]->Rank()}; 3076 if (actuals_.size() == 1) { 3077 if (rank0 > 0) { 3078 context_.Say("No intrinsic or user-defined %s matches " 3079 "rank %d array of %s"_err_en_US, 3080 opr, rank0, type0); 3081 } else { 3082 context_.Say("No intrinsic or user-defined %s matches " 3083 "operand type %s"_err_en_US, 3084 opr, type0); 3085 } 3086 } else { 3087 std::string type1{TypeAsFortran(1)}; 3088 auto rank1{actuals_[1]->Rank()}; 3089 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3090 context_.Say("No intrinsic or user-defined %s matches " 3091 "rank %d array of %s and rank %d array of %s"_err_en_US, 3092 opr, rank0, type0, rank1, type1); 3093 } else if (isAssignment && rank0 != rank1) { 3094 if (rank0 == 0) { 3095 context_.Say("No intrinsic or user-defined %s matches " 3096 "scalar %s and rank %d array of %s"_err_en_US, 3097 opr, type0, rank1, type1); 3098 } else { 3099 context_.Say("No intrinsic or user-defined %s matches " 3100 "rank %d array of %s and scalar %s"_err_en_US, 3101 opr, rank0, type0, type1); 3102 } 3103 } else { 3104 context_.Say("No intrinsic or user-defined %s matches " 3105 "operand types %s and %s"_err_en_US, 3106 opr, type0, type1); 3107 } 3108 } 3109 } 3110 3111 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3112 if (std::optional<DynamicType> type{GetType(i)}) { 3113 return type->category() == TypeCategory::Derived 3114 ? "TYPE("s + type->AsFortran() + ')' 3115 : type->category() == TypeCategory::Character 3116 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3117 : ToUpperCase(type->AsFortran()); 3118 } else { 3119 return "untyped"; 3120 } 3121 } 3122 3123 bool ArgumentAnalyzer::AnyUntypedOperand() { 3124 for (const auto &actual : actuals_) { 3125 if (!actual.value().GetType()) { 3126 return true; 3127 } 3128 } 3129 return false; 3130 } 3131 3132 } // namespace Fortran::evaluate 3133 3134 namespace Fortran::semantics { 3135 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3136 SemanticsContext &context, common::TypeCategory category, 3137 const std::optional<parser::KindSelector> &selector) { 3138 evaluate::ExpressionAnalyzer analyzer{context}; 3139 auto restorer{ 3140 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3141 return analyzer.AnalyzeKindSelector(category, selector); 3142 } 3143 3144 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3145 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3146 } 3147 3148 const evaluate::Assignment *AnalyzeAssignmentStmt( 3149 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3150 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3151 } 3152 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3153 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3154 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3155 } 3156 3157 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3158 3159 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3160 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3161 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3162 auto name{bounds.name.thing.thing}; 3163 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3164 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3165 if (dynamicType->category() == TypeCategory::Integer) { 3166 kind = dynamicType->kind(); 3167 } 3168 } 3169 exprAnalyzer_.AddImpliedDo(name.source, kind); 3170 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3171 exprAnalyzer_.RemoveImpliedDo(name.source); 3172 return false; 3173 } 3174 3175 bool ExprChecker::Walk(const parser::Program &program) { 3176 parser::Walk(program, *this); 3177 return !context_.AnyFatalError(); 3178 } 3179 } // namespace Fortran::semantics 3180