1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/idioms.h" 14 #include "flang/Evaluate/common.h" 15 #include "flang/Evaluate/fold.h" 16 #include "flang/Evaluate/tools.h" 17 #include "flang/Parser/characters.h" 18 #include "flang/Parser/dump-parse-tree.h" 19 #include "flang/Parser/parse-tree-visitor.h" 20 #include "flang/Parser/parse-tree.h" 21 #include "flang/Semantics/scope.h" 22 #include "flang/Semantics/semantics.h" 23 #include "flang/Semantics/symbol.h" 24 #include "flang/Semantics/tools.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <functional> 28 #include <optional> 29 #include <set> 30 31 // Typedef for optional generic expressions (ubiquitous in this file) 32 using MaybeExpr = 33 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 34 35 // Much of the code that implements semantic analysis of expressions is 36 // tightly coupled with their typed representations in lib/Evaluate, 37 // and appears here in namespace Fortran::evaluate for convenience. 38 namespace Fortran::evaluate { 39 40 using common::LanguageFeature; 41 using common::NumericOperator; 42 using common::TypeCategory; 43 44 static inline std::string ToUpperCase(const std::string &str) { 45 return parser::ToUpperCaseLetters(str); 46 } 47 48 struct DynamicTypeWithLength : public DynamicType { 49 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 50 std::optional<Expr<SubscriptInteger>> LEN() const; 51 std::optional<Expr<SubscriptInteger>> length; 52 }; 53 54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 55 if (length) { 56 return length; 57 } 58 if (auto *lengthParam{charLength()}) { 59 if (const auto &len{lengthParam->GetExplicit()}) { 60 return ConvertToType<SubscriptInteger>(common::Clone(*len)); 61 } 62 } 63 return std::nullopt; // assumed or deferred length 64 } 65 66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 67 const std::optional<parser::TypeSpec> &spec) { 68 if (spec) { 69 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 70 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 71 // (viz., an intrinsic type with valid known kind or a non-polymorphic 72 // & non-ABSTRACT derived type). 73 if (const semantics::IntrinsicTypeSpec * 74 intrinsic{typeSpec->AsIntrinsic()}) { 75 TypeCategory category{intrinsic->category()}; 76 if (auto optKind{ToInt64(intrinsic->kind())}) { 77 int kind{static_cast<int>(*optKind)}; 78 if (category == TypeCategory::Character) { 79 const semantics::CharacterTypeSpec &cts{ 80 typeSpec->characterTypeSpec()}; 81 const semantics::ParamValue &len{cts.length()}; 82 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 83 // type guards, but not in array constructors. 84 return DynamicTypeWithLength{DynamicType{kind, len}}; 85 } else { 86 return DynamicTypeWithLength{DynamicType{category, kind}}; 87 } 88 } 89 } else if (const semantics::DerivedTypeSpec * 90 derived{typeSpec->AsDerived()}) { 91 return DynamicTypeWithLength{DynamicType{*derived}}; 92 } 93 } 94 } 95 return std::nullopt; 96 } 97 98 class ArgumentAnalyzer { 99 public: 100 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 101 : context_{context}, allowAssumedType_{false} {} 102 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 103 bool allowAssumedType = false) 104 : context_{context}, source_{source}, allowAssumedType_{ 105 allowAssumedType} {} 106 bool fatalErrors() const { return fatalErrors_; } 107 ActualArguments &&GetActuals() { 108 CHECK(!fatalErrors_); 109 return std::move(actuals_); 110 } 111 const Expr<SomeType> &GetExpr(std::size_t i) const { 112 return DEREF(actuals_.at(i).value().UnwrapExpr()); 113 } 114 Expr<SomeType> &&MoveExpr(std::size_t i) { 115 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 116 } 117 void Analyze(const common::Indirection<parser::Expr> &x) { 118 Analyze(x.value()); 119 } 120 void Analyze(const parser::Expr &x) { 121 actuals_.emplace_back(AnalyzeExpr(x)); 122 fatalErrors_ |= !actuals_.back(); 123 } 124 void Analyze(const parser::Variable &); 125 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 126 127 bool IsIntrinsicRelational(RelationalOperator) const; 128 bool IsIntrinsicLogical() const; 129 bool IsIntrinsicNumeric(NumericOperator) const; 130 bool IsIntrinsicConcat() const; 131 132 // Find and return a user-defined operator or report an error. 133 // The provided message is used if there is no such operator. 134 MaybeExpr TryDefinedOp( 135 const char *, parser::MessageFixedText &&, bool isUserOp = false); 136 template <typename E> 137 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 138 return TryDefinedOp( 139 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 140 } 141 // Find and return a user-defined assignment 142 std::optional<ProcedureRef> TryDefinedAssignment(); 143 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 144 void Dump(llvm::raw_ostream &); 145 146 private: 147 MaybeExpr TryDefinedOp( 148 std::vector<const char *>, parser::MessageFixedText &&); 149 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 150 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 151 bool AreConformable() const; 152 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 153 void AddAssignmentConversion( 154 const DynamicType &lhsType, const DynamicType &rhsType); 155 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 156 std::optional<DynamicType> GetType(std::size_t) const; 157 int GetRank(std::size_t) const; 158 bool IsBOZLiteral(std::size_t i) const { 159 return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u); 160 } 161 void SayNoMatch(const std::string &, bool isAssignment = false); 162 std::string TypeAsFortran(std::size_t); 163 bool AnyUntypedOperand(); 164 165 ExpressionAnalyzer &context_; 166 ActualArguments actuals_; 167 parser::CharBlock source_; 168 bool fatalErrors_{false}; 169 const bool allowAssumedType_; 170 const Symbol *sawDefinedOp_{nullptr}; 171 }; 172 173 // Wraps a data reference in a typed Designator<>, and a procedure 174 // or procedure pointer reference in a ProcedureDesignator. 175 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 176 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 177 if (semantics::IsProcedure(symbol)) { 178 if (auto *component{std::get_if<Component>(&ref.u)}) { 179 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 180 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 181 DIE("unexpected alternative in DataRef"); 182 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 183 return Expr<SomeType>{ProcedureDesignator{symbol}}; 184 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 185 symbol.name().ToString())}) { 186 SpecificIntrinsic intrinsic{ 187 symbol.name().ToString(), std::move(*interface)}; 188 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 189 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 190 } else { 191 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 192 symbol.name()); 193 return std::nullopt; 194 } 195 } else if (auto dyType{DynamicType::From(symbol)}) { 196 return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); 197 } 198 return std::nullopt; 199 } 200 201 // Some subscript semantic checks must be deferred until all of the 202 // subscripts are in hand. 203 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 204 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 205 const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 206 int symbolRank{symbol.Rank()}; 207 int subscripts{static_cast<int>(ref.size())}; 208 if (subscripts == 0) { 209 // nothing to check 210 } else if (subscripts != symbolRank) { 211 if (symbolRank != 0) { 212 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 213 symbolRank, symbol.name(), subscripts); 214 } 215 return std::nullopt; 216 } else if (Component * component{ref.base().UnwrapComponent()}) { 217 int baseRank{component->base().Rank()}; 218 if (baseRank > 0) { 219 int subscriptRank{0}; 220 for (const auto &expr : ref.subscript()) { 221 subscriptRank += expr.Rank(); 222 } 223 if (subscriptRank > 0) { 224 Say("Subscripts of component '%s' of rank-%d derived type " 225 "array have rank %d but must all be scalar"_err_en_US, 226 symbol.name(), baseRank, subscriptRank); 227 return std::nullopt; 228 } 229 } 230 } else if (object) { 231 // C928 & C1002 232 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 233 if (!last->upper() && object->IsAssumedSize()) { 234 Say("Assumed-size array '%s' must have explicit final " 235 "subscript upper bound value"_err_en_US, 236 symbol.name()); 237 return std::nullopt; 238 } 239 } 240 } 241 return Designate(DataRef{std::move(ref)}); 242 } 243 244 // Applies subscripts to a data reference. 245 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 246 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 247 return std::visit( 248 common::visitors{ 249 [&](SymbolRef &&symbol) { 250 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 251 }, 252 [&](Component &&c) { 253 return CompleteSubscripts( 254 ArrayRef{std::move(c), std::move(subscripts)}); 255 }, 256 [&](auto &&) -> MaybeExpr { 257 DIE("bad base for ArrayRef"); 258 return std::nullopt; 259 }, 260 }, 261 std::move(dataRef.u)); 262 } 263 264 // Top-level checks for data references. 265 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 266 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 267 const Symbol &symbol{component->GetLastSymbol()}; 268 int componentRank{symbol.Rank()}; 269 if (componentRank > 0) { 270 int baseRank{component->base().Rank()}; 271 if (baseRank > 0) { 272 Say("Reference to whole rank-%d component '%%%s' of " 273 "rank-%d array of derived type is not allowed"_err_en_US, 274 componentRank, symbol.name(), baseRank); 275 } 276 } 277 } 278 return Designate(std::move(dataRef)); 279 } 280 281 // Parse tree correction after a substring S(j:k) was misparsed as an 282 // array section. N.B. Fortran substrings have to have a range, not a 283 // single index. 284 static void FixMisparsedSubstring(const parser::Designator &d) { 285 auto &mutate{const_cast<parser::Designator &>(d)}; 286 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 287 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 288 &dataRef->u)}) { 289 parser::ArrayElement &arrElement{ae->value()}; 290 if (!arrElement.subscripts.empty()) { 291 auto iter{arrElement.subscripts.begin()}; 292 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 293 if (!std::get<2>(triplet->t) /* no stride */ && 294 ++iter == arrElement.subscripts.end() /* one subscript */) { 295 if (Symbol * 296 symbol{std::visit( 297 common::visitors{ 298 [](parser::Name &n) { return n.symbol; }, 299 [](common::Indirection<parser::StructureComponent> 300 &sc) { return sc.value().component.symbol; }, 301 [](auto &) -> Symbol * { return nullptr; }, 302 }, 303 arrElement.base.u)}) { 304 const Symbol &ultimate{symbol->GetUltimate()}; 305 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 306 if (!ultimate.IsObjectArray() && 307 type->category() == semantics::DeclTypeSpec::Character) { 308 // The ambiguous S(j:k) was parsed as an array section 309 // reference, but it's now clear that it's a substring. 310 // Fix the parse tree in situ. 311 mutate.u = arrElement.ConvertToSubstring(); 312 } 313 } 314 } 315 } 316 } 317 } 318 } 319 } 320 } 321 322 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 323 auto restorer{GetContextualMessages().SetLocation(d.source)}; 324 FixMisparsedSubstring(d); 325 // These checks have to be deferred to these "top level" data-refs where 326 // we can be sure that there are no following subscripts (yet). 327 // Substrings have already been run through TopLevelChecks() and 328 // won't be returned by ExtractDataRef(). 329 if (MaybeExpr result{Analyze(d.u)}) { 330 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 331 return TopLevelChecks(std::move(*dataRef)); 332 } 333 return result; 334 } 335 return std::nullopt; 336 } 337 338 // A utility subroutine to repackage optional expressions of various levels 339 // of type specificity as fully general MaybeExpr values. 340 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 341 return AsGenericExpr(std::move(x)); 342 } 343 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 344 if (x) { 345 return AsMaybeExpr(std::move(*x)); 346 } 347 return std::nullopt; 348 } 349 350 // Type kind parameter values for literal constants. 351 int ExpressionAnalyzer::AnalyzeKindParam( 352 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 353 if (!kindParam) { 354 return defaultKind; 355 } 356 return std::visit( 357 common::visitors{ 358 [](std::uint64_t k) { return static_cast<int>(k); }, 359 [&](const parser::Scalar< 360 parser::Integer<parser::Constant<parser::Name>>> &n) { 361 if (MaybeExpr ie{Analyze(n)}) { 362 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 363 int iv = *i64; 364 if (iv == *i64) { 365 return iv; 366 } 367 } 368 } 369 return defaultKind; 370 }, 371 }, 372 kindParam->u); 373 } 374 375 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 376 struct IntTypeVisitor { 377 using Result = MaybeExpr; 378 using Types = IntegerTypes; 379 template <typename T> Result Test() { 380 if (T::kind >= kind) { 381 const char *p{digits.begin()}; 382 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 383 if (!value.overflow) { 384 if (T::kind > kind) { 385 if (!isDefaultKind || 386 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 387 return std::nullopt; 388 } else if (analyzer.context().ShouldWarn( 389 LanguageFeature::BigIntLiterals)) { 390 analyzer.Say(digits, 391 "Integer literal is too large for default INTEGER(KIND=%d); " 392 "assuming INTEGER(KIND=%d)"_en_US, 393 kind, T::kind); 394 } 395 } 396 return Expr<SomeType>{ 397 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 398 } 399 } 400 return std::nullopt; 401 } 402 ExpressionAnalyzer &analyzer; 403 parser::CharBlock digits; 404 int kind; 405 bool isDefaultKind; 406 }; 407 408 template <typename PARSED> 409 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 410 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 411 bool isDefaultKind{!kindParam}; 412 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 413 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 414 auto digits{std::get<parser::CharBlock>(x.t)}; 415 if (MaybeExpr result{common::SearchTypes( 416 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 417 return result; 418 } else if (isDefaultKind) { 419 Say(digits, 420 "Integer literal is too large for any allowable " 421 "kind of INTEGER"_err_en_US); 422 } else { 423 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 424 kind); 425 } 426 } 427 return std::nullopt; 428 } 429 430 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 431 auto restorer{ 432 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 433 return IntLiteralConstant(x); 434 } 435 436 MaybeExpr ExpressionAnalyzer::Analyze( 437 const parser::SignedIntLiteralConstant &x) { 438 auto restorer{GetContextualMessages().SetLocation(x.source)}; 439 return IntLiteralConstant(x); 440 } 441 442 template <typename TYPE> 443 Constant<TYPE> ReadRealLiteral( 444 parser::CharBlock source, FoldingContext &context) { 445 const char *p{source.begin()}; 446 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 447 CHECK(p == source.end()); 448 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 449 auto value{valWithFlags.value}; 450 if (context.flushSubnormalsToZero()) { 451 value = value.FlushSubnormalToZero(); 452 } 453 return {value}; 454 } 455 456 struct RealTypeVisitor { 457 using Result = std::optional<Expr<SomeReal>>; 458 using Types = RealTypes; 459 460 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 461 : kind{k}, literal{lit}, context{ctx} {} 462 463 template <typename T> Result Test() { 464 if (kind == T::kind) { 465 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 466 } 467 return std::nullopt; 468 } 469 470 int kind; 471 parser::CharBlock literal; 472 FoldingContext &context; 473 }; 474 475 // Reads a real literal constant and encodes it with the right kind. 476 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 477 // Use a local message context around the real literal for better 478 // provenance on any messages. 479 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 480 // If a kind parameter appears, it defines the kind of the literal and the 481 // letter used in an exponent part must be 'E' (e.g., the 'E' in 482 // "6.02214E+23"). In the absence of an explicit kind parameter, any 483 // exponent letter determines the kind. Otherwise, defaults apply. 484 auto &defaults{context_.defaultKinds()}; 485 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 486 const char *end{x.real.source.end()}; 487 char expoLetter{' '}; 488 std::optional<int> letterKind; 489 for (const char *p{x.real.source.begin()}; p < end; ++p) { 490 if (parser::IsLetter(*p)) { 491 expoLetter = *p; 492 switch (expoLetter) { 493 case 'e': 494 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 495 break; 496 case 'd': 497 letterKind = defaults.doublePrecisionKind(); 498 break; 499 case 'q': 500 letterKind = defaults.quadPrecisionKind(); 501 break; 502 default: 503 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 504 } 505 break; 506 } 507 } 508 if (letterKind) { 509 defaultKind = *letterKind; 510 } 511 // C716 requires 'E' as an exponent, but this is more useful 512 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 513 if (letterKind && kind != *letterKind && expoLetter != 'e') { 514 Say("Explicit kind parameter on real constant disagrees with " 515 "exponent letter '%c'"_en_US, 516 expoLetter); 517 } 518 auto result{common::SearchTypes( 519 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 520 if (!result) { // C717 521 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 522 } 523 return AsMaybeExpr(std::move(result)); 524 } 525 526 MaybeExpr ExpressionAnalyzer::Analyze( 527 const parser::SignedRealLiteralConstant &x) { 528 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 529 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 530 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 531 if (sign == parser::Sign::Negative) { 532 return AsGenericExpr(-std::move(realExpr)); 533 } 534 } 535 return result; 536 } 537 return std::nullopt; 538 } 539 540 MaybeExpr ExpressionAnalyzer::Analyze( 541 const parser::SignedComplexLiteralConstant &x) { 542 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 543 if (!result) { 544 return std::nullopt; 545 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 546 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 547 } else { 548 return result; 549 } 550 } 551 552 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 553 return Analyze(x.u); 554 } 555 556 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 557 return AsMaybeExpr( 558 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 559 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 560 } 561 562 // CHARACTER literal processing. 563 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 564 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 565 return std::nullopt; 566 } 567 switch (kind) { 568 case 1: 569 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 570 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 571 string, true)}); 572 case 2: 573 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 574 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 575 string, true)}); 576 case 4: 577 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 578 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 579 string, true)}); 580 default: 581 CRASH_NO_CASE; 582 } 583 } 584 585 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 586 int kind{ 587 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 588 auto value{std::get<std::string>(x.t)}; 589 return AnalyzeString(std::move(value), kind); 590 } 591 592 MaybeExpr ExpressionAnalyzer::Analyze( 593 const parser::HollerithLiteralConstant &x) { 594 int kind{GetDefaultKind(TypeCategory::Character)}; 595 auto value{x.v}; 596 return AnalyzeString(std::move(value), kind); 597 } 598 599 // .TRUE. and .FALSE. of various kinds 600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 601 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 602 GetDefaultKind(TypeCategory::Logical))}; 603 bool value{std::get<bool>(x.t)}; 604 auto result{common::SearchTypes( 605 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 606 kind, std::move(value)})}; 607 if (!result) { 608 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 609 } 610 return result; 611 } 612 613 // BOZ typeless literals 614 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 615 const char *p{x.v.c_str()}; 616 std::uint64_t base{16}; 617 switch (*p++) { 618 case 'b': 619 base = 2; 620 break; 621 case 'o': 622 base = 8; 623 break; 624 case 'z': 625 break; 626 case 'x': 627 break; 628 default: 629 CRASH_NO_CASE; 630 } 631 CHECK(*p == '"'); 632 ++p; 633 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 634 if (*p != '"') { 635 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, x.v); 636 return std::nullopt; 637 } 638 if (value.overflow) { 639 Say("BOZ literal '%s' too large"_err_en_US, x.v); 640 return std::nullopt; 641 } 642 return AsGenericExpr(std::move(value.value)); 643 } 644 645 // For use with SearchTypes to create a TypeParamInquiry with the 646 // right integer kind. 647 struct TypeParamInquiryVisitor { 648 using Result = std::optional<Expr<SomeInteger>>; 649 using Types = IntegerTypes; 650 TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol ¶m) 651 : kind{k}, base{std::move(b)}, parameter{param} {} 652 TypeParamInquiryVisitor(int k, const Symbol ¶m) 653 : kind{k}, parameter{param} {} 654 template <typename T> Result Test() { 655 if (kind == T::kind) { 656 return Expr<SomeInteger>{ 657 Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}}; 658 } 659 return std::nullopt; 660 } 661 int kind; 662 std::optional<NamedEntity> base; 663 const Symbol ¶meter; 664 }; 665 666 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry( 667 const Symbol *symbol) { 668 if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) { 669 if (dyType->category() == TypeCategory::Integer) { 670 return common::SearchTypes( 671 TypeParamInquiryVisitor{dyType->kind(), *symbol}); 672 } 673 } 674 return std::nullopt; 675 } 676 677 // Names and named constants 678 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 679 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 680 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 681 *kind, AsExpr(ImpliedDoIndex{n.source}))); 682 } else if (context_.HasError(n) || !n.symbol) { 683 return std::nullopt; 684 } else { 685 const Symbol &ultimate{n.symbol->GetUltimate()}; 686 if (ultimate.has<semantics::TypeParamDetails>()) { 687 // A bare reference to a derived type parameter (within a parameterized 688 // derived type definition) 689 return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate)); 690 } else { 691 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 692 if (const semantics::Scope * 693 pure{semantics::FindPureProcedureContaining( 694 context_.FindScope(n.source))}) { 695 SayAt(n, 696 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 697 n.source, DEREF(pure->symbol()).name()); 698 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 699 } 700 } 701 return Designate(DataRef{*n.symbol}); 702 } 703 } 704 } 705 706 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 707 if (MaybeExpr value{Analyze(n.v)}) { 708 Expr<SomeType> folded{Fold(std::move(*value))}; 709 if (IsConstantExpr(folded)) { 710 return folded; 711 } 712 Say(n.v.source, "must be a constant"_err_en_US); // C718 713 } 714 return std::nullopt; 715 } 716 717 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) { 718 return Expr<SomeType>{NullPointer{}}; 719 } 720 721 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 722 return Analyze(x.value()); 723 } 724 725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 726 if (const auto &repeat{ 727 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 728 x.repetitions = -1; 729 if (MaybeExpr expr{Analyze(repeat->u)}) { 730 Expr<SomeType> folded{Fold(std::move(*expr))}; 731 if (auto value{ToInt64(folded)}) { 732 if (*value >= 0) { // C882 733 x.repetitions = *value; 734 } else { 735 Say(FindSourceLocation(repeat), 736 "Repeat count (%jd) for data value must not be negative"_err_en_US, 737 *value); 738 } 739 } 740 } 741 } 742 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 743 } 744 745 // Substring references 746 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 747 const std::optional<parser::ScalarIntExpr> &bound) { 748 if (bound) { 749 if (MaybeExpr expr{Analyze(*bound)}) { 750 if (expr->Rank() > 1) { 751 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 752 } 753 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 754 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 755 return {std::move(*ssIntExpr)}; 756 } 757 return {Expr<SubscriptInteger>{ 758 Convert<SubscriptInteger, TypeCategory::Integer>{ 759 std::move(*intExpr)}}}; 760 } else { 761 Say("substring bound expression is not INTEGER"_err_en_US); 762 } 763 } 764 } 765 return std::nullopt; 766 } 767 768 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 769 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 770 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 771 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 772 if (std::optional<DataRef> checked{ 773 ExtractDataRef(std::move(*newBaseExpr))}) { 774 const parser::SubstringRange &range{ 775 std::get<parser::SubstringRange>(ss.t)}; 776 std::optional<Expr<SubscriptInteger>> first{ 777 GetSubstringBound(std::get<0>(range.t))}; 778 std::optional<Expr<SubscriptInteger>> last{ 779 GetSubstringBound(std::get<1>(range.t))}; 780 const Symbol &symbol{checked->GetLastSymbol()}; 781 if (std::optional<DynamicType> dynamicType{ 782 DynamicType::From(symbol)}) { 783 if (dynamicType->category() == TypeCategory::Character) { 784 return WrapperHelper<TypeCategory::Character, Designator, 785 Substring>(dynamicType->kind(), 786 Substring{std::move(checked.value()), std::move(first), 787 std::move(last)}); 788 } 789 } 790 Say("substring may apply only to CHARACTER"_err_en_US); 791 } 792 } 793 } 794 } 795 return std::nullopt; 796 } 797 798 // CHARACTER literal substrings 799 MaybeExpr ExpressionAnalyzer::Analyze( 800 const parser::CharLiteralConstantSubstring &x) { 801 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 802 std::optional<Expr<SubscriptInteger>> lower{ 803 GetSubstringBound(std::get<0>(range.t))}; 804 std::optional<Expr<SubscriptInteger>> upper{ 805 GetSubstringBound(std::get<1>(range.t))}; 806 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 807 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 808 Expr<SubscriptInteger> length{ 809 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 810 charExpr->u)}; 811 if (!lower) { 812 lower = Expr<SubscriptInteger>{1}; 813 } 814 if (!upper) { 815 upper = Expr<SubscriptInteger>{ 816 static_cast<std::int64_t>(ToInt64(length).value())}; 817 } 818 return std::visit( 819 [&](auto &&ckExpr) -> MaybeExpr { 820 using Result = ResultType<decltype(ckExpr)>; 821 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 822 CHECK(DEREF(cp).size() == 1); 823 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 824 staticData->set_alignment(Result::kind) 825 .set_itemBytes(Result::kind) 826 .Push(cp->GetScalarValue().value()); 827 Substring substring{std::move(staticData), std::move(lower.value()), 828 std::move(upper.value())}; 829 return AsGenericExpr( 830 Expr<Result>{Designator<Result>{std::move(substring)}}); 831 }, 832 std::move(charExpr->u)); 833 } 834 } 835 return std::nullopt; 836 } 837 838 // Subscripted array references 839 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 840 MaybeExpr &&expr) { 841 if (expr) { 842 if (expr->Rank() > 1) { 843 Say("Subscript expression has rank %d greater than 1"_err_en_US, 844 expr->Rank()); 845 } 846 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 847 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 848 return std::move(*ssIntExpr); 849 } else { 850 return Expr<SubscriptInteger>{ 851 Convert<SubscriptInteger, TypeCategory::Integer>{ 852 std::move(*intExpr)}}; 853 } 854 } else { 855 Say("Subscript expression is not INTEGER"_err_en_US); 856 } 857 } 858 return std::nullopt; 859 } 860 861 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 862 const std::optional<parser::Subscript> &s) { 863 if (s) { 864 return AsSubscript(Analyze(*s)); 865 } else { 866 return std::nullopt; 867 } 868 } 869 870 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 871 const parser::SectionSubscript &ss) { 872 return std::visit(common::visitors{ 873 [&](const parser::SubscriptTriplet &t) { 874 return std::make_optional<Subscript>( 875 Triplet{TripletPart(std::get<0>(t.t)), 876 TripletPart(std::get<1>(t.t)), 877 TripletPart(std::get<2>(t.t))}); 878 }, 879 [&](const auto &s) -> std::optional<Subscript> { 880 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 881 return Subscript{std::move(*subscriptExpr)}; 882 } else { 883 return std::nullopt; 884 } 885 }, 886 }, 887 ss.u); 888 } 889 890 // Empty result means an error occurred 891 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 892 const std::list<parser::SectionSubscript> &sss) { 893 bool error{false}; 894 std::vector<Subscript> subscripts; 895 for (const auto &s : sss) { 896 if (auto subscript{AnalyzeSectionSubscript(s)}) { 897 subscripts.emplace_back(std::move(*subscript)); 898 } else { 899 error = true; 900 } 901 } 902 return !error ? subscripts : std::vector<Subscript>{}; 903 } 904 905 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 906 if (MaybeExpr baseExpr{Analyze(ae.base)}) { 907 if (ae.subscripts.empty()) { 908 // will be converted to function call later or error reported 909 return std::nullopt; 910 } else if (baseExpr->Rank() == 0) { 911 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 912 Say("'%s' is not an array"_err_en_US, symbol->name()); 913 } 914 } else if (std::optional<DataRef> dataRef{ 915 ExtractDataRef(std::move(*baseExpr))}) { 916 return ApplySubscripts( 917 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 918 } else { 919 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 920 } 921 } 922 // error was reported: analyze subscripts without reporting more errors 923 auto restorer{GetContextualMessages().DiscardMessages()}; 924 AnalyzeSectionSubscripts(ae.subscripts); 925 return std::nullopt; 926 } 927 928 // Type parameter inquiries apply to data references, but don't depend 929 // on any trailing (co)subscripts. 930 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 931 return std::visit( 932 common::visitors{ 933 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 934 [](Component &&component) { 935 return NamedEntity{std::move(component)}; 936 }, 937 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 938 [](CoarrayRef &&coarrayRef) { 939 return NamedEntity{coarrayRef.GetLastSymbol()}; 940 }, 941 }, 942 std::move(designator.u)); 943 } 944 945 // Components of parent derived types are explicitly represented as such. 946 static std::optional<Component> CreateComponent( 947 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 948 if (&component.owner() == &scope) { 949 return Component{std::move(base), component}; 950 } 951 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 952 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 953 return CreateComponent( 954 DataRef{Component{std::move(base), *parentComponent}}, component, 955 *parentScope); 956 } 957 } 958 return std::nullopt; 959 } 960 961 // Derived type component references and type parameter inquiries 962 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 963 MaybeExpr base{Analyze(sc.base)}; 964 if (!base) { 965 return std::nullopt; 966 } 967 Symbol *sym{sc.component.symbol}; 968 if (context_.HasError(sym)) { 969 return std::nullopt; 970 } 971 const auto &name{sc.component.source}; 972 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 973 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 974 if (sym->detailsIf<semantics::TypeParamDetails>()) { 975 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 976 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 977 if (dyType->category() == TypeCategory::Integer) { 978 return AsMaybeExpr( 979 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(), 980 IgnoreAnySubscripts(std::move(*designator)), *sym})); 981 } 982 } 983 Say(name, "Type parameter is not INTEGER"_err_en_US); 984 } else { 985 Say(name, 986 "A type parameter inquiry must be applied to " 987 "a designator"_err_en_US); 988 } 989 } else if (!dtSpec || !dtSpec->scope()) { 990 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 991 return std::nullopt; 992 } else if (std::optional<DataRef> dataRef{ 993 ExtractDataRef(std::move(*dtExpr))}) { 994 if (auto component{ 995 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 996 return Designate(DataRef{std::move(*component)}); 997 } else { 998 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 999 dtSpec->typeSymbol().name()); 1000 } 1001 } else { 1002 Say(name, 1003 "Base of component reference must be a data reference"_err_en_US); 1004 } 1005 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1006 // special part-ref: %re, %im, %kind, %len 1007 // Type errors are detected and reported in semantics. 1008 using MiscKind = semantics::MiscDetails::Kind; 1009 MiscKind kind{details->kind()}; 1010 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1011 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1012 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1013 Expr<SomeReal> realExpr{std::visit( 1014 [&](const auto &z) { 1015 using PartType = typename ResultType<decltype(z)>::Part; 1016 auto part{kind == MiscKind::ComplexPartRe 1017 ? ComplexPart::Part::RE 1018 : ComplexPart::Part::IM}; 1019 return AsCategoryExpr(Designator<PartType>{ 1020 ComplexPart{std::move(*dataRef), part}}); 1021 }, 1022 zExpr->u)}; 1023 return AsGenericExpr(std::move(realExpr)); 1024 } 1025 } 1026 } else if (kind == MiscKind::KindParamInquiry || 1027 kind == MiscKind::LenParamInquiry) { 1028 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1029 return MakeFunctionRef( 1030 name, ActualArguments{ActualArgument{std::move(*base)}}); 1031 } else { 1032 DIE("unexpected MiscDetails::Kind"); 1033 } 1034 } else { 1035 Say(name, "derived type required before component reference"_err_en_US); 1036 } 1037 return std::nullopt; 1038 } 1039 1040 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1041 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1042 DataRef *dataRef{&*maybeDataRef}; 1043 std::vector<Subscript> subscripts; 1044 SymbolVector reversed; 1045 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1046 subscripts = std::move(aRef->subscript()); 1047 reversed.push_back(aRef->GetLastSymbol()); 1048 if (Component * component{aRef->base().UnwrapComponent()}) { 1049 dataRef = &component->base(); 1050 } else { 1051 dataRef = nullptr; 1052 } 1053 } 1054 if (dataRef) { 1055 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1056 reversed.push_back(component->GetLastSymbol()); 1057 dataRef = &component->base(); 1058 } 1059 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1060 reversed.push_back(*baseSym); 1061 } else { 1062 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1063 } 1064 } 1065 std::vector<Expr<SubscriptInteger>> cosubscripts; 1066 bool cosubsOk{true}; 1067 for (const auto &cosub : 1068 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1069 MaybeExpr coex{Analyze(cosub)}; 1070 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1071 cosubscripts.push_back( 1072 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1073 } else { 1074 cosubsOk = false; 1075 } 1076 } 1077 if (cosubsOk && !reversed.empty()) { 1078 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1079 const Symbol &symbol{reversed.front()}; 1080 if (numCosubscripts != symbol.Corank()) { 1081 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1082 symbol.name(), symbol.Corank(), numCosubscripts); 1083 } 1084 } 1085 // TODO: stat=/team=/team_number= 1086 // Reverse the chain of symbols so that the base is first and coarray 1087 // ultimate component is last. 1088 return Designate( 1089 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1090 std::move(subscripts), std::move(cosubscripts)}}); 1091 } 1092 return std::nullopt; 1093 } 1094 1095 int ExpressionAnalyzer::IntegerTypeSpecKind( 1096 const parser::IntegerTypeSpec &spec) { 1097 Expr<SubscriptInteger> value{ 1098 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1099 if (auto kind{ToInt64(value)}) { 1100 return static_cast<int>(*kind); 1101 } 1102 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1103 return GetDefaultKind(TypeCategory::Integer); 1104 } 1105 1106 // Array constructors 1107 1108 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1109 // all happen to have the same actual type T into one ArrayConstructor<T>. 1110 template <typename T> 1111 ArrayConstructorValues<T> MakeSpecific( 1112 ArrayConstructorValues<SomeType> &&from) { 1113 ArrayConstructorValues<T> to; 1114 for (ArrayConstructorValue<SomeType> &x : from) { 1115 std::visit( 1116 common::visitors{ 1117 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1118 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1119 to.Push(std::move(DEREF(typed))); 1120 }, 1121 [&](ImpliedDo<SomeType> &&impliedDo) { 1122 to.Push(ImpliedDo<T>{impliedDo.name(), 1123 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1124 std::move(impliedDo.stride()), 1125 MakeSpecific<T>(std::move(impliedDo.values()))}); 1126 }, 1127 }, 1128 std::move(x.u)); 1129 } 1130 return to; 1131 } 1132 1133 class ArrayConstructorContext { 1134 public: 1135 ArrayConstructorContext( 1136 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1137 : exprAnalyzer_{c}, type_{std::move(t)} {} 1138 1139 void Add(const parser::AcValue &); 1140 MaybeExpr ToExpr(); 1141 1142 // These interfaces allow *this to be used as a type visitor argument to 1143 // common::SearchTypes() to convert the array constructor to a typed 1144 // expression in ToExpr(). 1145 using Result = MaybeExpr; 1146 using Types = AllTypes; 1147 template <typename T> Result Test() { 1148 if (type_ && type_->category() == T::category) { 1149 if constexpr (T::category == TypeCategory::Derived) { 1150 return AsMaybeExpr(ArrayConstructor<T>{ 1151 type_->GetDerivedTypeSpec(), MakeSpecific<T>(std::move(values_))}); 1152 } else if (type_->kind() == T::kind) { 1153 if constexpr (T::category == TypeCategory::Character) { 1154 if (auto len{type_->LEN()}) { 1155 return AsMaybeExpr(ArrayConstructor<T>{ 1156 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1157 } 1158 } else { 1159 return AsMaybeExpr( 1160 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1161 } 1162 } 1163 } 1164 return std::nullopt; 1165 } 1166 1167 private: 1168 void Push(MaybeExpr &&); 1169 1170 template <int KIND, typename A> 1171 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1172 const A &x) { 1173 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1174 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1175 return ConvertToType<Type<TypeCategory::Integer, KIND>>( 1176 std::move(DEREF(intExpr))); 1177 } 1178 return std::nullopt; 1179 } 1180 1181 // Nested array constructors all reference the same ExpressionAnalyzer, 1182 // which represents the nest of active implied DO loop indices. 1183 ExpressionAnalyzer &exprAnalyzer_; 1184 std::optional<DynamicTypeWithLength> type_; 1185 bool explicitType_{type_.has_value()}; 1186 std::optional<std::int64_t> constantLength_; 1187 ArrayConstructorValues<SomeType> values_; 1188 }; 1189 1190 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1191 if (!x) { 1192 return; 1193 } 1194 if (auto dyType{x->GetType()}) { 1195 DynamicTypeWithLength xType{*dyType}; 1196 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1197 CHECK(xType.category() == TypeCategory::Character); 1198 xType.length = 1199 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1200 } 1201 if (!type_) { 1202 // If there is no explicit type-spec in an array constructor, the type 1203 // of the array is the declared type of all of the elements, which must 1204 // be well-defined and all match. 1205 // TODO: Possible language extension: use the most general type of 1206 // the values as the type of a numeric constructed array, convert all 1207 // of the other values to that type. Alternative: let the first value 1208 // determine the type, and convert the others to that type. 1209 CHECK(!explicitType_); 1210 type_ = std::move(xType); 1211 constantLength_ = ToInt64(type_->length); 1212 values_.Push(std::move(*x)); 1213 } else if (!explicitType_) { 1214 if (static_cast<const DynamicType &>(*type_) == 1215 static_cast<const DynamicType &>(xType)) { 1216 values_.Push(std::move(*x)); 1217 if (auto thisLen{ToInt64(xType.LEN())}) { 1218 if (constantLength_) { 1219 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1220 *thisLen != *constantLength_) { 1221 exprAnalyzer_.Say( 1222 "Character literal in array constructor without explicit " 1223 "type has different length than earlier element"_en_US); 1224 } 1225 if (*thisLen > *constantLength_) { 1226 // Language extension: use the longest literal to determine the 1227 // length of the array constructor's character elements, not the 1228 // first, when there is no explicit type. 1229 *constantLength_ = *thisLen; 1230 type_->length = xType.LEN(); 1231 } 1232 } else { 1233 constantLength_ = *thisLen; 1234 type_->length = xType.LEN(); 1235 } 1236 } 1237 } else { 1238 exprAnalyzer_.Say( 1239 "Values in array constructor must have the same declared type " 1240 "when no explicit type appears"_err_en_US); 1241 } 1242 } else { 1243 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1244 values_.Push(std::move(*cast)); 1245 } else { 1246 exprAnalyzer_.Say( 1247 "Value in array constructor could not be converted to the type " 1248 "of the array"_err_en_US); 1249 } 1250 } 1251 } 1252 } 1253 1254 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1255 using IntType = ResultType<ImpliedDoIndex>; 1256 std::visit( 1257 common::visitors{ 1258 [&](const parser::AcValue::Triplet &triplet) { 1259 // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1260 std::optional<Expr<IntType>> lower{ 1261 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))}; 1262 std::optional<Expr<IntType>> upper{ 1263 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))}; 1264 std::optional<Expr<IntType>> stride{ 1265 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))}; 1266 if (lower && upper) { 1267 if (!stride) { 1268 stride = Expr<IntType>{1}; 1269 } 1270 if (!type_) { 1271 type_ = DynamicTypeWithLength{IntType::GetType()}; 1272 } 1273 auto v{std::move(values_)}; 1274 parser::CharBlock anonymous; 1275 Push(Expr<SomeType>{ 1276 Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}}); 1277 std::swap(v, values_); 1278 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1279 std::move(*upper), std::move(*stride), std::move(v)}); 1280 } 1281 }, 1282 [&](const common::Indirection<parser::Expr> &expr) { 1283 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation( 1284 expr.value().source)}; 1285 if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) { 1286 Push(std::move(*v)); 1287 } 1288 }, 1289 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1290 const auto &control{ 1291 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)}; 1292 const auto &bounds{ 1293 std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1294 exprAnalyzer_.Analyze(bounds.name); 1295 parser::CharBlock name{bounds.name.thing.thing.source}; 1296 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1297 int kind{IntType::kind}; 1298 if (const auto dynamicType{DynamicType::From(symbol)}) { 1299 kind = dynamicType->kind(); 1300 } 1301 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1302 std::optional<Expr<IntType>> lower{ 1303 GetSpecificIntExpr<IntType::kind>(bounds.lower)}; 1304 std::optional<Expr<IntType>> upper{ 1305 GetSpecificIntExpr<IntType::kind>(bounds.upper)}; 1306 if (lower && upper) { 1307 std::optional<Expr<IntType>> stride{ 1308 GetSpecificIntExpr<IntType::kind>(bounds.step)}; 1309 auto v{std::move(values_)}; 1310 for (const auto &value : 1311 std::get<std::list<parser::AcValue>>(impliedDo.value().t)) { 1312 Add(value); 1313 } 1314 if (!stride) { 1315 stride = Expr<IntType>{1}; 1316 } 1317 std::swap(v, values_); 1318 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1319 std::move(*upper), std::move(*stride), std::move(v)}); 1320 } 1321 exprAnalyzer_.RemoveImpliedDo(name); 1322 } else { 1323 exprAnalyzer_.SayAt(name, 1324 "Implied DO index is active in surrounding implied DO loop " 1325 "and may not have the same name"_err_en_US); 1326 } 1327 }, 1328 }, 1329 x.u); 1330 } 1331 1332 MaybeExpr ArrayConstructorContext::ToExpr() { 1333 return common::SearchTypes(std::move(*this)); 1334 } 1335 1336 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1337 const parser::AcSpec &acSpec{array.v}; 1338 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1339 for (const parser::AcValue &value : acSpec.values) { 1340 acContext.Add(value); 1341 } 1342 return acContext.ToExpr(); 1343 } 1344 1345 MaybeExpr ExpressionAnalyzer::Analyze( 1346 const parser::StructureConstructor &structure) { 1347 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1348 parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; 1349 if (!parsedType.derivedTypeSpec) { 1350 return std::nullopt; 1351 } 1352 const auto &spec{*parsedType.derivedTypeSpec}; 1353 const Symbol &typeSymbol{spec.typeSymbol()}; 1354 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1355 return std::nullopt; // error recovery 1356 } 1357 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1358 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1359 1360 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1361 AttachDeclaration(Say(typeName, 1362 "ABSTRACT derived type '%s' may not be used in a " 1363 "structure constructor"_err_en_US, 1364 typeName), 1365 typeSymbol); 1366 } 1367 1368 // This iterator traverses all of the components in the derived type and its 1369 // parents. The symbols for whole parent components appear after their 1370 // own components and before the components of the types that extend them. 1371 // E.g., TYPE :: A; REAL X; END TYPE 1372 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1373 // produces the component list X, A, Y. 1374 // The order is important below because a structure constructor can 1375 // initialize X or A by name, but not both. 1376 auto components{semantics::OrderedComponentIterator{spec}}; 1377 auto nextAnonymous{components.begin()}; 1378 1379 std::set<parser::CharBlock> unavailable; 1380 bool anyKeyword{false}; 1381 StructureConstructor result{spec}; 1382 bool checkConflicts{true}; // until we hit one 1383 auto &messages{GetContextualMessages()}; 1384 1385 for (const auto &component : 1386 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1387 const parser::Expr &expr{ 1388 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1389 parser::CharBlock source{expr.source}; 1390 auto restorer{messages.SetLocation(source)}; 1391 const Symbol *symbol{nullptr}; 1392 MaybeExpr value{Analyze(expr)}; 1393 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1394 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1395 anyKeyword = true; 1396 source = kw->v.source; 1397 symbol = kw->v.symbol; 1398 if (!symbol) { 1399 auto componentIter{std::find_if(components.begin(), components.end(), 1400 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1401 if (componentIter != components.end()) { 1402 symbol = &*componentIter; 1403 } 1404 } 1405 if (!symbol) { // C7101 1406 Say(source, 1407 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1408 source, typeName); 1409 } 1410 } else { 1411 if (anyKeyword) { // C7100 1412 Say(source, 1413 "Value in structure constructor lacks a component name"_err_en_US); 1414 checkConflicts = false; // stem cascade 1415 } 1416 // Here's a regrettably common extension of the standard: anonymous 1417 // initialization of parent components, e.g., T(PT(1)) rather than 1418 // T(1) or T(PT=PT(1)). 1419 if (nextAnonymous == components.begin() && parentComponent && 1420 valueType == DynamicType::From(*parentComponent) && 1421 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1422 auto iter{ 1423 std::find(components.begin(), components.end(), *parentComponent)}; 1424 if (iter != components.end()) { 1425 symbol = parentComponent; 1426 nextAnonymous = ++iter; 1427 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1428 Say(source, 1429 "Whole parent component '%s' in structure " 1430 "constructor should not be anonymous"_en_US, 1431 symbol->name()); 1432 } 1433 } 1434 } 1435 while (!symbol && nextAnonymous != components.end()) { 1436 const Symbol &next{*nextAnonymous}; 1437 ++nextAnonymous; 1438 if (!next.test(Symbol::Flag::ParentComp)) { 1439 symbol = &next; 1440 } 1441 } 1442 if (!symbol) { 1443 Say(source, "Unexpected value in structure constructor"_err_en_US); 1444 } 1445 } 1446 if (symbol) { 1447 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1448 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1449 Say(source, *msg); 1450 } 1451 } 1452 if (checkConflicts) { 1453 auto componentIter{ 1454 std::find(components.begin(), components.end(), *symbol)}; 1455 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1456 // C797, C798 1457 Say(source, 1458 "Component '%s' conflicts with another component earlier in " 1459 "this structure constructor"_err_en_US, 1460 symbol->name()); 1461 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1462 // Make earlier components unavailable once a whole parent appears. 1463 for (auto it{components.begin()}; it != componentIter; ++it) { 1464 unavailable.insert(it->name()); 1465 } 1466 } else { 1467 // Make whole parent components unavailable after any of their 1468 // constituents appear. 1469 for (auto it{componentIter}; it != components.end(); ++it) { 1470 if (it->test(Symbol::Flag::ParentComp)) { 1471 unavailable.insert(it->name()); 1472 } 1473 } 1474 } 1475 } 1476 unavailable.insert(symbol->name()); 1477 if (value) { 1478 if (symbol->has<semantics::ProcEntityDetails>()) { 1479 CHECK(IsPointer(*symbol)); 1480 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1481 // C1594(4) 1482 const auto &innermost{context_.FindScope(expr.source)}; 1483 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1484 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1485 if (const Symbol * 1486 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1487 if (auto *msg{Say(expr.source, 1488 "Externally visible object '%s' may not be " 1489 "associated with pointer component '%s' in a " 1490 "pure procedure"_err_en_US, 1491 object->name(), pointer->name())}) { 1492 msg->Attach(object->name(), "Object declaration"_en_US) 1493 .Attach(pointer->name(), "Pointer declaration"_en_US); 1494 } 1495 } 1496 } 1497 } 1498 } else if (symbol->has<semantics::TypeParamDetails>()) { 1499 Say(expr.source, 1500 "Type parameter '%s' may not appear as a component " 1501 "of a structure constructor"_err_en_US, 1502 symbol->name()); 1503 continue; 1504 } else { 1505 Say(expr.source, 1506 "Component '%s' is neither a procedure pointer " 1507 "nor a data object"_err_en_US, 1508 symbol->name()); 1509 continue; 1510 } 1511 if (IsPointer(*symbol)) { 1512 semantics::CheckPointerAssignment( 1513 GetFoldingContext(), *symbol, *value); // C7104, C7105 1514 result.Add(*symbol, Fold(std::move(*value))); 1515 } else if (MaybeExpr converted{ 1516 ConvertToType(*symbol, std::move(*value))}) { 1517 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1518 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1519 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1520 AttachDeclaration( 1521 Say(expr.source, 1522 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1523 symbol->name()), 1524 *symbol); 1525 } else if (CheckConformance(messages, *componentShape, 1526 *valueShape, "component", "value")) { 1527 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 && 1528 !IsExpandableScalar(*converted)) { 1529 AttachDeclaration( 1530 Say(expr.source, 1531 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1532 symbol->name()), 1533 *symbol); 1534 } else { 1535 result.Add(*symbol, std::move(*converted)); 1536 } 1537 } 1538 } else { 1539 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1540 } 1541 } else { 1542 AttachDeclaration( 1543 Say(expr.source, 1544 "Shape of component '%s' cannot be determined"_err_en_US, 1545 symbol->name()), 1546 *symbol); 1547 } 1548 } else if (IsAllocatable(*symbol) && 1549 std::holds_alternative<NullPointer>(value->u)) { 1550 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1551 } else if (auto symType{DynamicType::From(symbol)}) { 1552 if (valueType) { 1553 AttachDeclaration( 1554 Say(expr.source, 1555 "Value in structure constructor of type %s is " 1556 "incompatible with component '%s' of type %s"_err_en_US, 1557 valueType->AsFortran(), symbol->name(), 1558 symType->AsFortran()), 1559 *symbol); 1560 } else { 1561 AttachDeclaration( 1562 Say(expr.source, 1563 "Value in structure constructor is incompatible with " 1564 " component '%s' of type %s"_err_en_US, 1565 symbol->name(), symType->AsFortran()), 1566 *symbol); 1567 } 1568 } 1569 } 1570 } 1571 } 1572 1573 // Ensure that unmentioned component objects have default initializers. 1574 for (const Symbol &symbol : components) { 1575 if (!symbol.test(Symbol::Flag::ParentComp) && 1576 unavailable.find(symbol.name()) == unavailable.cend() && 1577 !IsAllocatable(symbol)) { 1578 if (const auto *details{ 1579 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1580 if (details->init()) { 1581 result.Add(symbol, common::Clone(*details->init())); 1582 } else { // C799 1583 AttachDeclaration(Say(typeName, 1584 "Structure constructor lacks a value for " 1585 "component '%s'"_err_en_US, 1586 symbol.name()), 1587 symbol); 1588 } 1589 } 1590 } 1591 } 1592 1593 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1594 } 1595 1596 static std::optional<parser::CharBlock> GetPassName( 1597 const semantics::Symbol &proc) { 1598 return std::visit( 1599 [](const auto &details) { 1600 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1601 std::decay_t<decltype(details)>>) { 1602 return details.passName(); 1603 } else { 1604 return std::optional<parser::CharBlock>{}; 1605 } 1606 }, 1607 proc.details()); 1608 } 1609 1610 static int GetPassIndex(const Symbol &proc) { 1611 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1612 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1613 const auto *interface{semantics::FindInterface(proc)}; 1614 if (!passName || !interface) { 1615 return 0; // first argument is passed-object 1616 } 1617 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1618 int index{0}; 1619 for (const auto *arg : subp.dummyArgs()) { 1620 if (arg && arg->name() == passName) { 1621 return index; 1622 } 1623 ++index; 1624 } 1625 DIE("PASS argument name not in dummy argument list"); 1626 } 1627 1628 // Injects an expression into an actual argument list as the "passed object" 1629 // for a type-bound procedure reference that is not NOPASS. Adds an 1630 // argument keyword if possible, but not when the passed object goes 1631 // before a positional argument. 1632 // e.g., obj%tbp(x) -> tbp(obj,x). 1633 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1634 const Symbol &component, bool isPassedObject = true) { 1635 if (component.attrs().test(semantics::Attr::NOPASS)) { 1636 return; 1637 } 1638 int passIndex{GetPassIndex(component)}; 1639 auto iter{actuals.begin()}; 1640 int at{0}; 1641 while (iter < actuals.end() && at < passIndex) { 1642 if (*iter && (*iter)->keyword()) { 1643 iter = actuals.end(); 1644 break; 1645 } 1646 ++iter; 1647 ++at; 1648 } 1649 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1650 passed.set_isPassedObject(isPassedObject); 1651 if (iter == actuals.end()) { 1652 if (auto passName{GetPassName(component)}) { 1653 passed.set_keyword(*passName); 1654 } 1655 } 1656 actuals.emplace(iter, std::move(passed)); 1657 } 1658 1659 // Return the compile-time resolution of a procedure binding, if possible. 1660 static const Symbol *GetBindingResolution( 1661 const std::optional<DynamicType> &baseType, const Symbol &component) { 1662 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1663 if (!binding) { 1664 return nullptr; 1665 } 1666 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1667 (!baseType || baseType->IsPolymorphic())) { 1668 return nullptr; 1669 } 1670 return &binding->symbol(); 1671 } 1672 1673 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1674 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1675 -> std::optional<CalleeAndArguments> { 1676 const parser::StructureComponent &sc{pcr.v.thing}; 1677 const auto &name{sc.component.source}; 1678 if (MaybeExpr base{Analyze(sc.base)}) { 1679 if (const Symbol * sym{sc.component.symbol}) { 1680 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1681 if (sym->has<semantics::GenericDetails>()) { 1682 AdjustActuals adjustment{ 1683 [&](const Symbol &proc, ActualArguments &actuals) { 1684 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1685 AddPassArg(actuals, std::move(*dtExpr), proc); 1686 } 1687 return true; 1688 }}; 1689 sym = ResolveGeneric(*sym, arguments, adjustment); 1690 if (!sym) { 1691 EmitGenericResolutionError(*sc.component.symbol); 1692 return std::nullopt; 1693 } 1694 } 1695 if (const Symbol * 1696 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1697 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1698 return CalleeAndArguments{ 1699 ProcedureDesignator{*resolution}, std::move(arguments)}; 1700 } else if (std::optional<DataRef> dataRef{ 1701 ExtractDataRef(std::move(*dtExpr))}) { 1702 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1703 return CalleeAndArguments{ 1704 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1705 std::move(arguments)}; 1706 } else { 1707 AddPassArg(arguments, 1708 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1709 *sym); 1710 return CalleeAndArguments{ 1711 ProcedureDesignator{*sym}, std::move(arguments)}; 1712 } 1713 } 1714 } 1715 Say(name, 1716 "Base of procedure component reference is not a derived-type object"_err_en_US); 1717 } 1718 } 1719 CHECK(!GetContextualMessages().empty()); 1720 return std::nullopt; 1721 } 1722 1723 // Can actual be argument associated with dummy? 1724 static bool CheckCompatibleArgument(bool isElemental, 1725 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1726 return std::visit( 1727 common::visitors{ 1728 [&](const characteristics::DummyDataObject &x) { 1729 characteristics::TypeAndShape dummyTypeAndShape{x.type}; 1730 if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) { 1731 return false; 1732 } else if (auto actualType{actual.GetType()}) { 1733 return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType); 1734 } else { 1735 return false; 1736 } 1737 }, 1738 [&](const characteristics::DummyProcedure &) { 1739 const auto *expr{actual.UnwrapExpr()}; 1740 return expr && IsProcedurePointer(*expr); 1741 }, 1742 [&](const characteristics::AlternateReturn &) { 1743 return actual.isAlternateReturn(); 1744 }, 1745 }, 1746 dummy.u); 1747 } 1748 1749 // Are the actual arguments compatible with the dummy arguments of procedure? 1750 static bool CheckCompatibleArguments( 1751 const characteristics::Procedure &procedure, 1752 const ActualArguments &actuals) { 1753 bool isElemental{procedure.IsElemental()}; 1754 const auto &dummies{procedure.dummyArguments}; 1755 CHECK(dummies.size() == actuals.size()); 1756 for (std::size_t i{0}; i < dummies.size(); ++i) { 1757 const characteristics::DummyArgument &dummy{dummies[i]}; 1758 const std::optional<ActualArgument> &actual{actuals[i]}; 1759 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1760 return false; 1761 } 1762 } 1763 return true; 1764 } 1765 1766 // Handles a forward reference to a module function from what must 1767 // be a specification expression. Return false if the symbol is 1768 // an invalid forward reference. 1769 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1770 if (context_.HasError(symbol)) { 1771 return false; 1772 } 1773 if (const auto *details{ 1774 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1775 if (details->kind() == semantics::SubprogramKind::Module) { 1776 // If this symbol is still a SubprogramNameDetails, we must be 1777 // checking a specification expression in a sibling module 1778 // procedure. Resolve its names now so that its interface 1779 // is known. 1780 semantics::ResolveSpecificationParts(context_, symbol); 1781 if (symbol.has<semantics::SubprogramNameDetails>()) { 1782 // When the symbol hasn't had its details updated, we must have 1783 // already been in the process of resolving the function's 1784 // specification part; but recursive function calls are not 1785 // allowed in specification parts (10.1.11 para 5). 1786 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1787 symbol.name()); 1788 context_.SetError(const_cast<Symbol &>(symbol)); 1789 return false; 1790 } 1791 } else { // 10.1.11 para 4 1792 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1793 symbol.name()); 1794 context_.SetError(const_cast<Symbol &>(symbol)); 1795 return false; 1796 } 1797 } 1798 return true; 1799 } 1800 1801 // Resolve a call to a generic procedure with given actual arguments. 1802 // adjustActuals is called on procedure bindings to handle pass arg. 1803 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1804 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1805 bool mightBeStructureConstructor) { 1806 const Symbol *elemental{nullptr}; // matching elemental specific proc 1807 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1808 for (const Symbol &specific : details.specificProcs()) { 1809 if (!ResolveForward(specific)) { 1810 continue; 1811 } 1812 if (std::optional<characteristics::Procedure> procedure{ 1813 characteristics::Procedure::Characterize( 1814 ProcedureDesignator{specific}, context_.intrinsics())}) { 1815 ActualArguments localActuals{actuals}; 1816 if (specific.has<semantics::ProcBindingDetails>()) { 1817 if (!adjustActuals.value()(specific, localActuals)) { 1818 continue; 1819 } 1820 } 1821 if (semantics::CheckInterfaceForGeneric( 1822 *procedure, localActuals, GetFoldingContext())) { 1823 if (CheckCompatibleArguments(*procedure, localActuals)) { 1824 if (!procedure->IsElemental()) { 1825 return &specific; // takes priority over elemental match 1826 } 1827 elemental = &specific; 1828 } 1829 } 1830 } 1831 } 1832 if (elemental) { 1833 return elemental; 1834 } 1835 // Check parent derived type 1836 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 1837 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 1838 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 1839 if (const Symbol * 1840 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 1841 return result; 1842 } 1843 } 1844 } 1845 } 1846 if (mightBeStructureConstructor && details.derivedType()) { 1847 return details.derivedType(); 1848 } 1849 return nullptr; 1850 } 1851 1852 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 1853 if (semantics::IsGenericDefinedOp(symbol)) { 1854 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 1855 symbol.name()); 1856 } else { 1857 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 1858 symbol.name()); 1859 } 1860 } 1861 1862 auto ExpressionAnalyzer::GetCalleeAndArguments( 1863 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 1864 bool isSubroutine, bool mightBeStructureConstructor) 1865 -> std::optional<CalleeAndArguments> { 1866 return std::visit( 1867 common::visitors{ 1868 [&](const parser::Name &name) { 1869 return GetCalleeAndArguments(name, std::move(arguments), 1870 isSubroutine, mightBeStructureConstructor); 1871 }, 1872 [&](const parser::ProcComponentRef &pcr) { 1873 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 1874 }, 1875 }, 1876 pd.u); 1877 } 1878 1879 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 1880 ActualArguments &&arguments, bool isSubroutine, 1881 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 1882 const Symbol *symbol{name.symbol}; 1883 if (context_.HasError(symbol)) { 1884 return std::nullopt; // also handles null symbol 1885 } 1886 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 1887 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 1888 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 1889 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 1890 arguments, GetFoldingContext())}) { 1891 return CalleeAndArguments{ 1892 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1893 std::move(specificCall->arguments)}; 1894 } 1895 } else { 1896 CheckForBadRecursion(name.source, ultimate); 1897 if (ultimate.has<semantics::GenericDetails>()) { 1898 ExpressionAnalyzer::AdjustActuals noAdjustment; 1899 symbol = ResolveGeneric( 1900 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 1901 } 1902 if (symbol) { 1903 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 1904 if (mightBeStructureConstructor) { 1905 return CalleeAndArguments{ 1906 semantics::SymbolRef{*symbol}, std::move(arguments)}; 1907 } 1908 } else { 1909 return CalleeAndArguments{ 1910 ProcedureDesignator{*symbol}, std::move(arguments)}; 1911 } 1912 } else if (std::optional<SpecificCall> specificCall{ 1913 context_.intrinsics().Probe( 1914 CallCharacteristics{ 1915 ultimate.name().ToString(), isSubroutine}, 1916 arguments, GetFoldingContext())}) { 1917 // Generics can extend intrinsics 1918 return CalleeAndArguments{ 1919 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1920 std::move(specificCall->arguments)}; 1921 } else { 1922 EmitGenericResolutionError(*name.symbol); 1923 } 1924 } 1925 return std::nullopt; 1926 } 1927 1928 void ExpressionAnalyzer::CheckForBadRecursion( 1929 parser::CharBlock callSite, const semantics::Symbol &proc) { 1930 if (const auto *scope{proc.scope()}) { 1931 if (scope->sourceRange().Contains(callSite)) { 1932 parser::Message *msg{nullptr}; 1933 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 1934 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 1935 callSite); 1936 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 1937 msg = Say( // 15.6.2.1(3) 1938 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 1939 callSite); 1940 } 1941 AttachDeclaration(msg, proc); 1942 } 1943 } 1944 } 1945 1946 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 1947 if (const auto *designator{ 1948 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 1949 if (const auto *dataRef{ 1950 std::get_if<parser::DataRef>(&designator->value().u)}) { 1951 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 1952 if (const Symbol * symbol{name->symbol}) { 1953 if (const auto *type{symbol->GetType()}) { 1954 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 1955 return symbol; 1956 } 1957 } 1958 } 1959 } 1960 } 1961 } 1962 return nullptr; 1963 } 1964 1965 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 1966 std::optional<parser::StructureConstructor> *structureConstructor) { 1967 const parser::Call &call{funcRef.v}; 1968 auto restorer{GetContextualMessages().SetLocation(call.source)}; 1969 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 1970 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 1971 analyzer.Analyze(arg, false /* not subroutine call */); 1972 } 1973 if (analyzer.fatalErrors()) { 1974 return std::nullopt; 1975 } 1976 if (std::optional<CalleeAndArguments> callee{ 1977 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 1978 analyzer.GetActuals(), false /* not subroutine */, 1979 true /* might be structure constructor */)}) { 1980 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 1981 return MakeFunctionRef( 1982 call.source, std::move(*proc), std::move(callee->arguments)); 1983 } else if (structureConstructor) { 1984 // Structure constructor misparsed as function reference? 1985 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 1986 const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)}; 1987 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 1988 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 1989 semantics::Scope &scope{context_.FindScope(name->source)}; 1990 const semantics::DeclTypeSpec &type{ 1991 semantics::FindOrInstantiateDerivedType(scope, 1992 semantics::DerivedTypeSpec{ 1993 name->source, derivedType.GetUltimate()}, 1994 context_)}; 1995 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 1996 *structureConstructor = 1997 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 1998 return Analyze(structureConstructor->value()); 1999 } 2000 } 2001 } 2002 return std::nullopt; 2003 } 2004 2005 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2006 const parser::Call &call{callStmt.v}; 2007 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2008 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 2009 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2010 analyzer.Analyze(arg, true /* is subroutine call */); 2011 } 2012 if (!analyzer.fatalErrors()) { 2013 if (std::optional<CalleeAndArguments> callee{ 2014 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2015 analyzer.GetActuals(), true /* subroutine */)}) { 2016 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2017 CHECK(proc); 2018 if (CheckCall(call.source, *proc, callee->arguments)) { 2019 callStmt.typedCall.reset( 2020 new ProcedureRef{std::move(*proc), std::move(callee->arguments)}); 2021 } 2022 } 2023 } 2024 } 2025 2026 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2027 if (!x.typedAssignment) { 2028 ArgumentAnalyzer analyzer{*this}; 2029 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2030 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2031 if (analyzer.fatalErrors()) { 2032 x.typedAssignment.reset(new GenericAssignmentWrapper{}); 2033 } else { 2034 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2035 Assignment assignment{ 2036 Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))}; 2037 if (procRef) { 2038 assignment.u = std::move(*procRef); 2039 } 2040 x.typedAssignment.reset( 2041 new GenericAssignmentWrapper{std::move(assignment)}); 2042 } 2043 } 2044 return common::GetPtrFromOptional(x.typedAssignment->v); 2045 } 2046 2047 const Assignment *ExpressionAnalyzer::Analyze( 2048 const parser::PointerAssignmentStmt &x) { 2049 if (!x.typedAssignment) { 2050 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2051 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2052 if (!lhs || !rhs) { 2053 x.typedAssignment.reset(new GenericAssignmentWrapper{}); 2054 } else { 2055 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2056 std::visit(common::visitors{ 2057 [&](const std::list<parser::BoundsRemapping> &list) { 2058 Assignment::BoundsRemapping bounds; 2059 for (const auto &elem : list) { 2060 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2061 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2062 if (lower && upper) { 2063 bounds.emplace_back(Fold(std::move(*lower)), 2064 Fold(std::move(*upper))); 2065 } 2066 } 2067 assignment.u = std::move(bounds); 2068 }, 2069 [&](const std::list<parser::BoundsSpec> &list) { 2070 Assignment::BoundsSpec bounds; 2071 for (const auto &bound : list) { 2072 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2073 bounds.emplace_back(Fold(std::move(*lower))); 2074 } 2075 } 2076 assignment.u = std::move(bounds); 2077 }, 2078 }, 2079 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2080 x.typedAssignment.reset( 2081 new GenericAssignmentWrapper{std::move(assignment)}); 2082 } 2083 } 2084 return common::GetPtrFromOptional(x.typedAssignment->v); 2085 } 2086 2087 static bool IsExternalCalledImplicitly( 2088 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2089 if (const auto *symbol{proc.GetSymbol()}) { 2090 return symbol->has<semantics::SubprogramDetails>() && 2091 symbol->owner().IsGlobal() && 2092 (!symbol->scope() /*ENTRY*/ || 2093 !symbol->scope()->sourceRange().Contains(callSite)); 2094 } else { 2095 return false; 2096 } 2097 } 2098 2099 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2100 parser::CharBlock callSite, const ProcedureDesignator &proc, 2101 ActualArguments &arguments) { 2102 auto chars{ 2103 characteristics::Procedure::Characterize(proc, context_.intrinsics())}; 2104 if (chars) { 2105 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2106 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2107 Say(callSite, 2108 "References to the procedure '%s' require an explicit interface"_en_US, 2109 DEREF(proc.GetSymbol()).name()); 2110 } 2111 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2112 context_.FindScope(callSite), treatExternalAsImplicit); 2113 const Symbol *procSymbol{proc.GetSymbol()}; 2114 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2115 if (const semantics::Scope * 2116 pure{semantics::FindPureProcedureContaining( 2117 context_.FindScope(callSite))}) { 2118 Say(callSite, 2119 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2120 procSymbol->name(), DEREF(pure->symbol()).name()); 2121 } 2122 } 2123 } 2124 return chars; 2125 } 2126 2127 // Unary operations 2128 2129 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2130 if (MaybeExpr operand{Analyze(x.v.value())}) { 2131 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2132 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2133 if (semantics::IsProcedurePointer(*result)) { 2134 Say("A function reference that returns a procedure " 2135 "pointer may not be parenthesized"_err_en_US); // C1003 2136 } 2137 } 2138 } 2139 return Parenthesize(std::move(*operand)); 2140 } 2141 return std::nullopt; 2142 } 2143 2144 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2145 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2146 ArgumentAnalyzer analyzer{context}; 2147 analyzer.Analyze(x.v); 2148 if (analyzer.fatalErrors()) { 2149 return std::nullopt; 2150 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2151 if (opr == NumericOperator::Add) { 2152 return analyzer.MoveExpr(0); 2153 } else { 2154 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2155 } 2156 } else { 2157 return analyzer.TryDefinedOp(AsFortran(opr), 2158 "Operand of unary %s must be numeric; have %s"_err_en_US); 2159 } 2160 } 2161 2162 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2163 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2164 } 2165 2166 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2167 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2168 } 2169 2170 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2171 ArgumentAnalyzer analyzer{*this}; 2172 analyzer.Analyze(x.v); 2173 if (analyzer.fatalErrors()) { 2174 return std::nullopt; 2175 } else if (analyzer.IsIntrinsicLogical()) { 2176 return AsGenericExpr( 2177 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2178 } else { 2179 return analyzer.TryDefinedOp(LogicalOperator::Not, 2180 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2181 } 2182 } 2183 2184 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2185 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2186 // intrinsic function. 2187 // Use the actual source for the name of the call for error reporting. 2188 std::optional<ActualArgument> arg; 2189 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2190 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2191 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2192 arg = ActualArgument{std::move(*argExpr)}; 2193 } else { 2194 return std::nullopt; 2195 } 2196 parser::CharBlock at{GetContextualMessages().at()}; 2197 CHECK(at.size() >= 4); 2198 parser::CharBlock loc{at.begin() + 1, 3}; 2199 CHECK(loc == "loc"); 2200 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2201 } 2202 2203 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2204 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2205 ArgumentAnalyzer analyzer{*this, name.source}; 2206 analyzer.Analyze(std::get<1>(x.t)); 2207 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2208 "No operator %s defined for %s"_err_en_US, true); 2209 } 2210 2211 // Binary (dyadic) operations 2212 2213 template <template <typename> class OPR> 2214 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2215 const parser::Expr::IntrinsicBinary &x) { 2216 ArgumentAnalyzer analyzer{context}; 2217 analyzer.Analyze(std::get<0>(x.t)); 2218 analyzer.Analyze(std::get<1>(x.t)); 2219 if (analyzer.fatalErrors()) { 2220 return std::nullopt; 2221 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2222 return NumericOperation<OPR>(context.GetContextualMessages(), 2223 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2224 context.GetDefaultKind(TypeCategory::Real)); 2225 } else { 2226 return analyzer.TryDefinedOp(AsFortran(opr), 2227 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2228 } 2229 } 2230 2231 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2232 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2233 } 2234 2235 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2236 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2237 } 2238 2239 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2240 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2241 } 2242 2243 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2244 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2245 } 2246 2247 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2248 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2249 } 2250 2251 MaybeExpr ExpressionAnalyzer::Analyze( 2252 const parser::Expr::ComplexConstructor &x) { 2253 auto re{Analyze(std::get<0>(x.t).value())}; 2254 auto im{Analyze(std::get<1>(x.t).value())}; 2255 if (re && im) { 2256 ConformabilityCheck(GetContextualMessages(), *re, *im); 2257 } 2258 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2259 std::move(im), GetDefaultKind(TypeCategory::Real))); 2260 } 2261 2262 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2263 ArgumentAnalyzer analyzer{*this}; 2264 analyzer.Analyze(std::get<0>(x.t)); 2265 analyzer.Analyze(std::get<1>(x.t)); 2266 if (analyzer.fatalErrors()) { 2267 return std::nullopt; 2268 } else if (analyzer.IsIntrinsicConcat()) { 2269 return std::visit( 2270 [&](auto &&x, auto &&y) -> MaybeExpr { 2271 using T = ResultType<decltype(x)>; 2272 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2273 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2274 } else { 2275 DIE("different types for intrinsic concat"); 2276 } 2277 }, 2278 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2279 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2280 } else { 2281 return analyzer.TryDefinedOp("//", 2282 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2283 } 2284 } 2285 2286 // The Name represents a user-defined intrinsic operator. 2287 // If the actuals match one of the specific procedures, return a function ref. 2288 // Otherwise report the error in messages. 2289 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2290 const parser::Name &name, ActualArguments &&actuals) { 2291 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2292 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2293 return MakeFunctionRef(name.source, 2294 std::move(std::get<ProcedureDesignator>(callee->u)), 2295 std::move(callee->arguments)); 2296 } else { 2297 return std::nullopt; 2298 } 2299 } 2300 2301 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2302 const parser::Expr::IntrinsicBinary &x) { 2303 ArgumentAnalyzer analyzer{context}; 2304 analyzer.Analyze(std::get<0>(x.t)); 2305 analyzer.Analyze(std::get<1>(x.t)); 2306 if (analyzer.fatalErrors()) { 2307 return std::nullopt; 2308 } else if (analyzer.IsIntrinsicRelational(opr)) { 2309 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2310 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2311 } else { 2312 return analyzer.TryDefinedOp(opr, 2313 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2314 } 2315 } 2316 2317 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2318 return RelationHelper(*this, RelationalOperator::LT, x); 2319 } 2320 2321 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2322 return RelationHelper(*this, RelationalOperator::LE, x); 2323 } 2324 2325 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2326 return RelationHelper(*this, RelationalOperator::EQ, x); 2327 } 2328 2329 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2330 return RelationHelper(*this, RelationalOperator::NE, x); 2331 } 2332 2333 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2334 return RelationHelper(*this, RelationalOperator::GE, x); 2335 } 2336 2337 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2338 return RelationHelper(*this, RelationalOperator::GT, x); 2339 } 2340 2341 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2342 const parser::Expr::IntrinsicBinary &x) { 2343 ArgumentAnalyzer analyzer{context}; 2344 analyzer.Analyze(std::get<0>(x.t)); 2345 analyzer.Analyze(std::get<1>(x.t)); 2346 if (analyzer.fatalErrors()) { 2347 return std::nullopt; 2348 } else if (analyzer.IsIntrinsicLogical()) { 2349 return AsGenericExpr(BinaryLogicalOperation(opr, 2350 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2351 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2352 } else { 2353 return analyzer.TryDefinedOp( 2354 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2355 } 2356 } 2357 2358 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2359 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2360 } 2361 2362 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2363 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2364 } 2365 2366 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2367 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2368 } 2369 2370 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2371 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2372 } 2373 2374 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2375 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2376 ArgumentAnalyzer analyzer{*this, name.source}; 2377 analyzer.Analyze(std::get<1>(x.t)); 2378 analyzer.Analyze(std::get<2>(x.t)); 2379 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2380 "No operator %s defined for %s and %s"_err_en_US, true); 2381 } 2382 2383 static void CheckFuncRefToArrayElementRefHasSubscripts( 2384 semantics::SemanticsContext &context, 2385 const parser::FunctionReference &funcRef) { 2386 // Emit message if the function reference fix will end up an array element 2387 // reference with no subscripts because it will not be possible to later tell 2388 // the difference in expressions between empty subscript list due to bad 2389 // subscripts error recovery or because the user did not put any. 2390 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2391 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2392 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2393 if (!name) { 2394 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2395 } 2396 auto &msg{context.Say(funcRef.v.source, 2397 name->symbol && name->symbol->Rank() == 0 2398 ? "'%s' is not a function"_err_en_US 2399 : "Reference to array '%s' with empty subscript list"_err_en_US, 2400 name->source)}; 2401 if (name->symbol) { 2402 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2403 msg.Attach(name->source, 2404 "A result variable must be declared with RESULT to allow recursive " 2405 "function calls"_en_US); 2406 } else { 2407 AttachDeclaration(&msg, *name->symbol); 2408 } 2409 } 2410 } 2411 } 2412 2413 // Converts, if appropriate, an original misparse of ambiguous syntax like 2414 // A(1) as a function reference into an array reference. 2415 // Misparse structure constructors are detected elsewhere after generic 2416 // function call resolution fails. 2417 template <typename... A> 2418 static void FixMisparsedFunctionReference( 2419 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2420 // The parse tree is updated in situ when resolving an ambiguous parse. 2421 using uType = std::decay_t<decltype(constU)>; 2422 auto &u{const_cast<uType &>(constU)}; 2423 if (auto *func{ 2424 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2425 parser::FunctionReference &funcRef{func->value()}; 2426 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2427 if (Symbol * 2428 origSymbol{ 2429 std::visit(common::visitors{ 2430 [&](parser::Name &name) { return name.symbol; }, 2431 [&](parser::ProcComponentRef &pcr) { 2432 return pcr.v.thing.component.symbol; 2433 }, 2434 }, 2435 proc.u)}) { 2436 Symbol &symbol{origSymbol->GetUltimate()}; 2437 if (symbol.has<semantics::ObjectEntityDetails>() || 2438 symbol.has<semantics::AssocEntityDetails>()) { 2439 // Note that expression in AssocEntityDetails cannot be a procedure 2440 // pointer as per C1105 so this cannot be a function reference. 2441 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2442 uType>) { 2443 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2444 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2445 } else { 2446 DIE("can't fix misparsed function as array reference"); 2447 } 2448 } 2449 } 2450 } 2451 } 2452 2453 // Common handling of parse tree node types that retain the 2454 // representation of the analyzed expression. 2455 template <typename PARSED> 2456 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) { 2457 if (x.typedExpr) { 2458 return x.typedExpr->v; 2459 } 2460 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2461 std::is_same_v<PARSED, parser::Variable>) { 2462 FixMisparsedFunctionReference(context_, x.u); 2463 } 2464 if (AssumedTypeDummy(x)) { // C710 2465 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2466 } else if (MaybeExpr result{evaluate::Fold(foldingContext_, Analyze(x.u))}) { 2467 SetExpr(x, std::move(*result)); 2468 return x.typedExpr->v; 2469 } 2470 ResetExpr(x); 2471 if (!context_.AnyFatalError()) { 2472 std::string buf; 2473 llvm::raw_string_ostream dump{buf}; 2474 parser::DumpTree(dump, x); 2475 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2476 dump.str()); 2477 } 2478 fatalErrors_ = true; 2479 return std::nullopt; 2480 } 2481 2482 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2483 auto restorer{GetContextualMessages().SetLocation(expr.source)}; 2484 return ExprOrVariable(expr); 2485 } 2486 2487 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2488 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; 2489 return ExprOrVariable(variable); 2490 } 2491 2492 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2493 auto restorer{GetContextualMessages().SetLocation(x.source)}; 2494 return ExprOrVariable(x); 2495 } 2496 2497 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2498 TypeCategory category, 2499 const std::optional<parser::KindSelector> &selector) { 2500 int defaultKind{GetDefaultKind(category)}; 2501 if (!selector) { 2502 return Expr<SubscriptInteger>{defaultKind}; 2503 } 2504 return std::visit( 2505 common::visitors{ 2506 [&](const parser::ScalarIntConstantExpr &x) { 2507 if (MaybeExpr kind{Analyze(x)}) { 2508 Expr<SomeType> folded{Fold(std::move(*kind))}; 2509 if (std::optional<std::int64_t> code{ToInt64(folded)}) { 2510 if (CheckIntrinsicKind(category, *code)) { 2511 return Expr<SubscriptInteger>{*code}; 2512 } 2513 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) { 2514 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2515 } 2516 } 2517 return Expr<SubscriptInteger>{defaultKind}; 2518 }, 2519 [&](const parser::KindSelector::StarSize &x) { 2520 std::intmax_t size = x.v; 2521 if (!CheckIntrinsicSize(category, size)) { 2522 size = defaultKind; 2523 } else if (category == TypeCategory::Complex) { 2524 size /= 2; 2525 } 2526 return Expr<SubscriptInteger>{size}; 2527 }, 2528 }, 2529 selector->u); 2530 } 2531 2532 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2533 return context_.GetDefaultKind(category); 2534 } 2535 2536 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2537 common::TypeCategory category) { 2538 return {category, GetDefaultKind(category)}; 2539 } 2540 2541 bool ExpressionAnalyzer::CheckIntrinsicKind( 2542 TypeCategory category, std::int64_t kind) { 2543 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2544 return true; 2545 } else { 2546 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2547 ToUpperCase(EnumToString(category)), kind); 2548 return false; 2549 } 2550 } 2551 2552 bool ExpressionAnalyzer::CheckIntrinsicSize( 2553 TypeCategory category, std::int64_t size) { 2554 if (category == TypeCategory::Complex) { 2555 // COMPLEX*16 == COMPLEX(KIND=8) 2556 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2557 return true; 2558 } 2559 } else if (IsValidKindOfIntrinsicType(category, size)) { 2560 return true; 2561 } 2562 Say("%s*%jd is not a supported type"_err_en_US, 2563 ToUpperCase(EnumToString(category)), size); 2564 return false; 2565 } 2566 2567 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 2568 return impliedDos_.insert(std::make_pair(name, kind)).second; 2569 } 2570 2571 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 2572 auto iter{impliedDos_.find(name)}; 2573 if (iter != impliedDos_.end()) { 2574 impliedDos_.erase(iter); 2575 } 2576 } 2577 2578 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 2579 parser::CharBlock name) const { 2580 auto iter{impliedDos_.find(name)}; 2581 if (iter != impliedDos_.cend()) { 2582 return {iter->second}; 2583 } else { 2584 return std::nullopt; 2585 } 2586 } 2587 2588 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 2589 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 2590 if (result) { 2591 if (auto type{result->GetType()}) { 2592 if (type->category() != category) { // C885 2593 Say(at, "Must have %s type, but is %s"_err_en_US, 2594 ToUpperCase(EnumToString(category)), 2595 ToUpperCase(type->AsFortran())); 2596 return false; 2597 } else if (defaultKind) { 2598 int kind{context_.GetDefaultKind(category)}; 2599 if (type->kind() != kind) { 2600 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 2601 kind, ToUpperCase(EnumToString(category)), 2602 ToUpperCase(type->AsFortran())); 2603 return false; 2604 } 2605 } 2606 } else { 2607 Say(at, "Must have %s type, but is typeless"_err_en_US, 2608 ToUpperCase(EnumToString(category))); 2609 return false; 2610 } 2611 } 2612 return true; 2613 } 2614 2615 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 2616 ProcedureDesignator &&proc, ActualArguments &&arguments) { 2617 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 2618 if (intrinsic->name == "null" && arguments.empty()) { 2619 return Expr<SomeType>{NullPointer{}}; 2620 } 2621 } 2622 if (const Symbol * symbol{proc.GetSymbol()}) { 2623 if (!ResolveForward(*symbol)) { 2624 return std::nullopt; 2625 } 2626 } 2627 if (auto chars{CheckCall(callSite, proc, arguments)}) { 2628 if (chars->functionResult) { 2629 const auto &result{*chars->functionResult}; 2630 if (result.IsProcedurePointer()) { 2631 return Expr<SomeType>{ 2632 ProcedureRef{std::move(proc), std::move(arguments)}}; 2633 } else { 2634 // Not a procedure pointer, so type and shape are known. 2635 return TypedWrapper<FunctionRef, ProcedureRef>( 2636 DEREF(result.GetTypeAndShape()).type(), 2637 ProcedureRef{std::move(proc), std::move(arguments)}); 2638 } 2639 } 2640 } 2641 return std::nullopt; 2642 } 2643 2644 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 2645 parser::CharBlock intrinsic, ActualArguments &&arguments) { 2646 if (std::optional<SpecificCall> specificCall{ 2647 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 2648 arguments, context_.foldingContext())}) { 2649 return MakeFunctionRef(intrinsic, 2650 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2651 std::move(specificCall->arguments)); 2652 } else { 2653 return std::nullopt; 2654 } 2655 } 2656 2657 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 2658 source_.ExtendToCover(x.GetSource()); 2659 if (MaybeExpr expr{context_.Analyze(x)}) { 2660 if (!IsConstantExpr(*expr)) { 2661 actuals_.emplace_back(std::move(*expr)); 2662 return; 2663 } 2664 const Symbol *symbol{GetFirstSymbol(*expr)}; 2665 context_.Say(x.GetSource(), 2666 "Assignment to constant '%s' is not allowed"_err_en_US, 2667 symbol ? symbol->name() : x.GetSource()); 2668 } 2669 fatalErrors_ = true; 2670 } 2671 2672 void ArgumentAnalyzer::Analyze( 2673 const parser::ActualArgSpec &arg, bool isSubroutine) { 2674 // TODO: C1002: Allow a whole assumed-size array to appear if the dummy 2675 // argument would accept it. Handle by special-casing the context 2676 // ActualArg -> Variable -> Designator. 2677 // TODO: Actual arguments that are procedures and procedure pointers need to 2678 // be detected and represented (they're not expressions). 2679 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 2680 std::optional<ActualArgument> actual; 2681 std::visit(common::visitors{ 2682 [&](const common::Indirection<parser::Expr> &x) { 2683 // TODO: Distinguish & handle procedure name and 2684 // proc-component-ref 2685 actual = AnalyzeExpr(x.value()); 2686 }, 2687 [&](const parser::AltReturnSpec &) { 2688 if (!isSubroutine) { 2689 context_.Say( 2690 "alternate return specification may not appear on" 2691 " function reference"_err_en_US); 2692 } 2693 }, 2694 [&](const parser::ActualArg::PercentRef &) { 2695 context_.Say("TODO: %REF() argument"_err_en_US); 2696 }, 2697 [&](const parser::ActualArg::PercentVal &) { 2698 context_.Say("TODO: %VAL() argument"_err_en_US); 2699 }, 2700 }, 2701 std::get<parser::ActualArg>(arg.t).u); 2702 if (actual) { 2703 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 2704 actual->set_keyword(argKW->v.source); 2705 } 2706 actuals_.emplace_back(std::move(*actual)); 2707 } else { 2708 fatalErrors_ = true; 2709 } 2710 } 2711 2712 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 2713 CHECK(actuals_.size() == 2); 2714 return semantics::IsIntrinsicRelational( 2715 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2716 } 2717 2718 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 2719 std::optional<DynamicType> type0{GetType(0)}; 2720 if (actuals_.size() == 1) { 2721 if (IsBOZLiteral(0)) { 2722 return opr == NumericOperator::Add; 2723 } else { 2724 return type0 && semantics::IsIntrinsicNumeric(*type0); 2725 } 2726 } else { 2727 std::optional<DynamicType> type1{GetType(1)}; 2728 if (IsBOZLiteral(0) && type1) { 2729 auto cat1{type1->category()}; 2730 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 2731 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 2732 auto cat0{type0->category()}; 2733 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 2734 } else { 2735 return type0 && type1 && 2736 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 2737 } 2738 } 2739 } 2740 2741 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 2742 if (actuals_.size() == 1) { 2743 return semantics::IsIntrinsicLogical(*GetType(0)); 2744 return GetType(0)->category() == TypeCategory::Logical; 2745 } else { 2746 return semantics::IsIntrinsicLogical( 2747 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2748 } 2749 } 2750 2751 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 2752 return semantics::IsIntrinsicConcat( 2753 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2754 } 2755 2756 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2757 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 2758 if (AnyUntypedOperand()) { 2759 context_.Say( 2760 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2761 return std::nullopt; 2762 } 2763 { 2764 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2765 std::string oprNameString{ 2766 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 2767 parser::CharBlock oprName{oprNameString}; 2768 const auto &scope{context_.context().FindScope(source_)}; 2769 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 2770 parser::Name name{symbol->name(), symbol}; 2771 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 2772 return result; 2773 } 2774 sawDefinedOp_ = symbol; 2775 } 2776 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2777 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 2778 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 2779 return result; 2780 } 2781 } 2782 } 2783 } 2784 if (sawDefinedOp_) { 2785 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 2786 } else if (actuals_.size() == 1 || AreConformable()) { 2787 context_.Say( 2788 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2789 } else { 2790 context_.Say( 2791 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 2792 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 2793 } 2794 return std::nullopt; 2795 } 2796 2797 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2798 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 2799 for (std::size_t i{1}; i < oprs.size(); ++i) { 2800 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2801 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 2802 return result; 2803 } 2804 } 2805 return TryDefinedOp(oprs[0], std::move(error)); 2806 } 2807 2808 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 2809 ActualArguments localActuals{actuals_}; 2810 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 2811 if (!proc) { 2812 proc = &symbol; 2813 localActuals.at(passIndex).value().set_isPassedObject(); 2814 } 2815 return context_.MakeFunctionRef( 2816 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 2817 } 2818 2819 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 2820 using semantics::Tristate; 2821 const Expr<SomeType> &lhs{GetExpr(0)}; 2822 const Expr<SomeType> &rhs{GetExpr(1)}; 2823 std::optional<DynamicType> lhsType{lhs.GetType()}; 2824 std::optional<DynamicType> rhsType{rhs.GetType()}; 2825 int lhsRank{lhs.Rank()}; 2826 int rhsRank{rhs.Rank()}; 2827 Tristate isDefined{ 2828 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 2829 if (isDefined == Tristate::No) { 2830 if (lhsType && rhsType) { 2831 AddAssignmentConversion(*lhsType, *rhsType); 2832 } 2833 return std::nullopt; // user-defined assignment not allowed for these args 2834 } 2835 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 2836 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 2837 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 2838 return std::move(*procRef); 2839 } 2840 if (isDefined == Tristate::Yes) { 2841 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 2842 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 2843 SayNoMatch("ASSIGNMENT(=)", true); 2844 } 2845 } 2846 return std::nullopt; 2847 } 2848 2849 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 2850 TypeCategory lhs, TypeCategory rhs) { 2851 if (!context_.context().languageFeatures().IsEnabled( 2852 common::LanguageFeature::LogicalIntegerAssignment)) { 2853 return false; 2854 } 2855 std::optional<parser::MessageFixedText> msg; 2856 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 2857 // allow assignment to LOGICAL from INTEGER as a legacy extension 2858 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 2859 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 2860 // ... and assignment to LOGICAL from INTEGER 2861 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 2862 } else { 2863 return false; 2864 } 2865 if (context_.context().languageFeatures().ShouldWarn( 2866 common::LanguageFeature::LogicalIntegerAssignment)) { 2867 context_.Say(std::move(*msg)); 2868 } 2869 return true; 2870 } 2871 2872 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 2873 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2874 std::string oprNameString{"assignment(=)"}; 2875 parser::CharBlock oprName{oprNameString}; 2876 const Symbol *proc{nullptr}; 2877 const auto &scope{context_.context().FindScope(source_)}; 2878 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 2879 ExpressionAnalyzer::AdjustActuals noAdjustment; 2880 if (const Symbol * 2881 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 2882 proc = specific; 2883 } else { 2884 context_.EmitGenericResolutionError(*symbol); 2885 } 2886 } 2887 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2888 if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) { 2889 proc = specific; 2890 } 2891 } 2892 if (proc) { 2893 ActualArguments actualsCopy{actuals_}; 2894 actualsCopy[1]->Parenthesize(); 2895 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 2896 } else { 2897 return std::nullopt; 2898 } 2899 } 2900 2901 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 2902 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 2903 << '\n'; 2904 for (const auto &actual : actuals_) { 2905 if (!actual.has_value()) { 2906 os << "- error\n"; 2907 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 2908 os << "- assumed type: " << symbol->name().ToString() << '\n'; 2909 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 2910 expr->AsFortran(os << "- expr: ") << '\n'; 2911 } else { 2912 DIE("bad ActualArgument"); 2913 } 2914 } 2915 } 2916 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 2917 const parser::Expr &expr) { 2918 source_.ExtendToCover(expr.source); 2919 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 2920 expr.typedExpr.reset(new GenericExprWrapper{}); 2921 if (allowAssumedType_) { 2922 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2923 } else { 2924 context_.SayAt(expr.source, 2925 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2926 return std::nullopt; 2927 } 2928 } else if (MaybeExpr argExpr{context_.Analyze(expr)}) { 2929 return ActualArgument{context_.Fold(std::move(*argExpr))}; 2930 } else { 2931 return std::nullopt; 2932 } 2933 } 2934 2935 bool ArgumentAnalyzer::AreConformable() const { 2936 CHECK(!fatalErrors_ && actuals_.size() == 2); 2937 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 2938 } 2939 2940 // Look for a type-bound operator in the type of arg number passIndex. 2941 const Symbol *ArgumentAnalyzer::FindBoundOp( 2942 parser::CharBlock oprName, int passIndex) { 2943 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 2944 if (!type || !type->scope()) { 2945 return nullptr; 2946 } 2947 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 2948 if (!symbol) { 2949 return nullptr; 2950 } 2951 sawDefinedOp_ = symbol; 2952 ExpressionAnalyzer::AdjustActuals adjustment{ 2953 [&](const Symbol &proc, ActualArguments &) { 2954 return passIndex == GetPassIndex(proc); 2955 }}; 2956 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 2957 if (!result) { 2958 context_.EmitGenericResolutionError(*symbol); 2959 } 2960 return result; 2961 } 2962 2963 // If there is an implicit conversion between intrinsic types, make it explicit 2964 void ArgumentAnalyzer::AddAssignmentConversion( 2965 const DynamicType &lhsType, const DynamicType &rhsType) { 2966 if (lhsType.category() == rhsType.category() && 2967 lhsType.kind() == rhsType.kind()) { 2968 // no conversion necessary 2969 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 2970 actuals_[1] = ActualArgument{*rhsExpr}; 2971 } else { 2972 actuals_[1] = std::nullopt; 2973 } 2974 } 2975 2976 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 2977 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 2978 } 2979 int ArgumentAnalyzer::GetRank(std::size_t i) const { 2980 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 2981 } 2982 2983 // Report error resolving opr when there is a user-defined one available 2984 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 2985 std::string type0{TypeAsFortran(0)}; 2986 auto rank0{actuals_[0]->Rank()}; 2987 if (actuals_.size() == 1) { 2988 if (rank0 > 0) { 2989 context_.Say("No intrinsic or user-defined %s matches " 2990 "rank %d array of %s"_err_en_US, 2991 opr, rank0, type0); 2992 } else { 2993 context_.Say("No intrinsic or user-defined %s matches " 2994 "operand type %s"_err_en_US, 2995 opr, type0); 2996 } 2997 } else { 2998 std::string type1{TypeAsFortran(1)}; 2999 auto rank1{actuals_[1]->Rank()}; 3000 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3001 context_.Say("No intrinsic or user-defined %s matches " 3002 "rank %d array of %s and rank %d array of %s"_err_en_US, 3003 opr, rank0, type0, rank1, type1); 3004 } else if (isAssignment && rank0 != rank1) { 3005 if (rank0 == 0) { 3006 context_.Say("No intrinsic or user-defined %s matches " 3007 "scalar %s and rank %d array of %s"_err_en_US, 3008 opr, type0, rank1, type1); 3009 } else { 3010 context_.Say("No intrinsic or user-defined %s matches " 3011 "rank %d array of %s and scalar %s"_err_en_US, 3012 opr, rank0, type0, type1); 3013 } 3014 } else { 3015 context_.Say("No intrinsic or user-defined %s matches " 3016 "operand types %s and %s"_err_en_US, 3017 opr, type0, type1); 3018 } 3019 } 3020 } 3021 3022 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3023 if (std::optional<DynamicType> type{GetType(i)}) { 3024 return type->category() == TypeCategory::Derived 3025 ? "TYPE("s + type->AsFortran() + ')' 3026 : type->category() == TypeCategory::Character 3027 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3028 : ToUpperCase(type->AsFortran()); 3029 } else { 3030 return "untyped"; 3031 } 3032 } 3033 3034 bool ArgumentAnalyzer::AnyUntypedOperand() { 3035 for (const auto &actual : actuals_) { 3036 if (!actual.value().GetType()) { 3037 return true; 3038 } 3039 } 3040 return false; 3041 } 3042 3043 } // namespace Fortran::evaluate 3044 3045 namespace Fortran::semantics { 3046 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3047 SemanticsContext &context, common::TypeCategory category, 3048 const std::optional<parser::KindSelector> &selector) { 3049 evaluate::ExpressionAnalyzer analyzer{context}; 3050 auto restorer{ 3051 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3052 return analyzer.AnalyzeKindSelector(category, selector); 3053 } 3054 3055 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3056 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3057 } 3058 3059 const evaluate::Assignment *AnalyzeAssignmentStmt( 3060 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3061 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3062 } 3063 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3064 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3065 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3066 } 3067 3068 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3069 3070 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3071 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3072 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3073 auto name{bounds.name.thing.thing}; 3074 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3075 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3076 if (dynamicType->category() == TypeCategory::Integer) { 3077 kind = dynamicType->kind(); 3078 } 3079 } 3080 exprAnalyzer_.AddImpliedDo(name.source, kind); 3081 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3082 exprAnalyzer_.RemoveImpliedDo(name.source); 3083 return false; 3084 } 3085 3086 bool ExprChecker::Walk(const parser::Program &program) { 3087 parser::Walk(program, *this); 3088 return !context_.AnyFatalError(); 3089 } 3090 } // namespace Fortran::semantics 3091