1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } else { 59 return GetCharLength(); 60 } 61 } 62 63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 64 const std::optional<parser::TypeSpec> &spec) { 65 if (spec) { 66 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 67 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 68 // (viz., an intrinsic type with valid known kind or a non-polymorphic 69 // & non-ABSTRACT derived type). 70 if (const semantics::IntrinsicTypeSpec * 71 intrinsic{typeSpec->AsIntrinsic()}) { 72 TypeCategory category{intrinsic->category()}; 73 if (auto optKind{ToInt64(intrinsic->kind())}) { 74 int kind{static_cast<int>(*optKind)}; 75 if (category == TypeCategory::Character) { 76 const semantics::CharacterTypeSpec &cts{ 77 typeSpec->characterTypeSpec()}; 78 const semantics::ParamValue &len{cts.length()}; 79 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 80 // type guards, but not in array constructors. 81 return DynamicTypeWithLength{DynamicType{kind, len}}; 82 } else { 83 return DynamicTypeWithLength{DynamicType{category, kind}}; 84 } 85 } 86 } else if (const semantics::DerivedTypeSpec * 87 derived{typeSpec->AsDerived()}) { 88 return DynamicTypeWithLength{DynamicType{*derived}}; 89 } 90 } 91 } 92 return std::nullopt; 93 } 94 95 class ArgumentAnalyzer { 96 public: 97 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 98 : context_{context}, source_{context.GetContextualMessages().at()}, 99 isProcedureCall_{false} {} 100 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 101 bool isProcedureCall = false) 102 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 103 bool fatalErrors() const { return fatalErrors_; } 104 ActualArguments &&GetActuals() { 105 CHECK(!fatalErrors_); 106 return std::move(actuals_); 107 } 108 const Expr<SomeType> &GetExpr(std::size_t i) const { 109 return DEREF(actuals_.at(i).value().UnwrapExpr()); 110 } 111 Expr<SomeType> &&MoveExpr(std::size_t i) { 112 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 113 } 114 void Analyze(const common::Indirection<parser::Expr> &x) { 115 Analyze(x.value()); 116 } 117 void Analyze(const parser::Expr &x) { 118 actuals_.emplace_back(AnalyzeExpr(x)); 119 fatalErrors_ |= !actuals_.back(); 120 } 121 void Analyze(const parser::Variable &); 122 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 123 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 124 std::optional<DynamicType> otherType); 125 126 bool IsIntrinsicRelational( 127 RelationalOperator, const DynamicType &, const DynamicType &) const; 128 bool IsIntrinsicLogical() const; 129 bool IsIntrinsicNumeric(NumericOperator) const; 130 bool IsIntrinsicConcat() const; 131 132 bool CheckConformance(); 133 bool CheckForNullPointer(const char *where = "as an operand"); 134 135 // Find and return a user-defined operator or report an error. 136 // The provided message is used if there is no such operator. 137 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 138 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 139 template <typename E> 140 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 141 return TryDefinedOp( 142 context_.context().languageFeatures().GetNames(opr), msg); 143 } 144 // Find and return a user-defined assignment 145 std::optional<ProcedureRef> TryDefinedAssignment(); 146 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 147 std::optional<DynamicType> GetType(std::size_t) const; 148 void Dump(llvm::raw_ostream &); 149 150 private: 151 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 152 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 153 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 154 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 155 bool AreConformable() const; 156 const Symbol *FindBoundOp( 157 parser::CharBlock, int passIndex, const Symbol *&definedOp); 158 void AddAssignmentConversion( 159 const DynamicType &lhsType, const DynamicType &rhsType); 160 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 161 int GetRank(std::size_t) const; 162 bool IsBOZLiteral(std::size_t i) const { 163 return evaluate::IsBOZLiteral(GetExpr(i)); 164 } 165 void SayNoMatch(const std::string &, bool isAssignment = false); 166 std::string TypeAsFortran(std::size_t); 167 bool AnyUntypedOrMissingOperand(); 168 bool CheckForUntypedNullPointer(); 169 170 ExpressionAnalyzer &context_; 171 ActualArguments actuals_; 172 parser::CharBlock source_; 173 bool fatalErrors_{false}; 174 const bool isProcedureCall_; // false for user-defined op or assignment 175 }; 176 177 // Wraps a data reference in a typed Designator<>, and a procedure 178 // or procedure pointer reference in a ProcedureDesignator. 179 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 180 const Symbol &last{ref.GetLastSymbol()}; 181 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 182 if (semantics::IsProcedure(symbol)) { 183 if (auto *component{std::get_if<Component>(&ref.u)}) { 184 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 185 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 186 DIE("unexpected alternative in DataRef"); 187 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 188 if (symbol.has<semantics::GenericDetails>()) { 189 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 190 } else { 191 return Expr<SomeType>{ProcedureDesignator{symbol}}; 192 } 193 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 194 symbol.name().ToString())}) { 195 SpecificIntrinsic intrinsic{ 196 symbol.name().ToString(), std::move(*interface)}; 197 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 198 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 199 } else { 200 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 201 symbol.name()); 202 } 203 return std::nullopt; 204 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 205 return result; 206 } else { 207 if (!context_.HasError(last) && !context_.HasError(symbol)) { 208 AttachDeclaration( 209 Say("'%s' is not an object that can appear in an expression"_err_en_US, 210 last.name()), 211 symbol); 212 context_.SetError(last); 213 } 214 return std::nullopt; 215 } 216 } 217 218 // Some subscript semantic checks must be deferred until all of the 219 // subscripts are in hand. 220 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 221 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 222 int symbolRank{symbol.Rank()}; 223 int subscripts{static_cast<int>(ref.size())}; 224 if (subscripts == 0) { 225 return std::nullopt; // error recovery 226 } else if (subscripts != symbolRank) { 227 if (symbolRank != 0) { 228 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 229 symbolRank, symbol.name(), subscripts); 230 } 231 return std::nullopt; 232 } else if (Component * component{ref.base().UnwrapComponent()}) { 233 int baseRank{component->base().Rank()}; 234 if (baseRank > 0) { 235 int subscriptRank{0}; 236 for (const auto &expr : ref.subscript()) { 237 subscriptRank += expr.Rank(); 238 } 239 if (subscriptRank > 0) { 240 Say("Subscripts of component '%s' of rank-%d derived type " 241 "array have rank %d but must all be scalar"_err_en_US, 242 symbol.name(), baseRank, subscriptRank); 243 return std::nullopt; 244 } 245 } 246 } else if (const auto *object{ 247 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 248 // C928 & C1002 249 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 250 if (!last->upper() && object->IsAssumedSize()) { 251 Say("Assumed-size array '%s' must have explicit final " 252 "subscript upper bound value"_err_en_US, 253 symbol.name()); 254 return std::nullopt; 255 } 256 } 257 } else { 258 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 259 // which, if not an object, must be a construct entity from 260 // SELECT TYPE/RANK or ASSOCIATE. 261 CHECK(symbol.has<semantics::AssocEntityDetails>()); 262 } 263 return Designate(DataRef{std::move(ref)}); 264 } 265 266 // Applies subscripts to a data reference. 267 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 268 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 269 if (subscripts.empty()) { 270 return std::nullopt; // error recovery 271 } 272 return std::visit( 273 common::visitors{ 274 [&](SymbolRef &&symbol) { 275 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 276 }, 277 [&](Component &&c) { 278 return CompleteSubscripts( 279 ArrayRef{std::move(c), std::move(subscripts)}); 280 }, 281 [&](auto &&) -> MaybeExpr { 282 DIE("bad base for ArrayRef"); 283 return std::nullopt; 284 }, 285 }, 286 std::move(dataRef.u)); 287 } 288 289 // Top-level checks for data references. 290 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 291 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 292 const Symbol &symbol{component->GetLastSymbol()}; 293 int componentRank{symbol.Rank()}; 294 if (componentRank > 0) { 295 int baseRank{component->base().Rank()}; 296 if (baseRank > 0) { 297 Say("Reference to whole rank-%d component '%%%s' of " 298 "rank-%d array of derived type is not allowed"_err_en_US, 299 componentRank, symbol.name(), baseRank); 300 } 301 } 302 } 303 return Designate(std::move(dataRef)); 304 } 305 306 // Parse tree correction after a substring S(j:k) was misparsed as an 307 // array section. N.B. Fortran substrings have to have a range, not a 308 // single index. 309 static void FixMisparsedSubstring(const parser::Designator &d) { 310 auto &mutate{const_cast<parser::Designator &>(d)}; 311 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 312 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 313 &dataRef->u)}) { 314 parser::ArrayElement &arrElement{ae->value()}; 315 if (!arrElement.subscripts.empty()) { 316 auto iter{arrElement.subscripts.begin()}; 317 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 318 if (!std::get<2>(triplet->t) /* no stride */ && 319 ++iter == arrElement.subscripts.end() /* one subscript */) { 320 if (Symbol * 321 symbol{std::visit( 322 common::visitors{ 323 [](parser::Name &n) { return n.symbol; }, 324 [](common::Indirection<parser::StructureComponent> 325 &sc) { return sc.value().component.symbol; }, 326 [](auto &) -> Symbol * { return nullptr; }, 327 }, 328 arrElement.base.u)}) { 329 const Symbol &ultimate{symbol->GetUltimate()}; 330 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 331 if (!ultimate.IsObjectArray() && 332 type->category() == semantics::DeclTypeSpec::Character) { 333 // The ambiguous S(j:k) was parsed as an array section 334 // reference, but it's now clear that it's a substring. 335 // Fix the parse tree in situ. 336 mutate.u = arrElement.ConvertToSubstring(); 337 } 338 } 339 } 340 } 341 } 342 } 343 } 344 } 345 } 346 347 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 348 auto restorer{GetContextualMessages().SetLocation(d.source)}; 349 FixMisparsedSubstring(d); 350 // These checks have to be deferred to these "top level" data-refs where 351 // we can be sure that there are no following subscripts (yet). 352 // Substrings have already been run through TopLevelChecks() and 353 // won't be returned by ExtractDataRef(). 354 if (MaybeExpr result{Analyze(d.u)}) { 355 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 356 return TopLevelChecks(std::move(*dataRef)); 357 } 358 return result; 359 } 360 return std::nullopt; 361 } 362 363 // A utility subroutine to repackage optional expressions of various levels 364 // of type specificity as fully general MaybeExpr values. 365 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 366 return AsGenericExpr(std::move(x)); 367 } 368 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 369 if (x) { 370 return AsMaybeExpr(std::move(*x)); 371 } 372 return std::nullopt; 373 } 374 375 // Type kind parameter values for literal constants. 376 int ExpressionAnalyzer::AnalyzeKindParam( 377 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 378 if (!kindParam) { 379 return defaultKind; 380 } 381 return std::visit( 382 common::visitors{ 383 [](std::uint64_t k) { return static_cast<int>(k); }, 384 [&](const parser::Scalar< 385 parser::Integer<parser::Constant<parser::Name>>> &n) { 386 if (MaybeExpr ie{Analyze(n)}) { 387 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 388 int iv = *i64; 389 if (iv == *i64) { 390 return iv; 391 } 392 } 393 } 394 return defaultKind; 395 }, 396 }, 397 kindParam->u); 398 } 399 400 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 401 struct IntTypeVisitor { 402 using Result = MaybeExpr; 403 using Types = IntegerTypes; 404 template <typename T> Result Test() { 405 if (T::kind >= kind) { 406 const char *p{digits.begin()}; 407 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 408 if (!value.overflow) { 409 if (T::kind > kind) { 410 if (!isDefaultKind || 411 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 412 return std::nullopt; 413 } else if (analyzer.context().ShouldWarn( 414 LanguageFeature::BigIntLiterals)) { 415 analyzer.Say(digits, 416 "Integer literal is too large for default INTEGER(KIND=%d); " 417 "assuming INTEGER(KIND=%d)"_en_US, 418 kind, T::kind); 419 } 420 } 421 return Expr<SomeType>{ 422 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 423 } 424 } 425 return std::nullopt; 426 } 427 ExpressionAnalyzer &analyzer; 428 parser::CharBlock digits; 429 int kind; 430 bool isDefaultKind; 431 }; 432 433 template <typename PARSED> 434 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 435 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 436 bool isDefaultKind{!kindParam}; 437 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 438 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 439 auto digits{std::get<parser::CharBlock>(x.t)}; 440 if (MaybeExpr result{common::SearchTypes( 441 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 442 return result; 443 } else if (isDefaultKind) { 444 Say(digits, 445 "Integer literal is too large for any allowable " 446 "kind of INTEGER"_err_en_US); 447 } else { 448 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 449 kind); 450 } 451 } 452 return std::nullopt; 453 } 454 455 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 456 auto restorer{ 457 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 458 return IntLiteralConstant(x); 459 } 460 461 MaybeExpr ExpressionAnalyzer::Analyze( 462 const parser::SignedIntLiteralConstant &x) { 463 auto restorer{GetContextualMessages().SetLocation(x.source)}; 464 return IntLiteralConstant(x); 465 } 466 467 template <typename TYPE> 468 Constant<TYPE> ReadRealLiteral( 469 parser::CharBlock source, FoldingContext &context) { 470 const char *p{source.begin()}; 471 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 472 CHECK(p == source.end()); 473 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 474 auto value{valWithFlags.value}; 475 if (context.flushSubnormalsToZero()) { 476 value = value.FlushSubnormalToZero(); 477 } 478 return {value}; 479 } 480 481 struct RealTypeVisitor { 482 using Result = std::optional<Expr<SomeReal>>; 483 using Types = RealTypes; 484 485 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 486 : kind{k}, literal{lit}, context{ctx} {} 487 488 template <typename T> Result Test() { 489 if (kind == T::kind) { 490 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 491 } 492 return std::nullopt; 493 } 494 495 int kind; 496 parser::CharBlock literal; 497 FoldingContext &context; 498 }; 499 500 // Reads a real literal constant and encodes it with the right kind. 501 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 502 // Use a local message context around the real literal for better 503 // provenance on any messages. 504 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 505 // If a kind parameter appears, it defines the kind of the literal and the 506 // letter used in an exponent part must be 'E' (e.g., the 'E' in 507 // "6.02214E+23"). In the absence of an explicit kind parameter, any 508 // exponent letter determines the kind. Otherwise, defaults apply. 509 auto &defaults{context_.defaultKinds()}; 510 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 511 const char *end{x.real.source.end()}; 512 char expoLetter{' '}; 513 std::optional<int> letterKind; 514 for (const char *p{x.real.source.begin()}; p < end; ++p) { 515 if (parser::IsLetter(*p)) { 516 expoLetter = *p; 517 switch (expoLetter) { 518 case 'e': 519 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 520 break; 521 case 'd': 522 letterKind = defaults.doublePrecisionKind(); 523 break; 524 case 'q': 525 letterKind = defaults.quadPrecisionKind(); 526 break; 527 default: 528 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 529 } 530 break; 531 } 532 } 533 if (letterKind) { 534 defaultKind = *letterKind; 535 } 536 // C716 requires 'E' as an exponent, but this is more useful 537 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 538 if (letterKind && kind != *letterKind && expoLetter != 'e') { 539 Say("Explicit kind parameter on real constant disagrees with " 540 "exponent letter '%c'"_en_US, 541 expoLetter); 542 } 543 auto result{common::SearchTypes( 544 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 545 if (!result) { // C717 546 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 547 } 548 return AsMaybeExpr(std::move(result)); 549 } 550 551 MaybeExpr ExpressionAnalyzer::Analyze( 552 const parser::SignedRealLiteralConstant &x) { 553 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 554 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 555 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 556 if (sign == parser::Sign::Negative) { 557 return AsGenericExpr(-std::move(realExpr)); 558 } 559 } 560 return result; 561 } 562 return std::nullopt; 563 } 564 565 MaybeExpr ExpressionAnalyzer::Analyze( 566 const parser::SignedComplexLiteralConstant &x) { 567 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 568 if (!result) { 569 return std::nullopt; 570 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 571 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 572 } else { 573 return result; 574 } 575 } 576 577 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 578 return Analyze(x.u); 579 } 580 581 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 582 return AsMaybeExpr( 583 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 584 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 585 } 586 587 // CHARACTER literal processing. 588 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 589 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 590 return std::nullopt; 591 } 592 switch (kind) { 593 case 1: 594 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 595 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 596 string, true)}); 597 case 2: 598 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 599 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 600 string, true)}); 601 case 4: 602 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 603 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 604 string, true)}); 605 default: 606 CRASH_NO_CASE; 607 } 608 } 609 610 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 611 int kind{ 612 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 613 auto value{std::get<std::string>(x.t)}; 614 return AnalyzeString(std::move(value), kind); 615 } 616 617 MaybeExpr ExpressionAnalyzer::Analyze( 618 const parser::HollerithLiteralConstant &x) { 619 int kind{GetDefaultKind(TypeCategory::Character)}; 620 auto value{x.v}; 621 return AnalyzeString(std::move(value), kind); 622 } 623 624 // .TRUE. and .FALSE. of various kinds 625 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 626 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 627 GetDefaultKind(TypeCategory::Logical))}; 628 bool value{std::get<bool>(x.t)}; 629 auto result{common::SearchTypes( 630 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 631 kind, std::move(value)})}; 632 if (!result) { 633 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 634 } 635 return result; 636 } 637 638 // BOZ typeless literals 639 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 640 const char *p{x.v.c_str()}; 641 std::uint64_t base{16}; 642 switch (*p++) { 643 case 'b': 644 base = 2; 645 break; 646 case 'o': 647 base = 8; 648 break; 649 case 'z': 650 break; 651 case 'x': 652 break; 653 default: 654 CRASH_NO_CASE; 655 } 656 CHECK(*p == '"'); 657 ++p; 658 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 659 if (*p != '"') { 660 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 661 x.v); // C7107, C7108 662 return std::nullopt; 663 } 664 if (value.overflow) { 665 Say("BOZ literal '%s' too large"_err_en_US, x.v); 666 return std::nullopt; 667 } 668 return AsGenericExpr(std::move(value.value)); 669 } 670 671 // Names and named constants 672 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 673 auto restorer{GetContextualMessages().SetLocation(n.source)}; 674 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 675 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 676 *kind, AsExpr(ImpliedDoIndex{n.source}))); 677 } else if (context_.HasError(n)) { 678 return std::nullopt; 679 } else if (!n.symbol) { 680 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 681 return std::nullopt; 682 } else { 683 const Symbol &ultimate{n.symbol->GetUltimate()}; 684 if (ultimate.has<semantics::TypeParamDetails>()) { 685 // A bare reference to a derived type parameter (within a parameterized 686 // derived type definition) 687 return Fold(ConvertToType( 688 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 689 } else { 690 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 691 if (const semantics::Scope * 692 pure{semantics::FindPureProcedureContaining( 693 context_.FindScope(n.source))}) { 694 SayAt(n, 695 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 696 n.source, DEREF(pure->symbol()).name()); 697 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 698 } 699 } 700 if (!isWholeAssumedSizeArrayOk_ && 701 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 702 AttachDeclaration( 703 SayAt(n, 704 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 705 n.source), 706 *n.symbol); 707 } 708 return Designate(DataRef{*n.symbol}); 709 } 710 } 711 } 712 713 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 714 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 715 if (MaybeExpr value{Analyze(n.v)}) { 716 Expr<SomeType> folded{Fold(std::move(*value))}; 717 if (IsConstantExpr(folded)) { 718 return folded; 719 } 720 Say(n.v.source, "must be a constant"_err_en_US); // C718 721 } 722 return std::nullopt; 723 } 724 725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 726 if (MaybeExpr value{Analyze(n.v)}) { 727 // Subtle: when the NullInit is a DataStmtConstant, it might 728 // be a misparse of a structure constructor without parameters 729 // or components (e.g., T()). Checking the result to ensure 730 // that a "=>" data entity initializer actually resolved to 731 // a null pointer has to be done by the caller. 732 return Fold(std::move(*value)); 733 } 734 return std::nullopt; 735 } 736 737 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 738 return Analyze(x.value()); 739 } 740 741 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 742 if (const auto &repeat{ 743 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 744 x.repetitions = -1; 745 if (MaybeExpr expr{Analyze(repeat->u)}) { 746 Expr<SomeType> folded{Fold(std::move(*expr))}; 747 if (auto value{ToInt64(folded)}) { 748 if (*value >= 0) { // C882 749 x.repetitions = *value; 750 } else { 751 Say(FindSourceLocation(repeat), 752 "Repeat count (%jd) for data value must not be negative"_err_en_US, 753 *value); 754 } 755 } 756 } 757 } 758 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 759 } 760 761 // Substring references 762 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 763 const std::optional<parser::ScalarIntExpr> &bound) { 764 if (bound) { 765 if (MaybeExpr expr{Analyze(*bound)}) { 766 if (expr->Rank() > 1) { 767 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 768 } 769 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 770 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 771 return {std::move(*ssIntExpr)}; 772 } 773 return {Expr<SubscriptInteger>{ 774 Convert<SubscriptInteger, TypeCategory::Integer>{ 775 std::move(*intExpr)}}}; 776 } else { 777 Say("substring bound expression is not INTEGER"_err_en_US); 778 } 779 } 780 } 781 return std::nullopt; 782 } 783 784 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 785 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 786 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 787 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 788 if (std::optional<DataRef> checked{ 789 ExtractDataRef(std::move(*newBaseExpr))}) { 790 const parser::SubstringRange &range{ 791 std::get<parser::SubstringRange>(ss.t)}; 792 std::optional<Expr<SubscriptInteger>> first{ 793 GetSubstringBound(std::get<0>(range.t))}; 794 std::optional<Expr<SubscriptInteger>> last{ 795 GetSubstringBound(std::get<1>(range.t))}; 796 const Symbol &symbol{checked->GetLastSymbol()}; 797 if (std::optional<DynamicType> dynamicType{ 798 DynamicType::From(symbol)}) { 799 if (dynamicType->category() == TypeCategory::Character) { 800 return WrapperHelper<TypeCategory::Character, Designator, 801 Substring>(dynamicType->kind(), 802 Substring{std::move(checked.value()), std::move(first), 803 std::move(last)}); 804 } 805 } 806 Say("substring may apply only to CHARACTER"_err_en_US); 807 } 808 } 809 } 810 } 811 return std::nullopt; 812 } 813 814 // CHARACTER literal substrings 815 MaybeExpr ExpressionAnalyzer::Analyze( 816 const parser::CharLiteralConstantSubstring &x) { 817 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 818 std::optional<Expr<SubscriptInteger>> lower{ 819 GetSubstringBound(std::get<0>(range.t))}; 820 std::optional<Expr<SubscriptInteger>> upper{ 821 GetSubstringBound(std::get<1>(range.t))}; 822 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 823 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 824 Expr<SubscriptInteger> length{ 825 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 826 charExpr->u)}; 827 if (!lower) { 828 lower = Expr<SubscriptInteger>{1}; 829 } 830 if (!upper) { 831 upper = Expr<SubscriptInteger>{ 832 static_cast<std::int64_t>(ToInt64(length).value())}; 833 } 834 return std::visit( 835 [&](auto &&ckExpr) -> MaybeExpr { 836 using Result = ResultType<decltype(ckExpr)>; 837 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 838 CHECK(DEREF(cp).size() == 1); 839 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 840 staticData->set_alignment(Result::kind) 841 .set_itemBytes(Result::kind) 842 .Push(cp->GetScalarValue().value()); 843 Substring substring{std::move(staticData), std::move(lower.value()), 844 std::move(upper.value())}; 845 return AsGenericExpr( 846 Expr<Result>{Designator<Result>{std::move(substring)}}); 847 }, 848 std::move(charExpr->u)); 849 } 850 } 851 return std::nullopt; 852 } 853 854 // Subscripted array references 855 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 856 MaybeExpr &&expr) { 857 if (expr) { 858 if (expr->Rank() > 1) { 859 Say("Subscript expression has rank %d greater than 1"_err_en_US, 860 expr->Rank()); 861 } 862 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 863 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 864 return std::move(*ssIntExpr); 865 } else { 866 return Expr<SubscriptInteger>{ 867 Convert<SubscriptInteger, TypeCategory::Integer>{ 868 std::move(*intExpr)}}; 869 } 870 } else { 871 Say("Subscript expression is not INTEGER"_err_en_US); 872 } 873 } 874 return std::nullopt; 875 } 876 877 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 878 const std::optional<parser::Subscript> &s) { 879 if (s) { 880 return AsSubscript(Analyze(*s)); 881 } else { 882 return std::nullopt; 883 } 884 } 885 886 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 887 const parser::SectionSubscript &ss) { 888 return std::visit( 889 common::visitors{ 890 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 891 const auto &lower{std::get<0>(t.t)}; 892 const auto &upper{std::get<1>(t.t)}; 893 const auto &stride{std::get<2>(t.t)}; 894 auto result{Triplet{ 895 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 896 if ((lower && !result.lower()) || (upper && !result.upper())) { 897 return std::nullopt; 898 } else { 899 return std::make_optional<Subscript>(result); 900 } 901 }, 902 [&](const auto &s) -> std::optional<Subscript> { 903 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 904 return Subscript{std::move(*subscriptExpr)}; 905 } else { 906 return std::nullopt; 907 } 908 }, 909 }, 910 ss.u); 911 } 912 913 // Empty result means an error occurred 914 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 915 const std::list<parser::SectionSubscript> &sss) { 916 bool error{false}; 917 std::vector<Subscript> subscripts; 918 for (const auto &s : sss) { 919 if (auto subscript{AnalyzeSectionSubscript(s)}) { 920 subscripts.emplace_back(std::move(*subscript)); 921 } else { 922 error = true; 923 } 924 } 925 return !error ? subscripts : std::vector<Subscript>{}; 926 } 927 928 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 929 MaybeExpr baseExpr; 930 { 931 auto restorer{AllowWholeAssumedSizeArray()}; 932 baseExpr = Analyze(ae.base); 933 } 934 if (baseExpr) { 935 if (ae.subscripts.empty()) { 936 // will be converted to function call later or error reported 937 } else if (baseExpr->Rank() == 0) { 938 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 939 if (!context_.HasError(symbol)) { 940 Say("'%s' is not an array"_err_en_US, symbol->name()); 941 context_.SetError(*symbol); 942 } 943 } 944 } else if (std::optional<DataRef> dataRef{ 945 ExtractDataRef(std::move(*baseExpr))}) { 946 return ApplySubscripts( 947 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 948 } else { 949 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 950 } 951 } 952 // error was reported: analyze subscripts without reporting more errors 953 auto restorer{GetContextualMessages().DiscardMessages()}; 954 AnalyzeSectionSubscripts(ae.subscripts); 955 return std::nullopt; 956 } 957 958 // Type parameter inquiries apply to data references, but don't depend 959 // on any trailing (co)subscripts. 960 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 961 return std::visit( 962 common::visitors{ 963 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 964 [](Component &&component) { 965 return NamedEntity{std::move(component)}; 966 }, 967 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 968 [](CoarrayRef &&coarrayRef) { 969 return NamedEntity{coarrayRef.GetLastSymbol()}; 970 }, 971 }, 972 std::move(designator.u)); 973 } 974 975 // Components of parent derived types are explicitly represented as such. 976 static std::optional<Component> CreateComponent( 977 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 978 if (&component.owner() == &scope) { 979 return Component{std::move(base), component}; 980 } 981 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 982 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 983 return CreateComponent( 984 DataRef{Component{std::move(base), *parentComponent}}, component, 985 *parentScope); 986 } 987 } 988 return std::nullopt; 989 } 990 991 // Derived type component references and type parameter inquiries 992 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 993 MaybeExpr base{Analyze(sc.base)}; 994 Symbol *sym{sc.component.symbol}; 995 if (!base || !sym || context_.HasError(sym)) { 996 return std::nullopt; 997 } 998 const auto &name{sc.component.source}; 999 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1000 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1001 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1002 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1003 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1004 if (dyType->category() == TypeCategory::Integer) { 1005 auto restorer{GetContextualMessages().SetLocation(name)}; 1006 return Fold(ConvertToType(*dyType, 1007 AsGenericExpr(TypeParamInquiry{ 1008 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1009 } 1010 } 1011 Say(name, "Type parameter is not INTEGER"_err_en_US); 1012 } else { 1013 Say(name, 1014 "A type parameter inquiry must be applied to " 1015 "a designator"_err_en_US); 1016 } 1017 } else if (!dtSpec || !dtSpec->scope()) { 1018 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1019 return std::nullopt; 1020 } else if (std::optional<DataRef> dataRef{ 1021 ExtractDataRef(std::move(*dtExpr))}) { 1022 if (auto component{ 1023 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1024 return Designate(DataRef{std::move(*component)}); 1025 } else { 1026 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1027 dtSpec->typeSymbol().name()); 1028 } 1029 } else { 1030 Say(name, 1031 "Base of component reference must be a data reference"_err_en_US); 1032 } 1033 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1034 // special part-ref: %re, %im, %kind, %len 1035 // Type errors are detected and reported in semantics. 1036 using MiscKind = semantics::MiscDetails::Kind; 1037 MiscKind kind{details->kind()}; 1038 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1039 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1040 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1041 Expr<SomeReal> realExpr{std::visit( 1042 [&](const auto &z) { 1043 using PartType = typename ResultType<decltype(z)>::Part; 1044 auto part{kind == MiscKind::ComplexPartRe 1045 ? ComplexPart::Part::RE 1046 : ComplexPart::Part::IM}; 1047 return AsCategoryExpr(Designator<PartType>{ 1048 ComplexPart{std::move(*dataRef), part}}); 1049 }, 1050 zExpr->u)}; 1051 return AsGenericExpr(std::move(realExpr)); 1052 } 1053 } 1054 } else if (kind == MiscKind::KindParamInquiry || 1055 kind == MiscKind::LenParamInquiry) { 1056 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1057 return MakeFunctionRef( 1058 name, ActualArguments{ActualArgument{std::move(*base)}}); 1059 } else { 1060 DIE("unexpected MiscDetails::Kind"); 1061 } 1062 } else { 1063 Say(name, "derived type required before component reference"_err_en_US); 1064 } 1065 return std::nullopt; 1066 } 1067 1068 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1069 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1070 DataRef *dataRef{&*maybeDataRef}; 1071 std::vector<Subscript> subscripts; 1072 SymbolVector reversed; 1073 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1074 subscripts = std::move(aRef->subscript()); 1075 reversed.push_back(aRef->GetLastSymbol()); 1076 if (Component * component{aRef->base().UnwrapComponent()}) { 1077 dataRef = &component->base(); 1078 } else { 1079 dataRef = nullptr; 1080 } 1081 } 1082 if (dataRef) { 1083 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1084 reversed.push_back(component->GetLastSymbol()); 1085 dataRef = &component->base(); 1086 } 1087 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1088 reversed.push_back(*baseSym); 1089 } else { 1090 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1091 } 1092 } 1093 std::vector<Expr<SubscriptInteger>> cosubscripts; 1094 bool cosubsOk{true}; 1095 for (const auto &cosub : 1096 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1097 MaybeExpr coex{Analyze(cosub)}; 1098 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1099 cosubscripts.push_back( 1100 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1101 } else { 1102 cosubsOk = false; 1103 } 1104 } 1105 if (cosubsOk && !reversed.empty()) { 1106 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1107 const Symbol &symbol{reversed.front()}; 1108 if (numCosubscripts != symbol.Corank()) { 1109 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1110 symbol.name(), symbol.Corank(), numCosubscripts); 1111 } 1112 } 1113 for (const auto &imageSelSpec : 1114 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1115 std::visit( 1116 common::visitors{ 1117 [&](const auto &x) { Analyze(x.v); }, 1118 }, 1119 imageSelSpec.u); 1120 } 1121 // Reverse the chain of symbols so that the base is first and coarray 1122 // ultimate component is last. 1123 if (cosubsOk) { 1124 return Designate( 1125 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1126 std::move(subscripts), std::move(cosubscripts)}}); 1127 } 1128 } 1129 return std::nullopt; 1130 } 1131 1132 int ExpressionAnalyzer::IntegerTypeSpecKind( 1133 const parser::IntegerTypeSpec &spec) { 1134 Expr<SubscriptInteger> value{ 1135 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1136 if (auto kind{ToInt64(value)}) { 1137 return static_cast<int>(*kind); 1138 } 1139 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1140 return GetDefaultKind(TypeCategory::Integer); 1141 } 1142 1143 // Array constructors 1144 1145 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1146 // all happen to have the same actual type T into one ArrayConstructor<T>. 1147 template <typename T> 1148 ArrayConstructorValues<T> MakeSpecific( 1149 ArrayConstructorValues<SomeType> &&from) { 1150 ArrayConstructorValues<T> to; 1151 for (ArrayConstructorValue<SomeType> &x : from) { 1152 std::visit( 1153 common::visitors{ 1154 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1155 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1156 to.Push(std::move(DEREF(typed))); 1157 }, 1158 [&](ImpliedDo<SomeType> &&impliedDo) { 1159 to.Push(ImpliedDo<T>{impliedDo.name(), 1160 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1161 std::move(impliedDo.stride()), 1162 MakeSpecific<T>(std::move(impliedDo.values()))}); 1163 }, 1164 }, 1165 std::move(x.u)); 1166 } 1167 return to; 1168 } 1169 1170 class ArrayConstructorContext { 1171 public: 1172 ArrayConstructorContext( 1173 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1174 : exprAnalyzer_{c}, type_{std::move(t)} {} 1175 1176 void Add(const parser::AcValue &); 1177 MaybeExpr ToExpr(); 1178 1179 // These interfaces allow *this to be used as a type visitor argument to 1180 // common::SearchTypes() to convert the array constructor to a typed 1181 // expression in ToExpr(). 1182 using Result = MaybeExpr; 1183 using Types = AllTypes; 1184 template <typename T> Result Test() { 1185 if (type_ && type_->category() == T::category) { 1186 if constexpr (T::category == TypeCategory::Derived) { 1187 if (!type_->IsUnlimitedPolymorphic()) { 1188 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1189 MakeSpecific<T>(std::move(values_))}); 1190 } 1191 } else if (type_->kind() == T::kind) { 1192 if constexpr (T::category == TypeCategory::Character) { 1193 if (auto len{type_->LEN()}) { 1194 return AsMaybeExpr(ArrayConstructor<T>{ 1195 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1196 } 1197 } else { 1198 return AsMaybeExpr( 1199 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1200 } 1201 } 1202 } 1203 return std::nullopt; 1204 } 1205 1206 private: 1207 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1208 1209 void Push(MaybeExpr &&); 1210 void Add(const parser::AcValue::Triplet &); 1211 void Add(const parser::Expr &); 1212 void Add(const parser::AcImpliedDo &); 1213 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1214 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1215 std::int64_t stride); 1216 1217 template <int KIND, typename A> 1218 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1219 const A &x) { 1220 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1221 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1222 return Fold(exprAnalyzer_.GetFoldingContext(), 1223 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1224 std::move(DEREF(intExpr)))); 1225 } 1226 return std::nullopt; 1227 } 1228 1229 // Nested array constructors all reference the same ExpressionAnalyzer, 1230 // which represents the nest of active implied DO loop indices. 1231 ExpressionAnalyzer &exprAnalyzer_; 1232 std::optional<DynamicTypeWithLength> type_; 1233 bool explicitType_{type_.has_value()}; 1234 std::optional<std::int64_t> constantLength_; 1235 ArrayConstructorValues<SomeType> values_; 1236 std::uint64_t messageDisplayedSet_{0}; 1237 }; 1238 1239 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1240 if (!x) { 1241 return; 1242 } 1243 if (!type_) { 1244 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1245 // Treat an array constructor of BOZ as if default integer. 1246 if (exprAnalyzer_.context().ShouldWarn( 1247 common::LanguageFeature::BOZAsDefaultInteger)) { 1248 exprAnalyzer_.Say( 1249 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1250 } 1251 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1252 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1253 std::move(*boz))); 1254 } 1255 } 1256 std::optional<DynamicType> dyType{x->GetType()}; 1257 if (!dyType) { 1258 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1259 if (!type_) { 1260 // Treat an array constructor of BOZ as if default integer. 1261 if (exprAnalyzer_.context().ShouldWarn( 1262 common::LanguageFeature::BOZAsDefaultInteger)) { 1263 exprAnalyzer_.Say( 1264 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1265 } 1266 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1267 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1268 std::move(*boz))); 1269 dyType = x.value().GetType(); 1270 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1271 x = std::move(cast); 1272 dyType = *type_; 1273 } else { 1274 if (!(messageDisplayedSet_ & 0x80)) { 1275 exprAnalyzer_.Say( 1276 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1277 messageDisplayedSet_ |= 0x80; 1278 } 1279 return; 1280 } 1281 } else { // procedure name, &c. 1282 if (!(messageDisplayedSet_ & 0x40)) { 1283 exprAnalyzer_.Say( 1284 "Item is not suitable for use in an array constructor"_err_en_US); 1285 messageDisplayedSet_ |= 0x40; 1286 } 1287 return; 1288 } 1289 } else if (dyType->IsUnlimitedPolymorphic()) { 1290 if (!(messageDisplayedSet_ & 8)) { 1291 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1292 "array constructor"_err_en_US); // C7113 1293 messageDisplayedSet_ |= 8; 1294 } 1295 return; 1296 } 1297 DynamicTypeWithLength xType{dyType.value()}; 1298 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1299 CHECK(xType.category() == TypeCategory::Character); 1300 xType.length = 1301 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1302 } 1303 if (!type_) { 1304 // If there is no explicit type-spec in an array constructor, the type 1305 // of the array is the declared type of all of the elements, which must 1306 // be well-defined and all match. 1307 // TODO: Possible language extension: use the most general type of 1308 // the values as the type of a numeric constructed array, convert all 1309 // of the other values to that type. Alternative: let the first value 1310 // determine the type, and convert the others to that type. 1311 CHECK(!explicitType_); 1312 type_ = std::move(xType); 1313 constantLength_ = ToInt64(type_->length); 1314 values_.Push(std::move(*x)); 1315 } else if (!explicitType_) { 1316 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1317 values_.Push(std::move(*x)); 1318 if (auto thisLen{ToInt64(xType.LEN())}) { 1319 if (constantLength_) { 1320 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1321 *thisLen != *constantLength_) { 1322 if (!(messageDisplayedSet_ & 1)) { 1323 exprAnalyzer_.Say( 1324 "Character literal in array constructor without explicit " 1325 "type has different length than earlier elements"_en_US); 1326 messageDisplayedSet_ |= 1; 1327 } 1328 } 1329 if (*thisLen > *constantLength_) { 1330 // Language extension: use the longest literal to determine the 1331 // length of the array constructor's character elements, not the 1332 // first, when there is no explicit type. 1333 *constantLength_ = *thisLen; 1334 type_->length = xType.LEN(); 1335 } 1336 } else { 1337 constantLength_ = *thisLen; 1338 type_->length = xType.LEN(); 1339 } 1340 } 1341 } else { 1342 if (!(messageDisplayedSet_ & 2)) { 1343 exprAnalyzer_.Say( 1344 "Values in array constructor must have the same declared type " 1345 "when no explicit type appears"_err_en_US); // C7110 1346 messageDisplayedSet_ |= 2; 1347 } 1348 } 1349 } else { 1350 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1351 values_.Push(std::move(*cast)); 1352 } else if (!(messageDisplayedSet_ & 4)) { 1353 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1354 "be converted to the type of the array '%s'"_err_en_US, 1355 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1356 messageDisplayedSet_ |= 4; 1357 } 1358 } 1359 } 1360 1361 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1362 std::visit( 1363 common::visitors{ 1364 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1365 [&](const common::Indirection<parser::Expr> &expr) { 1366 Add(expr.value()); 1367 }, 1368 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1369 Add(impliedDo.value()); 1370 }, 1371 }, 1372 x.u); 1373 } 1374 1375 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1376 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1377 std::optional<Expr<ImpliedDoIntType>> lower{ 1378 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1379 std::optional<Expr<ImpliedDoIntType>> upper{ 1380 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1381 std::optional<Expr<ImpliedDoIntType>> stride{ 1382 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1383 if (lower && upper) { 1384 if (!stride) { 1385 stride = Expr<ImpliedDoIntType>{1}; 1386 } 1387 if (!type_) { 1388 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1389 } 1390 auto v{std::move(values_)}; 1391 parser::CharBlock anonymous; 1392 Push(Expr<SomeType>{ 1393 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1394 std::swap(v, values_); 1395 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1396 std::move(*upper), std::move(*stride), std::move(v)}); 1397 } 1398 } 1399 1400 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1401 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1402 Push(exprAnalyzer_.Analyze(expr)); 1403 } 1404 1405 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1406 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1407 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1408 exprAnalyzer_.Analyze(bounds.name); 1409 parser::CharBlock name{bounds.name.thing.thing.source}; 1410 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1411 int kind{ImpliedDoIntType::kind}; 1412 if (const auto dynamicType{DynamicType::From(symbol)}) { 1413 kind = dynamicType->kind(); 1414 } 1415 std::optional<Expr<ImpliedDoIntType>> lower{ 1416 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1417 std::optional<Expr<ImpliedDoIntType>> upper{ 1418 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1419 if (lower && upper) { 1420 std::optional<Expr<ImpliedDoIntType>> stride{ 1421 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1422 if (!stride) { 1423 stride = Expr<ImpliedDoIntType>{1}; 1424 } 1425 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1426 // Check for constant bounds; the loop may require complete unrolling 1427 // of the parse tree if all bounds are constant in order to allow the 1428 // implied DO loop index to qualify as a constant expression. 1429 auto cLower{ToInt64(lower)}; 1430 auto cUpper{ToInt64(upper)}; 1431 auto cStride{ToInt64(stride)}; 1432 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1433 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1434 "The stride of an implied DO loop must not be zero"_err_en_US); 1435 messageDisplayedSet_ |= 0x10; 1436 } 1437 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1438 bool isNonemptyConstant{isConstant && 1439 ((*cStride > 0 && *cLower <= *cUpper) || 1440 (*cStride < 0 && *cLower >= *cUpper))}; 1441 bool unrollConstantLoop{false}; 1442 parser::Messages buffer; 1443 auto saveMessagesDisplayed{messageDisplayedSet_}; 1444 { 1445 auto messageRestorer{ 1446 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1447 auto v{std::move(values_)}; 1448 for (const auto &value : 1449 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1450 Add(value); 1451 } 1452 std::swap(v, values_); 1453 if (isNonemptyConstant && buffer.AnyFatalError()) { 1454 unrollConstantLoop = true; 1455 } else { 1456 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1457 std::move(*upper), std::move(*stride), std::move(v)}); 1458 } 1459 } 1460 if (unrollConstantLoop) { 1461 messageDisplayedSet_ = saveMessagesDisplayed; 1462 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1463 } else if (auto *messages{ 1464 exprAnalyzer_.GetContextualMessages().messages()}) { 1465 messages->Annex(std::move(buffer)); 1466 } 1467 exprAnalyzer_.RemoveImpliedDo(name); 1468 } else if (!(messageDisplayedSet_ & 0x20)) { 1469 exprAnalyzer_.SayAt(name, 1470 "Implied DO index '%s' is active in a surrounding implied DO loop " 1471 "and may not have the same name"_err_en_US, 1472 name); // C7115 1473 messageDisplayedSet_ |= 0x20; 1474 } 1475 } 1476 } 1477 1478 // Fortran considers an implied DO index of an array constructor to be 1479 // a constant expression if the bounds of the implied DO loop are constant. 1480 // Usually this doesn't matter, but if we emitted spurious messages as a 1481 // result of not using constant values for the index while analyzing the 1482 // items, we need to do it again the "hard" way with multiple iterations over 1483 // the parse tree. 1484 void ArrayConstructorContext::UnrollConstantImpliedDo( 1485 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1486 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1487 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1488 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1489 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1490 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1491 at += stride) { 1492 for (const auto &value : 1493 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1494 Add(value); 1495 } 1496 } 1497 foldingContext.EndImpliedDo(name); 1498 } 1499 1500 MaybeExpr ArrayConstructorContext::ToExpr() { 1501 return common::SearchTypes(std::move(*this)); 1502 } 1503 1504 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1505 const parser::AcSpec &acSpec{array.v}; 1506 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1507 for (const parser::AcValue &value : acSpec.values) { 1508 acContext.Add(value); 1509 } 1510 return acContext.ToExpr(); 1511 } 1512 1513 MaybeExpr ExpressionAnalyzer::Analyze( 1514 const parser::StructureConstructor &structure) { 1515 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1516 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1517 parser::CharBlock &typeName{structureType.source}; 1518 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1519 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1520 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1521 if (!CheckIsValidForwardReference(dtSpec)) { 1522 return std::nullopt; 1523 } 1524 } 1525 } 1526 if (!parsedType.derivedTypeSpec) { 1527 return std::nullopt; 1528 } 1529 const auto &spec{*parsedType.derivedTypeSpec}; 1530 const Symbol &typeSymbol{spec.typeSymbol()}; 1531 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1532 return std::nullopt; // error recovery 1533 } 1534 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1535 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1536 1537 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1538 AttachDeclaration(Say(typeName, 1539 "ABSTRACT derived type '%s' may not be used in a " 1540 "structure constructor"_err_en_US, 1541 typeName), 1542 typeSymbol); // C7114 1543 } 1544 1545 // This iterator traverses all of the components in the derived type and its 1546 // parents. The symbols for whole parent components appear after their 1547 // own components and before the components of the types that extend them. 1548 // E.g., TYPE :: A; REAL X; END TYPE 1549 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1550 // produces the component list X, A, Y. 1551 // The order is important below because a structure constructor can 1552 // initialize X or A by name, but not both. 1553 auto components{semantics::OrderedComponentIterator{spec}}; 1554 auto nextAnonymous{components.begin()}; 1555 1556 std::set<parser::CharBlock> unavailable; 1557 bool anyKeyword{false}; 1558 StructureConstructor result{spec}; 1559 bool checkConflicts{true}; // until we hit one 1560 auto &messages{GetContextualMessages()}; 1561 1562 for (const auto &component : 1563 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1564 const parser::Expr &expr{ 1565 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1566 parser::CharBlock source{expr.source}; 1567 auto restorer{messages.SetLocation(source)}; 1568 const Symbol *symbol{nullptr}; 1569 MaybeExpr value{Analyze(expr)}; 1570 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1571 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1572 anyKeyword = true; 1573 source = kw->v.source; 1574 symbol = kw->v.symbol; 1575 if (!symbol) { 1576 auto componentIter{std::find_if(components.begin(), components.end(), 1577 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1578 if (componentIter != components.end()) { 1579 symbol = &*componentIter; 1580 } 1581 } 1582 if (!symbol) { // C7101 1583 Say(source, 1584 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1585 source, typeName); 1586 } 1587 } else { 1588 if (anyKeyword) { // C7100 1589 Say(source, 1590 "Value in structure constructor lacks a component name"_err_en_US); 1591 checkConflicts = false; // stem cascade 1592 } 1593 // Here's a regrettably common extension of the standard: anonymous 1594 // initialization of parent components, e.g., T(PT(1)) rather than 1595 // T(1) or T(PT=PT(1)). 1596 if (nextAnonymous == components.begin() && parentComponent && 1597 valueType == DynamicType::From(*parentComponent) && 1598 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1599 auto iter{ 1600 std::find(components.begin(), components.end(), *parentComponent)}; 1601 if (iter != components.end()) { 1602 symbol = parentComponent; 1603 nextAnonymous = ++iter; 1604 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1605 Say(source, 1606 "Whole parent component '%s' in structure " 1607 "constructor should not be anonymous"_en_US, 1608 symbol->name()); 1609 } 1610 } 1611 } 1612 while (!symbol && nextAnonymous != components.end()) { 1613 const Symbol &next{*nextAnonymous}; 1614 ++nextAnonymous; 1615 if (!next.test(Symbol::Flag::ParentComp)) { 1616 symbol = &next; 1617 } 1618 } 1619 if (!symbol) { 1620 Say(source, "Unexpected value in structure constructor"_err_en_US); 1621 } 1622 } 1623 if (symbol) { 1624 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1625 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1626 Say(source, *msg); 1627 } 1628 } 1629 if (checkConflicts) { 1630 auto componentIter{ 1631 std::find(components.begin(), components.end(), *symbol)}; 1632 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1633 // C797, C798 1634 Say(source, 1635 "Component '%s' conflicts with another component earlier in " 1636 "this structure constructor"_err_en_US, 1637 symbol->name()); 1638 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1639 // Make earlier components unavailable once a whole parent appears. 1640 for (auto it{components.begin()}; it != componentIter; ++it) { 1641 unavailable.insert(it->name()); 1642 } 1643 } else { 1644 // Make whole parent components unavailable after any of their 1645 // constituents appear. 1646 for (auto it{componentIter}; it != components.end(); ++it) { 1647 if (it->test(Symbol::Flag::ParentComp)) { 1648 unavailable.insert(it->name()); 1649 } 1650 } 1651 } 1652 } 1653 unavailable.insert(symbol->name()); 1654 if (value) { 1655 if (symbol->has<semantics::ProcEntityDetails>()) { 1656 CHECK(IsPointer(*symbol)); 1657 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1658 // C1594(4) 1659 const auto &innermost{context_.FindScope(expr.source)}; 1660 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1661 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1662 if (const Symbol * 1663 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1664 if (auto *msg{Say(expr.source, 1665 "Externally visible object '%s' may not be " 1666 "associated with pointer component '%s' in a " 1667 "pure procedure"_err_en_US, 1668 object->name(), pointer->name())}) { 1669 msg->Attach(object->name(), "Object declaration"_en_US) 1670 .Attach(pointer->name(), "Pointer declaration"_en_US); 1671 } 1672 } 1673 } 1674 } 1675 } else if (symbol->has<semantics::TypeParamDetails>()) { 1676 Say(expr.source, 1677 "Type parameter '%s' may not appear as a component " 1678 "of a structure constructor"_err_en_US, 1679 symbol->name()); 1680 continue; 1681 } else { 1682 Say(expr.source, 1683 "Component '%s' is neither a procedure pointer " 1684 "nor a data object"_err_en_US, 1685 symbol->name()); 1686 continue; 1687 } 1688 if (IsPointer(*symbol)) { 1689 semantics::CheckPointerAssignment( 1690 GetFoldingContext(), *symbol, *value); // C7104, C7105 1691 result.Add(*symbol, Fold(std::move(*value))); 1692 } else if (MaybeExpr converted{ 1693 ConvertToType(*symbol, std::move(*value))}) { 1694 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1695 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1696 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1697 AttachDeclaration( 1698 Say(expr.source, 1699 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1700 GetRank(*valueShape), symbol->name()), 1701 *symbol); 1702 } else { 1703 auto checked{ 1704 CheckConformance(messages, *componentShape, *valueShape, 1705 CheckConformanceFlags::RightIsExpandableDeferred, 1706 "component", "value")}; 1707 if (checked && *checked && GetRank(*componentShape) > 0 && 1708 GetRank(*valueShape) == 0 && 1709 !IsExpandableScalar(*converted)) { 1710 AttachDeclaration( 1711 Say(expr.source, 1712 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1713 symbol->name()), 1714 *symbol); 1715 } 1716 if (checked.value_or(true)) { 1717 result.Add(*symbol, std::move(*converted)); 1718 } 1719 } 1720 } else { 1721 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1722 } 1723 } else { 1724 AttachDeclaration( 1725 Say(expr.source, 1726 "Shape of component '%s' cannot be determined"_err_en_US, 1727 symbol->name()), 1728 *symbol); 1729 } 1730 } else if (IsAllocatable(*symbol) && 1731 std::holds_alternative<NullPointer>(value->u)) { 1732 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1733 } else if (auto symType{DynamicType::From(symbol)}) { 1734 if (valueType) { 1735 AttachDeclaration( 1736 Say(expr.source, 1737 "Value in structure constructor of type %s is " 1738 "incompatible with component '%s' of type %s"_err_en_US, 1739 valueType->AsFortran(), symbol->name(), 1740 symType->AsFortran()), 1741 *symbol); 1742 } else { 1743 AttachDeclaration( 1744 Say(expr.source, 1745 "Value in structure constructor is incompatible with " 1746 " component '%s' of type %s"_err_en_US, 1747 symbol->name(), symType->AsFortran()), 1748 *symbol); 1749 } 1750 } 1751 } 1752 } 1753 } 1754 1755 // Ensure that unmentioned component objects have default initializers. 1756 for (const Symbol &symbol : components) { 1757 if (!symbol.test(Symbol::Flag::ParentComp) && 1758 unavailable.find(symbol.name()) == unavailable.cend() && 1759 !IsAllocatable(symbol)) { 1760 if (const auto *details{ 1761 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1762 if (details->init()) { 1763 result.Add(symbol, common::Clone(*details->init())); 1764 } else { // C799 1765 AttachDeclaration(Say(typeName, 1766 "Structure constructor lacks a value for " 1767 "component '%s'"_err_en_US, 1768 symbol.name()), 1769 symbol); 1770 } 1771 } 1772 } 1773 } 1774 1775 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1776 } 1777 1778 static std::optional<parser::CharBlock> GetPassName( 1779 const semantics::Symbol &proc) { 1780 return std::visit( 1781 [](const auto &details) { 1782 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1783 std::decay_t<decltype(details)>>) { 1784 return details.passName(); 1785 } else { 1786 return std::optional<parser::CharBlock>{}; 1787 } 1788 }, 1789 proc.details()); 1790 } 1791 1792 static int GetPassIndex(const Symbol &proc) { 1793 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1794 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1795 const auto *interface{semantics::FindInterface(proc)}; 1796 if (!passName || !interface) { 1797 return 0; // first argument is passed-object 1798 } 1799 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1800 int index{0}; 1801 for (const auto *arg : subp.dummyArgs()) { 1802 if (arg && arg->name() == passName) { 1803 return index; 1804 } 1805 ++index; 1806 } 1807 DIE("PASS argument name not in dummy argument list"); 1808 } 1809 1810 // Injects an expression into an actual argument list as the "passed object" 1811 // for a type-bound procedure reference that is not NOPASS. Adds an 1812 // argument keyword if possible, but not when the passed object goes 1813 // before a positional argument. 1814 // e.g., obj%tbp(x) -> tbp(obj,x). 1815 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1816 const Symbol &component, bool isPassedObject = true) { 1817 if (component.attrs().test(semantics::Attr::NOPASS)) { 1818 return; 1819 } 1820 int passIndex{GetPassIndex(component)}; 1821 auto iter{actuals.begin()}; 1822 int at{0}; 1823 while (iter < actuals.end() && at < passIndex) { 1824 if (*iter && (*iter)->keyword()) { 1825 iter = actuals.end(); 1826 break; 1827 } 1828 ++iter; 1829 ++at; 1830 } 1831 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1832 passed.set_isPassedObject(isPassedObject); 1833 if (iter == actuals.end()) { 1834 if (auto passName{GetPassName(component)}) { 1835 passed.set_keyword(*passName); 1836 } 1837 } 1838 actuals.emplace(iter, std::move(passed)); 1839 } 1840 1841 // Return the compile-time resolution of a procedure binding, if possible. 1842 static const Symbol *GetBindingResolution( 1843 const std::optional<DynamicType> &baseType, const Symbol &component) { 1844 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1845 if (!binding) { 1846 return nullptr; 1847 } 1848 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1849 (!baseType || baseType->IsPolymorphic())) { 1850 return nullptr; 1851 } 1852 return &binding->symbol(); 1853 } 1854 1855 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1856 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1857 -> std::optional<CalleeAndArguments> { 1858 const parser::StructureComponent &sc{pcr.v.thing}; 1859 if (MaybeExpr base{Analyze(sc.base)}) { 1860 if (const Symbol * sym{sc.component.symbol}) { 1861 if (context_.HasError(sym)) { 1862 return std::nullopt; 1863 } 1864 if (!IsProcedure(*sym)) { 1865 AttachDeclaration( 1866 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1867 sc.component.source), 1868 *sym); 1869 return std::nullopt; 1870 } 1871 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1872 if (sym->has<semantics::GenericDetails>()) { 1873 AdjustActuals adjustment{ 1874 [&](const Symbol &proc, ActualArguments &actuals) { 1875 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1876 AddPassArg(actuals, std::move(*dtExpr), proc); 1877 } 1878 return true; 1879 }}; 1880 sym = ResolveGeneric(*sym, arguments, adjustment); 1881 if (!sym) { 1882 EmitGenericResolutionError(*sc.component.symbol); 1883 return std::nullopt; 1884 } 1885 } 1886 if (const Symbol * 1887 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1888 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1889 return CalleeAndArguments{ 1890 ProcedureDesignator{*resolution}, std::move(arguments)}; 1891 } else if (std::optional<DataRef> dataRef{ 1892 ExtractDataRef(std::move(*dtExpr))}) { 1893 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1894 return CalleeAndArguments{ 1895 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1896 std::move(arguments)}; 1897 } else { 1898 AddPassArg(arguments, 1899 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1900 *sym); 1901 return CalleeAndArguments{ 1902 ProcedureDesignator{*sym}, std::move(arguments)}; 1903 } 1904 } 1905 } 1906 Say(sc.component.source, 1907 "Base of procedure component reference is not a derived-type object"_err_en_US); 1908 } 1909 } 1910 CHECK(!GetContextualMessages().empty()); 1911 return std::nullopt; 1912 } 1913 1914 // Can actual be argument associated with dummy? 1915 static bool CheckCompatibleArgument(bool isElemental, 1916 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1917 return std::visit( 1918 common::visitors{ 1919 [&](const characteristics::DummyDataObject &x) { 1920 if (!isElemental && actual.Rank() != x.type.Rank() && 1921 !x.type.attrs().test( 1922 characteristics::TypeAndShape::Attr::AssumedRank)) { 1923 return false; 1924 } else if (auto actualType{actual.GetType()}) { 1925 return x.type.type().IsTkCompatibleWith(*actualType); 1926 } else { 1927 return false; 1928 } 1929 }, 1930 [&](const characteristics::DummyProcedure &) { 1931 const auto *expr{actual.UnwrapExpr()}; 1932 return expr && IsProcedurePointerTarget(*expr); 1933 }, 1934 [&](const characteristics::AlternateReturn &) { 1935 return actual.isAlternateReturn(); 1936 }, 1937 }, 1938 dummy.u); 1939 } 1940 1941 // Are the actual arguments compatible with the dummy arguments of procedure? 1942 static bool CheckCompatibleArguments( 1943 const characteristics::Procedure &procedure, 1944 const ActualArguments &actuals) { 1945 bool isElemental{procedure.IsElemental()}; 1946 const auto &dummies{procedure.dummyArguments}; 1947 CHECK(dummies.size() == actuals.size()); 1948 for (std::size_t i{0}; i < dummies.size(); ++i) { 1949 const characteristics::DummyArgument &dummy{dummies[i]}; 1950 const std::optional<ActualArgument> &actual{actuals[i]}; 1951 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1952 return false; 1953 } 1954 } 1955 return true; 1956 } 1957 1958 // Handles a forward reference to a module function from what must 1959 // be a specification expression. Return false if the symbol is 1960 // an invalid forward reference. 1961 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1962 if (context_.HasError(symbol)) { 1963 return false; 1964 } 1965 if (const auto *details{ 1966 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1967 if (details->kind() == semantics::SubprogramKind::Module) { 1968 // If this symbol is still a SubprogramNameDetails, we must be 1969 // checking a specification expression in a sibling module 1970 // procedure. Resolve its names now so that its interface 1971 // is known. 1972 semantics::ResolveSpecificationParts(context_, symbol); 1973 if (symbol.has<semantics::SubprogramNameDetails>()) { 1974 // When the symbol hasn't had its details updated, we must have 1975 // already been in the process of resolving the function's 1976 // specification part; but recursive function calls are not 1977 // allowed in specification parts (10.1.11 para 5). 1978 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1979 symbol.name()); 1980 context_.SetError(symbol); 1981 return false; 1982 } 1983 } else { // 10.1.11 para 4 1984 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1985 symbol.name()); 1986 context_.SetError(symbol); 1987 return false; 1988 } 1989 } 1990 return true; 1991 } 1992 1993 // Resolve a call to a generic procedure with given actual arguments. 1994 // adjustActuals is called on procedure bindings to handle pass arg. 1995 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1996 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1997 bool mightBeStructureConstructor) { 1998 const Symbol *elemental{nullptr}; // matching elemental specific proc 1999 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 2000 for (const Symbol &specific : details.specificProcs()) { 2001 if (!ResolveForward(specific)) { 2002 continue; 2003 } 2004 if (std::optional<characteristics::Procedure> procedure{ 2005 characteristics::Procedure::Characterize( 2006 ProcedureDesignator{specific}, context_.foldingContext())}) { 2007 ActualArguments localActuals{actuals}; 2008 if (specific.has<semantics::ProcBindingDetails>()) { 2009 if (!adjustActuals.value()(specific, localActuals)) { 2010 continue; 2011 } 2012 } 2013 if (semantics::CheckInterfaceForGeneric( 2014 *procedure, localActuals, GetFoldingContext())) { 2015 if (CheckCompatibleArguments(*procedure, localActuals)) { 2016 if (!procedure->IsElemental()) { 2017 // takes priority over elemental match 2018 return &AccessSpecific(symbol, specific); 2019 } 2020 elemental = &specific; 2021 } 2022 } 2023 } 2024 } 2025 if (elemental) { 2026 return &AccessSpecific(symbol, *elemental); 2027 } 2028 // Check parent derived type 2029 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2030 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2031 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 2032 if (const Symbol * 2033 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 2034 return result; 2035 } 2036 } 2037 } 2038 } 2039 if (mightBeStructureConstructor && details.derivedType()) { 2040 return details.derivedType(); 2041 } 2042 return nullptr; 2043 } 2044 2045 const Symbol &ExpressionAnalyzer::AccessSpecific( 2046 const Symbol &originalGeneric, const Symbol &specific) { 2047 if (const auto *hosted{ 2048 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2049 return AccessSpecific(hosted->symbol(), specific); 2050 } else if (const auto *used{ 2051 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2052 const auto &scope{originalGeneric.owner()}; 2053 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2054 if (const auto *useDetails{ 2055 iter->second->detailsIf<semantics::UseDetails>()}) { 2056 const Symbol &usedSymbol{useDetails->symbol()}; 2057 const auto *usedGeneric{ 2058 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2059 if (&usedSymbol == &specific || 2060 (usedGeneric && usedGeneric->specific() == &specific)) { 2061 return specific; 2062 } 2063 } 2064 } 2065 // Create a renaming USE of the specific procedure. 2066 auto rename{context_.SaveTempName( 2067 used->symbol().owner().GetName().value().ToString() + "$" + 2068 specific.name().ToString())}; 2069 return *const_cast<semantics::Scope &>(scope) 2070 .try_emplace(rename, specific.attrs(), 2071 semantics::UseDetails{rename, specific}) 2072 .first->second; 2073 } else { 2074 return specific; 2075 } 2076 } 2077 2078 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 2079 if (semantics::IsGenericDefinedOp(symbol)) { 2080 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 2081 symbol.name()); 2082 } else { 2083 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2084 symbol.name()); 2085 } 2086 } 2087 2088 auto ExpressionAnalyzer::GetCalleeAndArguments( 2089 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2090 bool isSubroutine, bool mightBeStructureConstructor) 2091 -> std::optional<CalleeAndArguments> { 2092 return std::visit( 2093 common::visitors{ 2094 [&](const parser::Name &name) { 2095 return GetCalleeAndArguments(name, std::move(arguments), 2096 isSubroutine, mightBeStructureConstructor); 2097 }, 2098 [&](const parser::ProcComponentRef &pcr) { 2099 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2100 }, 2101 }, 2102 pd.u); 2103 } 2104 2105 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2106 ActualArguments &&arguments, bool isSubroutine, 2107 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2108 const Symbol *symbol{name.symbol}; 2109 if (context_.HasError(symbol)) { 2110 return std::nullopt; // also handles null symbol 2111 } 2112 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2113 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2114 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2115 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2116 arguments, GetFoldingContext())}) { 2117 CheckBadExplicitType(*specificCall, *symbol); 2118 return CalleeAndArguments{ 2119 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2120 std::move(specificCall->arguments)}; 2121 } 2122 } else { 2123 CheckForBadRecursion(name.source, ultimate); 2124 if (ultimate.has<semantics::GenericDetails>()) { 2125 ExpressionAnalyzer::AdjustActuals noAdjustment; 2126 symbol = ResolveGeneric( 2127 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 2128 } 2129 if (symbol) { 2130 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2131 if (mightBeStructureConstructor) { 2132 return CalleeAndArguments{ 2133 semantics::SymbolRef{*symbol}, std::move(arguments)}; 2134 } 2135 } else if (IsProcedure(*symbol)) { 2136 return CalleeAndArguments{ 2137 ProcedureDesignator{*symbol}, std::move(arguments)}; 2138 } 2139 if (!context_.HasError(*symbol)) { 2140 AttachDeclaration( 2141 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2142 name.source), 2143 *symbol); 2144 } 2145 } else if (std::optional<SpecificCall> specificCall{ 2146 context_.intrinsics().Probe( 2147 CallCharacteristics{ 2148 ultimate.name().ToString(), isSubroutine}, 2149 arguments, GetFoldingContext())}) { 2150 // Generics can extend intrinsics 2151 return CalleeAndArguments{ 2152 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2153 std::move(specificCall->arguments)}; 2154 } else { 2155 EmitGenericResolutionError(*name.symbol); 2156 } 2157 } 2158 return std::nullopt; 2159 } 2160 2161 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2162 // generic intrinsic function "has no effect" on the result type of a 2163 // call to that intrinsic. So one can declare "character*8 cos" and 2164 // still get a real result from "cos(1.)". This is a dangerous feature, 2165 // especially since implementations are free to extend their sets of 2166 // intrinsics, and in doing so might clash with a name in a program. 2167 // So we emit a warning in this situation, and perhaps it should be an 2168 // error -- any correctly working program can silence the message by 2169 // simply deleting the pointless type declaration. 2170 void ExpressionAnalyzer::CheckBadExplicitType( 2171 const SpecificCall &call, const Symbol &intrinsic) { 2172 if (intrinsic.GetUltimate().GetType()) { 2173 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2174 if (const auto &result{procedure.functionResult}) { 2175 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2176 if (auto declared{ 2177 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2178 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2179 if (auto *msg{Say( 2180 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US, 2181 typeAndShape->AsFortran(), intrinsic.name(), 2182 declared->AsFortran())}) { 2183 msg->Attach(intrinsic.name(), 2184 "Ignored declaration of intrinsic function '%s'"_en_US, 2185 intrinsic.name()); 2186 } 2187 } 2188 } 2189 } 2190 } 2191 } 2192 } 2193 2194 void ExpressionAnalyzer::CheckForBadRecursion( 2195 parser::CharBlock callSite, const semantics::Symbol &proc) { 2196 if (const auto *scope{proc.scope()}) { 2197 if (scope->sourceRange().Contains(callSite)) { 2198 parser::Message *msg{nullptr}; 2199 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2200 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2201 callSite); 2202 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2203 msg = Say( // 15.6.2.1(3) 2204 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2205 callSite); 2206 } 2207 AttachDeclaration(msg, proc); 2208 } 2209 } 2210 } 2211 2212 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2213 if (const auto *designator{ 2214 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2215 if (const auto *dataRef{ 2216 std::get_if<parser::DataRef>(&designator->value().u)}) { 2217 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2218 return AssumedTypeDummy(*name); 2219 } 2220 } 2221 } 2222 return nullptr; 2223 } 2224 template <> 2225 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2226 if (const Symbol * symbol{name.symbol}) { 2227 if (const auto *type{symbol->GetType()}) { 2228 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2229 return symbol; 2230 } 2231 } 2232 } 2233 return nullptr; 2234 } 2235 template <typename A> 2236 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2237 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2238 // point it is is not guaranteed that it has been checked the object has 2239 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2240 // returned. 2241 return std::visit( 2242 common::visitors{ 2243 [&](const parser::StructureComponent &x) { 2244 return AssumedTypeDummy(x.component); 2245 }, 2246 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2247 }, 2248 object.u); 2249 } 2250 template <> 2251 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2252 const parser::AllocateObject &x) { 2253 return AssumedTypePointerOrAllocatableDummy(x); 2254 } 2255 template <> 2256 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2257 const parser::PointerObject &x) { 2258 return AssumedTypePointerOrAllocatableDummy(x); 2259 } 2260 2261 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2262 const semantics::DerivedTypeSpec &dtSpec) { 2263 if (dtSpec.IsForwardReferenced()) { 2264 Say("Cannot construct value for derived type '%s' " 2265 "before it is defined"_err_en_US, 2266 dtSpec.name()); 2267 return false; 2268 } 2269 return true; 2270 } 2271 2272 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2273 std::optional<parser::StructureConstructor> *structureConstructor) { 2274 const parser::Call &call{funcRef.v}; 2275 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2276 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2277 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2278 analyzer.Analyze(arg, false /* not subroutine call */); 2279 } 2280 if (analyzer.fatalErrors()) { 2281 return std::nullopt; 2282 } 2283 if (std::optional<CalleeAndArguments> callee{ 2284 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2285 analyzer.GetActuals(), false /* not subroutine */, 2286 true /* might be structure constructor */)}) { 2287 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2288 return MakeFunctionRef( 2289 call.source, std::move(*proc), std::move(callee->arguments)); 2290 } 2291 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2292 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2293 if (structureConstructor) { 2294 // Structure constructor misparsed as function reference? 2295 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2296 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2297 semantics::Scope &scope{context_.FindScope(name->source)}; 2298 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2299 if (!CheckIsValidForwardReference(dtSpec)) { 2300 return std::nullopt; 2301 } 2302 const semantics::DeclTypeSpec &type{ 2303 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2304 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2305 *structureConstructor = 2306 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2307 return Analyze(structureConstructor->value()); 2308 } 2309 } 2310 if (!context_.HasError(symbol)) { 2311 AttachDeclaration( 2312 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2313 symbol.name()), 2314 symbol); 2315 context_.SetError(symbol); 2316 } 2317 } 2318 return std::nullopt; 2319 } 2320 2321 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2322 for (const auto &arg : args) { 2323 if (arg && arg->isAlternateReturn()) { 2324 return true; 2325 } 2326 } 2327 return false; 2328 } 2329 2330 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2331 const parser::Call &call{callStmt.v}; 2332 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2333 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2334 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2335 for (const auto &arg : actualArgList) { 2336 analyzer.Analyze(arg, true /* is subroutine call */); 2337 } 2338 if (!analyzer.fatalErrors()) { 2339 if (std::optional<CalleeAndArguments> callee{ 2340 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2341 analyzer.GetActuals(), true /* subroutine */)}) { 2342 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2343 CHECK(proc); 2344 if (CheckCall(call.source, *proc, callee->arguments)) { 2345 bool hasAlternateReturns{HasAlternateReturns(callee->arguments)}; 2346 callStmt.typedCall.Reset( 2347 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2348 hasAlternateReturns}, 2349 ProcedureRef::Deleter); 2350 } 2351 } 2352 } 2353 } 2354 2355 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2356 if (!x.typedAssignment) { 2357 ArgumentAnalyzer analyzer{*this}; 2358 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2359 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2360 std::optional<Assignment> assignment; 2361 if (!analyzer.fatalErrors()) { 2362 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2363 if (!procRef) { 2364 analyzer.CheckForNullPointer( 2365 "in a non-pointer intrinsic assignment statement"); 2366 } 2367 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2368 if (procRef) { 2369 assignment->u = std::move(*procRef); 2370 } 2371 } 2372 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2373 GenericAssignmentWrapper::Deleter); 2374 } 2375 return common::GetPtrFromOptional(x.typedAssignment->v); 2376 } 2377 2378 const Assignment *ExpressionAnalyzer::Analyze( 2379 const parser::PointerAssignmentStmt &x) { 2380 if (!x.typedAssignment) { 2381 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2382 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2383 if (!lhs || !rhs) { 2384 x.typedAssignment.Reset( 2385 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2386 } else { 2387 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2388 std::visit(common::visitors{ 2389 [&](const std::list<parser::BoundsRemapping> &list) { 2390 Assignment::BoundsRemapping bounds; 2391 for (const auto &elem : list) { 2392 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2393 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2394 if (lower && upper) { 2395 bounds.emplace_back(Fold(std::move(*lower)), 2396 Fold(std::move(*upper))); 2397 } 2398 } 2399 assignment.u = std::move(bounds); 2400 }, 2401 [&](const std::list<parser::BoundsSpec> &list) { 2402 Assignment::BoundsSpec bounds; 2403 for (const auto &bound : list) { 2404 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2405 bounds.emplace_back(Fold(std::move(*lower))); 2406 } 2407 } 2408 assignment.u = std::move(bounds); 2409 }, 2410 }, 2411 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2412 x.typedAssignment.Reset( 2413 new GenericAssignmentWrapper{std::move(assignment)}, 2414 GenericAssignmentWrapper::Deleter); 2415 } 2416 } 2417 return common::GetPtrFromOptional(x.typedAssignment->v); 2418 } 2419 2420 static bool IsExternalCalledImplicitly( 2421 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2422 if (const auto *symbol{proc.GetSymbol()}) { 2423 return symbol->has<semantics::SubprogramDetails>() && 2424 symbol->owner().IsGlobal() && 2425 (!symbol->scope() /*ENTRY*/ || 2426 !symbol->scope()->sourceRange().Contains(callSite)); 2427 } else { 2428 return false; 2429 } 2430 } 2431 2432 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2433 parser::CharBlock callSite, const ProcedureDesignator &proc, 2434 ActualArguments &arguments) { 2435 auto chars{characteristics::Procedure::Characterize( 2436 proc, context_.foldingContext())}; 2437 if (chars) { 2438 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2439 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2440 Say(callSite, 2441 "References to the procedure '%s' require an explicit interface"_en_US, 2442 DEREF(proc.GetSymbol()).name()); 2443 } 2444 // Checks for ASSOCIATED() are done in intrinsic table processing 2445 bool procIsAssociated{false}; 2446 if (const SpecificIntrinsic * 2447 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2448 if (specificIntrinsic->name == "associated") { 2449 procIsAssociated = true; 2450 } 2451 } 2452 if (!procIsAssociated) { 2453 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2454 context_.FindScope(callSite), treatExternalAsImplicit, 2455 proc.GetSpecificIntrinsic()); 2456 const Symbol *procSymbol{proc.GetSymbol()}; 2457 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2458 if (const semantics::Scope * 2459 pure{semantics::FindPureProcedureContaining( 2460 context_.FindScope(callSite))}) { 2461 Say(callSite, 2462 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2463 procSymbol->name(), DEREF(pure->symbol()).name()); 2464 } 2465 } 2466 } 2467 } 2468 return chars; 2469 } 2470 2471 // Unary operations 2472 2473 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2474 if (MaybeExpr operand{Analyze(x.v.value())}) { 2475 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2476 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2477 if (semantics::IsProcedurePointer(*result)) { 2478 Say("A function reference that returns a procedure " 2479 "pointer may not be parenthesized"_err_en_US); // C1003 2480 } 2481 } 2482 } 2483 return Parenthesize(std::move(*operand)); 2484 } 2485 return std::nullopt; 2486 } 2487 2488 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2489 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2490 ArgumentAnalyzer analyzer{context}; 2491 analyzer.Analyze(x.v); 2492 if (!analyzer.fatalErrors()) { 2493 if (analyzer.IsIntrinsicNumeric(opr)) { 2494 analyzer.CheckForNullPointer(); 2495 if (opr == NumericOperator::Add) { 2496 return analyzer.MoveExpr(0); 2497 } else { 2498 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2499 } 2500 } else { 2501 return analyzer.TryDefinedOp(AsFortran(opr), 2502 "Operand of unary %s must be numeric; have %s"_err_en_US); 2503 } 2504 } 2505 return std::nullopt; 2506 } 2507 2508 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2509 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2510 } 2511 2512 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2513 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2514 } 2515 2516 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2517 ArgumentAnalyzer analyzer{*this}; 2518 analyzer.Analyze(x.v); 2519 if (!analyzer.fatalErrors()) { 2520 if (analyzer.IsIntrinsicLogical()) { 2521 analyzer.CheckForNullPointer(); 2522 return AsGenericExpr( 2523 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2524 } else { 2525 return analyzer.TryDefinedOp(LogicalOperator::Not, 2526 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2527 } 2528 } 2529 return std::nullopt; 2530 } 2531 2532 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2533 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2534 // intrinsic function. 2535 // Use the actual source for the name of the call for error reporting. 2536 std::optional<ActualArgument> arg; 2537 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2538 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2539 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2540 arg = ActualArgument{std::move(*argExpr)}; 2541 } else { 2542 return std::nullopt; 2543 } 2544 parser::CharBlock at{GetContextualMessages().at()}; 2545 CHECK(at.size() >= 4); 2546 parser::CharBlock loc{at.begin() + 1, 3}; 2547 CHECK(loc == "loc"); 2548 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2549 } 2550 2551 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2552 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2553 ArgumentAnalyzer analyzer{*this, name.source}; 2554 analyzer.Analyze(std::get<1>(x.t)); 2555 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2556 "No operator %s defined for %s"_err_en_US, nullptr, true); 2557 } 2558 2559 // Binary (dyadic) operations 2560 2561 template <template <typename> class OPR> 2562 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2563 const parser::Expr::IntrinsicBinary &x) { 2564 ArgumentAnalyzer analyzer{context}; 2565 analyzer.Analyze(std::get<0>(x.t)); 2566 analyzer.Analyze(std::get<1>(x.t)); 2567 if (!analyzer.fatalErrors()) { 2568 if (analyzer.IsIntrinsicNumeric(opr)) { 2569 analyzer.CheckForNullPointer(); 2570 analyzer.CheckConformance(); 2571 return NumericOperation<OPR>(context.GetContextualMessages(), 2572 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2573 context.GetDefaultKind(TypeCategory::Real)); 2574 } else { 2575 return analyzer.TryDefinedOp(AsFortran(opr), 2576 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2577 } 2578 } 2579 return std::nullopt; 2580 } 2581 2582 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2583 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2584 } 2585 2586 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2587 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2588 } 2589 2590 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2591 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2592 } 2593 2594 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2595 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2596 } 2597 2598 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2599 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2600 } 2601 2602 MaybeExpr ExpressionAnalyzer::Analyze( 2603 const parser::Expr::ComplexConstructor &x) { 2604 auto re{Analyze(std::get<0>(x.t).value())}; 2605 auto im{Analyze(std::get<1>(x.t).value())}; 2606 if (re && im) { 2607 ConformabilityCheck(GetContextualMessages(), *re, *im); 2608 } 2609 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2610 std::move(im), GetDefaultKind(TypeCategory::Real))); 2611 } 2612 2613 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2614 ArgumentAnalyzer analyzer{*this}; 2615 analyzer.Analyze(std::get<0>(x.t)); 2616 analyzer.Analyze(std::get<1>(x.t)); 2617 if (!analyzer.fatalErrors()) { 2618 if (analyzer.IsIntrinsicConcat()) { 2619 analyzer.CheckForNullPointer(); 2620 return std::visit( 2621 [&](auto &&x, auto &&y) -> MaybeExpr { 2622 using T = ResultType<decltype(x)>; 2623 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2624 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2625 } else { 2626 DIE("different types for intrinsic concat"); 2627 } 2628 }, 2629 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2630 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2631 } else { 2632 return analyzer.TryDefinedOp("//", 2633 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2634 } 2635 } 2636 return std::nullopt; 2637 } 2638 2639 // The Name represents a user-defined intrinsic operator. 2640 // If the actuals match one of the specific procedures, return a function ref. 2641 // Otherwise report the error in messages. 2642 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2643 const parser::Name &name, ActualArguments &&actuals) { 2644 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2645 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2646 return MakeFunctionRef(name.source, 2647 std::move(std::get<ProcedureDesignator>(callee->u)), 2648 std::move(callee->arguments)); 2649 } else { 2650 return std::nullopt; 2651 } 2652 } 2653 2654 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2655 const parser::Expr::IntrinsicBinary &x) { 2656 ArgumentAnalyzer analyzer{context}; 2657 analyzer.Analyze(std::get<0>(x.t)); 2658 analyzer.Analyze(std::get<1>(x.t)); 2659 if (!analyzer.fatalErrors()) { 2660 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2661 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2662 analyzer.ConvertBOZ(leftType, 0, rightType); 2663 analyzer.ConvertBOZ(rightType, 1, leftType); 2664 if (leftType && rightType && 2665 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2666 analyzer.CheckForNullPointer("as a relational operand"); 2667 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2668 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2669 } else { 2670 return analyzer.TryDefinedOp(opr, 2671 leftType && leftType->category() == TypeCategory::Logical && 2672 rightType && rightType->category() == TypeCategory::Logical 2673 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2674 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2675 } 2676 } 2677 return std::nullopt; 2678 } 2679 2680 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2681 return RelationHelper(*this, RelationalOperator::LT, x); 2682 } 2683 2684 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2685 return RelationHelper(*this, RelationalOperator::LE, x); 2686 } 2687 2688 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2689 return RelationHelper(*this, RelationalOperator::EQ, x); 2690 } 2691 2692 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2693 return RelationHelper(*this, RelationalOperator::NE, x); 2694 } 2695 2696 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2697 return RelationHelper(*this, RelationalOperator::GE, x); 2698 } 2699 2700 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2701 return RelationHelper(*this, RelationalOperator::GT, x); 2702 } 2703 2704 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2705 const parser::Expr::IntrinsicBinary &x) { 2706 ArgumentAnalyzer analyzer{context}; 2707 analyzer.Analyze(std::get<0>(x.t)); 2708 analyzer.Analyze(std::get<1>(x.t)); 2709 if (!analyzer.fatalErrors()) { 2710 if (analyzer.IsIntrinsicLogical()) { 2711 analyzer.CheckForNullPointer("as a logical operand"); 2712 return AsGenericExpr(BinaryLogicalOperation(opr, 2713 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2714 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2715 } else { 2716 return analyzer.TryDefinedOp( 2717 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2718 } 2719 } 2720 return std::nullopt; 2721 } 2722 2723 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2724 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2725 } 2726 2727 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2728 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2729 } 2730 2731 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2732 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2733 } 2734 2735 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2736 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2737 } 2738 2739 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2740 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2741 ArgumentAnalyzer analyzer{*this, name.source}; 2742 analyzer.Analyze(std::get<1>(x.t)); 2743 analyzer.Analyze(std::get<2>(x.t)); 2744 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2745 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2746 } 2747 2748 static void CheckFuncRefToArrayElementRefHasSubscripts( 2749 semantics::SemanticsContext &context, 2750 const parser::FunctionReference &funcRef) { 2751 // Emit message if the function reference fix will end up an array element 2752 // reference with no subscripts because it will not be possible to later tell 2753 // the difference in expressions between empty subscript list due to bad 2754 // subscripts error recovery or because the user did not put any. 2755 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2756 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2757 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2758 if (!name) { 2759 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2760 } 2761 auto &msg{context.Say(funcRef.v.source, 2762 name->symbol && name->symbol->Rank() == 0 2763 ? "'%s' is not a function"_err_en_US 2764 : "Reference to array '%s' with empty subscript list"_err_en_US, 2765 name->source)}; 2766 if (name->symbol) { 2767 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2768 msg.Attach(name->source, 2769 "A result variable must be declared with RESULT to allow recursive " 2770 "function calls"_en_US); 2771 } else { 2772 AttachDeclaration(&msg, *name->symbol); 2773 } 2774 } 2775 } 2776 } 2777 2778 // Converts, if appropriate, an original misparse of ambiguous syntax like 2779 // A(1) as a function reference into an array reference. 2780 // Misparsed structure constructors are detected elsewhere after generic 2781 // function call resolution fails. 2782 template <typename... A> 2783 static void FixMisparsedFunctionReference( 2784 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2785 // The parse tree is updated in situ when resolving an ambiguous parse. 2786 using uType = std::decay_t<decltype(constU)>; 2787 auto &u{const_cast<uType &>(constU)}; 2788 if (auto *func{ 2789 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2790 parser::FunctionReference &funcRef{func->value()}; 2791 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2792 if (Symbol * 2793 origSymbol{ 2794 std::visit(common::visitors{ 2795 [&](parser::Name &name) { return name.symbol; }, 2796 [&](parser::ProcComponentRef &pcr) { 2797 return pcr.v.thing.component.symbol; 2798 }, 2799 }, 2800 proc.u)}) { 2801 Symbol &symbol{origSymbol->GetUltimate()}; 2802 if (symbol.has<semantics::ObjectEntityDetails>() || 2803 symbol.has<semantics::AssocEntityDetails>()) { 2804 // Note that expression in AssocEntityDetails cannot be a procedure 2805 // pointer as per C1105 so this cannot be a function reference. 2806 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2807 uType>) { 2808 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2809 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2810 } else { 2811 DIE("can't fix misparsed function as array reference"); 2812 } 2813 } 2814 } 2815 } 2816 } 2817 2818 // Common handling of parse tree node types that retain the 2819 // representation of the analyzed expression. 2820 template <typename PARSED> 2821 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2822 const PARSED &x, parser::CharBlock source) { 2823 if (useSavedTypedExprs_ && x.typedExpr) { 2824 return x.typedExpr->v; 2825 } 2826 auto restorer{GetContextualMessages().SetLocation(source)}; 2827 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2828 std::is_same_v<PARSED, parser::Variable>) { 2829 FixMisparsedFunctionReference(context_, x.u); 2830 } 2831 if (AssumedTypeDummy(x)) { // C710 2832 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2833 ResetExpr(x); 2834 return std::nullopt; 2835 } 2836 MaybeExpr result; 2837 if constexpr (common::HasMember<parser::StructureConstructor, 2838 std::decay_t<decltype(x.u)>> && 2839 common::HasMember<common::Indirection<parser::FunctionReference>, 2840 std::decay_t<decltype(x.u)>>) { 2841 if (const auto *funcRef{ 2842 std::get_if<common::Indirection<parser::FunctionReference>>( 2843 &x.u)}) { 2844 // Function references in Exprs might turn out to be misparsed structure 2845 // constructors; we have to try generic procedure resolution 2846 // first to be sure. 2847 std::optional<parser::StructureConstructor> ctor; 2848 result = Analyze(funcRef->value(), &ctor); 2849 if (result && ctor) { 2850 // A misparsed function reference is really a structure 2851 // constructor. Repair the parse tree in situ. 2852 const_cast<PARSED &>(x).u = std::move(*ctor); 2853 } 2854 } else { 2855 result = Analyze(x.u); 2856 } 2857 } else { 2858 result = Analyze(x.u); 2859 } 2860 if (result) { 2861 SetExpr(x, Fold(std::move(*result))); 2862 return x.typedExpr->v; 2863 } else { 2864 ResetExpr(x); 2865 if (!context_.AnyFatalError()) { 2866 std::string buf; 2867 llvm::raw_string_ostream dump{buf}; 2868 parser::DumpTree(dump, x); 2869 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2870 dump.str()); 2871 } 2872 return std::nullopt; 2873 } 2874 } 2875 2876 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2877 return ExprOrVariable(expr, expr.source); 2878 } 2879 2880 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2881 return ExprOrVariable(variable, variable.GetSource()); 2882 } 2883 2884 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 2885 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 2886 if (!useSavedTypedExprs_ || !var->typedExpr) { 2887 parser::CharBlock source{var->GetSource()}; 2888 auto restorer{GetContextualMessages().SetLocation(source)}; 2889 FixMisparsedFunctionReference(context_, var->u); 2890 if (const auto *funcRef{ 2891 std::get_if<common::Indirection<parser::FunctionReference>>( 2892 &var->u)}) { 2893 // A Selector that parsed as a Variable might turn out during analysis 2894 // to actually be a structure constructor. In that case, repair the 2895 // Variable parse tree node into an Expr 2896 std::optional<parser::StructureConstructor> ctor; 2897 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 2898 if (ctor) { 2899 auto &writable{const_cast<parser::Selector &>(selector)}; 2900 writable.u = parser::Expr{std::move(*ctor)}; 2901 auto &expr{std::get<parser::Expr>(writable.u)}; 2902 expr.source = source; 2903 SetExpr(expr, Fold(std::move(*result))); 2904 return expr.typedExpr->v; 2905 } else { 2906 SetExpr(*var, Fold(std::move(*result))); 2907 return var->typedExpr->v; 2908 } 2909 } else { 2910 ResetExpr(*var); 2911 if (context_.AnyFatalError()) { 2912 return std::nullopt; 2913 } 2914 } 2915 } 2916 } 2917 } 2918 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 2919 return Analyze(selector.u); 2920 } 2921 2922 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2923 return ExprOrVariable(x, x.source); 2924 } 2925 2926 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 2927 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2928 } 2929 2930 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 2931 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2932 } 2933 2934 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2935 TypeCategory category, 2936 const std::optional<parser::KindSelector> &selector) { 2937 int defaultKind{GetDefaultKind(category)}; 2938 if (!selector) { 2939 return Expr<SubscriptInteger>{defaultKind}; 2940 } 2941 return std::visit( 2942 common::visitors{ 2943 [&](const parser::ScalarIntConstantExpr &x) { 2944 if (MaybeExpr kind{Analyze(x)}) { 2945 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 2946 if (CheckIntrinsicKind(category, *code)) { 2947 return Expr<SubscriptInteger>{*code}; 2948 } 2949 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 2950 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2951 } 2952 } 2953 return Expr<SubscriptInteger>{defaultKind}; 2954 }, 2955 [&](const parser::KindSelector::StarSize &x) { 2956 std::intmax_t size = x.v; 2957 if (!CheckIntrinsicSize(category, size)) { 2958 size = defaultKind; 2959 } else if (category == TypeCategory::Complex) { 2960 size /= 2; 2961 } 2962 return Expr<SubscriptInteger>{size}; 2963 }, 2964 }, 2965 selector->u); 2966 } 2967 2968 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2969 return context_.GetDefaultKind(category); 2970 } 2971 2972 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2973 common::TypeCategory category) { 2974 return {category, GetDefaultKind(category)}; 2975 } 2976 2977 bool ExpressionAnalyzer::CheckIntrinsicKind( 2978 TypeCategory category, std::int64_t kind) { 2979 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2980 return true; 2981 } else { 2982 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2983 ToUpperCase(EnumToString(category)), kind); 2984 return false; 2985 } 2986 } 2987 2988 bool ExpressionAnalyzer::CheckIntrinsicSize( 2989 TypeCategory category, std::int64_t size) { 2990 if (category == TypeCategory::Complex) { 2991 // COMPLEX*16 == COMPLEX(KIND=8) 2992 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2993 return true; 2994 } 2995 } else if (IsValidKindOfIntrinsicType(category, size)) { 2996 return true; 2997 } 2998 Say("%s*%jd is not a supported type"_err_en_US, 2999 ToUpperCase(EnumToString(category)), size); 3000 return false; 3001 } 3002 3003 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3004 return impliedDos_.insert(std::make_pair(name, kind)).second; 3005 } 3006 3007 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3008 auto iter{impliedDos_.find(name)}; 3009 if (iter != impliedDos_.end()) { 3010 impliedDos_.erase(iter); 3011 } 3012 } 3013 3014 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3015 parser::CharBlock name) const { 3016 auto iter{impliedDos_.find(name)}; 3017 if (iter != impliedDos_.cend()) { 3018 return {iter->second}; 3019 } else { 3020 return std::nullopt; 3021 } 3022 } 3023 3024 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3025 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3026 if (result) { 3027 if (auto type{result->GetType()}) { 3028 if (type->category() != category) { // C885 3029 Say(at, "Must have %s type, but is %s"_err_en_US, 3030 ToUpperCase(EnumToString(category)), 3031 ToUpperCase(type->AsFortran())); 3032 return false; 3033 } else if (defaultKind) { 3034 int kind{context_.GetDefaultKind(category)}; 3035 if (type->kind() != kind) { 3036 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3037 kind, ToUpperCase(EnumToString(category)), 3038 ToUpperCase(type->AsFortran())); 3039 return false; 3040 } 3041 } 3042 } else { 3043 Say(at, "Must have %s type, but is typeless"_err_en_US, 3044 ToUpperCase(EnumToString(category))); 3045 return false; 3046 } 3047 } 3048 return true; 3049 } 3050 3051 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3052 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3053 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3054 if (intrinsic->name == "null" && arguments.empty()) { 3055 return Expr<SomeType>{NullPointer{}}; 3056 } 3057 } 3058 if (const Symbol * symbol{proc.GetSymbol()}) { 3059 if (!ResolveForward(*symbol)) { 3060 return std::nullopt; 3061 } 3062 } 3063 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3064 if (chars->functionResult) { 3065 const auto &result{*chars->functionResult}; 3066 if (result.IsProcedurePointer()) { 3067 return Expr<SomeType>{ 3068 ProcedureRef{std::move(proc), std::move(arguments)}}; 3069 } else { 3070 // Not a procedure pointer, so type and shape are known. 3071 return TypedWrapper<FunctionRef, ProcedureRef>( 3072 DEREF(result.GetTypeAndShape()).type(), 3073 ProcedureRef{std::move(proc), std::move(arguments)}); 3074 } 3075 } else { 3076 Say("Function result characteristics are not known"_err_en_US); 3077 } 3078 } 3079 return std::nullopt; 3080 } 3081 3082 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3083 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3084 if (std::optional<SpecificCall> specificCall{ 3085 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3086 arguments, context_.foldingContext())}) { 3087 return MakeFunctionRef(intrinsic, 3088 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3089 std::move(specificCall->arguments)); 3090 } else { 3091 return std::nullopt; 3092 } 3093 } 3094 3095 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3096 source_.ExtendToCover(x.GetSource()); 3097 if (MaybeExpr expr{context_.Analyze(x)}) { 3098 if (!IsConstantExpr(*expr)) { 3099 actuals_.emplace_back(std::move(*expr)); 3100 return; 3101 } 3102 const Symbol *symbol{GetLastSymbol(*expr)}; 3103 if (!symbol) { 3104 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3105 x.GetSource()); 3106 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3107 auto *msg{context_.SayAt(x, 3108 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3109 symbol->name())}; 3110 if (subp->isFunction()) { 3111 const auto &result{subp->result().name()}; 3112 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 3113 } 3114 } else { 3115 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3116 symbol->name()); 3117 } 3118 } 3119 fatalErrors_ = true; 3120 } 3121 3122 void ArgumentAnalyzer::Analyze( 3123 const parser::ActualArgSpec &arg, bool isSubroutine) { 3124 // TODO: Actual arguments that are procedures and procedure pointers need to 3125 // be detected and represented (they're not expressions). 3126 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3127 std::optional<ActualArgument> actual; 3128 std::visit(common::visitors{ 3129 [&](const common::Indirection<parser::Expr> &x) { 3130 actual = AnalyzeExpr(x.value()); 3131 }, 3132 [&](const parser::AltReturnSpec &label) { 3133 if (!isSubroutine) { 3134 context_.Say( 3135 "alternate return specification may not appear on" 3136 " function reference"_err_en_US); 3137 } 3138 actual = ActualArgument(label.v); 3139 }, 3140 [&](const parser::ActualArg::PercentRef &) { 3141 context_.Say("TODO: %REF() argument"_err_en_US); 3142 }, 3143 [&](const parser::ActualArg::PercentVal &) { 3144 context_.Say("TODO: %VAL() argument"_err_en_US); 3145 }, 3146 }, 3147 std::get<parser::ActualArg>(arg.t).u); 3148 if (actual) { 3149 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3150 actual->set_keyword(argKW->v.source); 3151 } 3152 actuals_.emplace_back(std::move(*actual)); 3153 } else { 3154 fatalErrors_ = true; 3155 } 3156 } 3157 3158 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3159 const DynamicType &leftType, const DynamicType &rightType) const { 3160 CHECK(actuals_.size() == 2); 3161 return semantics::IsIntrinsicRelational( 3162 opr, leftType, GetRank(0), rightType, GetRank(1)); 3163 } 3164 3165 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3166 std::optional<DynamicType> leftType{GetType(0)}; 3167 if (actuals_.size() == 1) { 3168 if (IsBOZLiteral(0)) { 3169 return opr == NumericOperator::Add; // unary '+' 3170 } else { 3171 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3172 } 3173 } else { 3174 std::optional<DynamicType> rightType{GetType(1)}; 3175 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3176 auto cat1{rightType->category()}; 3177 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3178 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3179 auto cat0{leftType->category()}; 3180 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3181 } else { 3182 return leftType && rightType && 3183 semantics::IsIntrinsicNumeric( 3184 *leftType, GetRank(0), *rightType, GetRank(1)); 3185 } 3186 } 3187 } 3188 3189 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3190 if (std::optional<DynamicType> leftType{GetType(0)}) { 3191 if (actuals_.size() == 1) { 3192 return semantics::IsIntrinsicLogical(*leftType); 3193 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3194 return semantics::IsIntrinsicLogical( 3195 *leftType, GetRank(0), *rightType, GetRank(1)); 3196 } 3197 } 3198 return false; 3199 } 3200 3201 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3202 if (std::optional<DynamicType> leftType{GetType(0)}) { 3203 if (std::optional<DynamicType> rightType{GetType(1)}) { 3204 return semantics::IsIntrinsicConcat( 3205 *leftType, GetRank(0), *rightType, GetRank(1)); 3206 } 3207 } 3208 return false; 3209 } 3210 3211 bool ArgumentAnalyzer::CheckConformance() { 3212 if (actuals_.size() == 2) { 3213 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3214 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3215 if (lhs && rhs) { 3216 auto &foldingContext{context_.GetFoldingContext()}; 3217 auto lhShape{GetShape(foldingContext, *lhs)}; 3218 auto rhShape{GetShape(foldingContext, *rhs)}; 3219 if (lhShape && rhShape) { 3220 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3221 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3222 "left operand", "right operand") 3223 .value_or(false /*fail when conformance is not known now*/)) { 3224 fatalErrors_ = true; 3225 return false; 3226 } 3227 } 3228 } 3229 } 3230 return true; // no proven problem 3231 } 3232 3233 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3234 for (const std::optional<ActualArgument> &arg : actuals_) { 3235 if (arg) { 3236 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3237 if (IsNullPointer(*expr)) { 3238 context_.Say( 3239 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3240 fatalErrors_ = true; 3241 return false; 3242 } 3243 } 3244 } 3245 } 3246 return true; 3247 } 3248 3249 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3250 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3251 bool isUserOp) { 3252 if (!CheckForUntypedNullPointer()) { 3253 return std::nullopt; 3254 } 3255 if (AnyUntypedOrMissingOperand()) { 3256 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3257 return std::nullopt; 3258 } 3259 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3260 if (!definedOpSymbolPtr) { 3261 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3262 } 3263 { 3264 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3265 std::string oprNameString{ 3266 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3267 parser::CharBlock oprName{oprNameString}; 3268 const auto &scope{context_.context().FindScope(source_)}; 3269 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3270 *definedOpSymbolPtr = symbol; 3271 parser::Name name{symbol->name(), symbol}; 3272 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3273 return result; 3274 } 3275 } 3276 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3277 if (const Symbol * 3278 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3279 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3280 return result; 3281 } 3282 } 3283 } 3284 } 3285 if (*definedOpSymbolPtr) { 3286 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3287 } else if (actuals_.size() == 1 || AreConformable()) { 3288 if (CheckForNullPointer()) { 3289 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3290 } 3291 } else { 3292 context_.Say( 3293 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3294 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3295 } 3296 return std::nullopt; 3297 } 3298 3299 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3300 std::vector<const char *> oprs, parser::MessageFixedText error) { 3301 const Symbol *definedOpSymbolPtr{nullptr}; 3302 for (std::size_t i{1}; i < oprs.size(); ++i) { 3303 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3304 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3305 return result; 3306 } 3307 } 3308 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3309 } 3310 3311 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3312 ActualArguments localActuals{actuals_}; 3313 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3314 if (!proc) { 3315 proc = &symbol; 3316 localActuals.at(passIndex).value().set_isPassedObject(); 3317 } 3318 CheckConformance(); 3319 return context_.MakeFunctionRef( 3320 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3321 } 3322 3323 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3324 using semantics::Tristate; 3325 const Expr<SomeType> &lhs{GetExpr(0)}; 3326 const Expr<SomeType> &rhs{GetExpr(1)}; 3327 std::optional<DynamicType> lhsType{lhs.GetType()}; 3328 std::optional<DynamicType> rhsType{rhs.GetType()}; 3329 int lhsRank{lhs.Rank()}; 3330 int rhsRank{rhs.Rank()}; 3331 Tristate isDefined{ 3332 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3333 if (isDefined == Tristate::No) { 3334 if (lhsType && rhsType) { 3335 AddAssignmentConversion(*lhsType, *rhsType); 3336 } 3337 return std::nullopt; // user-defined assignment not allowed for these args 3338 } 3339 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3340 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3341 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3342 return std::move(*procRef); 3343 } 3344 if (isDefined == Tristate::Yes) { 3345 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3346 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3347 SayNoMatch("ASSIGNMENT(=)", true); 3348 } 3349 } 3350 return std::nullopt; 3351 } 3352 3353 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3354 TypeCategory lhs, TypeCategory rhs) { 3355 if (!context_.context().languageFeatures().IsEnabled( 3356 common::LanguageFeature::LogicalIntegerAssignment)) { 3357 return false; 3358 } 3359 std::optional<parser::MessageFixedText> msg; 3360 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3361 // allow assignment to LOGICAL from INTEGER as a legacy extension 3362 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 3363 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3364 // ... and assignment to LOGICAL from INTEGER 3365 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 3366 } else { 3367 return false; 3368 } 3369 if (context_.context().languageFeatures().ShouldWarn( 3370 common::LanguageFeature::LogicalIntegerAssignment)) { 3371 context_.Say(std::move(*msg)); 3372 } 3373 return true; 3374 } 3375 3376 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3377 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3378 std::string oprNameString{"assignment(=)"}; 3379 parser::CharBlock oprName{oprNameString}; 3380 const Symbol *proc{nullptr}; 3381 const auto &scope{context_.context().FindScope(source_)}; 3382 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3383 ExpressionAnalyzer::AdjustActuals noAdjustment; 3384 if (const Symbol * 3385 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 3386 proc = specific; 3387 } else { 3388 context_.EmitGenericResolutionError(*symbol); 3389 } 3390 } 3391 int passedObjectIndex{-1}; 3392 const Symbol *definedOpSymbol{nullptr}; 3393 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3394 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3395 if (const Symbol * 3396 resolution{GetBindingResolution(GetType(i), *specific)}) { 3397 proc = resolution; 3398 } else { 3399 proc = specific; 3400 passedObjectIndex = i; 3401 } 3402 } 3403 } 3404 if (!proc) { 3405 return std::nullopt; 3406 } 3407 ActualArguments actualsCopy{actuals_}; 3408 if (passedObjectIndex >= 0) { 3409 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3410 } 3411 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3412 } 3413 3414 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3415 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3416 << '\n'; 3417 for (const auto &actual : actuals_) { 3418 if (!actual.has_value()) { 3419 os << "- error\n"; 3420 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3421 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3422 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3423 expr->AsFortran(os << "- expr: ") << '\n'; 3424 } else { 3425 DIE("bad ActualArgument"); 3426 } 3427 } 3428 } 3429 3430 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3431 const parser::Expr &expr) { 3432 source_.ExtendToCover(expr.source); 3433 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3434 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3435 if (isProcedureCall_) { 3436 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 3437 } 3438 context_.SayAt(expr.source, 3439 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3440 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3441 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3442 return ActualArgument{std::move(*argExpr)}; 3443 } 3444 context_.SayAt(expr.source, 3445 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3446 : "Subroutine name is not allowed here"_err_en_US); 3447 } 3448 return std::nullopt; 3449 } 3450 3451 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3452 const parser::Expr &expr) { 3453 // If an expression's parse tree is a whole assumed-size array: 3454 // Expr -> Designator -> DataRef -> Name 3455 // treat it as a special case for argument passing and bypass 3456 // the C1002/C1014 constraint checking in expression semantics. 3457 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3458 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3459 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3460 return context_.Analyze(expr); 3461 } 3462 } 3463 return context_.Analyze(expr); 3464 } 3465 3466 bool ArgumentAnalyzer::AreConformable() const { 3467 CHECK(actuals_.size() == 2); 3468 return actuals_[0] && actuals_[1] && 3469 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3470 } 3471 3472 // Look for a type-bound operator in the type of arg number passIndex. 3473 const Symbol *ArgumentAnalyzer::FindBoundOp( 3474 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3475 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3476 if (!type || !type->scope()) { 3477 return nullptr; 3478 } 3479 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3480 if (!symbol) { 3481 return nullptr; 3482 } 3483 definedOp = symbol; 3484 ExpressionAnalyzer::AdjustActuals adjustment{ 3485 [&](const Symbol &proc, ActualArguments &) { 3486 return passIndex == GetPassIndex(proc); 3487 }}; 3488 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3489 if (!result) { 3490 context_.EmitGenericResolutionError(*symbol); 3491 } 3492 return result; 3493 } 3494 3495 // If there is an implicit conversion between intrinsic types, make it explicit 3496 void ArgumentAnalyzer::AddAssignmentConversion( 3497 const DynamicType &lhsType, const DynamicType &rhsType) { 3498 if (lhsType.category() == rhsType.category() && 3499 lhsType.kind() == rhsType.kind()) { 3500 // no conversion necessary 3501 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3502 actuals_[1] = ActualArgument{*rhsExpr}; 3503 } else { 3504 actuals_[1] = std::nullopt; 3505 } 3506 } 3507 3508 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3509 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3510 } 3511 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3512 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3513 } 3514 3515 // If the argument at index i is a BOZ literal, convert its type to match the 3516 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3517 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3518 // is not currently supported. 3519 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3520 std::size_t i, std::optional<DynamicType> otherType) { 3521 if (IsBOZLiteral(i)) { 3522 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3523 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3524 if (otherType && otherType->category() == TypeCategory::Real) { 3525 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3526 MaybeExpr realExpr{ 3527 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3528 actuals_[i] = std::move(*realExpr); 3529 thisType.emplace(TypeCategory::Real, kind); 3530 } else { 3531 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3532 MaybeExpr intExpr{ 3533 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3534 actuals_[i] = std::move(*intExpr); 3535 thisType.emplace(TypeCategory::Integer, kind); 3536 } 3537 } 3538 } 3539 3540 // Report error resolving opr when there is a user-defined one available 3541 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3542 std::string type0{TypeAsFortran(0)}; 3543 auto rank0{actuals_[0]->Rank()}; 3544 if (actuals_.size() == 1) { 3545 if (rank0 > 0) { 3546 context_.Say("No intrinsic or user-defined %s matches " 3547 "rank %d array of %s"_err_en_US, 3548 opr, rank0, type0); 3549 } else { 3550 context_.Say("No intrinsic or user-defined %s matches " 3551 "operand type %s"_err_en_US, 3552 opr, type0); 3553 } 3554 } else { 3555 std::string type1{TypeAsFortran(1)}; 3556 auto rank1{actuals_[1]->Rank()}; 3557 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3558 context_.Say("No intrinsic or user-defined %s matches " 3559 "rank %d array of %s and rank %d array of %s"_err_en_US, 3560 opr, rank0, type0, rank1, type1); 3561 } else if (isAssignment && rank0 != rank1) { 3562 if (rank0 == 0) { 3563 context_.Say("No intrinsic or user-defined %s matches " 3564 "scalar %s and rank %d array of %s"_err_en_US, 3565 opr, type0, rank1, type1); 3566 } else { 3567 context_.Say("No intrinsic or user-defined %s matches " 3568 "rank %d array of %s and scalar %s"_err_en_US, 3569 opr, rank0, type0, type1); 3570 } 3571 } else { 3572 context_.Say("No intrinsic or user-defined %s matches " 3573 "operand types %s and %s"_err_en_US, 3574 opr, type0, type1); 3575 } 3576 } 3577 } 3578 3579 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3580 if (i >= actuals_.size() || !actuals_[i]) { 3581 return "missing argument"; 3582 } else if (std::optional<DynamicType> type{GetType(i)}) { 3583 return type->category() == TypeCategory::Derived 3584 ? "TYPE("s + type->AsFortran() + ')' 3585 : type->category() == TypeCategory::Character 3586 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3587 : ToUpperCase(type->AsFortran()); 3588 } else { 3589 return "untyped"; 3590 } 3591 } 3592 3593 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3594 for (const auto &actual : actuals_) { 3595 if (!actual || !actual->GetType()) { 3596 return true; 3597 } 3598 } 3599 return false; 3600 } 3601 3602 bool ArgumentAnalyzer::CheckForUntypedNullPointer() { 3603 for (const std::optional<ActualArgument> &arg : actuals_) { 3604 if (arg) { 3605 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3606 if (std::holds_alternative<NullPointer>(expr->u)) { 3607 context_.Say(source_, 3608 "A typeless NULL() pointer is not allowed as an operand"_err_en_US); 3609 fatalErrors_ = true; 3610 return false; 3611 } 3612 } 3613 } 3614 } 3615 return true; 3616 } 3617 3618 } // namespace Fortran::evaluate 3619 3620 namespace Fortran::semantics { 3621 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3622 SemanticsContext &context, common::TypeCategory category, 3623 const std::optional<parser::KindSelector> &selector) { 3624 evaluate::ExpressionAnalyzer analyzer{context}; 3625 auto restorer{ 3626 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3627 return analyzer.AnalyzeKindSelector(category, selector); 3628 } 3629 3630 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3631 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3632 } 3633 3634 const evaluate::Assignment *AnalyzeAssignmentStmt( 3635 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3636 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3637 } 3638 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3639 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3640 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3641 } 3642 3643 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3644 3645 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3646 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3647 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3648 auto name{bounds.name.thing.thing}; 3649 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3650 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3651 if (dynamicType->category() == TypeCategory::Integer) { 3652 kind = dynamicType->kind(); 3653 } 3654 } 3655 exprAnalyzer_.AddImpliedDo(name.source, kind); 3656 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3657 exprAnalyzer_.RemoveImpliedDo(name.source); 3658 return false; 3659 } 3660 3661 bool ExprChecker::Walk(const parser::Program &program) { 3662 parser::Walk(program, *this); 3663 return !context_.AnyFatalError(); 3664 } 3665 } // namespace Fortran::semantics 3666