1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } else { 59 return GetCharLength(); 60 } 61 } 62 63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 64 const std::optional<parser::TypeSpec> &spec) { 65 if (spec) { 66 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 67 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 68 // (viz., an intrinsic type with valid known kind or a non-polymorphic 69 // & non-ABSTRACT derived type). 70 if (const semantics::IntrinsicTypeSpec * 71 intrinsic{typeSpec->AsIntrinsic()}) { 72 TypeCategory category{intrinsic->category()}; 73 if (auto optKind{ToInt64(intrinsic->kind())}) { 74 int kind{static_cast<int>(*optKind)}; 75 if (category == TypeCategory::Character) { 76 const semantics::CharacterTypeSpec &cts{ 77 typeSpec->characterTypeSpec()}; 78 const semantics::ParamValue &len{cts.length()}; 79 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 80 // type guards, but not in array constructors. 81 return DynamicTypeWithLength{DynamicType{kind, len}}; 82 } else { 83 return DynamicTypeWithLength{DynamicType{category, kind}}; 84 } 85 } 86 } else if (const semantics::DerivedTypeSpec * 87 derived{typeSpec->AsDerived()}) { 88 return DynamicTypeWithLength{DynamicType{*derived}}; 89 } 90 } 91 } 92 return std::nullopt; 93 } 94 95 class ArgumentAnalyzer { 96 public: 97 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 98 : context_{context}, source_{context.GetContextualMessages().at()}, 99 isProcedureCall_{false} {} 100 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 101 bool isProcedureCall = false) 102 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 103 bool fatalErrors() const { return fatalErrors_; } 104 ActualArguments &&GetActuals() { 105 CHECK(!fatalErrors_); 106 return std::move(actuals_); 107 } 108 const Expr<SomeType> &GetExpr(std::size_t i) const { 109 return DEREF(actuals_.at(i).value().UnwrapExpr()); 110 } 111 Expr<SomeType> &&MoveExpr(std::size_t i) { 112 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 113 } 114 void Analyze(const common::Indirection<parser::Expr> &x) { 115 Analyze(x.value()); 116 } 117 void Analyze(const parser::Expr &x) { 118 actuals_.emplace_back(AnalyzeExpr(x)); 119 fatalErrors_ |= !actuals_.back(); 120 } 121 void Analyze(const parser::Variable &); 122 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 123 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 124 std::optional<DynamicType> otherType); 125 126 bool IsIntrinsicRelational( 127 RelationalOperator, const DynamicType &, const DynamicType &) const; 128 bool IsIntrinsicLogical() const; 129 bool IsIntrinsicNumeric(NumericOperator) const; 130 bool IsIntrinsicConcat() const; 131 132 bool CheckConformance(); 133 bool CheckForNullPointer(const char *where = "as an operand here"); 134 135 // Find and return a user-defined operator or report an error. 136 // The provided message is used if there is no such operator. 137 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 138 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 139 template <typename E> 140 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 141 return TryDefinedOp( 142 context_.context().languageFeatures().GetNames(opr), msg); 143 } 144 // Find and return a user-defined assignment 145 std::optional<ProcedureRef> TryDefinedAssignment(); 146 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 147 std::optional<DynamicType> GetType(std::size_t) const; 148 void Dump(llvm::raw_ostream &); 149 150 private: 151 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 152 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 153 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 154 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 155 bool AreConformable() const; 156 const Symbol *FindBoundOp( 157 parser::CharBlock, int passIndex, const Symbol *&definedOp); 158 void AddAssignmentConversion( 159 const DynamicType &lhsType, const DynamicType &rhsType); 160 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 161 int GetRank(std::size_t) const; 162 bool IsBOZLiteral(std::size_t i) const { 163 return evaluate::IsBOZLiteral(GetExpr(i)); 164 } 165 void SayNoMatch(const std::string &, bool isAssignment = false); 166 std::string TypeAsFortran(std::size_t); 167 bool AnyUntypedOrMissingOperand(); 168 169 ExpressionAnalyzer &context_; 170 ActualArguments actuals_; 171 parser::CharBlock source_; 172 bool fatalErrors_{false}; 173 const bool isProcedureCall_; // false for user-defined op or assignment 174 }; 175 176 // Wraps a data reference in a typed Designator<>, and a procedure 177 // or procedure pointer reference in a ProcedureDesignator. 178 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 179 const Symbol &last{ref.GetLastSymbol()}; 180 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 181 if (semantics::IsProcedure(symbol)) { 182 if (auto *component{std::get_if<Component>(&ref.u)}) { 183 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 184 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 185 DIE("unexpected alternative in DataRef"); 186 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 187 if (symbol.has<semantics::GenericDetails>()) { 188 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 189 } else { 190 return Expr<SomeType>{ProcedureDesignator{symbol}}; 191 } 192 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 193 symbol.name().ToString())}; 194 interface && !interface->isRestrictedSpecific) { 195 SpecificIntrinsic intrinsic{ 196 symbol.name().ToString(), std::move(*interface)}; 197 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 198 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 199 } else { 200 Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, 201 symbol.name()); 202 } 203 return std::nullopt; 204 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 205 return result; 206 } else { 207 if (!context_.HasError(last) && !context_.HasError(symbol)) { 208 AttachDeclaration( 209 Say("'%s' is not an object that can appear in an expression"_err_en_US, 210 last.name()), 211 symbol); 212 context_.SetError(last); 213 } 214 return std::nullopt; 215 } 216 } 217 218 // Some subscript semantic checks must be deferred until all of the 219 // subscripts are in hand. 220 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 221 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 222 int symbolRank{symbol.Rank()}; 223 int subscripts{static_cast<int>(ref.size())}; 224 if (subscripts == 0) { 225 return std::nullopt; // error recovery 226 } else if (subscripts != symbolRank) { 227 if (symbolRank != 0) { 228 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 229 symbolRank, symbol.name(), subscripts); 230 } 231 return std::nullopt; 232 } else if (Component * component{ref.base().UnwrapComponent()}) { 233 int baseRank{component->base().Rank()}; 234 if (baseRank > 0) { 235 int subscriptRank{0}; 236 for (const auto &expr : ref.subscript()) { 237 subscriptRank += expr.Rank(); 238 } 239 if (subscriptRank > 0) { // C919a 240 Say("Subscripts of component '%s' of rank-%d derived type " 241 "array have rank %d but must all be scalar"_err_en_US, 242 symbol.name(), baseRank, subscriptRank); 243 return std::nullopt; 244 } 245 } 246 } else if (const auto *object{ 247 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 248 // C928 & C1002 249 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 250 if (!last->upper() && object->IsAssumedSize()) { 251 Say("Assumed-size array '%s' must have explicit final " 252 "subscript upper bound value"_err_en_US, 253 symbol.name()); 254 return std::nullopt; 255 } 256 } 257 } else { 258 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 259 // which, if not an object, must be a construct entity from 260 // SELECT TYPE/RANK or ASSOCIATE. 261 CHECK(symbol.has<semantics::AssocEntityDetails>()); 262 } 263 return Designate(DataRef{std::move(ref)}); 264 } 265 266 // Applies subscripts to a data reference. 267 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 268 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 269 if (subscripts.empty()) { 270 return std::nullopt; // error recovery 271 } 272 return std::visit( 273 common::visitors{ 274 [&](SymbolRef &&symbol) { 275 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 276 }, 277 [&](Component &&c) { 278 return CompleteSubscripts( 279 ArrayRef{std::move(c), std::move(subscripts)}); 280 }, 281 [&](auto &&) -> MaybeExpr { 282 DIE("bad base for ArrayRef"); 283 return std::nullopt; 284 }, 285 }, 286 std::move(dataRef.u)); 287 } 288 289 // Top-level checks for data references. 290 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 291 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 292 const Symbol &symbol{component->GetLastSymbol()}; 293 int componentRank{symbol.Rank()}; 294 if (componentRank > 0) { 295 int baseRank{component->base().Rank()}; 296 if (baseRank > 0) { // C919a 297 Say("Reference to whole rank-%d component '%%%s' of " 298 "rank-%d array of derived type is not allowed"_err_en_US, 299 componentRank, symbol.name(), baseRank); 300 } 301 } 302 } 303 return Designate(std::move(dataRef)); 304 } 305 306 // Parse tree correction after a substring S(j:k) was misparsed as an 307 // array section. N.B. Fortran substrings have to have a range, not a 308 // single index. 309 static void FixMisparsedSubstring(const parser::Designator &d) { 310 auto &mutate{const_cast<parser::Designator &>(d)}; 311 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 312 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 313 &dataRef->u)}) { 314 parser::ArrayElement &arrElement{ae->value()}; 315 if (!arrElement.subscripts.empty()) { 316 auto iter{arrElement.subscripts.begin()}; 317 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 318 if (!std::get<2>(triplet->t) /* no stride */ && 319 ++iter == arrElement.subscripts.end() /* one subscript */) { 320 if (Symbol * 321 symbol{std::visit( 322 common::visitors{ 323 [](parser::Name &n) { return n.symbol; }, 324 [](common::Indirection<parser::StructureComponent> 325 &sc) { return sc.value().component.symbol; }, 326 [](auto &) -> Symbol * { return nullptr; }, 327 }, 328 arrElement.base.u)}) { 329 const Symbol &ultimate{symbol->GetUltimate()}; 330 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 331 if (!ultimate.IsObjectArray() && 332 type->category() == semantics::DeclTypeSpec::Character) { 333 // The ambiguous S(j:k) was parsed as an array section 334 // reference, but it's now clear that it's a substring. 335 // Fix the parse tree in situ. 336 mutate.u = arrElement.ConvertToSubstring(); 337 } 338 } 339 } 340 } 341 } 342 } 343 } 344 } 345 } 346 347 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 348 auto restorer{GetContextualMessages().SetLocation(d.source)}; 349 FixMisparsedSubstring(d); 350 // These checks have to be deferred to these "top level" data-refs where 351 // we can be sure that there are no following subscripts (yet). 352 // Substrings have already been run through TopLevelChecks() and 353 // won't be returned by ExtractDataRef(). 354 if (MaybeExpr result{Analyze(d.u)}) { 355 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 356 return TopLevelChecks(std::move(*dataRef)); 357 } 358 return result; 359 } 360 return std::nullopt; 361 } 362 363 // A utility subroutine to repackage optional expressions of various levels 364 // of type specificity as fully general MaybeExpr values. 365 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 366 return AsGenericExpr(std::move(x)); 367 } 368 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 369 if (x) { 370 return AsMaybeExpr(std::move(*x)); 371 } 372 return std::nullopt; 373 } 374 375 // Type kind parameter values for literal constants. 376 int ExpressionAnalyzer::AnalyzeKindParam( 377 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 378 if (!kindParam) { 379 return defaultKind; 380 } 381 return std::visit( 382 common::visitors{ 383 [](std::uint64_t k) { return static_cast<int>(k); }, 384 [&](const parser::Scalar< 385 parser::Integer<parser::Constant<parser::Name>>> &n) { 386 if (MaybeExpr ie{Analyze(n)}) { 387 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 388 int iv = *i64; 389 if (iv == *i64) { 390 return iv; 391 } 392 } 393 } 394 return defaultKind; 395 }, 396 }, 397 kindParam->u); 398 } 399 400 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 401 struct IntTypeVisitor { 402 using Result = MaybeExpr; 403 using Types = IntegerTypes; 404 template <typename T> Result Test() { 405 if (T::kind >= kind) { 406 const char *p{digits.begin()}; 407 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 408 if (!value.overflow) { 409 if (T::kind > kind) { 410 if (!isDefaultKind || 411 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 412 return std::nullopt; 413 } else if (analyzer.context().ShouldWarn( 414 LanguageFeature::BigIntLiterals)) { 415 analyzer.Say(digits, 416 "Integer literal is too large for default INTEGER(KIND=%d); " 417 "assuming INTEGER(KIND=%d)"_en_US, 418 kind, T::kind); 419 } 420 } 421 return Expr<SomeType>{ 422 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 423 } 424 } 425 return std::nullopt; 426 } 427 ExpressionAnalyzer &analyzer; 428 parser::CharBlock digits; 429 int kind; 430 bool isDefaultKind; 431 }; 432 433 template <typename PARSED> 434 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 435 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 436 bool isDefaultKind{!kindParam}; 437 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 438 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 439 auto digits{std::get<parser::CharBlock>(x.t)}; 440 if (MaybeExpr result{common::SearchTypes( 441 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 442 return result; 443 } else if (isDefaultKind) { 444 Say(digits, 445 "Integer literal is too large for any allowable " 446 "kind of INTEGER"_err_en_US); 447 } else { 448 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 449 kind); 450 } 451 } 452 return std::nullopt; 453 } 454 455 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 456 auto restorer{ 457 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 458 return IntLiteralConstant(x); 459 } 460 461 MaybeExpr ExpressionAnalyzer::Analyze( 462 const parser::SignedIntLiteralConstant &x) { 463 auto restorer{GetContextualMessages().SetLocation(x.source)}; 464 return IntLiteralConstant(x); 465 } 466 467 template <typename TYPE> 468 Constant<TYPE> ReadRealLiteral( 469 parser::CharBlock source, FoldingContext &context) { 470 const char *p{source.begin()}; 471 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 472 CHECK(p == source.end()); 473 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 474 auto value{valWithFlags.value}; 475 if (context.flushSubnormalsToZero()) { 476 value = value.FlushSubnormalToZero(); 477 } 478 return {value}; 479 } 480 481 struct RealTypeVisitor { 482 using Result = std::optional<Expr<SomeReal>>; 483 using Types = RealTypes; 484 485 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 486 : kind{k}, literal{lit}, context{ctx} {} 487 488 template <typename T> Result Test() { 489 if (kind == T::kind) { 490 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 491 } 492 return std::nullopt; 493 } 494 495 int kind; 496 parser::CharBlock literal; 497 FoldingContext &context; 498 }; 499 500 // Reads a real literal constant and encodes it with the right kind. 501 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 502 // Use a local message context around the real literal for better 503 // provenance on any messages. 504 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 505 // If a kind parameter appears, it defines the kind of the literal and the 506 // letter used in an exponent part must be 'E' (e.g., the 'E' in 507 // "6.02214E+23"). In the absence of an explicit kind parameter, any 508 // exponent letter determines the kind. Otherwise, defaults apply. 509 auto &defaults{context_.defaultKinds()}; 510 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 511 const char *end{x.real.source.end()}; 512 char expoLetter{' '}; 513 std::optional<int> letterKind; 514 for (const char *p{x.real.source.begin()}; p < end; ++p) { 515 if (parser::IsLetter(*p)) { 516 expoLetter = *p; 517 switch (expoLetter) { 518 case 'e': 519 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 520 break; 521 case 'd': 522 letterKind = defaults.doublePrecisionKind(); 523 break; 524 case 'q': 525 letterKind = defaults.quadPrecisionKind(); 526 break; 527 default: 528 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 529 } 530 break; 531 } 532 } 533 if (letterKind) { 534 defaultKind = *letterKind; 535 } 536 // C716 requires 'E' as an exponent, but this is more useful 537 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 538 if (letterKind && kind != *letterKind && expoLetter != 'e') { 539 Say("Explicit kind parameter on real constant disagrees with " 540 "exponent letter '%c'"_en_US, 541 expoLetter); 542 } 543 auto result{common::SearchTypes( 544 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 545 if (!result) { // C717 546 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 547 } 548 return AsMaybeExpr(std::move(result)); 549 } 550 551 MaybeExpr ExpressionAnalyzer::Analyze( 552 const parser::SignedRealLiteralConstant &x) { 553 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 554 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 555 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 556 if (sign == parser::Sign::Negative) { 557 return AsGenericExpr(-std::move(realExpr)); 558 } 559 } 560 return result; 561 } 562 return std::nullopt; 563 } 564 565 MaybeExpr ExpressionAnalyzer::Analyze( 566 const parser::SignedComplexLiteralConstant &x) { 567 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 568 if (!result) { 569 return std::nullopt; 570 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 571 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 572 } else { 573 return result; 574 } 575 } 576 577 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 578 return Analyze(x.u); 579 } 580 581 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 582 return AsMaybeExpr( 583 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 584 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 585 } 586 587 // CHARACTER literal processing. 588 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 589 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 590 return std::nullopt; 591 } 592 switch (kind) { 593 case 1: 594 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 595 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 596 string, true)}); 597 case 2: 598 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 599 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 600 string, true)}); 601 case 4: 602 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 603 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 604 string, true)}); 605 default: 606 CRASH_NO_CASE; 607 } 608 } 609 610 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 611 int kind{ 612 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 613 auto value{std::get<std::string>(x.t)}; 614 return AnalyzeString(std::move(value), kind); 615 } 616 617 MaybeExpr ExpressionAnalyzer::Analyze( 618 const parser::HollerithLiteralConstant &x) { 619 int kind{GetDefaultKind(TypeCategory::Character)}; 620 auto value{x.v}; 621 return AnalyzeString(std::move(value), kind); 622 } 623 624 // .TRUE. and .FALSE. of various kinds 625 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 626 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 627 GetDefaultKind(TypeCategory::Logical))}; 628 bool value{std::get<bool>(x.t)}; 629 auto result{common::SearchTypes( 630 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 631 kind, std::move(value)})}; 632 if (!result) { 633 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 634 } 635 return result; 636 } 637 638 // BOZ typeless literals 639 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 640 const char *p{x.v.c_str()}; 641 std::uint64_t base{16}; 642 switch (*p++) { 643 case 'b': 644 base = 2; 645 break; 646 case 'o': 647 base = 8; 648 break; 649 case 'z': 650 break; 651 case 'x': 652 break; 653 default: 654 CRASH_NO_CASE; 655 } 656 CHECK(*p == '"'); 657 ++p; 658 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 659 if (*p != '"') { 660 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 661 x.v); // C7107, C7108 662 return std::nullopt; 663 } 664 if (value.overflow) { 665 Say("BOZ literal '%s' too large"_err_en_US, x.v); 666 return std::nullopt; 667 } 668 return AsGenericExpr(std::move(value.value)); 669 } 670 671 // Names and named constants 672 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 673 auto restorer{GetContextualMessages().SetLocation(n.source)}; 674 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 675 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 676 *kind, AsExpr(ImpliedDoIndex{n.source}))); 677 } else if (context_.HasError(n)) { 678 return std::nullopt; 679 } else if (!n.symbol) { 680 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 681 return std::nullopt; 682 } else { 683 const Symbol &ultimate{n.symbol->GetUltimate()}; 684 if (ultimate.has<semantics::TypeParamDetails>()) { 685 // A bare reference to a derived type parameter (within a parameterized 686 // derived type definition) 687 return Fold(ConvertToType( 688 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 689 } else { 690 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 691 if (const semantics::Scope * 692 pure{semantics::FindPureProcedureContaining( 693 context_.FindScope(n.source))}) { 694 SayAt(n, 695 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 696 n.source, DEREF(pure->symbol()).name()); 697 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 698 } 699 } 700 if (!isWholeAssumedSizeArrayOk_ && 701 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 702 AttachDeclaration( 703 SayAt(n, 704 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 705 n.source), 706 *n.symbol); 707 } 708 return Designate(DataRef{*n.symbol}); 709 } 710 } 711 } 712 713 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 714 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 715 if (MaybeExpr value{Analyze(n.v)}) { 716 Expr<SomeType> folded{Fold(std::move(*value))}; 717 if (IsConstantExpr(folded)) { 718 return folded; 719 } 720 Say(n.v.source, "must be a constant"_err_en_US); // C718 721 } 722 return std::nullopt; 723 } 724 725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 726 if (MaybeExpr value{Analyze(n.v)}) { 727 // Subtle: when the NullInit is a DataStmtConstant, it might 728 // be a misparse of a structure constructor without parameters 729 // or components (e.g., T()). Checking the result to ensure 730 // that a "=>" data entity initializer actually resolved to 731 // a null pointer has to be done by the caller. 732 return Fold(std::move(*value)); 733 } 734 return std::nullopt; 735 } 736 737 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 738 return Analyze(x.value()); 739 } 740 741 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 742 if (const auto &repeat{ 743 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 744 x.repetitions = -1; 745 if (MaybeExpr expr{Analyze(repeat->u)}) { 746 Expr<SomeType> folded{Fold(std::move(*expr))}; 747 if (auto value{ToInt64(folded)}) { 748 if (*value >= 0) { // C882 749 x.repetitions = *value; 750 } else { 751 Say(FindSourceLocation(repeat), 752 "Repeat count (%jd) for data value must not be negative"_err_en_US, 753 *value); 754 } 755 } 756 } 757 } 758 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 759 } 760 761 // Substring references 762 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 763 const std::optional<parser::ScalarIntExpr> &bound) { 764 if (bound) { 765 if (MaybeExpr expr{Analyze(*bound)}) { 766 if (expr->Rank() > 1) { 767 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 768 } 769 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 770 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 771 return {std::move(*ssIntExpr)}; 772 } 773 return {Expr<SubscriptInteger>{ 774 Convert<SubscriptInteger, TypeCategory::Integer>{ 775 std::move(*intExpr)}}}; 776 } else { 777 Say("substring bound expression is not INTEGER"_err_en_US); 778 } 779 } 780 } 781 return std::nullopt; 782 } 783 784 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 785 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 786 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 787 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 788 if (std::optional<DataRef> checked{ 789 ExtractDataRef(std::move(*newBaseExpr))}) { 790 const parser::SubstringRange &range{ 791 std::get<parser::SubstringRange>(ss.t)}; 792 std::optional<Expr<SubscriptInteger>> first{ 793 GetSubstringBound(std::get<0>(range.t))}; 794 std::optional<Expr<SubscriptInteger>> last{ 795 GetSubstringBound(std::get<1>(range.t))}; 796 const Symbol &symbol{checked->GetLastSymbol()}; 797 if (std::optional<DynamicType> dynamicType{ 798 DynamicType::From(symbol)}) { 799 if (dynamicType->category() == TypeCategory::Character) { 800 return WrapperHelper<TypeCategory::Character, Designator, 801 Substring>(dynamicType->kind(), 802 Substring{std::move(checked.value()), std::move(first), 803 std::move(last)}); 804 } 805 } 806 Say("substring may apply only to CHARACTER"_err_en_US); 807 } 808 } 809 } 810 } 811 return std::nullopt; 812 } 813 814 // CHARACTER literal substrings 815 MaybeExpr ExpressionAnalyzer::Analyze( 816 const parser::CharLiteralConstantSubstring &x) { 817 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 818 std::optional<Expr<SubscriptInteger>> lower{ 819 GetSubstringBound(std::get<0>(range.t))}; 820 std::optional<Expr<SubscriptInteger>> upper{ 821 GetSubstringBound(std::get<1>(range.t))}; 822 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 823 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 824 Expr<SubscriptInteger> length{ 825 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 826 charExpr->u)}; 827 if (!lower) { 828 lower = Expr<SubscriptInteger>{1}; 829 } 830 if (!upper) { 831 upper = Expr<SubscriptInteger>{ 832 static_cast<std::int64_t>(ToInt64(length).value())}; 833 } 834 return std::visit( 835 [&](auto &&ckExpr) -> MaybeExpr { 836 using Result = ResultType<decltype(ckExpr)>; 837 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 838 CHECK(DEREF(cp).size() == 1); 839 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 840 staticData->set_alignment(Result::kind) 841 .set_itemBytes(Result::kind) 842 .Push(cp->GetScalarValue().value()); 843 Substring substring{std::move(staticData), std::move(lower.value()), 844 std::move(upper.value())}; 845 return AsGenericExpr( 846 Expr<Result>{Designator<Result>{std::move(substring)}}); 847 }, 848 std::move(charExpr->u)); 849 } 850 } 851 return std::nullopt; 852 } 853 854 // Subscripted array references 855 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 856 MaybeExpr &&expr) { 857 if (expr) { 858 if (expr->Rank() > 1) { 859 Say("Subscript expression has rank %d greater than 1"_err_en_US, 860 expr->Rank()); 861 } 862 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 863 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 864 return std::move(*ssIntExpr); 865 } else { 866 return Expr<SubscriptInteger>{ 867 Convert<SubscriptInteger, TypeCategory::Integer>{ 868 std::move(*intExpr)}}; 869 } 870 } else { 871 Say("Subscript expression is not INTEGER"_err_en_US); 872 } 873 } 874 return std::nullopt; 875 } 876 877 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 878 const std::optional<parser::Subscript> &s) { 879 if (s) { 880 return AsSubscript(Analyze(*s)); 881 } else { 882 return std::nullopt; 883 } 884 } 885 886 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 887 const parser::SectionSubscript &ss) { 888 return std::visit( 889 common::visitors{ 890 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 891 const auto &lower{std::get<0>(t.t)}; 892 const auto &upper{std::get<1>(t.t)}; 893 const auto &stride{std::get<2>(t.t)}; 894 auto result{Triplet{ 895 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 896 if ((lower && !result.lower()) || (upper && !result.upper())) { 897 return std::nullopt; 898 } else { 899 return std::make_optional<Subscript>(result); 900 } 901 }, 902 [&](const auto &s) -> std::optional<Subscript> { 903 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 904 return Subscript{std::move(*subscriptExpr)}; 905 } else { 906 return std::nullopt; 907 } 908 }, 909 }, 910 ss.u); 911 } 912 913 // Empty result means an error occurred 914 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 915 const std::list<parser::SectionSubscript> &sss) { 916 bool error{false}; 917 std::vector<Subscript> subscripts; 918 for (const auto &s : sss) { 919 if (auto subscript{AnalyzeSectionSubscript(s)}) { 920 subscripts.emplace_back(std::move(*subscript)); 921 } else { 922 error = true; 923 } 924 } 925 return !error ? subscripts : std::vector<Subscript>{}; 926 } 927 928 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 929 MaybeExpr baseExpr; 930 { 931 auto restorer{AllowWholeAssumedSizeArray()}; 932 baseExpr = Analyze(ae.base); 933 } 934 if (baseExpr) { 935 if (ae.subscripts.empty()) { 936 // will be converted to function call later or error reported 937 } else if (baseExpr->Rank() == 0) { 938 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 939 if (!context_.HasError(symbol)) { 940 if (inDataStmtConstant_) { 941 // Better error for NULL(X) with a MOLD= argument 942 Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US, 943 symbol->name()); 944 } else { 945 Say("'%s' is not an array"_err_en_US, symbol->name()); 946 } 947 context_.SetError(*symbol); 948 } 949 } 950 } else if (std::optional<DataRef> dataRef{ 951 ExtractDataRef(std::move(*baseExpr))}) { 952 return ApplySubscripts( 953 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 954 } else { 955 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 956 } 957 } 958 // error was reported: analyze subscripts without reporting more errors 959 auto restorer{GetContextualMessages().DiscardMessages()}; 960 AnalyzeSectionSubscripts(ae.subscripts); 961 return std::nullopt; 962 } 963 964 // Type parameter inquiries apply to data references, but don't depend 965 // on any trailing (co)subscripts. 966 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 967 return std::visit( 968 common::visitors{ 969 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 970 [](Component &&component) { 971 return NamedEntity{std::move(component)}; 972 }, 973 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 974 [](CoarrayRef &&coarrayRef) { 975 return NamedEntity{coarrayRef.GetLastSymbol()}; 976 }, 977 }, 978 std::move(designator.u)); 979 } 980 981 // Components of parent derived types are explicitly represented as such. 982 std::optional<Component> ExpressionAnalyzer::CreateComponent( 983 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 984 if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b 985 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); 986 } 987 if (&component.owner() == &scope) { 988 return Component{std::move(base), component}; 989 } 990 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 991 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 992 return CreateComponent( 993 DataRef{Component{std::move(base), *parentComponent}}, component, 994 *parentScope); 995 } 996 } 997 return std::nullopt; 998 } 999 1000 // Derived type component references and type parameter inquiries 1001 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 1002 MaybeExpr base{Analyze(sc.base)}; 1003 Symbol *sym{sc.component.symbol}; 1004 if (!base || !sym || context_.HasError(sym)) { 1005 return std::nullopt; 1006 } 1007 const auto &name{sc.component.source}; 1008 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1009 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1010 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1011 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1012 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1013 if (dyType->category() == TypeCategory::Integer) { 1014 auto restorer{GetContextualMessages().SetLocation(name)}; 1015 return Fold(ConvertToType(*dyType, 1016 AsGenericExpr(TypeParamInquiry{ 1017 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1018 } 1019 } 1020 Say(name, "Type parameter is not INTEGER"_err_en_US); 1021 } else { 1022 Say(name, 1023 "A type parameter inquiry must be applied to " 1024 "a designator"_err_en_US); 1025 } 1026 } else if (!dtSpec || !dtSpec->scope()) { 1027 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1028 return std::nullopt; 1029 } else if (std::optional<DataRef> dataRef{ 1030 ExtractDataRef(std::move(*dtExpr))}) { 1031 if (auto component{ 1032 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1033 return Designate(DataRef{std::move(*component)}); 1034 } else { 1035 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1036 dtSpec->typeSymbol().name()); 1037 } 1038 } else { 1039 Say(name, 1040 "Base of component reference must be a data reference"_err_en_US); 1041 } 1042 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1043 // special part-ref: %re, %im, %kind, %len 1044 // Type errors are detected and reported in semantics. 1045 using MiscKind = semantics::MiscDetails::Kind; 1046 MiscKind kind{details->kind()}; 1047 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1048 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1049 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1050 Expr<SomeReal> realExpr{std::visit( 1051 [&](const auto &z) { 1052 using PartType = typename ResultType<decltype(z)>::Part; 1053 auto part{kind == MiscKind::ComplexPartRe 1054 ? ComplexPart::Part::RE 1055 : ComplexPart::Part::IM}; 1056 return AsCategoryExpr(Designator<PartType>{ 1057 ComplexPart{std::move(*dataRef), part}}); 1058 }, 1059 zExpr->u)}; 1060 return AsGenericExpr(std::move(realExpr)); 1061 } 1062 } 1063 } else if (kind == MiscKind::KindParamInquiry || 1064 kind == MiscKind::LenParamInquiry) { 1065 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1066 return MakeFunctionRef( 1067 name, ActualArguments{ActualArgument{std::move(*base)}}); 1068 } else { 1069 DIE("unexpected MiscDetails::Kind"); 1070 } 1071 } else { 1072 Say(name, "derived type required before component reference"_err_en_US); 1073 } 1074 return std::nullopt; 1075 } 1076 1077 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1078 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1079 DataRef *dataRef{&*maybeDataRef}; 1080 std::vector<Subscript> subscripts; 1081 SymbolVector reversed; 1082 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1083 subscripts = std::move(aRef->subscript()); 1084 reversed.push_back(aRef->GetLastSymbol()); 1085 if (Component * component{aRef->base().UnwrapComponent()}) { 1086 dataRef = &component->base(); 1087 } else { 1088 dataRef = nullptr; 1089 } 1090 } 1091 if (dataRef) { 1092 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1093 reversed.push_back(component->GetLastSymbol()); 1094 dataRef = &component->base(); 1095 } 1096 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1097 reversed.push_back(*baseSym); 1098 } else { 1099 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1100 } 1101 } 1102 std::vector<Expr<SubscriptInteger>> cosubscripts; 1103 bool cosubsOk{true}; 1104 for (const auto &cosub : 1105 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1106 MaybeExpr coex{Analyze(cosub)}; 1107 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1108 cosubscripts.push_back( 1109 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1110 } else { 1111 cosubsOk = false; 1112 } 1113 } 1114 if (cosubsOk && !reversed.empty()) { 1115 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1116 const Symbol &symbol{reversed.front()}; 1117 if (numCosubscripts != symbol.Corank()) { 1118 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1119 symbol.name(), symbol.Corank(), numCosubscripts); 1120 } 1121 } 1122 for (const auto &imageSelSpec : 1123 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1124 std::visit( 1125 common::visitors{ 1126 [&](const auto &x) { Analyze(x.v); }, 1127 }, 1128 imageSelSpec.u); 1129 } 1130 // Reverse the chain of symbols so that the base is first and coarray 1131 // ultimate component is last. 1132 if (cosubsOk) { 1133 return Designate( 1134 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1135 std::move(subscripts), std::move(cosubscripts)}}); 1136 } 1137 } 1138 return std::nullopt; 1139 } 1140 1141 int ExpressionAnalyzer::IntegerTypeSpecKind( 1142 const parser::IntegerTypeSpec &spec) { 1143 Expr<SubscriptInteger> value{ 1144 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1145 if (auto kind{ToInt64(value)}) { 1146 return static_cast<int>(*kind); 1147 } 1148 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1149 return GetDefaultKind(TypeCategory::Integer); 1150 } 1151 1152 // Array constructors 1153 1154 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1155 // all happen to have the same actual type T into one ArrayConstructor<T>. 1156 template <typename T> 1157 ArrayConstructorValues<T> MakeSpecific( 1158 ArrayConstructorValues<SomeType> &&from) { 1159 ArrayConstructorValues<T> to; 1160 for (ArrayConstructorValue<SomeType> &x : from) { 1161 std::visit( 1162 common::visitors{ 1163 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1164 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1165 to.Push(std::move(DEREF(typed))); 1166 }, 1167 [&](ImpliedDo<SomeType> &&impliedDo) { 1168 to.Push(ImpliedDo<T>{impliedDo.name(), 1169 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1170 std::move(impliedDo.stride()), 1171 MakeSpecific<T>(std::move(impliedDo.values()))}); 1172 }, 1173 }, 1174 std::move(x.u)); 1175 } 1176 return to; 1177 } 1178 1179 class ArrayConstructorContext { 1180 public: 1181 ArrayConstructorContext( 1182 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1183 : exprAnalyzer_{c}, type_{std::move(t)} {} 1184 1185 void Add(const parser::AcValue &); 1186 MaybeExpr ToExpr(); 1187 1188 // These interfaces allow *this to be used as a type visitor argument to 1189 // common::SearchTypes() to convert the array constructor to a typed 1190 // expression in ToExpr(). 1191 using Result = MaybeExpr; 1192 using Types = AllTypes; 1193 template <typename T> Result Test() { 1194 if (type_ && type_->category() == T::category) { 1195 if constexpr (T::category == TypeCategory::Derived) { 1196 if (!type_->IsUnlimitedPolymorphic()) { 1197 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1198 MakeSpecific<T>(std::move(values_))}); 1199 } 1200 } else if (type_->kind() == T::kind) { 1201 if constexpr (T::category == TypeCategory::Character) { 1202 if (auto len{type_->LEN()}) { 1203 return AsMaybeExpr(ArrayConstructor<T>{ 1204 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1205 } 1206 } else { 1207 return AsMaybeExpr( 1208 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1209 } 1210 } 1211 } 1212 return std::nullopt; 1213 } 1214 1215 private: 1216 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1217 1218 void Push(MaybeExpr &&); 1219 void Add(const parser::AcValue::Triplet &); 1220 void Add(const parser::Expr &); 1221 void Add(const parser::AcImpliedDo &); 1222 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1223 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1224 std::int64_t stride); 1225 1226 template <int KIND, typename A> 1227 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1228 const A &x) { 1229 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1230 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1231 return Fold(exprAnalyzer_.GetFoldingContext(), 1232 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1233 std::move(DEREF(intExpr)))); 1234 } 1235 return std::nullopt; 1236 } 1237 1238 // Nested array constructors all reference the same ExpressionAnalyzer, 1239 // which represents the nest of active implied DO loop indices. 1240 ExpressionAnalyzer &exprAnalyzer_; 1241 std::optional<DynamicTypeWithLength> type_; 1242 bool explicitType_{type_.has_value()}; 1243 std::optional<std::int64_t> constantLength_; 1244 ArrayConstructorValues<SomeType> values_; 1245 std::uint64_t messageDisplayedSet_{0}; 1246 }; 1247 1248 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1249 if (!x) { 1250 return; 1251 } 1252 if (!type_) { 1253 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1254 // Treat an array constructor of BOZ as if default integer. 1255 if (exprAnalyzer_.context().ShouldWarn( 1256 common::LanguageFeature::BOZAsDefaultInteger)) { 1257 exprAnalyzer_.Say( 1258 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1259 } 1260 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1261 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1262 std::move(*boz))); 1263 } 1264 } 1265 std::optional<DynamicType> dyType{x->GetType()}; 1266 if (!dyType) { 1267 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1268 if (!type_) { 1269 // Treat an array constructor of BOZ as if default integer. 1270 if (exprAnalyzer_.context().ShouldWarn( 1271 common::LanguageFeature::BOZAsDefaultInteger)) { 1272 exprAnalyzer_.Say( 1273 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1274 } 1275 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1276 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1277 std::move(*boz))); 1278 dyType = x.value().GetType(); 1279 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1280 x = std::move(cast); 1281 dyType = *type_; 1282 } else { 1283 if (!(messageDisplayedSet_ & 0x80)) { 1284 exprAnalyzer_.Say( 1285 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1286 messageDisplayedSet_ |= 0x80; 1287 } 1288 return; 1289 } 1290 } else { // procedure name, &c. 1291 if (!(messageDisplayedSet_ & 0x40)) { 1292 exprAnalyzer_.Say( 1293 "Item is not suitable for use in an array constructor"_err_en_US); 1294 messageDisplayedSet_ |= 0x40; 1295 } 1296 return; 1297 } 1298 } else if (dyType->IsUnlimitedPolymorphic()) { 1299 if (!(messageDisplayedSet_ & 8)) { 1300 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1301 "array constructor"_err_en_US); // C7113 1302 messageDisplayedSet_ |= 8; 1303 } 1304 return; 1305 } 1306 DynamicTypeWithLength xType{dyType.value()}; 1307 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1308 CHECK(xType.category() == TypeCategory::Character); 1309 xType.length = 1310 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1311 } 1312 if (!type_) { 1313 // If there is no explicit type-spec in an array constructor, the type 1314 // of the array is the declared type of all of the elements, which must 1315 // be well-defined and all match. 1316 // TODO: Possible language extension: use the most general type of 1317 // the values as the type of a numeric constructed array, convert all 1318 // of the other values to that type. Alternative: let the first value 1319 // determine the type, and convert the others to that type. 1320 CHECK(!explicitType_); 1321 type_ = std::move(xType); 1322 constantLength_ = ToInt64(type_->length); 1323 values_.Push(std::move(*x)); 1324 } else if (!explicitType_) { 1325 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1326 values_.Push(std::move(*x)); 1327 if (auto thisLen{ToInt64(xType.LEN())}) { 1328 if (constantLength_) { 1329 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1330 *thisLen != *constantLength_) { 1331 if (!(messageDisplayedSet_ & 1)) { 1332 exprAnalyzer_.Say( 1333 "Character literal in array constructor without explicit " 1334 "type has different length than earlier elements"_en_US); 1335 messageDisplayedSet_ |= 1; 1336 } 1337 } 1338 if (*thisLen > *constantLength_) { 1339 // Language extension: use the longest literal to determine the 1340 // length of the array constructor's character elements, not the 1341 // first, when there is no explicit type. 1342 *constantLength_ = *thisLen; 1343 type_->length = xType.LEN(); 1344 } 1345 } else { 1346 constantLength_ = *thisLen; 1347 type_->length = xType.LEN(); 1348 } 1349 } 1350 } else { 1351 if (!(messageDisplayedSet_ & 2)) { 1352 exprAnalyzer_.Say( 1353 "Values in array constructor must have the same declared type " 1354 "when no explicit type appears"_err_en_US); // C7110 1355 messageDisplayedSet_ |= 2; 1356 } 1357 } 1358 } else { 1359 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1360 values_.Push(std::move(*cast)); 1361 } else if (!(messageDisplayedSet_ & 4)) { 1362 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1363 "be converted to the type of the array '%s'"_err_en_US, 1364 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1365 messageDisplayedSet_ |= 4; 1366 } 1367 } 1368 } 1369 1370 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1371 std::visit( 1372 common::visitors{ 1373 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1374 [&](const common::Indirection<parser::Expr> &expr) { 1375 Add(expr.value()); 1376 }, 1377 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1378 Add(impliedDo.value()); 1379 }, 1380 }, 1381 x.u); 1382 } 1383 1384 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1385 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1386 std::optional<Expr<ImpliedDoIntType>> lower{ 1387 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1388 std::optional<Expr<ImpliedDoIntType>> upper{ 1389 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1390 std::optional<Expr<ImpliedDoIntType>> stride{ 1391 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1392 if (lower && upper) { 1393 if (!stride) { 1394 stride = Expr<ImpliedDoIntType>{1}; 1395 } 1396 if (!type_) { 1397 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1398 } 1399 auto v{std::move(values_)}; 1400 parser::CharBlock anonymous; 1401 Push(Expr<SomeType>{ 1402 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1403 std::swap(v, values_); 1404 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1405 std::move(*upper), std::move(*stride), std::move(v)}); 1406 } 1407 } 1408 1409 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1410 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1411 Push(exprAnalyzer_.Analyze(expr)); 1412 } 1413 1414 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1415 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1416 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1417 exprAnalyzer_.Analyze(bounds.name); 1418 parser::CharBlock name{bounds.name.thing.thing.source}; 1419 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1420 int kind{ImpliedDoIntType::kind}; 1421 if (const auto dynamicType{DynamicType::From(symbol)}) { 1422 kind = dynamicType->kind(); 1423 } 1424 std::optional<Expr<ImpliedDoIntType>> lower{ 1425 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1426 std::optional<Expr<ImpliedDoIntType>> upper{ 1427 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1428 if (lower && upper) { 1429 std::optional<Expr<ImpliedDoIntType>> stride{ 1430 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1431 if (!stride) { 1432 stride = Expr<ImpliedDoIntType>{1}; 1433 } 1434 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1435 // Check for constant bounds; the loop may require complete unrolling 1436 // of the parse tree if all bounds are constant in order to allow the 1437 // implied DO loop index to qualify as a constant expression. 1438 auto cLower{ToInt64(lower)}; 1439 auto cUpper{ToInt64(upper)}; 1440 auto cStride{ToInt64(stride)}; 1441 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1442 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1443 "The stride of an implied DO loop must not be zero"_err_en_US); 1444 messageDisplayedSet_ |= 0x10; 1445 } 1446 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1447 bool isNonemptyConstant{isConstant && 1448 ((*cStride > 0 && *cLower <= *cUpper) || 1449 (*cStride < 0 && *cLower >= *cUpper))}; 1450 bool unrollConstantLoop{false}; 1451 parser::Messages buffer; 1452 auto saveMessagesDisplayed{messageDisplayedSet_}; 1453 { 1454 auto messageRestorer{ 1455 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1456 auto v{std::move(values_)}; 1457 for (const auto &value : 1458 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1459 Add(value); 1460 } 1461 std::swap(v, values_); 1462 if (isNonemptyConstant && buffer.AnyFatalError()) { 1463 unrollConstantLoop = true; 1464 } else { 1465 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1466 std::move(*upper), std::move(*stride), std::move(v)}); 1467 } 1468 } 1469 if (unrollConstantLoop) { 1470 messageDisplayedSet_ = saveMessagesDisplayed; 1471 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1472 } else if (auto *messages{ 1473 exprAnalyzer_.GetContextualMessages().messages()}) { 1474 messages->Annex(std::move(buffer)); 1475 } 1476 exprAnalyzer_.RemoveImpliedDo(name); 1477 } else if (!(messageDisplayedSet_ & 0x20)) { 1478 exprAnalyzer_.SayAt(name, 1479 "Implied DO index '%s' is active in a surrounding implied DO loop " 1480 "and may not have the same name"_err_en_US, 1481 name); // C7115 1482 messageDisplayedSet_ |= 0x20; 1483 } 1484 } 1485 } 1486 1487 // Fortran considers an implied DO index of an array constructor to be 1488 // a constant expression if the bounds of the implied DO loop are constant. 1489 // Usually this doesn't matter, but if we emitted spurious messages as a 1490 // result of not using constant values for the index while analyzing the 1491 // items, we need to do it again the "hard" way with multiple iterations over 1492 // the parse tree. 1493 void ArrayConstructorContext::UnrollConstantImpliedDo( 1494 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1495 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1496 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1497 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1498 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1499 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1500 at += stride) { 1501 for (const auto &value : 1502 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1503 Add(value); 1504 } 1505 } 1506 foldingContext.EndImpliedDo(name); 1507 } 1508 1509 MaybeExpr ArrayConstructorContext::ToExpr() { 1510 return common::SearchTypes(std::move(*this)); 1511 } 1512 1513 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1514 const parser::AcSpec &acSpec{array.v}; 1515 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1516 for (const parser::AcValue &value : acSpec.values) { 1517 acContext.Add(value); 1518 } 1519 return acContext.ToExpr(); 1520 } 1521 1522 MaybeExpr ExpressionAnalyzer::Analyze( 1523 const parser::StructureConstructor &structure) { 1524 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1525 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1526 parser::CharBlock &typeName{structureType.source}; 1527 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1528 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1529 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1530 if (!CheckIsValidForwardReference(dtSpec)) { 1531 return std::nullopt; 1532 } 1533 } 1534 } 1535 if (!parsedType.derivedTypeSpec) { 1536 return std::nullopt; 1537 } 1538 const auto &spec{*parsedType.derivedTypeSpec}; 1539 const Symbol &typeSymbol{spec.typeSymbol()}; 1540 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1541 return std::nullopt; // error recovery 1542 } 1543 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1544 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1545 1546 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1547 AttachDeclaration(Say(typeName, 1548 "ABSTRACT derived type '%s' may not be used in a " 1549 "structure constructor"_err_en_US, 1550 typeName), 1551 typeSymbol); // C7114 1552 } 1553 1554 // This iterator traverses all of the components in the derived type and its 1555 // parents. The symbols for whole parent components appear after their 1556 // own components and before the components of the types that extend them. 1557 // E.g., TYPE :: A; REAL X; END TYPE 1558 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1559 // produces the component list X, A, Y. 1560 // The order is important below because a structure constructor can 1561 // initialize X or A by name, but not both. 1562 auto components{semantics::OrderedComponentIterator{spec}}; 1563 auto nextAnonymous{components.begin()}; 1564 1565 std::set<parser::CharBlock> unavailable; 1566 bool anyKeyword{false}; 1567 StructureConstructor result{spec}; 1568 bool checkConflicts{true}; // until we hit one 1569 auto &messages{GetContextualMessages()}; 1570 1571 for (const auto &component : 1572 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1573 const parser::Expr &expr{ 1574 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1575 parser::CharBlock source{expr.source}; 1576 auto restorer{messages.SetLocation(source)}; 1577 const Symbol *symbol{nullptr}; 1578 MaybeExpr value{Analyze(expr)}; 1579 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1580 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1581 anyKeyword = true; 1582 source = kw->v.source; 1583 symbol = kw->v.symbol; 1584 if (!symbol) { 1585 auto componentIter{std::find_if(components.begin(), components.end(), 1586 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1587 if (componentIter != components.end()) { 1588 symbol = &*componentIter; 1589 } 1590 } 1591 if (!symbol) { // C7101 1592 Say(source, 1593 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1594 source, typeName); 1595 } 1596 } else { 1597 if (anyKeyword) { // C7100 1598 Say(source, 1599 "Value in structure constructor lacks a component name"_err_en_US); 1600 checkConflicts = false; // stem cascade 1601 } 1602 // Here's a regrettably common extension of the standard: anonymous 1603 // initialization of parent components, e.g., T(PT(1)) rather than 1604 // T(1) or T(PT=PT(1)). 1605 if (nextAnonymous == components.begin() && parentComponent && 1606 valueType == DynamicType::From(*parentComponent) && 1607 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1608 auto iter{ 1609 std::find(components.begin(), components.end(), *parentComponent)}; 1610 if (iter != components.end()) { 1611 symbol = parentComponent; 1612 nextAnonymous = ++iter; 1613 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1614 Say(source, 1615 "Whole parent component '%s' in structure " 1616 "constructor should not be anonymous"_en_US, 1617 symbol->name()); 1618 } 1619 } 1620 } 1621 while (!symbol && nextAnonymous != components.end()) { 1622 const Symbol &next{*nextAnonymous}; 1623 ++nextAnonymous; 1624 if (!next.test(Symbol::Flag::ParentComp)) { 1625 symbol = &next; 1626 } 1627 } 1628 if (!symbol) { 1629 Say(source, "Unexpected value in structure constructor"_err_en_US); 1630 } 1631 } 1632 if (symbol) { 1633 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1634 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1635 Say(source, *msg); 1636 } 1637 } 1638 if (checkConflicts) { 1639 auto componentIter{ 1640 std::find(components.begin(), components.end(), *symbol)}; 1641 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1642 // C797, C798 1643 Say(source, 1644 "Component '%s' conflicts with another component earlier in " 1645 "this structure constructor"_err_en_US, 1646 symbol->name()); 1647 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1648 // Make earlier components unavailable once a whole parent appears. 1649 for (auto it{components.begin()}; it != componentIter; ++it) { 1650 unavailable.insert(it->name()); 1651 } 1652 } else { 1653 // Make whole parent components unavailable after any of their 1654 // constituents appear. 1655 for (auto it{componentIter}; it != components.end(); ++it) { 1656 if (it->test(Symbol::Flag::ParentComp)) { 1657 unavailable.insert(it->name()); 1658 } 1659 } 1660 } 1661 } 1662 unavailable.insert(symbol->name()); 1663 if (value) { 1664 if (symbol->has<semantics::ProcEntityDetails>()) { 1665 CHECK(IsPointer(*symbol)); 1666 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1667 // C1594(4) 1668 const auto &innermost{context_.FindScope(expr.source)}; 1669 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1670 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1671 if (const Symbol * 1672 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1673 if (auto *msg{Say(expr.source, 1674 "Externally visible object '%s' may not be " 1675 "associated with pointer component '%s' in a " 1676 "pure procedure"_err_en_US, 1677 object->name(), pointer->name())}) { 1678 msg->Attach(object->name(), "Object declaration"_en_US) 1679 .Attach(pointer->name(), "Pointer declaration"_en_US); 1680 } 1681 } 1682 } 1683 } 1684 } else if (symbol->has<semantics::TypeParamDetails>()) { 1685 Say(expr.source, 1686 "Type parameter '%s' may not appear as a component " 1687 "of a structure constructor"_err_en_US, 1688 symbol->name()); 1689 continue; 1690 } else { 1691 Say(expr.source, 1692 "Component '%s' is neither a procedure pointer " 1693 "nor a data object"_err_en_US, 1694 symbol->name()); 1695 continue; 1696 } 1697 if (IsPointer(*symbol)) { 1698 semantics::CheckPointerAssignment( 1699 GetFoldingContext(), *symbol, *value); // C7104, C7105 1700 result.Add(*symbol, Fold(std::move(*value))); 1701 } else if (MaybeExpr converted{ 1702 ConvertToType(*symbol, std::move(*value))}) { 1703 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1704 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1705 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1706 AttachDeclaration( 1707 Say(expr.source, 1708 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1709 GetRank(*valueShape), symbol->name()), 1710 *symbol); 1711 } else { 1712 auto checked{ 1713 CheckConformance(messages, *componentShape, *valueShape, 1714 CheckConformanceFlags::RightIsExpandableDeferred, 1715 "component", "value")}; 1716 if (checked && *checked && GetRank(*componentShape) > 0 && 1717 GetRank(*valueShape) == 0 && 1718 !IsExpandableScalar(*converted)) { 1719 AttachDeclaration( 1720 Say(expr.source, 1721 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1722 symbol->name()), 1723 *symbol); 1724 } 1725 if (checked.value_or(true)) { 1726 result.Add(*symbol, std::move(*converted)); 1727 } 1728 } 1729 } else { 1730 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1731 } 1732 } else { 1733 AttachDeclaration( 1734 Say(expr.source, 1735 "Shape of component '%s' cannot be determined"_err_en_US, 1736 symbol->name()), 1737 *symbol); 1738 } 1739 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1740 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1741 } else if (auto symType{DynamicType::From(symbol)}) { 1742 if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() && 1743 valueType) { 1744 // ok 1745 } else if (valueType) { 1746 AttachDeclaration( 1747 Say(expr.source, 1748 "Value in structure constructor of type %s is " 1749 "incompatible with component '%s' of type %s"_err_en_US, 1750 valueType->AsFortran(), symbol->name(), 1751 symType->AsFortran()), 1752 *symbol); 1753 } else { 1754 AttachDeclaration( 1755 Say(expr.source, 1756 "Value in structure constructor is incompatible with " 1757 " component '%s' of type %s"_err_en_US, 1758 symbol->name(), symType->AsFortran()), 1759 *symbol); 1760 } 1761 } 1762 } 1763 } 1764 } 1765 1766 // Ensure that unmentioned component objects have default initializers. 1767 for (const Symbol &symbol : components) { 1768 if (!symbol.test(Symbol::Flag::ParentComp) && 1769 unavailable.find(symbol.name()) == unavailable.cend() && 1770 !IsAllocatable(symbol)) { 1771 if (const auto *details{ 1772 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1773 if (details->init()) { 1774 result.Add(symbol, common::Clone(*details->init())); 1775 } else { // C799 1776 AttachDeclaration(Say(typeName, 1777 "Structure constructor lacks a value for " 1778 "component '%s'"_err_en_US, 1779 symbol.name()), 1780 symbol); 1781 } 1782 } 1783 } 1784 } 1785 1786 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1787 } 1788 1789 static std::optional<parser::CharBlock> GetPassName( 1790 const semantics::Symbol &proc) { 1791 return std::visit( 1792 [](const auto &details) { 1793 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1794 std::decay_t<decltype(details)>>) { 1795 return details.passName(); 1796 } else { 1797 return std::optional<parser::CharBlock>{}; 1798 } 1799 }, 1800 proc.details()); 1801 } 1802 1803 static int GetPassIndex(const Symbol &proc) { 1804 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1805 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1806 const auto *interface{semantics::FindInterface(proc)}; 1807 if (!passName || !interface) { 1808 return 0; // first argument is passed-object 1809 } 1810 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1811 int index{0}; 1812 for (const auto *arg : subp.dummyArgs()) { 1813 if (arg && arg->name() == passName) { 1814 return index; 1815 } 1816 ++index; 1817 } 1818 DIE("PASS argument name not in dummy argument list"); 1819 } 1820 1821 // Injects an expression into an actual argument list as the "passed object" 1822 // for a type-bound procedure reference that is not NOPASS. Adds an 1823 // argument keyword if possible, but not when the passed object goes 1824 // before a positional argument. 1825 // e.g., obj%tbp(x) -> tbp(obj,x). 1826 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1827 const Symbol &component, bool isPassedObject = true) { 1828 if (component.attrs().test(semantics::Attr::NOPASS)) { 1829 return; 1830 } 1831 int passIndex{GetPassIndex(component)}; 1832 auto iter{actuals.begin()}; 1833 int at{0}; 1834 while (iter < actuals.end() && at < passIndex) { 1835 if (*iter && (*iter)->keyword()) { 1836 iter = actuals.end(); 1837 break; 1838 } 1839 ++iter; 1840 ++at; 1841 } 1842 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1843 passed.set_isPassedObject(isPassedObject); 1844 if (iter == actuals.end()) { 1845 if (auto passName{GetPassName(component)}) { 1846 passed.set_keyword(*passName); 1847 } 1848 } 1849 actuals.emplace(iter, std::move(passed)); 1850 } 1851 1852 // Return the compile-time resolution of a procedure binding, if possible. 1853 static const Symbol *GetBindingResolution( 1854 const std::optional<DynamicType> &baseType, const Symbol &component) { 1855 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1856 if (!binding) { 1857 return nullptr; 1858 } 1859 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1860 (!baseType || baseType->IsPolymorphic())) { 1861 return nullptr; 1862 } 1863 return &binding->symbol(); 1864 } 1865 1866 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1867 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1868 -> std::optional<CalleeAndArguments> { 1869 const parser::StructureComponent &sc{pcr.v.thing}; 1870 if (MaybeExpr base{Analyze(sc.base)}) { 1871 if (const Symbol * sym{sc.component.symbol}) { 1872 if (context_.HasError(sym)) { 1873 return std::nullopt; 1874 } 1875 if (!IsProcedure(*sym)) { 1876 AttachDeclaration( 1877 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1878 sc.component.source), 1879 *sym); 1880 return std::nullopt; 1881 } 1882 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1883 if (sym->has<semantics::GenericDetails>()) { 1884 AdjustActuals adjustment{ 1885 [&](const Symbol &proc, ActualArguments &actuals) { 1886 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1887 AddPassArg(actuals, std::move(*dtExpr), proc); 1888 } 1889 return true; 1890 }}; 1891 auto pair{ResolveGeneric(*sym, arguments, adjustment)}; 1892 sym = pair.first; 1893 if (!sym) { 1894 EmitGenericResolutionError(*sc.component.symbol, pair.second); 1895 return std::nullopt; 1896 } 1897 } 1898 if (const Symbol * 1899 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1900 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1901 return CalleeAndArguments{ 1902 ProcedureDesignator{*resolution}, std::move(arguments)}; 1903 } else if (std::optional<DataRef> dataRef{ 1904 ExtractDataRef(std::move(*dtExpr))}) { 1905 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1906 return CalleeAndArguments{ 1907 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1908 std::move(arguments)}; 1909 } else { 1910 AddPassArg(arguments, 1911 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1912 *sym); 1913 return CalleeAndArguments{ 1914 ProcedureDesignator{*sym}, std::move(arguments)}; 1915 } 1916 } 1917 } 1918 Say(sc.component.source, 1919 "Base of procedure component reference is not a derived-type object"_err_en_US); 1920 } 1921 } 1922 CHECK(context_.AnyFatalError()); 1923 return std::nullopt; 1924 } 1925 1926 // Can actual be argument associated with dummy? 1927 static bool CheckCompatibleArgument(bool isElemental, 1928 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1929 const auto *expr{actual.UnwrapExpr()}; 1930 return std::visit( 1931 common::visitors{ 1932 [&](const characteristics::DummyDataObject &x) { 1933 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 1934 IsBareNullPointer(expr)) { 1935 // NULL() without MOLD= is compatible with any dummy data pointer 1936 // but cannot be allowed to lead to ambiguity. 1937 return true; 1938 } else if (!isElemental && actual.Rank() != x.type.Rank() && 1939 !x.type.attrs().test( 1940 characteristics::TypeAndShape::Attr::AssumedRank)) { 1941 return false; 1942 } else if (auto actualType{actual.GetType()}) { 1943 return x.type.type().IsTkCompatibleWith(*actualType); 1944 } 1945 return false; 1946 }, 1947 [&](const characteristics::DummyProcedure &) { 1948 return expr && IsProcedurePointerTarget(*expr); 1949 }, 1950 [&](const characteristics::AlternateReturn &) { 1951 return actual.isAlternateReturn(); 1952 }, 1953 }, 1954 dummy.u); 1955 } 1956 1957 // Are the actual arguments compatible with the dummy arguments of procedure? 1958 static bool CheckCompatibleArguments( 1959 const characteristics::Procedure &procedure, 1960 const ActualArguments &actuals) { 1961 bool isElemental{procedure.IsElemental()}; 1962 const auto &dummies{procedure.dummyArguments}; 1963 CHECK(dummies.size() == actuals.size()); 1964 for (std::size_t i{0}; i < dummies.size(); ++i) { 1965 const characteristics::DummyArgument &dummy{dummies[i]}; 1966 const std::optional<ActualArgument> &actual{actuals[i]}; 1967 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1968 return false; 1969 } 1970 } 1971 return true; 1972 } 1973 1974 // Handles a forward reference to a module function from what must 1975 // be a specification expression. Return false if the symbol is 1976 // an invalid forward reference. 1977 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1978 if (context_.HasError(symbol)) { 1979 return false; 1980 } 1981 if (const auto *details{ 1982 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1983 if (details->kind() == semantics::SubprogramKind::Module) { 1984 // If this symbol is still a SubprogramNameDetails, we must be 1985 // checking a specification expression in a sibling module 1986 // procedure. Resolve its names now so that its interface 1987 // is known. 1988 semantics::ResolveSpecificationParts(context_, symbol); 1989 if (symbol.has<semantics::SubprogramNameDetails>()) { 1990 // When the symbol hasn't had its details updated, we must have 1991 // already been in the process of resolving the function's 1992 // specification part; but recursive function calls are not 1993 // allowed in specification parts (10.1.11 para 5). 1994 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1995 symbol.name()); 1996 context_.SetError(symbol); 1997 return false; 1998 } 1999 } else { // 10.1.11 para 4 2000 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 2001 symbol.name()); 2002 context_.SetError(symbol); 2003 return false; 2004 } 2005 } 2006 return true; 2007 } 2008 2009 // Resolve a call to a generic procedure with given actual arguments. 2010 // adjustActuals is called on procedure bindings to handle pass arg. 2011 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 2012 const Symbol &symbol, const ActualArguments &actuals, 2013 const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) { 2014 const Symbol *elemental{nullptr}; // matching elemental specific proc 2015 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2016 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 2017 bool anyBareNullActual{ 2018 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2019 return IsBareNullPointer(iter->UnwrapExpr()); 2020 }) != actuals.end()}; 2021 for (const Symbol &specific : details.specificProcs()) { 2022 if (!ResolveForward(specific)) { 2023 continue; 2024 } 2025 if (std::optional<characteristics::Procedure> procedure{ 2026 characteristics::Procedure::Characterize( 2027 ProcedureDesignator{specific}, context_.foldingContext())}) { 2028 ActualArguments localActuals{actuals}; 2029 if (specific.has<semantics::ProcBindingDetails>()) { 2030 if (!adjustActuals.value()(specific, localActuals)) { 2031 continue; 2032 } 2033 } 2034 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, 2035 GetFoldingContext(), false /* no integer conversions */) && 2036 CheckCompatibleArguments(*procedure, localActuals)) { 2037 if ((procedure->IsElemental() && elemental) || 2038 (!procedure->IsElemental() && nonElemental)) { 2039 // 16.9.144(6): a bare NULL() is not allowed as an actual 2040 // argument to a generic procedure if the specific procedure 2041 // cannot be unambiguously distinguished 2042 return {nullptr, true /* due to NULL actuals */}; 2043 } 2044 if (!procedure->IsElemental()) { 2045 // takes priority over elemental match 2046 nonElemental = &specific; 2047 if (!anyBareNullActual) { 2048 break; // unambiguous case 2049 } 2050 } else { 2051 elemental = &specific; 2052 } 2053 } 2054 } 2055 } 2056 if (nonElemental) { 2057 return {&AccessSpecific(symbol, *nonElemental), false}; 2058 } else if (elemental) { 2059 return {&AccessSpecific(symbol, *elemental), false}; 2060 } 2061 // Check parent derived type 2062 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2063 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2064 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 2065 auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)}; 2066 if (pair.first) { 2067 return pair; 2068 } 2069 } 2070 } 2071 } 2072 if (mightBeStructureConstructor && details.derivedType()) { 2073 return {details.derivedType(), false}; 2074 } 2075 return {nullptr, false}; 2076 } 2077 2078 const Symbol &ExpressionAnalyzer::AccessSpecific( 2079 const Symbol &originalGeneric, const Symbol &specific) { 2080 if (const auto *hosted{ 2081 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2082 return AccessSpecific(hosted->symbol(), specific); 2083 } else if (const auto *used{ 2084 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2085 const auto &scope{originalGeneric.owner()}; 2086 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2087 if (const auto *useDetails{ 2088 iter->second->detailsIf<semantics::UseDetails>()}) { 2089 const Symbol &usedSymbol{useDetails->symbol()}; 2090 const auto *usedGeneric{ 2091 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2092 if (&usedSymbol == &specific || 2093 (usedGeneric && usedGeneric->specific() == &specific)) { 2094 return specific; 2095 } 2096 } 2097 } 2098 // Create a renaming USE of the specific procedure. 2099 auto rename{context_.SaveTempName( 2100 used->symbol().owner().GetName().value().ToString() + "$" + 2101 specific.name().ToString())}; 2102 return *const_cast<semantics::Scope &>(scope) 2103 .try_emplace(rename, specific.attrs(), 2104 semantics::UseDetails{rename, specific}) 2105 .first->second; 2106 } else { 2107 return specific; 2108 } 2109 } 2110 2111 void ExpressionAnalyzer::EmitGenericResolutionError( 2112 const Symbol &symbol, bool dueToNullActuals) { 2113 Say(dueToNullActuals 2114 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2115 : semantics::IsGenericDefinedOp(symbol) 2116 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2117 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2118 symbol.name()); 2119 } 2120 2121 auto ExpressionAnalyzer::GetCalleeAndArguments( 2122 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2123 bool isSubroutine, bool mightBeStructureConstructor) 2124 -> std::optional<CalleeAndArguments> { 2125 return std::visit( 2126 common::visitors{ 2127 [&](const parser::Name &name) { 2128 return GetCalleeAndArguments(name, std::move(arguments), 2129 isSubroutine, mightBeStructureConstructor); 2130 }, 2131 [&](const parser::ProcComponentRef &pcr) { 2132 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2133 }, 2134 }, 2135 pd.u); 2136 } 2137 2138 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2139 ActualArguments &&arguments, bool isSubroutine, 2140 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2141 const Symbol *symbol{name.symbol}; 2142 if (context_.HasError(symbol)) { 2143 return std::nullopt; // also handles null symbol 2144 } 2145 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2146 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2147 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2148 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2149 arguments, GetFoldingContext())}) { 2150 CheckBadExplicitType(*specificCall, *symbol); 2151 return CalleeAndArguments{ 2152 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2153 std::move(specificCall->arguments)}; 2154 } 2155 } else { 2156 CheckForBadRecursion(name.source, ultimate); 2157 bool dueToNullActual{false}; 2158 if (ultimate.has<semantics::GenericDetails>()) { 2159 ExpressionAnalyzer::AdjustActuals noAdjustment; 2160 auto pair{ResolveGeneric( 2161 *symbol, arguments, noAdjustment, mightBeStructureConstructor)}; 2162 symbol = pair.first; 2163 dueToNullActual = pair.second; 2164 } 2165 if (symbol) { 2166 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2167 if (mightBeStructureConstructor) { 2168 return CalleeAndArguments{ 2169 semantics::SymbolRef{*symbol}, std::move(arguments)}; 2170 } 2171 } else if (IsProcedure(*symbol)) { 2172 return CalleeAndArguments{ 2173 ProcedureDesignator{*symbol}, std::move(arguments)}; 2174 } 2175 if (!context_.HasError(*symbol)) { 2176 AttachDeclaration( 2177 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2178 name.source), 2179 *symbol); 2180 } 2181 } else if (std::optional<SpecificCall> specificCall{ 2182 context_.intrinsics().Probe( 2183 CallCharacteristics{ 2184 ultimate.name().ToString(), isSubroutine}, 2185 arguments, GetFoldingContext())}) { 2186 // Generics can extend intrinsics 2187 return CalleeAndArguments{ 2188 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2189 std::move(specificCall->arguments)}; 2190 } else { 2191 EmitGenericResolutionError(*name.symbol, dueToNullActual); 2192 } 2193 } 2194 return std::nullopt; 2195 } 2196 2197 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2198 // generic intrinsic function "has no effect" on the result type of a 2199 // call to that intrinsic. So one can declare "character*8 cos" and 2200 // still get a real result from "cos(1.)". This is a dangerous feature, 2201 // especially since implementations are free to extend their sets of 2202 // intrinsics, and in doing so might clash with a name in a program. 2203 // So we emit a warning in this situation, and perhaps it should be an 2204 // error -- any correctly working program can silence the message by 2205 // simply deleting the pointless type declaration. 2206 void ExpressionAnalyzer::CheckBadExplicitType( 2207 const SpecificCall &call, const Symbol &intrinsic) { 2208 if (intrinsic.GetUltimate().GetType()) { 2209 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2210 if (const auto &result{procedure.functionResult}) { 2211 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2212 if (auto declared{ 2213 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2214 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2215 if (auto *msg{Say( 2216 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US, 2217 typeAndShape->AsFortran(), intrinsic.name(), 2218 declared->AsFortran())}) { 2219 msg->Attach(intrinsic.name(), 2220 "Ignored declaration of intrinsic function '%s'"_en_US, 2221 intrinsic.name()); 2222 } 2223 } 2224 } 2225 } 2226 } 2227 } 2228 } 2229 2230 void ExpressionAnalyzer::CheckForBadRecursion( 2231 parser::CharBlock callSite, const semantics::Symbol &proc) { 2232 if (const auto *scope{proc.scope()}) { 2233 if (scope->sourceRange().Contains(callSite)) { 2234 parser::Message *msg{nullptr}; 2235 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2236 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2237 callSite); 2238 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2239 msg = Say( // 15.6.2.1(3) 2240 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2241 callSite); 2242 } 2243 AttachDeclaration(msg, proc); 2244 } 2245 } 2246 } 2247 2248 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2249 if (const auto *designator{ 2250 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2251 if (const auto *dataRef{ 2252 std::get_if<parser::DataRef>(&designator->value().u)}) { 2253 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2254 return AssumedTypeDummy(*name); 2255 } 2256 } 2257 } 2258 return nullptr; 2259 } 2260 template <> 2261 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2262 if (const Symbol * symbol{name.symbol}) { 2263 if (const auto *type{symbol->GetType()}) { 2264 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2265 return symbol; 2266 } 2267 } 2268 } 2269 return nullptr; 2270 } 2271 template <typename A> 2272 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2273 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2274 // point it is is not guaranteed that it has been checked the object has 2275 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2276 // returned. 2277 return std::visit( 2278 common::visitors{ 2279 [&](const parser::StructureComponent &x) { 2280 return AssumedTypeDummy(x.component); 2281 }, 2282 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2283 }, 2284 object.u); 2285 } 2286 template <> 2287 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2288 const parser::AllocateObject &x) { 2289 return AssumedTypePointerOrAllocatableDummy(x); 2290 } 2291 template <> 2292 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2293 const parser::PointerObject &x) { 2294 return AssumedTypePointerOrAllocatableDummy(x); 2295 } 2296 2297 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2298 const semantics::DerivedTypeSpec &dtSpec) { 2299 if (dtSpec.IsForwardReferenced()) { 2300 Say("Cannot construct value for derived type '%s' " 2301 "before it is defined"_err_en_US, 2302 dtSpec.name()); 2303 return false; 2304 } 2305 return true; 2306 } 2307 2308 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2309 std::optional<parser::StructureConstructor> *structureConstructor) { 2310 const parser::Call &call{funcRef.v}; 2311 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2312 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2313 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2314 analyzer.Analyze(arg, false /* not subroutine call */); 2315 } 2316 if (analyzer.fatalErrors()) { 2317 return std::nullopt; 2318 } 2319 if (std::optional<CalleeAndArguments> callee{ 2320 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2321 analyzer.GetActuals(), false /* not subroutine */, 2322 true /* might be structure constructor */)}) { 2323 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2324 return MakeFunctionRef( 2325 call.source, std::move(*proc), std::move(callee->arguments)); 2326 } 2327 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2328 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2329 if (structureConstructor) { 2330 // Structure constructor misparsed as function reference? 2331 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2332 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2333 semantics::Scope &scope{context_.FindScope(name->source)}; 2334 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2335 if (!CheckIsValidForwardReference(dtSpec)) { 2336 return std::nullopt; 2337 } 2338 const semantics::DeclTypeSpec &type{ 2339 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2340 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2341 *structureConstructor = 2342 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2343 return Analyze(structureConstructor->value()); 2344 } 2345 } 2346 if (!context_.HasError(symbol)) { 2347 AttachDeclaration( 2348 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2349 symbol.name()), 2350 symbol); 2351 context_.SetError(symbol); 2352 } 2353 } 2354 return std::nullopt; 2355 } 2356 2357 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2358 for (const auto &arg : args) { 2359 if (arg && arg->isAlternateReturn()) { 2360 return true; 2361 } 2362 } 2363 return false; 2364 } 2365 2366 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2367 const parser::Call &call{callStmt.v}; 2368 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2369 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2370 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2371 for (const auto &arg : actualArgList) { 2372 analyzer.Analyze(arg, true /* is subroutine call */); 2373 } 2374 if (!analyzer.fatalErrors()) { 2375 if (std::optional<CalleeAndArguments> callee{ 2376 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2377 analyzer.GetActuals(), true /* subroutine */)}) { 2378 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2379 CHECK(proc); 2380 if (CheckCall(call.source, *proc, callee->arguments)) { 2381 bool hasAlternateReturns{HasAlternateReturns(callee->arguments)}; 2382 callStmt.typedCall.Reset( 2383 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2384 hasAlternateReturns}, 2385 ProcedureRef::Deleter); 2386 } 2387 } 2388 } 2389 } 2390 2391 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2392 if (!x.typedAssignment) { 2393 ArgumentAnalyzer analyzer{*this}; 2394 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2395 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2396 std::optional<Assignment> assignment; 2397 if (!analyzer.fatalErrors()) { 2398 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2399 if (!procRef) { 2400 analyzer.CheckForNullPointer( 2401 "in a non-pointer intrinsic assignment statement"); 2402 } 2403 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2404 if (procRef) { 2405 assignment->u = std::move(*procRef); 2406 } 2407 } 2408 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2409 GenericAssignmentWrapper::Deleter); 2410 } 2411 return common::GetPtrFromOptional(x.typedAssignment->v); 2412 } 2413 2414 const Assignment *ExpressionAnalyzer::Analyze( 2415 const parser::PointerAssignmentStmt &x) { 2416 if (!x.typedAssignment) { 2417 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2418 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2419 if (!lhs || !rhs) { 2420 x.typedAssignment.Reset( 2421 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2422 } else { 2423 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2424 std::visit(common::visitors{ 2425 [&](const std::list<parser::BoundsRemapping> &list) { 2426 Assignment::BoundsRemapping bounds; 2427 for (const auto &elem : list) { 2428 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2429 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2430 if (lower && upper) { 2431 bounds.emplace_back(Fold(std::move(*lower)), 2432 Fold(std::move(*upper))); 2433 } 2434 } 2435 assignment.u = std::move(bounds); 2436 }, 2437 [&](const std::list<parser::BoundsSpec> &list) { 2438 Assignment::BoundsSpec bounds; 2439 for (const auto &bound : list) { 2440 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2441 bounds.emplace_back(Fold(std::move(*lower))); 2442 } 2443 } 2444 assignment.u = std::move(bounds); 2445 }, 2446 }, 2447 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2448 x.typedAssignment.Reset( 2449 new GenericAssignmentWrapper{std::move(assignment)}, 2450 GenericAssignmentWrapper::Deleter); 2451 } 2452 } 2453 return common::GetPtrFromOptional(x.typedAssignment->v); 2454 } 2455 2456 static bool IsExternalCalledImplicitly( 2457 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2458 if (const auto *symbol{proc.GetSymbol()}) { 2459 return symbol->has<semantics::SubprogramDetails>() && 2460 symbol->owner().IsGlobal() && 2461 (!symbol->scope() /*ENTRY*/ || 2462 !symbol->scope()->sourceRange().Contains(callSite)); 2463 } else { 2464 return false; 2465 } 2466 } 2467 2468 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2469 parser::CharBlock callSite, const ProcedureDesignator &proc, 2470 ActualArguments &arguments) { 2471 auto chars{characteristics::Procedure::Characterize( 2472 proc, context_.foldingContext())}; 2473 if (chars) { 2474 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2475 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2476 Say(callSite, 2477 "References to the procedure '%s' require an explicit interface"_en_US, 2478 DEREF(proc.GetSymbol()).name()); 2479 } 2480 // Checks for ASSOCIATED() are done in intrinsic table processing 2481 bool procIsAssociated{false}; 2482 if (const SpecificIntrinsic * 2483 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2484 if (specificIntrinsic->name == "associated") { 2485 procIsAssociated = true; 2486 } 2487 } 2488 if (!procIsAssociated) { 2489 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2490 context_.FindScope(callSite), treatExternalAsImplicit, 2491 proc.GetSpecificIntrinsic()); 2492 const Symbol *procSymbol{proc.GetSymbol()}; 2493 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2494 if (const semantics::Scope * 2495 pure{semantics::FindPureProcedureContaining( 2496 context_.FindScope(callSite))}) { 2497 Say(callSite, 2498 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2499 procSymbol->name(), DEREF(pure->symbol()).name()); 2500 } 2501 } 2502 } 2503 } 2504 return chars; 2505 } 2506 2507 // Unary operations 2508 2509 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2510 if (MaybeExpr operand{Analyze(x.v.value())}) { 2511 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2512 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2513 if (semantics::IsProcedurePointer(*result)) { 2514 Say("A function reference that returns a procedure " 2515 "pointer may not be parenthesized"_err_en_US); // C1003 2516 } 2517 } 2518 } 2519 return Parenthesize(std::move(*operand)); 2520 } 2521 return std::nullopt; 2522 } 2523 2524 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2525 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2526 ArgumentAnalyzer analyzer{context}; 2527 analyzer.Analyze(x.v); 2528 if (!analyzer.fatalErrors()) { 2529 if (analyzer.IsIntrinsicNumeric(opr)) { 2530 analyzer.CheckForNullPointer(); 2531 if (opr == NumericOperator::Add) { 2532 return analyzer.MoveExpr(0); 2533 } else { 2534 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2535 } 2536 } else { 2537 return analyzer.TryDefinedOp(AsFortran(opr), 2538 "Operand of unary %s must be numeric; have %s"_err_en_US); 2539 } 2540 } 2541 return std::nullopt; 2542 } 2543 2544 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2545 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2546 } 2547 2548 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2549 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2550 } 2551 2552 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2553 ArgumentAnalyzer analyzer{*this}; 2554 analyzer.Analyze(x.v); 2555 if (!analyzer.fatalErrors()) { 2556 if (analyzer.IsIntrinsicLogical()) { 2557 analyzer.CheckForNullPointer(); 2558 return AsGenericExpr( 2559 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2560 } else { 2561 return analyzer.TryDefinedOp(LogicalOperator::Not, 2562 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2563 } 2564 } 2565 return std::nullopt; 2566 } 2567 2568 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2569 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2570 // intrinsic function. 2571 // Use the actual source for the name of the call for error reporting. 2572 std::optional<ActualArgument> arg; 2573 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2574 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2575 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2576 arg = ActualArgument{std::move(*argExpr)}; 2577 } else { 2578 return std::nullopt; 2579 } 2580 parser::CharBlock at{GetContextualMessages().at()}; 2581 CHECK(at.size() >= 4); 2582 parser::CharBlock loc{at.begin() + 1, 3}; 2583 CHECK(loc == "loc"); 2584 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2585 } 2586 2587 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2588 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2589 ArgumentAnalyzer analyzer{*this, name.source}; 2590 analyzer.Analyze(std::get<1>(x.t)); 2591 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2592 "No operator %s defined for %s"_err_en_US, nullptr, true); 2593 } 2594 2595 // Binary (dyadic) operations 2596 2597 template <template <typename> class OPR> 2598 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2599 const parser::Expr::IntrinsicBinary &x) { 2600 ArgumentAnalyzer analyzer{context}; 2601 analyzer.Analyze(std::get<0>(x.t)); 2602 analyzer.Analyze(std::get<1>(x.t)); 2603 if (!analyzer.fatalErrors()) { 2604 if (analyzer.IsIntrinsicNumeric(opr)) { 2605 analyzer.CheckForNullPointer(); 2606 analyzer.CheckConformance(); 2607 return NumericOperation<OPR>(context.GetContextualMessages(), 2608 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2609 context.GetDefaultKind(TypeCategory::Real)); 2610 } else { 2611 return analyzer.TryDefinedOp(AsFortran(opr), 2612 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2613 } 2614 } 2615 return std::nullopt; 2616 } 2617 2618 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2619 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2620 } 2621 2622 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2623 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2624 } 2625 2626 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2627 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2628 } 2629 2630 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2631 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2632 } 2633 2634 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2635 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2636 } 2637 2638 MaybeExpr ExpressionAnalyzer::Analyze( 2639 const parser::Expr::ComplexConstructor &x) { 2640 auto re{Analyze(std::get<0>(x.t).value())}; 2641 auto im{Analyze(std::get<1>(x.t).value())}; 2642 if (re && im) { 2643 ConformabilityCheck(GetContextualMessages(), *re, *im); 2644 } 2645 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2646 std::move(im), GetDefaultKind(TypeCategory::Real))); 2647 } 2648 2649 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2650 ArgumentAnalyzer analyzer{*this}; 2651 analyzer.Analyze(std::get<0>(x.t)); 2652 analyzer.Analyze(std::get<1>(x.t)); 2653 if (!analyzer.fatalErrors()) { 2654 if (analyzer.IsIntrinsicConcat()) { 2655 analyzer.CheckForNullPointer(); 2656 return std::visit( 2657 [&](auto &&x, auto &&y) -> MaybeExpr { 2658 using T = ResultType<decltype(x)>; 2659 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2660 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2661 } else { 2662 DIE("different types for intrinsic concat"); 2663 } 2664 }, 2665 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2666 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2667 } else { 2668 return analyzer.TryDefinedOp("//", 2669 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2670 } 2671 } 2672 return std::nullopt; 2673 } 2674 2675 // The Name represents a user-defined intrinsic operator. 2676 // If the actuals match one of the specific procedures, return a function ref. 2677 // Otherwise report the error in messages. 2678 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2679 const parser::Name &name, ActualArguments &&actuals) { 2680 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2681 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2682 return MakeFunctionRef(name.source, 2683 std::move(std::get<ProcedureDesignator>(callee->u)), 2684 std::move(callee->arguments)); 2685 } else { 2686 return std::nullopt; 2687 } 2688 } 2689 2690 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2691 const parser::Expr::IntrinsicBinary &x) { 2692 ArgumentAnalyzer analyzer{context}; 2693 analyzer.Analyze(std::get<0>(x.t)); 2694 analyzer.Analyze(std::get<1>(x.t)); 2695 if (!analyzer.fatalErrors()) { 2696 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2697 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2698 analyzer.ConvertBOZ(leftType, 0, rightType); 2699 analyzer.ConvertBOZ(rightType, 1, leftType); 2700 if (leftType && rightType && 2701 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2702 analyzer.CheckForNullPointer("as a relational operand"); 2703 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2704 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2705 } else { 2706 return analyzer.TryDefinedOp(opr, 2707 leftType && leftType->category() == TypeCategory::Logical && 2708 rightType && rightType->category() == TypeCategory::Logical 2709 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2710 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2711 } 2712 } 2713 return std::nullopt; 2714 } 2715 2716 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2717 return RelationHelper(*this, RelationalOperator::LT, x); 2718 } 2719 2720 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2721 return RelationHelper(*this, RelationalOperator::LE, x); 2722 } 2723 2724 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2725 return RelationHelper(*this, RelationalOperator::EQ, x); 2726 } 2727 2728 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2729 return RelationHelper(*this, RelationalOperator::NE, x); 2730 } 2731 2732 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2733 return RelationHelper(*this, RelationalOperator::GE, x); 2734 } 2735 2736 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2737 return RelationHelper(*this, RelationalOperator::GT, x); 2738 } 2739 2740 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2741 const parser::Expr::IntrinsicBinary &x) { 2742 ArgumentAnalyzer analyzer{context}; 2743 analyzer.Analyze(std::get<0>(x.t)); 2744 analyzer.Analyze(std::get<1>(x.t)); 2745 if (!analyzer.fatalErrors()) { 2746 if (analyzer.IsIntrinsicLogical()) { 2747 analyzer.CheckForNullPointer("as a logical operand"); 2748 return AsGenericExpr(BinaryLogicalOperation(opr, 2749 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2750 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2751 } else { 2752 return analyzer.TryDefinedOp( 2753 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2754 } 2755 } 2756 return std::nullopt; 2757 } 2758 2759 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2760 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2761 } 2762 2763 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2764 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2765 } 2766 2767 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2768 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2769 } 2770 2771 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2772 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2773 } 2774 2775 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2776 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2777 ArgumentAnalyzer analyzer{*this, name.source}; 2778 analyzer.Analyze(std::get<1>(x.t)); 2779 analyzer.Analyze(std::get<2>(x.t)); 2780 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2781 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2782 } 2783 2784 // Returns true if a parsed function reference should be converted 2785 // into an array element reference. 2786 static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context, 2787 const parser::FunctionReference &funcRef) { 2788 // Emit message if the function reference fix will end up an array element 2789 // reference with no subscripts, or subscripts on a scalar, because it will 2790 // not be possible to later distinguish in expressions between an empty 2791 // subscript list due to bad subscripts error recovery or because the 2792 // user did not put any. 2793 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2794 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2795 if (!name) { 2796 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2797 } 2798 if (!name->symbol) { 2799 return false; 2800 } else if (name->symbol->Rank() == 0) { 2801 if (const Symbol * 2802 function{ 2803 semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) { 2804 auto &msg{context.Say(funcRef.v.source, 2805 "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US, 2806 name->source)}; 2807 AttachDeclaration(&msg, *function); 2808 name->symbol = const_cast<Symbol *>(function); 2809 } 2810 return false; 2811 } else { 2812 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2813 auto &msg{context.Say(funcRef.v.source, 2814 "Reference to array '%s' with empty subscript list"_err_en_US, 2815 name->source)}; 2816 if (name->symbol) { 2817 AttachDeclaration(&msg, *name->symbol); 2818 } 2819 } 2820 return true; 2821 } 2822 } 2823 2824 // Converts, if appropriate, an original misparse of ambiguous syntax like 2825 // A(1) as a function reference into an array reference. 2826 // Misparsed structure constructors are detected elsewhere after generic 2827 // function call resolution fails. 2828 template <typename... A> 2829 static void FixMisparsedFunctionReference( 2830 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2831 // The parse tree is updated in situ when resolving an ambiguous parse. 2832 using uType = std::decay_t<decltype(constU)>; 2833 auto &u{const_cast<uType &>(constU)}; 2834 if (auto *func{ 2835 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2836 parser::FunctionReference &funcRef{func->value()}; 2837 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2838 if (Symbol * 2839 origSymbol{ 2840 std::visit(common::visitors{ 2841 [&](parser::Name &name) { return name.symbol; }, 2842 [&](parser::ProcComponentRef &pcr) { 2843 return pcr.v.thing.component.symbol; 2844 }, 2845 }, 2846 proc.u)}) { 2847 Symbol &symbol{origSymbol->GetUltimate()}; 2848 if (symbol.has<semantics::ObjectEntityDetails>() || 2849 symbol.has<semantics::AssocEntityDetails>()) { 2850 // Note that expression in AssocEntityDetails cannot be a procedure 2851 // pointer as per C1105 so this cannot be a function reference. 2852 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2853 uType>) { 2854 if (CheckFuncRefToArrayElement(context, funcRef)) { 2855 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2856 } 2857 } else { 2858 DIE("can't fix misparsed function as array reference"); 2859 } 2860 } 2861 } 2862 } 2863 } 2864 2865 // Common handling of parse tree node types that retain the 2866 // representation of the analyzed expression. 2867 template <typename PARSED> 2868 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2869 const PARSED &x, parser::CharBlock source) { 2870 if (useSavedTypedExprs_ && x.typedExpr) { 2871 return x.typedExpr->v; 2872 } 2873 auto restorer{GetContextualMessages().SetLocation(source)}; 2874 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2875 std::is_same_v<PARSED, parser::Variable>) { 2876 FixMisparsedFunctionReference(context_, x.u); 2877 } 2878 if (AssumedTypeDummy(x)) { // C710 2879 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2880 ResetExpr(x); 2881 return std::nullopt; 2882 } 2883 MaybeExpr result; 2884 if constexpr (common::HasMember<parser::StructureConstructor, 2885 std::decay_t<decltype(x.u)>> && 2886 common::HasMember<common::Indirection<parser::FunctionReference>, 2887 std::decay_t<decltype(x.u)>>) { 2888 if (const auto *funcRef{ 2889 std::get_if<common::Indirection<parser::FunctionReference>>( 2890 &x.u)}) { 2891 // Function references in Exprs might turn out to be misparsed structure 2892 // constructors; we have to try generic procedure resolution 2893 // first to be sure. 2894 std::optional<parser::StructureConstructor> ctor; 2895 result = Analyze(funcRef->value(), &ctor); 2896 if (result && ctor) { 2897 // A misparsed function reference is really a structure 2898 // constructor. Repair the parse tree in situ. 2899 const_cast<PARSED &>(x).u = std::move(*ctor); 2900 } 2901 } else { 2902 result = Analyze(x.u); 2903 } 2904 } else { 2905 result = Analyze(x.u); 2906 } 2907 if (result) { 2908 SetExpr(x, Fold(std::move(*result))); 2909 return x.typedExpr->v; 2910 } else { 2911 ResetExpr(x); 2912 if (!context_.AnyFatalError()) { 2913 std::string buf; 2914 llvm::raw_string_ostream dump{buf}; 2915 parser::DumpTree(dump, x); 2916 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2917 dump.str()); 2918 } 2919 return std::nullopt; 2920 } 2921 } 2922 2923 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2924 return ExprOrVariable(expr, expr.source); 2925 } 2926 2927 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2928 return ExprOrVariable(variable, variable.GetSource()); 2929 } 2930 2931 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 2932 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 2933 if (!useSavedTypedExprs_ || !var->typedExpr) { 2934 parser::CharBlock source{var->GetSource()}; 2935 auto restorer{GetContextualMessages().SetLocation(source)}; 2936 FixMisparsedFunctionReference(context_, var->u); 2937 if (const auto *funcRef{ 2938 std::get_if<common::Indirection<parser::FunctionReference>>( 2939 &var->u)}) { 2940 // A Selector that parsed as a Variable might turn out during analysis 2941 // to actually be a structure constructor. In that case, repair the 2942 // Variable parse tree node into an Expr 2943 std::optional<parser::StructureConstructor> ctor; 2944 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 2945 if (ctor) { 2946 auto &writable{const_cast<parser::Selector &>(selector)}; 2947 writable.u = parser::Expr{std::move(*ctor)}; 2948 auto &expr{std::get<parser::Expr>(writable.u)}; 2949 expr.source = source; 2950 SetExpr(expr, Fold(std::move(*result))); 2951 return expr.typedExpr->v; 2952 } else { 2953 SetExpr(*var, Fold(std::move(*result))); 2954 return var->typedExpr->v; 2955 } 2956 } else { 2957 ResetExpr(*var); 2958 if (context_.AnyFatalError()) { 2959 return std::nullopt; 2960 } 2961 } 2962 } 2963 } 2964 } 2965 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 2966 return Analyze(selector.u); 2967 } 2968 2969 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2970 auto restorer{common::ScopedSet(inDataStmtConstant_, true)}; 2971 return ExprOrVariable(x, x.source); 2972 } 2973 2974 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 2975 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2976 } 2977 2978 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 2979 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2980 } 2981 2982 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2983 TypeCategory category, 2984 const std::optional<parser::KindSelector> &selector) { 2985 int defaultKind{GetDefaultKind(category)}; 2986 if (!selector) { 2987 return Expr<SubscriptInteger>{defaultKind}; 2988 } 2989 return std::visit( 2990 common::visitors{ 2991 [&](const parser::ScalarIntConstantExpr &x) { 2992 if (MaybeExpr kind{Analyze(x)}) { 2993 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 2994 if (CheckIntrinsicKind(category, *code)) { 2995 return Expr<SubscriptInteger>{*code}; 2996 } 2997 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 2998 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2999 } 3000 } 3001 return Expr<SubscriptInteger>{defaultKind}; 3002 }, 3003 [&](const parser::KindSelector::StarSize &x) { 3004 std::intmax_t size = x.v; 3005 if (!CheckIntrinsicSize(category, size)) { 3006 size = defaultKind; 3007 } else if (category == TypeCategory::Complex) { 3008 size /= 2; 3009 } 3010 return Expr<SubscriptInteger>{size}; 3011 }, 3012 }, 3013 selector->u); 3014 } 3015 3016 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 3017 return context_.GetDefaultKind(category); 3018 } 3019 3020 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 3021 common::TypeCategory category) { 3022 return {category, GetDefaultKind(category)}; 3023 } 3024 3025 bool ExpressionAnalyzer::CheckIntrinsicKind( 3026 TypeCategory category, std::int64_t kind) { 3027 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 3028 return true; 3029 } else { 3030 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3031 ToUpperCase(EnumToString(category)), kind); 3032 return false; 3033 } 3034 } 3035 3036 bool ExpressionAnalyzer::CheckIntrinsicSize( 3037 TypeCategory category, std::int64_t size) { 3038 if (category == TypeCategory::Complex) { 3039 // COMPLEX*16 == COMPLEX(KIND=8) 3040 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 3041 return true; 3042 } 3043 } else if (IsValidKindOfIntrinsicType(category, size)) { 3044 return true; 3045 } 3046 Say("%s*%jd is not a supported type"_err_en_US, 3047 ToUpperCase(EnumToString(category)), size); 3048 return false; 3049 } 3050 3051 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3052 return impliedDos_.insert(std::make_pair(name, kind)).second; 3053 } 3054 3055 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3056 auto iter{impliedDos_.find(name)}; 3057 if (iter != impliedDos_.end()) { 3058 impliedDos_.erase(iter); 3059 } 3060 } 3061 3062 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3063 parser::CharBlock name) const { 3064 auto iter{impliedDos_.find(name)}; 3065 if (iter != impliedDos_.cend()) { 3066 return {iter->second}; 3067 } else { 3068 return std::nullopt; 3069 } 3070 } 3071 3072 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3073 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3074 if (result) { 3075 if (auto type{result->GetType()}) { 3076 if (type->category() != category) { // C885 3077 Say(at, "Must have %s type, but is %s"_err_en_US, 3078 ToUpperCase(EnumToString(category)), 3079 ToUpperCase(type->AsFortran())); 3080 return false; 3081 } else if (defaultKind) { 3082 int kind{context_.GetDefaultKind(category)}; 3083 if (type->kind() != kind) { 3084 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3085 kind, ToUpperCase(EnumToString(category)), 3086 ToUpperCase(type->AsFortran())); 3087 return false; 3088 } 3089 } 3090 } else { 3091 Say(at, "Must have %s type, but is typeless"_err_en_US, 3092 ToUpperCase(EnumToString(category))); 3093 return false; 3094 } 3095 } 3096 return true; 3097 } 3098 3099 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3100 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3101 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3102 if (intrinsic->name == "null" && arguments.empty()) { 3103 return Expr<SomeType>{NullPointer{}}; 3104 } 3105 } 3106 if (const Symbol * symbol{proc.GetSymbol()}) { 3107 if (!ResolveForward(*symbol)) { 3108 return std::nullopt; 3109 } 3110 } 3111 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3112 if (chars->functionResult) { 3113 const auto &result{*chars->functionResult}; 3114 if (result.IsProcedurePointer()) { 3115 return Expr<SomeType>{ 3116 ProcedureRef{std::move(proc), std::move(arguments)}}; 3117 } else { 3118 // Not a procedure pointer, so type and shape are known. 3119 return TypedWrapper<FunctionRef, ProcedureRef>( 3120 DEREF(result.GetTypeAndShape()).type(), 3121 ProcedureRef{std::move(proc), std::move(arguments)}); 3122 } 3123 } else { 3124 Say("Function result characteristics are not known"_err_en_US); 3125 } 3126 } 3127 return std::nullopt; 3128 } 3129 3130 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3131 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3132 if (std::optional<SpecificCall> specificCall{ 3133 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3134 arguments, GetFoldingContext())}) { 3135 return MakeFunctionRef(intrinsic, 3136 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3137 std::move(specificCall->arguments)); 3138 } else { 3139 return std::nullopt; 3140 } 3141 } 3142 3143 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3144 source_.ExtendToCover(x.GetSource()); 3145 if (MaybeExpr expr{context_.Analyze(x)}) { 3146 if (!IsConstantExpr(*expr)) { 3147 actuals_.emplace_back(std::move(*expr)); 3148 return; 3149 } 3150 const Symbol *symbol{GetLastSymbol(*expr)}; 3151 if (!symbol) { 3152 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3153 x.GetSource()); 3154 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3155 auto *msg{context_.SayAt(x, 3156 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3157 symbol->name())}; 3158 if (subp->isFunction()) { 3159 const auto &result{subp->result().name()}; 3160 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 3161 } 3162 } else { 3163 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3164 symbol->name()); 3165 } 3166 } 3167 fatalErrors_ = true; 3168 } 3169 3170 void ArgumentAnalyzer::Analyze( 3171 const parser::ActualArgSpec &arg, bool isSubroutine) { 3172 // TODO: Actual arguments that are procedures and procedure pointers need to 3173 // be detected and represented (they're not expressions). 3174 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3175 std::optional<ActualArgument> actual; 3176 std::visit(common::visitors{ 3177 [&](const common::Indirection<parser::Expr> &x) { 3178 actual = AnalyzeExpr(x.value()); 3179 }, 3180 [&](const parser::AltReturnSpec &label) { 3181 if (!isSubroutine) { 3182 context_.Say( 3183 "alternate return specification may not appear on" 3184 " function reference"_err_en_US); 3185 } 3186 actual = ActualArgument(label.v); 3187 }, 3188 [&](const parser::ActualArg::PercentRef &) { 3189 context_.Say("TODO: %REF() argument"_err_en_US); 3190 }, 3191 [&](const parser::ActualArg::PercentVal &) { 3192 context_.Say("TODO: %VAL() argument"_err_en_US); 3193 }, 3194 }, 3195 std::get<parser::ActualArg>(arg.t).u); 3196 if (actual) { 3197 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3198 actual->set_keyword(argKW->v.source); 3199 } 3200 actuals_.emplace_back(std::move(*actual)); 3201 } else { 3202 fatalErrors_ = true; 3203 } 3204 } 3205 3206 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3207 const DynamicType &leftType, const DynamicType &rightType) const { 3208 CHECK(actuals_.size() == 2); 3209 return semantics::IsIntrinsicRelational( 3210 opr, leftType, GetRank(0), rightType, GetRank(1)); 3211 } 3212 3213 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3214 std::optional<DynamicType> leftType{GetType(0)}; 3215 if (actuals_.size() == 1) { 3216 if (IsBOZLiteral(0)) { 3217 return opr == NumericOperator::Add; // unary '+' 3218 } else { 3219 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3220 } 3221 } else { 3222 std::optional<DynamicType> rightType{GetType(1)}; 3223 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3224 auto cat1{rightType->category()}; 3225 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3226 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3227 auto cat0{leftType->category()}; 3228 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3229 } else { 3230 return leftType && rightType && 3231 semantics::IsIntrinsicNumeric( 3232 *leftType, GetRank(0), *rightType, GetRank(1)); 3233 } 3234 } 3235 } 3236 3237 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3238 if (std::optional<DynamicType> leftType{GetType(0)}) { 3239 if (actuals_.size() == 1) { 3240 return semantics::IsIntrinsicLogical(*leftType); 3241 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3242 return semantics::IsIntrinsicLogical( 3243 *leftType, GetRank(0), *rightType, GetRank(1)); 3244 } 3245 } 3246 return false; 3247 } 3248 3249 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3250 if (std::optional<DynamicType> leftType{GetType(0)}) { 3251 if (std::optional<DynamicType> rightType{GetType(1)}) { 3252 return semantics::IsIntrinsicConcat( 3253 *leftType, GetRank(0), *rightType, GetRank(1)); 3254 } 3255 } 3256 return false; 3257 } 3258 3259 bool ArgumentAnalyzer::CheckConformance() { 3260 if (actuals_.size() == 2) { 3261 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3262 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3263 if (lhs && rhs) { 3264 auto &foldingContext{context_.GetFoldingContext()}; 3265 auto lhShape{GetShape(foldingContext, *lhs)}; 3266 auto rhShape{GetShape(foldingContext, *rhs)}; 3267 if (lhShape && rhShape) { 3268 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3269 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3270 "left operand", "right operand") 3271 .value_or(false /*fail when conformance is not known now*/)) { 3272 fatalErrors_ = true; 3273 return false; 3274 } 3275 } 3276 } 3277 } 3278 return true; // no proven problem 3279 } 3280 3281 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3282 for (const std::optional<ActualArgument> &arg : actuals_) { 3283 if (arg) { 3284 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3285 if (IsNullPointer(*expr)) { 3286 context_.Say( 3287 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3288 fatalErrors_ = true; 3289 return false; 3290 } 3291 } 3292 } 3293 } 3294 return true; 3295 } 3296 3297 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3298 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3299 bool isUserOp) { 3300 if (AnyUntypedOrMissingOperand()) { 3301 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3302 return std::nullopt; 3303 } 3304 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3305 if (!definedOpSymbolPtr) { 3306 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3307 } 3308 { 3309 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3310 std::string oprNameString{ 3311 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3312 parser::CharBlock oprName{oprNameString}; 3313 const auto &scope{context_.context().FindScope(source_)}; 3314 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3315 *definedOpSymbolPtr = symbol; 3316 parser::Name name{symbol->name(), symbol}; 3317 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3318 return result; 3319 } 3320 } 3321 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3322 if (const Symbol * 3323 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3324 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3325 return result; 3326 } 3327 } 3328 } 3329 } 3330 if (*definedOpSymbolPtr) { 3331 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3332 } else if (actuals_.size() == 1 || AreConformable()) { 3333 if (CheckForNullPointer()) { 3334 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3335 } 3336 } else { 3337 context_.Say( 3338 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3339 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3340 } 3341 return std::nullopt; 3342 } 3343 3344 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3345 std::vector<const char *> oprs, parser::MessageFixedText error) { 3346 const Symbol *definedOpSymbolPtr{nullptr}; 3347 for (std::size_t i{1}; i < oprs.size(); ++i) { 3348 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3349 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3350 return result; 3351 } 3352 } 3353 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3354 } 3355 3356 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3357 ActualArguments localActuals{actuals_}; 3358 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3359 if (!proc) { 3360 proc = &symbol; 3361 localActuals.at(passIndex).value().set_isPassedObject(); 3362 } 3363 CheckConformance(); 3364 return context_.MakeFunctionRef( 3365 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3366 } 3367 3368 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3369 using semantics::Tristate; 3370 const Expr<SomeType> &lhs{GetExpr(0)}; 3371 const Expr<SomeType> &rhs{GetExpr(1)}; 3372 std::optional<DynamicType> lhsType{lhs.GetType()}; 3373 std::optional<DynamicType> rhsType{rhs.GetType()}; 3374 int lhsRank{lhs.Rank()}; 3375 int rhsRank{rhs.Rank()}; 3376 Tristate isDefined{ 3377 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3378 if (isDefined == Tristate::No) { 3379 if (lhsType && rhsType) { 3380 AddAssignmentConversion(*lhsType, *rhsType); 3381 } 3382 return std::nullopt; // user-defined assignment not allowed for these args 3383 } 3384 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3385 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3386 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3387 context_.Say( 3388 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3389 DEREF(procRef->proc().GetSymbol()).name()); 3390 } 3391 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3392 return std::move(*procRef); 3393 } 3394 if (isDefined == Tristate::Yes) { 3395 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3396 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3397 SayNoMatch("ASSIGNMENT(=)", true); 3398 } 3399 } 3400 return std::nullopt; 3401 } 3402 3403 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3404 TypeCategory lhs, TypeCategory rhs) { 3405 if (!context_.context().languageFeatures().IsEnabled( 3406 common::LanguageFeature::LogicalIntegerAssignment)) { 3407 return false; 3408 } 3409 std::optional<parser::MessageFixedText> msg; 3410 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3411 // allow assignment to LOGICAL from INTEGER as a legacy extension 3412 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 3413 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3414 // ... and assignment to LOGICAL from INTEGER 3415 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 3416 } else { 3417 return false; 3418 } 3419 if (context_.context().languageFeatures().ShouldWarn( 3420 common::LanguageFeature::LogicalIntegerAssignment)) { 3421 context_.Say(std::move(*msg)); 3422 } 3423 return true; 3424 } 3425 3426 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3427 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3428 std::string oprNameString{"assignment(=)"}; 3429 parser::CharBlock oprName{oprNameString}; 3430 const Symbol *proc{nullptr}; 3431 const auto &scope{context_.context().FindScope(source_)}; 3432 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3433 ExpressionAnalyzer::AdjustActuals noAdjustment; 3434 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}; 3435 if (pair.first) { 3436 proc = pair.first; 3437 } else { 3438 context_.EmitGenericResolutionError(*symbol, pair.second); 3439 } 3440 } 3441 int passedObjectIndex{-1}; 3442 const Symbol *definedOpSymbol{nullptr}; 3443 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3444 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3445 if (const Symbol * 3446 resolution{GetBindingResolution(GetType(i), *specific)}) { 3447 proc = resolution; 3448 } else { 3449 proc = specific; 3450 passedObjectIndex = i; 3451 } 3452 } 3453 } 3454 if (!proc) { 3455 return std::nullopt; 3456 } 3457 ActualArguments actualsCopy{actuals_}; 3458 if (passedObjectIndex >= 0) { 3459 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3460 } 3461 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3462 } 3463 3464 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3465 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3466 << '\n'; 3467 for (const auto &actual : actuals_) { 3468 if (!actual.has_value()) { 3469 os << "- error\n"; 3470 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3471 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3472 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3473 expr->AsFortran(os << "- expr: ") << '\n'; 3474 } else { 3475 DIE("bad ActualArgument"); 3476 } 3477 } 3478 } 3479 3480 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3481 const parser::Expr &expr) { 3482 source_.ExtendToCover(expr.source); 3483 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3484 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3485 if (isProcedureCall_) { 3486 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 3487 } 3488 context_.SayAt(expr.source, 3489 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3490 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3491 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3492 return ActualArgument{std::move(*argExpr)}; 3493 } 3494 context_.SayAt(expr.source, 3495 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3496 : "Subroutine name is not allowed here"_err_en_US); 3497 } 3498 return std::nullopt; 3499 } 3500 3501 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3502 const parser::Expr &expr) { 3503 // If an expression's parse tree is a whole assumed-size array: 3504 // Expr -> Designator -> DataRef -> Name 3505 // treat it as a special case for argument passing and bypass 3506 // the C1002/C1014 constraint checking in expression semantics. 3507 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3508 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3509 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3510 return context_.Analyze(expr); 3511 } 3512 } 3513 return context_.Analyze(expr); 3514 } 3515 3516 bool ArgumentAnalyzer::AreConformable() const { 3517 CHECK(actuals_.size() == 2); 3518 return actuals_[0] && actuals_[1] && 3519 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3520 } 3521 3522 // Look for a type-bound operator in the type of arg number passIndex. 3523 const Symbol *ArgumentAnalyzer::FindBoundOp( 3524 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3525 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3526 if (!type || !type->scope()) { 3527 return nullptr; 3528 } 3529 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3530 if (!symbol) { 3531 return nullptr; 3532 } 3533 definedOp = symbol; 3534 ExpressionAnalyzer::AdjustActuals adjustment{ 3535 [&](const Symbol &proc, ActualArguments &) { 3536 return passIndex == GetPassIndex(proc); 3537 }}; 3538 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3539 if (!pair.first) { 3540 context_.EmitGenericResolutionError(*symbol, pair.second); 3541 } 3542 return pair.first; 3543 } 3544 3545 // If there is an implicit conversion between intrinsic types, make it explicit 3546 void ArgumentAnalyzer::AddAssignmentConversion( 3547 const DynamicType &lhsType, const DynamicType &rhsType) { 3548 if (lhsType.category() == rhsType.category() && 3549 lhsType.kind() == rhsType.kind()) { 3550 // no conversion necessary 3551 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3552 actuals_[1] = ActualArgument{*rhsExpr}; 3553 } else { 3554 actuals_[1] = std::nullopt; 3555 } 3556 } 3557 3558 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3559 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3560 } 3561 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3562 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3563 } 3564 3565 // If the argument at index i is a BOZ literal, convert its type to match the 3566 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3567 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3568 // is not currently supported. 3569 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3570 std::size_t i, std::optional<DynamicType> otherType) { 3571 if (IsBOZLiteral(i)) { 3572 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3573 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3574 if (otherType && otherType->category() == TypeCategory::Real) { 3575 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3576 MaybeExpr realExpr{ 3577 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3578 actuals_[i] = std::move(*realExpr); 3579 thisType.emplace(TypeCategory::Real, kind); 3580 } else { 3581 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3582 MaybeExpr intExpr{ 3583 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3584 actuals_[i] = std::move(*intExpr); 3585 thisType.emplace(TypeCategory::Integer, kind); 3586 } 3587 } 3588 } 3589 3590 // Report error resolving opr when there is a user-defined one available 3591 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3592 std::string type0{TypeAsFortran(0)}; 3593 auto rank0{actuals_[0]->Rank()}; 3594 if (actuals_.size() == 1) { 3595 if (rank0 > 0) { 3596 context_.Say("No intrinsic or user-defined %s matches " 3597 "rank %d array of %s"_err_en_US, 3598 opr, rank0, type0); 3599 } else { 3600 context_.Say("No intrinsic or user-defined %s matches " 3601 "operand type %s"_err_en_US, 3602 opr, type0); 3603 } 3604 } else { 3605 std::string type1{TypeAsFortran(1)}; 3606 auto rank1{actuals_[1]->Rank()}; 3607 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3608 context_.Say("No intrinsic or user-defined %s matches " 3609 "rank %d array of %s and rank %d array of %s"_err_en_US, 3610 opr, rank0, type0, rank1, type1); 3611 } else if (isAssignment && rank0 != rank1) { 3612 if (rank0 == 0) { 3613 context_.Say("No intrinsic or user-defined %s matches " 3614 "scalar %s and rank %d array of %s"_err_en_US, 3615 opr, type0, rank1, type1); 3616 } else { 3617 context_.Say("No intrinsic or user-defined %s matches " 3618 "rank %d array of %s and scalar %s"_err_en_US, 3619 opr, rank0, type0, type1); 3620 } 3621 } else { 3622 context_.Say("No intrinsic or user-defined %s matches " 3623 "operand types %s and %s"_err_en_US, 3624 opr, type0, type1); 3625 } 3626 } 3627 } 3628 3629 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3630 if (i >= actuals_.size() || !actuals_[i]) { 3631 return "missing argument"; 3632 } else if (std::optional<DynamicType> type{GetType(i)}) { 3633 return type->category() == TypeCategory::Derived 3634 ? "TYPE("s + type->AsFortran() + ')' 3635 : type->category() == TypeCategory::Character 3636 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3637 : ToUpperCase(type->AsFortran()); 3638 } else { 3639 return "untyped"; 3640 } 3641 } 3642 3643 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3644 for (const auto &actual : actuals_) { 3645 if (!actual || 3646 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3647 return true; 3648 } 3649 } 3650 return false; 3651 } 3652 } // namespace Fortran::evaluate 3653 3654 namespace Fortran::semantics { 3655 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3656 SemanticsContext &context, common::TypeCategory category, 3657 const std::optional<parser::KindSelector> &selector) { 3658 evaluate::ExpressionAnalyzer analyzer{context}; 3659 auto restorer{ 3660 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3661 return analyzer.AnalyzeKindSelector(category, selector); 3662 } 3663 3664 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3665 3666 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3667 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3668 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3669 auto name{bounds.name.thing.thing}; 3670 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3671 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3672 if (dynamicType->category() == TypeCategory::Integer) { 3673 kind = dynamicType->kind(); 3674 } 3675 } 3676 exprAnalyzer_.AddImpliedDo(name.source, kind); 3677 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3678 exprAnalyzer_.RemoveImpliedDo(name.source); 3679 return false; 3680 } 3681 3682 bool ExprChecker::Walk(const parser::Program &program) { 3683 parser::Walk(program, *this); 3684 return !context_.AnyFatalError(); 3685 } 3686 } // namespace Fortran::semantics 3687