1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/idioms.h"
14 #include "flang/Evaluate/common.h"
15 #include "flang/Evaluate/fold.h"
16 #include "flang/Evaluate/tools.h"
17 #include "flang/Parser/characters.h"
18 #include "flang/Parser/dump-parse-tree.h"
19 #include "flang/Parser/parse-tree-visitor.h"
20 #include "flang/Parser/parse-tree.h"
21 #include "flang/Semantics/scope.h"
22 #include "flang/Semantics/semantics.h"
23 #include "flang/Semantics/symbol.h"
24 #include "flang/Semantics/tools.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <functional>
28 #include <optional>
29 #include <set>
30 
31 // Typedef for optional generic expressions (ubiquitous in this file)
32 using MaybeExpr =
33     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
34 
35 // Much of the code that implements semantic analysis of expressions is
36 // tightly coupled with their typed representations in lib/Evaluate,
37 // and appears here in namespace Fortran::evaluate for convenience.
38 namespace Fortran::evaluate {
39 
40 using common::LanguageFeature;
41 using common::NumericOperator;
42 using common::TypeCategory;
43 
44 static inline std::string ToUpperCase(const std::string &str) {
45   return parser::ToUpperCaseLetters(str);
46 }
47 
48 struct DynamicTypeWithLength : public DynamicType {
49   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
50   std::optional<Expr<SubscriptInteger>> LEN() const;
51   std::optional<Expr<SubscriptInteger>> length;
52 };
53 
54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
55   if (length) {
56     return length;
57   }
58   if (auto *lengthParam{charLength()}) {
59     if (const auto &len{lengthParam->GetExplicit()}) {
60       return ConvertToType<SubscriptInteger>(common::Clone(*len));
61     }
62   }
63   return std::nullopt; // assumed or deferred length
64 }
65 
66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
67     const std::optional<parser::TypeSpec> &spec) {
68   if (spec) {
69     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
70       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
71       // (viz., an intrinsic type with valid known kind or a non-polymorphic
72       // & non-ABSTRACT derived type).
73       if (const semantics::IntrinsicTypeSpec *
74           intrinsic{typeSpec->AsIntrinsic()}) {
75         TypeCategory category{intrinsic->category()};
76         if (auto optKind{ToInt64(intrinsic->kind())}) {
77           int kind{static_cast<int>(*optKind)};
78           if (category == TypeCategory::Character) {
79             const semantics::CharacterTypeSpec &cts{
80                 typeSpec->characterTypeSpec()};
81             const semantics::ParamValue &len{cts.length()};
82             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
83             // type guards, but not in array constructors.
84             return DynamicTypeWithLength{DynamicType{kind, len}};
85           } else {
86             return DynamicTypeWithLength{DynamicType{category, kind}};
87           }
88         }
89       } else if (const semantics::DerivedTypeSpec *
90           derived{typeSpec->AsDerived()}) {
91         return DynamicTypeWithLength{DynamicType{*derived}};
92       }
93     }
94   }
95   return std::nullopt;
96 }
97 
98 class ArgumentAnalyzer {
99 public:
100   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
101       : context_{context}, isProcedureCall_{false} {}
102   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
103       bool isProcedureCall = false)
104       : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
105   bool fatalErrors() const { return fatalErrors_; }
106   ActualArguments &&GetActuals() {
107     CHECK(!fatalErrors_);
108     return std::move(actuals_);
109   }
110   const Expr<SomeType> &GetExpr(std::size_t i) const {
111     return DEREF(actuals_.at(i).value().UnwrapExpr());
112   }
113   Expr<SomeType> &&MoveExpr(std::size_t i) {
114     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
115   }
116   void Analyze(const common::Indirection<parser::Expr> &x) {
117     Analyze(x.value());
118   }
119   void Analyze(const parser::Expr &x) {
120     actuals_.emplace_back(AnalyzeExpr(x));
121     fatalErrors_ |= !actuals_.back();
122   }
123   void Analyze(const parser::Variable &);
124   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
125   void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType);
126 
127   bool IsIntrinsicRelational(RelationalOperator) const;
128   bool IsIntrinsicLogical() const;
129   bool IsIntrinsicNumeric(NumericOperator) const;
130   bool IsIntrinsicConcat() const;
131 
132   // Find and return a user-defined operator or report an error.
133   // The provided message is used if there is no such operator.
134   MaybeExpr TryDefinedOp(
135       const char *, parser::MessageFixedText &&, bool isUserOp = false);
136   template <typename E>
137   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) {
138     return TryDefinedOp(
139         context_.context().languageFeatures().GetNames(opr), std::move(msg));
140   }
141   // Find and return a user-defined assignment
142   std::optional<ProcedureRef> TryDefinedAssignment();
143   std::optional<ProcedureRef> GetDefinedAssignmentProc();
144   std::optional<DynamicType> GetType(std::size_t) const;
145   void Dump(llvm::raw_ostream &);
146 
147 private:
148   MaybeExpr TryDefinedOp(
149       std::vector<const char *>, parser::MessageFixedText &&);
150   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
151   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
152   bool AreConformable() const;
153   const Symbol *FindBoundOp(parser::CharBlock, int passIndex);
154   void AddAssignmentConversion(
155       const DynamicType &lhsType, const DynamicType &rhsType);
156   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
157   int GetRank(std::size_t) const;
158   bool IsBOZLiteral(std::size_t i) const {
159     return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u);
160   }
161   void SayNoMatch(const std::string &, bool isAssignment = false);
162   std::string TypeAsFortran(std::size_t);
163   bool AnyUntypedOperand();
164 
165   ExpressionAnalyzer &context_;
166   ActualArguments actuals_;
167   parser::CharBlock source_;
168   bool fatalErrors_{false};
169   const bool isProcedureCall_; // false for user-defined op or assignment
170   const Symbol *sawDefinedOp_{nullptr};
171 };
172 
173 // Wraps a data reference in a typed Designator<>, and a procedure
174 // or procedure pointer reference in a ProcedureDesignator.
175 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
176   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
177   if (semantics::IsProcedure(symbol)) {
178     if (auto *component{std::get_if<Component>(&ref.u)}) {
179       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
180     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
181       DIE("unexpected alternative in DataRef");
182     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
183       return Expr<SomeType>{ProcedureDesignator{symbol}};
184     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
185                    symbol.name().ToString())}) {
186       SpecificIntrinsic intrinsic{
187           symbol.name().ToString(), std::move(*interface)};
188       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
189       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
190     } else {
191       Say("'%s' is not a specific intrinsic procedure"_err_en_US,
192           symbol.name());
193       return std::nullopt;
194     }
195   } else if (auto dyType{DynamicType::From(symbol)}) {
196     return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref));
197   }
198   return std::nullopt;
199 }
200 
201 // Some subscript semantic checks must be deferred until all of the
202 // subscripts are in hand.
203 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
204   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
205   const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()};
206   int symbolRank{symbol.Rank()};
207   int subscripts{static_cast<int>(ref.size())};
208   if (subscripts == 0) {
209     // nothing to check
210   } else if (subscripts != symbolRank) {
211     if (symbolRank != 0) {
212       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
213           symbolRank, symbol.name(), subscripts);
214     }
215     return std::nullopt;
216   } else if (Component * component{ref.base().UnwrapComponent()}) {
217     int baseRank{component->base().Rank()};
218     if (baseRank > 0) {
219       int subscriptRank{0};
220       for (const auto &expr : ref.subscript()) {
221         subscriptRank += expr.Rank();
222       }
223       if (subscriptRank > 0) {
224         Say("Subscripts of component '%s' of rank-%d derived type "
225             "array have rank %d but must all be scalar"_err_en_US,
226             symbol.name(), baseRank, subscriptRank);
227         return std::nullopt;
228       }
229     }
230   } else if (object) {
231     // C928 & C1002
232     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
233       if (!last->upper() && object->IsAssumedSize()) {
234         Say("Assumed-size array '%s' must have explicit final "
235             "subscript upper bound value"_err_en_US,
236             symbol.name());
237         return std::nullopt;
238       }
239     }
240   }
241   return Designate(DataRef{std::move(ref)});
242 }
243 
244 // Applies subscripts to a data reference.
245 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
246     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
247   return std::visit(
248       common::visitors{
249           [&](SymbolRef &&symbol) {
250             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
251           },
252           [&](Component &&c) {
253             return CompleteSubscripts(
254                 ArrayRef{std::move(c), std::move(subscripts)});
255           },
256           [&](auto &&) -> MaybeExpr {
257             DIE("bad base for ArrayRef");
258             return std::nullopt;
259           },
260       },
261       std::move(dataRef.u));
262 }
263 
264 // Top-level checks for data references.
265 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
266   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
267     const Symbol &symbol{component->GetLastSymbol()};
268     int componentRank{symbol.Rank()};
269     if (componentRank > 0) {
270       int baseRank{component->base().Rank()};
271       if (baseRank > 0) {
272         Say("Reference to whole rank-%d component '%%%s' of "
273             "rank-%d array of derived type is not allowed"_err_en_US,
274             componentRank, symbol.name(), baseRank);
275       }
276     }
277   }
278   return Designate(std::move(dataRef));
279 }
280 
281 // Parse tree correction after a substring S(j:k) was misparsed as an
282 // array section.  N.B. Fortran substrings have to have a range, not a
283 // single index.
284 static void FixMisparsedSubstring(const parser::Designator &d) {
285   auto &mutate{const_cast<parser::Designator &>(d)};
286   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
287     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
288             &dataRef->u)}) {
289       parser::ArrayElement &arrElement{ae->value()};
290       if (!arrElement.subscripts.empty()) {
291         auto iter{arrElement.subscripts.begin()};
292         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
293           if (!std::get<2>(triplet->t) /* no stride */ &&
294               ++iter == arrElement.subscripts.end() /* one subscript */) {
295             if (Symbol *
296                 symbol{std::visit(
297                     common::visitors{
298                         [](parser::Name &n) { return n.symbol; },
299                         [](common::Indirection<parser::StructureComponent>
300                                 &sc) { return sc.value().component.symbol; },
301                         [](auto &) -> Symbol * { return nullptr; },
302                     },
303                     arrElement.base.u)}) {
304               const Symbol &ultimate{symbol->GetUltimate()};
305               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
306                 if (!ultimate.IsObjectArray() &&
307                     type->category() == semantics::DeclTypeSpec::Character) {
308                   // The ambiguous S(j:k) was parsed as an array section
309                   // reference, but it's now clear that it's a substring.
310                   // Fix the parse tree in situ.
311                   mutate.u = arrElement.ConvertToSubstring();
312                 }
313               }
314             }
315           }
316         }
317       }
318     }
319   }
320 }
321 
322 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
323   auto restorer{GetContextualMessages().SetLocation(d.source)};
324   FixMisparsedSubstring(d);
325   // These checks have to be deferred to these "top level" data-refs where
326   // we can be sure that there are no following subscripts (yet).
327   // Substrings have already been run through TopLevelChecks() and
328   // won't be returned by ExtractDataRef().
329   if (MaybeExpr result{Analyze(d.u)}) {
330     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
331       return TopLevelChecks(std::move(*dataRef));
332     }
333     return result;
334   }
335   return std::nullopt;
336 }
337 
338 // A utility subroutine to repackage optional expressions of various levels
339 // of type specificity as fully general MaybeExpr values.
340 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
341   return AsGenericExpr(std::move(x));
342 }
343 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
344   if (x) {
345     return AsMaybeExpr(std::move(*x));
346   }
347   return std::nullopt;
348 }
349 
350 // Type kind parameter values for literal constants.
351 int ExpressionAnalyzer::AnalyzeKindParam(
352     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
353   if (!kindParam) {
354     return defaultKind;
355   }
356   return std::visit(
357       common::visitors{
358           [](std::uint64_t k) { return static_cast<int>(k); },
359           [&](const parser::Scalar<
360               parser::Integer<parser::Constant<parser::Name>>> &n) {
361             if (MaybeExpr ie{Analyze(n)}) {
362               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
363                 int iv = *i64;
364                 if (iv == *i64) {
365                   return iv;
366                 }
367               }
368             }
369             return defaultKind;
370           },
371       },
372       kindParam->u);
373 }
374 
375 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
376 struct IntTypeVisitor {
377   using Result = MaybeExpr;
378   using Types = IntegerTypes;
379   template <typename T> Result Test() {
380     if (T::kind >= kind) {
381       const char *p{digits.begin()};
382       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
383       if (!value.overflow) {
384         if (T::kind > kind) {
385           if (!isDefaultKind ||
386               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
387             return std::nullopt;
388           } else if (analyzer.context().ShouldWarn(
389                          LanguageFeature::BigIntLiterals)) {
390             analyzer.Say(digits,
391                 "Integer literal is too large for default INTEGER(KIND=%d); "
392                 "assuming INTEGER(KIND=%d)"_en_US,
393                 kind, T::kind);
394           }
395         }
396         return Expr<SomeType>{
397             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
398       }
399     }
400     return std::nullopt;
401   }
402   ExpressionAnalyzer &analyzer;
403   parser::CharBlock digits;
404   int kind;
405   bool isDefaultKind;
406 };
407 
408 template <typename PARSED>
409 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
410   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
411   bool isDefaultKind{!kindParam};
412   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
413   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
414     auto digits{std::get<parser::CharBlock>(x.t)};
415     if (MaybeExpr result{common::SearchTypes(
416             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
417       return result;
418     } else if (isDefaultKind) {
419       Say(digits,
420           "Integer literal is too large for any allowable "
421           "kind of INTEGER"_err_en_US);
422     } else {
423       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
424           kind);
425     }
426   }
427   return std::nullopt;
428 }
429 
430 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
431   auto restorer{
432       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
433   return IntLiteralConstant(x);
434 }
435 
436 MaybeExpr ExpressionAnalyzer::Analyze(
437     const parser::SignedIntLiteralConstant &x) {
438   auto restorer{GetContextualMessages().SetLocation(x.source)};
439   return IntLiteralConstant(x);
440 }
441 
442 template <typename TYPE>
443 Constant<TYPE> ReadRealLiteral(
444     parser::CharBlock source, FoldingContext &context) {
445   const char *p{source.begin()};
446   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
447   CHECK(p == source.end());
448   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
449   auto value{valWithFlags.value};
450   if (context.flushSubnormalsToZero()) {
451     value = value.FlushSubnormalToZero();
452   }
453   return {value};
454 }
455 
456 struct RealTypeVisitor {
457   using Result = std::optional<Expr<SomeReal>>;
458   using Types = RealTypes;
459 
460   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
461       : kind{k}, literal{lit}, context{ctx} {}
462 
463   template <typename T> Result Test() {
464     if (kind == T::kind) {
465       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
466     }
467     return std::nullopt;
468   }
469 
470   int kind;
471   parser::CharBlock literal;
472   FoldingContext &context;
473 };
474 
475 // Reads a real literal constant and encodes it with the right kind.
476 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
477   // Use a local message context around the real literal for better
478   // provenance on any messages.
479   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
480   // If a kind parameter appears, it defines the kind of the literal and the
481   // letter used in an exponent part must be 'E' (e.g., the 'E' in
482   // "6.02214E+23").  In the absence of an explicit kind parameter, any
483   // exponent letter determines the kind.  Otherwise, defaults apply.
484   auto &defaults{context_.defaultKinds()};
485   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
486   const char *end{x.real.source.end()};
487   char expoLetter{' '};
488   std::optional<int> letterKind;
489   for (const char *p{x.real.source.begin()}; p < end; ++p) {
490     if (parser::IsLetter(*p)) {
491       expoLetter = *p;
492       switch (expoLetter) {
493       case 'e':
494         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
495         break;
496       case 'd':
497         letterKind = defaults.doublePrecisionKind();
498         break;
499       case 'q':
500         letterKind = defaults.quadPrecisionKind();
501         break;
502       default:
503         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
504       }
505       break;
506     }
507   }
508   if (letterKind) {
509     defaultKind = *letterKind;
510   }
511   // C716 requires 'E' as an exponent, but this is more useful
512   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
513   if (letterKind && kind != *letterKind && expoLetter != 'e') {
514     Say("Explicit kind parameter on real constant disagrees with "
515         "exponent letter '%c'"_en_US,
516         expoLetter);
517   }
518   auto result{common::SearchTypes(
519       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
520   if (!result) { // C717
521     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
522   }
523   return AsMaybeExpr(std::move(result));
524 }
525 
526 MaybeExpr ExpressionAnalyzer::Analyze(
527     const parser::SignedRealLiteralConstant &x) {
528   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
529     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
530     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
531       if (sign == parser::Sign::Negative) {
532         return AsGenericExpr(-std::move(realExpr));
533       }
534     }
535     return result;
536   }
537   return std::nullopt;
538 }
539 
540 MaybeExpr ExpressionAnalyzer::Analyze(
541     const parser::SignedComplexLiteralConstant &x) {
542   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
543   if (!result) {
544     return std::nullopt;
545   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
546     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
547   } else {
548     return result;
549   }
550 }
551 
552 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
553   return Analyze(x.u);
554 }
555 
556 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
557   return AsMaybeExpr(
558       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
559           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
560 }
561 
562 // CHARACTER literal processing.
563 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
564   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
565     return std::nullopt;
566   }
567   switch (kind) {
568   case 1:
569     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
570         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
571             string, true)});
572   case 2:
573     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
574         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
575             string, true)});
576   case 4:
577     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
578         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
579             string, true)});
580   default:
581     CRASH_NO_CASE;
582   }
583 }
584 
585 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
586   int kind{
587       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
588   auto value{std::get<std::string>(x.t)};
589   return AnalyzeString(std::move(value), kind);
590 }
591 
592 MaybeExpr ExpressionAnalyzer::Analyze(
593     const parser::HollerithLiteralConstant &x) {
594   int kind{GetDefaultKind(TypeCategory::Character)};
595   auto value{x.v};
596   return AnalyzeString(std::move(value), kind);
597 }
598 
599 // .TRUE. and .FALSE. of various kinds
600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
601   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
602       GetDefaultKind(TypeCategory::Logical))};
603   bool value{std::get<bool>(x.t)};
604   auto result{common::SearchTypes(
605       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
606           kind, std::move(value)})};
607   if (!result) {
608     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
609   }
610   return result;
611 }
612 
613 // BOZ typeless literals
614 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
615   const char *p{x.v.c_str()};
616   std::uint64_t base{16};
617   switch (*p++) {
618   case 'b':
619     base = 2;
620     break;
621   case 'o':
622     base = 8;
623     break;
624   case 'z':
625     break;
626   case 'x':
627     break;
628   default:
629     CRASH_NO_CASE;
630   }
631   CHECK(*p == '"');
632   ++p;
633   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
634   if (*p != '"') {
635     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
636         x.v); // C7107, C7108
637     return std::nullopt;
638   }
639   if (value.overflow) {
640     Say("BOZ literal '%s' too large"_err_en_US, x.v);
641     return std::nullopt;
642   }
643   return AsGenericExpr(std::move(value.value));
644 }
645 
646 // For use with SearchTypes to create a TypeParamInquiry with the
647 // right integer kind.
648 struct TypeParamInquiryVisitor {
649   using Result = std::optional<Expr<SomeInteger>>;
650   using Types = IntegerTypes;
651   TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol &param)
652       : kind{k}, base{std::move(b)}, parameter{param} {}
653   TypeParamInquiryVisitor(int k, const Symbol &param)
654       : kind{k}, parameter{param} {}
655   template <typename T> Result Test() {
656     if (kind == T::kind) {
657       return Expr<SomeInteger>{
658           Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}};
659     }
660     return std::nullopt;
661   }
662   int kind;
663   std::optional<NamedEntity> base;
664   const Symbol &parameter;
665 };
666 
667 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry(
668     const Symbol *symbol) {
669   if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) {
670     if (dyType->category() == TypeCategory::Integer) {
671       return common::SearchTypes(
672           TypeParamInquiryVisitor{dyType->kind(), *symbol});
673     }
674   }
675   return std::nullopt;
676 }
677 
678 // Names and named constants
679 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
680   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
681     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
682         *kind, AsExpr(ImpliedDoIndex{n.source})));
683   } else if (context_.HasError(n) || !n.symbol) {
684     return std::nullopt;
685   } else {
686     const Symbol &ultimate{n.symbol->GetUltimate()};
687     if (ultimate.has<semantics::TypeParamDetails>()) {
688       // A bare reference to a derived type parameter (within a parameterized
689       // derived type definition)
690       return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate));
691     } else {
692       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
693         if (const semantics::Scope *
694             pure{semantics::FindPureProcedureContaining(
695                 context_.FindScope(n.source))}) {
696           SayAt(n,
697               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
698               n.source, DEREF(pure->symbol()).name());
699           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
700         }
701       }
702       return Designate(DataRef{*n.symbol});
703     }
704   }
705 }
706 
707 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
708   if (MaybeExpr value{Analyze(n.v)}) {
709     Expr<SomeType> folded{Fold(std::move(*value))};
710     if (IsConstantExpr(folded)) {
711       return folded;
712     }
713     Say(n.v.source, "must be a constant"_err_en_US); // C718
714   }
715   return std::nullopt;
716 }
717 
718 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) {
719   return Expr<SomeType>{NullPointer{}};
720 }
721 
722 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
723   return Analyze(x.value());
724 }
725 
726 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
727   if (const auto &repeat{
728           std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
729     x.repetitions = -1;
730     if (MaybeExpr expr{Analyze(repeat->u)}) {
731       Expr<SomeType> folded{Fold(std::move(*expr))};
732       if (auto value{ToInt64(folded)}) {
733         if (*value >= 0) { // C882
734           x.repetitions = *value;
735         } else {
736           Say(FindSourceLocation(repeat),
737               "Repeat count (%jd) for data value must not be negative"_err_en_US,
738               *value);
739         }
740       }
741     }
742   }
743   return Analyze(std::get<parser::DataStmtConstant>(x.t));
744 }
745 
746 // Substring references
747 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
748     const std::optional<parser::ScalarIntExpr> &bound) {
749   if (bound) {
750     if (MaybeExpr expr{Analyze(*bound)}) {
751       if (expr->Rank() > 1) {
752         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
753       }
754       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
755         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
756           return {std::move(*ssIntExpr)};
757         }
758         return {Expr<SubscriptInteger>{
759             Convert<SubscriptInteger, TypeCategory::Integer>{
760                 std::move(*intExpr)}}};
761       } else {
762         Say("substring bound expression is not INTEGER"_err_en_US);
763       }
764     }
765   }
766   return std::nullopt;
767 }
768 
769 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
770   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
771     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
772       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
773         if (std::optional<DataRef> checked{
774                 ExtractDataRef(std::move(*newBaseExpr))}) {
775           const parser::SubstringRange &range{
776               std::get<parser::SubstringRange>(ss.t)};
777           std::optional<Expr<SubscriptInteger>> first{
778               GetSubstringBound(std::get<0>(range.t))};
779           std::optional<Expr<SubscriptInteger>> last{
780               GetSubstringBound(std::get<1>(range.t))};
781           const Symbol &symbol{checked->GetLastSymbol()};
782           if (std::optional<DynamicType> dynamicType{
783                   DynamicType::From(symbol)}) {
784             if (dynamicType->category() == TypeCategory::Character) {
785               return WrapperHelper<TypeCategory::Character, Designator,
786                   Substring>(dynamicType->kind(),
787                   Substring{std::move(checked.value()), std::move(first),
788                       std::move(last)});
789             }
790           }
791           Say("substring may apply only to CHARACTER"_err_en_US);
792         }
793       }
794     }
795   }
796   return std::nullopt;
797 }
798 
799 // CHARACTER literal substrings
800 MaybeExpr ExpressionAnalyzer::Analyze(
801     const parser::CharLiteralConstantSubstring &x) {
802   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
803   std::optional<Expr<SubscriptInteger>> lower{
804       GetSubstringBound(std::get<0>(range.t))};
805   std::optional<Expr<SubscriptInteger>> upper{
806       GetSubstringBound(std::get<1>(range.t))};
807   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
808     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
809       Expr<SubscriptInteger> length{
810           std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
811               charExpr->u)};
812       if (!lower) {
813         lower = Expr<SubscriptInteger>{1};
814       }
815       if (!upper) {
816         upper = Expr<SubscriptInteger>{
817             static_cast<std::int64_t>(ToInt64(length).value())};
818       }
819       return std::visit(
820           [&](auto &&ckExpr) -> MaybeExpr {
821             using Result = ResultType<decltype(ckExpr)>;
822             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
823             CHECK(DEREF(cp).size() == 1);
824             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
825             staticData->set_alignment(Result::kind)
826                 .set_itemBytes(Result::kind)
827                 .Push(cp->GetScalarValue().value());
828             Substring substring{std::move(staticData), std::move(lower.value()),
829                 std::move(upper.value())};
830             return AsGenericExpr(
831                 Expr<Result>{Designator<Result>{std::move(substring)}});
832           },
833           std::move(charExpr->u));
834     }
835   }
836   return std::nullopt;
837 }
838 
839 // Subscripted array references
840 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
841     MaybeExpr &&expr) {
842   if (expr) {
843     if (expr->Rank() > 1) {
844       Say("Subscript expression has rank %d greater than 1"_err_en_US,
845           expr->Rank());
846     }
847     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
848       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
849         return std::move(*ssIntExpr);
850       } else {
851         return Expr<SubscriptInteger>{
852             Convert<SubscriptInteger, TypeCategory::Integer>{
853                 std::move(*intExpr)}};
854       }
855     } else {
856       Say("Subscript expression is not INTEGER"_err_en_US);
857     }
858   }
859   return std::nullopt;
860 }
861 
862 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
863     const std::optional<parser::Subscript> &s) {
864   if (s) {
865     return AsSubscript(Analyze(*s));
866   } else {
867     return std::nullopt;
868   }
869 }
870 
871 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
872     const parser::SectionSubscript &ss) {
873   return std::visit(
874       common::visitors{
875           [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
876             const auto &lower{std::get<0>(t.t)};
877             const auto &upper{std::get<1>(t.t)};
878             const auto &stride{std::get<2>(t.t)};
879             auto result{Triplet{
880                 TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
881             if ((lower && !result.lower()) || (upper && !result.upper())) {
882               return std::nullopt;
883             } else {
884               return std::make_optional<Subscript>(result);
885             }
886           },
887           [&](const auto &s) -> std::optional<Subscript> {
888             if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
889               return Subscript{std::move(*subscriptExpr)};
890             } else {
891               return std::nullopt;
892             }
893           },
894       },
895       ss.u);
896 }
897 
898 // Empty result means an error occurred
899 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
900     const std::list<parser::SectionSubscript> &sss) {
901   bool error{false};
902   std::vector<Subscript> subscripts;
903   for (const auto &s : sss) {
904     if (auto subscript{AnalyzeSectionSubscript(s)}) {
905       subscripts.emplace_back(std::move(*subscript));
906     } else {
907       error = true;
908     }
909   }
910   return !error ? subscripts : std::vector<Subscript>{};
911 }
912 
913 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
914   if (MaybeExpr baseExpr{Analyze(ae.base)}) {
915     if (ae.subscripts.empty()) {
916       // will be converted to function call later or error reported
917       return std::nullopt;
918     } else if (baseExpr->Rank() == 0) {
919       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
920         if (!context_.HasError(symbol)) {
921           Say("'%s' is not an array"_err_en_US, symbol->name());
922           context_.SetError(const_cast<Symbol &>(*symbol));
923         }
924       }
925     } else if (std::optional<DataRef> dataRef{
926                    ExtractDataRef(std::move(*baseExpr))}) {
927       return ApplySubscripts(
928           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
929     } else {
930       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
931     }
932   }
933   // error was reported: analyze subscripts without reporting more errors
934   auto restorer{GetContextualMessages().DiscardMessages()};
935   AnalyzeSectionSubscripts(ae.subscripts);
936   return std::nullopt;
937 }
938 
939 // Type parameter inquiries apply to data references, but don't depend
940 // on any trailing (co)subscripts.
941 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
942   return std::visit(
943       common::visitors{
944           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
945           [](Component &&component) {
946             return NamedEntity{std::move(component)};
947           },
948           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
949           [](CoarrayRef &&coarrayRef) {
950             return NamedEntity{coarrayRef.GetLastSymbol()};
951           },
952       },
953       std::move(designator.u));
954 }
955 
956 // Components of parent derived types are explicitly represented as such.
957 static std::optional<Component> CreateComponent(
958     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
959   if (&component.owner() == &scope) {
960     return Component{std::move(base), component};
961   }
962   if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) {
963     if (const Symbol * parentComponent{parentScope->GetSymbol()}) {
964       return CreateComponent(
965           DataRef{Component{std::move(base), *parentComponent}}, component,
966           *parentScope);
967     }
968   }
969   return std::nullopt;
970 }
971 
972 // Derived type component references and type parameter inquiries
973 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
974   MaybeExpr base{Analyze(sc.base)};
975   if (!base) {
976     return std::nullopt;
977   }
978   Symbol *sym{sc.component.symbol};
979   if (context_.HasError(sym)) {
980     return std::nullopt;
981   }
982   const auto &name{sc.component.source};
983   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
984     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
985     if (sym->detailsIf<semantics::TypeParamDetails>()) {
986       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
987         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
988           if (dyType->category() == TypeCategory::Integer) {
989             return AsMaybeExpr(
990                 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(),
991                     IgnoreAnySubscripts(std::move(*designator)), *sym}));
992           }
993         }
994         Say(name, "Type parameter is not INTEGER"_err_en_US);
995       } else {
996         Say(name,
997             "A type parameter inquiry must be applied to "
998             "a designator"_err_en_US);
999       }
1000     } else if (!dtSpec || !dtSpec->scope()) {
1001       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
1002       return std::nullopt;
1003     } else if (std::optional<DataRef> dataRef{
1004                    ExtractDataRef(std::move(*dtExpr))}) {
1005       if (auto component{
1006               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
1007         return Designate(DataRef{std::move(*component)});
1008       } else {
1009         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1010             dtSpec->typeSymbol().name());
1011       }
1012     } else {
1013       Say(name,
1014           "Base of component reference must be a data reference"_err_en_US);
1015     }
1016   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1017     // special part-ref: %re, %im, %kind, %len
1018     // Type errors are detected and reported in semantics.
1019     using MiscKind = semantics::MiscDetails::Kind;
1020     MiscKind kind{details->kind()};
1021     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1022       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1023         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
1024           Expr<SomeReal> realExpr{std::visit(
1025               [&](const auto &z) {
1026                 using PartType = typename ResultType<decltype(z)>::Part;
1027                 auto part{kind == MiscKind::ComplexPartRe
1028                         ? ComplexPart::Part::RE
1029                         : ComplexPart::Part::IM};
1030                 return AsCategoryExpr(Designator<PartType>{
1031                     ComplexPart{std::move(*dataRef), part}});
1032               },
1033               zExpr->u)};
1034           return AsGenericExpr(std::move(realExpr));
1035         }
1036       }
1037     } else if (kind == MiscKind::KindParamInquiry ||
1038         kind == MiscKind::LenParamInquiry) {
1039       // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
1040       return MakeFunctionRef(
1041           name, ActualArguments{ActualArgument{std::move(*base)}});
1042     } else {
1043       DIE("unexpected MiscDetails::Kind");
1044     }
1045   } else {
1046     Say(name, "derived type required before component reference"_err_en_US);
1047   }
1048   return std::nullopt;
1049 }
1050 
1051 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1052   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1053     DataRef *dataRef{&*maybeDataRef};
1054     std::vector<Subscript> subscripts;
1055     SymbolVector reversed;
1056     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1057       subscripts = std::move(aRef->subscript());
1058       reversed.push_back(aRef->GetLastSymbol());
1059       if (Component * component{aRef->base().UnwrapComponent()}) {
1060         dataRef = &component->base();
1061       } else {
1062         dataRef = nullptr;
1063       }
1064     }
1065     if (dataRef) {
1066       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1067         reversed.push_back(component->GetLastSymbol());
1068         dataRef = &component->base();
1069       }
1070       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1071         reversed.push_back(*baseSym);
1072       } else {
1073         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1074       }
1075     }
1076     std::vector<Expr<SubscriptInteger>> cosubscripts;
1077     bool cosubsOk{true};
1078     for (const auto &cosub :
1079         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1080       MaybeExpr coex{Analyze(cosub)};
1081       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1082         cosubscripts.push_back(
1083             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1084       } else {
1085         cosubsOk = false;
1086       }
1087     }
1088     if (cosubsOk && !reversed.empty()) {
1089       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1090       const Symbol &symbol{reversed.front()};
1091       if (numCosubscripts != symbol.Corank()) {
1092         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1093             symbol.name(), symbol.Corank(), numCosubscripts);
1094       }
1095     }
1096     for (const auto &imageSelSpec :
1097         std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1098       std::visit(
1099           common::visitors{
1100               [&](const auto &x) { Analyze(x.v); },
1101           },
1102           imageSelSpec.u);
1103     }
1104     // Reverse the chain of symbols so that the base is first and coarray
1105     // ultimate component is last.
1106     if (cosubsOk) {
1107       return Designate(
1108           DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1109               std::move(subscripts), std::move(cosubscripts)}});
1110     }
1111   }
1112   return std::nullopt;
1113 }
1114 
1115 int ExpressionAnalyzer::IntegerTypeSpecKind(
1116     const parser::IntegerTypeSpec &spec) {
1117   Expr<SubscriptInteger> value{
1118       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1119   if (auto kind{ToInt64(value)}) {
1120     return static_cast<int>(*kind);
1121   }
1122   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1123   return GetDefaultKind(TypeCategory::Integer);
1124 }
1125 
1126 // Array constructors
1127 
1128 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1129 // all happen to have the same actual type T into one ArrayConstructor<T>.
1130 template <typename T>
1131 ArrayConstructorValues<T> MakeSpecific(
1132     ArrayConstructorValues<SomeType> &&from) {
1133   ArrayConstructorValues<T> to;
1134   for (ArrayConstructorValue<SomeType> &x : from) {
1135     std::visit(
1136         common::visitors{
1137             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1138               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1139               to.Push(std::move(DEREF(typed)));
1140             },
1141             [&](ImpliedDo<SomeType> &&impliedDo) {
1142               to.Push(ImpliedDo<T>{impliedDo.name(),
1143                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1144                   std::move(impliedDo.stride()),
1145                   MakeSpecific<T>(std::move(impliedDo.values()))});
1146             },
1147         },
1148         std::move(x.u));
1149   }
1150   return to;
1151 }
1152 
1153 class ArrayConstructorContext {
1154 public:
1155   ArrayConstructorContext(
1156       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1157       : exprAnalyzer_{c}, type_{std::move(t)} {}
1158 
1159   void Add(const parser::AcValue &);
1160   MaybeExpr ToExpr();
1161 
1162   // These interfaces allow *this to be used as a type visitor argument to
1163   // common::SearchTypes() to convert the array constructor to a typed
1164   // expression in ToExpr().
1165   using Result = MaybeExpr;
1166   using Types = AllTypes;
1167   template <typename T> Result Test() {
1168     if (type_ && type_->category() == T::category) {
1169       if constexpr (T::category == TypeCategory::Derived) {
1170         if (type_->IsUnlimitedPolymorphic()) {
1171           return std::nullopt;
1172         } else {
1173           return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1174               MakeSpecific<T>(std::move(values_))});
1175         }
1176       } else if (type_->kind() == T::kind) {
1177         if constexpr (T::category == TypeCategory::Character) {
1178           if (auto len{type_->LEN()}) {
1179             return AsMaybeExpr(ArrayConstructor<T>{
1180                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1181           }
1182         } else {
1183           return AsMaybeExpr(
1184               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1185         }
1186       }
1187     }
1188     return std::nullopt;
1189   }
1190 
1191 private:
1192   void Push(MaybeExpr &&);
1193 
1194   template <int KIND, typename A>
1195   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1196       const A &x) {
1197     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1198       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1199       return ConvertToType<Type<TypeCategory::Integer, KIND>>(
1200           std::move(DEREF(intExpr)));
1201     }
1202     return std::nullopt;
1203   }
1204 
1205   // Nested array constructors all reference the same ExpressionAnalyzer,
1206   // which represents the nest of active implied DO loop indices.
1207   ExpressionAnalyzer &exprAnalyzer_;
1208   std::optional<DynamicTypeWithLength> type_;
1209   bool explicitType_{type_.has_value()};
1210   std::optional<std::int64_t> constantLength_;
1211   ArrayConstructorValues<SomeType> values_;
1212   bool messageDisplayedOnce{false};
1213 };
1214 
1215 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1216   if (!x) {
1217     return;
1218   }
1219   if (auto dyType{x->GetType()}) {
1220     DynamicTypeWithLength xType{*dyType};
1221     if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1222       CHECK(xType.category() == TypeCategory::Character);
1223       xType.length =
1224           std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1225     }
1226     if (!type_) {
1227       // If there is no explicit type-spec in an array constructor, the type
1228       // of the array is the declared type of all of the elements, which must
1229       // be well-defined and all match.
1230       // TODO: Possible language extension: use the most general type of
1231       // the values as the type of a numeric constructed array, convert all
1232       // of the other values to that type.  Alternative: let the first value
1233       // determine the type, and convert the others to that type.
1234       CHECK(!explicitType_);
1235       type_ = std::move(xType);
1236       constantLength_ = ToInt64(type_->length);
1237       values_.Push(std::move(*x));
1238     } else if (!explicitType_) {
1239       if (static_cast<const DynamicType &>(*type_) ==
1240           static_cast<const DynamicType &>(xType)) {
1241         values_.Push(std::move(*x));
1242         if (auto thisLen{ToInt64(xType.LEN())}) {
1243           if (constantLength_) {
1244             if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1245                 *thisLen != *constantLength_) {
1246               exprAnalyzer_.Say(
1247                   "Character literal in array constructor without explicit "
1248                   "type has different length than earlier element"_en_US);
1249             }
1250             if (*thisLen > *constantLength_) {
1251               // Language extension: use the longest literal to determine the
1252               // length of the array constructor's character elements, not the
1253               // first, when there is no explicit type.
1254               *constantLength_ = *thisLen;
1255               type_->length = xType.LEN();
1256             }
1257           } else {
1258             constantLength_ = *thisLen;
1259             type_->length = xType.LEN();
1260           }
1261         }
1262       } else {
1263         if (!messageDisplayedOnce) {
1264           exprAnalyzer_.Say(
1265               "Values in array constructor must have the same declared type "
1266               "when no explicit type appears"_err_en_US); // C7110
1267           messageDisplayedOnce = true;
1268         }
1269       }
1270     } else {
1271       if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1272         values_.Push(std::move(*cast));
1273       } else {
1274         exprAnalyzer_.Say(
1275             "Value in array constructor of type '%s' could not "
1276             "be converted to the type of the array '%s'"_err_en_US,
1277             x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
1278       }
1279     }
1280   }
1281 }
1282 
1283 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1284   using IntType = ResultType<ImpliedDoIndex>;
1285   std::visit(
1286       common::visitors{
1287           [&](const parser::AcValue::Triplet &triplet) {
1288             // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1289             std::optional<Expr<IntType>> lower{
1290                 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))};
1291             std::optional<Expr<IntType>> upper{
1292                 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))};
1293             std::optional<Expr<IntType>> stride{
1294                 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))};
1295             if (lower && upper) {
1296               if (!stride) {
1297                 stride = Expr<IntType>{1};
1298               }
1299               if (!type_) {
1300                 type_ = DynamicTypeWithLength{IntType::GetType()};
1301               }
1302               auto v{std::move(values_)};
1303               parser::CharBlock anonymous;
1304               Push(Expr<SomeType>{
1305                   Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}});
1306               std::swap(v, values_);
1307               values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1308                   std::move(*upper), std::move(*stride), std::move(v)});
1309             }
1310           },
1311           [&](const common::Indirection<parser::Expr> &expr) {
1312             auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(
1313                 expr.value().source)};
1314             if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) {
1315               if (auto exprType{v->GetType()}) {
1316                 if (exprType->IsUnlimitedPolymorphic()) {
1317                   exprAnalyzer_.Say(
1318                       "Cannot have an unlimited polymorphic value in an "
1319                       "array constructor"_err_en_US); // C7113
1320                 }
1321               }
1322               Push(std::move(*v));
1323             }
1324           },
1325           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1326             const auto &control{
1327                 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)};
1328             const auto &bounds{
1329                 std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1330             exprAnalyzer_.Analyze(bounds.name);
1331             parser::CharBlock name{bounds.name.thing.thing.source};
1332             const Symbol *symbol{bounds.name.thing.thing.symbol};
1333             int kind{IntType::kind};
1334             if (const auto dynamicType{DynamicType::From(symbol)}) {
1335               kind = dynamicType->kind();
1336             }
1337             if (exprAnalyzer_.AddImpliedDo(name, kind)) {
1338               std::optional<Expr<IntType>> lower{
1339                   GetSpecificIntExpr<IntType::kind>(bounds.lower)};
1340               std::optional<Expr<IntType>> upper{
1341                   GetSpecificIntExpr<IntType::kind>(bounds.upper)};
1342               if (lower && upper) {
1343                 std::optional<Expr<IntType>> stride{
1344                     GetSpecificIntExpr<IntType::kind>(bounds.step)};
1345                 auto v{std::move(values_)};
1346                 for (const auto &value :
1347                     std::get<std::list<parser::AcValue>>(impliedDo.value().t)) {
1348                   Add(value);
1349                 }
1350                 if (!stride) {
1351                   stride = Expr<IntType>{1};
1352                 }
1353                 std::swap(v, values_);
1354                 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1355                     std::move(*upper), std::move(*stride), std::move(v)});
1356               }
1357               exprAnalyzer_.RemoveImpliedDo(name);
1358             } else {
1359               exprAnalyzer_.SayAt(name,
1360                   "Implied DO index is active in surrounding implied DO loop "
1361                   "and may not have the same name"_err_en_US); // C7115
1362             }
1363           },
1364       },
1365       x.u);
1366 }
1367 
1368 MaybeExpr ArrayConstructorContext::ToExpr() {
1369   return common::SearchTypes(std::move(*this));
1370 }
1371 
1372 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1373   const parser::AcSpec &acSpec{array.v};
1374   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1375   for (const parser::AcValue &value : acSpec.values) {
1376     acContext.Add(value);
1377   }
1378   return acContext.ToExpr();
1379 }
1380 
1381 MaybeExpr ExpressionAnalyzer::Analyze(
1382     const parser::StructureConstructor &structure) {
1383   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1384   parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source};
1385   if (!parsedType.derivedTypeSpec) {
1386     return std::nullopt;
1387   }
1388   const auto &spec{*parsedType.derivedTypeSpec};
1389   const Symbol &typeSymbol{spec.typeSymbol()};
1390   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1391     return std::nullopt; // error recovery
1392   }
1393   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1394   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1395 
1396   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1397     AttachDeclaration(Say(typeName,
1398                           "ABSTRACT derived type '%s' may not be used in a "
1399                           "structure constructor"_err_en_US,
1400                           typeName),
1401         typeSymbol); // C7114
1402   }
1403 
1404   // This iterator traverses all of the components in the derived type and its
1405   // parents.  The symbols for whole parent components appear after their
1406   // own components and before the components of the types that extend them.
1407   // E.g., TYPE :: A; REAL X; END TYPE
1408   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1409   // produces the component list X, A, Y.
1410   // The order is important below because a structure constructor can
1411   // initialize X or A by name, but not both.
1412   auto components{semantics::OrderedComponentIterator{spec}};
1413   auto nextAnonymous{components.begin()};
1414 
1415   std::set<parser::CharBlock> unavailable;
1416   bool anyKeyword{false};
1417   StructureConstructor result{spec};
1418   bool checkConflicts{true}; // until we hit one
1419   auto &messages{GetContextualMessages()};
1420 
1421   for (const auto &component :
1422       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1423     const parser::Expr &expr{
1424         std::get<parser::ComponentDataSource>(component.t).v.value()};
1425     parser::CharBlock source{expr.source};
1426     auto restorer{messages.SetLocation(source)};
1427     const Symbol *symbol{nullptr};
1428     MaybeExpr value{Analyze(expr)};
1429     std::optional<DynamicType> valueType{DynamicType::From(value)};
1430     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1431       anyKeyword = true;
1432       source = kw->v.source;
1433       symbol = kw->v.symbol;
1434       if (!symbol) {
1435         auto componentIter{std::find_if(components.begin(), components.end(),
1436             [=](const Symbol &symbol) { return symbol.name() == source; })};
1437         if (componentIter != components.end()) {
1438           symbol = &*componentIter;
1439         }
1440       }
1441       if (!symbol) { // C7101
1442         Say(source,
1443             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1444             source, typeName);
1445       }
1446     } else {
1447       if (anyKeyword) { // C7100
1448         Say(source,
1449             "Value in structure constructor lacks a component name"_err_en_US);
1450         checkConflicts = false; // stem cascade
1451       }
1452       // Here's a regrettably common extension of the standard: anonymous
1453       // initialization of parent components, e.g., T(PT(1)) rather than
1454       // T(1) or T(PT=PT(1)).
1455       if (nextAnonymous == components.begin() && parentComponent &&
1456           valueType == DynamicType::From(*parentComponent) &&
1457           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1458         auto iter{
1459             std::find(components.begin(), components.end(), *parentComponent)};
1460         if (iter != components.end()) {
1461           symbol = parentComponent;
1462           nextAnonymous = ++iter;
1463           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1464             Say(source,
1465                 "Whole parent component '%s' in structure "
1466                 "constructor should not be anonymous"_en_US,
1467                 symbol->name());
1468           }
1469         }
1470       }
1471       while (!symbol && nextAnonymous != components.end()) {
1472         const Symbol &next{*nextAnonymous};
1473         ++nextAnonymous;
1474         if (!next.test(Symbol::Flag::ParentComp)) {
1475           symbol = &next;
1476         }
1477       }
1478       if (!symbol) {
1479         Say(source, "Unexpected value in structure constructor"_err_en_US);
1480       }
1481     }
1482     if (symbol) {
1483       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1484         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1485           Say(source, *msg);
1486         }
1487       }
1488       if (checkConflicts) {
1489         auto componentIter{
1490             std::find(components.begin(), components.end(), *symbol)};
1491         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1492           // C797, C798
1493           Say(source,
1494               "Component '%s' conflicts with another component earlier in "
1495               "this structure constructor"_err_en_US,
1496               symbol->name());
1497         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1498           // Make earlier components unavailable once a whole parent appears.
1499           for (auto it{components.begin()}; it != componentIter; ++it) {
1500             unavailable.insert(it->name());
1501           }
1502         } else {
1503           // Make whole parent components unavailable after any of their
1504           // constituents appear.
1505           for (auto it{componentIter}; it != components.end(); ++it) {
1506             if (it->test(Symbol::Flag::ParentComp)) {
1507               unavailable.insert(it->name());
1508             }
1509           }
1510         }
1511       }
1512       unavailable.insert(symbol->name());
1513       if (value) {
1514         if (symbol->has<semantics::ProcEntityDetails>()) {
1515           CHECK(IsPointer(*symbol));
1516         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1517           // C1594(4)
1518           const auto &innermost{context_.FindScope(expr.source)};
1519           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1520             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1521               if (const Symbol *
1522                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1523                 if (auto *msg{Say(expr.source,
1524                         "Externally visible object '%s' may not be "
1525                         "associated with pointer component '%s' in a "
1526                         "pure procedure"_err_en_US,
1527                         object->name(), pointer->name())}) {
1528                   msg->Attach(object->name(), "Object declaration"_en_US)
1529                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1530                 }
1531               }
1532             }
1533           }
1534         } else if (symbol->has<semantics::TypeParamDetails>()) {
1535           Say(expr.source,
1536               "Type parameter '%s' may not appear as a component "
1537               "of a structure constructor"_err_en_US,
1538               symbol->name());
1539           continue;
1540         } else {
1541           Say(expr.source,
1542               "Component '%s' is neither a procedure pointer "
1543               "nor a data object"_err_en_US,
1544               symbol->name());
1545           continue;
1546         }
1547         if (IsPointer(*symbol)) {
1548           semantics::CheckPointerAssignment(
1549               GetFoldingContext(), *symbol, *value); // C7104, C7105
1550           result.Add(*symbol, Fold(std::move(*value)));
1551         } else if (MaybeExpr converted{
1552                        ConvertToType(*symbol, std::move(*value))}) {
1553           if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
1554             if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
1555               if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
1556                 AttachDeclaration(
1557                     Say(expr.source,
1558                         "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
1559                         symbol->name()),
1560                     *symbol);
1561               } else if (CheckConformance(messages, *componentShape,
1562                              *valueShape, "component", "value")) {
1563                 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 &&
1564                     !IsExpandableScalar(*converted)) {
1565                   AttachDeclaration(
1566                       Say(expr.source,
1567                           "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
1568                           symbol->name()),
1569                       *symbol);
1570                 } else {
1571                   result.Add(*symbol, std::move(*converted));
1572                 }
1573               }
1574             } else {
1575               Say(expr.source, "Shape of value cannot be determined"_err_en_US);
1576             }
1577           } else {
1578             AttachDeclaration(
1579                 Say(expr.source,
1580                     "Shape of component '%s' cannot be determined"_err_en_US,
1581                     symbol->name()),
1582                 *symbol);
1583           }
1584         } else if (IsAllocatable(*symbol) &&
1585             std::holds_alternative<NullPointer>(value->u)) {
1586           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE
1587         } else if (auto symType{DynamicType::From(symbol)}) {
1588           if (valueType) {
1589             AttachDeclaration(
1590                 Say(expr.source,
1591                     "Value in structure constructor of type %s is "
1592                     "incompatible with component '%s' of type %s"_err_en_US,
1593                     valueType->AsFortran(), symbol->name(),
1594                     symType->AsFortran()),
1595                 *symbol);
1596           } else {
1597             AttachDeclaration(
1598                 Say(expr.source,
1599                     "Value in structure constructor is incompatible with "
1600                     " component '%s' of type %s"_err_en_US,
1601                     symbol->name(), symType->AsFortran()),
1602                 *symbol);
1603           }
1604         }
1605       }
1606     }
1607   }
1608 
1609   // Ensure that unmentioned component objects have default initializers.
1610   for (const Symbol &symbol : components) {
1611     if (!symbol.test(Symbol::Flag::ParentComp) &&
1612         unavailable.find(symbol.name()) == unavailable.cend() &&
1613         !IsAllocatable(symbol)) {
1614       if (const auto *details{
1615               symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1616         if (details->init()) {
1617           result.Add(symbol, common::Clone(*details->init()));
1618         } else { // C799
1619           AttachDeclaration(Say(typeName,
1620                                 "Structure constructor lacks a value for "
1621                                 "component '%s'"_err_en_US,
1622                                 symbol.name()),
1623               symbol);
1624         }
1625       }
1626     }
1627   }
1628 
1629   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1630 }
1631 
1632 static std::optional<parser::CharBlock> GetPassName(
1633     const semantics::Symbol &proc) {
1634   return std::visit(
1635       [](const auto &details) {
1636         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1637                           std::decay_t<decltype(details)>>) {
1638           return details.passName();
1639         } else {
1640           return std::optional<parser::CharBlock>{};
1641         }
1642       },
1643       proc.details());
1644 }
1645 
1646 static int GetPassIndex(const Symbol &proc) {
1647   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1648   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1649   const auto *interface{semantics::FindInterface(proc)};
1650   if (!passName || !interface) {
1651     return 0; // first argument is passed-object
1652   }
1653   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1654   int index{0};
1655   for (const auto *arg : subp.dummyArgs()) {
1656     if (arg && arg->name() == passName) {
1657       return index;
1658     }
1659     ++index;
1660   }
1661   DIE("PASS argument name not in dummy argument list");
1662 }
1663 
1664 // Injects an expression into an actual argument list as the "passed object"
1665 // for a type-bound procedure reference that is not NOPASS.  Adds an
1666 // argument keyword if possible, but not when the passed object goes
1667 // before a positional argument.
1668 // e.g., obj%tbp(x) -> tbp(obj,x).
1669 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1670     const Symbol &component, bool isPassedObject = true) {
1671   if (component.attrs().test(semantics::Attr::NOPASS)) {
1672     return;
1673   }
1674   int passIndex{GetPassIndex(component)};
1675   auto iter{actuals.begin()};
1676   int at{0};
1677   while (iter < actuals.end() && at < passIndex) {
1678     if (*iter && (*iter)->keyword()) {
1679       iter = actuals.end();
1680       break;
1681     }
1682     ++iter;
1683     ++at;
1684   }
1685   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1686   passed.set_isPassedObject(isPassedObject);
1687   if (iter == actuals.end()) {
1688     if (auto passName{GetPassName(component)}) {
1689       passed.set_keyword(*passName);
1690     }
1691   }
1692   actuals.emplace(iter, std::move(passed));
1693 }
1694 
1695 // Return the compile-time resolution of a procedure binding, if possible.
1696 static const Symbol *GetBindingResolution(
1697     const std::optional<DynamicType> &baseType, const Symbol &component) {
1698   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1699   if (!binding) {
1700     return nullptr;
1701   }
1702   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1703       (!baseType || baseType->IsPolymorphic())) {
1704     return nullptr;
1705   }
1706   return &binding->symbol();
1707 }
1708 
1709 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1710     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1711     -> std::optional<CalleeAndArguments> {
1712   const parser::StructureComponent &sc{pcr.v.thing};
1713   const auto &name{sc.component.source};
1714   if (MaybeExpr base{Analyze(sc.base)}) {
1715     if (const Symbol * sym{sc.component.symbol}) {
1716       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1717         if (sym->has<semantics::GenericDetails>()) {
1718           AdjustActuals adjustment{
1719               [&](const Symbol &proc, ActualArguments &actuals) {
1720                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1721                   AddPassArg(actuals, std::move(*dtExpr), proc);
1722                 }
1723                 return true;
1724               }};
1725           sym = ResolveGeneric(*sym, arguments, adjustment);
1726           if (!sym) {
1727             EmitGenericResolutionError(*sc.component.symbol);
1728             return std::nullopt;
1729           }
1730         }
1731         if (const Symbol *
1732             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1733           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1734           return CalleeAndArguments{
1735               ProcedureDesignator{*resolution}, std::move(arguments)};
1736         } else if (std::optional<DataRef> dataRef{
1737                        ExtractDataRef(std::move(*dtExpr))}) {
1738           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1739             return CalleeAndArguments{
1740                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1741                 std::move(arguments)};
1742           } else {
1743             AddPassArg(arguments,
1744                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1745                 *sym);
1746             return CalleeAndArguments{
1747                 ProcedureDesignator{*sym}, std::move(arguments)};
1748           }
1749         }
1750       }
1751       Say(name,
1752           "Base of procedure component reference is not a derived-type object"_err_en_US);
1753     }
1754   }
1755   CHECK(!GetContextualMessages().empty());
1756   return std::nullopt;
1757 }
1758 
1759 // Can actual be argument associated with dummy?
1760 static bool CheckCompatibleArgument(bool isElemental,
1761     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1762   return std::visit(
1763       common::visitors{
1764           [&](const characteristics::DummyDataObject &x) {
1765             characteristics::TypeAndShape dummyTypeAndShape{x.type};
1766             if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) {
1767               return false;
1768             } else if (auto actualType{actual.GetType()}) {
1769               return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType);
1770             } else {
1771               return false;
1772             }
1773           },
1774           [&](const characteristics::DummyProcedure &) {
1775             const auto *expr{actual.UnwrapExpr()};
1776             return expr && IsProcedurePointer(*expr);
1777           },
1778           [&](const characteristics::AlternateReturn &) {
1779             return actual.isAlternateReturn();
1780           },
1781       },
1782       dummy.u);
1783 }
1784 
1785 // Are the actual arguments compatible with the dummy arguments of procedure?
1786 static bool CheckCompatibleArguments(
1787     const characteristics::Procedure &procedure,
1788     const ActualArguments &actuals) {
1789   bool isElemental{procedure.IsElemental()};
1790   const auto &dummies{procedure.dummyArguments};
1791   CHECK(dummies.size() == actuals.size());
1792   for (std::size_t i{0}; i < dummies.size(); ++i) {
1793     const characteristics::DummyArgument &dummy{dummies[i]};
1794     const std::optional<ActualArgument> &actual{actuals[i]};
1795     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1796       return false;
1797     }
1798   }
1799   return true;
1800 }
1801 
1802 // Handles a forward reference to a module function from what must
1803 // be a specification expression.  Return false if the symbol is
1804 // an invalid forward reference.
1805 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
1806   if (context_.HasError(symbol)) {
1807     return false;
1808   }
1809   if (const auto *details{
1810           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
1811     if (details->kind() == semantics::SubprogramKind::Module) {
1812       // If this symbol is still a SubprogramNameDetails, we must be
1813       // checking a specification expression in a sibling module
1814       // procedure.  Resolve its names now so that its interface
1815       // is known.
1816       semantics::ResolveSpecificationParts(context_, symbol);
1817       if (symbol.has<semantics::SubprogramNameDetails>()) {
1818         // When the symbol hasn't had its details updated, we must have
1819         // already been in the process of resolving the function's
1820         // specification part; but recursive function calls are not
1821         // allowed in specification parts (10.1.11 para 5).
1822         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
1823             symbol.name());
1824         context_.SetError(const_cast<Symbol &>(symbol));
1825         return false;
1826       }
1827     } else { // 10.1.11 para 4
1828       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
1829           symbol.name());
1830       context_.SetError(const_cast<Symbol &>(symbol));
1831       return false;
1832     }
1833   }
1834   return true;
1835 }
1836 
1837 // Resolve a call to a generic procedure with given actual arguments.
1838 // adjustActuals is called on procedure bindings to handle pass arg.
1839 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol,
1840     const ActualArguments &actuals, const AdjustActuals &adjustActuals,
1841     bool mightBeStructureConstructor) {
1842   const Symbol *elemental{nullptr}; // matching elemental specific proc
1843   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
1844   for (const Symbol &specific : details.specificProcs()) {
1845     if (!ResolveForward(specific)) {
1846       continue;
1847     }
1848     if (std::optional<characteristics::Procedure> procedure{
1849             characteristics::Procedure::Characterize(
1850                 ProcedureDesignator{specific}, context_.intrinsics())}) {
1851       ActualArguments localActuals{actuals};
1852       if (specific.has<semantics::ProcBindingDetails>()) {
1853         if (!adjustActuals.value()(specific, localActuals)) {
1854           continue;
1855         }
1856       }
1857       if (semantics::CheckInterfaceForGeneric(
1858               *procedure, localActuals, GetFoldingContext())) {
1859         if (CheckCompatibleArguments(*procedure, localActuals)) {
1860           if (!procedure->IsElemental()) {
1861             return &specific; // takes priority over elemental match
1862           }
1863           elemental = &specific;
1864         }
1865       }
1866     }
1867   }
1868   if (elemental) {
1869     return elemental;
1870   }
1871   // Check parent derived type
1872   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
1873     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
1874       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
1875         if (const Symbol *
1876             result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) {
1877           return result;
1878         }
1879       }
1880     }
1881   }
1882   if (mightBeStructureConstructor && details.derivedType()) {
1883     return details.derivedType();
1884   }
1885   return nullptr;
1886 }
1887 
1888 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) {
1889   if (semantics::IsGenericDefinedOp(symbol)) {
1890     Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US,
1891         symbol.name());
1892   } else {
1893     Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
1894         symbol.name());
1895   }
1896 }
1897 
1898 auto ExpressionAnalyzer::GetCalleeAndArguments(
1899     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
1900     bool isSubroutine, bool mightBeStructureConstructor)
1901     -> std::optional<CalleeAndArguments> {
1902   return std::visit(
1903       common::visitors{
1904           [&](const parser::Name &name) {
1905             return GetCalleeAndArguments(name, std::move(arguments),
1906                 isSubroutine, mightBeStructureConstructor);
1907           },
1908           [&](const parser::ProcComponentRef &pcr) {
1909             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
1910           },
1911       },
1912       pd.u);
1913 }
1914 
1915 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
1916     ActualArguments &&arguments, bool isSubroutine,
1917     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
1918   const Symbol *symbol{name.symbol};
1919   if (context_.HasError(symbol)) {
1920     return std::nullopt; // also handles null symbol
1921   }
1922   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
1923   if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
1924     if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
1925             CallCharacteristics{ultimate.name().ToString(), isSubroutine},
1926             arguments, GetFoldingContext())}) {
1927       return CalleeAndArguments{
1928           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
1929           std::move(specificCall->arguments)};
1930     }
1931   } else {
1932     CheckForBadRecursion(name.source, ultimate);
1933     if (ultimate.has<semantics::GenericDetails>()) {
1934       ExpressionAnalyzer::AdjustActuals noAdjustment;
1935       symbol = ResolveGeneric(
1936           *symbol, arguments, noAdjustment, mightBeStructureConstructor);
1937     }
1938     if (symbol) {
1939       if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
1940         if (mightBeStructureConstructor) {
1941           return CalleeAndArguments{
1942               semantics::SymbolRef{*symbol}, std::move(arguments)};
1943         }
1944       } else {
1945         return CalleeAndArguments{
1946             ProcedureDesignator{*symbol}, std::move(arguments)};
1947       }
1948     } else if (std::optional<SpecificCall> specificCall{
1949                    context_.intrinsics().Probe(
1950                        CallCharacteristics{
1951                            ultimate.name().ToString(), isSubroutine},
1952                        arguments, GetFoldingContext())}) {
1953       // Generics can extend intrinsics
1954       return CalleeAndArguments{
1955           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
1956           std::move(specificCall->arguments)};
1957     } else {
1958       EmitGenericResolutionError(*name.symbol);
1959     }
1960   }
1961   return std::nullopt;
1962 }
1963 
1964 void ExpressionAnalyzer::CheckForBadRecursion(
1965     parser::CharBlock callSite, const semantics::Symbol &proc) {
1966   if (const auto *scope{proc.scope()}) {
1967     if (scope->sourceRange().Contains(callSite)) {
1968       parser::Message *msg{nullptr};
1969       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
1970         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
1971             callSite);
1972       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
1973         msg = Say( // 15.6.2.1(3)
1974             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
1975             callSite);
1976       }
1977       AttachDeclaration(msg, proc);
1978     }
1979   }
1980 }
1981 
1982 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
1983   if (const auto *designator{
1984           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
1985     if (const auto *dataRef{
1986             std::get_if<parser::DataRef>(&designator->value().u)}) {
1987       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
1988         if (const Symbol * symbol{name->symbol}) {
1989           if (const auto *type{symbol->GetType()}) {
1990             if (type->category() == semantics::DeclTypeSpec::TypeStar) {
1991               return symbol;
1992             }
1993           }
1994         }
1995       }
1996     }
1997   }
1998   return nullptr;
1999 }
2000 
2001 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
2002     std::optional<parser::StructureConstructor> *structureConstructor) {
2003   const parser::Call &call{funcRef.v};
2004   auto restorer{GetContextualMessages().SetLocation(call.source)};
2005   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2006   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
2007     analyzer.Analyze(arg, false /* not subroutine call */);
2008   }
2009   if (analyzer.fatalErrors()) {
2010     return std::nullopt;
2011   }
2012   if (std::optional<CalleeAndArguments> callee{
2013           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2014               analyzer.GetActuals(), false /* not subroutine */,
2015               true /* might be structure constructor */)}) {
2016     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
2017       return MakeFunctionRef(
2018           call.source, std::move(*proc), std::move(callee->arguments));
2019     } else if (structureConstructor) {
2020       // Structure constructor misparsed as function reference?
2021       CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
2022       const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)};
2023       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
2024       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
2025         semantics::Scope &scope{context_.FindScope(name->source)};
2026         const semantics::DeclTypeSpec &type{
2027             semantics::FindOrInstantiateDerivedType(scope,
2028                 semantics::DerivedTypeSpec{
2029                     name->source, derivedType.GetUltimate()},
2030                 context_)};
2031         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
2032         *structureConstructor =
2033             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
2034         return Analyze(structureConstructor->value());
2035       }
2036     }
2037   }
2038   return std::nullopt;
2039 }
2040 
2041 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
2042   const parser::Call &call{callStmt.v};
2043   auto restorer{GetContextualMessages().SetLocation(call.source)};
2044   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2045   const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
2046   for (const auto &arg : actualArgList) {
2047     analyzer.Analyze(arg, true /* is subroutine call */);
2048   }
2049   if (!analyzer.fatalErrors()) {
2050     if (std::optional<CalleeAndArguments> callee{
2051             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2052                 analyzer.GetActuals(), true /* subroutine */)}) {
2053       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
2054       CHECK(proc);
2055       if (CheckCall(call.source, *proc, callee->arguments)) {
2056         bool hasAlternateReturns{
2057             callee->arguments.size() < actualArgList.size()};
2058         callStmt.typedCall.Reset(
2059             new ProcedureRef{std::move(*proc), std::move(callee->arguments),
2060                 hasAlternateReturns},
2061             ProcedureRef::Deleter);
2062       }
2063     }
2064   }
2065 }
2066 
2067 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
2068   if (!x.typedAssignment) {
2069     ArgumentAnalyzer analyzer{*this};
2070     analyzer.Analyze(std::get<parser::Variable>(x.t));
2071     analyzer.Analyze(std::get<parser::Expr>(x.t));
2072     if (analyzer.fatalErrors()) {
2073       x.typedAssignment.Reset(
2074           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2075     } else {
2076       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
2077       Assignment assignment{
2078           Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))};
2079       if (procRef) {
2080         assignment.u = std::move(*procRef);
2081       }
2082       x.typedAssignment.Reset(
2083           new GenericAssignmentWrapper{std::move(assignment)},
2084           GenericAssignmentWrapper::Deleter);
2085     }
2086   }
2087   return common::GetPtrFromOptional(x.typedAssignment->v);
2088 }
2089 
2090 const Assignment *ExpressionAnalyzer::Analyze(
2091     const parser::PointerAssignmentStmt &x) {
2092   if (!x.typedAssignment) {
2093     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2094     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2095     if (!lhs || !rhs) {
2096       x.typedAssignment.Reset(
2097           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2098     } else {
2099       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2100       std::visit(common::visitors{
2101                      [&](const std::list<parser::BoundsRemapping> &list) {
2102                        Assignment::BoundsRemapping bounds;
2103                        for (const auto &elem : list) {
2104                          auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2105                          auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2106                          if (lower && upper) {
2107                            bounds.emplace_back(Fold(std::move(*lower)),
2108                                Fold(std::move(*upper)));
2109                          }
2110                        }
2111                        assignment.u = std::move(bounds);
2112                      },
2113                      [&](const std::list<parser::BoundsSpec> &list) {
2114                        Assignment::BoundsSpec bounds;
2115                        for (const auto &bound : list) {
2116                          if (auto lower{AsSubscript(Analyze(bound.v))}) {
2117                            bounds.emplace_back(Fold(std::move(*lower)));
2118                          }
2119                        }
2120                        assignment.u = std::move(bounds);
2121                      },
2122                  },
2123           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2124       x.typedAssignment.Reset(
2125           new GenericAssignmentWrapper{std::move(assignment)},
2126           GenericAssignmentWrapper::Deleter);
2127     }
2128   }
2129   return common::GetPtrFromOptional(x.typedAssignment->v);
2130 }
2131 
2132 static bool IsExternalCalledImplicitly(
2133     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2134   if (const auto *symbol{proc.GetSymbol()}) {
2135     return symbol->has<semantics::SubprogramDetails>() &&
2136         symbol->owner().IsGlobal() &&
2137         (!symbol->scope() /*ENTRY*/ ||
2138             !symbol->scope()->sourceRange().Contains(callSite));
2139   } else {
2140     return false;
2141   }
2142 }
2143 
2144 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2145     parser::CharBlock callSite, const ProcedureDesignator &proc,
2146     ActualArguments &arguments) {
2147   auto chars{
2148       characteristics::Procedure::Characterize(proc, context_.intrinsics())};
2149   if (chars) {
2150     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2151     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2152       Say(callSite,
2153           "References to the procedure '%s' require an explicit interface"_en_US,
2154           DEREF(proc.GetSymbol()).name());
2155     }
2156     semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2157         context_.FindScope(callSite), treatExternalAsImplicit);
2158     const Symbol *procSymbol{proc.GetSymbol()};
2159     if (procSymbol && !IsPureProcedure(*procSymbol)) {
2160       if (const semantics::Scope *
2161           pure{semantics::FindPureProcedureContaining(
2162               context_.FindScope(callSite))}) {
2163         Say(callSite,
2164             "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2165             procSymbol->name(), DEREF(pure->symbol()).name());
2166       }
2167     }
2168   }
2169   return chars;
2170 }
2171 
2172 // Unary operations
2173 
2174 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2175   if (MaybeExpr operand{Analyze(x.v.value())}) {
2176     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2177       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2178         if (semantics::IsProcedurePointer(*result)) {
2179           Say("A function reference that returns a procedure "
2180               "pointer may not be parenthesized"_err_en_US); // C1003
2181         }
2182       }
2183     }
2184     return Parenthesize(std::move(*operand));
2185   }
2186   return std::nullopt;
2187 }
2188 
2189 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2190     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2191   ArgumentAnalyzer analyzer{context};
2192   analyzer.Analyze(x.v);
2193   if (analyzer.fatalErrors()) {
2194     return std::nullopt;
2195   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2196     if (opr == NumericOperator::Add) {
2197       return analyzer.MoveExpr(0);
2198     } else {
2199       return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2200     }
2201   } else {
2202     return analyzer.TryDefinedOp(AsFortran(opr),
2203         "Operand of unary %s must be numeric; have %s"_err_en_US);
2204   }
2205 }
2206 
2207 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2208   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2209 }
2210 
2211 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2212   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2213 }
2214 
2215 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2216   ArgumentAnalyzer analyzer{*this};
2217   analyzer.Analyze(x.v);
2218   if (analyzer.fatalErrors()) {
2219     return std::nullopt;
2220   } else if (analyzer.IsIntrinsicLogical()) {
2221     return AsGenericExpr(
2222         LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2223   } else {
2224     return analyzer.TryDefinedOp(LogicalOperator::Not,
2225         "Operand of %s must be LOGICAL; have %s"_err_en_US);
2226   }
2227 }
2228 
2229 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2230   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2231   // intrinsic function.
2232   // Use the actual source for the name of the call for error reporting.
2233   std::optional<ActualArgument> arg;
2234   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2235     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2236   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2237     arg = ActualArgument{std::move(*argExpr)};
2238   } else {
2239     return std::nullopt;
2240   }
2241   parser::CharBlock at{GetContextualMessages().at()};
2242   CHECK(at.size() >= 4);
2243   parser::CharBlock loc{at.begin() + 1, 3};
2244   CHECK(loc == "loc");
2245   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2246 }
2247 
2248 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2249   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2250   ArgumentAnalyzer analyzer{*this, name.source};
2251   analyzer.Analyze(std::get<1>(x.t));
2252   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2253       "No operator %s defined for %s"_err_en_US, true);
2254 }
2255 
2256 // Binary (dyadic) operations
2257 
2258 template <template <typename> class OPR>
2259 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2260     const parser::Expr::IntrinsicBinary &x) {
2261   ArgumentAnalyzer analyzer{context};
2262   analyzer.Analyze(std::get<0>(x.t));
2263   analyzer.Analyze(std::get<1>(x.t));
2264   if (analyzer.fatalErrors()) {
2265     return std::nullopt;
2266   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2267     return NumericOperation<OPR>(context.GetContextualMessages(),
2268         analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2269         context.GetDefaultKind(TypeCategory::Real));
2270   } else {
2271     return analyzer.TryDefinedOp(AsFortran(opr),
2272         "Operands of %s must be numeric; have %s and %s"_err_en_US);
2273   }
2274 }
2275 
2276 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2277   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2278 }
2279 
2280 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2281   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2282 }
2283 
2284 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2285   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2286 }
2287 
2288 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2289   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2290 }
2291 
2292 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2293   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2294 }
2295 
2296 MaybeExpr ExpressionAnalyzer::Analyze(
2297     const parser::Expr::ComplexConstructor &x) {
2298   auto re{Analyze(std::get<0>(x.t).value())};
2299   auto im{Analyze(std::get<1>(x.t).value())};
2300   if (re && im) {
2301     ConformabilityCheck(GetContextualMessages(), *re, *im);
2302   }
2303   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2304       std::move(im), GetDefaultKind(TypeCategory::Real)));
2305 }
2306 
2307 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2308   ArgumentAnalyzer analyzer{*this};
2309   analyzer.Analyze(std::get<0>(x.t));
2310   analyzer.Analyze(std::get<1>(x.t));
2311   if (analyzer.fatalErrors()) {
2312     return std::nullopt;
2313   } else if (analyzer.IsIntrinsicConcat()) {
2314     return std::visit(
2315         [&](auto &&x, auto &&y) -> MaybeExpr {
2316           using T = ResultType<decltype(x)>;
2317           if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2318             return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2319           } else {
2320             DIE("different types for intrinsic concat");
2321           }
2322         },
2323         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2324         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2325   } else {
2326     return analyzer.TryDefinedOp("//",
2327         "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2328   }
2329 }
2330 
2331 // The Name represents a user-defined intrinsic operator.
2332 // If the actuals match one of the specific procedures, return a function ref.
2333 // Otherwise report the error in messages.
2334 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2335     const parser::Name &name, ActualArguments &&actuals) {
2336   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2337     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2338     return MakeFunctionRef(name.source,
2339         std::move(std::get<ProcedureDesignator>(callee->u)),
2340         std::move(callee->arguments));
2341   } else {
2342     return std::nullopt;
2343   }
2344 }
2345 
2346 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2347     const parser::Expr::IntrinsicBinary &x) {
2348   ArgumentAnalyzer analyzer{context};
2349   analyzer.Analyze(std::get<0>(x.t));
2350   analyzer.Analyze(std::get<1>(x.t));
2351   if (analyzer.fatalErrors()) {
2352     return std::nullopt;
2353   } else {
2354     analyzer.ConvertBOZ(0, analyzer.GetType(1));
2355     analyzer.ConvertBOZ(1, analyzer.GetType(0));
2356     if (analyzer.IsIntrinsicRelational(opr)) {
2357       return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2358           analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2359     } else {
2360       return analyzer.TryDefinedOp(opr,
2361           "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2362     }
2363   }
2364 }
2365 
2366 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2367   return RelationHelper(*this, RelationalOperator::LT, x);
2368 }
2369 
2370 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2371   return RelationHelper(*this, RelationalOperator::LE, x);
2372 }
2373 
2374 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2375   return RelationHelper(*this, RelationalOperator::EQ, x);
2376 }
2377 
2378 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2379   return RelationHelper(*this, RelationalOperator::NE, x);
2380 }
2381 
2382 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2383   return RelationHelper(*this, RelationalOperator::GE, x);
2384 }
2385 
2386 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2387   return RelationHelper(*this, RelationalOperator::GT, x);
2388 }
2389 
2390 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2391     const parser::Expr::IntrinsicBinary &x) {
2392   ArgumentAnalyzer analyzer{context};
2393   analyzer.Analyze(std::get<0>(x.t));
2394   analyzer.Analyze(std::get<1>(x.t));
2395   if (analyzer.fatalErrors()) {
2396     return std::nullopt;
2397   } else if (analyzer.IsIntrinsicLogical()) {
2398     return AsGenericExpr(BinaryLogicalOperation(opr,
2399         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2400         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2401   } else {
2402     return analyzer.TryDefinedOp(
2403         opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2404   }
2405 }
2406 
2407 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2408   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2409 }
2410 
2411 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2412   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2413 }
2414 
2415 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2416   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2417 }
2418 
2419 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2420   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2421 }
2422 
2423 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2424   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2425   ArgumentAnalyzer analyzer{*this, name.source};
2426   analyzer.Analyze(std::get<1>(x.t));
2427   analyzer.Analyze(std::get<2>(x.t));
2428   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2429       "No operator %s defined for %s and %s"_err_en_US, true);
2430 }
2431 
2432 static void CheckFuncRefToArrayElementRefHasSubscripts(
2433     semantics::SemanticsContext &context,
2434     const parser::FunctionReference &funcRef) {
2435   // Emit message if the function reference fix will end up an array element
2436   // reference with no subscripts because it will not be possible to later tell
2437   // the difference in expressions between empty subscript list due to bad
2438   // subscripts error recovery or because the user did not put any.
2439   if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2440     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2441     const auto *name{std::get_if<parser::Name>(&proc.u)};
2442     if (!name) {
2443       name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2444     }
2445     auto &msg{context.Say(funcRef.v.source,
2446         name->symbol && name->symbol->Rank() == 0
2447             ? "'%s' is not a function"_err_en_US
2448             : "Reference to array '%s' with empty subscript list"_err_en_US,
2449         name->source)};
2450     if (name->symbol) {
2451       if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) {
2452         msg.Attach(name->source,
2453             "A result variable must be declared with RESULT to allow recursive "
2454             "function calls"_en_US);
2455       } else {
2456         AttachDeclaration(&msg, *name->symbol);
2457       }
2458     }
2459   }
2460 }
2461 
2462 // Converts, if appropriate, an original misparse of ambiguous syntax like
2463 // A(1) as a function reference into an array reference.
2464 // Misparse structure constructors are detected elsewhere after generic
2465 // function call resolution fails.
2466 template <typename... A>
2467 static void FixMisparsedFunctionReference(
2468     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2469   // The parse tree is updated in situ when resolving an ambiguous parse.
2470   using uType = std::decay_t<decltype(constU)>;
2471   auto &u{const_cast<uType &>(constU)};
2472   if (auto *func{
2473           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2474     parser::FunctionReference &funcRef{func->value()};
2475     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2476     if (Symbol *
2477         origSymbol{
2478             std::visit(common::visitors{
2479                            [&](parser::Name &name) { return name.symbol; },
2480                            [&](parser::ProcComponentRef &pcr) {
2481                              return pcr.v.thing.component.symbol;
2482                            },
2483                        },
2484                 proc.u)}) {
2485       Symbol &symbol{origSymbol->GetUltimate()};
2486       if (symbol.has<semantics::ObjectEntityDetails>() ||
2487           symbol.has<semantics::AssocEntityDetails>()) {
2488         // Note that expression in AssocEntityDetails cannot be a procedure
2489         // pointer as per C1105 so this cannot be a function reference.
2490         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2491                           uType>) {
2492           CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef);
2493           u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2494         } else {
2495           DIE("can't fix misparsed function as array reference");
2496         }
2497       }
2498     }
2499   }
2500 }
2501 
2502 // Common handling of parse tree node types that retain the
2503 // representation of the analyzed expression.
2504 template <typename PARSED>
2505 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) {
2506   if (x.typedExpr) {
2507     return x.typedExpr->v;
2508   }
2509   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2510       std::is_same_v<PARSED, parser::Variable>) {
2511     FixMisparsedFunctionReference(context_, x.u);
2512   }
2513   if (AssumedTypeDummy(x)) { // C710
2514     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2515   } else if (MaybeExpr result{evaluate::Fold(foldingContext_, Analyze(x.u))}) {
2516     SetExpr(x, std::move(*result));
2517     return x.typedExpr->v;
2518   }
2519   ResetExpr(x);
2520   if (!context_.AnyFatalError()) {
2521     std::string buf;
2522     llvm::raw_string_ostream dump{buf};
2523     parser::DumpTree(dump, x);
2524     Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2525         dump.str());
2526   }
2527   fatalErrors_ = true;
2528   return std::nullopt;
2529 }
2530 
2531 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2532   auto restorer{GetContextualMessages().SetLocation(expr.source)};
2533   return ExprOrVariable(expr);
2534 }
2535 
2536 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2537   auto restorer{GetContextualMessages().SetLocation(variable.GetSource())};
2538   return ExprOrVariable(variable);
2539 }
2540 
2541 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
2542   auto restorer{GetContextualMessages().SetLocation(x.source)};
2543   return ExprOrVariable(x);
2544 }
2545 
2546 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
2547     TypeCategory category,
2548     const std::optional<parser::KindSelector> &selector) {
2549   int defaultKind{GetDefaultKind(category)};
2550   if (!selector) {
2551     return Expr<SubscriptInteger>{defaultKind};
2552   }
2553   return std::visit(
2554       common::visitors{
2555           [&](const parser::ScalarIntConstantExpr &x) {
2556             if (MaybeExpr kind{Analyze(x)}) {
2557               Expr<SomeType> folded{Fold(std::move(*kind))};
2558               if (std::optional<std::int64_t> code{ToInt64(folded)}) {
2559                 if (CheckIntrinsicKind(category, *code)) {
2560                   return Expr<SubscriptInteger>{*code};
2561                 }
2562               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) {
2563                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
2564               }
2565             }
2566             return Expr<SubscriptInteger>{defaultKind};
2567           },
2568           [&](const parser::KindSelector::StarSize &x) {
2569             std::intmax_t size = x.v;
2570             if (!CheckIntrinsicSize(category, size)) {
2571               size = defaultKind;
2572             } else if (category == TypeCategory::Complex) {
2573               size /= 2;
2574             }
2575             return Expr<SubscriptInteger>{size};
2576           },
2577       },
2578       selector->u);
2579 }
2580 
2581 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
2582   return context_.GetDefaultKind(category);
2583 }
2584 
2585 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
2586     common::TypeCategory category) {
2587   return {category, GetDefaultKind(category)};
2588 }
2589 
2590 bool ExpressionAnalyzer::CheckIntrinsicKind(
2591     TypeCategory category, std::int64_t kind) {
2592   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
2593     return true;
2594   } else {
2595     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
2596         ToUpperCase(EnumToString(category)), kind);
2597     return false;
2598   }
2599 }
2600 
2601 bool ExpressionAnalyzer::CheckIntrinsicSize(
2602     TypeCategory category, std::int64_t size) {
2603   if (category == TypeCategory::Complex) {
2604     // COMPLEX*16 == COMPLEX(KIND=8)
2605     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
2606       return true;
2607     }
2608   } else if (IsValidKindOfIntrinsicType(category, size)) {
2609     return true;
2610   }
2611   Say("%s*%jd is not a supported type"_err_en_US,
2612       ToUpperCase(EnumToString(category)), size);
2613   return false;
2614 }
2615 
2616 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
2617   return impliedDos_.insert(std::make_pair(name, kind)).second;
2618 }
2619 
2620 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
2621   auto iter{impliedDos_.find(name)};
2622   if (iter != impliedDos_.end()) {
2623     impliedDos_.erase(iter);
2624   }
2625 }
2626 
2627 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
2628     parser::CharBlock name) const {
2629   auto iter{impliedDos_.find(name)};
2630   if (iter != impliedDos_.cend()) {
2631     return {iter->second};
2632   } else {
2633     return std::nullopt;
2634   }
2635 }
2636 
2637 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
2638     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
2639   if (result) {
2640     if (auto type{result->GetType()}) {
2641       if (type->category() != category) { // C885
2642         Say(at, "Must have %s type, but is %s"_err_en_US,
2643             ToUpperCase(EnumToString(category)),
2644             ToUpperCase(type->AsFortran()));
2645         return false;
2646       } else if (defaultKind) {
2647         int kind{context_.GetDefaultKind(category)};
2648         if (type->kind() != kind) {
2649           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
2650               kind, ToUpperCase(EnumToString(category)),
2651               ToUpperCase(type->AsFortran()));
2652           return false;
2653         }
2654       }
2655     } else {
2656       Say(at, "Must have %s type, but is typeless"_err_en_US,
2657           ToUpperCase(EnumToString(category)));
2658       return false;
2659     }
2660   }
2661   return true;
2662 }
2663 
2664 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
2665     ProcedureDesignator &&proc, ActualArguments &&arguments) {
2666   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
2667     if (intrinsic->name == "null" && arguments.empty()) {
2668       return Expr<SomeType>{NullPointer{}};
2669     }
2670   }
2671   if (const Symbol * symbol{proc.GetSymbol()}) {
2672     if (!ResolveForward(*symbol)) {
2673       return std::nullopt;
2674     }
2675   }
2676   if (auto chars{CheckCall(callSite, proc, arguments)}) {
2677     if (chars->functionResult) {
2678       const auto &result{*chars->functionResult};
2679       if (result.IsProcedurePointer()) {
2680         return Expr<SomeType>{
2681             ProcedureRef{std::move(proc), std::move(arguments)}};
2682       } else {
2683         // Not a procedure pointer, so type and shape are known.
2684         return TypedWrapper<FunctionRef, ProcedureRef>(
2685             DEREF(result.GetTypeAndShape()).type(),
2686             ProcedureRef{std::move(proc), std::move(arguments)});
2687       }
2688     }
2689   }
2690   return std::nullopt;
2691 }
2692 
2693 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
2694     parser::CharBlock intrinsic, ActualArguments &&arguments) {
2695   if (std::optional<SpecificCall> specificCall{
2696           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
2697               arguments, context_.foldingContext())}) {
2698     return MakeFunctionRef(intrinsic,
2699         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2700         std::move(specificCall->arguments));
2701   } else {
2702     return std::nullopt;
2703   }
2704 }
2705 
2706 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
2707   source_.ExtendToCover(x.GetSource());
2708   if (MaybeExpr expr{context_.Analyze(x)}) {
2709     if (!IsConstantExpr(*expr)) {
2710       actuals_.emplace_back(std::move(*expr));
2711       return;
2712     }
2713     const Symbol *symbol{GetLastSymbol(*expr)};
2714     if (!symbol) {
2715       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
2716           x.GetSource());
2717     } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
2718       auto *msg{context_.SayAt(x,
2719           "Assignment to subprogram '%s' is not allowed"_err_en_US,
2720           symbol->name())};
2721       if (subp->isFunction()) {
2722         const auto &result{subp->result().name()};
2723         msg->Attach(result, "Function result is '%s'"_err_en_US, result);
2724       }
2725     } else {
2726       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
2727           symbol->name());
2728     }
2729   }
2730   fatalErrors_ = true;
2731 }
2732 
2733 void ArgumentAnalyzer::Analyze(
2734     const parser::ActualArgSpec &arg, bool isSubroutine) {
2735   // TODO: C1002: Allow a whole assumed-size array to appear if the dummy
2736   // argument would accept it.  Handle by special-casing the context
2737   // ActualArg -> Variable -> Designator.
2738   // TODO: Actual arguments that are procedures and procedure pointers need to
2739   // be detected and represented (they're not expressions).
2740   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
2741   std::optional<ActualArgument> actual;
2742   bool isAltReturn{false};
2743   std::visit(common::visitors{
2744                  [&](const common::Indirection<parser::Expr> &x) {
2745                    // TODO: Distinguish & handle procedure name and
2746                    // proc-component-ref
2747                    actual = AnalyzeExpr(x.value());
2748                  },
2749                  [&](const parser::AltReturnSpec &) {
2750                    if (!isSubroutine) {
2751                      context_.Say(
2752                          "alternate return specification may not appear on"
2753                          " function reference"_err_en_US);
2754                    }
2755                    isAltReturn = true;
2756                  },
2757                  [&](const parser::ActualArg::PercentRef &) {
2758                    context_.Say("TODO: %REF() argument"_err_en_US);
2759                  },
2760                  [&](const parser::ActualArg::PercentVal &) {
2761                    context_.Say("TODO: %VAL() argument"_err_en_US);
2762                  },
2763              },
2764       std::get<parser::ActualArg>(arg.t).u);
2765   if (actual) {
2766     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
2767       actual->set_keyword(argKW->v.source);
2768     }
2769     actuals_.emplace_back(std::move(*actual));
2770   } else if (!isAltReturn) {
2771     fatalErrors_ = true;
2772   }
2773 }
2774 
2775 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const {
2776   CHECK(actuals_.size() == 2);
2777   return semantics::IsIntrinsicRelational(
2778       opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2779 }
2780 
2781 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
2782   std::optional<DynamicType> type0{GetType(0)};
2783   if (actuals_.size() == 1) {
2784     if (IsBOZLiteral(0)) {
2785       return opr == NumericOperator::Add;
2786     } else {
2787       return type0 && semantics::IsIntrinsicNumeric(*type0);
2788     }
2789   } else {
2790     std::optional<DynamicType> type1{GetType(1)};
2791     if (IsBOZLiteral(0) && type1) {
2792       auto cat1{type1->category()};
2793       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
2794     } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ
2795       auto cat0{type0->category()};
2796       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
2797     } else {
2798       return type0 && type1 &&
2799           semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1));
2800     }
2801   }
2802 }
2803 
2804 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
2805   if (actuals_.size() == 1) {
2806     return semantics::IsIntrinsicLogical(*GetType(0));
2807     return GetType(0)->category() == TypeCategory::Logical;
2808   } else {
2809     return semantics::IsIntrinsicLogical(
2810         *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2811   }
2812 }
2813 
2814 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
2815   return semantics::IsIntrinsicConcat(
2816       *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2817 }
2818 
2819 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
2820     const char *opr, parser::MessageFixedText &&error, bool isUserOp) {
2821   if (AnyUntypedOperand()) {
2822     context_.Say(
2823         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
2824     return std::nullopt;
2825   }
2826   {
2827     auto restorer{context_.GetContextualMessages().DiscardMessages()};
2828     std::string oprNameString{
2829         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
2830     parser::CharBlock oprName{oprNameString};
2831     const auto &scope{context_.context().FindScope(source_)};
2832     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
2833       parser::Name name{symbol->name(), symbol};
2834       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
2835         return result;
2836       }
2837       sawDefinedOp_ = symbol;
2838     }
2839     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
2840       if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) {
2841         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
2842           return result;
2843         }
2844       }
2845     }
2846   }
2847   if (sawDefinedOp_) {
2848     SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString()));
2849   } else if (actuals_.size() == 1 || AreConformable()) {
2850     context_.Say(
2851         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
2852   } else {
2853     context_.Say(
2854         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
2855         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
2856   }
2857   return std::nullopt;
2858 }
2859 
2860 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
2861     std::vector<const char *> oprs, parser::MessageFixedText &&error) {
2862   for (std::size_t i{1}; i < oprs.size(); ++i) {
2863     auto restorer{context_.GetContextualMessages().DiscardMessages()};
2864     if (auto result{TryDefinedOp(oprs[i], std::move(error))}) {
2865       return result;
2866     }
2867   }
2868   return TryDefinedOp(oprs[0], std::move(error));
2869 }
2870 
2871 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
2872   ActualArguments localActuals{actuals_};
2873   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
2874   if (!proc) {
2875     proc = &symbol;
2876     localActuals.at(passIndex).value().set_isPassedObject();
2877   }
2878   return context_.MakeFunctionRef(
2879       source_, ProcedureDesignator{*proc}, std::move(localActuals));
2880 }
2881 
2882 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
2883   using semantics::Tristate;
2884   const Expr<SomeType> &lhs{GetExpr(0)};
2885   const Expr<SomeType> &rhs{GetExpr(1)};
2886   std::optional<DynamicType> lhsType{lhs.GetType()};
2887   std::optional<DynamicType> rhsType{rhs.GetType()};
2888   int lhsRank{lhs.Rank()};
2889   int rhsRank{rhs.Rank()};
2890   Tristate isDefined{
2891       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
2892   if (isDefined == Tristate::No) {
2893     if (lhsType && rhsType) {
2894       AddAssignmentConversion(*lhsType, *rhsType);
2895     }
2896     return std::nullopt; // user-defined assignment not allowed for these args
2897   }
2898   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
2899   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
2900     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
2901     return std::move(*procRef);
2902   }
2903   if (isDefined == Tristate::Yes) {
2904     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
2905         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
2906       SayNoMatch("ASSIGNMENT(=)", true);
2907     }
2908   }
2909   return std::nullopt;
2910 }
2911 
2912 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
2913     TypeCategory lhs, TypeCategory rhs) {
2914   if (!context_.context().languageFeatures().IsEnabled(
2915           common::LanguageFeature::LogicalIntegerAssignment)) {
2916     return false;
2917   }
2918   std::optional<parser::MessageFixedText> msg;
2919   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
2920     // allow assignment to LOGICAL from INTEGER as a legacy extension
2921     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US;
2922   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
2923     // ... and assignment to LOGICAL from INTEGER
2924     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US;
2925   } else {
2926     return false;
2927   }
2928   if (context_.context().languageFeatures().ShouldWarn(
2929           common::LanguageFeature::LogicalIntegerAssignment)) {
2930     context_.Say(std::move(*msg));
2931   }
2932   return true;
2933 }
2934 
2935 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
2936   auto restorer{context_.GetContextualMessages().DiscardMessages()};
2937   std::string oprNameString{"assignment(=)"};
2938   parser::CharBlock oprName{oprNameString};
2939   const Symbol *proc{nullptr};
2940   const auto &scope{context_.context().FindScope(source_)};
2941   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
2942     ExpressionAnalyzer::AdjustActuals noAdjustment;
2943     if (const Symbol *
2944         specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) {
2945       proc = specific;
2946     } else {
2947       context_.EmitGenericResolutionError(*symbol);
2948     }
2949   }
2950   for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
2951     if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) {
2952       proc = specific;
2953     }
2954   }
2955   if (proc) {
2956     ActualArguments actualsCopy{actuals_};
2957     actualsCopy[1]->Parenthesize();
2958     return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
2959   } else {
2960     return std::nullopt;
2961   }
2962 }
2963 
2964 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
2965   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
2966      << '\n';
2967   for (const auto &actual : actuals_) {
2968     if (!actual.has_value()) {
2969       os << "- error\n";
2970     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
2971       os << "- assumed type: " << symbol->name().ToString() << '\n';
2972     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
2973       expr->AsFortran(os << "- expr: ") << '\n';
2974     } else {
2975       DIE("bad ActualArgument");
2976     }
2977   }
2978 }
2979 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
2980     const parser::Expr &expr) {
2981   source_.ExtendToCover(expr.source);
2982   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
2983     expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
2984     if (isProcedureCall_) {
2985       return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2986     } else {
2987       context_.SayAt(expr.source,
2988           "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2989       return std::nullopt;
2990     }
2991   } else if (MaybeExpr argExpr{context_.Analyze(expr)}) {
2992     if (!isProcedureCall_ && IsProcedure(*argExpr)) {
2993       if (IsFunction(*argExpr)) {
2994         context_.SayAt(
2995             expr.source, "Function call must have argument list"_err_en_US);
2996       } else {
2997         context_.SayAt(
2998             expr.source, "Subroutine name is not allowed here"_err_en_US);
2999       }
3000       return std::nullopt;
3001     }
3002     return ActualArgument{context_.Fold(std::move(*argExpr))};
3003   } else {
3004     return std::nullopt;
3005   }
3006 }
3007 
3008 bool ArgumentAnalyzer::AreConformable() const {
3009   CHECK(!fatalErrors_ && actuals_.size() == 2);
3010   return evaluate::AreConformable(*actuals_[0], *actuals_[1]);
3011 }
3012 
3013 // Look for a type-bound operator in the type of arg number passIndex.
3014 const Symbol *ArgumentAnalyzer::FindBoundOp(
3015     parser::CharBlock oprName, int passIndex) {
3016   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
3017   if (!type || !type->scope()) {
3018     return nullptr;
3019   }
3020   const Symbol *symbol{type->scope()->FindComponent(oprName)};
3021   if (!symbol) {
3022     return nullptr;
3023   }
3024   sawDefinedOp_ = symbol;
3025   ExpressionAnalyzer::AdjustActuals adjustment{
3026       [&](const Symbol &proc, ActualArguments &) {
3027         return passIndex == GetPassIndex(proc);
3028       }};
3029   const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
3030   if (!result) {
3031     context_.EmitGenericResolutionError(*symbol);
3032   }
3033   return result;
3034 }
3035 
3036 // If there is an implicit conversion between intrinsic types, make it explicit
3037 void ArgumentAnalyzer::AddAssignmentConversion(
3038     const DynamicType &lhsType, const DynamicType &rhsType) {
3039   if (lhsType.category() == rhsType.category() &&
3040       lhsType.kind() == rhsType.kind()) {
3041     // no conversion necessary
3042   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
3043     actuals_[1] = ActualArgument{*rhsExpr};
3044   } else {
3045     actuals_[1] = std::nullopt;
3046   }
3047 }
3048 
3049 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
3050   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
3051 }
3052 int ArgumentAnalyzer::GetRank(std::size_t i) const {
3053   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
3054 }
3055 
3056 // If the argument at index i is a BOZ literal, convert its type to match the
3057 // otherType.  It it's REAL convert to REAL, otherwise convert to INTEGER.
3058 // Note that IBM supports comparing BOZ literals to CHARACTER operands.  That
3059 // is not currently supported.
3060 void ArgumentAnalyzer::ConvertBOZ(
3061     std::size_t i, std::optional<DynamicType> otherType) {
3062   if (IsBOZLiteral(i)) {
3063     Expr<SomeType> &&argExpr{MoveExpr(i)};
3064     auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
3065     if (otherType && otherType->category() == TypeCategory::Real) {
3066       MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>(
3067           context_.context().GetDefaultKind(TypeCategory::Real),
3068           std::move(*boz))};
3069       actuals_[i] = std::move(*realExpr);
3070     } else {
3071       MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>(
3072           context_.context().GetDefaultKind(TypeCategory::Integer),
3073           std::move(*boz))};
3074       actuals_[i] = std::move(*intExpr);
3075     }
3076   }
3077 }
3078 
3079 // Report error resolving opr when there is a user-defined one available
3080 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
3081   std::string type0{TypeAsFortran(0)};
3082   auto rank0{actuals_[0]->Rank()};
3083   if (actuals_.size() == 1) {
3084     if (rank0 > 0) {
3085       context_.Say("No intrinsic or user-defined %s matches "
3086                    "rank %d array of %s"_err_en_US,
3087           opr, rank0, type0);
3088     } else {
3089       context_.Say("No intrinsic or user-defined %s matches "
3090                    "operand type %s"_err_en_US,
3091           opr, type0);
3092     }
3093   } else {
3094     std::string type1{TypeAsFortran(1)};
3095     auto rank1{actuals_[1]->Rank()};
3096     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
3097       context_.Say("No intrinsic or user-defined %s matches "
3098                    "rank %d array of %s and rank %d array of %s"_err_en_US,
3099           opr, rank0, type0, rank1, type1);
3100     } else if (isAssignment && rank0 != rank1) {
3101       if (rank0 == 0) {
3102         context_.Say("No intrinsic or user-defined %s matches "
3103                      "scalar %s and rank %d array of %s"_err_en_US,
3104             opr, type0, rank1, type1);
3105       } else {
3106         context_.Say("No intrinsic or user-defined %s matches "
3107                      "rank %d array of %s and scalar %s"_err_en_US,
3108             opr, rank0, type0, type1);
3109       }
3110     } else {
3111       context_.Say("No intrinsic or user-defined %s matches "
3112                    "operand types %s and %s"_err_en_US,
3113           opr, type0, type1);
3114     }
3115   }
3116 }
3117 
3118 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
3119   if (std::optional<DynamicType> type{GetType(i)}) {
3120     return type->category() == TypeCategory::Derived
3121         ? "TYPE("s + type->AsFortran() + ')'
3122         : type->category() == TypeCategory::Character
3123         ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
3124         : ToUpperCase(type->AsFortran());
3125   } else {
3126     return "untyped";
3127   }
3128 }
3129 
3130 bool ArgumentAnalyzer::AnyUntypedOperand() {
3131   for (const auto &actual : actuals_) {
3132     if (!actual.value().GetType()) {
3133       return true;
3134     }
3135   }
3136   return false;
3137 }
3138 
3139 } // namespace Fortran::evaluate
3140 
3141 namespace Fortran::semantics {
3142 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
3143     SemanticsContext &context, common::TypeCategory category,
3144     const std::optional<parser::KindSelector> &selector) {
3145   evaluate::ExpressionAnalyzer analyzer{context};
3146   auto restorer{
3147       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3148   return analyzer.AnalyzeKindSelector(category, selector);
3149 }
3150 
3151 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) {
3152   evaluate::ExpressionAnalyzer{context}.Analyze(call);
3153 }
3154 
3155 const evaluate::Assignment *AnalyzeAssignmentStmt(
3156     SemanticsContext &context, const parser::AssignmentStmt &stmt) {
3157   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3158 }
3159 const evaluate::Assignment *AnalyzePointerAssignmentStmt(
3160     SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) {
3161   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3162 }
3163 
3164 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3165 
3166 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
3167   parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
3168   const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
3169   auto name{bounds.name.thing.thing};
3170   int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
3171   if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
3172     if (dynamicType->category() == TypeCategory::Integer) {
3173       kind = dynamicType->kind();
3174     }
3175   }
3176   exprAnalyzer_.AddImpliedDo(name.source, kind);
3177   parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
3178   exprAnalyzer_.RemoveImpliedDo(name.source);
3179   return false;
3180 }
3181 
3182 bool ExprChecker::Walk(const parser::Program &program) {
3183   parser::Walk(program, *this);
3184   return !context_.AnyFatalError();
3185 }
3186 } // namespace Fortran::semantics
3187