1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/idioms.h" 14 #include "flang/Evaluate/common.h" 15 #include "flang/Evaluate/fold.h" 16 #include "flang/Evaluate/tools.h" 17 #include "flang/Parser/characters.h" 18 #include "flang/Parser/dump-parse-tree.h" 19 #include "flang/Parser/parse-tree-visitor.h" 20 #include "flang/Parser/parse-tree.h" 21 #include "flang/Semantics/scope.h" 22 #include "flang/Semantics/semantics.h" 23 #include "flang/Semantics/symbol.h" 24 #include "flang/Semantics/tools.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <functional> 28 #include <optional> 29 #include <set> 30 31 // Typedef for optional generic expressions (ubiquitous in this file) 32 using MaybeExpr = 33 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 34 35 // Much of the code that implements semantic analysis of expressions is 36 // tightly coupled with their typed representations in lib/Evaluate, 37 // and appears here in namespace Fortran::evaluate for convenience. 38 namespace Fortran::evaluate { 39 40 using common::LanguageFeature; 41 using common::NumericOperator; 42 using common::TypeCategory; 43 44 static inline std::string ToUpperCase(const std::string &str) { 45 return parser::ToUpperCaseLetters(str); 46 } 47 48 struct DynamicTypeWithLength : public DynamicType { 49 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 50 std::optional<Expr<SubscriptInteger>> LEN() const; 51 std::optional<Expr<SubscriptInteger>> length; 52 }; 53 54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 55 if (length) { 56 return length; 57 } 58 if (auto *lengthParam{charLength()}) { 59 if (const auto &len{lengthParam->GetExplicit()}) { 60 return ConvertToType<SubscriptInteger>(common::Clone(*len)); 61 } 62 } 63 return std::nullopt; // assumed or deferred length 64 } 65 66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 67 const std::optional<parser::TypeSpec> &spec) { 68 if (spec) { 69 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 70 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 71 // (viz., an intrinsic type with valid known kind or a non-polymorphic 72 // & non-ABSTRACT derived type). 73 if (const semantics::IntrinsicTypeSpec * 74 intrinsic{typeSpec->AsIntrinsic()}) { 75 TypeCategory category{intrinsic->category()}; 76 if (auto optKind{ToInt64(intrinsic->kind())}) { 77 int kind{static_cast<int>(*optKind)}; 78 if (category == TypeCategory::Character) { 79 const semantics::CharacterTypeSpec &cts{ 80 typeSpec->characterTypeSpec()}; 81 const semantics::ParamValue &len{cts.length()}; 82 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 83 // type guards, but not in array constructors. 84 return DynamicTypeWithLength{DynamicType{kind, len}}; 85 } else { 86 return DynamicTypeWithLength{DynamicType{category, kind}}; 87 } 88 } 89 } else if (const semantics::DerivedTypeSpec * 90 derived{typeSpec->AsDerived()}) { 91 return DynamicTypeWithLength{DynamicType{*derived}}; 92 } 93 } 94 } 95 return std::nullopt; 96 } 97 98 class ArgumentAnalyzer { 99 public: 100 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 101 : context_{context}, isProcedureCall_{false} {} 102 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 103 bool isProcedureCall = false) 104 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 105 bool fatalErrors() const { return fatalErrors_; } 106 ActualArguments &&GetActuals() { 107 CHECK(!fatalErrors_); 108 return std::move(actuals_); 109 } 110 const Expr<SomeType> &GetExpr(std::size_t i) const { 111 return DEREF(actuals_.at(i).value().UnwrapExpr()); 112 } 113 Expr<SomeType> &&MoveExpr(std::size_t i) { 114 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 115 } 116 void Analyze(const common::Indirection<parser::Expr> &x) { 117 Analyze(x.value()); 118 } 119 void Analyze(const parser::Expr &x) { 120 actuals_.emplace_back(AnalyzeExpr(x)); 121 fatalErrors_ |= !actuals_.back(); 122 } 123 void Analyze(const parser::Variable &); 124 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 125 void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType); 126 127 bool IsIntrinsicRelational(RelationalOperator) const; 128 bool IsIntrinsicLogical() const; 129 bool IsIntrinsicNumeric(NumericOperator) const; 130 bool IsIntrinsicConcat() const; 131 132 // Find and return a user-defined operator or report an error. 133 // The provided message is used if there is no such operator. 134 MaybeExpr TryDefinedOp( 135 const char *, parser::MessageFixedText &&, bool isUserOp = false); 136 template <typename E> 137 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 138 return TryDefinedOp( 139 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 140 } 141 // Find and return a user-defined assignment 142 std::optional<ProcedureRef> TryDefinedAssignment(); 143 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 144 std::optional<DynamicType> GetType(std::size_t) const; 145 void Dump(llvm::raw_ostream &); 146 147 private: 148 MaybeExpr TryDefinedOp( 149 std::vector<const char *>, parser::MessageFixedText &&); 150 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 151 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 152 bool AreConformable() const; 153 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 154 void AddAssignmentConversion( 155 const DynamicType &lhsType, const DynamicType &rhsType); 156 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 157 int GetRank(std::size_t) const; 158 bool IsBOZLiteral(std::size_t i) const { 159 return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u); 160 } 161 void SayNoMatch(const std::string &, bool isAssignment = false); 162 std::string TypeAsFortran(std::size_t); 163 bool AnyUntypedOperand(); 164 165 ExpressionAnalyzer &context_; 166 ActualArguments actuals_; 167 parser::CharBlock source_; 168 bool fatalErrors_{false}; 169 const bool isProcedureCall_; // false for user-defined op or assignment 170 const Symbol *sawDefinedOp_{nullptr}; 171 }; 172 173 // Wraps a data reference in a typed Designator<>, and a procedure 174 // or procedure pointer reference in a ProcedureDesignator. 175 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 176 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 177 if (semantics::IsProcedure(symbol)) { 178 if (auto *component{std::get_if<Component>(&ref.u)}) { 179 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 180 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 181 DIE("unexpected alternative in DataRef"); 182 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 183 return Expr<SomeType>{ProcedureDesignator{symbol}}; 184 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 185 symbol.name().ToString())}) { 186 SpecificIntrinsic intrinsic{ 187 symbol.name().ToString(), std::move(*interface)}; 188 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 189 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 190 } else { 191 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 192 symbol.name()); 193 return std::nullopt; 194 } 195 } else if (auto dyType{DynamicType::From(symbol)}) { 196 return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); 197 } 198 return std::nullopt; 199 } 200 201 // Some subscript semantic checks must be deferred until all of the 202 // subscripts are in hand. 203 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 204 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 205 const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 206 int symbolRank{symbol.Rank()}; 207 int subscripts{static_cast<int>(ref.size())}; 208 if (subscripts == 0) { 209 // nothing to check 210 } else if (subscripts != symbolRank) { 211 if (symbolRank != 0) { 212 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 213 symbolRank, symbol.name(), subscripts); 214 } 215 return std::nullopt; 216 } else if (Component * component{ref.base().UnwrapComponent()}) { 217 int baseRank{component->base().Rank()}; 218 if (baseRank > 0) { 219 int subscriptRank{0}; 220 for (const auto &expr : ref.subscript()) { 221 subscriptRank += expr.Rank(); 222 } 223 if (subscriptRank > 0) { 224 Say("Subscripts of component '%s' of rank-%d derived type " 225 "array have rank %d but must all be scalar"_err_en_US, 226 symbol.name(), baseRank, subscriptRank); 227 return std::nullopt; 228 } 229 } 230 } else if (object) { 231 // C928 & C1002 232 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 233 if (!last->upper() && object->IsAssumedSize()) { 234 Say("Assumed-size array '%s' must have explicit final " 235 "subscript upper bound value"_err_en_US, 236 symbol.name()); 237 return std::nullopt; 238 } 239 } 240 } 241 return Designate(DataRef{std::move(ref)}); 242 } 243 244 // Applies subscripts to a data reference. 245 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 246 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 247 return std::visit( 248 common::visitors{ 249 [&](SymbolRef &&symbol) { 250 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 251 }, 252 [&](Component &&c) { 253 return CompleteSubscripts( 254 ArrayRef{std::move(c), std::move(subscripts)}); 255 }, 256 [&](auto &&) -> MaybeExpr { 257 DIE("bad base for ArrayRef"); 258 return std::nullopt; 259 }, 260 }, 261 std::move(dataRef.u)); 262 } 263 264 // Top-level checks for data references. 265 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 266 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 267 const Symbol &symbol{component->GetLastSymbol()}; 268 int componentRank{symbol.Rank()}; 269 if (componentRank > 0) { 270 int baseRank{component->base().Rank()}; 271 if (baseRank > 0) { 272 Say("Reference to whole rank-%d component '%%%s' of " 273 "rank-%d array of derived type is not allowed"_err_en_US, 274 componentRank, symbol.name(), baseRank); 275 } 276 } 277 } 278 return Designate(std::move(dataRef)); 279 } 280 281 // Parse tree correction after a substring S(j:k) was misparsed as an 282 // array section. N.B. Fortran substrings have to have a range, not a 283 // single index. 284 static void FixMisparsedSubstring(const parser::Designator &d) { 285 auto &mutate{const_cast<parser::Designator &>(d)}; 286 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 287 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 288 &dataRef->u)}) { 289 parser::ArrayElement &arrElement{ae->value()}; 290 if (!arrElement.subscripts.empty()) { 291 auto iter{arrElement.subscripts.begin()}; 292 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 293 if (!std::get<2>(triplet->t) /* no stride */ && 294 ++iter == arrElement.subscripts.end() /* one subscript */) { 295 if (Symbol * 296 symbol{std::visit( 297 common::visitors{ 298 [](parser::Name &n) { return n.symbol; }, 299 [](common::Indirection<parser::StructureComponent> 300 &sc) { return sc.value().component.symbol; }, 301 [](auto &) -> Symbol * { return nullptr; }, 302 }, 303 arrElement.base.u)}) { 304 const Symbol &ultimate{symbol->GetUltimate()}; 305 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 306 if (!ultimate.IsObjectArray() && 307 type->category() == semantics::DeclTypeSpec::Character) { 308 // The ambiguous S(j:k) was parsed as an array section 309 // reference, but it's now clear that it's a substring. 310 // Fix the parse tree in situ. 311 mutate.u = arrElement.ConvertToSubstring(); 312 } 313 } 314 } 315 } 316 } 317 } 318 } 319 } 320 } 321 322 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 323 auto restorer{GetContextualMessages().SetLocation(d.source)}; 324 FixMisparsedSubstring(d); 325 // These checks have to be deferred to these "top level" data-refs where 326 // we can be sure that there are no following subscripts (yet). 327 // Substrings have already been run through TopLevelChecks() and 328 // won't be returned by ExtractDataRef(). 329 if (MaybeExpr result{Analyze(d.u)}) { 330 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 331 return TopLevelChecks(std::move(*dataRef)); 332 } 333 return result; 334 } 335 return std::nullopt; 336 } 337 338 // A utility subroutine to repackage optional expressions of various levels 339 // of type specificity as fully general MaybeExpr values. 340 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 341 return AsGenericExpr(std::move(x)); 342 } 343 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 344 if (x) { 345 return AsMaybeExpr(std::move(*x)); 346 } 347 return std::nullopt; 348 } 349 350 // Type kind parameter values for literal constants. 351 int ExpressionAnalyzer::AnalyzeKindParam( 352 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 353 if (!kindParam) { 354 return defaultKind; 355 } 356 return std::visit( 357 common::visitors{ 358 [](std::uint64_t k) { return static_cast<int>(k); }, 359 [&](const parser::Scalar< 360 parser::Integer<parser::Constant<parser::Name>>> &n) { 361 if (MaybeExpr ie{Analyze(n)}) { 362 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 363 int iv = *i64; 364 if (iv == *i64) { 365 return iv; 366 } 367 } 368 } 369 return defaultKind; 370 }, 371 }, 372 kindParam->u); 373 } 374 375 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 376 struct IntTypeVisitor { 377 using Result = MaybeExpr; 378 using Types = IntegerTypes; 379 template <typename T> Result Test() { 380 if (T::kind >= kind) { 381 const char *p{digits.begin()}; 382 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 383 if (!value.overflow) { 384 if (T::kind > kind) { 385 if (!isDefaultKind || 386 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 387 return std::nullopt; 388 } else if (analyzer.context().ShouldWarn( 389 LanguageFeature::BigIntLiterals)) { 390 analyzer.Say(digits, 391 "Integer literal is too large for default INTEGER(KIND=%d); " 392 "assuming INTEGER(KIND=%d)"_en_US, 393 kind, T::kind); 394 } 395 } 396 return Expr<SomeType>{ 397 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 398 } 399 } 400 return std::nullopt; 401 } 402 ExpressionAnalyzer &analyzer; 403 parser::CharBlock digits; 404 int kind; 405 bool isDefaultKind; 406 }; 407 408 template <typename PARSED> 409 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 410 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 411 bool isDefaultKind{!kindParam}; 412 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 413 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 414 auto digits{std::get<parser::CharBlock>(x.t)}; 415 if (MaybeExpr result{common::SearchTypes( 416 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 417 return result; 418 } else if (isDefaultKind) { 419 Say(digits, 420 "Integer literal is too large for any allowable " 421 "kind of INTEGER"_err_en_US); 422 } else { 423 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 424 kind); 425 } 426 } 427 return std::nullopt; 428 } 429 430 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 431 auto restorer{ 432 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 433 return IntLiteralConstant(x); 434 } 435 436 MaybeExpr ExpressionAnalyzer::Analyze( 437 const parser::SignedIntLiteralConstant &x) { 438 auto restorer{GetContextualMessages().SetLocation(x.source)}; 439 return IntLiteralConstant(x); 440 } 441 442 template <typename TYPE> 443 Constant<TYPE> ReadRealLiteral( 444 parser::CharBlock source, FoldingContext &context) { 445 const char *p{source.begin()}; 446 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 447 CHECK(p == source.end()); 448 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 449 auto value{valWithFlags.value}; 450 if (context.flushSubnormalsToZero()) { 451 value = value.FlushSubnormalToZero(); 452 } 453 return {value}; 454 } 455 456 struct RealTypeVisitor { 457 using Result = std::optional<Expr<SomeReal>>; 458 using Types = RealTypes; 459 460 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 461 : kind{k}, literal{lit}, context{ctx} {} 462 463 template <typename T> Result Test() { 464 if (kind == T::kind) { 465 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 466 } 467 return std::nullopt; 468 } 469 470 int kind; 471 parser::CharBlock literal; 472 FoldingContext &context; 473 }; 474 475 // Reads a real literal constant and encodes it with the right kind. 476 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 477 // Use a local message context around the real literal for better 478 // provenance on any messages. 479 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 480 // If a kind parameter appears, it defines the kind of the literal and the 481 // letter used in an exponent part must be 'E' (e.g., the 'E' in 482 // "6.02214E+23"). In the absence of an explicit kind parameter, any 483 // exponent letter determines the kind. Otherwise, defaults apply. 484 auto &defaults{context_.defaultKinds()}; 485 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 486 const char *end{x.real.source.end()}; 487 char expoLetter{' '}; 488 std::optional<int> letterKind; 489 for (const char *p{x.real.source.begin()}; p < end; ++p) { 490 if (parser::IsLetter(*p)) { 491 expoLetter = *p; 492 switch (expoLetter) { 493 case 'e': 494 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 495 break; 496 case 'd': 497 letterKind = defaults.doublePrecisionKind(); 498 break; 499 case 'q': 500 letterKind = defaults.quadPrecisionKind(); 501 break; 502 default: 503 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 504 } 505 break; 506 } 507 } 508 if (letterKind) { 509 defaultKind = *letterKind; 510 } 511 // C716 requires 'E' as an exponent, but this is more useful 512 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 513 if (letterKind && kind != *letterKind && expoLetter != 'e') { 514 Say("Explicit kind parameter on real constant disagrees with " 515 "exponent letter '%c'"_en_US, 516 expoLetter); 517 } 518 auto result{common::SearchTypes( 519 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 520 if (!result) { // C717 521 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 522 } 523 return AsMaybeExpr(std::move(result)); 524 } 525 526 MaybeExpr ExpressionAnalyzer::Analyze( 527 const parser::SignedRealLiteralConstant &x) { 528 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 529 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 530 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 531 if (sign == parser::Sign::Negative) { 532 return AsGenericExpr(-std::move(realExpr)); 533 } 534 } 535 return result; 536 } 537 return std::nullopt; 538 } 539 540 MaybeExpr ExpressionAnalyzer::Analyze( 541 const parser::SignedComplexLiteralConstant &x) { 542 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 543 if (!result) { 544 return std::nullopt; 545 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 546 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 547 } else { 548 return result; 549 } 550 } 551 552 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 553 return Analyze(x.u); 554 } 555 556 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 557 return AsMaybeExpr( 558 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 559 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 560 } 561 562 // CHARACTER literal processing. 563 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 564 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 565 return std::nullopt; 566 } 567 switch (kind) { 568 case 1: 569 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 570 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 571 string, true)}); 572 case 2: 573 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 574 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 575 string, true)}); 576 case 4: 577 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 578 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 579 string, true)}); 580 default: 581 CRASH_NO_CASE; 582 } 583 } 584 585 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 586 int kind{ 587 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 588 auto value{std::get<std::string>(x.t)}; 589 return AnalyzeString(std::move(value), kind); 590 } 591 592 MaybeExpr ExpressionAnalyzer::Analyze( 593 const parser::HollerithLiteralConstant &x) { 594 int kind{GetDefaultKind(TypeCategory::Character)}; 595 auto value{x.v}; 596 return AnalyzeString(std::move(value), kind); 597 } 598 599 // .TRUE. and .FALSE. of various kinds 600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 601 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 602 GetDefaultKind(TypeCategory::Logical))}; 603 bool value{std::get<bool>(x.t)}; 604 auto result{common::SearchTypes( 605 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 606 kind, std::move(value)})}; 607 if (!result) { 608 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 609 } 610 return result; 611 } 612 613 // BOZ typeless literals 614 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 615 const char *p{x.v.c_str()}; 616 std::uint64_t base{16}; 617 switch (*p++) { 618 case 'b': 619 base = 2; 620 break; 621 case 'o': 622 base = 8; 623 break; 624 case 'z': 625 break; 626 case 'x': 627 break; 628 default: 629 CRASH_NO_CASE; 630 } 631 CHECK(*p == '"'); 632 ++p; 633 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 634 if (*p != '"') { 635 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 636 x.v); // C7107, C7108 637 return std::nullopt; 638 } 639 if (value.overflow) { 640 Say("BOZ literal '%s' too large"_err_en_US, x.v); 641 return std::nullopt; 642 } 643 return AsGenericExpr(std::move(value.value)); 644 } 645 646 // For use with SearchTypes to create a TypeParamInquiry with the 647 // right integer kind. 648 struct TypeParamInquiryVisitor { 649 using Result = std::optional<Expr<SomeInteger>>; 650 using Types = IntegerTypes; 651 TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol ¶m) 652 : kind{k}, base{std::move(b)}, parameter{param} {} 653 TypeParamInquiryVisitor(int k, const Symbol ¶m) 654 : kind{k}, parameter{param} {} 655 template <typename T> Result Test() { 656 if (kind == T::kind) { 657 return Expr<SomeInteger>{ 658 Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}}; 659 } 660 return std::nullopt; 661 } 662 int kind; 663 std::optional<NamedEntity> base; 664 const Symbol ¶meter; 665 }; 666 667 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry( 668 const Symbol *symbol) { 669 if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) { 670 if (dyType->category() == TypeCategory::Integer) { 671 return common::SearchTypes( 672 TypeParamInquiryVisitor{dyType->kind(), *symbol}); 673 } 674 } 675 return std::nullopt; 676 } 677 678 // Names and named constants 679 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 680 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 681 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 682 *kind, AsExpr(ImpliedDoIndex{n.source}))); 683 } else if (context_.HasError(n)) { 684 return std::nullopt; 685 } else if (!n.symbol) { 686 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 687 return std::nullopt; 688 } else { 689 const Symbol &ultimate{n.symbol->GetUltimate()}; 690 if (ultimate.has<semantics::TypeParamDetails>()) { 691 // A bare reference to a derived type parameter (within a parameterized 692 // derived type definition) 693 return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate)); 694 } else { 695 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 696 if (const semantics::Scope * 697 pure{semantics::FindPureProcedureContaining( 698 context_.FindScope(n.source))}) { 699 SayAt(n, 700 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 701 n.source, DEREF(pure->symbol()).name()); 702 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 703 } 704 } 705 return Designate(DataRef{*n.symbol}); 706 } 707 } 708 } 709 710 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 711 if (MaybeExpr value{Analyze(n.v)}) { 712 Expr<SomeType> folded{Fold(std::move(*value))}; 713 if (IsConstantExpr(folded)) { 714 return folded; 715 } 716 Say(n.v.source, "must be a constant"_err_en_US); // C718 717 } 718 return std::nullopt; 719 } 720 721 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) { 722 return Expr<SomeType>{NullPointer{}}; 723 } 724 725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 726 return Analyze(x.value()); 727 } 728 729 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 730 if (const auto &repeat{ 731 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 732 x.repetitions = -1; 733 if (MaybeExpr expr{Analyze(repeat->u)}) { 734 Expr<SomeType> folded{Fold(std::move(*expr))}; 735 if (auto value{ToInt64(folded)}) { 736 if (*value >= 0) { // C882 737 x.repetitions = *value; 738 } else { 739 Say(FindSourceLocation(repeat), 740 "Repeat count (%jd) for data value must not be negative"_err_en_US, 741 *value); 742 } 743 } 744 } 745 } 746 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 747 } 748 749 // Substring references 750 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 751 const std::optional<parser::ScalarIntExpr> &bound) { 752 if (bound) { 753 if (MaybeExpr expr{Analyze(*bound)}) { 754 if (expr->Rank() > 1) { 755 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 756 } 757 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 758 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 759 return {std::move(*ssIntExpr)}; 760 } 761 return {Expr<SubscriptInteger>{ 762 Convert<SubscriptInteger, TypeCategory::Integer>{ 763 std::move(*intExpr)}}}; 764 } else { 765 Say("substring bound expression is not INTEGER"_err_en_US); 766 } 767 } 768 } 769 return std::nullopt; 770 } 771 772 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 773 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 774 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 775 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 776 if (std::optional<DataRef> checked{ 777 ExtractDataRef(std::move(*newBaseExpr))}) { 778 const parser::SubstringRange &range{ 779 std::get<parser::SubstringRange>(ss.t)}; 780 std::optional<Expr<SubscriptInteger>> first{ 781 GetSubstringBound(std::get<0>(range.t))}; 782 std::optional<Expr<SubscriptInteger>> last{ 783 GetSubstringBound(std::get<1>(range.t))}; 784 const Symbol &symbol{checked->GetLastSymbol()}; 785 if (std::optional<DynamicType> dynamicType{ 786 DynamicType::From(symbol)}) { 787 if (dynamicType->category() == TypeCategory::Character) { 788 return WrapperHelper<TypeCategory::Character, Designator, 789 Substring>(dynamicType->kind(), 790 Substring{std::move(checked.value()), std::move(first), 791 std::move(last)}); 792 } 793 } 794 Say("substring may apply only to CHARACTER"_err_en_US); 795 } 796 } 797 } 798 } 799 return std::nullopt; 800 } 801 802 // CHARACTER literal substrings 803 MaybeExpr ExpressionAnalyzer::Analyze( 804 const parser::CharLiteralConstantSubstring &x) { 805 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 806 std::optional<Expr<SubscriptInteger>> lower{ 807 GetSubstringBound(std::get<0>(range.t))}; 808 std::optional<Expr<SubscriptInteger>> upper{ 809 GetSubstringBound(std::get<1>(range.t))}; 810 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 811 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 812 Expr<SubscriptInteger> length{ 813 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 814 charExpr->u)}; 815 if (!lower) { 816 lower = Expr<SubscriptInteger>{1}; 817 } 818 if (!upper) { 819 upper = Expr<SubscriptInteger>{ 820 static_cast<std::int64_t>(ToInt64(length).value())}; 821 } 822 return std::visit( 823 [&](auto &&ckExpr) -> MaybeExpr { 824 using Result = ResultType<decltype(ckExpr)>; 825 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 826 CHECK(DEREF(cp).size() == 1); 827 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 828 staticData->set_alignment(Result::kind) 829 .set_itemBytes(Result::kind) 830 .Push(cp->GetScalarValue().value()); 831 Substring substring{std::move(staticData), std::move(lower.value()), 832 std::move(upper.value())}; 833 return AsGenericExpr( 834 Expr<Result>{Designator<Result>{std::move(substring)}}); 835 }, 836 std::move(charExpr->u)); 837 } 838 } 839 return std::nullopt; 840 } 841 842 // Subscripted array references 843 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 844 MaybeExpr &&expr) { 845 if (expr) { 846 if (expr->Rank() > 1) { 847 Say("Subscript expression has rank %d greater than 1"_err_en_US, 848 expr->Rank()); 849 } 850 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 851 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 852 return std::move(*ssIntExpr); 853 } else { 854 return Expr<SubscriptInteger>{ 855 Convert<SubscriptInteger, TypeCategory::Integer>{ 856 std::move(*intExpr)}}; 857 } 858 } else { 859 Say("Subscript expression is not INTEGER"_err_en_US); 860 } 861 } 862 return std::nullopt; 863 } 864 865 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 866 const std::optional<parser::Subscript> &s) { 867 if (s) { 868 return AsSubscript(Analyze(*s)); 869 } else { 870 return std::nullopt; 871 } 872 } 873 874 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 875 const parser::SectionSubscript &ss) { 876 return std::visit( 877 common::visitors{ 878 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 879 const auto &lower{std::get<0>(t.t)}; 880 const auto &upper{std::get<1>(t.t)}; 881 const auto &stride{std::get<2>(t.t)}; 882 auto result{Triplet{ 883 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 884 if ((lower && !result.lower()) || (upper && !result.upper())) { 885 return std::nullopt; 886 } else { 887 return std::make_optional<Subscript>(result); 888 } 889 }, 890 [&](const auto &s) -> std::optional<Subscript> { 891 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 892 return Subscript{std::move(*subscriptExpr)}; 893 } else { 894 return std::nullopt; 895 } 896 }, 897 }, 898 ss.u); 899 } 900 901 // Empty result means an error occurred 902 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 903 const std::list<parser::SectionSubscript> &sss) { 904 bool error{false}; 905 std::vector<Subscript> subscripts; 906 for (const auto &s : sss) { 907 if (auto subscript{AnalyzeSectionSubscript(s)}) { 908 subscripts.emplace_back(std::move(*subscript)); 909 } else { 910 error = true; 911 } 912 } 913 return !error ? subscripts : std::vector<Subscript>{}; 914 } 915 916 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 917 if (MaybeExpr baseExpr{Analyze(ae.base)}) { 918 if (ae.subscripts.empty()) { 919 // will be converted to function call later or error reported 920 return std::nullopt; 921 } else if (baseExpr->Rank() == 0) { 922 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 923 if (!context_.HasError(symbol)) { 924 Say("'%s' is not an array"_err_en_US, symbol->name()); 925 context_.SetError(*symbol); 926 } 927 } 928 } else if (std::optional<DataRef> dataRef{ 929 ExtractDataRef(std::move(*baseExpr))}) { 930 return ApplySubscripts( 931 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 932 } else { 933 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 934 } 935 } 936 // error was reported: analyze subscripts without reporting more errors 937 auto restorer{GetContextualMessages().DiscardMessages()}; 938 AnalyzeSectionSubscripts(ae.subscripts); 939 return std::nullopt; 940 } 941 942 // Type parameter inquiries apply to data references, but don't depend 943 // on any trailing (co)subscripts. 944 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 945 return std::visit( 946 common::visitors{ 947 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 948 [](Component &&component) { 949 return NamedEntity{std::move(component)}; 950 }, 951 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 952 [](CoarrayRef &&coarrayRef) { 953 return NamedEntity{coarrayRef.GetLastSymbol()}; 954 }, 955 }, 956 std::move(designator.u)); 957 } 958 959 // Components of parent derived types are explicitly represented as such. 960 static std::optional<Component> CreateComponent( 961 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 962 if (&component.owner() == &scope) { 963 return Component{std::move(base), component}; 964 } 965 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 966 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 967 return CreateComponent( 968 DataRef{Component{std::move(base), *parentComponent}}, component, 969 *parentScope); 970 } 971 } 972 return std::nullopt; 973 } 974 975 // Derived type component references and type parameter inquiries 976 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 977 MaybeExpr base{Analyze(sc.base)}; 978 if (!base) { 979 return std::nullopt; 980 } 981 Symbol *sym{sc.component.symbol}; 982 if (context_.HasError(sym)) { 983 return std::nullopt; 984 } 985 const auto &name{sc.component.source}; 986 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 987 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 988 if (sym->detailsIf<semantics::TypeParamDetails>()) { 989 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 990 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 991 if (dyType->category() == TypeCategory::Integer) { 992 return AsMaybeExpr( 993 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(), 994 IgnoreAnySubscripts(std::move(*designator)), *sym})); 995 } 996 } 997 Say(name, "Type parameter is not INTEGER"_err_en_US); 998 } else { 999 Say(name, 1000 "A type parameter inquiry must be applied to " 1001 "a designator"_err_en_US); 1002 } 1003 } else if (!dtSpec || !dtSpec->scope()) { 1004 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1005 return std::nullopt; 1006 } else if (std::optional<DataRef> dataRef{ 1007 ExtractDataRef(std::move(*dtExpr))}) { 1008 if (auto component{ 1009 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1010 return Designate(DataRef{std::move(*component)}); 1011 } else { 1012 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1013 dtSpec->typeSymbol().name()); 1014 } 1015 } else { 1016 Say(name, 1017 "Base of component reference must be a data reference"_err_en_US); 1018 } 1019 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1020 // special part-ref: %re, %im, %kind, %len 1021 // Type errors are detected and reported in semantics. 1022 using MiscKind = semantics::MiscDetails::Kind; 1023 MiscKind kind{details->kind()}; 1024 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1025 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1026 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1027 Expr<SomeReal> realExpr{std::visit( 1028 [&](const auto &z) { 1029 using PartType = typename ResultType<decltype(z)>::Part; 1030 auto part{kind == MiscKind::ComplexPartRe 1031 ? ComplexPart::Part::RE 1032 : ComplexPart::Part::IM}; 1033 return AsCategoryExpr(Designator<PartType>{ 1034 ComplexPart{std::move(*dataRef), part}}); 1035 }, 1036 zExpr->u)}; 1037 return AsGenericExpr(std::move(realExpr)); 1038 } 1039 } 1040 } else if (kind == MiscKind::KindParamInquiry || 1041 kind == MiscKind::LenParamInquiry) { 1042 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1043 return MakeFunctionRef( 1044 name, ActualArguments{ActualArgument{std::move(*base)}}); 1045 } else { 1046 DIE("unexpected MiscDetails::Kind"); 1047 } 1048 } else { 1049 Say(name, "derived type required before component reference"_err_en_US); 1050 } 1051 return std::nullopt; 1052 } 1053 1054 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1055 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1056 DataRef *dataRef{&*maybeDataRef}; 1057 std::vector<Subscript> subscripts; 1058 SymbolVector reversed; 1059 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1060 subscripts = std::move(aRef->subscript()); 1061 reversed.push_back(aRef->GetLastSymbol()); 1062 if (Component * component{aRef->base().UnwrapComponent()}) { 1063 dataRef = &component->base(); 1064 } else { 1065 dataRef = nullptr; 1066 } 1067 } 1068 if (dataRef) { 1069 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1070 reversed.push_back(component->GetLastSymbol()); 1071 dataRef = &component->base(); 1072 } 1073 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1074 reversed.push_back(*baseSym); 1075 } else { 1076 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1077 } 1078 } 1079 std::vector<Expr<SubscriptInteger>> cosubscripts; 1080 bool cosubsOk{true}; 1081 for (const auto &cosub : 1082 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1083 MaybeExpr coex{Analyze(cosub)}; 1084 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1085 cosubscripts.push_back( 1086 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1087 } else { 1088 cosubsOk = false; 1089 } 1090 } 1091 if (cosubsOk && !reversed.empty()) { 1092 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1093 const Symbol &symbol{reversed.front()}; 1094 if (numCosubscripts != symbol.Corank()) { 1095 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1096 symbol.name(), symbol.Corank(), numCosubscripts); 1097 } 1098 } 1099 for (const auto &imageSelSpec : 1100 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1101 std::visit( 1102 common::visitors{ 1103 [&](const auto &x) { Analyze(x.v); }, 1104 }, 1105 imageSelSpec.u); 1106 } 1107 // Reverse the chain of symbols so that the base is first and coarray 1108 // ultimate component is last. 1109 if (cosubsOk) { 1110 return Designate( 1111 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1112 std::move(subscripts), std::move(cosubscripts)}}); 1113 } 1114 } 1115 return std::nullopt; 1116 } 1117 1118 int ExpressionAnalyzer::IntegerTypeSpecKind( 1119 const parser::IntegerTypeSpec &spec) { 1120 Expr<SubscriptInteger> value{ 1121 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1122 if (auto kind{ToInt64(value)}) { 1123 return static_cast<int>(*kind); 1124 } 1125 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1126 return GetDefaultKind(TypeCategory::Integer); 1127 } 1128 1129 // Array constructors 1130 1131 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1132 // all happen to have the same actual type T into one ArrayConstructor<T>. 1133 template <typename T> 1134 ArrayConstructorValues<T> MakeSpecific( 1135 ArrayConstructorValues<SomeType> &&from) { 1136 ArrayConstructorValues<T> to; 1137 for (ArrayConstructorValue<SomeType> &x : from) { 1138 std::visit( 1139 common::visitors{ 1140 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1141 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1142 to.Push(std::move(DEREF(typed))); 1143 }, 1144 [&](ImpliedDo<SomeType> &&impliedDo) { 1145 to.Push(ImpliedDo<T>{impliedDo.name(), 1146 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1147 std::move(impliedDo.stride()), 1148 MakeSpecific<T>(std::move(impliedDo.values()))}); 1149 }, 1150 }, 1151 std::move(x.u)); 1152 } 1153 return to; 1154 } 1155 1156 class ArrayConstructorContext { 1157 public: 1158 ArrayConstructorContext( 1159 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1160 : exprAnalyzer_{c}, type_{std::move(t)} {} 1161 1162 void Add(const parser::AcValue &); 1163 MaybeExpr ToExpr(); 1164 1165 // These interfaces allow *this to be used as a type visitor argument to 1166 // common::SearchTypes() to convert the array constructor to a typed 1167 // expression in ToExpr(). 1168 using Result = MaybeExpr; 1169 using Types = AllTypes; 1170 template <typename T> Result Test() { 1171 if (type_ && type_->category() == T::category) { 1172 if constexpr (T::category == TypeCategory::Derived) { 1173 if (type_->IsUnlimitedPolymorphic()) { 1174 return std::nullopt; 1175 } else { 1176 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1177 MakeSpecific<T>(std::move(values_))}); 1178 } 1179 } else if (type_->kind() == T::kind) { 1180 if constexpr (T::category == TypeCategory::Character) { 1181 if (auto len{type_->LEN()}) { 1182 return AsMaybeExpr(ArrayConstructor<T>{ 1183 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1184 } 1185 } else { 1186 return AsMaybeExpr( 1187 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1188 } 1189 } 1190 } 1191 return std::nullopt; 1192 } 1193 1194 private: 1195 void Push(MaybeExpr &&); 1196 1197 template <int KIND, typename A> 1198 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1199 const A &x) { 1200 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1201 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1202 return ConvertToType<Type<TypeCategory::Integer, KIND>>( 1203 std::move(DEREF(intExpr))); 1204 } 1205 return std::nullopt; 1206 } 1207 1208 // Nested array constructors all reference the same ExpressionAnalyzer, 1209 // which represents the nest of active implied DO loop indices. 1210 ExpressionAnalyzer &exprAnalyzer_; 1211 std::optional<DynamicTypeWithLength> type_; 1212 bool explicitType_{type_.has_value()}; 1213 std::optional<std::int64_t> constantLength_; 1214 ArrayConstructorValues<SomeType> values_; 1215 bool messageDisplayedOnce{false}; 1216 }; 1217 1218 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1219 if (!x) { 1220 return; 1221 } 1222 if (auto dyType{x->GetType()}) { 1223 DynamicTypeWithLength xType{*dyType}; 1224 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1225 CHECK(xType.category() == TypeCategory::Character); 1226 xType.length = 1227 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1228 } 1229 if (!type_) { 1230 // If there is no explicit type-spec in an array constructor, the type 1231 // of the array is the declared type of all of the elements, which must 1232 // be well-defined and all match. 1233 // TODO: Possible language extension: use the most general type of 1234 // the values as the type of a numeric constructed array, convert all 1235 // of the other values to that type. Alternative: let the first value 1236 // determine the type, and convert the others to that type. 1237 CHECK(!explicitType_); 1238 type_ = std::move(xType); 1239 constantLength_ = ToInt64(type_->length); 1240 values_.Push(std::move(*x)); 1241 } else if (!explicitType_) { 1242 if (static_cast<const DynamicType &>(*type_) == 1243 static_cast<const DynamicType &>(xType)) { 1244 values_.Push(std::move(*x)); 1245 if (auto thisLen{ToInt64(xType.LEN())}) { 1246 if (constantLength_) { 1247 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1248 *thisLen != *constantLength_) { 1249 exprAnalyzer_.Say( 1250 "Character literal in array constructor without explicit " 1251 "type has different length than earlier element"_en_US); 1252 } 1253 if (*thisLen > *constantLength_) { 1254 // Language extension: use the longest literal to determine the 1255 // length of the array constructor's character elements, not the 1256 // first, when there is no explicit type. 1257 *constantLength_ = *thisLen; 1258 type_->length = xType.LEN(); 1259 } 1260 } else { 1261 constantLength_ = *thisLen; 1262 type_->length = xType.LEN(); 1263 } 1264 } 1265 } else { 1266 if (!messageDisplayedOnce) { 1267 exprAnalyzer_.Say( 1268 "Values in array constructor must have the same declared type " 1269 "when no explicit type appears"_err_en_US); // C7110 1270 messageDisplayedOnce = true; 1271 } 1272 } 1273 } else { 1274 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1275 values_.Push(std::move(*cast)); 1276 } else { 1277 exprAnalyzer_.Say( 1278 "Value in array constructor of type '%s' could not " 1279 "be converted to the type of the array '%s'"_err_en_US, 1280 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1281 } 1282 } 1283 } 1284 } 1285 1286 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1287 using IntType = ResultType<ImpliedDoIndex>; 1288 std::visit( 1289 common::visitors{ 1290 [&](const parser::AcValue::Triplet &triplet) { 1291 // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1292 std::optional<Expr<IntType>> lower{ 1293 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))}; 1294 std::optional<Expr<IntType>> upper{ 1295 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))}; 1296 std::optional<Expr<IntType>> stride{ 1297 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))}; 1298 if (lower && upper) { 1299 if (!stride) { 1300 stride = Expr<IntType>{1}; 1301 } 1302 if (!type_) { 1303 type_ = DynamicTypeWithLength{IntType::GetType()}; 1304 } 1305 auto v{std::move(values_)}; 1306 parser::CharBlock anonymous; 1307 Push(Expr<SomeType>{ 1308 Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}}); 1309 std::swap(v, values_); 1310 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1311 std::move(*upper), std::move(*stride), std::move(v)}); 1312 } 1313 }, 1314 [&](const common::Indirection<parser::Expr> &expr) { 1315 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation( 1316 expr.value().source)}; 1317 if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) { 1318 if (auto exprType{v->GetType()}) { 1319 if (exprType->IsUnlimitedPolymorphic()) { 1320 exprAnalyzer_.Say( 1321 "Cannot have an unlimited polymorphic value in an " 1322 "array constructor"_err_en_US); // C7113 1323 } 1324 } 1325 Push(std::move(*v)); 1326 } 1327 }, 1328 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1329 const auto &control{ 1330 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)}; 1331 const auto &bounds{ 1332 std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1333 exprAnalyzer_.Analyze(bounds.name); 1334 parser::CharBlock name{bounds.name.thing.thing.source}; 1335 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1336 int kind{IntType::kind}; 1337 if (const auto dynamicType{DynamicType::From(symbol)}) { 1338 kind = dynamicType->kind(); 1339 } 1340 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1341 std::optional<Expr<IntType>> lower{ 1342 GetSpecificIntExpr<IntType::kind>(bounds.lower)}; 1343 std::optional<Expr<IntType>> upper{ 1344 GetSpecificIntExpr<IntType::kind>(bounds.upper)}; 1345 if (lower && upper) { 1346 std::optional<Expr<IntType>> stride{ 1347 GetSpecificIntExpr<IntType::kind>(bounds.step)}; 1348 auto v{std::move(values_)}; 1349 for (const auto &value : 1350 std::get<std::list<parser::AcValue>>(impliedDo.value().t)) { 1351 Add(value); 1352 } 1353 if (!stride) { 1354 stride = Expr<IntType>{1}; 1355 } 1356 std::swap(v, values_); 1357 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1358 std::move(*upper), std::move(*stride), std::move(v)}); 1359 } 1360 exprAnalyzer_.RemoveImpliedDo(name); 1361 } else { 1362 exprAnalyzer_.SayAt(name, 1363 "Implied DO index is active in surrounding implied DO loop " 1364 "and may not have the same name"_err_en_US); // C7115 1365 } 1366 }, 1367 }, 1368 x.u); 1369 } 1370 1371 MaybeExpr ArrayConstructorContext::ToExpr() { 1372 return common::SearchTypes(std::move(*this)); 1373 } 1374 1375 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1376 const parser::AcSpec &acSpec{array.v}; 1377 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1378 for (const parser::AcValue &value : acSpec.values) { 1379 acContext.Add(value); 1380 } 1381 return acContext.ToExpr(); 1382 } 1383 1384 MaybeExpr ExpressionAnalyzer::Analyze( 1385 const parser::StructureConstructor &structure) { 1386 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1387 parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; 1388 if (!parsedType.derivedTypeSpec) { 1389 return std::nullopt; 1390 } 1391 const auto &spec{*parsedType.derivedTypeSpec}; 1392 const Symbol &typeSymbol{spec.typeSymbol()}; 1393 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1394 return std::nullopt; // error recovery 1395 } 1396 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1397 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1398 1399 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1400 AttachDeclaration(Say(typeName, 1401 "ABSTRACT derived type '%s' may not be used in a " 1402 "structure constructor"_err_en_US, 1403 typeName), 1404 typeSymbol); // C7114 1405 } 1406 1407 // This iterator traverses all of the components in the derived type and its 1408 // parents. The symbols for whole parent components appear after their 1409 // own components and before the components of the types that extend them. 1410 // E.g., TYPE :: A; REAL X; END TYPE 1411 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1412 // produces the component list X, A, Y. 1413 // The order is important below because a structure constructor can 1414 // initialize X or A by name, but not both. 1415 auto components{semantics::OrderedComponentIterator{spec}}; 1416 auto nextAnonymous{components.begin()}; 1417 1418 std::set<parser::CharBlock> unavailable; 1419 bool anyKeyword{false}; 1420 StructureConstructor result{spec}; 1421 bool checkConflicts{true}; // until we hit one 1422 auto &messages{GetContextualMessages()}; 1423 1424 for (const auto &component : 1425 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1426 const parser::Expr &expr{ 1427 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1428 parser::CharBlock source{expr.source}; 1429 auto restorer{messages.SetLocation(source)}; 1430 const Symbol *symbol{nullptr}; 1431 MaybeExpr value{Analyze(expr)}; 1432 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1433 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1434 anyKeyword = true; 1435 source = kw->v.source; 1436 symbol = kw->v.symbol; 1437 if (!symbol) { 1438 auto componentIter{std::find_if(components.begin(), components.end(), 1439 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1440 if (componentIter != components.end()) { 1441 symbol = &*componentIter; 1442 } 1443 } 1444 if (!symbol) { // C7101 1445 Say(source, 1446 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1447 source, typeName); 1448 } 1449 } else { 1450 if (anyKeyword) { // C7100 1451 Say(source, 1452 "Value in structure constructor lacks a component name"_err_en_US); 1453 checkConflicts = false; // stem cascade 1454 } 1455 // Here's a regrettably common extension of the standard: anonymous 1456 // initialization of parent components, e.g., T(PT(1)) rather than 1457 // T(1) or T(PT=PT(1)). 1458 if (nextAnonymous == components.begin() && parentComponent && 1459 valueType == DynamicType::From(*parentComponent) && 1460 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1461 auto iter{ 1462 std::find(components.begin(), components.end(), *parentComponent)}; 1463 if (iter != components.end()) { 1464 symbol = parentComponent; 1465 nextAnonymous = ++iter; 1466 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1467 Say(source, 1468 "Whole parent component '%s' in structure " 1469 "constructor should not be anonymous"_en_US, 1470 symbol->name()); 1471 } 1472 } 1473 } 1474 while (!symbol && nextAnonymous != components.end()) { 1475 const Symbol &next{*nextAnonymous}; 1476 ++nextAnonymous; 1477 if (!next.test(Symbol::Flag::ParentComp)) { 1478 symbol = &next; 1479 } 1480 } 1481 if (!symbol) { 1482 Say(source, "Unexpected value in structure constructor"_err_en_US); 1483 } 1484 } 1485 if (symbol) { 1486 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1487 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1488 Say(source, *msg); 1489 } 1490 } 1491 if (checkConflicts) { 1492 auto componentIter{ 1493 std::find(components.begin(), components.end(), *symbol)}; 1494 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1495 // C797, C798 1496 Say(source, 1497 "Component '%s' conflicts with another component earlier in " 1498 "this structure constructor"_err_en_US, 1499 symbol->name()); 1500 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1501 // Make earlier components unavailable once a whole parent appears. 1502 for (auto it{components.begin()}; it != componentIter; ++it) { 1503 unavailable.insert(it->name()); 1504 } 1505 } else { 1506 // Make whole parent components unavailable after any of their 1507 // constituents appear. 1508 for (auto it{componentIter}; it != components.end(); ++it) { 1509 if (it->test(Symbol::Flag::ParentComp)) { 1510 unavailable.insert(it->name()); 1511 } 1512 } 1513 } 1514 } 1515 unavailable.insert(symbol->name()); 1516 if (value) { 1517 if (symbol->has<semantics::ProcEntityDetails>()) { 1518 CHECK(IsPointer(*symbol)); 1519 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1520 // C1594(4) 1521 const auto &innermost{context_.FindScope(expr.source)}; 1522 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1523 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1524 if (const Symbol * 1525 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1526 if (auto *msg{Say(expr.source, 1527 "Externally visible object '%s' may not be " 1528 "associated with pointer component '%s' in a " 1529 "pure procedure"_err_en_US, 1530 object->name(), pointer->name())}) { 1531 msg->Attach(object->name(), "Object declaration"_en_US) 1532 .Attach(pointer->name(), "Pointer declaration"_en_US); 1533 } 1534 } 1535 } 1536 } 1537 } else if (symbol->has<semantics::TypeParamDetails>()) { 1538 Say(expr.source, 1539 "Type parameter '%s' may not appear as a component " 1540 "of a structure constructor"_err_en_US, 1541 symbol->name()); 1542 continue; 1543 } else { 1544 Say(expr.source, 1545 "Component '%s' is neither a procedure pointer " 1546 "nor a data object"_err_en_US, 1547 symbol->name()); 1548 continue; 1549 } 1550 if (IsPointer(*symbol)) { 1551 semantics::CheckPointerAssignment( 1552 GetFoldingContext(), *symbol, *value); // C7104, C7105 1553 result.Add(*symbol, Fold(std::move(*value))); 1554 } else if (MaybeExpr converted{ 1555 ConvertToType(*symbol, std::move(*value))}) { 1556 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1557 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1558 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1559 AttachDeclaration( 1560 Say(expr.source, 1561 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1562 symbol->name()), 1563 *symbol); 1564 } else if (CheckConformance(messages, *componentShape, 1565 *valueShape, "component", "value")) { 1566 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 && 1567 !IsExpandableScalar(*converted)) { 1568 AttachDeclaration( 1569 Say(expr.source, 1570 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1571 symbol->name()), 1572 *symbol); 1573 } else { 1574 result.Add(*symbol, std::move(*converted)); 1575 } 1576 } 1577 } else { 1578 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1579 } 1580 } else { 1581 AttachDeclaration( 1582 Say(expr.source, 1583 "Shape of component '%s' cannot be determined"_err_en_US, 1584 symbol->name()), 1585 *symbol); 1586 } 1587 } else if (IsAllocatable(*symbol) && 1588 std::holds_alternative<NullPointer>(value->u)) { 1589 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1590 } else if (auto symType{DynamicType::From(symbol)}) { 1591 if (valueType) { 1592 AttachDeclaration( 1593 Say(expr.source, 1594 "Value in structure constructor of type %s is " 1595 "incompatible with component '%s' of type %s"_err_en_US, 1596 valueType->AsFortran(), symbol->name(), 1597 symType->AsFortran()), 1598 *symbol); 1599 } else { 1600 AttachDeclaration( 1601 Say(expr.source, 1602 "Value in structure constructor is incompatible with " 1603 " component '%s' of type %s"_err_en_US, 1604 symbol->name(), symType->AsFortran()), 1605 *symbol); 1606 } 1607 } 1608 } 1609 } 1610 } 1611 1612 // Ensure that unmentioned component objects have default initializers. 1613 for (const Symbol &symbol : components) { 1614 if (!symbol.test(Symbol::Flag::ParentComp) && 1615 unavailable.find(symbol.name()) == unavailable.cend() && 1616 !IsAllocatable(symbol)) { 1617 if (const auto *details{ 1618 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1619 if (details->init()) { 1620 result.Add(symbol, common::Clone(*details->init())); 1621 } else { // C799 1622 AttachDeclaration(Say(typeName, 1623 "Structure constructor lacks a value for " 1624 "component '%s'"_err_en_US, 1625 symbol.name()), 1626 symbol); 1627 } 1628 } 1629 } 1630 } 1631 1632 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1633 } 1634 1635 static std::optional<parser::CharBlock> GetPassName( 1636 const semantics::Symbol &proc) { 1637 return std::visit( 1638 [](const auto &details) { 1639 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1640 std::decay_t<decltype(details)>>) { 1641 return details.passName(); 1642 } else { 1643 return std::optional<parser::CharBlock>{}; 1644 } 1645 }, 1646 proc.details()); 1647 } 1648 1649 static int GetPassIndex(const Symbol &proc) { 1650 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1651 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1652 const auto *interface{semantics::FindInterface(proc)}; 1653 if (!passName || !interface) { 1654 return 0; // first argument is passed-object 1655 } 1656 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1657 int index{0}; 1658 for (const auto *arg : subp.dummyArgs()) { 1659 if (arg && arg->name() == passName) { 1660 return index; 1661 } 1662 ++index; 1663 } 1664 DIE("PASS argument name not in dummy argument list"); 1665 } 1666 1667 // Injects an expression into an actual argument list as the "passed object" 1668 // for a type-bound procedure reference that is not NOPASS. Adds an 1669 // argument keyword if possible, but not when the passed object goes 1670 // before a positional argument. 1671 // e.g., obj%tbp(x) -> tbp(obj,x). 1672 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1673 const Symbol &component, bool isPassedObject = true) { 1674 if (component.attrs().test(semantics::Attr::NOPASS)) { 1675 return; 1676 } 1677 int passIndex{GetPassIndex(component)}; 1678 auto iter{actuals.begin()}; 1679 int at{0}; 1680 while (iter < actuals.end() && at < passIndex) { 1681 if (*iter && (*iter)->keyword()) { 1682 iter = actuals.end(); 1683 break; 1684 } 1685 ++iter; 1686 ++at; 1687 } 1688 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1689 passed.set_isPassedObject(isPassedObject); 1690 if (iter == actuals.end()) { 1691 if (auto passName{GetPassName(component)}) { 1692 passed.set_keyword(*passName); 1693 } 1694 } 1695 actuals.emplace(iter, std::move(passed)); 1696 } 1697 1698 // Return the compile-time resolution of a procedure binding, if possible. 1699 static const Symbol *GetBindingResolution( 1700 const std::optional<DynamicType> &baseType, const Symbol &component) { 1701 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1702 if (!binding) { 1703 return nullptr; 1704 } 1705 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1706 (!baseType || baseType->IsPolymorphic())) { 1707 return nullptr; 1708 } 1709 return &binding->symbol(); 1710 } 1711 1712 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1713 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1714 -> std::optional<CalleeAndArguments> { 1715 const parser::StructureComponent &sc{pcr.v.thing}; 1716 const auto &name{sc.component.source}; 1717 if (MaybeExpr base{Analyze(sc.base)}) { 1718 if (const Symbol * sym{sc.component.symbol}) { 1719 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1720 if (sym->has<semantics::GenericDetails>()) { 1721 AdjustActuals adjustment{ 1722 [&](const Symbol &proc, ActualArguments &actuals) { 1723 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1724 AddPassArg(actuals, std::move(*dtExpr), proc); 1725 } 1726 return true; 1727 }}; 1728 sym = ResolveGeneric(*sym, arguments, adjustment); 1729 if (!sym) { 1730 EmitGenericResolutionError(*sc.component.symbol); 1731 return std::nullopt; 1732 } 1733 } 1734 if (const Symbol * 1735 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1736 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1737 return CalleeAndArguments{ 1738 ProcedureDesignator{*resolution}, std::move(arguments)}; 1739 } else if (std::optional<DataRef> dataRef{ 1740 ExtractDataRef(std::move(*dtExpr))}) { 1741 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1742 return CalleeAndArguments{ 1743 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1744 std::move(arguments)}; 1745 } else { 1746 AddPassArg(arguments, 1747 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1748 *sym); 1749 return CalleeAndArguments{ 1750 ProcedureDesignator{*sym}, std::move(arguments)}; 1751 } 1752 } 1753 } 1754 Say(name, 1755 "Base of procedure component reference is not a derived-type object"_err_en_US); 1756 } 1757 } 1758 CHECK(!GetContextualMessages().empty()); 1759 return std::nullopt; 1760 } 1761 1762 // Can actual be argument associated with dummy? 1763 static bool CheckCompatibleArgument(bool isElemental, 1764 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1765 return std::visit( 1766 common::visitors{ 1767 [&](const characteristics::DummyDataObject &x) { 1768 characteristics::TypeAndShape dummyTypeAndShape{x.type}; 1769 if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) { 1770 return false; 1771 } else if (auto actualType{actual.GetType()}) { 1772 return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType); 1773 } else { 1774 return false; 1775 } 1776 }, 1777 [&](const characteristics::DummyProcedure &) { 1778 const auto *expr{actual.UnwrapExpr()}; 1779 return expr && IsProcedurePointer(*expr); 1780 }, 1781 [&](const characteristics::AlternateReturn &) { 1782 return actual.isAlternateReturn(); 1783 }, 1784 }, 1785 dummy.u); 1786 } 1787 1788 // Are the actual arguments compatible with the dummy arguments of procedure? 1789 static bool CheckCompatibleArguments( 1790 const characteristics::Procedure &procedure, 1791 const ActualArguments &actuals) { 1792 bool isElemental{procedure.IsElemental()}; 1793 const auto &dummies{procedure.dummyArguments}; 1794 CHECK(dummies.size() == actuals.size()); 1795 for (std::size_t i{0}; i < dummies.size(); ++i) { 1796 const characteristics::DummyArgument &dummy{dummies[i]}; 1797 const std::optional<ActualArgument> &actual{actuals[i]}; 1798 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1799 return false; 1800 } 1801 } 1802 return true; 1803 } 1804 1805 // Handles a forward reference to a module function from what must 1806 // be a specification expression. Return false if the symbol is 1807 // an invalid forward reference. 1808 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1809 if (context_.HasError(symbol)) { 1810 return false; 1811 } 1812 if (const auto *details{ 1813 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1814 if (details->kind() == semantics::SubprogramKind::Module) { 1815 // If this symbol is still a SubprogramNameDetails, we must be 1816 // checking a specification expression in a sibling module 1817 // procedure. Resolve its names now so that its interface 1818 // is known. 1819 semantics::ResolveSpecificationParts(context_, symbol); 1820 if (symbol.has<semantics::SubprogramNameDetails>()) { 1821 // When the symbol hasn't had its details updated, we must have 1822 // already been in the process of resolving the function's 1823 // specification part; but recursive function calls are not 1824 // allowed in specification parts (10.1.11 para 5). 1825 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1826 symbol.name()); 1827 context_.SetError(symbol); 1828 return false; 1829 } 1830 } else { // 10.1.11 para 4 1831 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1832 symbol.name()); 1833 context_.SetError(symbol); 1834 return false; 1835 } 1836 } 1837 return true; 1838 } 1839 1840 // Resolve a call to a generic procedure with given actual arguments. 1841 // adjustActuals is called on procedure bindings to handle pass arg. 1842 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1843 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1844 bool mightBeStructureConstructor) { 1845 const Symbol *elemental{nullptr}; // matching elemental specific proc 1846 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1847 for (const Symbol &specific : details.specificProcs()) { 1848 if (!ResolveForward(specific)) { 1849 continue; 1850 } 1851 if (std::optional<characteristics::Procedure> procedure{ 1852 characteristics::Procedure::Characterize( 1853 ProcedureDesignator{specific}, context_.intrinsics())}) { 1854 ActualArguments localActuals{actuals}; 1855 if (specific.has<semantics::ProcBindingDetails>()) { 1856 if (!adjustActuals.value()(specific, localActuals)) { 1857 continue; 1858 } 1859 } 1860 if (semantics::CheckInterfaceForGeneric( 1861 *procedure, localActuals, GetFoldingContext())) { 1862 if (CheckCompatibleArguments(*procedure, localActuals)) { 1863 if (!procedure->IsElemental()) { 1864 return &specific; // takes priority over elemental match 1865 } 1866 elemental = &specific; 1867 } 1868 } 1869 } 1870 } 1871 if (elemental) { 1872 return elemental; 1873 } 1874 // Check parent derived type 1875 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 1876 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 1877 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 1878 if (const Symbol * 1879 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 1880 return result; 1881 } 1882 } 1883 } 1884 } 1885 if (mightBeStructureConstructor && details.derivedType()) { 1886 return details.derivedType(); 1887 } 1888 return nullptr; 1889 } 1890 1891 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 1892 if (semantics::IsGenericDefinedOp(symbol)) { 1893 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 1894 symbol.name()); 1895 } else { 1896 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 1897 symbol.name()); 1898 } 1899 } 1900 1901 auto ExpressionAnalyzer::GetCalleeAndArguments( 1902 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 1903 bool isSubroutine, bool mightBeStructureConstructor) 1904 -> std::optional<CalleeAndArguments> { 1905 return std::visit( 1906 common::visitors{ 1907 [&](const parser::Name &name) { 1908 return GetCalleeAndArguments(name, std::move(arguments), 1909 isSubroutine, mightBeStructureConstructor); 1910 }, 1911 [&](const parser::ProcComponentRef &pcr) { 1912 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 1913 }, 1914 }, 1915 pd.u); 1916 } 1917 1918 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 1919 ActualArguments &&arguments, bool isSubroutine, 1920 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 1921 const Symbol *symbol{name.symbol}; 1922 if (context_.HasError(symbol)) { 1923 return std::nullopt; // also handles null symbol 1924 } 1925 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 1926 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 1927 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 1928 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 1929 arguments, GetFoldingContext())}) { 1930 return CalleeAndArguments{ 1931 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1932 std::move(specificCall->arguments)}; 1933 } 1934 } else { 1935 CheckForBadRecursion(name.source, ultimate); 1936 if (ultimate.has<semantics::GenericDetails>()) { 1937 ExpressionAnalyzer::AdjustActuals noAdjustment; 1938 symbol = ResolveGeneric( 1939 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 1940 } 1941 if (symbol) { 1942 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 1943 if (mightBeStructureConstructor) { 1944 return CalleeAndArguments{ 1945 semantics::SymbolRef{*symbol}, std::move(arguments)}; 1946 } 1947 } else { 1948 return CalleeAndArguments{ 1949 ProcedureDesignator{*symbol}, std::move(arguments)}; 1950 } 1951 } else if (std::optional<SpecificCall> specificCall{ 1952 context_.intrinsics().Probe( 1953 CallCharacteristics{ 1954 ultimate.name().ToString(), isSubroutine}, 1955 arguments, GetFoldingContext())}) { 1956 // Generics can extend intrinsics 1957 return CalleeAndArguments{ 1958 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1959 std::move(specificCall->arguments)}; 1960 } else { 1961 EmitGenericResolutionError(*name.symbol); 1962 } 1963 } 1964 return std::nullopt; 1965 } 1966 1967 void ExpressionAnalyzer::CheckForBadRecursion( 1968 parser::CharBlock callSite, const semantics::Symbol &proc) { 1969 if (const auto *scope{proc.scope()}) { 1970 if (scope->sourceRange().Contains(callSite)) { 1971 parser::Message *msg{nullptr}; 1972 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 1973 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 1974 callSite); 1975 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 1976 msg = Say( // 15.6.2.1(3) 1977 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 1978 callSite); 1979 } 1980 AttachDeclaration(msg, proc); 1981 } 1982 } 1983 } 1984 1985 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 1986 if (const auto *designator{ 1987 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 1988 if (const auto *dataRef{ 1989 std::get_if<parser::DataRef>(&designator->value().u)}) { 1990 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 1991 if (const Symbol * symbol{name->symbol}) { 1992 if (const auto *type{symbol->GetType()}) { 1993 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 1994 return symbol; 1995 } 1996 } 1997 } 1998 } 1999 } 2000 } 2001 return nullptr; 2002 } 2003 2004 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2005 std::optional<parser::StructureConstructor> *structureConstructor) { 2006 const parser::Call &call{funcRef.v}; 2007 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2008 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2009 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2010 analyzer.Analyze(arg, false /* not subroutine call */); 2011 } 2012 if (analyzer.fatalErrors()) { 2013 return std::nullopt; 2014 } 2015 if (std::optional<CalleeAndArguments> callee{ 2016 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2017 analyzer.GetActuals(), false /* not subroutine */, 2018 true /* might be structure constructor */)}) { 2019 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2020 return MakeFunctionRef( 2021 call.source, std::move(*proc), std::move(callee->arguments)); 2022 } else if (structureConstructor) { 2023 // Structure constructor misparsed as function reference? 2024 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2025 const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)}; 2026 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2027 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2028 semantics::Scope &scope{context_.FindScope(name->source)}; 2029 const semantics::DeclTypeSpec &type{ 2030 semantics::FindOrInstantiateDerivedType(scope, 2031 semantics::DerivedTypeSpec{ 2032 name->source, derivedType.GetUltimate()}, 2033 context_)}; 2034 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2035 *structureConstructor = 2036 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2037 return Analyze(structureConstructor->value()); 2038 } 2039 } 2040 } 2041 return std::nullopt; 2042 } 2043 2044 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2045 const parser::Call &call{callStmt.v}; 2046 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2047 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2048 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2049 for (const auto &arg : actualArgList) { 2050 analyzer.Analyze(arg, true /* is subroutine call */); 2051 } 2052 if (!analyzer.fatalErrors()) { 2053 if (std::optional<CalleeAndArguments> callee{ 2054 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2055 analyzer.GetActuals(), true /* subroutine */)}) { 2056 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2057 CHECK(proc); 2058 if (CheckCall(call.source, *proc, callee->arguments)) { 2059 bool hasAlternateReturns{ 2060 callee->arguments.size() < actualArgList.size()}; 2061 callStmt.typedCall.Reset( 2062 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2063 hasAlternateReturns}, 2064 ProcedureRef::Deleter); 2065 } 2066 } 2067 } 2068 } 2069 2070 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2071 if (!x.typedAssignment) { 2072 ArgumentAnalyzer analyzer{*this}; 2073 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2074 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2075 if (analyzer.fatalErrors()) { 2076 x.typedAssignment.Reset( 2077 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2078 } else { 2079 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2080 Assignment assignment{ 2081 Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))}; 2082 if (procRef) { 2083 assignment.u = std::move(*procRef); 2084 } 2085 x.typedAssignment.Reset( 2086 new GenericAssignmentWrapper{std::move(assignment)}, 2087 GenericAssignmentWrapper::Deleter); 2088 } 2089 } 2090 return common::GetPtrFromOptional(x.typedAssignment->v); 2091 } 2092 2093 const Assignment *ExpressionAnalyzer::Analyze( 2094 const parser::PointerAssignmentStmt &x) { 2095 if (!x.typedAssignment) { 2096 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2097 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2098 if (!lhs || !rhs) { 2099 x.typedAssignment.Reset( 2100 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2101 } else { 2102 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2103 std::visit(common::visitors{ 2104 [&](const std::list<parser::BoundsRemapping> &list) { 2105 Assignment::BoundsRemapping bounds; 2106 for (const auto &elem : list) { 2107 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2108 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2109 if (lower && upper) { 2110 bounds.emplace_back(Fold(std::move(*lower)), 2111 Fold(std::move(*upper))); 2112 } 2113 } 2114 assignment.u = std::move(bounds); 2115 }, 2116 [&](const std::list<parser::BoundsSpec> &list) { 2117 Assignment::BoundsSpec bounds; 2118 for (const auto &bound : list) { 2119 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2120 bounds.emplace_back(Fold(std::move(*lower))); 2121 } 2122 } 2123 assignment.u = std::move(bounds); 2124 }, 2125 }, 2126 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2127 x.typedAssignment.Reset( 2128 new GenericAssignmentWrapper{std::move(assignment)}, 2129 GenericAssignmentWrapper::Deleter); 2130 } 2131 } 2132 return common::GetPtrFromOptional(x.typedAssignment->v); 2133 } 2134 2135 static bool IsExternalCalledImplicitly( 2136 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2137 if (const auto *symbol{proc.GetSymbol()}) { 2138 return symbol->has<semantics::SubprogramDetails>() && 2139 symbol->owner().IsGlobal() && 2140 (!symbol->scope() /*ENTRY*/ || 2141 !symbol->scope()->sourceRange().Contains(callSite)); 2142 } else { 2143 return false; 2144 } 2145 } 2146 2147 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2148 parser::CharBlock callSite, const ProcedureDesignator &proc, 2149 ActualArguments &arguments) { 2150 auto chars{ 2151 characteristics::Procedure::Characterize(proc, context_.intrinsics())}; 2152 if (chars) { 2153 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2154 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2155 Say(callSite, 2156 "References to the procedure '%s' require an explicit interface"_en_US, 2157 DEREF(proc.GetSymbol()).name()); 2158 } 2159 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2160 context_.FindScope(callSite), treatExternalAsImplicit); 2161 const Symbol *procSymbol{proc.GetSymbol()}; 2162 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2163 if (const semantics::Scope * 2164 pure{semantics::FindPureProcedureContaining( 2165 context_.FindScope(callSite))}) { 2166 Say(callSite, 2167 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2168 procSymbol->name(), DEREF(pure->symbol()).name()); 2169 } 2170 } 2171 } 2172 return chars; 2173 } 2174 2175 // Unary operations 2176 2177 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2178 if (MaybeExpr operand{Analyze(x.v.value())}) { 2179 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2180 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2181 if (semantics::IsProcedurePointer(*result)) { 2182 Say("A function reference that returns a procedure " 2183 "pointer may not be parenthesized"_err_en_US); // C1003 2184 } 2185 } 2186 } 2187 return Parenthesize(std::move(*operand)); 2188 } 2189 return std::nullopt; 2190 } 2191 2192 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2193 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2194 ArgumentAnalyzer analyzer{context}; 2195 analyzer.Analyze(x.v); 2196 if (analyzer.fatalErrors()) { 2197 return std::nullopt; 2198 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2199 if (opr == NumericOperator::Add) { 2200 return analyzer.MoveExpr(0); 2201 } else { 2202 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2203 } 2204 } else { 2205 return analyzer.TryDefinedOp(AsFortran(opr), 2206 "Operand of unary %s must be numeric; have %s"_err_en_US); 2207 } 2208 } 2209 2210 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2211 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2212 } 2213 2214 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2215 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2216 } 2217 2218 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2219 ArgumentAnalyzer analyzer{*this}; 2220 analyzer.Analyze(x.v); 2221 if (analyzer.fatalErrors()) { 2222 return std::nullopt; 2223 } else if (analyzer.IsIntrinsicLogical()) { 2224 return AsGenericExpr( 2225 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2226 } else { 2227 return analyzer.TryDefinedOp(LogicalOperator::Not, 2228 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2229 } 2230 } 2231 2232 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2233 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2234 // intrinsic function. 2235 // Use the actual source for the name of the call for error reporting. 2236 std::optional<ActualArgument> arg; 2237 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2238 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2239 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2240 arg = ActualArgument{std::move(*argExpr)}; 2241 } else { 2242 return std::nullopt; 2243 } 2244 parser::CharBlock at{GetContextualMessages().at()}; 2245 CHECK(at.size() >= 4); 2246 parser::CharBlock loc{at.begin() + 1, 3}; 2247 CHECK(loc == "loc"); 2248 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2249 } 2250 2251 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2252 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2253 ArgumentAnalyzer analyzer{*this, name.source}; 2254 analyzer.Analyze(std::get<1>(x.t)); 2255 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2256 "No operator %s defined for %s"_err_en_US, true); 2257 } 2258 2259 // Binary (dyadic) operations 2260 2261 template <template <typename> class OPR> 2262 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2263 const parser::Expr::IntrinsicBinary &x) { 2264 ArgumentAnalyzer analyzer{context}; 2265 analyzer.Analyze(std::get<0>(x.t)); 2266 analyzer.Analyze(std::get<1>(x.t)); 2267 if (analyzer.fatalErrors()) { 2268 return std::nullopt; 2269 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2270 return NumericOperation<OPR>(context.GetContextualMessages(), 2271 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2272 context.GetDefaultKind(TypeCategory::Real)); 2273 } else { 2274 return analyzer.TryDefinedOp(AsFortran(opr), 2275 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2276 } 2277 } 2278 2279 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2280 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2281 } 2282 2283 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2284 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2285 } 2286 2287 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2288 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2289 } 2290 2291 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2292 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2293 } 2294 2295 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2296 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2297 } 2298 2299 MaybeExpr ExpressionAnalyzer::Analyze( 2300 const parser::Expr::ComplexConstructor &x) { 2301 auto re{Analyze(std::get<0>(x.t).value())}; 2302 auto im{Analyze(std::get<1>(x.t).value())}; 2303 if (re && im) { 2304 ConformabilityCheck(GetContextualMessages(), *re, *im); 2305 } 2306 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2307 std::move(im), GetDefaultKind(TypeCategory::Real))); 2308 } 2309 2310 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2311 ArgumentAnalyzer analyzer{*this}; 2312 analyzer.Analyze(std::get<0>(x.t)); 2313 analyzer.Analyze(std::get<1>(x.t)); 2314 if (analyzer.fatalErrors()) { 2315 return std::nullopt; 2316 } else if (analyzer.IsIntrinsicConcat()) { 2317 return std::visit( 2318 [&](auto &&x, auto &&y) -> MaybeExpr { 2319 using T = ResultType<decltype(x)>; 2320 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2321 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2322 } else { 2323 DIE("different types for intrinsic concat"); 2324 } 2325 }, 2326 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2327 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2328 } else { 2329 return analyzer.TryDefinedOp("//", 2330 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2331 } 2332 } 2333 2334 // The Name represents a user-defined intrinsic operator. 2335 // If the actuals match one of the specific procedures, return a function ref. 2336 // Otherwise report the error in messages. 2337 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2338 const parser::Name &name, ActualArguments &&actuals) { 2339 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2340 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2341 return MakeFunctionRef(name.source, 2342 std::move(std::get<ProcedureDesignator>(callee->u)), 2343 std::move(callee->arguments)); 2344 } else { 2345 return std::nullopt; 2346 } 2347 } 2348 2349 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2350 const parser::Expr::IntrinsicBinary &x) { 2351 ArgumentAnalyzer analyzer{context}; 2352 analyzer.Analyze(std::get<0>(x.t)); 2353 analyzer.Analyze(std::get<1>(x.t)); 2354 if (analyzer.fatalErrors()) { 2355 return std::nullopt; 2356 } else { 2357 analyzer.ConvertBOZ(0, analyzer.GetType(1)); 2358 analyzer.ConvertBOZ(1, analyzer.GetType(0)); 2359 if (analyzer.IsIntrinsicRelational(opr)) { 2360 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2361 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2362 } else { 2363 return analyzer.TryDefinedOp(opr, 2364 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2365 } 2366 } 2367 } 2368 2369 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2370 return RelationHelper(*this, RelationalOperator::LT, x); 2371 } 2372 2373 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2374 return RelationHelper(*this, RelationalOperator::LE, x); 2375 } 2376 2377 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2378 return RelationHelper(*this, RelationalOperator::EQ, x); 2379 } 2380 2381 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2382 return RelationHelper(*this, RelationalOperator::NE, x); 2383 } 2384 2385 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2386 return RelationHelper(*this, RelationalOperator::GE, x); 2387 } 2388 2389 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2390 return RelationHelper(*this, RelationalOperator::GT, x); 2391 } 2392 2393 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2394 const parser::Expr::IntrinsicBinary &x) { 2395 ArgumentAnalyzer analyzer{context}; 2396 analyzer.Analyze(std::get<0>(x.t)); 2397 analyzer.Analyze(std::get<1>(x.t)); 2398 if (analyzer.fatalErrors()) { 2399 return std::nullopt; 2400 } else if (analyzer.IsIntrinsicLogical()) { 2401 return AsGenericExpr(BinaryLogicalOperation(opr, 2402 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2403 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2404 } else { 2405 return analyzer.TryDefinedOp( 2406 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2407 } 2408 } 2409 2410 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2411 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2412 } 2413 2414 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2415 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2416 } 2417 2418 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2419 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2420 } 2421 2422 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2423 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2424 } 2425 2426 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2427 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2428 ArgumentAnalyzer analyzer{*this, name.source}; 2429 analyzer.Analyze(std::get<1>(x.t)); 2430 analyzer.Analyze(std::get<2>(x.t)); 2431 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2432 "No operator %s defined for %s and %s"_err_en_US, true); 2433 } 2434 2435 static void CheckFuncRefToArrayElementRefHasSubscripts( 2436 semantics::SemanticsContext &context, 2437 const parser::FunctionReference &funcRef) { 2438 // Emit message if the function reference fix will end up an array element 2439 // reference with no subscripts because it will not be possible to later tell 2440 // the difference in expressions between empty subscript list due to bad 2441 // subscripts error recovery or because the user did not put any. 2442 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2443 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2444 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2445 if (!name) { 2446 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2447 } 2448 auto &msg{context.Say(funcRef.v.source, 2449 name->symbol && name->symbol->Rank() == 0 2450 ? "'%s' is not a function"_err_en_US 2451 : "Reference to array '%s' with empty subscript list"_err_en_US, 2452 name->source)}; 2453 if (name->symbol) { 2454 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2455 msg.Attach(name->source, 2456 "A result variable must be declared with RESULT to allow recursive " 2457 "function calls"_en_US); 2458 } else { 2459 AttachDeclaration(&msg, *name->symbol); 2460 } 2461 } 2462 } 2463 } 2464 2465 // Converts, if appropriate, an original misparse of ambiguous syntax like 2466 // A(1) as a function reference into an array reference. 2467 // Misparse structure constructors are detected elsewhere after generic 2468 // function call resolution fails. 2469 template <typename... A> 2470 static void FixMisparsedFunctionReference( 2471 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2472 // The parse tree is updated in situ when resolving an ambiguous parse. 2473 using uType = std::decay_t<decltype(constU)>; 2474 auto &u{const_cast<uType &>(constU)}; 2475 if (auto *func{ 2476 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2477 parser::FunctionReference &funcRef{func->value()}; 2478 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2479 if (Symbol * 2480 origSymbol{ 2481 std::visit(common::visitors{ 2482 [&](parser::Name &name) { return name.symbol; }, 2483 [&](parser::ProcComponentRef &pcr) { 2484 return pcr.v.thing.component.symbol; 2485 }, 2486 }, 2487 proc.u)}) { 2488 Symbol &symbol{origSymbol->GetUltimate()}; 2489 if (symbol.has<semantics::ObjectEntityDetails>() || 2490 symbol.has<semantics::AssocEntityDetails>()) { 2491 // Note that expression in AssocEntityDetails cannot be a procedure 2492 // pointer as per C1105 so this cannot be a function reference. 2493 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2494 uType>) { 2495 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2496 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2497 } else { 2498 DIE("can't fix misparsed function as array reference"); 2499 } 2500 } 2501 } 2502 } 2503 } 2504 2505 // Common handling of parse tree node types that retain the 2506 // representation of the analyzed expression. 2507 template <typename PARSED> 2508 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) { 2509 if (x.typedExpr) { 2510 return x.typedExpr->v; 2511 } 2512 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2513 std::is_same_v<PARSED, parser::Variable>) { 2514 FixMisparsedFunctionReference(context_, x.u); 2515 } 2516 if (AssumedTypeDummy(x)) { // C710 2517 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2518 } else if (MaybeExpr result{evaluate::Fold(foldingContext_, Analyze(x.u))}) { 2519 SetExpr(x, std::move(*result)); 2520 return x.typedExpr->v; 2521 } 2522 ResetExpr(x); 2523 if (!context_.AnyFatalError()) { 2524 std::string buf; 2525 llvm::raw_string_ostream dump{buf}; 2526 parser::DumpTree(dump, x); 2527 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2528 dump.str()); 2529 } 2530 fatalErrors_ = true; 2531 return std::nullopt; 2532 } 2533 2534 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2535 auto restorer{GetContextualMessages().SetLocation(expr.source)}; 2536 return ExprOrVariable(expr); 2537 } 2538 2539 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2540 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; 2541 return ExprOrVariable(variable); 2542 } 2543 2544 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2545 auto restorer{GetContextualMessages().SetLocation(x.source)}; 2546 return ExprOrVariable(x); 2547 } 2548 2549 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2550 TypeCategory category, 2551 const std::optional<parser::KindSelector> &selector) { 2552 int defaultKind{GetDefaultKind(category)}; 2553 if (!selector) { 2554 return Expr<SubscriptInteger>{defaultKind}; 2555 } 2556 return std::visit( 2557 common::visitors{ 2558 [&](const parser::ScalarIntConstantExpr &x) { 2559 if (MaybeExpr kind{Analyze(x)}) { 2560 Expr<SomeType> folded{Fold(std::move(*kind))}; 2561 if (std::optional<std::int64_t> code{ToInt64(folded)}) { 2562 if (CheckIntrinsicKind(category, *code)) { 2563 return Expr<SubscriptInteger>{*code}; 2564 } 2565 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) { 2566 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2567 } 2568 } 2569 return Expr<SubscriptInteger>{defaultKind}; 2570 }, 2571 [&](const parser::KindSelector::StarSize &x) { 2572 std::intmax_t size = x.v; 2573 if (!CheckIntrinsicSize(category, size)) { 2574 size = defaultKind; 2575 } else if (category == TypeCategory::Complex) { 2576 size /= 2; 2577 } 2578 return Expr<SubscriptInteger>{size}; 2579 }, 2580 }, 2581 selector->u); 2582 } 2583 2584 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2585 return context_.GetDefaultKind(category); 2586 } 2587 2588 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2589 common::TypeCategory category) { 2590 return {category, GetDefaultKind(category)}; 2591 } 2592 2593 bool ExpressionAnalyzer::CheckIntrinsicKind( 2594 TypeCategory category, std::int64_t kind) { 2595 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2596 return true; 2597 } else { 2598 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2599 ToUpperCase(EnumToString(category)), kind); 2600 return false; 2601 } 2602 } 2603 2604 bool ExpressionAnalyzer::CheckIntrinsicSize( 2605 TypeCategory category, std::int64_t size) { 2606 if (category == TypeCategory::Complex) { 2607 // COMPLEX*16 == COMPLEX(KIND=8) 2608 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2609 return true; 2610 } 2611 } else if (IsValidKindOfIntrinsicType(category, size)) { 2612 return true; 2613 } 2614 Say("%s*%jd is not a supported type"_err_en_US, 2615 ToUpperCase(EnumToString(category)), size); 2616 return false; 2617 } 2618 2619 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 2620 return impliedDos_.insert(std::make_pair(name, kind)).second; 2621 } 2622 2623 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 2624 auto iter{impliedDos_.find(name)}; 2625 if (iter != impliedDos_.end()) { 2626 impliedDos_.erase(iter); 2627 } 2628 } 2629 2630 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 2631 parser::CharBlock name) const { 2632 auto iter{impliedDos_.find(name)}; 2633 if (iter != impliedDos_.cend()) { 2634 return {iter->second}; 2635 } else { 2636 return std::nullopt; 2637 } 2638 } 2639 2640 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 2641 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 2642 if (result) { 2643 if (auto type{result->GetType()}) { 2644 if (type->category() != category) { // C885 2645 Say(at, "Must have %s type, but is %s"_err_en_US, 2646 ToUpperCase(EnumToString(category)), 2647 ToUpperCase(type->AsFortran())); 2648 return false; 2649 } else if (defaultKind) { 2650 int kind{context_.GetDefaultKind(category)}; 2651 if (type->kind() != kind) { 2652 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 2653 kind, ToUpperCase(EnumToString(category)), 2654 ToUpperCase(type->AsFortran())); 2655 return false; 2656 } 2657 } 2658 } else { 2659 Say(at, "Must have %s type, but is typeless"_err_en_US, 2660 ToUpperCase(EnumToString(category))); 2661 return false; 2662 } 2663 } 2664 return true; 2665 } 2666 2667 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 2668 ProcedureDesignator &&proc, ActualArguments &&arguments) { 2669 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 2670 if (intrinsic->name == "null" && arguments.empty()) { 2671 return Expr<SomeType>{NullPointer{}}; 2672 } 2673 } 2674 if (const Symbol * symbol{proc.GetSymbol()}) { 2675 if (!ResolveForward(*symbol)) { 2676 return std::nullopt; 2677 } 2678 } 2679 if (auto chars{CheckCall(callSite, proc, arguments)}) { 2680 if (chars->functionResult) { 2681 const auto &result{*chars->functionResult}; 2682 if (result.IsProcedurePointer()) { 2683 return Expr<SomeType>{ 2684 ProcedureRef{std::move(proc), std::move(arguments)}}; 2685 } else { 2686 // Not a procedure pointer, so type and shape are known. 2687 return TypedWrapper<FunctionRef, ProcedureRef>( 2688 DEREF(result.GetTypeAndShape()).type(), 2689 ProcedureRef{std::move(proc), std::move(arguments)}); 2690 } 2691 } 2692 } 2693 return std::nullopt; 2694 } 2695 2696 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 2697 parser::CharBlock intrinsic, ActualArguments &&arguments) { 2698 if (std::optional<SpecificCall> specificCall{ 2699 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 2700 arguments, context_.foldingContext())}) { 2701 return MakeFunctionRef(intrinsic, 2702 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2703 std::move(specificCall->arguments)); 2704 } else { 2705 return std::nullopt; 2706 } 2707 } 2708 2709 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 2710 source_.ExtendToCover(x.GetSource()); 2711 if (MaybeExpr expr{context_.Analyze(x)}) { 2712 if (!IsConstantExpr(*expr)) { 2713 actuals_.emplace_back(std::move(*expr)); 2714 return; 2715 } 2716 const Symbol *symbol{GetLastSymbol(*expr)}; 2717 if (!symbol) { 2718 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 2719 x.GetSource()); 2720 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 2721 auto *msg{context_.SayAt(x, 2722 "Assignment to subprogram '%s' is not allowed"_err_en_US, 2723 symbol->name())}; 2724 if (subp->isFunction()) { 2725 const auto &result{subp->result().name()}; 2726 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 2727 } 2728 } else { 2729 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 2730 symbol->name()); 2731 } 2732 } 2733 fatalErrors_ = true; 2734 } 2735 2736 void ArgumentAnalyzer::Analyze( 2737 const parser::ActualArgSpec &arg, bool isSubroutine) { 2738 // TODO: C1002: Allow a whole assumed-size array to appear if the dummy 2739 // argument would accept it. Handle by special-casing the context 2740 // ActualArg -> Variable -> Designator. 2741 // TODO: Actual arguments that are procedures and procedure pointers need to 2742 // be detected and represented (they're not expressions). 2743 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 2744 std::optional<ActualArgument> actual; 2745 bool isAltReturn{false}; 2746 std::visit(common::visitors{ 2747 [&](const common::Indirection<parser::Expr> &x) { 2748 // TODO: Distinguish & handle procedure name and 2749 // proc-component-ref 2750 actual = AnalyzeExpr(x.value()); 2751 }, 2752 [&](const parser::AltReturnSpec &) { 2753 if (!isSubroutine) { 2754 context_.Say( 2755 "alternate return specification may not appear on" 2756 " function reference"_err_en_US); 2757 } 2758 isAltReturn = true; 2759 }, 2760 [&](const parser::ActualArg::PercentRef &) { 2761 context_.Say("TODO: %REF() argument"_err_en_US); 2762 }, 2763 [&](const parser::ActualArg::PercentVal &) { 2764 context_.Say("TODO: %VAL() argument"_err_en_US); 2765 }, 2766 }, 2767 std::get<parser::ActualArg>(arg.t).u); 2768 if (actual) { 2769 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 2770 actual->set_keyword(argKW->v.source); 2771 } 2772 actuals_.emplace_back(std::move(*actual)); 2773 } else if (!isAltReturn) { 2774 fatalErrors_ = true; 2775 } 2776 } 2777 2778 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 2779 CHECK(actuals_.size() == 2); 2780 return semantics::IsIntrinsicRelational( 2781 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2782 } 2783 2784 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 2785 std::optional<DynamicType> type0{GetType(0)}; 2786 if (actuals_.size() == 1) { 2787 if (IsBOZLiteral(0)) { 2788 return opr == NumericOperator::Add; 2789 } else { 2790 return type0 && semantics::IsIntrinsicNumeric(*type0); 2791 } 2792 } else { 2793 std::optional<DynamicType> type1{GetType(1)}; 2794 if (IsBOZLiteral(0) && type1) { 2795 auto cat1{type1->category()}; 2796 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 2797 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 2798 auto cat0{type0->category()}; 2799 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 2800 } else { 2801 return type0 && type1 && 2802 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 2803 } 2804 } 2805 } 2806 2807 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 2808 if (actuals_.size() == 1) { 2809 return semantics::IsIntrinsicLogical(*GetType(0)); 2810 return GetType(0)->category() == TypeCategory::Logical; 2811 } else { 2812 return semantics::IsIntrinsicLogical( 2813 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2814 } 2815 } 2816 2817 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 2818 return semantics::IsIntrinsicConcat( 2819 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2820 } 2821 2822 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2823 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 2824 if (AnyUntypedOperand()) { 2825 context_.Say( 2826 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2827 return std::nullopt; 2828 } 2829 { 2830 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2831 std::string oprNameString{ 2832 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 2833 parser::CharBlock oprName{oprNameString}; 2834 const auto &scope{context_.context().FindScope(source_)}; 2835 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 2836 parser::Name name{symbol->name(), symbol}; 2837 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 2838 return result; 2839 } 2840 sawDefinedOp_ = symbol; 2841 } 2842 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2843 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 2844 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 2845 return result; 2846 } 2847 } 2848 } 2849 } 2850 if (sawDefinedOp_) { 2851 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 2852 } else if (actuals_.size() == 1 || AreConformable()) { 2853 context_.Say( 2854 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2855 } else { 2856 context_.Say( 2857 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 2858 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 2859 } 2860 return std::nullopt; 2861 } 2862 2863 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2864 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 2865 for (std::size_t i{1}; i < oprs.size(); ++i) { 2866 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2867 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 2868 return result; 2869 } 2870 } 2871 return TryDefinedOp(oprs[0], std::move(error)); 2872 } 2873 2874 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 2875 ActualArguments localActuals{actuals_}; 2876 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 2877 if (!proc) { 2878 proc = &symbol; 2879 localActuals.at(passIndex).value().set_isPassedObject(); 2880 } 2881 return context_.MakeFunctionRef( 2882 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 2883 } 2884 2885 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 2886 using semantics::Tristate; 2887 const Expr<SomeType> &lhs{GetExpr(0)}; 2888 const Expr<SomeType> &rhs{GetExpr(1)}; 2889 std::optional<DynamicType> lhsType{lhs.GetType()}; 2890 std::optional<DynamicType> rhsType{rhs.GetType()}; 2891 int lhsRank{lhs.Rank()}; 2892 int rhsRank{rhs.Rank()}; 2893 Tristate isDefined{ 2894 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 2895 if (isDefined == Tristate::No) { 2896 if (lhsType && rhsType) { 2897 AddAssignmentConversion(*lhsType, *rhsType); 2898 } 2899 return std::nullopt; // user-defined assignment not allowed for these args 2900 } 2901 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 2902 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 2903 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 2904 return std::move(*procRef); 2905 } 2906 if (isDefined == Tristate::Yes) { 2907 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 2908 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 2909 SayNoMatch("ASSIGNMENT(=)", true); 2910 } 2911 } 2912 return std::nullopt; 2913 } 2914 2915 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 2916 TypeCategory lhs, TypeCategory rhs) { 2917 if (!context_.context().languageFeatures().IsEnabled( 2918 common::LanguageFeature::LogicalIntegerAssignment)) { 2919 return false; 2920 } 2921 std::optional<parser::MessageFixedText> msg; 2922 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 2923 // allow assignment to LOGICAL from INTEGER as a legacy extension 2924 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 2925 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 2926 // ... and assignment to LOGICAL from INTEGER 2927 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 2928 } else { 2929 return false; 2930 } 2931 if (context_.context().languageFeatures().ShouldWarn( 2932 common::LanguageFeature::LogicalIntegerAssignment)) { 2933 context_.Say(std::move(*msg)); 2934 } 2935 return true; 2936 } 2937 2938 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 2939 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2940 std::string oprNameString{"assignment(=)"}; 2941 parser::CharBlock oprName{oprNameString}; 2942 const Symbol *proc{nullptr}; 2943 const auto &scope{context_.context().FindScope(source_)}; 2944 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 2945 ExpressionAnalyzer::AdjustActuals noAdjustment; 2946 if (const Symbol * 2947 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 2948 proc = specific; 2949 } else { 2950 context_.EmitGenericResolutionError(*symbol); 2951 } 2952 } 2953 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2954 if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) { 2955 proc = specific; 2956 } 2957 } 2958 if (proc) { 2959 ActualArguments actualsCopy{actuals_}; 2960 actualsCopy[1]->Parenthesize(); 2961 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 2962 } else { 2963 return std::nullopt; 2964 } 2965 } 2966 2967 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 2968 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 2969 << '\n'; 2970 for (const auto &actual : actuals_) { 2971 if (!actual.has_value()) { 2972 os << "- error\n"; 2973 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 2974 os << "- assumed type: " << symbol->name().ToString() << '\n'; 2975 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 2976 expr->AsFortran(os << "- expr: ") << '\n'; 2977 } else { 2978 DIE("bad ActualArgument"); 2979 } 2980 } 2981 } 2982 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 2983 const parser::Expr &expr) { 2984 source_.ExtendToCover(expr.source); 2985 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 2986 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 2987 if (isProcedureCall_) { 2988 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2989 } else { 2990 context_.SayAt(expr.source, 2991 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2992 return std::nullopt; 2993 } 2994 } else if (MaybeExpr argExpr{context_.Analyze(expr)}) { 2995 if (!isProcedureCall_ && IsProcedure(*argExpr)) { 2996 if (IsFunction(*argExpr)) { 2997 context_.SayAt( 2998 expr.source, "Function call must have argument list"_err_en_US); 2999 } else { 3000 context_.SayAt( 3001 expr.source, "Subroutine name is not allowed here"_err_en_US); 3002 } 3003 return std::nullopt; 3004 } 3005 return ActualArgument{context_.Fold(std::move(*argExpr))}; 3006 } else { 3007 return std::nullopt; 3008 } 3009 } 3010 3011 bool ArgumentAnalyzer::AreConformable() const { 3012 CHECK(!fatalErrors_ && actuals_.size() == 2); 3013 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3014 } 3015 3016 // Look for a type-bound operator in the type of arg number passIndex. 3017 const Symbol *ArgumentAnalyzer::FindBoundOp( 3018 parser::CharBlock oprName, int passIndex) { 3019 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3020 if (!type || !type->scope()) { 3021 return nullptr; 3022 } 3023 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3024 if (!symbol) { 3025 return nullptr; 3026 } 3027 sawDefinedOp_ = symbol; 3028 ExpressionAnalyzer::AdjustActuals adjustment{ 3029 [&](const Symbol &proc, ActualArguments &) { 3030 return passIndex == GetPassIndex(proc); 3031 }}; 3032 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3033 if (!result) { 3034 context_.EmitGenericResolutionError(*symbol); 3035 } 3036 return result; 3037 } 3038 3039 // If there is an implicit conversion between intrinsic types, make it explicit 3040 void ArgumentAnalyzer::AddAssignmentConversion( 3041 const DynamicType &lhsType, const DynamicType &rhsType) { 3042 if (lhsType.category() == rhsType.category() && 3043 lhsType.kind() == rhsType.kind()) { 3044 // no conversion necessary 3045 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3046 actuals_[1] = ActualArgument{*rhsExpr}; 3047 } else { 3048 actuals_[1] = std::nullopt; 3049 } 3050 } 3051 3052 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3053 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3054 } 3055 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3056 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3057 } 3058 3059 // If the argument at index i is a BOZ literal, convert its type to match the 3060 // otherType. It it's REAL convert to REAL, otherwise convert to INTEGER. 3061 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3062 // is not currently supported. 3063 void ArgumentAnalyzer::ConvertBOZ( 3064 std::size_t i, std::optional<DynamicType> otherType) { 3065 if (IsBOZLiteral(i)) { 3066 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3067 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3068 if (otherType && otherType->category() == TypeCategory::Real) { 3069 MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>( 3070 context_.context().GetDefaultKind(TypeCategory::Real), 3071 std::move(*boz))}; 3072 actuals_[i] = std::move(*realExpr); 3073 } else { 3074 MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>( 3075 context_.context().GetDefaultKind(TypeCategory::Integer), 3076 std::move(*boz))}; 3077 actuals_[i] = std::move(*intExpr); 3078 } 3079 } 3080 } 3081 3082 // Report error resolving opr when there is a user-defined one available 3083 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3084 std::string type0{TypeAsFortran(0)}; 3085 auto rank0{actuals_[0]->Rank()}; 3086 if (actuals_.size() == 1) { 3087 if (rank0 > 0) { 3088 context_.Say("No intrinsic or user-defined %s matches " 3089 "rank %d array of %s"_err_en_US, 3090 opr, rank0, type0); 3091 } else { 3092 context_.Say("No intrinsic or user-defined %s matches " 3093 "operand type %s"_err_en_US, 3094 opr, type0); 3095 } 3096 } else { 3097 std::string type1{TypeAsFortran(1)}; 3098 auto rank1{actuals_[1]->Rank()}; 3099 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3100 context_.Say("No intrinsic or user-defined %s matches " 3101 "rank %d array of %s and rank %d array of %s"_err_en_US, 3102 opr, rank0, type0, rank1, type1); 3103 } else if (isAssignment && rank0 != rank1) { 3104 if (rank0 == 0) { 3105 context_.Say("No intrinsic or user-defined %s matches " 3106 "scalar %s and rank %d array of %s"_err_en_US, 3107 opr, type0, rank1, type1); 3108 } else { 3109 context_.Say("No intrinsic or user-defined %s matches " 3110 "rank %d array of %s and scalar %s"_err_en_US, 3111 opr, rank0, type0, type1); 3112 } 3113 } else { 3114 context_.Say("No intrinsic or user-defined %s matches " 3115 "operand types %s and %s"_err_en_US, 3116 opr, type0, type1); 3117 } 3118 } 3119 } 3120 3121 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3122 if (std::optional<DynamicType> type{GetType(i)}) { 3123 return type->category() == TypeCategory::Derived 3124 ? "TYPE("s + type->AsFortran() + ')' 3125 : type->category() == TypeCategory::Character 3126 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3127 : ToUpperCase(type->AsFortran()); 3128 } else { 3129 return "untyped"; 3130 } 3131 } 3132 3133 bool ArgumentAnalyzer::AnyUntypedOperand() { 3134 for (const auto &actual : actuals_) { 3135 if (!actual.value().GetType()) { 3136 return true; 3137 } 3138 } 3139 return false; 3140 } 3141 3142 } // namespace Fortran::evaluate 3143 3144 namespace Fortran::semantics { 3145 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3146 SemanticsContext &context, common::TypeCategory category, 3147 const std::optional<parser::KindSelector> &selector) { 3148 evaluate::ExpressionAnalyzer analyzer{context}; 3149 auto restorer{ 3150 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3151 return analyzer.AnalyzeKindSelector(category, selector); 3152 } 3153 3154 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3155 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3156 } 3157 3158 const evaluate::Assignment *AnalyzeAssignmentStmt( 3159 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3160 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3161 } 3162 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3163 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3164 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3165 } 3166 3167 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3168 3169 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3170 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3171 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3172 auto name{bounds.name.thing.thing}; 3173 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3174 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3175 if (dynamicType->category() == TypeCategory::Integer) { 3176 kind = dynamicType->kind(); 3177 } 3178 } 3179 exprAnalyzer_.AddImpliedDo(name.source, kind); 3180 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3181 exprAnalyzer_.RemoveImpliedDo(name.source); 3182 return false; 3183 } 3184 3185 bool ExprChecker::Walk(const parser::Program &program) { 3186 parser::Walk(program, *this); 3187 return !context_.AnyFatalError(); 3188 } 3189 } // namespace Fortran::semantics 3190