1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names-utils.h" 13 #include "resolve-names.h" 14 #include "flang/Common/Fortran.h" 15 #include "flang/Common/idioms.h" 16 #include "flang/Evaluate/common.h" 17 #include "flang/Evaluate/fold.h" 18 #include "flang/Evaluate/tools.h" 19 #include "flang/Parser/characters.h" 20 #include "flang/Parser/dump-parse-tree.h" 21 #include "flang/Parser/parse-tree-visitor.h" 22 #include "flang/Parser/parse-tree.h" 23 #include "flang/Semantics/scope.h" 24 #include "flang/Semantics/semantics.h" 25 #include "flang/Semantics/symbol.h" 26 #include "flang/Semantics/tools.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> 29 #include <functional> 30 #include <optional> 31 #include <set> 32 33 // Typedef for optional generic expressions (ubiquitous in this file) 34 using MaybeExpr = 35 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 36 37 // Much of the code that implements semantic analysis of expressions is 38 // tightly coupled with their typed representations in lib/Evaluate, 39 // and appears here in namespace Fortran::evaluate for convenience. 40 namespace Fortran::evaluate { 41 42 using common::LanguageFeature; 43 using common::NumericOperator; 44 using common::TypeCategory; 45 46 static inline std::string ToUpperCase(const std::string &str) { 47 return parser::ToUpperCaseLetters(str); 48 } 49 50 struct DynamicTypeWithLength : public DynamicType { 51 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 52 std::optional<Expr<SubscriptInteger>> LEN() const; 53 std::optional<Expr<SubscriptInteger>> length; 54 }; 55 56 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 57 if (length) { 58 return length; 59 } else { 60 return GetCharLength(); 61 } 62 } 63 64 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 65 const std::optional<parser::TypeSpec> &spec) { 66 if (spec) { 67 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 68 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 69 // (viz., an intrinsic type with valid known kind or a non-polymorphic 70 // & non-ABSTRACT derived type). 71 if (const semantics::IntrinsicTypeSpec * 72 intrinsic{typeSpec->AsIntrinsic()}) { 73 TypeCategory category{intrinsic->category()}; 74 if (auto optKind{ToInt64(intrinsic->kind())}) { 75 int kind{static_cast<int>(*optKind)}; 76 if (category == TypeCategory::Character) { 77 const semantics::CharacterTypeSpec &cts{ 78 typeSpec->characterTypeSpec()}; 79 const semantics::ParamValue &len{cts.length()}; 80 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 81 // type guards, but not in array constructors. 82 return DynamicTypeWithLength{DynamicType{kind, len}}; 83 } else { 84 return DynamicTypeWithLength{DynamicType{category, kind}}; 85 } 86 } 87 } else if (const semantics::DerivedTypeSpec * 88 derived{typeSpec->AsDerived()}) { 89 return DynamicTypeWithLength{DynamicType{*derived}}; 90 } 91 } 92 } 93 return std::nullopt; 94 } 95 96 // Utilities to set a source location, if we have one, on an actual argument, 97 // when it is statically present. 98 static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) { 99 x.set_sourceLocation(at); 100 } 101 static void SetArgSourceLocation( 102 std::optional<ActualArgument> &x, parser::CharBlock at) { 103 if (x) { 104 x->set_sourceLocation(at); 105 } 106 } 107 static void SetArgSourceLocation( 108 std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) { 109 if (x && at) { 110 x->set_sourceLocation(*at); 111 } 112 } 113 114 class ArgumentAnalyzer { 115 public: 116 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 117 : context_{context}, source_{context.GetContextualMessages().at()}, 118 isProcedureCall_{false} {} 119 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 120 bool isProcedureCall = false) 121 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 122 bool fatalErrors() const { return fatalErrors_; } 123 ActualArguments &&GetActuals() { 124 CHECK(!fatalErrors_); 125 return std::move(actuals_); 126 } 127 const Expr<SomeType> &GetExpr(std::size_t i) const { 128 return DEREF(actuals_.at(i).value().UnwrapExpr()); 129 } 130 Expr<SomeType> &&MoveExpr(std::size_t i) { 131 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 132 } 133 void Analyze(const common::Indirection<parser::Expr> &x) { 134 Analyze(x.value()); 135 } 136 void Analyze(const parser::Expr &x) { 137 actuals_.emplace_back(AnalyzeExpr(x)); 138 SetArgSourceLocation(actuals_.back(), x.source); 139 fatalErrors_ |= !actuals_.back(); 140 } 141 void Analyze(const parser::Variable &); 142 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 143 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 144 std::optional<DynamicType> otherType); 145 146 bool IsIntrinsicRelational( 147 RelationalOperator, const DynamicType &, const DynamicType &) const; 148 bool IsIntrinsicLogical() const; 149 bool IsIntrinsicNumeric(NumericOperator) const; 150 bool IsIntrinsicConcat() const; 151 152 bool CheckConformance(); 153 bool CheckForNullPointer(const char *where = "as an operand here"); 154 155 // Find and return a user-defined operator or report an error. 156 // The provided message is used if there is no such operator. 157 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 158 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 159 template <typename E> 160 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 161 return TryDefinedOp( 162 context_.context().languageFeatures().GetNames(opr), msg); 163 } 164 // Find and return a user-defined assignment 165 std::optional<ProcedureRef> TryDefinedAssignment(); 166 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 167 std::optional<DynamicType> GetType(std::size_t) const; 168 void Dump(llvm::raw_ostream &); 169 170 private: 171 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 172 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 173 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 174 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 175 bool AreConformable() const; 176 const Symbol *FindBoundOp( 177 parser::CharBlock, int passIndex, const Symbol *&definedOp); 178 void AddAssignmentConversion( 179 const DynamicType &lhsType, const DynamicType &rhsType); 180 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 181 int GetRank(std::size_t) const; 182 bool IsBOZLiteral(std::size_t i) const { 183 return evaluate::IsBOZLiteral(GetExpr(i)); 184 } 185 void SayNoMatch(const std::string &, bool isAssignment = false); 186 std::string TypeAsFortran(std::size_t); 187 bool AnyUntypedOrMissingOperand(); 188 189 ExpressionAnalyzer &context_; 190 ActualArguments actuals_; 191 parser::CharBlock source_; 192 bool fatalErrors_{false}; 193 const bool isProcedureCall_; // false for user-defined op or assignment 194 }; 195 196 // Wraps a data reference in a typed Designator<>, and a procedure 197 // or procedure pointer reference in a ProcedureDesignator. 198 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 199 const Symbol &last{ref.GetLastSymbol()}; 200 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 201 if (semantics::IsProcedure(symbol)) { 202 if (auto *component{std::get_if<Component>(&ref.u)}) { 203 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 204 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 205 DIE("unexpected alternative in DataRef"); 206 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 207 if (symbol.has<semantics::GenericDetails>()) { 208 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 209 } else { 210 return Expr<SomeType>{ProcedureDesignator{symbol}}; 211 } 212 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 213 symbol.name().ToString())}; 214 interface && !interface->isRestrictedSpecific) { 215 SpecificIntrinsic intrinsic{ 216 symbol.name().ToString(), std::move(*interface)}; 217 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 218 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 219 } else { 220 Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, 221 symbol.name()); 222 } 223 return std::nullopt; 224 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 225 return result; 226 } else { 227 if (!context_.HasError(last) && !context_.HasError(symbol)) { 228 AttachDeclaration( 229 Say("'%s' is not an object that can appear in an expression"_err_en_US, 230 last.name()), 231 symbol); 232 context_.SetError(last); 233 } 234 return std::nullopt; 235 } 236 } 237 238 // Some subscript semantic checks must be deferred until all of the 239 // subscripts are in hand. 240 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 241 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 242 int symbolRank{symbol.Rank()}; 243 int subscripts{static_cast<int>(ref.size())}; 244 if (subscripts == 0) { 245 return std::nullopt; // error recovery 246 } else if (subscripts != symbolRank) { 247 if (symbolRank != 0) { 248 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 249 symbolRank, symbol.name(), subscripts); 250 } 251 return std::nullopt; 252 } else if (Component * component{ref.base().UnwrapComponent()}) { 253 int baseRank{component->base().Rank()}; 254 if (baseRank > 0) { 255 int subscriptRank{0}; 256 for (const auto &expr : ref.subscript()) { 257 subscriptRank += expr.Rank(); 258 } 259 if (subscriptRank > 0) { // C919a 260 Say("Subscripts of component '%s' of rank-%d derived type " 261 "array have rank %d but must all be scalar"_err_en_US, 262 symbol.name(), baseRank, subscriptRank); 263 return std::nullopt; 264 } 265 } 266 } else if (const auto *object{ 267 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 268 // C928 & C1002 269 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 270 if (!last->upper() && object->IsAssumedSize()) { 271 Say("Assumed-size array '%s' must have explicit final " 272 "subscript upper bound value"_err_en_US, 273 symbol.name()); 274 return std::nullopt; 275 } 276 } 277 } else { 278 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 279 // which, if not an object, must be a construct entity from 280 // SELECT TYPE/RANK or ASSOCIATE. 281 CHECK(symbol.has<semantics::AssocEntityDetails>()); 282 } 283 return Designate(DataRef{std::move(ref)}); 284 } 285 286 // Applies subscripts to a data reference. 287 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 288 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 289 if (subscripts.empty()) { 290 return std::nullopt; // error recovery 291 } 292 return common::visit( 293 common::visitors{ 294 [&](SymbolRef &&symbol) { 295 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 296 }, 297 [&](Component &&c) { 298 return CompleteSubscripts( 299 ArrayRef{std::move(c), std::move(subscripts)}); 300 }, 301 [&](auto &&) -> MaybeExpr { 302 DIE("bad base for ArrayRef"); 303 return std::nullopt; 304 }, 305 }, 306 std::move(dataRef.u)); 307 } 308 309 // Top-level checks for data references. 310 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 311 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 312 const Symbol &symbol{component->GetLastSymbol()}; 313 int componentRank{symbol.Rank()}; 314 if (componentRank > 0) { 315 int baseRank{component->base().Rank()}; 316 if (baseRank > 0) { // C919a 317 Say("Reference to whole rank-%d component '%%%s' of " 318 "rank-%d array of derived type is not allowed"_err_en_US, 319 componentRank, symbol.name(), baseRank); 320 } 321 } 322 } 323 return Designate(std::move(dataRef)); 324 } 325 326 // Parse tree correction after a substring S(j:k) was misparsed as an 327 // array section. N.B. Fortran substrings have to have a range, not a 328 // single index. 329 static void FixMisparsedSubstring(const parser::Designator &d) { 330 auto &mutate{const_cast<parser::Designator &>(d)}; 331 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 332 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 333 &dataRef->u)}) { 334 parser::ArrayElement &arrElement{ae->value()}; 335 if (!arrElement.subscripts.empty()) { 336 auto iter{arrElement.subscripts.begin()}; 337 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 338 if (!std::get<2>(triplet->t) /* no stride */ && 339 ++iter == arrElement.subscripts.end() /* one subscript */) { 340 if (Symbol * 341 symbol{common::visit( 342 common::visitors{ 343 [](parser::Name &n) { return n.symbol; }, 344 [](common::Indirection<parser::StructureComponent> 345 &sc) { return sc.value().component.symbol; }, 346 [](auto &) -> Symbol * { return nullptr; }, 347 }, 348 arrElement.base.u)}) { 349 const Symbol &ultimate{symbol->GetUltimate()}; 350 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 351 if (!ultimate.IsObjectArray() && 352 type->category() == semantics::DeclTypeSpec::Character) { 353 // The ambiguous S(j:k) was parsed as an array section 354 // reference, but it's now clear that it's a substring. 355 // Fix the parse tree in situ. 356 mutate.u = arrElement.ConvertToSubstring(); 357 } 358 } 359 } 360 } 361 } 362 } 363 } 364 } 365 } 366 367 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 368 auto restorer{GetContextualMessages().SetLocation(d.source)}; 369 FixMisparsedSubstring(d); 370 // These checks have to be deferred to these "top level" data-refs where 371 // we can be sure that there are no following subscripts (yet). 372 // Substrings have already been run through TopLevelChecks() and 373 // won't be returned by ExtractDataRef(). 374 if (MaybeExpr result{Analyze(d.u)}) { 375 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 376 return TopLevelChecks(std::move(*dataRef)); 377 } 378 return result; 379 } 380 return std::nullopt; 381 } 382 383 // A utility subroutine to repackage optional expressions of various levels 384 // of type specificity as fully general MaybeExpr values. 385 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 386 return AsGenericExpr(std::move(x)); 387 } 388 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 389 if (x) { 390 return AsMaybeExpr(std::move(*x)); 391 } 392 return std::nullopt; 393 } 394 395 // Type kind parameter values for literal constants. 396 int ExpressionAnalyzer::AnalyzeKindParam( 397 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 398 if (!kindParam) { 399 return defaultKind; 400 } 401 return common::visit( 402 common::visitors{ 403 [](std::uint64_t k) { return static_cast<int>(k); }, 404 [&](const parser::Scalar< 405 parser::Integer<parser::Constant<parser::Name>>> &n) { 406 if (MaybeExpr ie{Analyze(n)}) { 407 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 408 int iv = *i64; 409 if (iv == *i64) { 410 return iv; 411 } 412 } 413 } 414 return defaultKind; 415 }, 416 }, 417 kindParam->u); 418 } 419 420 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 421 struct IntTypeVisitor { 422 using Result = MaybeExpr; 423 using Types = IntegerTypes; 424 template <typename T> Result Test() { 425 if (T::kind >= kind) { 426 const char *p{digits.begin()}; 427 using Int = typename T::Scalar; 428 typename Int::ValueWithOverflow num{0, false}; 429 if (isNegated) { 430 auto unsignedNum{Int::Read(p, 10, false /*unsigned*/)}; 431 num.value = unsignedNum.value.Negate().value; 432 num.overflow = unsignedNum.overflow || num.value > Int{0}; 433 if (!num.overflow && num.value.Negate().overflow && 434 !analyzer.context().IsInModuleFile(digits)) { 435 analyzer.Say(digits, 436 "negated maximum INTEGER(KIND=%d) literal"_port_en_US, T::kind); 437 } 438 } else { 439 num = Int::Read(p, 10, true /*signed*/); 440 } 441 if (!num.overflow) { 442 if (T::kind > kind) { 443 if (!isDefaultKind || 444 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 445 return std::nullopt; 446 } else if (analyzer.context().ShouldWarn( 447 LanguageFeature::BigIntLiterals)) { 448 analyzer.Say(digits, 449 "Integer literal is too large for default INTEGER(KIND=%d); " 450 "assuming INTEGER(KIND=%d)"_port_en_US, 451 kind, T::kind); 452 } 453 } 454 return Expr<SomeType>{ 455 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(num.value)}}}}; 456 } 457 } 458 return std::nullopt; 459 } 460 ExpressionAnalyzer &analyzer; 461 parser::CharBlock digits; 462 int kind; 463 bool isDefaultKind; 464 bool isNegated; 465 }; 466 467 template <typename PARSED> 468 MaybeExpr ExpressionAnalyzer::IntLiteralConstant( 469 const PARSED &x, bool isNegated) { 470 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 471 bool isDefaultKind{!kindParam}; 472 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 473 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 474 auto digits{std::get<parser::CharBlock>(x.t)}; 475 if (MaybeExpr result{common::SearchTypes( 476 IntTypeVisitor{*this, digits, kind, isDefaultKind, isNegated})}) { 477 return result; 478 } else if (isDefaultKind) { 479 Say(digits, 480 "Integer literal is too large for any allowable " 481 "kind of INTEGER"_err_en_US); 482 } else { 483 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 484 kind); 485 } 486 } 487 return std::nullopt; 488 } 489 490 MaybeExpr ExpressionAnalyzer::Analyze( 491 const parser::IntLiteralConstant &x, bool isNegated) { 492 auto restorer{ 493 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 494 return IntLiteralConstant(x, isNegated); 495 } 496 497 MaybeExpr ExpressionAnalyzer::Analyze( 498 const parser::SignedIntLiteralConstant &x) { 499 auto restorer{GetContextualMessages().SetLocation(x.source)}; 500 return IntLiteralConstant(x); 501 } 502 503 template <typename TYPE> 504 Constant<TYPE> ReadRealLiteral( 505 parser::CharBlock source, FoldingContext &context) { 506 const char *p{source.begin()}; 507 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 508 CHECK(p == source.end()); 509 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 510 auto value{valWithFlags.value}; 511 if (context.flushSubnormalsToZero()) { 512 value = value.FlushSubnormalToZero(); 513 } 514 return {value}; 515 } 516 517 struct RealTypeVisitor { 518 using Result = std::optional<Expr<SomeReal>>; 519 using Types = RealTypes; 520 521 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 522 : kind{k}, literal{lit}, context{ctx} {} 523 524 template <typename T> Result Test() { 525 if (kind == T::kind) { 526 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 527 } 528 return std::nullopt; 529 } 530 531 int kind; 532 parser::CharBlock literal; 533 FoldingContext &context; 534 }; 535 536 // Reads a real literal constant and encodes it with the right kind. 537 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 538 // Use a local message context around the real literal for better 539 // provenance on any messages. 540 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 541 // If a kind parameter appears, it defines the kind of the literal and the 542 // letter used in an exponent part must be 'E' (e.g., the 'E' in 543 // "6.02214E+23"). In the absence of an explicit kind parameter, any 544 // exponent letter determines the kind. Otherwise, defaults apply. 545 auto &defaults{context_.defaultKinds()}; 546 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 547 const char *end{x.real.source.end()}; 548 char expoLetter{' '}; 549 std::optional<int> letterKind; 550 for (const char *p{x.real.source.begin()}; p < end; ++p) { 551 if (parser::IsLetter(*p)) { 552 expoLetter = *p; 553 switch (expoLetter) { 554 case 'e': 555 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 556 break; 557 case 'd': 558 letterKind = defaults.doublePrecisionKind(); 559 break; 560 case 'q': 561 letterKind = defaults.quadPrecisionKind(); 562 break; 563 default: 564 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 565 } 566 break; 567 } 568 } 569 if (letterKind) { 570 defaultKind = *letterKind; 571 } 572 // C716 requires 'E' as an exponent. 573 // Extension: allow exponent-letter matching the kind-param. 574 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 575 if (letterKind && expoLetter != 'e') { 576 if (kind != *letterKind) { 577 Say("Explicit kind parameter on real constant disagrees with " 578 "exponent letter '%c'"_warn_en_US, 579 expoLetter); 580 } else if (x.kind && 581 context_.ShouldWarn( 582 common::LanguageFeature::ExponentMatchingKindParam)) { 583 Say("Explicit kind parameter together with non-'E' exponent letter " 584 "is not standard"_port_en_US); 585 } 586 } 587 auto result{common::SearchTypes( 588 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 589 if (!result) { // C717 590 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 591 } 592 return AsMaybeExpr(std::move(result)); 593 } 594 595 MaybeExpr ExpressionAnalyzer::Analyze( 596 const parser::SignedRealLiteralConstant &x) { 597 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 598 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 599 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 600 if (sign == parser::Sign::Negative) { 601 return AsGenericExpr(-std::move(realExpr)); 602 } 603 } 604 return result; 605 } 606 return std::nullopt; 607 } 608 609 MaybeExpr ExpressionAnalyzer::Analyze( 610 const parser::SignedComplexLiteralConstant &x) { 611 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 612 if (!result) { 613 return std::nullopt; 614 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 615 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 616 } else { 617 return result; 618 } 619 } 620 621 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 622 return Analyze(x.u); 623 } 624 625 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 626 return AsMaybeExpr( 627 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 628 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 629 } 630 631 // CHARACTER literal processing. 632 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 633 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 634 return std::nullopt; 635 } 636 switch (kind) { 637 case 1: 638 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 639 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 640 string, true)}); 641 case 2: 642 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 643 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 644 string, true)}); 645 case 4: 646 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 647 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 648 string, true)}); 649 default: 650 CRASH_NO_CASE; 651 } 652 } 653 654 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 655 int kind{ 656 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 657 auto value{std::get<std::string>(x.t)}; 658 return AnalyzeString(std::move(value), kind); 659 } 660 661 MaybeExpr ExpressionAnalyzer::Analyze( 662 const parser::HollerithLiteralConstant &x) { 663 int kind{GetDefaultKind(TypeCategory::Character)}; 664 auto value{x.v}; 665 return AnalyzeString(std::move(value), kind); 666 } 667 668 // .TRUE. and .FALSE. of various kinds 669 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 670 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 671 GetDefaultKind(TypeCategory::Logical))}; 672 bool value{std::get<bool>(x.t)}; 673 auto result{common::SearchTypes( 674 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 675 kind, std::move(value)})}; 676 if (!result) { 677 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 678 } 679 return result; 680 } 681 682 // BOZ typeless literals 683 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 684 const char *p{x.v.c_str()}; 685 std::uint64_t base{16}; 686 switch (*p++) { 687 case 'b': 688 base = 2; 689 break; 690 case 'o': 691 base = 8; 692 break; 693 case 'z': 694 break; 695 case 'x': 696 break; 697 default: 698 CRASH_NO_CASE; 699 } 700 CHECK(*p == '"'); 701 ++p; 702 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 703 if (*p != '"') { 704 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 705 x.v); // C7107, C7108 706 return std::nullopt; 707 } 708 if (value.overflow) { 709 Say("BOZ literal '%s' too large"_err_en_US, x.v); 710 return std::nullopt; 711 } 712 return AsGenericExpr(std::move(value.value)); 713 } 714 715 // Names and named constants 716 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 717 auto restorer{GetContextualMessages().SetLocation(n.source)}; 718 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 719 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 720 *kind, AsExpr(ImpliedDoIndex{n.source}))); 721 } 722 if (context_.HasError(n.symbol)) { // includes case of no symbol 723 return std::nullopt; 724 } else { 725 const Symbol &ultimate{n.symbol->GetUltimate()}; 726 if (ultimate.has<semantics::TypeParamDetails>()) { 727 // A bare reference to a derived type parameter (within a parameterized 728 // derived type definition) 729 return Fold(ConvertToType( 730 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 731 } else { 732 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 733 if (const semantics::Scope * 734 pure{semantics::FindPureProcedureContaining( 735 context_.FindScope(n.source))}) { 736 SayAt(n, 737 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 738 n.source, DEREF(pure->symbol()).name()); 739 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 740 } 741 } 742 if (!isWholeAssumedSizeArrayOk_ && 743 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 744 AttachDeclaration( 745 SayAt(n, 746 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 747 n.source), 748 *n.symbol); 749 } 750 return Designate(DataRef{*n.symbol}); 751 } 752 } 753 } 754 755 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 756 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 757 if (MaybeExpr value{Analyze(n.v)}) { 758 Expr<SomeType> folded{Fold(std::move(*value))}; 759 if (IsConstantExpr(folded)) { 760 return folded; 761 } 762 Say(n.v.source, "must be a constant"_err_en_US); // C718 763 } 764 return std::nullopt; 765 } 766 767 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 768 if (MaybeExpr value{Analyze(n.v)}) { 769 // Subtle: when the NullInit is a DataStmtConstant, it might 770 // be a misparse of a structure constructor without parameters 771 // or components (e.g., T()). Checking the result to ensure 772 // that a "=>" data entity initializer actually resolved to 773 // a null pointer has to be done by the caller. 774 return Fold(std::move(*value)); 775 } 776 return std::nullopt; 777 } 778 779 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 780 return Analyze(x.value()); 781 } 782 783 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 784 if (const auto &repeat{ 785 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 786 x.repetitions = -1; 787 if (MaybeExpr expr{Analyze(repeat->u)}) { 788 Expr<SomeType> folded{Fold(std::move(*expr))}; 789 if (auto value{ToInt64(folded)}) { 790 if (*value >= 0) { // C882 791 x.repetitions = *value; 792 } else { 793 Say(FindSourceLocation(repeat), 794 "Repeat count (%jd) for data value must not be negative"_err_en_US, 795 *value); 796 } 797 } 798 } 799 } 800 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 801 } 802 803 // Substring references 804 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 805 const std::optional<parser::ScalarIntExpr> &bound) { 806 if (bound) { 807 if (MaybeExpr expr{Analyze(*bound)}) { 808 if (expr->Rank() > 1) { 809 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 810 } 811 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 812 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 813 return {std::move(*ssIntExpr)}; 814 } 815 return {Expr<SubscriptInteger>{ 816 Convert<SubscriptInteger, TypeCategory::Integer>{ 817 std::move(*intExpr)}}}; 818 } else { 819 Say("substring bound expression is not INTEGER"_err_en_US); 820 } 821 } 822 } 823 return std::nullopt; 824 } 825 826 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 827 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 828 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 829 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 830 if (std::optional<DataRef> checked{ 831 ExtractDataRef(std::move(*newBaseExpr))}) { 832 const parser::SubstringRange &range{ 833 std::get<parser::SubstringRange>(ss.t)}; 834 std::optional<Expr<SubscriptInteger>> first{ 835 GetSubstringBound(std::get<0>(range.t))}; 836 std::optional<Expr<SubscriptInteger>> last{ 837 GetSubstringBound(std::get<1>(range.t))}; 838 const Symbol &symbol{checked->GetLastSymbol()}; 839 if (std::optional<DynamicType> dynamicType{ 840 DynamicType::From(symbol)}) { 841 if (dynamicType->category() == TypeCategory::Character) { 842 return WrapperHelper<TypeCategory::Character, Designator, 843 Substring>(dynamicType->kind(), 844 Substring{std::move(checked.value()), std::move(first), 845 std::move(last)}); 846 } 847 } 848 Say("substring may apply only to CHARACTER"_err_en_US); 849 } 850 } 851 } 852 } 853 return std::nullopt; 854 } 855 856 // CHARACTER literal substrings 857 MaybeExpr ExpressionAnalyzer::Analyze( 858 const parser::CharLiteralConstantSubstring &x) { 859 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 860 std::optional<Expr<SubscriptInteger>> lower{ 861 GetSubstringBound(std::get<0>(range.t))}; 862 std::optional<Expr<SubscriptInteger>> upper{ 863 GetSubstringBound(std::get<1>(range.t))}; 864 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 865 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 866 Expr<SubscriptInteger> length{ 867 common::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 868 charExpr->u)}; 869 if (!lower) { 870 lower = Expr<SubscriptInteger>{1}; 871 } 872 if (!upper) { 873 upper = Expr<SubscriptInteger>{ 874 static_cast<std::int64_t>(ToInt64(length).value())}; 875 } 876 return common::visit( 877 [&](auto &&ckExpr) -> MaybeExpr { 878 using Result = ResultType<decltype(ckExpr)>; 879 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 880 CHECK(DEREF(cp).size() == 1); 881 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 882 staticData->set_alignment(Result::kind) 883 .set_itemBytes(Result::kind) 884 .Push(cp->GetScalarValue().value()); 885 Substring substring{std::move(staticData), std::move(lower.value()), 886 std::move(upper.value())}; 887 return AsGenericExpr( 888 Expr<Result>{Designator<Result>{std::move(substring)}}); 889 }, 890 std::move(charExpr->u)); 891 } 892 } 893 return std::nullopt; 894 } 895 896 // Subscripted array references 897 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 898 MaybeExpr &&expr) { 899 if (expr) { 900 if (expr->Rank() > 1) { 901 Say("Subscript expression has rank %d greater than 1"_err_en_US, 902 expr->Rank()); 903 } 904 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 905 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 906 return std::move(*ssIntExpr); 907 } else { 908 return Expr<SubscriptInteger>{ 909 Convert<SubscriptInteger, TypeCategory::Integer>{ 910 std::move(*intExpr)}}; 911 } 912 } else { 913 Say("Subscript expression is not INTEGER"_err_en_US); 914 } 915 } 916 return std::nullopt; 917 } 918 919 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 920 const std::optional<parser::Subscript> &s) { 921 if (s) { 922 return AsSubscript(Analyze(*s)); 923 } else { 924 return std::nullopt; 925 } 926 } 927 928 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 929 const parser::SectionSubscript &ss) { 930 return common::visit( 931 common::visitors{ 932 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 933 const auto &lower{std::get<0>(t.t)}; 934 const auto &upper{std::get<1>(t.t)}; 935 const auto &stride{std::get<2>(t.t)}; 936 auto result{Triplet{ 937 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 938 if ((lower && !result.lower()) || (upper && !result.upper())) { 939 return std::nullopt; 940 } else { 941 return std::make_optional<Subscript>(result); 942 } 943 }, 944 [&](const auto &s) -> std::optional<Subscript> { 945 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 946 return Subscript{std::move(*subscriptExpr)}; 947 } else { 948 return std::nullopt; 949 } 950 }, 951 }, 952 ss.u); 953 } 954 955 // Empty result means an error occurred 956 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 957 const std::list<parser::SectionSubscript> &sss) { 958 bool error{false}; 959 std::vector<Subscript> subscripts; 960 for (const auto &s : sss) { 961 if (auto subscript{AnalyzeSectionSubscript(s)}) { 962 subscripts.emplace_back(std::move(*subscript)); 963 } else { 964 error = true; 965 } 966 } 967 return !error ? subscripts : std::vector<Subscript>{}; 968 } 969 970 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 971 MaybeExpr baseExpr; 972 { 973 auto restorer{AllowWholeAssumedSizeArray()}; 974 baseExpr = Analyze(ae.base); 975 } 976 if (baseExpr) { 977 if (ae.subscripts.empty()) { 978 // will be converted to function call later or error reported 979 } else if (baseExpr->Rank() == 0) { 980 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 981 if (!context_.HasError(symbol)) { 982 if (inDataStmtConstant_) { 983 // Better error for NULL(X) with a MOLD= argument 984 Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US, 985 symbol->name()); 986 } else { 987 Say("'%s' is not an array"_err_en_US, symbol->name()); 988 } 989 context_.SetError(*symbol); 990 } 991 } 992 } else if (std::optional<DataRef> dataRef{ 993 ExtractDataRef(std::move(*baseExpr))}) { 994 return ApplySubscripts( 995 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 996 } else { 997 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 998 } 999 } 1000 // error was reported: analyze subscripts without reporting more errors 1001 auto restorer{GetContextualMessages().DiscardMessages()}; 1002 AnalyzeSectionSubscripts(ae.subscripts); 1003 return std::nullopt; 1004 } 1005 1006 // Type parameter inquiries apply to data references, but don't depend 1007 // on any trailing (co)subscripts. 1008 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 1009 return common::visit( 1010 common::visitors{ 1011 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 1012 [](Component &&component) { 1013 return NamedEntity{std::move(component)}; 1014 }, 1015 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 1016 [](CoarrayRef &&coarrayRef) { 1017 return NamedEntity{coarrayRef.GetLastSymbol()}; 1018 }, 1019 }, 1020 std::move(designator.u)); 1021 } 1022 1023 // Components of parent derived types are explicitly represented as such. 1024 std::optional<Component> ExpressionAnalyzer::CreateComponent( 1025 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 1026 if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b 1027 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); 1028 } 1029 if (&component.owner() == &scope) { 1030 return Component{std::move(base), component}; 1031 } 1032 if (const Symbol * typeSymbol{scope.GetSymbol()}) { 1033 if (const Symbol * 1034 parentComponent{typeSymbol->GetParentComponent(&scope)}) { 1035 if (const auto *object{ 1036 parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) { 1037 if (const auto *parentType{object->type()}) { 1038 if (const semantics::Scope * 1039 parentScope{parentType->derivedTypeSpec().scope()}) { 1040 return CreateComponent( 1041 DataRef{Component{std::move(base), *parentComponent}}, 1042 component, *parentScope); 1043 } 1044 } 1045 } 1046 } 1047 } 1048 return std::nullopt; 1049 } 1050 1051 // Derived type component references and type parameter inquiries 1052 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 1053 MaybeExpr base{Analyze(sc.base)}; 1054 Symbol *sym{sc.component.symbol}; 1055 if (!base || !sym || context_.HasError(sym)) { 1056 return std::nullopt; 1057 } 1058 const auto &name{sc.component.source}; 1059 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1060 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1061 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1062 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1063 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1064 if (dyType->category() == TypeCategory::Integer) { 1065 auto restorer{GetContextualMessages().SetLocation(name)}; 1066 return Fold(ConvertToType(*dyType, 1067 AsGenericExpr(TypeParamInquiry{ 1068 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1069 } 1070 } 1071 Say(name, "Type parameter is not INTEGER"_err_en_US); 1072 } else { 1073 Say(name, 1074 "A type parameter inquiry must be applied to " 1075 "a designator"_err_en_US); 1076 } 1077 } else if (!dtSpec || !dtSpec->scope()) { 1078 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1079 return std::nullopt; 1080 } else if (std::optional<DataRef> dataRef{ 1081 ExtractDataRef(std::move(*dtExpr))}) { 1082 if (auto component{ 1083 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1084 return Designate(DataRef{std::move(*component)}); 1085 } else { 1086 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1087 dtSpec->typeSymbol().name()); 1088 } 1089 } else { 1090 Say(name, 1091 "Base of component reference must be a data reference"_err_en_US); 1092 } 1093 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1094 // special part-ref: %re, %im, %kind, %len 1095 // Type errors on the base of %re/%im/%len are detected and 1096 // reported in name resolution. 1097 using MiscKind = semantics::MiscDetails::Kind; 1098 MiscKind kind{details->kind()}; 1099 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1100 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1101 if (std::optional<DataRef> dataRef{ExtractDataRef(*zExpr)}) { 1102 // Represent %RE/%IM as a designator 1103 Expr<SomeReal> realExpr{common::visit( 1104 [&](const auto &z) { 1105 using PartType = typename ResultType<decltype(z)>::Part; 1106 auto part{kind == MiscKind::ComplexPartRe 1107 ? ComplexPart::Part::RE 1108 : ComplexPart::Part::IM}; 1109 return AsCategoryExpr(Designator<PartType>{ 1110 ComplexPart{std::move(*dataRef), part}}); 1111 }, 1112 zExpr->u)}; 1113 return AsGenericExpr(std::move(realExpr)); 1114 } 1115 } 1116 } else if (kind == MiscKind::KindParamInquiry || 1117 kind == MiscKind::LenParamInquiry) { 1118 ActualArgument arg{std::move(*base)}; 1119 SetArgSourceLocation(arg, name); 1120 return MakeFunctionRef(name, ActualArguments{std::move(arg)}); 1121 } else { 1122 DIE("unexpected MiscDetails::Kind"); 1123 } 1124 } else { 1125 Say(name, "derived type required before component reference"_err_en_US); 1126 } 1127 return std::nullopt; 1128 } 1129 1130 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1131 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1132 DataRef *dataRef{&*maybeDataRef}; 1133 std::vector<Subscript> subscripts; 1134 SymbolVector reversed; 1135 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1136 subscripts = std::move(aRef->subscript()); 1137 reversed.push_back(aRef->GetLastSymbol()); 1138 if (Component * component{aRef->base().UnwrapComponent()}) { 1139 dataRef = &component->base(); 1140 } else { 1141 dataRef = nullptr; 1142 } 1143 } 1144 if (dataRef) { 1145 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1146 reversed.push_back(component->GetLastSymbol()); 1147 dataRef = &component->base(); 1148 } 1149 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1150 reversed.push_back(*baseSym); 1151 } else { 1152 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1153 } 1154 } 1155 std::vector<Expr<SubscriptInteger>> cosubscripts; 1156 bool cosubsOk{true}; 1157 for (const auto &cosub : 1158 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1159 MaybeExpr coex{Analyze(cosub)}; 1160 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1161 cosubscripts.push_back( 1162 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1163 } else { 1164 cosubsOk = false; 1165 } 1166 } 1167 if (cosubsOk && !reversed.empty()) { 1168 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1169 const Symbol &symbol{reversed.front()}; 1170 if (numCosubscripts != symbol.Corank()) { 1171 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1172 symbol.name(), symbol.Corank(), numCosubscripts); 1173 } 1174 } 1175 for (const auto &imageSelSpec : 1176 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1177 common::visit( 1178 common::visitors{ 1179 [&](const auto &x) { Analyze(x.v); }, 1180 }, 1181 imageSelSpec.u); 1182 } 1183 // Reverse the chain of symbols so that the base is first and coarray 1184 // ultimate component is last. 1185 if (cosubsOk) { 1186 return Designate( 1187 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1188 std::move(subscripts), std::move(cosubscripts)}}); 1189 } 1190 } 1191 return std::nullopt; 1192 } 1193 1194 int ExpressionAnalyzer::IntegerTypeSpecKind( 1195 const parser::IntegerTypeSpec &spec) { 1196 Expr<SubscriptInteger> value{ 1197 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1198 if (auto kind{ToInt64(value)}) { 1199 return static_cast<int>(*kind); 1200 } 1201 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1202 return GetDefaultKind(TypeCategory::Integer); 1203 } 1204 1205 // Array constructors 1206 1207 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1208 // all happen to have the same actual type T into one ArrayConstructor<T>. 1209 template <typename T> 1210 ArrayConstructorValues<T> MakeSpecific( 1211 ArrayConstructorValues<SomeType> &&from) { 1212 ArrayConstructorValues<T> to; 1213 for (ArrayConstructorValue<SomeType> &x : from) { 1214 common::visit( 1215 common::visitors{ 1216 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1217 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1218 to.Push(std::move(DEREF(typed))); 1219 }, 1220 [&](ImpliedDo<SomeType> &&impliedDo) { 1221 to.Push(ImpliedDo<T>{impliedDo.name(), 1222 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1223 std::move(impliedDo.stride()), 1224 MakeSpecific<T>(std::move(impliedDo.values()))}); 1225 }, 1226 }, 1227 std::move(x.u)); 1228 } 1229 return to; 1230 } 1231 1232 class ArrayConstructorContext { 1233 public: 1234 ArrayConstructorContext( 1235 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1236 : exprAnalyzer_{c}, type_{std::move(t)} {} 1237 1238 void Add(const parser::AcValue &); 1239 MaybeExpr ToExpr(); 1240 1241 // These interfaces allow *this to be used as a type visitor argument to 1242 // common::SearchTypes() to convert the array constructor to a typed 1243 // expression in ToExpr(). 1244 using Result = MaybeExpr; 1245 using Types = AllTypes; 1246 template <typename T> Result Test() { 1247 if (type_ && type_->category() == T::category) { 1248 if constexpr (T::category == TypeCategory::Derived) { 1249 if (!type_->IsUnlimitedPolymorphic()) { 1250 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1251 MakeSpecific<T>(std::move(values_))}); 1252 } 1253 } else if (type_->kind() == T::kind) { 1254 if constexpr (T::category == TypeCategory::Character) { 1255 if (auto len{type_->LEN()}) { 1256 return AsMaybeExpr(ArrayConstructor<T>{ 1257 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1258 } 1259 } else { 1260 return AsMaybeExpr( 1261 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1262 } 1263 } 1264 } 1265 return std::nullopt; 1266 } 1267 1268 private: 1269 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1270 1271 void Push(MaybeExpr &&); 1272 void Add(const parser::AcValue::Triplet &); 1273 void Add(const parser::Expr &); 1274 void Add(const parser::AcImpliedDo &); 1275 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1276 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1277 std::int64_t stride); 1278 1279 template <int KIND, typename A> 1280 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1281 const A &x) { 1282 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1283 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1284 return Fold(exprAnalyzer_.GetFoldingContext(), 1285 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1286 std::move(DEREF(intExpr)))); 1287 } 1288 return std::nullopt; 1289 } 1290 1291 // Nested array constructors all reference the same ExpressionAnalyzer, 1292 // which represents the nest of active implied DO loop indices. 1293 ExpressionAnalyzer &exprAnalyzer_; 1294 std::optional<DynamicTypeWithLength> type_; 1295 bool explicitType_{type_.has_value()}; 1296 std::optional<std::int64_t> constantLength_; 1297 ArrayConstructorValues<SomeType> values_; 1298 std::uint64_t messageDisplayedSet_{0}; 1299 }; 1300 1301 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1302 if (!x) { 1303 return; 1304 } 1305 if (!type_) { 1306 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1307 // Treat an array constructor of BOZ as if default integer. 1308 if (exprAnalyzer_.context().ShouldWarn( 1309 common::LanguageFeature::BOZAsDefaultInteger)) { 1310 exprAnalyzer_.Say( 1311 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1312 } 1313 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1314 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1315 std::move(*boz))); 1316 } 1317 } 1318 std::optional<DynamicType> dyType{x->GetType()}; 1319 if (!dyType) { 1320 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1321 if (!type_) { 1322 // Treat an array constructor of BOZ as if default integer. 1323 if (exprAnalyzer_.context().ShouldWarn( 1324 common::LanguageFeature::BOZAsDefaultInteger)) { 1325 exprAnalyzer_.Say( 1326 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1327 } 1328 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1329 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1330 std::move(*boz))); 1331 dyType = x.value().GetType(); 1332 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1333 x = std::move(cast); 1334 dyType = *type_; 1335 } else { 1336 if (!(messageDisplayedSet_ & 0x80)) { 1337 exprAnalyzer_.Say( 1338 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1339 messageDisplayedSet_ |= 0x80; 1340 } 1341 return; 1342 } 1343 } else { // procedure name, &c. 1344 if (!(messageDisplayedSet_ & 0x40)) { 1345 exprAnalyzer_.Say( 1346 "Item is not suitable for use in an array constructor"_err_en_US); 1347 messageDisplayedSet_ |= 0x40; 1348 } 1349 return; 1350 } 1351 } else if (dyType->IsUnlimitedPolymorphic()) { 1352 if (!(messageDisplayedSet_ & 8)) { 1353 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1354 "array constructor"_err_en_US); // C7113 1355 messageDisplayedSet_ |= 8; 1356 } 1357 return; 1358 } 1359 DynamicTypeWithLength xType{dyType.value()}; 1360 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1361 CHECK(xType.category() == TypeCategory::Character); 1362 xType.length = 1363 common::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1364 } 1365 if (!type_) { 1366 // If there is no explicit type-spec in an array constructor, the type 1367 // of the array is the declared type of all of the elements, which must 1368 // be well-defined and all match. 1369 // TODO: Possible language extension: use the most general type of 1370 // the values as the type of a numeric constructed array, convert all 1371 // of the other values to that type. Alternative: let the first value 1372 // determine the type, and convert the others to that type. 1373 CHECK(!explicitType_); 1374 type_ = std::move(xType); 1375 constantLength_ = ToInt64(type_->length); 1376 values_.Push(std::move(*x)); 1377 } else if (!explicitType_) { 1378 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1379 values_.Push(std::move(*x)); 1380 if (auto thisLen{ToInt64(xType.LEN())}) { 1381 if (constantLength_) { 1382 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1383 *thisLen != *constantLength_) { 1384 if (!(messageDisplayedSet_ & 1)) { 1385 exprAnalyzer_.Say( 1386 "Character literal in array constructor without explicit " 1387 "type has different length than earlier elements"_port_en_US); 1388 messageDisplayedSet_ |= 1; 1389 } 1390 } 1391 if (*thisLen > *constantLength_) { 1392 // Language extension: use the longest literal to determine the 1393 // length of the array constructor's character elements, not the 1394 // first, when there is no explicit type. 1395 *constantLength_ = *thisLen; 1396 type_->length = xType.LEN(); 1397 } 1398 } else { 1399 constantLength_ = *thisLen; 1400 type_->length = xType.LEN(); 1401 } 1402 } 1403 } else { 1404 if (!(messageDisplayedSet_ & 2)) { 1405 exprAnalyzer_.Say( 1406 "Values in array constructor must have the same declared type " 1407 "when no explicit type appears"_err_en_US); // C7110 1408 messageDisplayedSet_ |= 2; 1409 } 1410 } 1411 } else { 1412 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1413 values_.Push(std::move(*cast)); 1414 } else if (!(messageDisplayedSet_ & 4)) { 1415 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1416 "be converted to the type of the array '%s'"_err_en_US, 1417 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1418 messageDisplayedSet_ |= 4; 1419 } 1420 } 1421 } 1422 1423 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1424 common::visit( 1425 common::visitors{ 1426 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1427 [&](const common::Indirection<parser::Expr> &expr) { 1428 Add(expr.value()); 1429 }, 1430 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1431 Add(impliedDo.value()); 1432 }, 1433 }, 1434 x.u); 1435 } 1436 1437 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1438 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1439 std::optional<Expr<ImpliedDoIntType>> lower{ 1440 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1441 std::optional<Expr<ImpliedDoIntType>> upper{ 1442 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1443 std::optional<Expr<ImpliedDoIntType>> stride{ 1444 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1445 if (lower && upper) { 1446 if (!stride) { 1447 stride = Expr<ImpliedDoIntType>{1}; 1448 } 1449 if (!type_) { 1450 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1451 } 1452 auto v{std::move(values_)}; 1453 parser::CharBlock anonymous; 1454 Push(Expr<SomeType>{ 1455 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1456 std::swap(v, values_); 1457 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1458 std::move(*upper), std::move(*stride), std::move(v)}); 1459 } 1460 } 1461 1462 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1463 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1464 Push(exprAnalyzer_.Analyze(expr)); 1465 } 1466 1467 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1468 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1469 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1470 exprAnalyzer_.Analyze(bounds.name); 1471 parser::CharBlock name{bounds.name.thing.thing.source}; 1472 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1473 int kind{ImpliedDoIntType::kind}; 1474 if (const auto dynamicType{DynamicType::From(symbol)}) { 1475 kind = dynamicType->kind(); 1476 } 1477 std::optional<Expr<ImpliedDoIntType>> lower{ 1478 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1479 std::optional<Expr<ImpliedDoIntType>> upper{ 1480 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1481 if (lower && upper) { 1482 std::optional<Expr<ImpliedDoIntType>> stride{ 1483 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1484 if (!stride) { 1485 stride = Expr<ImpliedDoIntType>{1}; 1486 } 1487 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1488 // Check for constant bounds; the loop may require complete unrolling 1489 // of the parse tree if all bounds are constant in order to allow the 1490 // implied DO loop index to qualify as a constant expression. 1491 auto cLower{ToInt64(lower)}; 1492 auto cUpper{ToInt64(upper)}; 1493 auto cStride{ToInt64(stride)}; 1494 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1495 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1496 "The stride of an implied DO loop must not be zero"_err_en_US); 1497 messageDisplayedSet_ |= 0x10; 1498 } 1499 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1500 bool isNonemptyConstant{isConstant && 1501 ((*cStride > 0 && *cLower <= *cUpper) || 1502 (*cStride < 0 && *cLower >= *cUpper))}; 1503 bool unrollConstantLoop{false}; 1504 parser::Messages buffer; 1505 auto saveMessagesDisplayed{messageDisplayedSet_}; 1506 { 1507 auto messageRestorer{ 1508 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1509 auto v{std::move(values_)}; 1510 for (const auto &value : 1511 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1512 Add(value); 1513 } 1514 std::swap(v, values_); 1515 if (isNonemptyConstant && buffer.AnyFatalError()) { 1516 unrollConstantLoop = true; 1517 } else { 1518 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1519 std::move(*upper), std::move(*stride), std::move(v)}); 1520 } 1521 } 1522 if (unrollConstantLoop) { 1523 messageDisplayedSet_ = saveMessagesDisplayed; 1524 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1525 } else if (auto *messages{ 1526 exprAnalyzer_.GetContextualMessages().messages()}) { 1527 messages->Annex(std::move(buffer)); 1528 } 1529 exprAnalyzer_.RemoveImpliedDo(name); 1530 } else if (!(messageDisplayedSet_ & 0x20)) { 1531 exprAnalyzer_.SayAt(name, 1532 "Implied DO index '%s' is active in a surrounding implied DO loop " 1533 "and may not have the same name"_err_en_US, 1534 name); // C7115 1535 messageDisplayedSet_ |= 0x20; 1536 } 1537 } 1538 } 1539 1540 // Fortran considers an implied DO index of an array constructor to be 1541 // a constant expression if the bounds of the implied DO loop are constant. 1542 // Usually this doesn't matter, but if we emitted spurious messages as a 1543 // result of not using constant values for the index while analyzing the 1544 // items, we need to do it again the "hard" way with multiple iterations over 1545 // the parse tree. 1546 void ArrayConstructorContext::UnrollConstantImpliedDo( 1547 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1548 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1549 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1550 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1551 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1552 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1553 at += stride) { 1554 for (const auto &value : 1555 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1556 Add(value); 1557 } 1558 } 1559 foldingContext.EndImpliedDo(name); 1560 } 1561 1562 MaybeExpr ArrayConstructorContext::ToExpr() { 1563 return common::SearchTypes(std::move(*this)); 1564 } 1565 1566 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1567 const parser::AcSpec &acSpec{array.v}; 1568 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1569 for (const parser::AcValue &value : acSpec.values) { 1570 acContext.Add(value); 1571 } 1572 return acContext.ToExpr(); 1573 } 1574 1575 MaybeExpr ExpressionAnalyzer::Analyze( 1576 const parser::StructureConstructor &structure) { 1577 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1578 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1579 parser::CharBlock &typeName{structureType.source}; 1580 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1581 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1582 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1583 if (!CheckIsValidForwardReference(dtSpec)) { 1584 return std::nullopt; 1585 } 1586 } 1587 } 1588 if (!parsedType.derivedTypeSpec) { 1589 return std::nullopt; 1590 } 1591 const auto &spec{*parsedType.derivedTypeSpec}; 1592 const Symbol &typeSymbol{spec.typeSymbol()}; 1593 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1594 return std::nullopt; // error recovery 1595 } 1596 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1597 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1598 1599 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1600 AttachDeclaration(Say(typeName, 1601 "ABSTRACT derived type '%s' may not be used in a " 1602 "structure constructor"_err_en_US, 1603 typeName), 1604 typeSymbol); // C7114 1605 } 1606 1607 // This iterator traverses all of the components in the derived type and its 1608 // parents. The symbols for whole parent components appear after their 1609 // own components and before the components of the types that extend them. 1610 // E.g., TYPE :: A; REAL X; END TYPE 1611 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1612 // produces the component list X, A, Y. 1613 // The order is important below because a structure constructor can 1614 // initialize X or A by name, but not both. 1615 auto components{semantics::OrderedComponentIterator{spec}}; 1616 auto nextAnonymous{components.begin()}; 1617 1618 std::set<parser::CharBlock> unavailable; 1619 bool anyKeyword{false}; 1620 StructureConstructor result{spec}; 1621 bool checkConflicts{true}; // until we hit one 1622 auto &messages{GetContextualMessages()}; 1623 1624 for (const auto &component : 1625 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1626 const parser::Expr &expr{ 1627 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1628 parser::CharBlock source{expr.source}; 1629 auto restorer{messages.SetLocation(source)}; 1630 const Symbol *symbol{nullptr}; 1631 MaybeExpr value{Analyze(expr)}; 1632 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1633 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1634 anyKeyword = true; 1635 source = kw->v.source; 1636 symbol = kw->v.symbol; 1637 if (!symbol) { 1638 auto componentIter{std::find_if(components.begin(), components.end(), 1639 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1640 if (componentIter != components.end()) { 1641 symbol = &*componentIter; 1642 } 1643 } 1644 if (!symbol) { // C7101 1645 Say(source, 1646 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1647 source, typeName); 1648 } 1649 } else { 1650 if (anyKeyword) { // C7100 1651 Say(source, 1652 "Value in structure constructor lacks a component name"_err_en_US); 1653 checkConflicts = false; // stem cascade 1654 } 1655 // Here's a regrettably common extension of the standard: anonymous 1656 // initialization of parent components, e.g., T(PT(1)) rather than 1657 // T(1) or T(PT=PT(1)). 1658 if (nextAnonymous == components.begin() && parentComponent && 1659 valueType == DynamicType::From(*parentComponent) && 1660 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1661 auto iter{ 1662 std::find(components.begin(), components.end(), *parentComponent)}; 1663 if (iter != components.end()) { 1664 symbol = parentComponent; 1665 nextAnonymous = ++iter; 1666 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1667 Say(source, 1668 "Whole parent component '%s' in structure " 1669 "constructor should not be anonymous"_port_en_US, 1670 symbol->name()); 1671 } 1672 } 1673 } 1674 while (!symbol && nextAnonymous != components.end()) { 1675 const Symbol &next{*nextAnonymous}; 1676 ++nextAnonymous; 1677 if (!next.test(Symbol::Flag::ParentComp)) { 1678 symbol = &next; 1679 } 1680 } 1681 if (!symbol) { 1682 Say(source, "Unexpected value in structure constructor"_err_en_US); 1683 } 1684 } 1685 if (symbol) { 1686 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1687 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1688 Say(source, *msg); 1689 } 1690 } 1691 if (checkConflicts) { 1692 auto componentIter{ 1693 std::find(components.begin(), components.end(), *symbol)}; 1694 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1695 // C797, C798 1696 Say(source, 1697 "Component '%s' conflicts with another component earlier in " 1698 "this structure constructor"_err_en_US, 1699 symbol->name()); 1700 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1701 // Make earlier components unavailable once a whole parent appears. 1702 for (auto it{components.begin()}; it != componentIter; ++it) { 1703 unavailable.insert(it->name()); 1704 } 1705 } else { 1706 // Make whole parent components unavailable after any of their 1707 // constituents appear. 1708 for (auto it{componentIter}; it != components.end(); ++it) { 1709 if (it->test(Symbol::Flag::ParentComp)) { 1710 unavailable.insert(it->name()); 1711 } 1712 } 1713 } 1714 } 1715 unavailable.insert(symbol->name()); 1716 if (value) { 1717 if (symbol->has<semantics::ProcEntityDetails>()) { 1718 CHECK(IsPointer(*symbol)); 1719 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1720 // C1594(4) 1721 const auto &innermost{context_.FindScope(expr.source)}; 1722 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1723 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1724 if (const Symbol * 1725 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1726 if (auto *msg{Say(expr.source, 1727 "Externally visible object '%s' may not be " 1728 "associated with pointer component '%s' in a " 1729 "pure procedure"_err_en_US, 1730 object->name(), pointer->name())}) { 1731 msg->Attach(object->name(), "Object declaration"_en_US) 1732 .Attach(pointer->name(), "Pointer declaration"_en_US); 1733 } 1734 } 1735 } 1736 } 1737 } else if (symbol->has<semantics::TypeParamDetails>()) { 1738 Say(expr.source, 1739 "Type parameter '%s' may not appear as a component " 1740 "of a structure constructor"_err_en_US, 1741 symbol->name()); 1742 continue; 1743 } else { 1744 Say(expr.source, 1745 "Component '%s' is neither a procedure pointer " 1746 "nor a data object"_err_en_US, 1747 symbol->name()); 1748 continue; 1749 } 1750 if (IsPointer(*symbol)) { 1751 semantics::CheckPointerAssignment( 1752 GetFoldingContext(), *symbol, *value); // C7104, C7105 1753 result.Add(*symbol, Fold(std::move(*value))); 1754 } else if (MaybeExpr converted{ 1755 ConvertToType(*symbol, std::move(*value))}) { 1756 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1757 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1758 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1759 AttachDeclaration( 1760 Say(expr.source, 1761 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1762 GetRank(*valueShape), symbol->name()), 1763 *symbol); 1764 } else { 1765 auto checked{ 1766 CheckConformance(messages, *componentShape, *valueShape, 1767 CheckConformanceFlags::RightIsExpandableDeferred, 1768 "component", "value")}; 1769 if (checked && *checked && GetRank(*componentShape) > 0 && 1770 GetRank(*valueShape) == 0 && 1771 !IsExpandableScalar(*converted)) { 1772 AttachDeclaration( 1773 Say(expr.source, 1774 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1775 symbol->name()), 1776 *symbol); 1777 } 1778 if (checked.value_or(true)) { 1779 result.Add(*symbol, std::move(*converted)); 1780 } 1781 } 1782 } else { 1783 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1784 } 1785 } else { 1786 AttachDeclaration( 1787 Say(expr.source, 1788 "Shape of component '%s' cannot be determined"_err_en_US, 1789 symbol->name()), 1790 *symbol); 1791 } 1792 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1793 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE. 1794 result.Add(*symbol, Expr<SomeType>{NullPointer{}}); 1795 } else if (auto symType{DynamicType::From(symbol)}) { 1796 if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() && 1797 valueType) { 1798 // ok 1799 } else if (valueType) { 1800 AttachDeclaration( 1801 Say(expr.source, 1802 "Value in structure constructor of type '%s' is " 1803 "incompatible with component '%s' of type '%s'"_err_en_US, 1804 valueType->AsFortran(), symbol->name(), 1805 symType->AsFortran()), 1806 *symbol); 1807 } else { 1808 AttachDeclaration( 1809 Say(expr.source, 1810 "Value in structure constructor is incompatible with " 1811 "component '%s' of type %s"_err_en_US, 1812 symbol->name(), symType->AsFortran()), 1813 *symbol); 1814 } 1815 } 1816 } 1817 } 1818 } 1819 1820 // Ensure that unmentioned component objects have default initializers. 1821 for (const Symbol &symbol : components) { 1822 if (!symbol.test(Symbol::Flag::ParentComp) && 1823 unavailable.find(symbol.name()) == unavailable.cend()) { 1824 if (IsAllocatable(symbol)) { 1825 // Set all remaining allocatables to explicit NULL() 1826 result.Add(symbol, Expr<SomeType>{NullPointer{}}); 1827 } else if (const auto *details{ 1828 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1829 if (details->init()) { 1830 result.Add(symbol, common::Clone(*details->init())); 1831 } else { // C799 1832 AttachDeclaration(Say(typeName, 1833 "Structure constructor lacks a value for " 1834 "component '%s'"_err_en_US, 1835 symbol.name()), 1836 symbol); 1837 } 1838 } 1839 } 1840 } 1841 1842 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1843 } 1844 1845 static std::optional<parser::CharBlock> GetPassName( 1846 const semantics::Symbol &proc) { 1847 return common::visit( 1848 [](const auto &details) { 1849 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1850 std::decay_t<decltype(details)>>) { 1851 return details.passName(); 1852 } else { 1853 return std::optional<parser::CharBlock>{}; 1854 } 1855 }, 1856 proc.details()); 1857 } 1858 1859 static int GetPassIndex(const Symbol &proc) { 1860 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1861 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1862 const auto *interface { semantics::FindInterface(proc) }; 1863 if (!passName || !interface) { 1864 return 0; // first argument is passed-object 1865 } 1866 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1867 int index{0}; 1868 for (const auto *arg : subp.dummyArgs()) { 1869 if (arg && arg->name() == passName) { 1870 return index; 1871 } 1872 ++index; 1873 } 1874 DIE("PASS argument name not in dummy argument list"); 1875 } 1876 1877 // Injects an expression into an actual argument list as the "passed object" 1878 // for a type-bound procedure reference that is not NOPASS. Adds an 1879 // argument keyword if possible, but not when the passed object goes 1880 // before a positional argument. 1881 // e.g., obj%tbp(x) -> tbp(obj,x). 1882 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1883 const Symbol &component, bool isPassedObject = true) { 1884 if (component.attrs().test(semantics::Attr::NOPASS)) { 1885 return; 1886 } 1887 int passIndex{GetPassIndex(component)}; 1888 auto iter{actuals.begin()}; 1889 int at{0}; 1890 while (iter < actuals.end() && at < passIndex) { 1891 if (*iter && (*iter)->keyword()) { 1892 iter = actuals.end(); 1893 break; 1894 } 1895 ++iter; 1896 ++at; 1897 } 1898 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1899 passed.set_isPassedObject(isPassedObject); 1900 if (iter == actuals.end()) { 1901 if (auto passName{GetPassName(component)}) { 1902 passed.set_keyword(*passName); 1903 } 1904 } 1905 actuals.emplace(iter, std::move(passed)); 1906 } 1907 1908 // Return the compile-time resolution of a procedure binding, if possible. 1909 static const Symbol *GetBindingResolution( 1910 const std::optional<DynamicType> &baseType, const Symbol &component) { 1911 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1912 if (!binding) { 1913 return nullptr; 1914 } 1915 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1916 (!baseType || baseType->IsPolymorphic())) { 1917 return nullptr; 1918 } 1919 return &binding->symbol(); 1920 } 1921 1922 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1923 const parser::ProcComponentRef &pcr, ActualArguments &&arguments, 1924 bool isSubroutine) -> std::optional<CalleeAndArguments> { 1925 const parser::StructureComponent &sc{pcr.v.thing}; 1926 if (MaybeExpr base{Analyze(sc.base)}) { 1927 if (const Symbol * sym{sc.component.symbol}) { 1928 if (context_.HasError(sym)) { 1929 return std::nullopt; 1930 } 1931 if (!IsProcedure(*sym)) { 1932 AttachDeclaration( 1933 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1934 sc.component.source), 1935 *sym); 1936 return std::nullopt; 1937 } 1938 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1939 if (sym->has<semantics::GenericDetails>()) { 1940 AdjustActuals adjustment{ 1941 [&](const Symbol &proc, ActualArguments &actuals) { 1942 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1943 AddPassArg(actuals, std::move(*dtExpr), proc); 1944 } 1945 return true; 1946 }}; 1947 auto pair{ResolveGeneric(*sym, arguments, adjustment, isSubroutine)}; 1948 sym = pair.first; 1949 if (sym) { 1950 // re-resolve the name to the specific binding 1951 sc.component.symbol = const_cast<Symbol *>(sym); 1952 } else { 1953 EmitGenericResolutionError(*sc.component.symbol, pair.second); 1954 return std::nullopt; 1955 } 1956 } 1957 if (const Symbol * 1958 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1959 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1960 return CalleeAndArguments{ 1961 ProcedureDesignator{*resolution}, std::move(arguments)}; 1962 } else if (std::optional<DataRef> dataRef{ 1963 ExtractDataRef(std::move(*dtExpr))}) { 1964 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1965 return CalleeAndArguments{ 1966 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1967 std::move(arguments)}; 1968 } else { 1969 AddPassArg(arguments, 1970 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1971 *sym); 1972 return CalleeAndArguments{ 1973 ProcedureDesignator{*sym}, std::move(arguments)}; 1974 } 1975 } 1976 } 1977 Say(sc.component.source, 1978 "Base of procedure component reference is not a derived-type object"_err_en_US); 1979 } 1980 } 1981 CHECK(context_.AnyFatalError()); 1982 return std::nullopt; 1983 } 1984 1985 // Can actual be argument associated with dummy? 1986 static bool CheckCompatibleArgument(bool isElemental, 1987 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1988 const auto *expr{actual.UnwrapExpr()}; 1989 return common::visit( 1990 common::visitors{ 1991 [&](const characteristics::DummyDataObject &x) { 1992 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 1993 IsBareNullPointer(expr)) { 1994 // NULL() without MOLD= is compatible with any dummy data pointer 1995 // but cannot be allowed to lead to ambiguity. 1996 return true; 1997 } else if (!isElemental && actual.Rank() != x.type.Rank() && 1998 !x.type.attrs().test( 1999 characteristics::TypeAndShape::Attr::AssumedRank)) { 2000 return false; 2001 } else if (auto actualType{actual.GetType()}) { 2002 return x.type.type().IsTkCompatibleWith(*actualType); 2003 } 2004 return false; 2005 }, 2006 [&](const characteristics::DummyProcedure &) { 2007 return expr && IsProcedurePointerTarget(*expr); 2008 }, 2009 [&](const characteristics::AlternateReturn &) { 2010 return actual.isAlternateReturn(); 2011 }, 2012 }, 2013 dummy.u); 2014 } 2015 2016 // Are the actual arguments compatible with the dummy arguments of procedure? 2017 static bool CheckCompatibleArguments( 2018 const characteristics::Procedure &procedure, 2019 const ActualArguments &actuals) { 2020 bool isElemental{procedure.IsElemental()}; 2021 const auto &dummies{procedure.dummyArguments}; 2022 CHECK(dummies.size() == actuals.size()); 2023 for (std::size_t i{0}; i < dummies.size(); ++i) { 2024 const characteristics::DummyArgument &dummy{dummies[i]}; 2025 const std::optional<ActualArgument> &actual{actuals[i]}; 2026 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 2027 return false; 2028 } 2029 } 2030 return true; 2031 } 2032 2033 // Handles a forward reference to a module function from what must 2034 // be a specification expression. Return false if the symbol is 2035 // an invalid forward reference. 2036 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 2037 if (context_.HasError(symbol)) { 2038 return false; 2039 } 2040 if (const auto *details{ 2041 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 2042 if (details->kind() == semantics::SubprogramKind::Module) { 2043 // If this symbol is still a SubprogramNameDetails, we must be 2044 // checking a specification expression in a sibling module 2045 // procedure. Resolve its names now so that its interface 2046 // is known. 2047 semantics::ResolveSpecificationParts(context_, symbol); 2048 if (symbol.has<semantics::SubprogramNameDetails>()) { 2049 // When the symbol hasn't had its details updated, we must have 2050 // already been in the process of resolving the function's 2051 // specification part; but recursive function calls are not 2052 // allowed in specification parts (10.1.11 para 5). 2053 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 2054 symbol.name()); 2055 context_.SetError(symbol); 2056 return false; 2057 } 2058 } else { // 10.1.11 para 4 2059 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 2060 symbol.name()); 2061 context_.SetError(symbol); 2062 return false; 2063 } 2064 } 2065 return true; 2066 } 2067 2068 // Resolve a call to a generic procedure with given actual arguments. 2069 // adjustActuals is called on procedure bindings to handle pass arg. 2070 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 2071 const Symbol &symbol, const ActualArguments &actuals, 2072 const AdjustActuals &adjustActuals, bool isSubroutine, 2073 bool mightBeStructureConstructor) { 2074 const Symbol *elemental{nullptr}; // matching elemental specific proc 2075 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2076 const Symbol &ultimate{symbol.GetUltimate()}; 2077 // Check for a match with an explicit INTRINSIC 2078 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2079 parser::Messages buffer; 2080 auto restorer{foldingContext_.messages().SetMessages(buffer)}; 2081 ActualArguments localActuals{actuals}; 2082 if (context_.intrinsics().Probe( 2083 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2084 localActuals, foldingContext_) && 2085 !buffer.AnyFatalError()) { 2086 return {&ultimate, false}; 2087 } 2088 } 2089 if (const auto *details{ultimate.detailsIf<semantics::GenericDetails>()}) { 2090 bool anyBareNullActual{ 2091 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2092 return IsBareNullPointer(iter->UnwrapExpr()); 2093 }) != actuals.end()}; 2094 for (const Symbol &specific : details->specificProcs()) { 2095 if (!ResolveForward(specific)) { 2096 continue; 2097 } 2098 if (std::optional<characteristics::Procedure> procedure{ 2099 characteristics::Procedure::Characterize( 2100 ProcedureDesignator{specific}, context_.foldingContext())}) { 2101 ActualArguments localActuals{actuals}; 2102 if (specific.has<semantics::ProcBindingDetails>()) { 2103 if (!adjustActuals.value()(specific, localActuals)) { 2104 continue; 2105 } 2106 } 2107 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, 2108 GetFoldingContext(), false /* no integer conversions */) && 2109 CheckCompatibleArguments(*procedure, localActuals)) { 2110 if ((procedure->IsElemental() && elemental) || 2111 (!procedure->IsElemental() && nonElemental)) { 2112 // 16.9.144(6): a bare NULL() is not allowed as an actual 2113 // argument to a generic procedure if the specific procedure 2114 // cannot be unambiguously distinguished 2115 return {nullptr, true /* due to NULL actuals */}; 2116 } 2117 if (!procedure->IsElemental()) { 2118 // takes priority over elemental match 2119 nonElemental = &specific; 2120 if (!anyBareNullActual) { 2121 break; // unambiguous case 2122 } 2123 } else { 2124 elemental = &specific; 2125 } 2126 } 2127 } 2128 } 2129 if (nonElemental) { 2130 return {&AccessSpecific(symbol, *nonElemental), false}; 2131 } else if (elemental) { 2132 return {&AccessSpecific(symbol, *elemental), false}; 2133 } 2134 // Check parent derived type 2135 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2136 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2137 auto pair{ResolveGeneric( 2138 *extended, actuals, adjustActuals, isSubroutine, false)}; 2139 if (pair.first) { 2140 return pair; 2141 } 2142 } 2143 } 2144 if (mightBeStructureConstructor && details->derivedType()) { 2145 return {details->derivedType(), false}; 2146 } 2147 } 2148 // Check for generic or explicit INTRINSIC of the same name in outer scopes. 2149 // See 15.5.5.2 for details. 2150 if (!symbol.owner().IsGlobal() && !symbol.owner().IsDerivedType()) { 2151 for (const std::string &n : GetAllNames(context_, symbol.name())) { 2152 if (const Symbol * outer{symbol.owner().parent().FindSymbol(n)}) { 2153 auto pair{ResolveGeneric(*outer, actuals, adjustActuals, isSubroutine, 2154 mightBeStructureConstructor)}; 2155 if (pair.first) { 2156 return pair; 2157 } 2158 } 2159 } 2160 } 2161 return {nullptr, false}; 2162 } 2163 2164 const Symbol &ExpressionAnalyzer::AccessSpecific( 2165 const Symbol &originalGeneric, const Symbol &specific) { 2166 if (const auto *hosted{ 2167 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2168 return AccessSpecific(hosted->symbol(), specific); 2169 } else if (const auto *used{ 2170 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2171 const auto &scope{originalGeneric.owner()}; 2172 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2173 if (const auto *useDetails{ 2174 iter->second->detailsIf<semantics::UseDetails>()}) { 2175 const Symbol &usedSymbol{useDetails->symbol()}; 2176 const auto *usedGeneric{ 2177 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2178 if (&usedSymbol == &specific || 2179 (usedGeneric && usedGeneric->specific() == &specific)) { 2180 return specific; 2181 } 2182 } 2183 } 2184 // Create a renaming USE of the specific procedure. 2185 auto rename{context_.SaveTempName( 2186 used->symbol().owner().GetName().value().ToString() + "$" + 2187 specific.name().ToString())}; 2188 return *const_cast<semantics::Scope &>(scope) 2189 .try_emplace(rename, specific.attrs(), 2190 semantics::UseDetails{rename, specific}) 2191 .first->second; 2192 } else { 2193 return specific; 2194 } 2195 } 2196 2197 void ExpressionAnalyzer::EmitGenericResolutionError( 2198 const Symbol &symbol, bool dueToNullActuals) { 2199 Say(dueToNullActuals 2200 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2201 : semantics::IsGenericDefinedOp(symbol) 2202 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2203 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2204 symbol.name()); 2205 } 2206 2207 auto ExpressionAnalyzer::GetCalleeAndArguments( 2208 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2209 bool isSubroutine, bool mightBeStructureConstructor) 2210 -> std::optional<CalleeAndArguments> { 2211 return common::visit( 2212 common::visitors{ 2213 [&](const parser::Name &name) { 2214 return GetCalleeAndArguments(name, std::move(arguments), 2215 isSubroutine, mightBeStructureConstructor); 2216 }, 2217 [&](const parser::ProcComponentRef &pcr) { 2218 return AnalyzeProcedureComponentRef( 2219 pcr, std::move(arguments), isSubroutine); 2220 }, 2221 }, 2222 pd.u); 2223 } 2224 2225 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2226 ActualArguments &&arguments, bool isSubroutine, 2227 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2228 const Symbol *symbol{name.symbol}; 2229 if (context_.HasError(symbol)) { 2230 return std::nullopt; // also handles null symbol 2231 } 2232 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2233 CheckForBadRecursion(name.source, ultimate); 2234 bool dueToNullActual{false}; 2235 bool isGenericInterface{ultimate.has<semantics::GenericDetails>()}; 2236 bool isExplicitIntrinsic{ultimate.attrs().test(semantics::Attr::INTRINSIC)}; 2237 const Symbol *resolution{nullptr}; 2238 if (isGenericInterface || isExplicitIntrinsic) { 2239 ExpressionAnalyzer::AdjustActuals noAdjustment; 2240 auto pair{ResolveGeneric(*symbol, arguments, noAdjustment, isSubroutine, 2241 mightBeStructureConstructor)}; 2242 resolution = pair.first; 2243 dueToNullActual = pair.second; 2244 if (resolution) { 2245 // re-resolve name to the specific procedure 2246 name.symbol = const_cast<Symbol *>(resolution); 2247 } 2248 } else { 2249 resolution = symbol; 2250 } 2251 if (!resolution || resolution->attrs().test(semantics::Attr::INTRINSIC)) { 2252 // Not generic, or no resolution; may be intrinsic 2253 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2254 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2255 arguments, GetFoldingContext())}) { 2256 CheckBadExplicitType(*specificCall, *symbol); 2257 return CalleeAndArguments{ 2258 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2259 std::move(specificCall->arguments)}; 2260 } else { 2261 if (isGenericInterface) { 2262 EmitGenericResolutionError(*symbol, dueToNullActual); 2263 } 2264 return std::nullopt; 2265 } 2266 } 2267 if (resolution->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2268 if (mightBeStructureConstructor) { 2269 return CalleeAndArguments{ 2270 semantics::SymbolRef{*resolution}, std::move(arguments)}; 2271 } 2272 } else if (IsProcedure(*resolution)) { 2273 return CalleeAndArguments{ 2274 ProcedureDesignator{*resolution}, std::move(arguments)}; 2275 } 2276 if (!context_.HasError(*resolution)) { 2277 AttachDeclaration( 2278 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2279 name.source), 2280 *resolution); 2281 } 2282 return std::nullopt; 2283 } 2284 2285 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2286 // generic intrinsic function "has no effect" on the result type of a 2287 // call to that intrinsic. So one can declare "character*8 cos" and 2288 // still get a real result from "cos(1.)". This is a dangerous feature, 2289 // especially since implementations are free to extend their sets of 2290 // intrinsics, and in doing so might clash with a name in a program. 2291 // So we emit a warning in this situation, and perhaps it should be an 2292 // error -- any correctly working program can silence the message by 2293 // simply deleting the pointless type declaration. 2294 void ExpressionAnalyzer::CheckBadExplicitType( 2295 const SpecificCall &call, const Symbol &intrinsic) { 2296 if (intrinsic.GetUltimate().GetType()) { 2297 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2298 if (const auto &result{procedure.functionResult}) { 2299 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2300 if (auto declared{ 2301 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2302 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2303 if (auto *msg{Say( 2304 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_warn_en_US, 2305 typeAndShape->AsFortran(), intrinsic.name(), 2306 declared->AsFortran())}) { 2307 msg->Attach(intrinsic.name(), 2308 "Ignored declaration of intrinsic function '%s'"_en_US, 2309 intrinsic.name()); 2310 } 2311 } 2312 } 2313 } 2314 } 2315 } 2316 } 2317 2318 void ExpressionAnalyzer::CheckForBadRecursion( 2319 parser::CharBlock callSite, const semantics::Symbol &proc) { 2320 if (const auto *scope{proc.scope()}) { 2321 if (scope->sourceRange().Contains(callSite)) { 2322 parser::Message *msg{nullptr}; 2323 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2324 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2325 callSite); 2326 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2327 // TODO: Also catch assumed PDT type parameters 2328 msg = Say( // 15.6.2.1(3) 2329 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2330 callSite); 2331 } 2332 AttachDeclaration(msg, proc); 2333 } 2334 } 2335 } 2336 2337 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2338 if (const auto *designator{ 2339 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2340 if (const auto *dataRef{ 2341 std::get_if<parser::DataRef>(&designator->value().u)}) { 2342 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2343 return AssumedTypeDummy(*name); 2344 } 2345 } 2346 } 2347 return nullptr; 2348 } 2349 template <> 2350 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2351 if (const Symbol * symbol{name.symbol}) { 2352 if (const auto *type{symbol->GetType()}) { 2353 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2354 return symbol; 2355 } 2356 } 2357 } 2358 return nullptr; 2359 } 2360 template <typename A> 2361 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2362 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2363 // point it is is not guaranteed that it has been checked the object has 2364 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2365 // returned. 2366 return common::visit( 2367 common::visitors{ 2368 [&](const parser::StructureComponent &x) { 2369 return AssumedTypeDummy(x.component); 2370 }, 2371 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2372 }, 2373 object.u); 2374 } 2375 template <> 2376 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2377 const parser::AllocateObject &x) { 2378 return AssumedTypePointerOrAllocatableDummy(x); 2379 } 2380 template <> 2381 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2382 const parser::PointerObject &x) { 2383 return AssumedTypePointerOrAllocatableDummy(x); 2384 } 2385 2386 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2387 const semantics::DerivedTypeSpec &dtSpec) { 2388 if (dtSpec.IsForwardReferenced()) { 2389 Say("Cannot construct value for derived type '%s' " 2390 "before it is defined"_err_en_US, 2391 dtSpec.name()); 2392 return false; 2393 } 2394 return true; 2395 } 2396 2397 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2398 std::optional<parser::StructureConstructor> *structureConstructor) { 2399 const parser::Call &call{funcRef.v}; 2400 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2401 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2402 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2403 analyzer.Analyze(arg, false /* not subroutine call */); 2404 } 2405 if (analyzer.fatalErrors()) { 2406 return std::nullopt; 2407 } 2408 if (std::optional<CalleeAndArguments> callee{ 2409 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2410 analyzer.GetActuals(), false /* not subroutine */, 2411 true /* might be structure constructor */)}) { 2412 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2413 return MakeFunctionRef( 2414 call.source, std::move(*proc), std::move(callee->arguments)); 2415 } 2416 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2417 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2418 if (structureConstructor) { 2419 // Structure constructor misparsed as function reference? 2420 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2421 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2422 semantics::Scope &scope{context_.FindScope(name->source)}; 2423 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2424 if (!CheckIsValidForwardReference(dtSpec)) { 2425 return std::nullopt; 2426 } 2427 const semantics::DeclTypeSpec &type{ 2428 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2429 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2430 *structureConstructor = 2431 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2432 return Analyze(structureConstructor->value()); 2433 } 2434 } 2435 if (!context_.HasError(symbol)) { 2436 AttachDeclaration( 2437 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2438 symbol.name()), 2439 symbol); 2440 context_.SetError(symbol); 2441 } 2442 } 2443 return std::nullopt; 2444 } 2445 2446 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2447 for (const auto &arg : args) { 2448 if (arg && arg->isAlternateReturn()) { 2449 return true; 2450 } 2451 } 2452 return false; 2453 } 2454 2455 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2456 const parser::Call &call{callStmt.v}; 2457 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2458 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2459 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2460 for (const auto &arg : actualArgList) { 2461 analyzer.Analyze(arg, true /* is subroutine call */); 2462 } 2463 if (!analyzer.fatalErrors()) { 2464 if (std::optional<CalleeAndArguments> callee{ 2465 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2466 analyzer.GetActuals(), true /* subroutine */)}) { 2467 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2468 CHECK(proc); 2469 if (CheckCall(call.source, *proc, callee->arguments)) { 2470 callStmt.typedCall.Reset( 2471 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2472 HasAlternateReturns(callee->arguments)}, 2473 ProcedureRef::Deleter); 2474 return; 2475 } 2476 } 2477 if (!context_.AnyFatalError()) { 2478 std::string buf; 2479 llvm::raw_string_ostream dump{buf}; 2480 parser::DumpTree(dump, callStmt); 2481 Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US, 2482 dump.str()); 2483 } 2484 } 2485 } 2486 2487 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2488 if (!x.typedAssignment) { 2489 ArgumentAnalyzer analyzer{*this}; 2490 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2491 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2492 std::optional<Assignment> assignment; 2493 if (!analyzer.fatalErrors()) { 2494 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2495 if (!procRef) { 2496 analyzer.CheckForNullPointer( 2497 "in a non-pointer intrinsic assignment statement"); 2498 } 2499 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2500 if (procRef) { 2501 assignment->u = std::move(*procRef); 2502 } 2503 } 2504 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2505 GenericAssignmentWrapper::Deleter); 2506 } 2507 return common::GetPtrFromOptional(x.typedAssignment->v); 2508 } 2509 2510 const Assignment *ExpressionAnalyzer::Analyze( 2511 const parser::PointerAssignmentStmt &x) { 2512 if (!x.typedAssignment) { 2513 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2514 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2515 if (!lhs || !rhs) { 2516 x.typedAssignment.Reset( 2517 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2518 } else { 2519 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2520 common::visit( 2521 common::visitors{ 2522 [&](const std::list<parser::BoundsRemapping> &list) { 2523 Assignment::BoundsRemapping bounds; 2524 for (const auto &elem : list) { 2525 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2526 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2527 if (lower && upper) { 2528 bounds.emplace_back( 2529 Fold(std::move(*lower)), Fold(std::move(*upper))); 2530 } 2531 } 2532 assignment.u = std::move(bounds); 2533 }, 2534 [&](const std::list<parser::BoundsSpec> &list) { 2535 Assignment::BoundsSpec bounds; 2536 for (const auto &bound : list) { 2537 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2538 bounds.emplace_back(Fold(std::move(*lower))); 2539 } 2540 } 2541 assignment.u = std::move(bounds); 2542 }, 2543 }, 2544 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2545 x.typedAssignment.Reset( 2546 new GenericAssignmentWrapper{std::move(assignment)}, 2547 GenericAssignmentWrapper::Deleter); 2548 } 2549 } 2550 return common::GetPtrFromOptional(x.typedAssignment->v); 2551 } 2552 2553 static bool IsExternalCalledImplicitly( 2554 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2555 if (const auto *symbol{proc.GetSymbol()}) { 2556 return symbol->has<semantics::SubprogramDetails>() && 2557 symbol->owner().IsGlobal() && 2558 (!symbol->scope() /*ENTRY*/ || 2559 !symbol->scope()->sourceRange().Contains(callSite)); 2560 } else { 2561 return false; 2562 } 2563 } 2564 2565 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2566 parser::CharBlock callSite, const ProcedureDesignator &proc, 2567 ActualArguments &arguments) { 2568 auto chars{characteristics::Procedure::Characterize( 2569 proc, context_.foldingContext())}; 2570 if (chars) { 2571 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2572 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2573 Say(callSite, 2574 "References to the procedure '%s' require an explicit interface"_err_en_US, 2575 DEREF(proc.GetSymbol()).name()); 2576 } 2577 // Checks for ASSOCIATED() are done in intrinsic table processing 2578 const SpecificIntrinsic *specificIntrinsic{proc.GetSpecificIntrinsic()}; 2579 bool procIsAssociated{ 2580 specificIntrinsic && specificIntrinsic->name == "associated"}; 2581 if (!procIsAssociated) { 2582 const Symbol *procSymbol{proc.GetSymbol()}; 2583 bool procIsDummy{procSymbol && IsDummy(*procSymbol)}; 2584 if (chars->functionResult && 2585 chars->functionResult->IsAssumedLengthCharacter() && 2586 !specificIntrinsic && !procIsDummy) { 2587 Say(callSite, 2588 "Assumed-length character function must be defined with a length to be called"_err_en_US); 2589 } 2590 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2591 context_.FindScope(callSite), treatExternalAsImplicit, 2592 specificIntrinsic); 2593 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2594 if (const semantics::Scope * 2595 pure{semantics::FindPureProcedureContaining( 2596 context_.FindScope(callSite))}) { 2597 Say(callSite, 2598 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2599 procSymbol->name(), DEREF(pure->symbol()).name()); 2600 } 2601 } 2602 } 2603 } 2604 return chars; 2605 } 2606 2607 // Unary operations 2608 2609 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2610 if (MaybeExpr operand{Analyze(x.v.value())}) { 2611 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2612 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2613 if (semantics::IsProcedurePointer(*result)) { 2614 Say("A function reference that returns a procedure " 2615 "pointer may not be parenthesized"_err_en_US); // C1003 2616 } 2617 } 2618 } 2619 return Parenthesize(std::move(*operand)); 2620 } 2621 return std::nullopt; 2622 } 2623 2624 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2625 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2626 ArgumentAnalyzer analyzer{context}; 2627 analyzer.Analyze(x.v); 2628 if (!analyzer.fatalErrors()) { 2629 if (analyzer.IsIntrinsicNumeric(opr)) { 2630 analyzer.CheckForNullPointer(); 2631 if (opr == NumericOperator::Add) { 2632 return analyzer.MoveExpr(0); 2633 } else { 2634 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2635 } 2636 } else { 2637 return analyzer.TryDefinedOp(AsFortran(opr), 2638 "Operand of unary %s must be numeric; have %s"_err_en_US); 2639 } 2640 } 2641 return std::nullopt; 2642 } 2643 2644 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2645 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2646 } 2647 2648 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2649 if (const auto *litConst{ 2650 std::get_if<parser::LiteralConstant>(&x.v.value().u)}) { 2651 if (const auto *intConst{ 2652 std::get_if<parser::IntLiteralConstant>(&litConst->u)}) { 2653 return Analyze(*intConst, true); 2654 } 2655 } 2656 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2657 } 2658 2659 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2660 ArgumentAnalyzer analyzer{*this}; 2661 analyzer.Analyze(x.v); 2662 if (!analyzer.fatalErrors()) { 2663 if (analyzer.IsIntrinsicLogical()) { 2664 analyzer.CheckForNullPointer(); 2665 return AsGenericExpr( 2666 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2667 } else { 2668 return analyzer.TryDefinedOp(LogicalOperator::Not, 2669 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2670 } 2671 } 2672 return std::nullopt; 2673 } 2674 2675 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2676 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2677 // intrinsic function. 2678 // Use the actual source for the name of the call for error reporting. 2679 std::optional<ActualArgument> arg; 2680 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2681 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2682 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2683 arg = ActualArgument{std::move(*argExpr)}; 2684 } else { 2685 return std::nullopt; 2686 } 2687 parser::CharBlock at{GetContextualMessages().at()}; 2688 CHECK(at.size() >= 4); 2689 parser::CharBlock loc{at.begin() + 1, 3}; 2690 CHECK(loc == "loc"); 2691 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2692 } 2693 2694 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2695 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2696 ArgumentAnalyzer analyzer{*this, name.source}; 2697 analyzer.Analyze(std::get<1>(x.t)); 2698 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2699 "No operator %s defined for %s"_err_en_US, nullptr, true); 2700 } 2701 2702 // Binary (dyadic) operations 2703 2704 template <template <typename> class OPR> 2705 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2706 const parser::Expr::IntrinsicBinary &x) { 2707 ArgumentAnalyzer analyzer{context}; 2708 analyzer.Analyze(std::get<0>(x.t)); 2709 analyzer.Analyze(std::get<1>(x.t)); 2710 if (!analyzer.fatalErrors()) { 2711 if (analyzer.IsIntrinsicNumeric(opr)) { 2712 analyzer.CheckForNullPointer(); 2713 analyzer.CheckConformance(); 2714 return NumericOperation<OPR>(context.GetContextualMessages(), 2715 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2716 context.GetDefaultKind(TypeCategory::Real)); 2717 } else { 2718 return analyzer.TryDefinedOp(AsFortran(opr), 2719 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2720 } 2721 } 2722 return std::nullopt; 2723 } 2724 2725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2726 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2727 } 2728 2729 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2730 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2731 } 2732 2733 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2734 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2735 } 2736 2737 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2738 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2739 } 2740 2741 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2742 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2743 } 2744 2745 MaybeExpr ExpressionAnalyzer::Analyze( 2746 const parser::Expr::ComplexConstructor &x) { 2747 auto re{Analyze(std::get<0>(x.t).value())}; 2748 auto im{Analyze(std::get<1>(x.t).value())}; 2749 if (re && im) { 2750 ConformabilityCheck(GetContextualMessages(), *re, *im); 2751 } 2752 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2753 std::move(im), GetDefaultKind(TypeCategory::Real))); 2754 } 2755 2756 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2757 ArgumentAnalyzer analyzer{*this}; 2758 analyzer.Analyze(std::get<0>(x.t)); 2759 analyzer.Analyze(std::get<1>(x.t)); 2760 if (!analyzer.fatalErrors()) { 2761 if (analyzer.IsIntrinsicConcat()) { 2762 analyzer.CheckForNullPointer(); 2763 return common::visit( 2764 [&](auto &&x, auto &&y) -> MaybeExpr { 2765 using T = ResultType<decltype(x)>; 2766 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2767 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2768 } else { 2769 DIE("different types for intrinsic concat"); 2770 } 2771 }, 2772 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2773 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2774 } else { 2775 return analyzer.TryDefinedOp("//", 2776 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2777 } 2778 } 2779 return std::nullopt; 2780 } 2781 2782 // The Name represents a user-defined intrinsic operator. 2783 // If the actuals match one of the specific procedures, return a function ref. 2784 // Otherwise report the error in messages. 2785 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2786 const parser::Name &name, ActualArguments &&actuals) { 2787 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2788 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2789 return MakeFunctionRef(name.source, 2790 std::move(std::get<ProcedureDesignator>(callee->u)), 2791 std::move(callee->arguments)); 2792 } else { 2793 return std::nullopt; 2794 } 2795 } 2796 2797 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2798 const parser::Expr::IntrinsicBinary &x) { 2799 ArgumentAnalyzer analyzer{context}; 2800 analyzer.Analyze(std::get<0>(x.t)); 2801 analyzer.Analyze(std::get<1>(x.t)); 2802 if (!analyzer.fatalErrors()) { 2803 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2804 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2805 analyzer.ConvertBOZ(leftType, 0, rightType); 2806 analyzer.ConvertBOZ(rightType, 1, leftType); 2807 if (leftType && rightType && 2808 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2809 analyzer.CheckForNullPointer("as a relational operand"); 2810 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2811 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2812 } else { 2813 return analyzer.TryDefinedOp(opr, 2814 leftType && leftType->category() == TypeCategory::Logical && 2815 rightType && rightType->category() == TypeCategory::Logical 2816 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2817 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2818 } 2819 } 2820 return std::nullopt; 2821 } 2822 2823 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2824 return RelationHelper(*this, RelationalOperator::LT, x); 2825 } 2826 2827 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2828 return RelationHelper(*this, RelationalOperator::LE, x); 2829 } 2830 2831 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2832 return RelationHelper(*this, RelationalOperator::EQ, x); 2833 } 2834 2835 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2836 return RelationHelper(*this, RelationalOperator::NE, x); 2837 } 2838 2839 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2840 return RelationHelper(*this, RelationalOperator::GE, x); 2841 } 2842 2843 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2844 return RelationHelper(*this, RelationalOperator::GT, x); 2845 } 2846 2847 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2848 const parser::Expr::IntrinsicBinary &x) { 2849 ArgumentAnalyzer analyzer{context}; 2850 analyzer.Analyze(std::get<0>(x.t)); 2851 analyzer.Analyze(std::get<1>(x.t)); 2852 if (!analyzer.fatalErrors()) { 2853 if (analyzer.IsIntrinsicLogical()) { 2854 analyzer.CheckForNullPointer("as a logical operand"); 2855 return AsGenericExpr(BinaryLogicalOperation(opr, 2856 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2857 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2858 } else { 2859 return analyzer.TryDefinedOp( 2860 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2861 } 2862 } 2863 return std::nullopt; 2864 } 2865 2866 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2867 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2868 } 2869 2870 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2871 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2872 } 2873 2874 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2875 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2876 } 2877 2878 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2879 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2880 } 2881 2882 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2883 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2884 ArgumentAnalyzer analyzer{*this, name.source}; 2885 analyzer.Analyze(std::get<1>(x.t)); 2886 analyzer.Analyze(std::get<2>(x.t)); 2887 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2888 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2889 } 2890 2891 // Returns true if a parsed function reference should be converted 2892 // into an array element reference. 2893 static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context, 2894 const parser::FunctionReference &funcRef) { 2895 // Emit message if the function reference fix will end up an array element 2896 // reference with no subscripts, or subscripts on a scalar, because it will 2897 // not be possible to later distinguish in expressions between an empty 2898 // subscript list due to bad subscripts error recovery or because the 2899 // user did not put any. 2900 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2901 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2902 if (!name) { 2903 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2904 } 2905 if (!name->symbol) { 2906 return false; 2907 } else if (name->symbol->Rank() == 0) { 2908 if (const Symbol * 2909 function{ 2910 semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) { 2911 auto &msg{context.Say(funcRef.v.source, 2912 "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US, 2913 name->source)}; 2914 AttachDeclaration(&msg, *function); 2915 name->symbol = const_cast<Symbol *>(function); 2916 } 2917 return false; 2918 } else { 2919 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2920 auto &msg{context.Say(funcRef.v.source, 2921 "Reference to array '%s' with empty subscript list"_err_en_US, 2922 name->source)}; 2923 if (name->symbol) { 2924 AttachDeclaration(&msg, *name->symbol); 2925 } 2926 } 2927 return true; 2928 } 2929 } 2930 2931 // Converts, if appropriate, an original misparse of ambiguous syntax like 2932 // A(1) as a function reference into an array reference. 2933 // Misparsed structure constructors are detected elsewhere after generic 2934 // function call resolution fails. 2935 template <typename... A> 2936 static void FixMisparsedFunctionReference( 2937 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2938 // The parse tree is updated in situ when resolving an ambiguous parse. 2939 using uType = std::decay_t<decltype(constU)>; 2940 auto &u{const_cast<uType &>(constU)}; 2941 if (auto *func{ 2942 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2943 parser::FunctionReference &funcRef{func->value()}; 2944 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2945 if (Symbol * 2946 origSymbol{ 2947 common::visit(common::visitors{ 2948 [&](parser::Name &name) { return name.symbol; }, 2949 [&](parser::ProcComponentRef &pcr) { 2950 return pcr.v.thing.component.symbol; 2951 }, 2952 }, 2953 proc.u)}) { 2954 Symbol &symbol{origSymbol->GetUltimate()}; 2955 if (symbol.has<semantics::ObjectEntityDetails>() || 2956 symbol.has<semantics::AssocEntityDetails>()) { 2957 // Note that expression in AssocEntityDetails cannot be a procedure 2958 // pointer as per C1105 so this cannot be a function reference. 2959 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2960 uType>) { 2961 if (CheckFuncRefToArrayElement(context, funcRef)) { 2962 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2963 } 2964 } else { 2965 DIE("can't fix misparsed function as array reference"); 2966 } 2967 } 2968 } 2969 } 2970 } 2971 2972 // Common handling of parse tree node types that retain the 2973 // representation of the analyzed expression. 2974 template <typename PARSED> 2975 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2976 const PARSED &x, parser::CharBlock source) { 2977 if (useSavedTypedExprs_ && x.typedExpr) { 2978 return x.typedExpr->v; 2979 } 2980 auto restorer{GetContextualMessages().SetLocation(source)}; 2981 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2982 std::is_same_v<PARSED, parser::Variable>) { 2983 FixMisparsedFunctionReference(context_, x.u); 2984 } 2985 if (AssumedTypeDummy(x)) { // C710 2986 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2987 ResetExpr(x); 2988 return std::nullopt; 2989 } 2990 MaybeExpr result; 2991 if constexpr (common::HasMember<parser::StructureConstructor, 2992 std::decay_t<decltype(x.u)>> && 2993 common::HasMember<common::Indirection<parser::FunctionReference>, 2994 std::decay_t<decltype(x.u)>>) { 2995 if (const auto *funcRef{ 2996 std::get_if<common::Indirection<parser::FunctionReference>>( 2997 &x.u)}) { 2998 // Function references in Exprs might turn out to be misparsed structure 2999 // constructors; we have to try generic procedure resolution 3000 // first to be sure. 3001 std::optional<parser::StructureConstructor> ctor; 3002 result = Analyze(funcRef->value(), &ctor); 3003 if (result && ctor) { 3004 // A misparsed function reference is really a structure 3005 // constructor. Repair the parse tree in situ. 3006 const_cast<PARSED &>(x).u = std::move(*ctor); 3007 } 3008 } else { 3009 result = Analyze(x.u); 3010 } 3011 } else { 3012 result = Analyze(x.u); 3013 } 3014 if (result) { 3015 SetExpr(x, Fold(std::move(*result))); 3016 return x.typedExpr->v; 3017 } else { 3018 ResetExpr(x); 3019 if (!context_.AnyFatalError()) { 3020 std::string buf; 3021 llvm::raw_string_ostream dump{buf}; 3022 parser::DumpTree(dump, x); 3023 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 3024 dump.str()); 3025 } 3026 return std::nullopt; 3027 } 3028 } 3029 3030 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 3031 return ExprOrVariable(expr, expr.source); 3032 } 3033 3034 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 3035 return ExprOrVariable(variable, variable.GetSource()); 3036 } 3037 3038 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 3039 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 3040 if (!useSavedTypedExprs_ || !var->typedExpr) { 3041 parser::CharBlock source{var->GetSource()}; 3042 auto restorer{GetContextualMessages().SetLocation(source)}; 3043 FixMisparsedFunctionReference(context_, var->u); 3044 if (const auto *funcRef{ 3045 std::get_if<common::Indirection<parser::FunctionReference>>( 3046 &var->u)}) { 3047 // A Selector that parsed as a Variable might turn out during analysis 3048 // to actually be a structure constructor. In that case, repair the 3049 // Variable parse tree node into an Expr 3050 std::optional<parser::StructureConstructor> ctor; 3051 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 3052 if (ctor) { 3053 auto &writable{const_cast<parser::Selector &>(selector)}; 3054 writable.u = parser::Expr{std::move(*ctor)}; 3055 auto &expr{std::get<parser::Expr>(writable.u)}; 3056 expr.source = source; 3057 SetExpr(expr, Fold(std::move(*result))); 3058 return expr.typedExpr->v; 3059 } else { 3060 SetExpr(*var, Fold(std::move(*result))); 3061 return var->typedExpr->v; 3062 } 3063 } else { 3064 ResetExpr(*var); 3065 if (context_.AnyFatalError()) { 3066 return std::nullopt; 3067 } 3068 } 3069 } 3070 } 3071 } 3072 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 3073 return Analyze(selector.u); 3074 } 3075 3076 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 3077 auto restorer{common::ScopedSet(inDataStmtConstant_, true)}; 3078 return ExprOrVariable(x, x.source); 3079 } 3080 3081 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 3082 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3083 } 3084 3085 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 3086 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3087 } 3088 3089 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 3090 TypeCategory category, 3091 const std::optional<parser::KindSelector> &selector) { 3092 int defaultKind{GetDefaultKind(category)}; 3093 if (!selector) { 3094 return Expr<SubscriptInteger>{defaultKind}; 3095 } 3096 return common::visit( 3097 common::visitors{ 3098 [&](const parser::ScalarIntConstantExpr &x) { 3099 if (MaybeExpr kind{Analyze(x)}) { 3100 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 3101 if (CheckIntrinsicKind(category, *code)) { 3102 return Expr<SubscriptInteger>{*code}; 3103 } 3104 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 3105 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 3106 } 3107 } 3108 return Expr<SubscriptInteger>{defaultKind}; 3109 }, 3110 [&](const parser::KindSelector::StarSize &x) { 3111 std::intmax_t size = x.v; 3112 if (!CheckIntrinsicSize(category, size)) { 3113 size = defaultKind; 3114 } else if (category == TypeCategory::Complex) { 3115 size /= 2; 3116 } 3117 return Expr<SubscriptInteger>{size}; 3118 }, 3119 }, 3120 selector->u); 3121 } 3122 3123 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 3124 return context_.GetDefaultKind(category); 3125 } 3126 3127 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 3128 common::TypeCategory category) { 3129 return {category, GetDefaultKind(category)}; 3130 } 3131 3132 bool ExpressionAnalyzer::CheckIntrinsicKind( 3133 TypeCategory category, std::int64_t kind) { 3134 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 3135 return true; 3136 } else { 3137 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3138 ToUpperCase(EnumToString(category)), kind); 3139 return false; 3140 } 3141 } 3142 3143 bool ExpressionAnalyzer::CheckIntrinsicSize( 3144 TypeCategory category, std::int64_t size) { 3145 if (category == TypeCategory::Complex) { 3146 // COMPLEX*16 == COMPLEX(KIND=8) 3147 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 3148 return true; 3149 } 3150 } else if (IsValidKindOfIntrinsicType(category, size)) { 3151 return true; 3152 } 3153 Say("%s*%jd is not a supported type"_err_en_US, 3154 ToUpperCase(EnumToString(category)), size); 3155 return false; 3156 } 3157 3158 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3159 return impliedDos_.insert(std::make_pair(name, kind)).second; 3160 } 3161 3162 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3163 auto iter{impliedDos_.find(name)}; 3164 if (iter != impliedDos_.end()) { 3165 impliedDos_.erase(iter); 3166 } 3167 } 3168 3169 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3170 parser::CharBlock name) const { 3171 auto iter{impliedDos_.find(name)}; 3172 if (iter != impliedDos_.cend()) { 3173 return {iter->second}; 3174 } else { 3175 return std::nullopt; 3176 } 3177 } 3178 3179 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3180 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3181 if (result) { 3182 if (auto type{result->GetType()}) { 3183 if (type->category() != category) { // C885 3184 Say(at, "Must have %s type, but is %s"_err_en_US, 3185 ToUpperCase(EnumToString(category)), 3186 ToUpperCase(type->AsFortran())); 3187 return false; 3188 } else if (defaultKind) { 3189 int kind{context_.GetDefaultKind(category)}; 3190 if (type->kind() != kind) { 3191 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3192 kind, ToUpperCase(EnumToString(category)), 3193 ToUpperCase(type->AsFortran())); 3194 return false; 3195 } 3196 } 3197 } else { 3198 Say(at, "Must have %s type, but is typeless"_err_en_US, 3199 ToUpperCase(EnumToString(category))); 3200 return false; 3201 } 3202 } 3203 return true; 3204 } 3205 3206 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3207 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3208 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3209 if (intrinsic->characteristics.value().attrs.test( 3210 characteristics::Procedure::Attr::NullPointer) && 3211 arguments.empty()) { 3212 return Expr<SomeType>{NullPointer{}}; 3213 } 3214 } 3215 if (const Symbol * symbol{proc.GetSymbol()}) { 3216 if (!ResolveForward(*symbol)) { 3217 return std::nullopt; 3218 } 3219 } 3220 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3221 if (chars->functionResult) { 3222 const auto &result{*chars->functionResult}; 3223 if (result.IsProcedurePointer()) { 3224 return Expr<SomeType>{ 3225 ProcedureRef{std::move(proc), std::move(arguments)}}; 3226 } else { 3227 // Not a procedure pointer, so type and shape are known. 3228 return TypedWrapper<FunctionRef, ProcedureRef>( 3229 DEREF(result.GetTypeAndShape()).type(), 3230 ProcedureRef{std::move(proc), std::move(arguments)}); 3231 } 3232 } else { 3233 Say("Function result characteristics are not known"_err_en_US); 3234 } 3235 } 3236 return std::nullopt; 3237 } 3238 3239 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3240 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3241 if (std::optional<SpecificCall> specificCall{ 3242 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3243 arguments, GetFoldingContext())}) { 3244 return MakeFunctionRef(intrinsic, 3245 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3246 std::move(specificCall->arguments)); 3247 } else { 3248 return std::nullopt; 3249 } 3250 } 3251 3252 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3253 source_.ExtendToCover(x.GetSource()); 3254 if (MaybeExpr expr{context_.Analyze(x)}) { 3255 if (!IsConstantExpr(*expr)) { 3256 actuals_.emplace_back(std::move(*expr)); 3257 SetArgSourceLocation(actuals_.back(), x.GetSource()); 3258 return; 3259 } 3260 const Symbol *symbol{GetLastSymbol(*expr)}; 3261 if (!symbol) { 3262 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3263 x.GetSource()); 3264 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3265 auto *msg{context_.SayAt(x, 3266 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3267 symbol->name())}; 3268 if (subp->isFunction()) { 3269 const auto &result{subp->result().name()}; 3270 msg->Attach(result, "Function result is '%s'"_en_US, result); 3271 } 3272 } else { 3273 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3274 symbol->name()); 3275 } 3276 } 3277 fatalErrors_ = true; 3278 } 3279 3280 void ArgumentAnalyzer::Analyze( 3281 const parser::ActualArgSpec &arg, bool isSubroutine) { 3282 // TODO: Actual arguments that are procedures and procedure pointers need to 3283 // be detected and represented (they're not expressions). 3284 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3285 std::optional<ActualArgument> actual; 3286 common::visit( 3287 common::visitors{ 3288 [&](const common::Indirection<parser::Expr> &x) { 3289 actual = AnalyzeExpr(x.value()); 3290 SetArgSourceLocation(actual, x.value().source); 3291 }, 3292 [&](const parser::AltReturnSpec &label) { 3293 if (!isSubroutine) { 3294 context_.Say("alternate return specification may not appear on" 3295 " function reference"_err_en_US); 3296 } 3297 actual = ActualArgument(label.v); 3298 }, 3299 [&](const parser::ActualArg::PercentRef &) { 3300 context_.Say("%REF() intrinsic for arguments"_todo_en_US); 3301 }, 3302 [&](const parser::ActualArg::PercentVal &) { 3303 context_.Say("%VAL() intrinsic for arguments"_todo_en_US); 3304 }, 3305 }, 3306 std::get<parser::ActualArg>(arg.t).u); 3307 if (actual) { 3308 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3309 actual->set_keyword(argKW->v.source); 3310 } 3311 actuals_.emplace_back(std::move(*actual)); 3312 } else { 3313 fatalErrors_ = true; 3314 } 3315 } 3316 3317 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3318 const DynamicType &leftType, const DynamicType &rightType) const { 3319 CHECK(actuals_.size() == 2); 3320 return semantics::IsIntrinsicRelational( 3321 opr, leftType, GetRank(0), rightType, GetRank(1)); 3322 } 3323 3324 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3325 std::optional<DynamicType> leftType{GetType(0)}; 3326 if (actuals_.size() == 1) { 3327 if (IsBOZLiteral(0)) { 3328 return opr == NumericOperator::Add; // unary '+' 3329 } else { 3330 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3331 } 3332 } else { 3333 std::optional<DynamicType> rightType{GetType(1)}; 3334 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3335 auto cat1{rightType->category()}; 3336 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3337 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3338 auto cat0{leftType->category()}; 3339 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3340 } else { 3341 return leftType && rightType && 3342 semantics::IsIntrinsicNumeric( 3343 *leftType, GetRank(0), *rightType, GetRank(1)); 3344 } 3345 } 3346 } 3347 3348 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3349 if (std::optional<DynamicType> leftType{GetType(0)}) { 3350 if (actuals_.size() == 1) { 3351 return semantics::IsIntrinsicLogical(*leftType); 3352 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3353 return semantics::IsIntrinsicLogical( 3354 *leftType, GetRank(0), *rightType, GetRank(1)); 3355 } 3356 } 3357 return false; 3358 } 3359 3360 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3361 if (std::optional<DynamicType> leftType{GetType(0)}) { 3362 if (std::optional<DynamicType> rightType{GetType(1)}) { 3363 return semantics::IsIntrinsicConcat( 3364 *leftType, GetRank(0), *rightType, GetRank(1)); 3365 } 3366 } 3367 return false; 3368 } 3369 3370 bool ArgumentAnalyzer::CheckConformance() { 3371 if (actuals_.size() == 2) { 3372 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3373 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3374 if (lhs && rhs) { 3375 auto &foldingContext{context_.GetFoldingContext()}; 3376 auto lhShape{GetShape(foldingContext, *lhs)}; 3377 auto rhShape{GetShape(foldingContext, *rhs)}; 3378 if (lhShape && rhShape) { 3379 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3380 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3381 "left operand", "right operand") 3382 .value_or(false /*fail when conformance is not known now*/)) { 3383 fatalErrors_ = true; 3384 return false; 3385 } 3386 } 3387 } 3388 } 3389 return true; // no proven problem 3390 } 3391 3392 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3393 for (const std::optional<ActualArgument> &arg : actuals_) { 3394 if (arg) { 3395 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3396 if (IsNullPointer(*expr)) { 3397 context_.Say( 3398 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3399 fatalErrors_ = true; 3400 return false; 3401 } 3402 } 3403 } 3404 } 3405 return true; 3406 } 3407 3408 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3409 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3410 bool isUserOp) { 3411 if (AnyUntypedOrMissingOperand()) { 3412 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3413 return std::nullopt; 3414 } 3415 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3416 if (!definedOpSymbolPtr) { 3417 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3418 } 3419 { 3420 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3421 std::string oprNameString{ 3422 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3423 parser::CharBlock oprName{oprNameString}; 3424 const auto &scope{context_.context().FindScope(source_)}; 3425 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3426 *definedOpSymbolPtr = symbol; 3427 parser::Name name{symbol->name(), symbol}; 3428 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3429 return result; 3430 } 3431 } 3432 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3433 if (const Symbol * 3434 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3435 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3436 return result; 3437 } 3438 } 3439 } 3440 } 3441 if (*definedOpSymbolPtr) { 3442 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3443 } else if (actuals_.size() == 1 || AreConformable()) { 3444 if (CheckForNullPointer()) { 3445 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3446 } 3447 } else { 3448 context_.Say( 3449 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3450 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3451 } 3452 return std::nullopt; 3453 } 3454 3455 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3456 std::vector<const char *> oprs, parser::MessageFixedText error) { 3457 const Symbol *definedOpSymbolPtr{nullptr}; 3458 for (std::size_t i{1}; i < oprs.size(); ++i) { 3459 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3460 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3461 return result; 3462 } 3463 } 3464 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3465 } 3466 3467 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3468 ActualArguments localActuals{actuals_}; 3469 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3470 if (!proc) { 3471 proc = &symbol; 3472 localActuals.at(passIndex).value().set_isPassedObject(); 3473 } 3474 CheckConformance(); 3475 return context_.MakeFunctionRef( 3476 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3477 } 3478 3479 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3480 using semantics::Tristate; 3481 const Expr<SomeType> &lhs{GetExpr(0)}; 3482 const Expr<SomeType> &rhs{GetExpr(1)}; 3483 std::optional<DynamicType> lhsType{lhs.GetType()}; 3484 std::optional<DynamicType> rhsType{rhs.GetType()}; 3485 int lhsRank{lhs.Rank()}; 3486 int rhsRank{rhs.Rank()}; 3487 Tristate isDefined{ 3488 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3489 if (isDefined == Tristate::No) { 3490 if (lhsType && rhsType) { 3491 AddAssignmentConversion(*lhsType, *rhsType); 3492 } 3493 return std::nullopt; // user-defined assignment not allowed for these args 3494 } 3495 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3496 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3497 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3498 context_.Say( 3499 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3500 DEREF(procRef->proc().GetSymbol()).name()); 3501 } 3502 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3503 return std::move(*procRef); 3504 } 3505 if (isDefined == Tristate::Yes) { 3506 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3507 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3508 SayNoMatch("ASSIGNMENT(=)", true); 3509 } 3510 } 3511 return std::nullopt; 3512 } 3513 3514 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3515 TypeCategory lhs, TypeCategory rhs) { 3516 if (!context_.context().languageFeatures().IsEnabled( 3517 common::LanguageFeature::LogicalIntegerAssignment)) { 3518 return false; 3519 } 3520 std::optional<parser::MessageFixedText> msg; 3521 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3522 // allow assignment to LOGICAL from INTEGER as a legacy extension 3523 msg = "assignment of LOGICAL to INTEGER"_port_en_US; 3524 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3525 // ... and assignment to LOGICAL from INTEGER 3526 msg = "assignment of INTEGER to LOGICAL"_port_en_US; 3527 } else { 3528 return false; 3529 } 3530 if (context_.context().languageFeatures().ShouldWarn( 3531 common::LanguageFeature::LogicalIntegerAssignment)) { 3532 context_.Say(std::move(*msg)); 3533 } 3534 return true; 3535 } 3536 3537 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3538 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3539 std::string oprNameString{"assignment(=)"}; 3540 parser::CharBlock oprName{oprNameString}; 3541 const Symbol *proc{nullptr}; 3542 const auto &scope{context_.context().FindScope(source_)}; 3543 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3544 ExpressionAnalyzer::AdjustActuals noAdjustment; 3545 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment, true)}; 3546 if (pair.first) { 3547 proc = pair.first; 3548 } else { 3549 context_.EmitGenericResolutionError(*symbol, pair.second); 3550 } 3551 } 3552 int passedObjectIndex{-1}; 3553 const Symbol *definedOpSymbol{nullptr}; 3554 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3555 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3556 if (const Symbol * 3557 resolution{GetBindingResolution(GetType(i), *specific)}) { 3558 proc = resolution; 3559 } else { 3560 proc = specific; 3561 passedObjectIndex = i; 3562 } 3563 } 3564 } 3565 if (!proc) { 3566 return std::nullopt; 3567 } 3568 ActualArguments actualsCopy{actuals_}; 3569 if (passedObjectIndex >= 0) { 3570 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3571 } 3572 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3573 } 3574 3575 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3576 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3577 << '\n'; 3578 for (const auto &actual : actuals_) { 3579 if (!actual.has_value()) { 3580 os << "- error\n"; 3581 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3582 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3583 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3584 expr->AsFortran(os << "- expr: ") << '\n'; 3585 } else { 3586 DIE("bad ActualArgument"); 3587 } 3588 } 3589 } 3590 3591 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3592 const parser::Expr &expr) { 3593 source_.ExtendToCover(expr.source); 3594 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3595 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3596 if (isProcedureCall_) { 3597 ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}}; 3598 SetArgSourceLocation(arg, expr.source); 3599 return std::move(arg); 3600 } 3601 context_.SayAt(expr.source, 3602 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3603 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3604 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3605 ActualArgument arg{std::move(*argExpr)}; 3606 SetArgSourceLocation(arg, expr.source); 3607 return std::move(arg); 3608 } 3609 context_.SayAt(expr.source, 3610 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3611 : "Subroutine name is not allowed here"_err_en_US); 3612 } 3613 return std::nullopt; 3614 } 3615 3616 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3617 const parser::Expr &expr) { 3618 // If an expression's parse tree is a whole assumed-size array: 3619 // Expr -> Designator -> DataRef -> Name 3620 // treat it as a special case for argument passing and bypass 3621 // the C1002/C1014 constraint checking in expression semantics. 3622 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3623 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3624 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3625 return context_.Analyze(expr); 3626 } 3627 } 3628 return context_.Analyze(expr); 3629 } 3630 3631 bool ArgumentAnalyzer::AreConformable() const { 3632 CHECK(actuals_.size() == 2); 3633 return actuals_[0] && actuals_[1] && 3634 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3635 } 3636 3637 // Look for a type-bound operator in the type of arg number passIndex. 3638 const Symbol *ArgumentAnalyzer::FindBoundOp( 3639 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3640 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3641 if (!type || !type->scope()) { 3642 return nullptr; 3643 } 3644 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3645 if (!symbol) { 3646 return nullptr; 3647 } 3648 definedOp = symbol; 3649 ExpressionAnalyzer::AdjustActuals adjustment{ 3650 [&](const Symbol &proc, ActualArguments &) { 3651 return passIndex == GetPassIndex(proc); 3652 }}; 3653 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment, false)}; 3654 if (!pair.first) { 3655 context_.EmitGenericResolutionError(*symbol, pair.second); 3656 } 3657 return pair.first; 3658 } 3659 3660 // If there is an implicit conversion between intrinsic types, make it explicit 3661 void ArgumentAnalyzer::AddAssignmentConversion( 3662 const DynamicType &lhsType, const DynamicType &rhsType) { 3663 if (lhsType.category() == rhsType.category() && 3664 (lhsType.category() == TypeCategory::Derived || 3665 lhsType.kind() == rhsType.kind())) { 3666 // no conversion necessary 3667 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3668 std::optional<parser::CharBlock> source; 3669 if (actuals_[1]) { 3670 source = actuals_[1]->sourceLocation(); 3671 } 3672 actuals_[1] = ActualArgument{*rhsExpr}; 3673 SetArgSourceLocation(actuals_[1], source); 3674 } else { 3675 actuals_[1] = std::nullopt; 3676 } 3677 } 3678 3679 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3680 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3681 } 3682 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3683 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3684 } 3685 3686 // If the argument at index i is a BOZ literal, convert its type to match the 3687 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3688 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3689 // is not currently supported. 3690 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3691 std::size_t i, std::optional<DynamicType> otherType) { 3692 if (IsBOZLiteral(i)) { 3693 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3694 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3695 if (otherType && otherType->category() == TypeCategory::Real) { 3696 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3697 MaybeExpr realExpr{ 3698 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3699 actuals_[i] = std::move(*realExpr); 3700 thisType.emplace(TypeCategory::Real, kind); 3701 } else { 3702 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3703 MaybeExpr intExpr{ 3704 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3705 actuals_[i] = std::move(*intExpr); 3706 thisType.emplace(TypeCategory::Integer, kind); 3707 } 3708 } 3709 } 3710 3711 // Report error resolving opr when there is a user-defined one available 3712 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3713 std::string type0{TypeAsFortran(0)}; 3714 auto rank0{actuals_[0]->Rank()}; 3715 if (actuals_.size() == 1) { 3716 if (rank0 > 0) { 3717 context_.Say("No intrinsic or user-defined %s matches " 3718 "rank %d array of %s"_err_en_US, 3719 opr, rank0, type0); 3720 } else { 3721 context_.Say("No intrinsic or user-defined %s matches " 3722 "operand type %s"_err_en_US, 3723 opr, type0); 3724 } 3725 } else { 3726 std::string type1{TypeAsFortran(1)}; 3727 auto rank1{actuals_[1]->Rank()}; 3728 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3729 context_.Say("No intrinsic or user-defined %s matches " 3730 "rank %d array of %s and rank %d array of %s"_err_en_US, 3731 opr, rank0, type0, rank1, type1); 3732 } else if (isAssignment && rank0 != rank1) { 3733 if (rank0 == 0) { 3734 context_.Say("No intrinsic or user-defined %s matches " 3735 "scalar %s and rank %d array of %s"_err_en_US, 3736 opr, type0, rank1, type1); 3737 } else { 3738 context_.Say("No intrinsic or user-defined %s matches " 3739 "rank %d array of %s and scalar %s"_err_en_US, 3740 opr, rank0, type0, type1); 3741 } 3742 } else { 3743 context_.Say("No intrinsic or user-defined %s matches " 3744 "operand types %s and %s"_err_en_US, 3745 opr, type0, type1); 3746 } 3747 } 3748 } 3749 3750 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3751 if (i >= actuals_.size() || !actuals_[i]) { 3752 return "missing argument"; 3753 } else if (std::optional<DynamicType> type{GetType(i)}) { 3754 return type->IsAssumedType() ? "TYPE(*)"s 3755 : type->IsUnlimitedPolymorphic() ? "CLASS(*)"s 3756 : type->IsPolymorphic() ? "CLASS("s + type->AsFortran() + ')' 3757 : type->category() == TypeCategory::Derived 3758 ? "TYPE("s + type->AsFortran() + ')' 3759 : type->category() == TypeCategory::Character 3760 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3761 : ToUpperCase(type->AsFortran()); 3762 } else { 3763 return "untyped"; 3764 } 3765 } 3766 3767 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3768 for (const auto &actual : actuals_) { 3769 if (!actual || 3770 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3771 return true; 3772 } 3773 } 3774 return false; 3775 } 3776 } // namespace Fortran::evaluate 3777 3778 namespace Fortran::semantics { 3779 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3780 SemanticsContext &context, common::TypeCategory category, 3781 const std::optional<parser::KindSelector> &selector) { 3782 evaluate::ExpressionAnalyzer analyzer{context}; 3783 auto restorer{ 3784 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3785 return analyzer.AnalyzeKindSelector(category, selector); 3786 } 3787 3788 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3789 3790 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3791 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3792 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3793 auto name{bounds.name.thing.thing}; 3794 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3795 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3796 if (dynamicType->category() == TypeCategory::Integer) { 3797 kind = dynamicType->kind(); 3798 } 3799 } 3800 exprAnalyzer_.AddImpliedDo(name.source, kind); 3801 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3802 exprAnalyzer_.RemoveImpliedDo(name.source); 3803 return false; 3804 } 3805 3806 bool ExprChecker::Walk(const parser::Program &program) { 3807 parser::Walk(program, *this); 3808 return !context_.AnyFatalError(); 3809 } 3810 } // namespace Fortran::semantics 3811