1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/idioms.h" 14 #include "flang/Evaluate/common.h" 15 #include "flang/Evaluate/fold.h" 16 #include "flang/Evaluate/tools.h" 17 #include "flang/Parser/characters.h" 18 #include "flang/Parser/dump-parse-tree.h" 19 #include "flang/Parser/parse-tree-visitor.h" 20 #include "flang/Parser/parse-tree.h" 21 #include "flang/Semantics/scope.h" 22 #include "flang/Semantics/semantics.h" 23 #include "flang/Semantics/symbol.h" 24 #include "flang/Semantics/tools.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <functional> 28 #include <optional> 29 #include <set> 30 31 // Typedef for optional generic expressions (ubiquitous in this file) 32 using MaybeExpr = 33 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 34 35 // Much of the code that implements semantic analysis of expressions is 36 // tightly coupled with their typed representations in lib/Evaluate, 37 // and appears here in namespace Fortran::evaluate for convenience. 38 namespace Fortran::evaluate { 39 40 using common::LanguageFeature; 41 using common::NumericOperator; 42 using common::TypeCategory; 43 44 static inline std::string ToUpperCase(const std::string &str) { 45 return parser::ToUpperCaseLetters(str); 46 } 47 48 struct DynamicTypeWithLength : public DynamicType { 49 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 50 std::optional<Expr<SubscriptInteger>> LEN() const; 51 std::optional<Expr<SubscriptInteger>> length; 52 }; 53 54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 55 if (length) { 56 return length; 57 } 58 if (auto *lengthParam{charLength()}) { 59 if (const auto &len{lengthParam->GetExplicit()}) { 60 return ConvertToType<SubscriptInteger>(common::Clone(*len)); 61 } 62 } 63 return std::nullopt; // assumed or deferred length 64 } 65 66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 67 const std::optional<parser::TypeSpec> &spec) { 68 if (spec) { 69 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 70 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 71 // (viz., an intrinsic type with valid known kind or a non-polymorphic 72 // & non-ABSTRACT derived type). 73 if (const semantics::IntrinsicTypeSpec * 74 intrinsic{typeSpec->AsIntrinsic()}) { 75 TypeCategory category{intrinsic->category()}; 76 if (auto optKind{ToInt64(intrinsic->kind())}) { 77 int kind{static_cast<int>(*optKind)}; 78 if (category == TypeCategory::Character) { 79 const semantics::CharacterTypeSpec &cts{ 80 typeSpec->characterTypeSpec()}; 81 const semantics::ParamValue &len{cts.length()}; 82 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 83 // type guards, but not in array constructors. 84 return DynamicTypeWithLength{DynamicType{kind, len}}; 85 } else { 86 return DynamicTypeWithLength{DynamicType{category, kind}}; 87 } 88 } 89 } else if (const semantics::DerivedTypeSpec * 90 derived{typeSpec->AsDerived()}) { 91 return DynamicTypeWithLength{DynamicType{*derived}}; 92 } 93 } 94 } 95 return std::nullopt; 96 } 97 98 class ArgumentAnalyzer { 99 public: 100 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 101 : context_{context}, allowAssumedType_{false} {} 102 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 103 bool allowAssumedType = false) 104 : context_{context}, source_{source}, allowAssumedType_{ 105 allowAssumedType} {} 106 bool fatalErrors() const { return fatalErrors_; } 107 ActualArguments &&GetActuals() { 108 CHECK(!fatalErrors_); 109 return std::move(actuals_); 110 } 111 const Expr<SomeType> &GetExpr(std::size_t i) const { 112 return DEREF(actuals_.at(i).value().UnwrapExpr()); 113 } 114 Expr<SomeType> &&MoveExpr(std::size_t i) { 115 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 116 } 117 void Analyze(const common::Indirection<parser::Expr> &x) { 118 Analyze(x.value()); 119 } 120 void Analyze(const parser::Expr &x) { 121 actuals_.emplace_back(AnalyzeExpr(x)); 122 fatalErrors_ |= !actuals_.back(); 123 } 124 void Analyze(const parser::Variable &); 125 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 126 void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType); 127 128 bool IsIntrinsicRelational(RelationalOperator) const; 129 bool IsIntrinsicLogical() const; 130 bool IsIntrinsicNumeric(NumericOperator) const; 131 bool IsIntrinsicConcat() const; 132 133 // Find and return a user-defined operator or report an error. 134 // The provided message is used if there is no such operator. 135 MaybeExpr TryDefinedOp( 136 const char *, parser::MessageFixedText &&, bool isUserOp = false); 137 template <typename E> 138 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 139 return TryDefinedOp( 140 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 141 } 142 // Find and return a user-defined assignment 143 std::optional<ProcedureRef> TryDefinedAssignment(); 144 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 145 std::optional<DynamicType> GetType(std::size_t) const; 146 void Dump(llvm::raw_ostream &); 147 148 private: 149 MaybeExpr TryDefinedOp( 150 std::vector<const char *>, parser::MessageFixedText &&); 151 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 152 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 153 bool AreConformable() const; 154 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 155 void AddAssignmentConversion( 156 const DynamicType &lhsType, const DynamicType &rhsType); 157 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 158 int GetRank(std::size_t) const; 159 bool IsBOZLiteral(std::size_t i) const { 160 return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u); 161 } 162 void SayNoMatch(const std::string &, bool isAssignment = false); 163 std::string TypeAsFortran(std::size_t); 164 bool AnyUntypedOperand(); 165 166 ExpressionAnalyzer &context_; 167 ActualArguments actuals_; 168 parser::CharBlock source_; 169 bool fatalErrors_{false}; 170 const bool allowAssumedType_; 171 const Symbol *sawDefinedOp_{nullptr}; 172 }; 173 174 // Wraps a data reference in a typed Designator<>, and a procedure 175 // or procedure pointer reference in a ProcedureDesignator. 176 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 177 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 178 if (semantics::IsProcedure(symbol)) { 179 if (auto *component{std::get_if<Component>(&ref.u)}) { 180 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 181 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 182 DIE("unexpected alternative in DataRef"); 183 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 184 return Expr<SomeType>{ProcedureDesignator{symbol}}; 185 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 186 symbol.name().ToString())}) { 187 SpecificIntrinsic intrinsic{ 188 symbol.name().ToString(), std::move(*interface)}; 189 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 190 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 191 } else { 192 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 193 symbol.name()); 194 return std::nullopt; 195 } 196 } else if (auto dyType{DynamicType::From(symbol)}) { 197 return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); 198 } 199 return std::nullopt; 200 } 201 202 // Some subscript semantic checks must be deferred until all of the 203 // subscripts are in hand. 204 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 205 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 206 const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 207 int symbolRank{symbol.Rank()}; 208 int subscripts{static_cast<int>(ref.size())}; 209 if (subscripts == 0) { 210 // nothing to check 211 } else if (subscripts != symbolRank) { 212 if (symbolRank != 0) { 213 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 214 symbolRank, symbol.name(), subscripts); 215 } 216 return std::nullopt; 217 } else if (Component * component{ref.base().UnwrapComponent()}) { 218 int baseRank{component->base().Rank()}; 219 if (baseRank > 0) { 220 int subscriptRank{0}; 221 for (const auto &expr : ref.subscript()) { 222 subscriptRank += expr.Rank(); 223 } 224 if (subscriptRank > 0) { 225 Say("Subscripts of component '%s' of rank-%d derived type " 226 "array have rank %d but must all be scalar"_err_en_US, 227 symbol.name(), baseRank, subscriptRank); 228 return std::nullopt; 229 } 230 } 231 } else if (object) { 232 // C928 & C1002 233 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 234 if (!last->upper() && object->IsAssumedSize()) { 235 Say("Assumed-size array '%s' must have explicit final " 236 "subscript upper bound value"_err_en_US, 237 symbol.name()); 238 return std::nullopt; 239 } 240 } 241 } 242 return Designate(DataRef{std::move(ref)}); 243 } 244 245 // Applies subscripts to a data reference. 246 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 247 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 248 return std::visit( 249 common::visitors{ 250 [&](SymbolRef &&symbol) { 251 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 252 }, 253 [&](Component &&c) { 254 return CompleteSubscripts( 255 ArrayRef{std::move(c), std::move(subscripts)}); 256 }, 257 [&](auto &&) -> MaybeExpr { 258 DIE("bad base for ArrayRef"); 259 return std::nullopt; 260 }, 261 }, 262 std::move(dataRef.u)); 263 } 264 265 // Top-level checks for data references. 266 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 267 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 268 const Symbol &symbol{component->GetLastSymbol()}; 269 int componentRank{symbol.Rank()}; 270 if (componentRank > 0) { 271 int baseRank{component->base().Rank()}; 272 if (baseRank > 0) { 273 Say("Reference to whole rank-%d component '%%%s' of " 274 "rank-%d array of derived type is not allowed"_err_en_US, 275 componentRank, symbol.name(), baseRank); 276 } 277 } 278 } 279 return Designate(std::move(dataRef)); 280 } 281 282 // Parse tree correction after a substring S(j:k) was misparsed as an 283 // array section. N.B. Fortran substrings have to have a range, not a 284 // single index. 285 static void FixMisparsedSubstring(const parser::Designator &d) { 286 auto &mutate{const_cast<parser::Designator &>(d)}; 287 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 288 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 289 &dataRef->u)}) { 290 parser::ArrayElement &arrElement{ae->value()}; 291 if (!arrElement.subscripts.empty()) { 292 auto iter{arrElement.subscripts.begin()}; 293 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 294 if (!std::get<2>(triplet->t) /* no stride */ && 295 ++iter == arrElement.subscripts.end() /* one subscript */) { 296 if (Symbol * 297 symbol{std::visit( 298 common::visitors{ 299 [](parser::Name &n) { return n.symbol; }, 300 [](common::Indirection<parser::StructureComponent> 301 &sc) { return sc.value().component.symbol; }, 302 [](auto &) -> Symbol * { return nullptr; }, 303 }, 304 arrElement.base.u)}) { 305 const Symbol &ultimate{symbol->GetUltimate()}; 306 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 307 if (!ultimate.IsObjectArray() && 308 type->category() == semantics::DeclTypeSpec::Character) { 309 // The ambiguous S(j:k) was parsed as an array section 310 // reference, but it's now clear that it's a substring. 311 // Fix the parse tree in situ. 312 mutate.u = arrElement.ConvertToSubstring(); 313 } 314 } 315 } 316 } 317 } 318 } 319 } 320 } 321 } 322 323 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 324 auto restorer{GetContextualMessages().SetLocation(d.source)}; 325 FixMisparsedSubstring(d); 326 // These checks have to be deferred to these "top level" data-refs where 327 // we can be sure that there are no following subscripts (yet). 328 // Substrings have already been run through TopLevelChecks() and 329 // won't be returned by ExtractDataRef(). 330 if (MaybeExpr result{Analyze(d.u)}) { 331 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 332 return TopLevelChecks(std::move(*dataRef)); 333 } 334 return result; 335 } 336 return std::nullopt; 337 } 338 339 // A utility subroutine to repackage optional expressions of various levels 340 // of type specificity as fully general MaybeExpr values. 341 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 342 return AsGenericExpr(std::move(x)); 343 } 344 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 345 if (x) { 346 return AsMaybeExpr(std::move(*x)); 347 } 348 return std::nullopt; 349 } 350 351 // Type kind parameter values for literal constants. 352 int ExpressionAnalyzer::AnalyzeKindParam( 353 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 354 if (!kindParam) { 355 return defaultKind; 356 } 357 return std::visit( 358 common::visitors{ 359 [](std::uint64_t k) { return static_cast<int>(k); }, 360 [&](const parser::Scalar< 361 parser::Integer<parser::Constant<parser::Name>>> &n) { 362 if (MaybeExpr ie{Analyze(n)}) { 363 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 364 int iv = *i64; 365 if (iv == *i64) { 366 return iv; 367 } 368 } 369 } 370 return defaultKind; 371 }, 372 }, 373 kindParam->u); 374 } 375 376 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 377 struct IntTypeVisitor { 378 using Result = MaybeExpr; 379 using Types = IntegerTypes; 380 template <typename T> Result Test() { 381 if (T::kind >= kind) { 382 const char *p{digits.begin()}; 383 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 384 if (!value.overflow) { 385 if (T::kind > kind) { 386 if (!isDefaultKind || 387 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 388 return std::nullopt; 389 } else if (analyzer.context().ShouldWarn( 390 LanguageFeature::BigIntLiterals)) { 391 analyzer.Say(digits, 392 "Integer literal is too large for default INTEGER(KIND=%d); " 393 "assuming INTEGER(KIND=%d)"_en_US, 394 kind, T::kind); 395 } 396 } 397 return Expr<SomeType>{ 398 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 399 } 400 } 401 return std::nullopt; 402 } 403 ExpressionAnalyzer &analyzer; 404 parser::CharBlock digits; 405 int kind; 406 bool isDefaultKind; 407 }; 408 409 template <typename PARSED> 410 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 411 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 412 bool isDefaultKind{!kindParam}; 413 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 414 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 415 auto digits{std::get<parser::CharBlock>(x.t)}; 416 if (MaybeExpr result{common::SearchTypes( 417 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 418 return result; 419 } else if (isDefaultKind) { 420 Say(digits, 421 "Integer literal is too large for any allowable " 422 "kind of INTEGER"_err_en_US); 423 } else { 424 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 425 kind); 426 } 427 } 428 return std::nullopt; 429 } 430 431 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 432 auto restorer{ 433 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 434 return IntLiteralConstant(x); 435 } 436 437 MaybeExpr ExpressionAnalyzer::Analyze( 438 const parser::SignedIntLiteralConstant &x) { 439 auto restorer{GetContextualMessages().SetLocation(x.source)}; 440 return IntLiteralConstant(x); 441 } 442 443 template <typename TYPE> 444 Constant<TYPE> ReadRealLiteral( 445 parser::CharBlock source, FoldingContext &context) { 446 const char *p{source.begin()}; 447 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 448 CHECK(p == source.end()); 449 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 450 auto value{valWithFlags.value}; 451 if (context.flushSubnormalsToZero()) { 452 value = value.FlushSubnormalToZero(); 453 } 454 return {value}; 455 } 456 457 struct RealTypeVisitor { 458 using Result = std::optional<Expr<SomeReal>>; 459 using Types = RealTypes; 460 461 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 462 : kind{k}, literal{lit}, context{ctx} {} 463 464 template <typename T> Result Test() { 465 if (kind == T::kind) { 466 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 467 } 468 return std::nullopt; 469 } 470 471 int kind; 472 parser::CharBlock literal; 473 FoldingContext &context; 474 }; 475 476 // Reads a real literal constant and encodes it with the right kind. 477 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 478 // Use a local message context around the real literal for better 479 // provenance on any messages. 480 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 481 // If a kind parameter appears, it defines the kind of the literal and the 482 // letter used in an exponent part must be 'E' (e.g., the 'E' in 483 // "6.02214E+23"). In the absence of an explicit kind parameter, any 484 // exponent letter determines the kind. Otherwise, defaults apply. 485 auto &defaults{context_.defaultKinds()}; 486 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 487 const char *end{x.real.source.end()}; 488 char expoLetter{' '}; 489 std::optional<int> letterKind; 490 for (const char *p{x.real.source.begin()}; p < end; ++p) { 491 if (parser::IsLetter(*p)) { 492 expoLetter = *p; 493 switch (expoLetter) { 494 case 'e': 495 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 496 break; 497 case 'd': 498 letterKind = defaults.doublePrecisionKind(); 499 break; 500 case 'q': 501 letterKind = defaults.quadPrecisionKind(); 502 break; 503 default: 504 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 505 } 506 break; 507 } 508 } 509 if (letterKind) { 510 defaultKind = *letterKind; 511 } 512 // C716 requires 'E' as an exponent, but this is more useful 513 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 514 if (letterKind && kind != *letterKind && expoLetter != 'e') { 515 Say("Explicit kind parameter on real constant disagrees with " 516 "exponent letter '%c'"_en_US, 517 expoLetter); 518 } 519 auto result{common::SearchTypes( 520 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 521 if (!result) { // C717 522 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 523 } 524 return AsMaybeExpr(std::move(result)); 525 } 526 527 MaybeExpr ExpressionAnalyzer::Analyze( 528 const parser::SignedRealLiteralConstant &x) { 529 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 530 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 531 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 532 if (sign == parser::Sign::Negative) { 533 return AsGenericExpr(-std::move(realExpr)); 534 } 535 } 536 return result; 537 } 538 return std::nullopt; 539 } 540 541 MaybeExpr ExpressionAnalyzer::Analyze( 542 const parser::SignedComplexLiteralConstant &x) { 543 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 544 if (!result) { 545 return std::nullopt; 546 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 547 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 548 } else { 549 return result; 550 } 551 } 552 553 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 554 return Analyze(x.u); 555 } 556 557 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 558 return AsMaybeExpr( 559 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 560 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 561 } 562 563 // CHARACTER literal processing. 564 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 565 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 566 return std::nullopt; 567 } 568 switch (kind) { 569 case 1: 570 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 571 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 572 string, true)}); 573 case 2: 574 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 575 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 576 string, true)}); 577 case 4: 578 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 579 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 580 string, true)}); 581 default: 582 CRASH_NO_CASE; 583 } 584 } 585 586 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 587 int kind{ 588 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 589 auto value{std::get<std::string>(x.t)}; 590 return AnalyzeString(std::move(value), kind); 591 } 592 593 MaybeExpr ExpressionAnalyzer::Analyze( 594 const parser::HollerithLiteralConstant &x) { 595 int kind{GetDefaultKind(TypeCategory::Character)}; 596 auto value{x.v}; 597 return AnalyzeString(std::move(value), kind); 598 } 599 600 // .TRUE. and .FALSE. of various kinds 601 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 602 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 603 GetDefaultKind(TypeCategory::Logical))}; 604 bool value{std::get<bool>(x.t)}; 605 auto result{common::SearchTypes( 606 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 607 kind, std::move(value)})}; 608 if (!result) { 609 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 610 } 611 return result; 612 } 613 614 // BOZ typeless literals 615 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 616 const char *p{x.v.c_str()}; 617 std::uint64_t base{16}; 618 switch (*p++) { 619 case 'b': 620 base = 2; 621 break; 622 case 'o': 623 base = 8; 624 break; 625 case 'z': 626 break; 627 case 'x': 628 break; 629 default: 630 CRASH_NO_CASE; 631 } 632 CHECK(*p == '"'); 633 ++p; 634 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 635 if (*p != '"') { 636 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, x.v); 637 return std::nullopt; 638 } 639 if (value.overflow) { 640 Say("BOZ literal '%s' too large"_err_en_US, x.v); 641 return std::nullopt; 642 } 643 return AsGenericExpr(std::move(value.value)); 644 } 645 646 // For use with SearchTypes to create a TypeParamInquiry with the 647 // right integer kind. 648 struct TypeParamInquiryVisitor { 649 using Result = std::optional<Expr<SomeInteger>>; 650 using Types = IntegerTypes; 651 TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol ¶m) 652 : kind{k}, base{std::move(b)}, parameter{param} {} 653 TypeParamInquiryVisitor(int k, const Symbol ¶m) 654 : kind{k}, parameter{param} {} 655 template <typename T> Result Test() { 656 if (kind == T::kind) { 657 return Expr<SomeInteger>{ 658 Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}}; 659 } 660 return std::nullopt; 661 } 662 int kind; 663 std::optional<NamedEntity> base; 664 const Symbol ¶meter; 665 }; 666 667 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry( 668 const Symbol *symbol) { 669 if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) { 670 if (dyType->category() == TypeCategory::Integer) { 671 return common::SearchTypes( 672 TypeParamInquiryVisitor{dyType->kind(), *symbol}); 673 } 674 } 675 return std::nullopt; 676 } 677 678 // Names and named constants 679 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 680 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 681 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 682 *kind, AsExpr(ImpliedDoIndex{n.source}))); 683 } else if (context_.HasError(n) || !n.symbol) { 684 return std::nullopt; 685 } else { 686 const Symbol &ultimate{n.symbol->GetUltimate()}; 687 if (ultimate.has<semantics::TypeParamDetails>()) { 688 // A bare reference to a derived type parameter (within a parameterized 689 // derived type definition) 690 return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate)); 691 } else { 692 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 693 if (const semantics::Scope * 694 pure{semantics::FindPureProcedureContaining( 695 context_.FindScope(n.source))}) { 696 SayAt(n, 697 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 698 n.source, DEREF(pure->symbol()).name()); 699 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 700 } 701 } 702 return Designate(DataRef{*n.symbol}); 703 } 704 } 705 } 706 707 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 708 if (MaybeExpr value{Analyze(n.v)}) { 709 Expr<SomeType> folded{Fold(std::move(*value))}; 710 if (IsConstantExpr(folded)) { 711 return folded; 712 } 713 Say(n.v.source, "must be a constant"_err_en_US); // C718 714 } 715 return std::nullopt; 716 } 717 718 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) { 719 return Expr<SomeType>{NullPointer{}}; 720 } 721 722 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 723 return Analyze(x.value()); 724 } 725 726 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 727 if (const auto &repeat{ 728 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 729 x.repetitions = -1; 730 if (MaybeExpr expr{Analyze(repeat->u)}) { 731 Expr<SomeType> folded{Fold(std::move(*expr))}; 732 if (auto value{ToInt64(folded)}) { 733 if (*value >= 0) { // C882 734 x.repetitions = *value; 735 } else { 736 Say(FindSourceLocation(repeat), 737 "Repeat count (%jd) for data value must not be negative"_err_en_US, 738 *value); 739 } 740 } 741 } 742 } 743 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 744 } 745 746 // Substring references 747 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 748 const std::optional<parser::ScalarIntExpr> &bound) { 749 if (bound) { 750 if (MaybeExpr expr{Analyze(*bound)}) { 751 if (expr->Rank() > 1) { 752 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 753 } 754 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 755 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 756 return {std::move(*ssIntExpr)}; 757 } 758 return {Expr<SubscriptInteger>{ 759 Convert<SubscriptInteger, TypeCategory::Integer>{ 760 std::move(*intExpr)}}}; 761 } else { 762 Say("substring bound expression is not INTEGER"_err_en_US); 763 } 764 } 765 } 766 return std::nullopt; 767 } 768 769 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 770 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 771 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 772 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 773 if (std::optional<DataRef> checked{ 774 ExtractDataRef(std::move(*newBaseExpr))}) { 775 const parser::SubstringRange &range{ 776 std::get<parser::SubstringRange>(ss.t)}; 777 std::optional<Expr<SubscriptInteger>> first{ 778 GetSubstringBound(std::get<0>(range.t))}; 779 std::optional<Expr<SubscriptInteger>> last{ 780 GetSubstringBound(std::get<1>(range.t))}; 781 const Symbol &symbol{checked->GetLastSymbol()}; 782 if (std::optional<DynamicType> dynamicType{ 783 DynamicType::From(symbol)}) { 784 if (dynamicType->category() == TypeCategory::Character) { 785 return WrapperHelper<TypeCategory::Character, Designator, 786 Substring>(dynamicType->kind(), 787 Substring{std::move(checked.value()), std::move(first), 788 std::move(last)}); 789 } 790 } 791 Say("substring may apply only to CHARACTER"_err_en_US); 792 } 793 } 794 } 795 } 796 return std::nullopt; 797 } 798 799 // CHARACTER literal substrings 800 MaybeExpr ExpressionAnalyzer::Analyze( 801 const parser::CharLiteralConstantSubstring &x) { 802 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 803 std::optional<Expr<SubscriptInteger>> lower{ 804 GetSubstringBound(std::get<0>(range.t))}; 805 std::optional<Expr<SubscriptInteger>> upper{ 806 GetSubstringBound(std::get<1>(range.t))}; 807 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 808 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 809 Expr<SubscriptInteger> length{ 810 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 811 charExpr->u)}; 812 if (!lower) { 813 lower = Expr<SubscriptInteger>{1}; 814 } 815 if (!upper) { 816 upper = Expr<SubscriptInteger>{ 817 static_cast<std::int64_t>(ToInt64(length).value())}; 818 } 819 return std::visit( 820 [&](auto &&ckExpr) -> MaybeExpr { 821 using Result = ResultType<decltype(ckExpr)>; 822 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 823 CHECK(DEREF(cp).size() == 1); 824 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 825 staticData->set_alignment(Result::kind) 826 .set_itemBytes(Result::kind) 827 .Push(cp->GetScalarValue().value()); 828 Substring substring{std::move(staticData), std::move(lower.value()), 829 std::move(upper.value())}; 830 return AsGenericExpr( 831 Expr<Result>{Designator<Result>{std::move(substring)}}); 832 }, 833 std::move(charExpr->u)); 834 } 835 } 836 return std::nullopt; 837 } 838 839 // Subscripted array references 840 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 841 MaybeExpr &&expr) { 842 if (expr) { 843 if (expr->Rank() > 1) { 844 Say("Subscript expression has rank %d greater than 1"_err_en_US, 845 expr->Rank()); 846 } 847 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 848 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 849 return std::move(*ssIntExpr); 850 } else { 851 return Expr<SubscriptInteger>{ 852 Convert<SubscriptInteger, TypeCategory::Integer>{ 853 std::move(*intExpr)}}; 854 } 855 } else { 856 Say("Subscript expression is not INTEGER"_err_en_US); 857 } 858 } 859 return std::nullopt; 860 } 861 862 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 863 const std::optional<parser::Subscript> &s) { 864 if (s) { 865 return AsSubscript(Analyze(*s)); 866 } else { 867 return std::nullopt; 868 } 869 } 870 871 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 872 const parser::SectionSubscript &ss) { 873 return std::visit(common::visitors{ 874 [&](const parser::SubscriptTriplet &t) { 875 return std::make_optional<Subscript>( 876 Triplet{TripletPart(std::get<0>(t.t)), 877 TripletPart(std::get<1>(t.t)), 878 TripletPart(std::get<2>(t.t))}); 879 }, 880 [&](const auto &s) -> std::optional<Subscript> { 881 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 882 return Subscript{std::move(*subscriptExpr)}; 883 } else { 884 return std::nullopt; 885 } 886 }, 887 }, 888 ss.u); 889 } 890 891 // Empty result means an error occurred 892 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 893 const std::list<parser::SectionSubscript> &sss) { 894 bool error{false}; 895 std::vector<Subscript> subscripts; 896 for (const auto &s : sss) { 897 if (auto subscript{AnalyzeSectionSubscript(s)}) { 898 subscripts.emplace_back(std::move(*subscript)); 899 } else { 900 error = true; 901 } 902 } 903 return !error ? subscripts : std::vector<Subscript>{}; 904 } 905 906 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 907 if (MaybeExpr baseExpr{Analyze(ae.base)}) { 908 if (ae.subscripts.empty()) { 909 // will be converted to function call later or error reported 910 return std::nullopt; 911 } else if (baseExpr->Rank() == 0) { 912 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 913 if (!context_.HasError(symbol)) { 914 Say("'%s' is not an array"_err_en_US, symbol->name()); 915 context_.SetError(const_cast<Symbol &>(*symbol)); 916 } 917 } 918 } else if (std::optional<DataRef> dataRef{ 919 ExtractDataRef(std::move(*baseExpr))}) { 920 return ApplySubscripts( 921 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 922 } else { 923 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 924 } 925 } 926 // error was reported: analyze subscripts without reporting more errors 927 auto restorer{GetContextualMessages().DiscardMessages()}; 928 AnalyzeSectionSubscripts(ae.subscripts); 929 return std::nullopt; 930 } 931 932 // Type parameter inquiries apply to data references, but don't depend 933 // on any trailing (co)subscripts. 934 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 935 return std::visit( 936 common::visitors{ 937 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 938 [](Component &&component) { 939 return NamedEntity{std::move(component)}; 940 }, 941 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 942 [](CoarrayRef &&coarrayRef) { 943 return NamedEntity{coarrayRef.GetLastSymbol()}; 944 }, 945 }, 946 std::move(designator.u)); 947 } 948 949 // Components of parent derived types are explicitly represented as such. 950 static std::optional<Component> CreateComponent( 951 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 952 if (&component.owner() == &scope) { 953 return Component{std::move(base), component}; 954 } 955 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 956 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 957 return CreateComponent( 958 DataRef{Component{std::move(base), *parentComponent}}, component, 959 *parentScope); 960 } 961 } 962 return std::nullopt; 963 } 964 965 // Derived type component references and type parameter inquiries 966 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 967 MaybeExpr base{Analyze(sc.base)}; 968 if (!base) { 969 return std::nullopt; 970 } 971 Symbol *sym{sc.component.symbol}; 972 if (context_.HasError(sym)) { 973 return std::nullopt; 974 } 975 const auto &name{sc.component.source}; 976 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 977 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 978 if (sym->detailsIf<semantics::TypeParamDetails>()) { 979 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 980 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 981 if (dyType->category() == TypeCategory::Integer) { 982 return AsMaybeExpr( 983 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(), 984 IgnoreAnySubscripts(std::move(*designator)), *sym})); 985 } 986 } 987 Say(name, "Type parameter is not INTEGER"_err_en_US); 988 } else { 989 Say(name, 990 "A type parameter inquiry must be applied to " 991 "a designator"_err_en_US); 992 } 993 } else if (!dtSpec || !dtSpec->scope()) { 994 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 995 return std::nullopt; 996 } else if (std::optional<DataRef> dataRef{ 997 ExtractDataRef(std::move(*dtExpr))}) { 998 if (auto component{ 999 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1000 return Designate(DataRef{std::move(*component)}); 1001 } else { 1002 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1003 dtSpec->typeSymbol().name()); 1004 } 1005 } else { 1006 Say(name, 1007 "Base of component reference must be a data reference"_err_en_US); 1008 } 1009 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1010 // special part-ref: %re, %im, %kind, %len 1011 // Type errors are detected and reported in semantics. 1012 using MiscKind = semantics::MiscDetails::Kind; 1013 MiscKind kind{details->kind()}; 1014 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1015 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1016 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1017 Expr<SomeReal> realExpr{std::visit( 1018 [&](const auto &z) { 1019 using PartType = typename ResultType<decltype(z)>::Part; 1020 auto part{kind == MiscKind::ComplexPartRe 1021 ? ComplexPart::Part::RE 1022 : ComplexPart::Part::IM}; 1023 return AsCategoryExpr(Designator<PartType>{ 1024 ComplexPart{std::move(*dataRef), part}}); 1025 }, 1026 zExpr->u)}; 1027 return AsGenericExpr(std::move(realExpr)); 1028 } 1029 } 1030 } else if (kind == MiscKind::KindParamInquiry || 1031 kind == MiscKind::LenParamInquiry) { 1032 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1033 return MakeFunctionRef( 1034 name, ActualArguments{ActualArgument{std::move(*base)}}); 1035 } else { 1036 DIE("unexpected MiscDetails::Kind"); 1037 } 1038 } else { 1039 Say(name, "derived type required before component reference"_err_en_US); 1040 } 1041 return std::nullopt; 1042 } 1043 1044 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1045 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1046 DataRef *dataRef{&*maybeDataRef}; 1047 std::vector<Subscript> subscripts; 1048 SymbolVector reversed; 1049 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1050 subscripts = std::move(aRef->subscript()); 1051 reversed.push_back(aRef->GetLastSymbol()); 1052 if (Component * component{aRef->base().UnwrapComponent()}) { 1053 dataRef = &component->base(); 1054 } else { 1055 dataRef = nullptr; 1056 } 1057 } 1058 if (dataRef) { 1059 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1060 reversed.push_back(component->GetLastSymbol()); 1061 dataRef = &component->base(); 1062 } 1063 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1064 reversed.push_back(*baseSym); 1065 } else { 1066 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1067 } 1068 } 1069 std::vector<Expr<SubscriptInteger>> cosubscripts; 1070 bool cosubsOk{true}; 1071 for (const auto &cosub : 1072 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1073 MaybeExpr coex{Analyze(cosub)}; 1074 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1075 cosubscripts.push_back( 1076 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1077 } else { 1078 cosubsOk = false; 1079 } 1080 } 1081 if (cosubsOk && !reversed.empty()) { 1082 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1083 const Symbol &symbol{reversed.front()}; 1084 if (numCosubscripts != symbol.Corank()) { 1085 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1086 symbol.name(), symbol.Corank(), numCosubscripts); 1087 } 1088 } 1089 for (const auto &imageSelSpec : 1090 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1091 std::visit( 1092 common::visitors{ 1093 [&](const auto &x) { Analyze(x.v); }, 1094 }, 1095 imageSelSpec.u); 1096 } 1097 // Reverse the chain of symbols so that the base is first and coarray 1098 // ultimate component is last. 1099 if (cosubsOk) { 1100 return Designate( 1101 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1102 std::move(subscripts), std::move(cosubscripts)}}); 1103 } 1104 } 1105 return std::nullopt; 1106 } 1107 1108 int ExpressionAnalyzer::IntegerTypeSpecKind( 1109 const parser::IntegerTypeSpec &spec) { 1110 Expr<SubscriptInteger> value{ 1111 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1112 if (auto kind{ToInt64(value)}) { 1113 return static_cast<int>(*kind); 1114 } 1115 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1116 return GetDefaultKind(TypeCategory::Integer); 1117 } 1118 1119 // Array constructors 1120 1121 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1122 // all happen to have the same actual type T into one ArrayConstructor<T>. 1123 template <typename T> 1124 ArrayConstructorValues<T> MakeSpecific( 1125 ArrayConstructorValues<SomeType> &&from) { 1126 ArrayConstructorValues<T> to; 1127 for (ArrayConstructorValue<SomeType> &x : from) { 1128 std::visit( 1129 common::visitors{ 1130 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1131 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1132 to.Push(std::move(DEREF(typed))); 1133 }, 1134 [&](ImpliedDo<SomeType> &&impliedDo) { 1135 to.Push(ImpliedDo<T>{impliedDo.name(), 1136 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1137 std::move(impliedDo.stride()), 1138 MakeSpecific<T>(std::move(impliedDo.values()))}); 1139 }, 1140 }, 1141 std::move(x.u)); 1142 } 1143 return to; 1144 } 1145 1146 class ArrayConstructorContext { 1147 public: 1148 ArrayConstructorContext( 1149 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1150 : exprAnalyzer_{c}, type_{std::move(t)} {} 1151 1152 void Add(const parser::AcValue &); 1153 MaybeExpr ToExpr(); 1154 1155 // These interfaces allow *this to be used as a type visitor argument to 1156 // common::SearchTypes() to convert the array constructor to a typed 1157 // expression in ToExpr(). 1158 using Result = MaybeExpr; 1159 using Types = AllTypes; 1160 template <typename T> Result Test() { 1161 if (type_ && type_->category() == T::category) { 1162 if constexpr (T::category == TypeCategory::Derived) { 1163 if (type_->IsUnlimitedPolymorphic()) { 1164 return std::nullopt; 1165 } else { 1166 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1167 MakeSpecific<T>(std::move(values_))}); 1168 } 1169 } else if (type_->kind() == T::kind) { 1170 if constexpr (T::category == TypeCategory::Character) { 1171 if (auto len{type_->LEN()}) { 1172 return AsMaybeExpr(ArrayConstructor<T>{ 1173 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1174 } 1175 } else { 1176 return AsMaybeExpr( 1177 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1178 } 1179 } 1180 } 1181 return std::nullopt; 1182 } 1183 1184 private: 1185 void Push(MaybeExpr &&); 1186 1187 template <int KIND, typename A> 1188 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1189 const A &x) { 1190 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1191 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1192 return ConvertToType<Type<TypeCategory::Integer, KIND>>( 1193 std::move(DEREF(intExpr))); 1194 } 1195 return std::nullopt; 1196 } 1197 1198 // Nested array constructors all reference the same ExpressionAnalyzer, 1199 // which represents the nest of active implied DO loop indices. 1200 ExpressionAnalyzer &exprAnalyzer_; 1201 std::optional<DynamicTypeWithLength> type_; 1202 bool explicitType_{type_.has_value()}; 1203 std::optional<std::int64_t> constantLength_; 1204 ArrayConstructorValues<SomeType> values_; 1205 }; 1206 1207 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1208 if (!x) { 1209 return; 1210 } 1211 if (auto dyType{x->GetType()}) { 1212 DynamicTypeWithLength xType{*dyType}; 1213 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1214 CHECK(xType.category() == TypeCategory::Character); 1215 xType.length = 1216 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1217 } 1218 if (!type_) { 1219 // If there is no explicit type-spec in an array constructor, the type 1220 // of the array is the declared type of all of the elements, which must 1221 // be well-defined and all match. 1222 // TODO: Possible language extension: use the most general type of 1223 // the values as the type of a numeric constructed array, convert all 1224 // of the other values to that type. Alternative: let the first value 1225 // determine the type, and convert the others to that type. 1226 CHECK(!explicitType_); 1227 type_ = std::move(xType); 1228 constantLength_ = ToInt64(type_->length); 1229 values_.Push(std::move(*x)); 1230 } else if (!explicitType_) { 1231 if (static_cast<const DynamicType &>(*type_) == 1232 static_cast<const DynamicType &>(xType)) { 1233 values_.Push(std::move(*x)); 1234 if (auto thisLen{ToInt64(xType.LEN())}) { 1235 if (constantLength_) { 1236 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1237 *thisLen != *constantLength_) { 1238 exprAnalyzer_.Say( 1239 "Character literal in array constructor without explicit " 1240 "type has different length than earlier element"_en_US); 1241 } 1242 if (*thisLen > *constantLength_) { 1243 // Language extension: use the longest literal to determine the 1244 // length of the array constructor's character elements, not the 1245 // first, when there is no explicit type. 1246 *constantLength_ = *thisLen; 1247 type_->length = xType.LEN(); 1248 } 1249 } else { 1250 constantLength_ = *thisLen; 1251 type_->length = xType.LEN(); 1252 } 1253 } 1254 } else { 1255 exprAnalyzer_.Say( 1256 "Values in array constructor must have the same declared type " 1257 "when no explicit type appears"_err_en_US); 1258 } 1259 } else { 1260 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1261 values_.Push(std::move(*cast)); 1262 } else { 1263 exprAnalyzer_.Say( 1264 "Value in array constructor could not be converted to the type " 1265 "of the array"_err_en_US); 1266 } 1267 } 1268 } 1269 } 1270 1271 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1272 using IntType = ResultType<ImpliedDoIndex>; 1273 std::visit( 1274 common::visitors{ 1275 [&](const parser::AcValue::Triplet &triplet) { 1276 // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1277 std::optional<Expr<IntType>> lower{ 1278 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))}; 1279 std::optional<Expr<IntType>> upper{ 1280 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))}; 1281 std::optional<Expr<IntType>> stride{ 1282 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))}; 1283 if (lower && upper) { 1284 if (!stride) { 1285 stride = Expr<IntType>{1}; 1286 } 1287 if (!type_) { 1288 type_ = DynamicTypeWithLength{IntType::GetType()}; 1289 } 1290 auto v{std::move(values_)}; 1291 parser::CharBlock anonymous; 1292 Push(Expr<SomeType>{ 1293 Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}}); 1294 std::swap(v, values_); 1295 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1296 std::move(*upper), std::move(*stride), std::move(v)}); 1297 } 1298 }, 1299 [&](const common::Indirection<parser::Expr> &expr) { 1300 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation( 1301 expr.value().source)}; 1302 if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) { 1303 if (auto exprType{v->GetType()}) { 1304 if (exprType->IsUnlimitedPolymorphic()) { 1305 exprAnalyzer_.Say( 1306 "Cannot have an unlimited polymorphic value in an " 1307 "array constructor"_err_en_US); 1308 } 1309 } 1310 Push(std::move(*v)); 1311 } 1312 }, 1313 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1314 const auto &control{ 1315 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)}; 1316 const auto &bounds{ 1317 std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1318 exprAnalyzer_.Analyze(bounds.name); 1319 parser::CharBlock name{bounds.name.thing.thing.source}; 1320 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1321 int kind{IntType::kind}; 1322 if (const auto dynamicType{DynamicType::From(symbol)}) { 1323 kind = dynamicType->kind(); 1324 } 1325 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1326 std::optional<Expr<IntType>> lower{ 1327 GetSpecificIntExpr<IntType::kind>(bounds.lower)}; 1328 std::optional<Expr<IntType>> upper{ 1329 GetSpecificIntExpr<IntType::kind>(bounds.upper)}; 1330 if (lower && upper) { 1331 std::optional<Expr<IntType>> stride{ 1332 GetSpecificIntExpr<IntType::kind>(bounds.step)}; 1333 auto v{std::move(values_)}; 1334 for (const auto &value : 1335 std::get<std::list<parser::AcValue>>(impliedDo.value().t)) { 1336 Add(value); 1337 } 1338 if (!stride) { 1339 stride = Expr<IntType>{1}; 1340 } 1341 std::swap(v, values_); 1342 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1343 std::move(*upper), std::move(*stride), std::move(v)}); 1344 } 1345 exprAnalyzer_.RemoveImpliedDo(name); 1346 } else { 1347 exprAnalyzer_.SayAt(name, 1348 "Implied DO index is active in surrounding implied DO loop " 1349 "and may not have the same name"_err_en_US); 1350 } 1351 }, 1352 }, 1353 x.u); 1354 } 1355 1356 MaybeExpr ArrayConstructorContext::ToExpr() { 1357 return common::SearchTypes(std::move(*this)); 1358 } 1359 1360 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1361 const parser::AcSpec &acSpec{array.v}; 1362 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1363 for (const parser::AcValue &value : acSpec.values) { 1364 acContext.Add(value); 1365 } 1366 return acContext.ToExpr(); 1367 } 1368 1369 MaybeExpr ExpressionAnalyzer::Analyze( 1370 const parser::StructureConstructor &structure) { 1371 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1372 parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; 1373 if (!parsedType.derivedTypeSpec) { 1374 return std::nullopt; 1375 } 1376 const auto &spec{*parsedType.derivedTypeSpec}; 1377 const Symbol &typeSymbol{spec.typeSymbol()}; 1378 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1379 return std::nullopt; // error recovery 1380 } 1381 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1382 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1383 1384 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1385 AttachDeclaration(Say(typeName, 1386 "ABSTRACT derived type '%s' may not be used in a " 1387 "structure constructor"_err_en_US, 1388 typeName), 1389 typeSymbol); 1390 } 1391 1392 // This iterator traverses all of the components in the derived type and its 1393 // parents. The symbols for whole parent components appear after their 1394 // own components and before the components of the types that extend them. 1395 // E.g., TYPE :: A; REAL X; END TYPE 1396 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1397 // produces the component list X, A, Y. 1398 // The order is important below because a structure constructor can 1399 // initialize X or A by name, but not both. 1400 auto components{semantics::OrderedComponentIterator{spec}}; 1401 auto nextAnonymous{components.begin()}; 1402 1403 std::set<parser::CharBlock> unavailable; 1404 bool anyKeyword{false}; 1405 StructureConstructor result{spec}; 1406 bool checkConflicts{true}; // until we hit one 1407 auto &messages{GetContextualMessages()}; 1408 1409 for (const auto &component : 1410 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1411 const parser::Expr &expr{ 1412 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1413 parser::CharBlock source{expr.source}; 1414 auto restorer{messages.SetLocation(source)}; 1415 const Symbol *symbol{nullptr}; 1416 MaybeExpr value{Analyze(expr)}; 1417 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1418 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1419 anyKeyword = true; 1420 source = kw->v.source; 1421 symbol = kw->v.symbol; 1422 if (!symbol) { 1423 auto componentIter{std::find_if(components.begin(), components.end(), 1424 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1425 if (componentIter != components.end()) { 1426 symbol = &*componentIter; 1427 } 1428 } 1429 if (!symbol) { // C7101 1430 Say(source, 1431 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1432 source, typeName); 1433 } 1434 } else { 1435 if (anyKeyword) { // C7100 1436 Say(source, 1437 "Value in structure constructor lacks a component name"_err_en_US); 1438 checkConflicts = false; // stem cascade 1439 } 1440 // Here's a regrettably common extension of the standard: anonymous 1441 // initialization of parent components, e.g., T(PT(1)) rather than 1442 // T(1) or T(PT=PT(1)). 1443 if (nextAnonymous == components.begin() && parentComponent && 1444 valueType == DynamicType::From(*parentComponent) && 1445 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1446 auto iter{ 1447 std::find(components.begin(), components.end(), *parentComponent)}; 1448 if (iter != components.end()) { 1449 symbol = parentComponent; 1450 nextAnonymous = ++iter; 1451 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1452 Say(source, 1453 "Whole parent component '%s' in structure " 1454 "constructor should not be anonymous"_en_US, 1455 symbol->name()); 1456 } 1457 } 1458 } 1459 while (!symbol && nextAnonymous != components.end()) { 1460 const Symbol &next{*nextAnonymous}; 1461 ++nextAnonymous; 1462 if (!next.test(Symbol::Flag::ParentComp)) { 1463 symbol = &next; 1464 } 1465 } 1466 if (!symbol) { 1467 Say(source, "Unexpected value in structure constructor"_err_en_US); 1468 } 1469 } 1470 if (symbol) { 1471 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1472 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1473 Say(source, *msg); 1474 } 1475 } 1476 if (checkConflicts) { 1477 auto componentIter{ 1478 std::find(components.begin(), components.end(), *symbol)}; 1479 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1480 // C797, C798 1481 Say(source, 1482 "Component '%s' conflicts with another component earlier in " 1483 "this structure constructor"_err_en_US, 1484 symbol->name()); 1485 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1486 // Make earlier components unavailable once a whole parent appears. 1487 for (auto it{components.begin()}; it != componentIter; ++it) { 1488 unavailable.insert(it->name()); 1489 } 1490 } else { 1491 // Make whole parent components unavailable after any of their 1492 // constituents appear. 1493 for (auto it{componentIter}; it != components.end(); ++it) { 1494 if (it->test(Symbol::Flag::ParentComp)) { 1495 unavailable.insert(it->name()); 1496 } 1497 } 1498 } 1499 } 1500 unavailable.insert(symbol->name()); 1501 if (value) { 1502 if (symbol->has<semantics::ProcEntityDetails>()) { 1503 CHECK(IsPointer(*symbol)); 1504 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1505 // C1594(4) 1506 const auto &innermost{context_.FindScope(expr.source)}; 1507 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1508 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1509 if (const Symbol * 1510 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1511 if (auto *msg{Say(expr.source, 1512 "Externally visible object '%s' may not be " 1513 "associated with pointer component '%s' in a " 1514 "pure procedure"_err_en_US, 1515 object->name(), pointer->name())}) { 1516 msg->Attach(object->name(), "Object declaration"_en_US) 1517 .Attach(pointer->name(), "Pointer declaration"_en_US); 1518 } 1519 } 1520 } 1521 } 1522 } else if (symbol->has<semantics::TypeParamDetails>()) { 1523 Say(expr.source, 1524 "Type parameter '%s' may not appear as a component " 1525 "of a structure constructor"_err_en_US, 1526 symbol->name()); 1527 continue; 1528 } else { 1529 Say(expr.source, 1530 "Component '%s' is neither a procedure pointer " 1531 "nor a data object"_err_en_US, 1532 symbol->name()); 1533 continue; 1534 } 1535 if (IsPointer(*symbol)) { 1536 semantics::CheckPointerAssignment( 1537 GetFoldingContext(), *symbol, *value); // C7104, C7105 1538 result.Add(*symbol, Fold(std::move(*value))); 1539 } else if (MaybeExpr converted{ 1540 ConvertToType(*symbol, std::move(*value))}) { 1541 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1542 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1543 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1544 AttachDeclaration( 1545 Say(expr.source, 1546 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1547 symbol->name()), 1548 *symbol); 1549 } else if (CheckConformance(messages, *componentShape, 1550 *valueShape, "component", "value")) { 1551 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 && 1552 !IsExpandableScalar(*converted)) { 1553 AttachDeclaration( 1554 Say(expr.source, 1555 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1556 symbol->name()), 1557 *symbol); 1558 } else { 1559 result.Add(*symbol, std::move(*converted)); 1560 } 1561 } 1562 } else { 1563 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1564 } 1565 } else { 1566 AttachDeclaration( 1567 Say(expr.source, 1568 "Shape of component '%s' cannot be determined"_err_en_US, 1569 symbol->name()), 1570 *symbol); 1571 } 1572 } else if (IsAllocatable(*symbol) && 1573 std::holds_alternative<NullPointer>(value->u)) { 1574 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1575 } else if (auto symType{DynamicType::From(symbol)}) { 1576 if (valueType) { 1577 AttachDeclaration( 1578 Say(expr.source, 1579 "Value in structure constructor of type %s is " 1580 "incompatible with component '%s' of type %s"_err_en_US, 1581 valueType->AsFortran(), symbol->name(), 1582 symType->AsFortran()), 1583 *symbol); 1584 } else { 1585 AttachDeclaration( 1586 Say(expr.source, 1587 "Value in structure constructor is incompatible with " 1588 " component '%s' of type %s"_err_en_US, 1589 symbol->name(), symType->AsFortran()), 1590 *symbol); 1591 } 1592 } 1593 } 1594 } 1595 } 1596 1597 // Ensure that unmentioned component objects have default initializers. 1598 for (const Symbol &symbol : components) { 1599 if (!symbol.test(Symbol::Flag::ParentComp) && 1600 unavailable.find(symbol.name()) == unavailable.cend() && 1601 !IsAllocatable(symbol)) { 1602 if (const auto *details{ 1603 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1604 if (details->init()) { 1605 result.Add(symbol, common::Clone(*details->init())); 1606 } else { // C799 1607 AttachDeclaration(Say(typeName, 1608 "Structure constructor lacks a value for " 1609 "component '%s'"_err_en_US, 1610 symbol.name()), 1611 symbol); 1612 } 1613 } 1614 } 1615 } 1616 1617 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1618 } 1619 1620 static std::optional<parser::CharBlock> GetPassName( 1621 const semantics::Symbol &proc) { 1622 return std::visit( 1623 [](const auto &details) { 1624 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1625 std::decay_t<decltype(details)>>) { 1626 return details.passName(); 1627 } else { 1628 return std::optional<parser::CharBlock>{}; 1629 } 1630 }, 1631 proc.details()); 1632 } 1633 1634 static int GetPassIndex(const Symbol &proc) { 1635 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1636 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1637 const auto *interface{semantics::FindInterface(proc)}; 1638 if (!passName || !interface) { 1639 return 0; // first argument is passed-object 1640 } 1641 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1642 int index{0}; 1643 for (const auto *arg : subp.dummyArgs()) { 1644 if (arg && arg->name() == passName) { 1645 return index; 1646 } 1647 ++index; 1648 } 1649 DIE("PASS argument name not in dummy argument list"); 1650 } 1651 1652 // Injects an expression into an actual argument list as the "passed object" 1653 // for a type-bound procedure reference that is not NOPASS. Adds an 1654 // argument keyword if possible, but not when the passed object goes 1655 // before a positional argument. 1656 // e.g., obj%tbp(x) -> tbp(obj,x). 1657 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1658 const Symbol &component, bool isPassedObject = true) { 1659 if (component.attrs().test(semantics::Attr::NOPASS)) { 1660 return; 1661 } 1662 int passIndex{GetPassIndex(component)}; 1663 auto iter{actuals.begin()}; 1664 int at{0}; 1665 while (iter < actuals.end() && at < passIndex) { 1666 if (*iter && (*iter)->keyword()) { 1667 iter = actuals.end(); 1668 break; 1669 } 1670 ++iter; 1671 ++at; 1672 } 1673 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1674 passed.set_isPassedObject(isPassedObject); 1675 if (iter == actuals.end()) { 1676 if (auto passName{GetPassName(component)}) { 1677 passed.set_keyword(*passName); 1678 } 1679 } 1680 actuals.emplace(iter, std::move(passed)); 1681 } 1682 1683 // Return the compile-time resolution of a procedure binding, if possible. 1684 static const Symbol *GetBindingResolution( 1685 const std::optional<DynamicType> &baseType, const Symbol &component) { 1686 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1687 if (!binding) { 1688 return nullptr; 1689 } 1690 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1691 (!baseType || baseType->IsPolymorphic())) { 1692 return nullptr; 1693 } 1694 return &binding->symbol(); 1695 } 1696 1697 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1698 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1699 -> std::optional<CalleeAndArguments> { 1700 const parser::StructureComponent &sc{pcr.v.thing}; 1701 const auto &name{sc.component.source}; 1702 if (MaybeExpr base{Analyze(sc.base)}) { 1703 if (const Symbol * sym{sc.component.symbol}) { 1704 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1705 if (sym->has<semantics::GenericDetails>()) { 1706 AdjustActuals adjustment{ 1707 [&](const Symbol &proc, ActualArguments &actuals) { 1708 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1709 AddPassArg(actuals, std::move(*dtExpr), proc); 1710 } 1711 return true; 1712 }}; 1713 sym = ResolveGeneric(*sym, arguments, adjustment); 1714 if (!sym) { 1715 EmitGenericResolutionError(*sc.component.symbol); 1716 return std::nullopt; 1717 } 1718 } 1719 if (const Symbol * 1720 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1721 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1722 return CalleeAndArguments{ 1723 ProcedureDesignator{*resolution}, std::move(arguments)}; 1724 } else if (std::optional<DataRef> dataRef{ 1725 ExtractDataRef(std::move(*dtExpr))}) { 1726 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1727 return CalleeAndArguments{ 1728 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1729 std::move(arguments)}; 1730 } else { 1731 AddPassArg(arguments, 1732 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1733 *sym); 1734 return CalleeAndArguments{ 1735 ProcedureDesignator{*sym}, std::move(arguments)}; 1736 } 1737 } 1738 } 1739 Say(name, 1740 "Base of procedure component reference is not a derived-type object"_err_en_US); 1741 } 1742 } 1743 CHECK(!GetContextualMessages().empty()); 1744 return std::nullopt; 1745 } 1746 1747 // Can actual be argument associated with dummy? 1748 static bool CheckCompatibleArgument(bool isElemental, 1749 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1750 return std::visit( 1751 common::visitors{ 1752 [&](const characteristics::DummyDataObject &x) { 1753 characteristics::TypeAndShape dummyTypeAndShape{x.type}; 1754 if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) { 1755 return false; 1756 } else if (auto actualType{actual.GetType()}) { 1757 return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType); 1758 } else { 1759 return false; 1760 } 1761 }, 1762 [&](const characteristics::DummyProcedure &) { 1763 const auto *expr{actual.UnwrapExpr()}; 1764 return expr && IsProcedurePointer(*expr); 1765 }, 1766 [&](const characteristics::AlternateReturn &) { 1767 return actual.isAlternateReturn(); 1768 }, 1769 }, 1770 dummy.u); 1771 } 1772 1773 // Are the actual arguments compatible with the dummy arguments of procedure? 1774 static bool CheckCompatibleArguments( 1775 const characteristics::Procedure &procedure, 1776 const ActualArguments &actuals) { 1777 bool isElemental{procedure.IsElemental()}; 1778 const auto &dummies{procedure.dummyArguments}; 1779 CHECK(dummies.size() == actuals.size()); 1780 for (std::size_t i{0}; i < dummies.size(); ++i) { 1781 const characteristics::DummyArgument &dummy{dummies[i]}; 1782 const std::optional<ActualArgument> &actual{actuals[i]}; 1783 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1784 return false; 1785 } 1786 } 1787 return true; 1788 } 1789 1790 // Handles a forward reference to a module function from what must 1791 // be a specification expression. Return false if the symbol is 1792 // an invalid forward reference. 1793 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1794 if (context_.HasError(symbol)) { 1795 return false; 1796 } 1797 if (const auto *details{ 1798 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1799 if (details->kind() == semantics::SubprogramKind::Module) { 1800 // If this symbol is still a SubprogramNameDetails, we must be 1801 // checking a specification expression in a sibling module 1802 // procedure. Resolve its names now so that its interface 1803 // is known. 1804 semantics::ResolveSpecificationParts(context_, symbol); 1805 if (symbol.has<semantics::SubprogramNameDetails>()) { 1806 // When the symbol hasn't had its details updated, we must have 1807 // already been in the process of resolving the function's 1808 // specification part; but recursive function calls are not 1809 // allowed in specification parts (10.1.11 para 5). 1810 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1811 symbol.name()); 1812 context_.SetError(const_cast<Symbol &>(symbol)); 1813 return false; 1814 } 1815 } else { // 10.1.11 para 4 1816 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1817 symbol.name()); 1818 context_.SetError(const_cast<Symbol &>(symbol)); 1819 return false; 1820 } 1821 } 1822 return true; 1823 } 1824 1825 // Resolve a call to a generic procedure with given actual arguments. 1826 // adjustActuals is called on procedure bindings to handle pass arg. 1827 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1828 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1829 bool mightBeStructureConstructor) { 1830 const Symbol *elemental{nullptr}; // matching elemental specific proc 1831 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1832 for (const Symbol &specific : details.specificProcs()) { 1833 if (!ResolveForward(specific)) { 1834 continue; 1835 } 1836 if (std::optional<characteristics::Procedure> procedure{ 1837 characteristics::Procedure::Characterize( 1838 ProcedureDesignator{specific}, context_.intrinsics())}) { 1839 ActualArguments localActuals{actuals}; 1840 if (specific.has<semantics::ProcBindingDetails>()) { 1841 if (!adjustActuals.value()(specific, localActuals)) { 1842 continue; 1843 } 1844 } 1845 if (semantics::CheckInterfaceForGeneric( 1846 *procedure, localActuals, GetFoldingContext())) { 1847 if (CheckCompatibleArguments(*procedure, localActuals)) { 1848 if (!procedure->IsElemental()) { 1849 return &specific; // takes priority over elemental match 1850 } 1851 elemental = &specific; 1852 } 1853 } 1854 } 1855 } 1856 if (elemental) { 1857 return elemental; 1858 } 1859 // Check parent derived type 1860 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 1861 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 1862 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 1863 if (const Symbol * 1864 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 1865 return result; 1866 } 1867 } 1868 } 1869 } 1870 if (mightBeStructureConstructor && details.derivedType()) { 1871 return details.derivedType(); 1872 } 1873 return nullptr; 1874 } 1875 1876 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 1877 if (semantics::IsGenericDefinedOp(symbol)) { 1878 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 1879 symbol.name()); 1880 } else { 1881 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 1882 symbol.name()); 1883 } 1884 } 1885 1886 auto ExpressionAnalyzer::GetCalleeAndArguments( 1887 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 1888 bool isSubroutine, bool mightBeStructureConstructor) 1889 -> std::optional<CalleeAndArguments> { 1890 return std::visit( 1891 common::visitors{ 1892 [&](const parser::Name &name) { 1893 return GetCalleeAndArguments(name, std::move(arguments), 1894 isSubroutine, mightBeStructureConstructor); 1895 }, 1896 [&](const parser::ProcComponentRef &pcr) { 1897 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 1898 }, 1899 }, 1900 pd.u); 1901 } 1902 1903 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 1904 ActualArguments &&arguments, bool isSubroutine, 1905 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 1906 const Symbol *symbol{name.symbol}; 1907 if (context_.HasError(symbol)) { 1908 return std::nullopt; // also handles null symbol 1909 } 1910 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 1911 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 1912 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 1913 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 1914 arguments, GetFoldingContext())}) { 1915 return CalleeAndArguments{ 1916 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1917 std::move(specificCall->arguments)}; 1918 } 1919 } else { 1920 CheckForBadRecursion(name.source, ultimate); 1921 if (ultimate.has<semantics::GenericDetails>()) { 1922 ExpressionAnalyzer::AdjustActuals noAdjustment; 1923 symbol = ResolveGeneric( 1924 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 1925 } 1926 if (symbol) { 1927 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 1928 if (mightBeStructureConstructor) { 1929 return CalleeAndArguments{ 1930 semantics::SymbolRef{*symbol}, std::move(arguments)}; 1931 } 1932 } else { 1933 return CalleeAndArguments{ 1934 ProcedureDesignator{*symbol}, std::move(arguments)}; 1935 } 1936 } else if (std::optional<SpecificCall> specificCall{ 1937 context_.intrinsics().Probe( 1938 CallCharacteristics{ 1939 ultimate.name().ToString(), isSubroutine}, 1940 arguments, GetFoldingContext())}) { 1941 // Generics can extend intrinsics 1942 return CalleeAndArguments{ 1943 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1944 std::move(specificCall->arguments)}; 1945 } else { 1946 EmitGenericResolutionError(*name.symbol); 1947 } 1948 } 1949 return std::nullopt; 1950 } 1951 1952 void ExpressionAnalyzer::CheckForBadRecursion( 1953 parser::CharBlock callSite, const semantics::Symbol &proc) { 1954 if (const auto *scope{proc.scope()}) { 1955 if (scope->sourceRange().Contains(callSite)) { 1956 parser::Message *msg{nullptr}; 1957 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 1958 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 1959 callSite); 1960 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 1961 msg = Say( // 15.6.2.1(3) 1962 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 1963 callSite); 1964 } 1965 AttachDeclaration(msg, proc); 1966 } 1967 } 1968 } 1969 1970 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 1971 if (const auto *designator{ 1972 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 1973 if (const auto *dataRef{ 1974 std::get_if<parser::DataRef>(&designator->value().u)}) { 1975 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 1976 if (const Symbol * symbol{name->symbol}) { 1977 if (const auto *type{symbol->GetType()}) { 1978 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 1979 return symbol; 1980 } 1981 } 1982 } 1983 } 1984 } 1985 } 1986 return nullptr; 1987 } 1988 1989 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 1990 std::optional<parser::StructureConstructor> *structureConstructor) { 1991 const parser::Call &call{funcRef.v}; 1992 auto restorer{GetContextualMessages().SetLocation(call.source)}; 1993 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 1994 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 1995 analyzer.Analyze(arg, false /* not subroutine call */); 1996 } 1997 if (analyzer.fatalErrors()) { 1998 return std::nullopt; 1999 } 2000 if (std::optional<CalleeAndArguments> callee{ 2001 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2002 analyzer.GetActuals(), false /* not subroutine */, 2003 true /* might be structure constructor */)}) { 2004 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2005 return MakeFunctionRef( 2006 call.source, std::move(*proc), std::move(callee->arguments)); 2007 } else if (structureConstructor) { 2008 // Structure constructor misparsed as function reference? 2009 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2010 const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)}; 2011 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2012 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2013 semantics::Scope &scope{context_.FindScope(name->source)}; 2014 const semantics::DeclTypeSpec &type{ 2015 semantics::FindOrInstantiateDerivedType(scope, 2016 semantics::DerivedTypeSpec{ 2017 name->source, derivedType.GetUltimate()}, 2018 context_)}; 2019 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2020 *structureConstructor = 2021 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2022 return Analyze(structureConstructor->value()); 2023 } 2024 } 2025 } 2026 return std::nullopt; 2027 } 2028 2029 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2030 const parser::Call &call{callStmt.v}; 2031 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2032 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 2033 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2034 for (const auto &arg : actualArgList) { 2035 analyzer.Analyze(arg, true /* is subroutine call */); 2036 } 2037 if (!analyzer.fatalErrors()) { 2038 if (std::optional<CalleeAndArguments> callee{ 2039 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2040 analyzer.GetActuals(), true /* subroutine */)}) { 2041 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2042 CHECK(proc); 2043 if (CheckCall(call.source, *proc, callee->arguments)) { 2044 bool hasAlternateReturns{ 2045 callee->arguments.size() < actualArgList.size()}; 2046 callStmt.typedCall.Reset( 2047 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2048 hasAlternateReturns}, 2049 ProcedureRef::Deleter); 2050 } 2051 } 2052 } 2053 } 2054 2055 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2056 if (!x.typedAssignment) { 2057 ArgumentAnalyzer analyzer{*this}; 2058 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2059 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2060 if (analyzer.fatalErrors()) { 2061 x.typedAssignment.Reset( 2062 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2063 } else { 2064 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2065 Assignment assignment{ 2066 Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))}; 2067 if (procRef) { 2068 assignment.u = std::move(*procRef); 2069 } 2070 x.typedAssignment.Reset( 2071 new GenericAssignmentWrapper{std::move(assignment)}, 2072 GenericAssignmentWrapper::Deleter); 2073 } 2074 } 2075 return common::GetPtrFromOptional(x.typedAssignment->v); 2076 } 2077 2078 const Assignment *ExpressionAnalyzer::Analyze( 2079 const parser::PointerAssignmentStmt &x) { 2080 if (!x.typedAssignment) { 2081 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2082 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2083 if (!lhs || !rhs) { 2084 x.typedAssignment.Reset( 2085 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2086 } else { 2087 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2088 std::visit(common::visitors{ 2089 [&](const std::list<parser::BoundsRemapping> &list) { 2090 Assignment::BoundsRemapping bounds; 2091 for (const auto &elem : list) { 2092 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2093 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2094 if (lower && upper) { 2095 bounds.emplace_back(Fold(std::move(*lower)), 2096 Fold(std::move(*upper))); 2097 } 2098 } 2099 assignment.u = std::move(bounds); 2100 }, 2101 [&](const std::list<parser::BoundsSpec> &list) { 2102 Assignment::BoundsSpec bounds; 2103 for (const auto &bound : list) { 2104 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2105 bounds.emplace_back(Fold(std::move(*lower))); 2106 } 2107 } 2108 assignment.u = std::move(bounds); 2109 }, 2110 }, 2111 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2112 x.typedAssignment.Reset( 2113 new GenericAssignmentWrapper{std::move(assignment)}, 2114 GenericAssignmentWrapper::Deleter); 2115 } 2116 } 2117 return common::GetPtrFromOptional(x.typedAssignment->v); 2118 } 2119 2120 static bool IsExternalCalledImplicitly( 2121 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2122 if (const auto *symbol{proc.GetSymbol()}) { 2123 return symbol->has<semantics::SubprogramDetails>() && 2124 symbol->owner().IsGlobal() && 2125 (!symbol->scope() /*ENTRY*/ || 2126 !symbol->scope()->sourceRange().Contains(callSite)); 2127 } else { 2128 return false; 2129 } 2130 } 2131 2132 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2133 parser::CharBlock callSite, const ProcedureDesignator &proc, 2134 ActualArguments &arguments) { 2135 auto chars{ 2136 characteristics::Procedure::Characterize(proc, context_.intrinsics())}; 2137 if (chars) { 2138 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2139 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2140 Say(callSite, 2141 "References to the procedure '%s' require an explicit interface"_en_US, 2142 DEREF(proc.GetSymbol()).name()); 2143 } 2144 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2145 context_.FindScope(callSite), treatExternalAsImplicit); 2146 const Symbol *procSymbol{proc.GetSymbol()}; 2147 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2148 if (const semantics::Scope * 2149 pure{semantics::FindPureProcedureContaining( 2150 context_.FindScope(callSite))}) { 2151 Say(callSite, 2152 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2153 procSymbol->name(), DEREF(pure->symbol()).name()); 2154 } 2155 } 2156 } 2157 return chars; 2158 } 2159 2160 // Unary operations 2161 2162 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2163 if (MaybeExpr operand{Analyze(x.v.value())}) { 2164 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2165 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2166 if (semantics::IsProcedurePointer(*result)) { 2167 Say("A function reference that returns a procedure " 2168 "pointer may not be parenthesized"_err_en_US); // C1003 2169 } 2170 } 2171 } 2172 return Parenthesize(std::move(*operand)); 2173 } 2174 return std::nullopt; 2175 } 2176 2177 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2178 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2179 ArgumentAnalyzer analyzer{context}; 2180 analyzer.Analyze(x.v); 2181 if (analyzer.fatalErrors()) { 2182 return std::nullopt; 2183 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2184 if (opr == NumericOperator::Add) { 2185 return analyzer.MoveExpr(0); 2186 } else { 2187 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2188 } 2189 } else { 2190 return analyzer.TryDefinedOp(AsFortran(opr), 2191 "Operand of unary %s must be numeric; have %s"_err_en_US); 2192 } 2193 } 2194 2195 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2196 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2197 } 2198 2199 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2200 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2201 } 2202 2203 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2204 ArgumentAnalyzer analyzer{*this}; 2205 analyzer.Analyze(x.v); 2206 if (analyzer.fatalErrors()) { 2207 return std::nullopt; 2208 } else if (analyzer.IsIntrinsicLogical()) { 2209 return AsGenericExpr( 2210 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2211 } else { 2212 return analyzer.TryDefinedOp(LogicalOperator::Not, 2213 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2214 } 2215 } 2216 2217 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2218 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2219 // intrinsic function. 2220 // Use the actual source for the name of the call for error reporting. 2221 std::optional<ActualArgument> arg; 2222 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2223 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2224 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2225 arg = ActualArgument{std::move(*argExpr)}; 2226 } else { 2227 return std::nullopt; 2228 } 2229 parser::CharBlock at{GetContextualMessages().at()}; 2230 CHECK(at.size() >= 4); 2231 parser::CharBlock loc{at.begin() + 1, 3}; 2232 CHECK(loc == "loc"); 2233 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2234 } 2235 2236 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2237 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2238 ArgumentAnalyzer analyzer{*this, name.source}; 2239 analyzer.Analyze(std::get<1>(x.t)); 2240 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2241 "No operator %s defined for %s"_err_en_US, true); 2242 } 2243 2244 // Binary (dyadic) operations 2245 2246 template <template <typename> class OPR> 2247 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2248 const parser::Expr::IntrinsicBinary &x) { 2249 ArgumentAnalyzer analyzer{context}; 2250 analyzer.Analyze(std::get<0>(x.t)); 2251 analyzer.Analyze(std::get<1>(x.t)); 2252 if (analyzer.fatalErrors()) { 2253 return std::nullopt; 2254 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2255 return NumericOperation<OPR>(context.GetContextualMessages(), 2256 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2257 context.GetDefaultKind(TypeCategory::Real)); 2258 } else { 2259 return analyzer.TryDefinedOp(AsFortran(opr), 2260 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2261 } 2262 } 2263 2264 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2265 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2266 } 2267 2268 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2269 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2270 } 2271 2272 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2273 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2274 } 2275 2276 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2277 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2278 } 2279 2280 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2281 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2282 } 2283 2284 MaybeExpr ExpressionAnalyzer::Analyze( 2285 const parser::Expr::ComplexConstructor &x) { 2286 auto re{Analyze(std::get<0>(x.t).value())}; 2287 auto im{Analyze(std::get<1>(x.t).value())}; 2288 if (re && im) { 2289 ConformabilityCheck(GetContextualMessages(), *re, *im); 2290 } 2291 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2292 std::move(im), GetDefaultKind(TypeCategory::Real))); 2293 } 2294 2295 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2296 ArgumentAnalyzer analyzer{*this}; 2297 analyzer.Analyze(std::get<0>(x.t)); 2298 analyzer.Analyze(std::get<1>(x.t)); 2299 if (analyzer.fatalErrors()) { 2300 return std::nullopt; 2301 } else if (analyzer.IsIntrinsicConcat()) { 2302 return std::visit( 2303 [&](auto &&x, auto &&y) -> MaybeExpr { 2304 using T = ResultType<decltype(x)>; 2305 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2306 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2307 } else { 2308 DIE("different types for intrinsic concat"); 2309 } 2310 }, 2311 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2312 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2313 } else { 2314 return analyzer.TryDefinedOp("//", 2315 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2316 } 2317 } 2318 2319 // The Name represents a user-defined intrinsic operator. 2320 // If the actuals match one of the specific procedures, return a function ref. 2321 // Otherwise report the error in messages. 2322 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2323 const parser::Name &name, ActualArguments &&actuals) { 2324 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2325 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2326 return MakeFunctionRef(name.source, 2327 std::move(std::get<ProcedureDesignator>(callee->u)), 2328 std::move(callee->arguments)); 2329 } else { 2330 return std::nullopt; 2331 } 2332 } 2333 2334 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2335 const parser::Expr::IntrinsicBinary &x) { 2336 ArgumentAnalyzer analyzer{context}; 2337 analyzer.Analyze(std::get<0>(x.t)); 2338 analyzer.Analyze(std::get<1>(x.t)); 2339 if (analyzer.fatalErrors()) { 2340 return std::nullopt; 2341 } else { 2342 analyzer.ConvertBOZ(0, analyzer.GetType(1)); 2343 analyzer.ConvertBOZ(1, analyzer.GetType(0)); 2344 if (analyzer.IsIntrinsicRelational(opr)) { 2345 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2346 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2347 } else { 2348 return analyzer.TryDefinedOp(opr, 2349 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2350 } 2351 } 2352 } 2353 2354 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2355 return RelationHelper(*this, RelationalOperator::LT, x); 2356 } 2357 2358 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2359 return RelationHelper(*this, RelationalOperator::LE, x); 2360 } 2361 2362 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2363 return RelationHelper(*this, RelationalOperator::EQ, x); 2364 } 2365 2366 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2367 return RelationHelper(*this, RelationalOperator::NE, x); 2368 } 2369 2370 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2371 return RelationHelper(*this, RelationalOperator::GE, x); 2372 } 2373 2374 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2375 return RelationHelper(*this, RelationalOperator::GT, x); 2376 } 2377 2378 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2379 const parser::Expr::IntrinsicBinary &x) { 2380 ArgumentAnalyzer analyzer{context}; 2381 analyzer.Analyze(std::get<0>(x.t)); 2382 analyzer.Analyze(std::get<1>(x.t)); 2383 if (analyzer.fatalErrors()) { 2384 return std::nullopt; 2385 } else if (analyzer.IsIntrinsicLogical()) { 2386 return AsGenericExpr(BinaryLogicalOperation(opr, 2387 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2388 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2389 } else { 2390 return analyzer.TryDefinedOp( 2391 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2392 } 2393 } 2394 2395 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2396 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2397 } 2398 2399 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2400 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2401 } 2402 2403 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2404 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2405 } 2406 2407 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2408 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2409 } 2410 2411 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2412 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2413 ArgumentAnalyzer analyzer{*this, name.source}; 2414 analyzer.Analyze(std::get<1>(x.t)); 2415 analyzer.Analyze(std::get<2>(x.t)); 2416 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2417 "No operator %s defined for %s and %s"_err_en_US, true); 2418 } 2419 2420 static void CheckFuncRefToArrayElementRefHasSubscripts( 2421 semantics::SemanticsContext &context, 2422 const parser::FunctionReference &funcRef) { 2423 // Emit message if the function reference fix will end up an array element 2424 // reference with no subscripts because it will not be possible to later tell 2425 // the difference in expressions between empty subscript list due to bad 2426 // subscripts error recovery or because the user did not put any. 2427 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2428 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2429 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2430 if (!name) { 2431 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2432 } 2433 auto &msg{context.Say(funcRef.v.source, 2434 name->symbol && name->symbol->Rank() == 0 2435 ? "'%s' is not a function"_err_en_US 2436 : "Reference to array '%s' with empty subscript list"_err_en_US, 2437 name->source)}; 2438 if (name->symbol) { 2439 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2440 msg.Attach(name->source, 2441 "A result variable must be declared with RESULT to allow recursive " 2442 "function calls"_en_US); 2443 } else { 2444 AttachDeclaration(&msg, *name->symbol); 2445 } 2446 } 2447 } 2448 } 2449 2450 // Converts, if appropriate, an original misparse of ambiguous syntax like 2451 // A(1) as a function reference into an array reference. 2452 // Misparse structure constructors are detected elsewhere after generic 2453 // function call resolution fails. 2454 template <typename... A> 2455 static void FixMisparsedFunctionReference( 2456 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2457 // The parse tree is updated in situ when resolving an ambiguous parse. 2458 using uType = std::decay_t<decltype(constU)>; 2459 auto &u{const_cast<uType &>(constU)}; 2460 if (auto *func{ 2461 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2462 parser::FunctionReference &funcRef{func->value()}; 2463 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2464 if (Symbol * 2465 origSymbol{ 2466 std::visit(common::visitors{ 2467 [&](parser::Name &name) { return name.symbol; }, 2468 [&](parser::ProcComponentRef &pcr) { 2469 return pcr.v.thing.component.symbol; 2470 }, 2471 }, 2472 proc.u)}) { 2473 Symbol &symbol{origSymbol->GetUltimate()}; 2474 if (symbol.has<semantics::ObjectEntityDetails>() || 2475 symbol.has<semantics::AssocEntityDetails>()) { 2476 // Note that expression in AssocEntityDetails cannot be a procedure 2477 // pointer as per C1105 so this cannot be a function reference. 2478 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2479 uType>) { 2480 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2481 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2482 } else { 2483 DIE("can't fix misparsed function as array reference"); 2484 } 2485 } 2486 } 2487 } 2488 } 2489 2490 // Common handling of parse tree node types that retain the 2491 // representation of the analyzed expression. 2492 template <typename PARSED> 2493 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) { 2494 if (x.typedExpr) { 2495 return x.typedExpr->v; 2496 } 2497 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2498 std::is_same_v<PARSED, parser::Variable>) { 2499 FixMisparsedFunctionReference(context_, x.u); 2500 } 2501 if (AssumedTypeDummy(x)) { // C710 2502 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2503 } else if (MaybeExpr result{evaluate::Fold(foldingContext_, Analyze(x.u))}) { 2504 SetExpr(x, std::move(*result)); 2505 return x.typedExpr->v; 2506 } 2507 ResetExpr(x); 2508 if (!context_.AnyFatalError()) { 2509 std::string buf; 2510 llvm::raw_string_ostream dump{buf}; 2511 parser::DumpTree(dump, x); 2512 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2513 dump.str()); 2514 } 2515 fatalErrors_ = true; 2516 return std::nullopt; 2517 } 2518 2519 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2520 auto restorer{GetContextualMessages().SetLocation(expr.source)}; 2521 return ExprOrVariable(expr); 2522 } 2523 2524 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2525 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; 2526 return ExprOrVariable(variable); 2527 } 2528 2529 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2530 auto restorer{GetContextualMessages().SetLocation(x.source)}; 2531 return ExprOrVariable(x); 2532 } 2533 2534 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2535 TypeCategory category, 2536 const std::optional<parser::KindSelector> &selector) { 2537 int defaultKind{GetDefaultKind(category)}; 2538 if (!selector) { 2539 return Expr<SubscriptInteger>{defaultKind}; 2540 } 2541 return std::visit( 2542 common::visitors{ 2543 [&](const parser::ScalarIntConstantExpr &x) { 2544 if (MaybeExpr kind{Analyze(x)}) { 2545 Expr<SomeType> folded{Fold(std::move(*kind))}; 2546 if (std::optional<std::int64_t> code{ToInt64(folded)}) { 2547 if (CheckIntrinsicKind(category, *code)) { 2548 return Expr<SubscriptInteger>{*code}; 2549 } 2550 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) { 2551 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2552 } 2553 } 2554 return Expr<SubscriptInteger>{defaultKind}; 2555 }, 2556 [&](const parser::KindSelector::StarSize &x) { 2557 std::intmax_t size = x.v; 2558 if (!CheckIntrinsicSize(category, size)) { 2559 size = defaultKind; 2560 } else if (category == TypeCategory::Complex) { 2561 size /= 2; 2562 } 2563 return Expr<SubscriptInteger>{size}; 2564 }, 2565 }, 2566 selector->u); 2567 } 2568 2569 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2570 return context_.GetDefaultKind(category); 2571 } 2572 2573 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2574 common::TypeCategory category) { 2575 return {category, GetDefaultKind(category)}; 2576 } 2577 2578 bool ExpressionAnalyzer::CheckIntrinsicKind( 2579 TypeCategory category, std::int64_t kind) { 2580 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2581 return true; 2582 } else { 2583 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2584 ToUpperCase(EnumToString(category)), kind); 2585 return false; 2586 } 2587 } 2588 2589 bool ExpressionAnalyzer::CheckIntrinsicSize( 2590 TypeCategory category, std::int64_t size) { 2591 if (category == TypeCategory::Complex) { 2592 // COMPLEX*16 == COMPLEX(KIND=8) 2593 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2594 return true; 2595 } 2596 } else if (IsValidKindOfIntrinsicType(category, size)) { 2597 return true; 2598 } 2599 Say("%s*%jd is not a supported type"_err_en_US, 2600 ToUpperCase(EnumToString(category)), size); 2601 return false; 2602 } 2603 2604 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 2605 return impliedDos_.insert(std::make_pair(name, kind)).second; 2606 } 2607 2608 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 2609 auto iter{impliedDos_.find(name)}; 2610 if (iter != impliedDos_.end()) { 2611 impliedDos_.erase(iter); 2612 } 2613 } 2614 2615 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 2616 parser::CharBlock name) const { 2617 auto iter{impliedDos_.find(name)}; 2618 if (iter != impliedDos_.cend()) { 2619 return {iter->second}; 2620 } else { 2621 return std::nullopt; 2622 } 2623 } 2624 2625 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 2626 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 2627 if (result) { 2628 if (auto type{result->GetType()}) { 2629 if (type->category() != category) { // C885 2630 Say(at, "Must have %s type, but is %s"_err_en_US, 2631 ToUpperCase(EnumToString(category)), 2632 ToUpperCase(type->AsFortran())); 2633 return false; 2634 } else if (defaultKind) { 2635 int kind{context_.GetDefaultKind(category)}; 2636 if (type->kind() != kind) { 2637 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 2638 kind, ToUpperCase(EnumToString(category)), 2639 ToUpperCase(type->AsFortran())); 2640 return false; 2641 } 2642 } 2643 } else { 2644 Say(at, "Must have %s type, but is typeless"_err_en_US, 2645 ToUpperCase(EnumToString(category))); 2646 return false; 2647 } 2648 } 2649 return true; 2650 } 2651 2652 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 2653 ProcedureDesignator &&proc, ActualArguments &&arguments) { 2654 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 2655 if (intrinsic->name == "null" && arguments.empty()) { 2656 return Expr<SomeType>{NullPointer{}}; 2657 } 2658 } 2659 if (const Symbol * symbol{proc.GetSymbol()}) { 2660 if (!ResolveForward(*symbol)) { 2661 return std::nullopt; 2662 } 2663 } 2664 if (auto chars{CheckCall(callSite, proc, arguments)}) { 2665 if (chars->functionResult) { 2666 const auto &result{*chars->functionResult}; 2667 if (result.IsProcedurePointer()) { 2668 return Expr<SomeType>{ 2669 ProcedureRef{std::move(proc), std::move(arguments)}}; 2670 } else { 2671 // Not a procedure pointer, so type and shape are known. 2672 return TypedWrapper<FunctionRef, ProcedureRef>( 2673 DEREF(result.GetTypeAndShape()).type(), 2674 ProcedureRef{std::move(proc), std::move(arguments)}); 2675 } 2676 } 2677 } 2678 return std::nullopt; 2679 } 2680 2681 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 2682 parser::CharBlock intrinsic, ActualArguments &&arguments) { 2683 if (std::optional<SpecificCall> specificCall{ 2684 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 2685 arguments, context_.foldingContext())}) { 2686 return MakeFunctionRef(intrinsic, 2687 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2688 std::move(specificCall->arguments)); 2689 } else { 2690 return std::nullopt; 2691 } 2692 } 2693 2694 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 2695 source_.ExtendToCover(x.GetSource()); 2696 if (MaybeExpr expr{context_.Analyze(x)}) { 2697 if (!IsConstantExpr(*expr)) { 2698 actuals_.emplace_back(std::move(*expr)); 2699 return; 2700 } 2701 const Symbol *symbol{GetFirstSymbol(*expr)}; 2702 context_.Say(x.GetSource(), 2703 "Assignment to constant '%s' is not allowed"_err_en_US, 2704 symbol ? symbol->name() : x.GetSource()); 2705 } 2706 fatalErrors_ = true; 2707 } 2708 2709 void ArgumentAnalyzer::Analyze( 2710 const parser::ActualArgSpec &arg, bool isSubroutine) { 2711 // TODO: C1002: Allow a whole assumed-size array to appear if the dummy 2712 // argument would accept it. Handle by special-casing the context 2713 // ActualArg -> Variable -> Designator. 2714 // TODO: Actual arguments that are procedures and procedure pointers need to 2715 // be detected and represented (they're not expressions). 2716 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 2717 std::optional<ActualArgument> actual; 2718 bool isAltReturn{false}; 2719 std::visit(common::visitors{ 2720 [&](const common::Indirection<parser::Expr> &x) { 2721 // TODO: Distinguish & handle procedure name and 2722 // proc-component-ref 2723 actual = AnalyzeExpr(x.value()); 2724 }, 2725 [&](const parser::AltReturnSpec &) { 2726 if (!isSubroutine) { 2727 context_.Say( 2728 "alternate return specification may not appear on" 2729 " function reference"_err_en_US); 2730 } 2731 isAltReturn = true; 2732 }, 2733 [&](const parser::ActualArg::PercentRef &) { 2734 context_.Say("TODO: %REF() argument"_err_en_US); 2735 }, 2736 [&](const parser::ActualArg::PercentVal &) { 2737 context_.Say("TODO: %VAL() argument"_err_en_US); 2738 }, 2739 }, 2740 std::get<parser::ActualArg>(arg.t).u); 2741 if (actual) { 2742 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 2743 actual->set_keyword(argKW->v.source); 2744 } 2745 actuals_.emplace_back(std::move(*actual)); 2746 } else if (!isAltReturn) { 2747 fatalErrors_ = true; 2748 } 2749 } 2750 2751 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 2752 CHECK(actuals_.size() == 2); 2753 return semantics::IsIntrinsicRelational( 2754 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2755 } 2756 2757 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 2758 std::optional<DynamicType> type0{GetType(0)}; 2759 if (actuals_.size() == 1) { 2760 if (IsBOZLiteral(0)) { 2761 return opr == NumericOperator::Add; 2762 } else { 2763 return type0 && semantics::IsIntrinsicNumeric(*type0); 2764 } 2765 } else { 2766 std::optional<DynamicType> type1{GetType(1)}; 2767 if (IsBOZLiteral(0) && type1) { 2768 auto cat1{type1->category()}; 2769 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 2770 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 2771 auto cat0{type0->category()}; 2772 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 2773 } else { 2774 return type0 && type1 && 2775 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 2776 } 2777 } 2778 } 2779 2780 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 2781 if (actuals_.size() == 1) { 2782 return semantics::IsIntrinsicLogical(*GetType(0)); 2783 return GetType(0)->category() == TypeCategory::Logical; 2784 } else { 2785 return semantics::IsIntrinsicLogical( 2786 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2787 } 2788 } 2789 2790 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 2791 return semantics::IsIntrinsicConcat( 2792 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2793 } 2794 2795 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2796 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 2797 if (AnyUntypedOperand()) { 2798 context_.Say( 2799 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2800 return std::nullopt; 2801 } 2802 { 2803 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2804 std::string oprNameString{ 2805 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 2806 parser::CharBlock oprName{oprNameString}; 2807 const auto &scope{context_.context().FindScope(source_)}; 2808 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 2809 parser::Name name{symbol->name(), symbol}; 2810 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 2811 return result; 2812 } 2813 sawDefinedOp_ = symbol; 2814 } 2815 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2816 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 2817 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 2818 return result; 2819 } 2820 } 2821 } 2822 } 2823 if (sawDefinedOp_) { 2824 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 2825 } else if (actuals_.size() == 1 || AreConformable()) { 2826 context_.Say( 2827 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2828 } else { 2829 context_.Say( 2830 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 2831 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 2832 } 2833 return std::nullopt; 2834 } 2835 2836 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2837 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 2838 for (std::size_t i{1}; i < oprs.size(); ++i) { 2839 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2840 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 2841 return result; 2842 } 2843 } 2844 return TryDefinedOp(oprs[0], std::move(error)); 2845 } 2846 2847 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 2848 ActualArguments localActuals{actuals_}; 2849 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 2850 if (!proc) { 2851 proc = &symbol; 2852 localActuals.at(passIndex).value().set_isPassedObject(); 2853 } 2854 return context_.MakeFunctionRef( 2855 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 2856 } 2857 2858 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 2859 using semantics::Tristate; 2860 const Expr<SomeType> &lhs{GetExpr(0)}; 2861 const Expr<SomeType> &rhs{GetExpr(1)}; 2862 std::optional<DynamicType> lhsType{lhs.GetType()}; 2863 std::optional<DynamicType> rhsType{rhs.GetType()}; 2864 int lhsRank{lhs.Rank()}; 2865 int rhsRank{rhs.Rank()}; 2866 Tristate isDefined{ 2867 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 2868 if (isDefined == Tristate::No) { 2869 if (lhsType && rhsType) { 2870 AddAssignmentConversion(*lhsType, *rhsType); 2871 } 2872 return std::nullopt; // user-defined assignment not allowed for these args 2873 } 2874 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 2875 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 2876 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 2877 return std::move(*procRef); 2878 } 2879 if (isDefined == Tristate::Yes) { 2880 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 2881 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 2882 SayNoMatch("ASSIGNMENT(=)", true); 2883 } 2884 } 2885 return std::nullopt; 2886 } 2887 2888 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 2889 TypeCategory lhs, TypeCategory rhs) { 2890 if (!context_.context().languageFeatures().IsEnabled( 2891 common::LanguageFeature::LogicalIntegerAssignment)) { 2892 return false; 2893 } 2894 std::optional<parser::MessageFixedText> msg; 2895 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 2896 // allow assignment to LOGICAL from INTEGER as a legacy extension 2897 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 2898 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 2899 // ... and assignment to LOGICAL from INTEGER 2900 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 2901 } else { 2902 return false; 2903 } 2904 if (context_.context().languageFeatures().ShouldWarn( 2905 common::LanguageFeature::LogicalIntegerAssignment)) { 2906 context_.Say(std::move(*msg)); 2907 } 2908 return true; 2909 } 2910 2911 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 2912 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2913 std::string oprNameString{"assignment(=)"}; 2914 parser::CharBlock oprName{oprNameString}; 2915 const Symbol *proc{nullptr}; 2916 const auto &scope{context_.context().FindScope(source_)}; 2917 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 2918 ExpressionAnalyzer::AdjustActuals noAdjustment; 2919 if (const Symbol * 2920 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 2921 proc = specific; 2922 } else { 2923 context_.EmitGenericResolutionError(*symbol); 2924 } 2925 } 2926 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2927 if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) { 2928 proc = specific; 2929 } 2930 } 2931 if (proc) { 2932 ActualArguments actualsCopy{actuals_}; 2933 actualsCopy[1]->Parenthesize(); 2934 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 2935 } else { 2936 return std::nullopt; 2937 } 2938 } 2939 2940 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 2941 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 2942 << '\n'; 2943 for (const auto &actual : actuals_) { 2944 if (!actual.has_value()) { 2945 os << "- error\n"; 2946 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 2947 os << "- assumed type: " << symbol->name().ToString() << '\n'; 2948 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 2949 expr->AsFortran(os << "- expr: ") << '\n'; 2950 } else { 2951 DIE("bad ActualArgument"); 2952 } 2953 } 2954 } 2955 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 2956 const parser::Expr &expr) { 2957 source_.ExtendToCover(expr.source); 2958 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 2959 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 2960 if (allowAssumedType_) { 2961 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2962 } else { 2963 context_.SayAt(expr.source, 2964 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2965 return std::nullopt; 2966 } 2967 } else if (MaybeExpr argExpr{context_.Analyze(expr)}) { 2968 return ActualArgument{context_.Fold(std::move(*argExpr))}; 2969 } else { 2970 return std::nullopt; 2971 } 2972 } 2973 2974 bool ArgumentAnalyzer::AreConformable() const { 2975 CHECK(!fatalErrors_ && actuals_.size() == 2); 2976 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 2977 } 2978 2979 // Look for a type-bound operator in the type of arg number passIndex. 2980 const Symbol *ArgumentAnalyzer::FindBoundOp( 2981 parser::CharBlock oprName, int passIndex) { 2982 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 2983 if (!type || !type->scope()) { 2984 return nullptr; 2985 } 2986 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 2987 if (!symbol) { 2988 return nullptr; 2989 } 2990 sawDefinedOp_ = symbol; 2991 ExpressionAnalyzer::AdjustActuals adjustment{ 2992 [&](const Symbol &proc, ActualArguments &) { 2993 return passIndex == GetPassIndex(proc); 2994 }}; 2995 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 2996 if (!result) { 2997 context_.EmitGenericResolutionError(*symbol); 2998 } 2999 return result; 3000 } 3001 3002 // If there is an implicit conversion between intrinsic types, make it explicit 3003 void ArgumentAnalyzer::AddAssignmentConversion( 3004 const DynamicType &lhsType, const DynamicType &rhsType) { 3005 if (lhsType.category() == rhsType.category() && 3006 lhsType.kind() == rhsType.kind()) { 3007 // no conversion necessary 3008 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3009 actuals_[1] = ActualArgument{*rhsExpr}; 3010 } else { 3011 actuals_[1] = std::nullopt; 3012 } 3013 } 3014 3015 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3016 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3017 } 3018 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3019 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3020 } 3021 3022 // If the argument at index i is a BOZ literal, convert its type to match the 3023 // otherType. It it's REAL convert to REAL, otherwise convert to INTEGER. 3024 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3025 // is not currently supported. 3026 void ArgumentAnalyzer::ConvertBOZ( 3027 std::size_t i, std::optional<DynamicType> otherType) { 3028 if (IsBOZLiteral(i)) { 3029 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3030 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3031 if (otherType && otherType->category() == TypeCategory::Real) { 3032 MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>( 3033 context_.context().GetDefaultKind(TypeCategory::Real), 3034 std::move(*boz))}; 3035 actuals_[i] = std::move(*realExpr); 3036 } else { 3037 MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>( 3038 context_.context().GetDefaultKind(TypeCategory::Integer), 3039 std::move(*boz))}; 3040 actuals_[i] = std::move(*intExpr); 3041 } 3042 } 3043 } 3044 3045 // Report error resolving opr when there is a user-defined one available 3046 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3047 std::string type0{TypeAsFortran(0)}; 3048 auto rank0{actuals_[0]->Rank()}; 3049 if (actuals_.size() == 1) { 3050 if (rank0 > 0) { 3051 context_.Say("No intrinsic or user-defined %s matches " 3052 "rank %d array of %s"_err_en_US, 3053 opr, rank0, type0); 3054 } else { 3055 context_.Say("No intrinsic or user-defined %s matches " 3056 "operand type %s"_err_en_US, 3057 opr, type0); 3058 } 3059 } else { 3060 std::string type1{TypeAsFortran(1)}; 3061 auto rank1{actuals_[1]->Rank()}; 3062 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3063 context_.Say("No intrinsic or user-defined %s matches " 3064 "rank %d array of %s and rank %d array of %s"_err_en_US, 3065 opr, rank0, type0, rank1, type1); 3066 } else if (isAssignment && rank0 != rank1) { 3067 if (rank0 == 0) { 3068 context_.Say("No intrinsic or user-defined %s matches " 3069 "scalar %s and rank %d array of %s"_err_en_US, 3070 opr, type0, rank1, type1); 3071 } else { 3072 context_.Say("No intrinsic or user-defined %s matches " 3073 "rank %d array of %s and scalar %s"_err_en_US, 3074 opr, rank0, type0, type1); 3075 } 3076 } else { 3077 context_.Say("No intrinsic or user-defined %s matches " 3078 "operand types %s and %s"_err_en_US, 3079 opr, type0, type1); 3080 } 3081 } 3082 } 3083 3084 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3085 if (std::optional<DynamicType> type{GetType(i)}) { 3086 return type->category() == TypeCategory::Derived 3087 ? "TYPE("s + type->AsFortran() + ')' 3088 : type->category() == TypeCategory::Character 3089 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3090 : ToUpperCase(type->AsFortran()); 3091 } else { 3092 return "untyped"; 3093 } 3094 } 3095 3096 bool ArgumentAnalyzer::AnyUntypedOperand() { 3097 for (const auto &actual : actuals_) { 3098 if (!actual.value().GetType()) { 3099 return true; 3100 } 3101 } 3102 return false; 3103 } 3104 3105 } // namespace Fortran::evaluate 3106 3107 namespace Fortran::semantics { 3108 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3109 SemanticsContext &context, common::TypeCategory category, 3110 const std::optional<parser::KindSelector> &selector) { 3111 evaluate::ExpressionAnalyzer analyzer{context}; 3112 auto restorer{ 3113 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3114 return analyzer.AnalyzeKindSelector(category, selector); 3115 } 3116 3117 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3118 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3119 } 3120 3121 const evaluate::Assignment *AnalyzeAssignmentStmt( 3122 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3123 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3124 } 3125 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3126 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3127 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3128 } 3129 3130 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3131 3132 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3133 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3134 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3135 auto name{bounds.name.thing.thing}; 3136 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3137 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3138 if (dynamicType->category() == TypeCategory::Integer) { 3139 kind = dynamicType->kind(); 3140 } 3141 } 3142 exprAnalyzer_.AddImpliedDo(name.source, kind); 3143 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3144 exprAnalyzer_.RemoveImpliedDo(name.source); 3145 return false; 3146 } 3147 3148 bool ExprChecker::Walk(const parser::Program &program) { 3149 parser::Walk(program, *this); 3150 return !context_.AnyFatalError(); 3151 } 3152 } // namespace Fortran::semantics 3153