1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } else { 59 return GetCharLength(); 60 } 61 } 62 63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 64 const std::optional<parser::TypeSpec> &spec) { 65 if (spec) { 66 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 67 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 68 // (viz., an intrinsic type with valid known kind or a non-polymorphic 69 // & non-ABSTRACT derived type). 70 if (const semantics::IntrinsicTypeSpec * 71 intrinsic{typeSpec->AsIntrinsic()}) { 72 TypeCategory category{intrinsic->category()}; 73 if (auto optKind{ToInt64(intrinsic->kind())}) { 74 int kind{static_cast<int>(*optKind)}; 75 if (category == TypeCategory::Character) { 76 const semantics::CharacterTypeSpec &cts{ 77 typeSpec->characterTypeSpec()}; 78 const semantics::ParamValue &len{cts.length()}; 79 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 80 // type guards, but not in array constructors. 81 return DynamicTypeWithLength{DynamicType{kind, len}}; 82 } else { 83 return DynamicTypeWithLength{DynamicType{category, kind}}; 84 } 85 } 86 } else if (const semantics::DerivedTypeSpec * 87 derived{typeSpec->AsDerived()}) { 88 return DynamicTypeWithLength{DynamicType{*derived}}; 89 } 90 } 91 } 92 return std::nullopt; 93 } 94 95 class ArgumentAnalyzer { 96 public: 97 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 98 : context_{context}, source_{context.GetContextualMessages().at()}, 99 isProcedureCall_{false} {} 100 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 101 bool isProcedureCall = false) 102 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 103 bool fatalErrors() const { return fatalErrors_; } 104 ActualArguments &&GetActuals() { 105 CHECK(!fatalErrors_); 106 return std::move(actuals_); 107 } 108 const Expr<SomeType> &GetExpr(std::size_t i) const { 109 return DEREF(actuals_.at(i).value().UnwrapExpr()); 110 } 111 Expr<SomeType> &&MoveExpr(std::size_t i) { 112 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 113 } 114 void Analyze(const common::Indirection<parser::Expr> &x) { 115 Analyze(x.value()); 116 } 117 void Analyze(const parser::Expr &x) { 118 actuals_.emplace_back(AnalyzeExpr(x)); 119 fatalErrors_ |= !actuals_.back(); 120 } 121 void Analyze(const parser::Variable &); 122 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 123 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 124 std::optional<DynamicType> otherType); 125 126 bool IsIntrinsicRelational( 127 RelationalOperator, const DynamicType &, const DynamicType &) const; 128 bool IsIntrinsicLogical() const; 129 bool IsIntrinsicNumeric(NumericOperator) const; 130 bool IsIntrinsicConcat() const; 131 132 bool CheckConformance(); 133 bool CheckForNullPointer(const char *where = "as an operand here"); 134 135 // Find and return a user-defined operator or report an error. 136 // The provided message is used if there is no such operator. 137 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 138 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 139 template <typename E> 140 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 141 return TryDefinedOp( 142 context_.context().languageFeatures().GetNames(opr), msg); 143 } 144 // Find and return a user-defined assignment 145 std::optional<ProcedureRef> TryDefinedAssignment(); 146 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 147 std::optional<DynamicType> GetType(std::size_t) const; 148 void Dump(llvm::raw_ostream &); 149 150 private: 151 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 152 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 153 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 154 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 155 bool AreConformable() const; 156 const Symbol *FindBoundOp( 157 parser::CharBlock, int passIndex, const Symbol *&definedOp); 158 void AddAssignmentConversion( 159 const DynamicType &lhsType, const DynamicType &rhsType); 160 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 161 int GetRank(std::size_t) const; 162 bool IsBOZLiteral(std::size_t i) const { 163 return evaluate::IsBOZLiteral(GetExpr(i)); 164 } 165 void SayNoMatch(const std::string &, bool isAssignment = false); 166 std::string TypeAsFortran(std::size_t); 167 bool AnyUntypedOrMissingOperand(); 168 169 ExpressionAnalyzer &context_; 170 ActualArguments actuals_; 171 parser::CharBlock source_; 172 bool fatalErrors_{false}; 173 const bool isProcedureCall_; // false for user-defined op or assignment 174 }; 175 176 // Wraps a data reference in a typed Designator<>, and a procedure 177 // or procedure pointer reference in a ProcedureDesignator. 178 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 179 const Symbol &last{ref.GetLastSymbol()}; 180 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 181 if (semantics::IsProcedure(symbol)) { 182 if (auto *component{std::get_if<Component>(&ref.u)}) { 183 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 184 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 185 DIE("unexpected alternative in DataRef"); 186 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 187 if (symbol.has<semantics::GenericDetails>()) { 188 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 189 } else { 190 return Expr<SomeType>{ProcedureDesignator{symbol}}; 191 } 192 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 193 symbol.name().ToString())}; 194 interface && !interface->isRestrictedSpecific) { 195 SpecificIntrinsic intrinsic{ 196 symbol.name().ToString(), std::move(*interface)}; 197 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 198 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 199 } else { 200 Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, 201 symbol.name()); 202 } 203 return std::nullopt; 204 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 205 return result; 206 } else { 207 if (!context_.HasError(last) && !context_.HasError(symbol)) { 208 AttachDeclaration( 209 Say("'%s' is not an object that can appear in an expression"_err_en_US, 210 last.name()), 211 symbol); 212 context_.SetError(last); 213 } 214 return std::nullopt; 215 } 216 } 217 218 // Some subscript semantic checks must be deferred until all of the 219 // subscripts are in hand. 220 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 221 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 222 int symbolRank{symbol.Rank()}; 223 int subscripts{static_cast<int>(ref.size())}; 224 if (subscripts == 0) { 225 return std::nullopt; // error recovery 226 } else if (subscripts != symbolRank) { 227 if (symbolRank != 0) { 228 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 229 symbolRank, symbol.name(), subscripts); 230 } 231 return std::nullopt; 232 } else if (Component * component{ref.base().UnwrapComponent()}) { 233 int baseRank{component->base().Rank()}; 234 if (baseRank > 0) { 235 int subscriptRank{0}; 236 for (const auto &expr : ref.subscript()) { 237 subscriptRank += expr.Rank(); 238 } 239 if (subscriptRank > 0) { // C919a 240 Say("Subscripts of component '%s' of rank-%d derived type " 241 "array have rank %d but must all be scalar"_err_en_US, 242 symbol.name(), baseRank, subscriptRank); 243 return std::nullopt; 244 } 245 } 246 } else if (const auto *object{ 247 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 248 // C928 & C1002 249 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 250 if (!last->upper() && object->IsAssumedSize()) { 251 Say("Assumed-size array '%s' must have explicit final " 252 "subscript upper bound value"_err_en_US, 253 symbol.name()); 254 return std::nullopt; 255 } 256 } 257 } else { 258 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 259 // which, if not an object, must be a construct entity from 260 // SELECT TYPE/RANK or ASSOCIATE. 261 CHECK(symbol.has<semantics::AssocEntityDetails>()); 262 } 263 return Designate(DataRef{std::move(ref)}); 264 } 265 266 // Applies subscripts to a data reference. 267 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 268 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 269 if (subscripts.empty()) { 270 return std::nullopt; // error recovery 271 } 272 return std::visit( 273 common::visitors{ 274 [&](SymbolRef &&symbol) { 275 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 276 }, 277 [&](Component &&c) { 278 return CompleteSubscripts( 279 ArrayRef{std::move(c), std::move(subscripts)}); 280 }, 281 [&](auto &&) -> MaybeExpr { 282 DIE("bad base for ArrayRef"); 283 return std::nullopt; 284 }, 285 }, 286 std::move(dataRef.u)); 287 } 288 289 // Top-level checks for data references. 290 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 291 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 292 const Symbol &symbol{component->GetLastSymbol()}; 293 int componentRank{symbol.Rank()}; 294 if (componentRank > 0) { 295 int baseRank{component->base().Rank()}; 296 if (baseRank > 0) { // C919a 297 Say("Reference to whole rank-%d component '%%%s' of " 298 "rank-%d array of derived type is not allowed"_err_en_US, 299 componentRank, symbol.name(), baseRank); 300 } 301 } 302 } 303 return Designate(std::move(dataRef)); 304 } 305 306 // Parse tree correction after a substring S(j:k) was misparsed as an 307 // array section. N.B. Fortran substrings have to have a range, not a 308 // single index. 309 static void FixMisparsedSubstring(const parser::Designator &d) { 310 auto &mutate{const_cast<parser::Designator &>(d)}; 311 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 312 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 313 &dataRef->u)}) { 314 parser::ArrayElement &arrElement{ae->value()}; 315 if (!arrElement.subscripts.empty()) { 316 auto iter{arrElement.subscripts.begin()}; 317 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 318 if (!std::get<2>(triplet->t) /* no stride */ && 319 ++iter == arrElement.subscripts.end() /* one subscript */) { 320 if (Symbol * 321 symbol{std::visit( 322 common::visitors{ 323 [](parser::Name &n) { return n.symbol; }, 324 [](common::Indirection<parser::StructureComponent> 325 &sc) { return sc.value().component.symbol; }, 326 [](auto &) -> Symbol * { return nullptr; }, 327 }, 328 arrElement.base.u)}) { 329 const Symbol &ultimate{symbol->GetUltimate()}; 330 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 331 if (!ultimate.IsObjectArray() && 332 type->category() == semantics::DeclTypeSpec::Character) { 333 // The ambiguous S(j:k) was parsed as an array section 334 // reference, but it's now clear that it's a substring. 335 // Fix the parse tree in situ. 336 mutate.u = arrElement.ConvertToSubstring(); 337 } 338 } 339 } 340 } 341 } 342 } 343 } 344 } 345 } 346 347 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 348 auto restorer{GetContextualMessages().SetLocation(d.source)}; 349 FixMisparsedSubstring(d); 350 // These checks have to be deferred to these "top level" data-refs where 351 // we can be sure that there are no following subscripts (yet). 352 // Substrings have already been run through TopLevelChecks() and 353 // won't be returned by ExtractDataRef(). 354 if (MaybeExpr result{Analyze(d.u)}) { 355 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 356 return TopLevelChecks(std::move(*dataRef)); 357 } 358 return result; 359 } 360 return std::nullopt; 361 } 362 363 // A utility subroutine to repackage optional expressions of various levels 364 // of type specificity as fully general MaybeExpr values. 365 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 366 return AsGenericExpr(std::move(x)); 367 } 368 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 369 if (x) { 370 return AsMaybeExpr(std::move(*x)); 371 } 372 return std::nullopt; 373 } 374 375 // Type kind parameter values for literal constants. 376 int ExpressionAnalyzer::AnalyzeKindParam( 377 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 378 if (!kindParam) { 379 return defaultKind; 380 } 381 return std::visit( 382 common::visitors{ 383 [](std::uint64_t k) { return static_cast<int>(k); }, 384 [&](const parser::Scalar< 385 parser::Integer<parser::Constant<parser::Name>>> &n) { 386 if (MaybeExpr ie{Analyze(n)}) { 387 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 388 int iv = *i64; 389 if (iv == *i64) { 390 return iv; 391 } 392 } 393 } 394 return defaultKind; 395 }, 396 }, 397 kindParam->u); 398 } 399 400 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 401 struct IntTypeVisitor { 402 using Result = MaybeExpr; 403 using Types = IntegerTypes; 404 template <typename T> Result Test() { 405 if (T::kind >= kind) { 406 const char *p{digits.begin()}; 407 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 408 if (!value.overflow) { 409 if (T::kind > kind) { 410 if (!isDefaultKind || 411 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 412 return std::nullopt; 413 } else if (analyzer.context().ShouldWarn( 414 LanguageFeature::BigIntLiterals)) { 415 analyzer.Say(digits, 416 "Integer literal is too large for default INTEGER(KIND=%d); " 417 "assuming INTEGER(KIND=%d)"_en_US, 418 kind, T::kind); 419 } 420 } 421 return Expr<SomeType>{ 422 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 423 } 424 } 425 return std::nullopt; 426 } 427 ExpressionAnalyzer &analyzer; 428 parser::CharBlock digits; 429 int kind; 430 bool isDefaultKind; 431 }; 432 433 template <typename PARSED> 434 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 435 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 436 bool isDefaultKind{!kindParam}; 437 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 438 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 439 auto digits{std::get<parser::CharBlock>(x.t)}; 440 if (MaybeExpr result{common::SearchTypes( 441 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 442 return result; 443 } else if (isDefaultKind) { 444 Say(digits, 445 "Integer literal is too large for any allowable " 446 "kind of INTEGER"_err_en_US); 447 } else { 448 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 449 kind); 450 } 451 } 452 return std::nullopt; 453 } 454 455 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 456 auto restorer{ 457 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 458 return IntLiteralConstant(x); 459 } 460 461 MaybeExpr ExpressionAnalyzer::Analyze( 462 const parser::SignedIntLiteralConstant &x) { 463 auto restorer{GetContextualMessages().SetLocation(x.source)}; 464 return IntLiteralConstant(x); 465 } 466 467 template <typename TYPE> 468 Constant<TYPE> ReadRealLiteral( 469 parser::CharBlock source, FoldingContext &context) { 470 const char *p{source.begin()}; 471 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 472 CHECK(p == source.end()); 473 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 474 auto value{valWithFlags.value}; 475 if (context.flushSubnormalsToZero()) { 476 value = value.FlushSubnormalToZero(); 477 } 478 return {value}; 479 } 480 481 struct RealTypeVisitor { 482 using Result = std::optional<Expr<SomeReal>>; 483 using Types = RealTypes; 484 485 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 486 : kind{k}, literal{lit}, context{ctx} {} 487 488 template <typename T> Result Test() { 489 if (kind == T::kind) { 490 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 491 } 492 return std::nullopt; 493 } 494 495 int kind; 496 parser::CharBlock literal; 497 FoldingContext &context; 498 }; 499 500 // Reads a real literal constant and encodes it with the right kind. 501 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 502 // Use a local message context around the real literal for better 503 // provenance on any messages. 504 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 505 // If a kind parameter appears, it defines the kind of the literal and the 506 // letter used in an exponent part must be 'E' (e.g., the 'E' in 507 // "6.02214E+23"). In the absence of an explicit kind parameter, any 508 // exponent letter determines the kind. Otherwise, defaults apply. 509 auto &defaults{context_.defaultKinds()}; 510 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 511 const char *end{x.real.source.end()}; 512 char expoLetter{' '}; 513 std::optional<int> letterKind; 514 for (const char *p{x.real.source.begin()}; p < end; ++p) { 515 if (parser::IsLetter(*p)) { 516 expoLetter = *p; 517 switch (expoLetter) { 518 case 'e': 519 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 520 break; 521 case 'd': 522 letterKind = defaults.doublePrecisionKind(); 523 break; 524 case 'q': 525 letterKind = defaults.quadPrecisionKind(); 526 break; 527 default: 528 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 529 } 530 break; 531 } 532 } 533 if (letterKind) { 534 defaultKind = *letterKind; 535 } 536 // C716 requires 'E' as an exponent, but this is more useful 537 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 538 if (letterKind && kind != *letterKind && expoLetter != 'e') { 539 Say("Explicit kind parameter on real constant disagrees with " 540 "exponent letter '%c'"_en_US, 541 expoLetter); 542 } 543 auto result{common::SearchTypes( 544 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 545 if (!result) { // C717 546 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 547 } 548 return AsMaybeExpr(std::move(result)); 549 } 550 551 MaybeExpr ExpressionAnalyzer::Analyze( 552 const parser::SignedRealLiteralConstant &x) { 553 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 554 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 555 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 556 if (sign == parser::Sign::Negative) { 557 return AsGenericExpr(-std::move(realExpr)); 558 } 559 } 560 return result; 561 } 562 return std::nullopt; 563 } 564 565 MaybeExpr ExpressionAnalyzer::Analyze( 566 const parser::SignedComplexLiteralConstant &x) { 567 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 568 if (!result) { 569 return std::nullopt; 570 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 571 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 572 } else { 573 return result; 574 } 575 } 576 577 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 578 return Analyze(x.u); 579 } 580 581 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 582 return AsMaybeExpr( 583 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 584 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 585 } 586 587 // CHARACTER literal processing. 588 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 589 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 590 return std::nullopt; 591 } 592 switch (kind) { 593 case 1: 594 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 595 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 596 string, true)}); 597 case 2: 598 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 599 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 600 string, true)}); 601 case 4: 602 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 603 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 604 string, true)}); 605 default: 606 CRASH_NO_CASE; 607 } 608 } 609 610 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 611 int kind{ 612 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 613 auto value{std::get<std::string>(x.t)}; 614 return AnalyzeString(std::move(value), kind); 615 } 616 617 MaybeExpr ExpressionAnalyzer::Analyze( 618 const parser::HollerithLiteralConstant &x) { 619 int kind{GetDefaultKind(TypeCategory::Character)}; 620 auto value{x.v}; 621 return AnalyzeString(std::move(value), kind); 622 } 623 624 // .TRUE. and .FALSE. of various kinds 625 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 626 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 627 GetDefaultKind(TypeCategory::Logical))}; 628 bool value{std::get<bool>(x.t)}; 629 auto result{common::SearchTypes( 630 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 631 kind, std::move(value)})}; 632 if (!result) { 633 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 634 } 635 return result; 636 } 637 638 // BOZ typeless literals 639 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 640 const char *p{x.v.c_str()}; 641 std::uint64_t base{16}; 642 switch (*p++) { 643 case 'b': 644 base = 2; 645 break; 646 case 'o': 647 base = 8; 648 break; 649 case 'z': 650 break; 651 case 'x': 652 break; 653 default: 654 CRASH_NO_CASE; 655 } 656 CHECK(*p == '"'); 657 ++p; 658 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 659 if (*p != '"') { 660 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 661 x.v); // C7107, C7108 662 return std::nullopt; 663 } 664 if (value.overflow) { 665 Say("BOZ literal '%s' too large"_err_en_US, x.v); 666 return std::nullopt; 667 } 668 return AsGenericExpr(std::move(value.value)); 669 } 670 671 // Names and named constants 672 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 673 auto restorer{GetContextualMessages().SetLocation(n.source)}; 674 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 675 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 676 *kind, AsExpr(ImpliedDoIndex{n.source}))); 677 } else if (context_.HasError(n)) { 678 return std::nullopt; 679 } else if (!n.symbol) { 680 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 681 return std::nullopt; 682 } else { 683 const Symbol &ultimate{n.symbol->GetUltimate()}; 684 if (ultimate.has<semantics::TypeParamDetails>()) { 685 // A bare reference to a derived type parameter (within a parameterized 686 // derived type definition) 687 return Fold(ConvertToType( 688 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 689 } else { 690 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 691 if (const semantics::Scope * 692 pure{semantics::FindPureProcedureContaining( 693 context_.FindScope(n.source))}) { 694 SayAt(n, 695 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 696 n.source, DEREF(pure->symbol()).name()); 697 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 698 } 699 } 700 if (!isWholeAssumedSizeArrayOk_ && 701 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 702 AttachDeclaration( 703 SayAt(n, 704 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 705 n.source), 706 *n.symbol); 707 } 708 return Designate(DataRef{*n.symbol}); 709 } 710 } 711 } 712 713 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 714 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 715 if (MaybeExpr value{Analyze(n.v)}) { 716 Expr<SomeType> folded{Fold(std::move(*value))}; 717 if (IsConstantExpr(folded)) { 718 return folded; 719 } 720 Say(n.v.source, "must be a constant"_err_en_US); // C718 721 } 722 return std::nullopt; 723 } 724 725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 726 if (MaybeExpr value{Analyze(n.v)}) { 727 // Subtle: when the NullInit is a DataStmtConstant, it might 728 // be a misparse of a structure constructor without parameters 729 // or components (e.g., T()). Checking the result to ensure 730 // that a "=>" data entity initializer actually resolved to 731 // a null pointer has to be done by the caller. 732 return Fold(std::move(*value)); 733 } 734 return std::nullopt; 735 } 736 737 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 738 return Analyze(x.value()); 739 } 740 741 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 742 if (const auto &repeat{ 743 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 744 x.repetitions = -1; 745 if (MaybeExpr expr{Analyze(repeat->u)}) { 746 Expr<SomeType> folded{Fold(std::move(*expr))}; 747 if (auto value{ToInt64(folded)}) { 748 if (*value >= 0) { // C882 749 x.repetitions = *value; 750 } else { 751 Say(FindSourceLocation(repeat), 752 "Repeat count (%jd) for data value must not be negative"_err_en_US, 753 *value); 754 } 755 } 756 } 757 } 758 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 759 } 760 761 // Substring references 762 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 763 const std::optional<parser::ScalarIntExpr> &bound) { 764 if (bound) { 765 if (MaybeExpr expr{Analyze(*bound)}) { 766 if (expr->Rank() > 1) { 767 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 768 } 769 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 770 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 771 return {std::move(*ssIntExpr)}; 772 } 773 return {Expr<SubscriptInteger>{ 774 Convert<SubscriptInteger, TypeCategory::Integer>{ 775 std::move(*intExpr)}}}; 776 } else { 777 Say("substring bound expression is not INTEGER"_err_en_US); 778 } 779 } 780 } 781 return std::nullopt; 782 } 783 784 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 785 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 786 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 787 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 788 if (std::optional<DataRef> checked{ 789 ExtractDataRef(std::move(*newBaseExpr))}) { 790 const parser::SubstringRange &range{ 791 std::get<parser::SubstringRange>(ss.t)}; 792 std::optional<Expr<SubscriptInteger>> first{ 793 GetSubstringBound(std::get<0>(range.t))}; 794 std::optional<Expr<SubscriptInteger>> last{ 795 GetSubstringBound(std::get<1>(range.t))}; 796 const Symbol &symbol{checked->GetLastSymbol()}; 797 if (std::optional<DynamicType> dynamicType{ 798 DynamicType::From(symbol)}) { 799 if (dynamicType->category() == TypeCategory::Character) { 800 return WrapperHelper<TypeCategory::Character, Designator, 801 Substring>(dynamicType->kind(), 802 Substring{std::move(checked.value()), std::move(first), 803 std::move(last)}); 804 } 805 } 806 Say("substring may apply only to CHARACTER"_err_en_US); 807 } 808 } 809 } 810 } 811 return std::nullopt; 812 } 813 814 // CHARACTER literal substrings 815 MaybeExpr ExpressionAnalyzer::Analyze( 816 const parser::CharLiteralConstantSubstring &x) { 817 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 818 std::optional<Expr<SubscriptInteger>> lower{ 819 GetSubstringBound(std::get<0>(range.t))}; 820 std::optional<Expr<SubscriptInteger>> upper{ 821 GetSubstringBound(std::get<1>(range.t))}; 822 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 823 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 824 Expr<SubscriptInteger> length{ 825 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 826 charExpr->u)}; 827 if (!lower) { 828 lower = Expr<SubscriptInteger>{1}; 829 } 830 if (!upper) { 831 upper = Expr<SubscriptInteger>{ 832 static_cast<std::int64_t>(ToInt64(length).value())}; 833 } 834 return std::visit( 835 [&](auto &&ckExpr) -> MaybeExpr { 836 using Result = ResultType<decltype(ckExpr)>; 837 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 838 CHECK(DEREF(cp).size() == 1); 839 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 840 staticData->set_alignment(Result::kind) 841 .set_itemBytes(Result::kind) 842 .Push(cp->GetScalarValue().value()); 843 Substring substring{std::move(staticData), std::move(lower.value()), 844 std::move(upper.value())}; 845 return AsGenericExpr( 846 Expr<Result>{Designator<Result>{std::move(substring)}}); 847 }, 848 std::move(charExpr->u)); 849 } 850 } 851 return std::nullopt; 852 } 853 854 // Subscripted array references 855 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 856 MaybeExpr &&expr) { 857 if (expr) { 858 if (expr->Rank() > 1) { 859 Say("Subscript expression has rank %d greater than 1"_err_en_US, 860 expr->Rank()); 861 } 862 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 863 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 864 return std::move(*ssIntExpr); 865 } else { 866 return Expr<SubscriptInteger>{ 867 Convert<SubscriptInteger, TypeCategory::Integer>{ 868 std::move(*intExpr)}}; 869 } 870 } else { 871 Say("Subscript expression is not INTEGER"_err_en_US); 872 } 873 } 874 return std::nullopt; 875 } 876 877 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 878 const std::optional<parser::Subscript> &s) { 879 if (s) { 880 return AsSubscript(Analyze(*s)); 881 } else { 882 return std::nullopt; 883 } 884 } 885 886 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 887 const parser::SectionSubscript &ss) { 888 return std::visit( 889 common::visitors{ 890 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 891 const auto &lower{std::get<0>(t.t)}; 892 const auto &upper{std::get<1>(t.t)}; 893 const auto &stride{std::get<2>(t.t)}; 894 auto result{Triplet{ 895 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 896 if ((lower && !result.lower()) || (upper && !result.upper())) { 897 return std::nullopt; 898 } else { 899 return std::make_optional<Subscript>(result); 900 } 901 }, 902 [&](const auto &s) -> std::optional<Subscript> { 903 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 904 return Subscript{std::move(*subscriptExpr)}; 905 } else { 906 return std::nullopt; 907 } 908 }, 909 }, 910 ss.u); 911 } 912 913 // Empty result means an error occurred 914 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 915 const std::list<parser::SectionSubscript> &sss) { 916 bool error{false}; 917 std::vector<Subscript> subscripts; 918 for (const auto &s : sss) { 919 if (auto subscript{AnalyzeSectionSubscript(s)}) { 920 subscripts.emplace_back(std::move(*subscript)); 921 } else { 922 error = true; 923 } 924 } 925 return !error ? subscripts : std::vector<Subscript>{}; 926 } 927 928 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 929 MaybeExpr baseExpr; 930 { 931 auto restorer{AllowWholeAssumedSizeArray()}; 932 baseExpr = Analyze(ae.base); 933 } 934 if (baseExpr) { 935 if (ae.subscripts.empty()) { 936 // will be converted to function call later or error reported 937 } else if (baseExpr->Rank() == 0) { 938 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 939 if (!context_.HasError(symbol)) { 940 if (inDataStmtConstant_) { 941 // Better error for NULL(X) with a MOLD= argument 942 Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US, 943 symbol->name()); 944 } else { 945 Say("'%s' is not an array"_err_en_US, symbol->name()); 946 } 947 context_.SetError(*symbol); 948 } 949 } 950 } else if (std::optional<DataRef> dataRef{ 951 ExtractDataRef(std::move(*baseExpr))}) { 952 return ApplySubscripts( 953 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 954 } else { 955 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 956 } 957 } 958 // error was reported: analyze subscripts without reporting more errors 959 auto restorer{GetContextualMessages().DiscardMessages()}; 960 AnalyzeSectionSubscripts(ae.subscripts); 961 return std::nullopt; 962 } 963 964 // Type parameter inquiries apply to data references, but don't depend 965 // on any trailing (co)subscripts. 966 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 967 return std::visit( 968 common::visitors{ 969 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 970 [](Component &&component) { 971 return NamedEntity{std::move(component)}; 972 }, 973 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 974 [](CoarrayRef &&coarrayRef) { 975 return NamedEntity{coarrayRef.GetLastSymbol()}; 976 }, 977 }, 978 std::move(designator.u)); 979 } 980 981 // Components of parent derived types are explicitly represented as such. 982 std::optional<Component> ExpressionAnalyzer::CreateComponent( 983 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 984 if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b 985 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); 986 } 987 if (&component.owner() == &scope) { 988 return Component{std::move(base), component}; 989 } 990 if (const Symbol * typeSymbol{scope.GetSymbol()}) { 991 if (const Symbol * 992 parentComponent{typeSymbol->GetParentComponent(&scope)}) { 993 if (const auto *object{ 994 parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) { 995 if (const auto *parentType{object->type()}) { 996 if (const semantics::Scope * 997 parentScope{parentType->derivedTypeSpec().scope()}) { 998 return CreateComponent( 999 DataRef{Component{std::move(base), *parentComponent}}, 1000 component, *parentScope); 1001 } 1002 } 1003 } 1004 } 1005 } 1006 return std::nullopt; 1007 } 1008 1009 // Derived type component references and type parameter inquiries 1010 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 1011 MaybeExpr base{Analyze(sc.base)}; 1012 Symbol *sym{sc.component.symbol}; 1013 if (!base || !sym || context_.HasError(sym)) { 1014 return std::nullopt; 1015 } 1016 const auto &name{sc.component.source}; 1017 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1018 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1019 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1020 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1021 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1022 if (dyType->category() == TypeCategory::Integer) { 1023 auto restorer{GetContextualMessages().SetLocation(name)}; 1024 return Fold(ConvertToType(*dyType, 1025 AsGenericExpr(TypeParamInquiry{ 1026 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1027 } 1028 } 1029 Say(name, "Type parameter is not INTEGER"_err_en_US); 1030 } else { 1031 Say(name, 1032 "A type parameter inquiry must be applied to " 1033 "a designator"_err_en_US); 1034 } 1035 } else if (!dtSpec || !dtSpec->scope()) { 1036 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1037 return std::nullopt; 1038 } else if (std::optional<DataRef> dataRef{ 1039 ExtractDataRef(std::move(*dtExpr))}) { 1040 if (auto component{ 1041 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1042 return Designate(DataRef{std::move(*component)}); 1043 } else { 1044 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1045 dtSpec->typeSymbol().name()); 1046 } 1047 } else { 1048 Say(name, 1049 "Base of component reference must be a data reference"_err_en_US); 1050 } 1051 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1052 // special part-ref: %re, %im, %kind, %len 1053 // Type errors are detected and reported in semantics. 1054 using MiscKind = semantics::MiscDetails::Kind; 1055 MiscKind kind{details->kind()}; 1056 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1057 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1058 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1059 Expr<SomeReal> realExpr{std::visit( 1060 [&](const auto &z) { 1061 using PartType = typename ResultType<decltype(z)>::Part; 1062 auto part{kind == MiscKind::ComplexPartRe 1063 ? ComplexPart::Part::RE 1064 : ComplexPart::Part::IM}; 1065 return AsCategoryExpr(Designator<PartType>{ 1066 ComplexPart{std::move(*dataRef), part}}); 1067 }, 1068 zExpr->u)}; 1069 return AsGenericExpr(std::move(realExpr)); 1070 } 1071 } 1072 } else if (kind == MiscKind::KindParamInquiry || 1073 kind == MiscKind::LenParamInquiry) { 1074 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1075 return MakeFunctionRef( 1076 name, ActualArguments{ActualArgument{std::move(*base)}}); 1077 } else { 1078 DIE("unexpected MiscDetails::Kind"); 1079 } 1080 } else { 1081 Say(name, "derived type required before component reference"_err_en_US); 1082 } 1083 return std::nullopt; 1084 } 1085 1086 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1087 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1088 DataRef *dataRef{&*maybeDataRef}; 1089 std::vector<Subscript> subscripts; 1090 SymbolVector reversed; 1091 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1092 subscripts = std::move(aRef->subscript()); 1093 reversed.push_back(aRef->GetLastSymbol()); 1094 if (Component * component{aRef->base().UnwrapComponent()}) { 1095 dataRef = &component->base(); 1096 } else { 1097 dataRef = nullptr; 1098 } 1099 } 1100 if (dataRef) { 1101 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1102 reversed.push_back(component->GetLastSymbol()); 1103 dataRef = &component->base(); 1104 } 1105 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1106 reversed.push_back(*baseSym); 1107 } else { 1108 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1109 } 1110 } 1111 std::vector<Expr<SubscriptInteger>> cosubscripts; 1112 bool cosubsOk{true}; 1113 for (const auto &cosub : 1114 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1115 MaybeExpr coex{Analyze(cosub)}; 1116 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1117 cosubscripts.push_back( 1118 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1119 } else { 1120 cosubsOk = false; 1121 } 1122 } 1123 if (cosubsOk && !reversed.empty()) { 1124 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1125 const Symbol &symbol{reversed.front()}; 1126 if (numCosubscripts != symbol.Corank()) { 1127 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1128 symbol.name(), symbol.Corank(), numCosubscripts); 1129 } 1130 } 1131 for (const auto &imageSelSpec : 1132 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1133 std::visit( 1134 common::visitors{ 1135 [&](const auto &x) { Analyze(x.v); }, 1136 }, 1137 imageSelSpec.u); 1138 } 1139 // Reverse the chain of symbols so that the base is first and coarray 1140 // ultimate component is last. 1141 if (cosubsOk) { 1142 return Designate( 1143 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1144 std::move(subscripts), std::move(cosubscripts)}}); 1145 } 1146 } 1147 return std::nullopt; 1148 } 1149 1150 int ExpressionAnalyzer::IntegerTypeSpecKind( 1151 const parser::IntegerTypeSpec &spec) { 1152 Expr<SubscriptInteger> value{ 1153 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1154 if (auto kind{ToInt64(value)}) { 1155 return static_cast<int>(*kind); 1156 } 1157 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1158 return GetDefaultKind(TypeCategory::Integer); 1159 } 1160 1161 // Array constructors 1162 1163 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1164 // all happen to have the same actual type T into one ArrayConstructor<T>. 1165 template <typename T> 1166 ArrayConstructorValues<T> MakeSpecific( 1167 ArrayConstructorValues<SomeType> &&from) { 1168 ArrayConstructorValues<T> to; 1169 for (ArrayConstructorValue<SomeType> &x : from) { 1170 std::visit( 1171 common::visitors{ 1172 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1173 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1174 to.Push(std::move(DEREF(typed))); 1175 }, 1176 [&](ImpliedDo<SomeType> &&impliedDo) { 1177 to.Push(ImpliedDo<T>{impliedDo.name(), 1178 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1179 std::move(impliedDo.stride()), 1180 MakeSpecific<T>(std::move(impliedDo.values()))}); 1181 }, 1182 }, 1183 std::move(x.u)); 1184 } 1185 return to; 1186 } 1187 1188 class ArrayConstructorContext { 1189 public: 1190 ArrayConstructorContext( 1191 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1192 : exprAnalyzer_{c}, type_{std::move(t)} {} 1193 1194 void Add(const parser::AcValue &); 1195 MaybeExpr ToExpr(); 1196 1197 // These interfaces allow *this to be used as a type visitor argument to 1198 // common::SearchTypes() to convert the array constructor to a typed 1199 // expression in ToExpr(). 1200 using Result = MaybeExpr; 1201 using Types = AllTypes; 1202 template <typename T> Result Test() { 1203 if (type_ && type_->category() == T::category) { 1204 if constexpr (T::category == TypeCategory::Derived) { 1205 if (!type_->IsUnlimitedPolymorphic()) { 1206 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1207 MakeSpecific<T>(std::move(values_))}); 1208 } 1209 } else if (type_->kind() == T::kind) { 1210 if constexpr (T::category == TypeCategory::Character) { 1211 if (auto len{type_->LEN()}) { 1212 return AsMaybeExpr(ArrayConstructor<T>{ 1213 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1214 } 1215 } else { 1216 return AsMaybeExpr( 1217 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1218 } 1219 } 1220 } 1221 return std::nullopt; 1222 } 1223 1224 private: 1225 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1226 1227 void Push(MaybeExpr &&); 1228 void Add(const parser::AcValue::Triplet &); 1229 void Add(const parser::Expr &); 1230 void Add(const parser::AcImpliedDo &); 1231 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1232 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1233 std::int64_t stride); 1234 1235 template <int KIND, typename A> 1236 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1237 const A &x) { 1238 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1239 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1240 return Fold(exprAnalyzer_.GetFoldingContext(), 1241 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1242 std::move(DEREF(intExpr)))); 1243 } 1244 return std::nullopt; 1245 } 1246 1247 // Nested array constructors all reference the same ExpressionAnalyzer, 1248 // which represents the nest of active implied DO loop indices. 1249 ExpressionAnalyzer &exprAnalyzer_; 1250 std::optional<DynamicTypeWithLength> type_; 1251 bool explicitType_{type_.has_value()}; 1252 std::optional<std::int64_t> constantLength_; 1253 ArrayConstructorValues<SomeType> values_; 1254 std::uint64_t messageDisplayedSet_{0}; 1255 }; 1256 1257 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1258 if (!x) { 1259 return; 1260 } 1261 if (!type_) { 1262 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1263 // Treat an array constructor of BOZ as if default integer. 1264 if (exprAnalyzer_.context().ShouldWarn( 1265 common::LanguageFeature::BOZAsDefaultInteger)) { 1266 exprAnalyzer_.Say( 1267 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1268 } 1269 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1270 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1271 std::move(*boz))); 1272 } 1273 } 1274 std::optional<DynamicType> dyType{x->GetType()}; 1275 if (!dyType) { 1276 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1277 if (!type_) { 1278 // Treat an array constructor of BOZ as if default integer. 1279 if (exprAnalyzer_.context().ShouldWarn( 1280 common::LanguageFeature::BOZAsDefaultInteger)) { 1281 exprAnalyzer_.Say( 1282 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1283 } 1284 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1285 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1286 std::move(*boz))); 1287 dyType = x.value().GetType(); 1288 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1289 x = std::move(cast); 1290 dyType = *type_; 1291 } else { 1292 if (!(messageDisplayedSet_ & 0x80)) { 1293 exprAnalyzer_.Say( 1294 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1295 messageDisplayedSet_ |= 0x80; 1296 } 1297 return; 1298 } 1299 } else { // procedure name, &c. 1300 if (!(messageDisplayedSet_ & 0x40)) { 1301 exprAnalyzer_.Say( 1302 "Item is not suitable for use in an array constructor"_err_en_US); 1303 messageDisplayedSet_ |= 0x40; 1304 } 1305 return; 1306 } 1307 } else if (dyType->IsUnlimitedPolymorphic()) { 1308 if (!(messageDisplayedSet_ & 8)) { 1309 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1310 "array constructor"_err_en_US); // C7113 1311 messageDisplayedSet_ |= 8; 1312 } 1313 return; 1314 } 1315 DynamicTypeWithLength xType{dyType.value()}; 1316 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1317 CHECK(xType.category() == TypeCategory::Character); 1318 xType.length = 1319 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1320 } 1321 if (!type_) { 1322 // If there is no explicit type-spec in an array constructor, the type 1323 // of the array is the declared type of all of the elements, which must 1324 // be well-defined and all match. 1325 // TODO: Possible language extension: use the most general type of 1326 // the values as the type of a numeric constructed array, convert all 1327 // of the other values to that type. Alternative: let the first value 1328 // determine the type, and convert the others to that type. 1329 CHECK(!explicitType_); 1330 type_ = std::move(xType); 1331 constantLength_ = ToInt64(type_->length); 1332 values_.Push(std::move(*x)); 1333 } else if (!explicitType_) { 1334 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1335 values_.Push(std::move(*x)); 1336 if (auto thisLen{ToInt64(xType.LEN())}) { 1337 if (constantLength_) { 1338 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1339 *thisLen != *constantLength_) { 1340 if (!(messageDisplayedSet_ & 1)) { 1341 exprAnalyzer_.Say( 1342 "Character literal in array constructor without explicit " 1343 "type has different length than earlier elements"_en_US); 1344 messageDisplayedSet_ |= 1; 1345 } 1346 } 1347 if (*thisLen > *constantLength_) { 1348 // Language extension: use the longest literal to determine the 1349 // length of the array constructor's character elements, not the 1350 // first, when there is no explicit type. 1351 *constantLength_ = *thisLen; 1352 type_->length = xType.LEN(); 1353 } 1354 } else { 1355 constantLength_ = *thisLen; 1356 type_->length = xType.LEN(); 1357 } 1358 } 1359 } else { 1360 if (!(messageDisplayedSet_ & 2)) { 1361 exprAnalyzer_.Say( 1362 "Values in array constructor must have the same declared type " 1363 "when no explicit type appears"_err_en_US); // C7110 1364 messageDisplayedSet_ |= 2; 1365 } 1366 } 1367 } else { 1368 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1369 values_.Push(std::move(*cast)); 1370 } else if (!(messageDisplayedSet_ & 4)) { 1371 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1372 "be converted to the type of the array '%s'"_err_en_US, 1373 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1374 messageDisplayedSet_ |= 4; 1375 } 1376 } 1377 } 1378 1379 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1380 std::visit( 1381 common::visitors{ 1382 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1383 [&](const common::Indirection<parser::Expr> &expr) { 1384 Add(expr.value()); 1385 }, 1386 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1387 Add(impliedDo.value()); 1388 }, 1389 }, 1390 x.u); 1391 } 1392 1393 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1394 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1395 std::optional<Expr<ImpliedDoIntType>> lower{ 1396 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1397 std::optional<Expr<ImpliedDoIntType>> upper{ 1398 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1399 std::optional<Expr<ImpliedDoIntType>> stride{ 1400 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1401 if (lower && upper) { 1402 if (!stride) { 1403 stride = Expr<ImpliedDoIntType>{1}; 1404 } 1405 if (!type_) { 1406 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1407 } 1408 auto v{std::move(values_)}; 1409 parser::CharBlock anonymous; 1410 Push(Expr<SomeType>{ 1411 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1412 std::swap(v, values_); 1413 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1414 std::move(*upper), std::move(*stride), std::move(v)}); 1415 } 1416 } 1417 1418 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1419 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1420 Push(exprAnalyzer_.Analyze(expr)); 1421 } 1422 1423 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1424 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1425 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1426 exprAnalyzer_.Analyze(bounds.name); 1427 parser::CharBlock name{bounds.name.thing.thing.source}; 1428 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1429 int kind{ImpliedDoIntType::kind}; 1430 if (const auto dynamicType{DynamicType::From(symbol)}) { 1431 kind = dynamicType->kind(); 1432 } 1433 std::optional<Expr<ImpliedDoIntType>> lower{ 1434 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1435 std::optional<Expr<ImpliedDoIntType>> upper{ 1436 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1437 if (lower && upper) { 1438 std::optional<Expr<ImpliedDoIntType>> stride{ 1439 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1440 if (!stride) { 1441 stride = Expr<ImpliedDoIntType>{1}; 1442 } 1443 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1444 // Check for constant bounds; the loop may require complete unrolling 1445 // of the parse tree if all bounds are constant in order to allow the 1446 // implied DO loop index to qualify as a constant expression. 1447 auto cLower{ToInt64(lower)}; 1448 auto cUpper{ToInt64(upper)}; 1449 auto cStride{ToInt64(stride)}; 1450 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1451 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1452 "The stride of an implied DO loop must not be zero"_err_en_US); 1453 messageDisplayedSet_ |= 0x10; 1454 } 1455 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1456 bool isNonemptyConstant{isConstant && 1457 ((*cStride > 0 && *cLower <= *cUpper) || 1458 (*cStride < 0 && *cLower >= *cUpper))}; 1459 bool unrollConstantLoop{false}; 1460 parser::Messages buffer; 1461 auto saveMessagesDisplayed{messageDisplayedSet_}; 1462 { 1463 auto messageRestorer{ 1464 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1465 auto v{std::move(values_)}; 1466 for (const auto &value : 1467 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1468 Add(value); 1469 } 1470 std::swap(v, values_); 1471 if (isNonemptyConstant && buffer.AnyFatalError()) { 1472 unrollConstantLoop = true; 1473 } else { 1474 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1475 std::move(*upper), std::move(*stride), std::move(v)}); 1476 } 1477 } 1478 if (unrollConstantLoop) { 1479 messageDisplayedSet_ = saveMessagesDisplayed; 1480 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1481 } else if (auto *messages{ 1482 exprAnalyzer_.GetContextualMessages().messages()}) { 1483 messages->Annex(std::move(buffer)); 1484 } 1485 exprAnalyzer_.RemoveImpliedDo(name); 1486 } else if (!(messageDisplayedSet_ & 0x20)) { 1487 exprAnalyzer_.SayAt(name, 1488 "Implied DO index '%s' is active in a surrounding implied DO loop " 1489 "and may not have the same name"_err_en_US, 1490 name); // C7115 1491 messageDisplayedSet_ |= 0x20; 1492 } 1493 } 1494 } 1495 1496 // Fortran considers an implied DO index of an array constructor to be 1497 // a constant expression if the bounds of the implied DO loop are constant. 1498 // Usually this doesn't matter, but if we emitted spurious messages as a 1499 // result of not using constant values for the index while analyzing the 1500 // items, we need to do it again the "hard" way with multiple iterations over 1501 // the parse tree. 1502 void ArrayConstructorContext::UnrollConstantImpliedDo( 1503 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1504 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1505 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1506 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1507 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1508 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1509 at += stride) { 1510 for (const auto &value : 1511 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1512 Add(value); 1513 } 1514 } 1515 foldingContext.EndImpliedDo(name); 1516 } 1517 1518 MaybeExpr ArrayConstructorContext::ToExpr() { 1519 return common::SearchTypes(std::move(*this)); 1520 } 1521 1522 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1523 const parser::AcSpec &acSpec{array.v}; 1524 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1525 for (const parser::AcValue &value : acSpec.values) { 1526 acContext.Add(value); 1527 } 1528 return acContext.ToExpr(); 1529 } 1530 1531 MaybeExpr ExpressionAnalyzer::Analyze( 1532 const parser::StructureConstructor &structure) { 1533 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1534 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1535 parser::CharBlock &typeName{structureType.source}; 1536 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1537 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1538 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1539 if (!CheckIsValidForwardReference(dtSpec)) { 1540 return std::nullopt; 1541 } 1542 } 1543 } 1544 if (!parsedType.derivedTypeSpec) { 1545 return std::nullopt; 1546 } 1547 const auto &spec{*parsedType.derivedTypeSpec}; 1548 const Symbol &typeSymbol{spec.typeSymbol()}; 1549 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1550 return std::nullopt; // error recovery 1551 } 1552 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1553 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1554 1555 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1556 AttachDeclaration(Say(typeName, 1557 "ABSTRACT derived type '%s' may not be used in a " 1558 "structure constructor"_err_en_US, 1559 typeName), 1560 typeSymbol); // C7114 1561 } 1562 1563 // This iterator traverses all of the components in the derived type and its 1564 // parents. The symbols for whole parent components appear after their 1565 // own components and before the components of the types that extend them. 1566 // E.g., TYPE :: A; REAL X; END TYPE 1567 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1568 // produces the component list X, A, Y. 1569 // The order is important below because a structure constructor can 1570 // initialize X or A by name, but not both. 1571 auto components{semantics::OrderedComponentIterator{spec}}; 1572 auto nextAnonymous{components.begin()}; 1573 1574 std::set<parser::CharBlock> unavailable; 1575 bool anyKeyword{false}; 1576 StructureConstructor result{spec}; 1577 bool checkConflicts{true}; // until we hit one 1578 auto &messages{GetContextualMessages()}; 1579 1580 for (const auto &component : 1581 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1582 const parser::Expr &expr{ 1583 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1584 parser::CharBlock source{expr.source}; 1585 auto restorer{messages.SetLocation(source)}; 1586 const Symbol *symbol{nullptr}; 1587 MaybeExpr value{Analyze(expr)}; 1588 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1589 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1590 anyKeyword = true; 1591 source = kw->v.source; 1592 symbol = kw->v.symbol; 1593 if (!symbol) { 1594 auto componentIter{std::find_if(components.begin(), components.end(), 1595 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1596 if (componentIter != components.end()) { 1597 symbol = &*componentIter; 1598 } 1599 } 1600 if (!symbol) { // C7101 1601 Say(source, 1602 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1603 source, typeName); 1604 } 1605 } else { 1606 if (anyKeyword) { // C7100 1607 Say(source, 1608 "Value in structure constructor lacks a component name"_err_en_US); 1609 checkConflicts = false; // stem cascade 1610 } 1611 // Here's a regrettably common extension of the standard: anonymous 1612 // initialization of parent components, e.g., T(PT(1)) rather than 1613 // T(1) or T(PT=PT(1)). 1614 if (nextAnonymous == components.begin() && parentComponent && 1615 valueType == DynamicType::From(*parentComponent) && 1616 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1617 auto iter{ 1618 std::find(components.begin(), components.end(), *parentComponent)}; 1619 if (iter != components.end()) { 1620 symbol = parentComponent; 1621 nextAnonymous = ++iter; 1622 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1623 Say(source, 1624 "Whole parent component '%s' in structure " 1625 "constructor should not be anonymous"_en_US, 1626 symbol->name()); 1627 } 1628 } 1629 } 1630 while (!symbol && nextAnonymous != components.end()) { 1631 const Symbol &next{*nextAnonymous}; 1632 ++nextAnonymous; 1633 if (!next.test(Symbol::Flag::ParentComp)) { 1634 symbol = &next; 1635 } 1636 } 1637 if (!symbol) { 1638 Say(source, "Unexpected value in structure constructor"_err_en_US); 1639 } 1640 } 1641 if (symbol) { 1642 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1643 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1644 Say(source, *msg); 1645 } 1646 } 1647 if (checkConflicts) { 1648 auto componentIter{ 1649 std::find(components.begin(), components.end(), *symbol)}; 1650 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1651 // C797, C798 1652 Say(source, 1653 "Component '%s' conflicts with another component earlier in " 1654 "this structure constructor"_err_en_US, 1655 symbol->name()); 1656 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1657 // Make earlier components unavailable once a whole parent appears. 1658 for (auto it{components.begin()}; it != componentIter; ++it) { 1659 unavailable.insert(it->name()); 1660 } 1661 } else { 1662 // Make whole parent components unavailable after any of their 1663 // constituents appear. 1664 for (auto it{componentIter}; it != components.end(); ++it) { 1665 if (it->test(Symbol::Flag::ParentComp)) { 1666 unavailable.insert(it->name()); 1667 } 1668 } 1669 } 1670 } 1671 unavailable.insert(symbol->name()); 1672 if (value) { 1673 if (symbol->has<semantics::ProcEntityDetails>()) { 1674 CHECK(IsPointer(*symbol)); 1675 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1676 // C1594(4) 1677 const auto &innermost{context_.FindScope(expr.source)}; 1678 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1679 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1680 if (const Symbol * 1681 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1682 if (auto *msg{Say(expr.source, 1683 "Externally visible object '%s' may not be " 1684 "associated with pointer component '%s' in a " 1685 "pure procedure"_err_en_US, 1686 object->name(), pointer->name())}) { 1687 msg->Attach(object->name(), "Object declaration"_en_US) 1688 .Attach(pointer->name(), "Pointer declaration"_en_US); 1689 } 1690 } 1691 } 1692 } 1693 } else if (symbol->has<semantics::TypeParamDetails>()) { 1694 Say(expr.source, 1695 "Type parameter '%s' may not appear as a component " 1696 "of a structure constructor"_err_en_US, 1697 symbol->name()); 1698 continue; 1699 } else { 1700 Say(expr.source, 1701 "Component '%s' is neither a procedure pointer " 1702 "nor a data object"_err_en_US, 1703 symbol->name()); 1704 continue; 1705 } 1706 if (IsPointer(*symbol)) { 1707 semantics::CheckPointerAssignment( 1708 GetFoldingContext(), *symbol, *value); // C7104, C7105 1709 result.Add(*symbol, Fold(std::move(*value))); 1710 } else if (MaybeExpr converted{ 1711 ConvertToType(*symbol, std::move(*value))}) { 1712 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1713 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1714 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1715 AttachDeclaration( 1716 Say(expr.source, 1717 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1718 GetRank(*valueShape), symbol->name()), 1719 *symbol); 1720 } else { 1721 auto checked{ 1722 CheckConformance(messages, *componentShape, *valueShape, 1723 CheckConformanceFlags::RightIsExpandableDeferred, 1724 "component", "value")}; 1725 if (checked && *checked && GetRank(*componentShape) > 0 && 1726 GetRank(*valueShape) == 0 && 1727 !IsExpandableScalar(*converted)) { 1728 AttachDeclaration( 1729 Say(expr.source, 1730 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1731 symbol->name()), 1732 *symbol); 1733 } 1734 if (checked.value_or(true)) { 1735 result.Add(*symbol, std::move(*converted)); 1736 } 1737 } 1738 } else { 1739 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1740 } 1741 } else { 1742 AttachDeclaration( 1743 Say(expr.source, 1744 "Shape of component '%s' cannot be determined"_err_en_US, 1745 symbol->name()), 1746 *symbol); 1747 } 1748 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1749 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1750 } else if (auto symType{DynamicType::From(symbol)}) { 1751 if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() && 1752 valueType) { 1753 // ok 1754 } else if (valueType) { 1755 AttachDeclaration( 1756 Say(expr.source, 1757 "Value in structure constructor of type %s is " 1758 "incompatible with component '%s' of type %s"_err_en_US, 1759 valueType->AsFortran(), symbol->name(), 1760 symType->AsFortran()), 1761 *symbol); 1762 } else { 1763 AttachDeclaration( 1764 Say(expr.source, 1765 "Value in structure constructor is incompatible with " 1766 " component '%s' of type %s"_err_en_US, 1767 symbol->name(), symType->AsFortran()), 1768 *symbol); 1769 } 1770 } 1771 } 1772 } 1773 } 1774 1775 // Ensure that unmentioned component objects have default initializers. 1776 for (const Symbol &symbol : components) { 1777 if (!symbol.test(Symbol::Flag::ParentComp) && 1778 unavailable.find(symbol.name()) == unavailable.cend() && 1779 !IsAllocatable(symbol)) { 1780 if (const auto *details{ 1781 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1782 if (details->init()) { 1783 result.Add(symbol, common::Clone(*details->init())); 1784 } else { // C799 1785 AttachDeclaration(Say(typeName, 1786 "Structure constructor lacks a value for " 1787 "component '%s'"_err_en_US, 1788 symbol.name()), 1789 symbol); 1790 } 1791 } 1792 } 1793 } 1794 1795 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1796 } 1797 1798 static std::optional<parser::CharBlock> GetPassName( 1799 const semantics::Symbol &proc) { 1800 return std::visit( 1801 [](const auto &details) { 1802 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1803 std::decay_t<decltype(details)>>) { 1804 return details.passName(); 1805 } else { 1806 return std::optional<parser::CharBlock>{}; 1807 } 1808 }, 1809 proc.details()); 1810 } 1811 1812 static int GetPassIndex(const Symbol &proc) { 1813 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1814 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1815 const auto *interface{semantics::FindInterface(proc)}; 1816 if (!passName || !interface) { 1817 return 0; // first argument is passed-object 1818 } 1819 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1820 int index{0}; 1821 for (const auto *arg : subp.dummyArgs()) { 1822 if (arg && arg->name() == passName) { 1823 return index; 1824 } 1825 ++index; 1826 } 1827 DIE("PASS argument name not in dummy argument list"); 1828 } 1829 1830 // Injects an expression into an actual argument list as the "passed object" 1831 // for a type-bound procedure reference that is not NOPASS. Adds an 1832 // argument keyword if possible, but not when the passed object goes 1833 // before a positional argument. 1834 // e.g., obj%tbp(x) -> tbp(obj,x). 1835 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1836 const Symbol &component, bool isPassedObject = true) { 1837 if (component.attrs().test(semantics::Attr::NOPASS)) { 1838 return; 1839 } 1840 int passIndex{GetPassIndex(component)}; 1841 auto iter{actuals.begin()}; 1842 int at{0}; 1843 while (iter < actuals.end() && at < passIndex) { 1844 if (*iter && (*iter)->keyword()) { 1845 iter = actuals.end(); 1846 break; 1847 } 1848 ++iter; 1849 ++at; 1850 } 1851 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1852 passed.set_isPassedObject(isPassedObject); 1853 if (iter == actuals.end()) { 1854 if (auto passName{GetPassName(component)}) { 1855 passed.set_keyword(*passName); 1856 } 1857 } 1858 actuals.emplace(iter, std::move(passed)); 1859 } 1860 1861 // Return the compile-time resolution of a procedure binding, if possible. 1862 static const Symbol *GetBindingResolution( 1863 const std::optional<DynamicType> &baseType, const Symbol &component) { 1864 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1865 if (!binding) { 1866 return nullptr; 1867 } 1868 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1869 (!baseType || baseType->IsPolymorphic())) { 1870 return nullptr; 1871 } 1872 return &binding->symbol(); 1873 } 1874 1875 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1876 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1877 -> std::optional<CalleeAndArguments> { 1878 const parser::StructureComponent &sc{pcr.v.thing}; 1879 if (MaybeExpr base{Analyze(sc.base)}) { 1880 if (const Symbol * sym{sc.component.symbol}) { 1881 if (context_.HasError(sym)) { 1882 return std::nullopt; 1883 } 1884 if (!IsProcedure(*sym)) { 1885 AttachDeclaration( 1886 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1887 sc.component.source), 1888 *sym); 1889 return std::nullopt; 1890 } 1891 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1892 if (sym->has<semantics::GenericDetails>()) { 1893 AdjustActuals adjustment{ 1894 [&](const Symbol &proc, ActualArguments &actuals) { 1895 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1896 AddPassArg(actuals, std::move(*dtExpr), proc); 1897 } 1898 return true; 1899 }}; 1900 auto pair{ResolveGeneric(*sym, arguments, adjustment)}; 1901 sym = pair.first; 1902 if (!sym) { 1903 EmitGenericResolutionError(*sc.component.symbol, pair.second); 1904 return std::nullopt; 1905 } 1906 } 1907 if (const Symbol * 1908 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1909 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1910 return CalleeAndArguments{ 1911 ProcedureDesignator{*resolution}, std::move(arguments)}; 1912 } else if (std::optional<DataRef> dataRef{ 1913 ExtractDataRef(std::move(*dtExpr))}) { 1914 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1915 return CalleeAndArguments{ 1916 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1917 std::move(arguments)}; 1918 } else { 1919 AddPassArg(arguments, 1920 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1921 *sym); 1922 return CalleeAndArguments{ 1923 ProcedureDesignator{*sym}, std::move(arguments)}; 1924 } 1925 } 1926 } 1927 Say(sc.component.source, 1928 "Base of procedure component reference is not a derived-type object"_err_en_US); 1929 } 1930 } 1931 CHECK(context_.AnyFatalError()); 1932 return std::nullopt; 1933 } 1934 1935 // Can actual be argument associated with dummy? 1936 static bool CheckCompatibleArgument(bool isElemental, 1937 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1938 const auto *expr{actual.UnwrapExpr()}; 1939 return std::visit( 1940 common::visitors{ 1941 [&](const characteristics::DummyDataObject &x) { 1942 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 1943 IsBareNullPointer(expr)) { 1944 // NULL() without MOLD= is compatible with any dummy data pointer 1945 // but cannot be allowed to lead to ambiguity. 1946 return true; 1947 } else if (!isElemental && actual.Rank() != x.type.Rank() && 1948 !x.type.attrs().test( 1949 characteristics::TypeAndShape::Attr::AssumedRank)) { 1950 return false; 1951 } else if (auto actualType{actual.GetType()}) { 1952 return x.type.type().IsTkCompatibleWith(*actualType); 1953 } 1954 return false; 1955 }, 1956 [&](const characteristics::DummyProcedure &) { 1957 return expr && IsProcedurePointerTarget(*expr); 1958 }, 1959 [&](const characteristics::AlternateReturn &) { 1960 return actual.isAlternateReturn(); 1961 }, 1962 }, 1963 dummy.u); 1964 } 1965 1966 // Are the actual arguments compatible with the dummy arguments of procedure? 1967 static bool CheckCompatibleArguments( 1968 const characteristics::Procedure &procedure, 1969 const ActualArguments &actuals) { 1970 bool isElemental{procedure.IsElemental()}; 1971 const auto &dummies{procedure.dummyArguments}; 1972 CHECK(dummies.size() == actuals.size()); 1973 for (std::size_t i{0}; i < dummies.size(); ++i) { 1974 const characteristics::DummyArgument &dummy{dummies[i]}; 1975 const std::optional<ActualArgument> &actual{actuals[i]}; 1976 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1977 return false; 1978 } 1979 } 1980 return true; 1981 } 1982 1983 // Handles a forward reference to a module function from what must 1984 // be a specification expression. Return false if the symbol is 1985 // an invalid forward reference. 1986 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1987 if (context_.HasError(symbol)) { 1988 return false; 1989 } 1990 if (const auto *details{ 1991 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1992 if (details->kind() == semantics::SubprogramKind::Module) { 1993 // If this symbol is still a SubprogramNameDetails, we must be 1994 // checking a specification expression in a sibling module 1995 // procedure. Resolve its names now so that its interface 1996 // is known. 1997 semantics::ResolveSpecificationParts(context_, symbol); 1998 if (symbol.has<semantics::SubprogramNameDetails>()) { 1999 // When the symbol hasn't had its details updated, we must have 2000 // already been in the process of resolving the function's 2001 // specification part; but recursive function calls are not 2002 // allowed in specification parts (10.1.11 para 5). 2003 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 2004 symbol.name()); 2005 context_.SetError(symbol); 2006 return false; 2007 } 2008 } else { // 10.1.11 para 4 2009 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 2010 symbol.name()); 2011 context_.SetError(symbol); 2012 return false; 2013 } 2014 } 2015 return true; 2016 } 2017 2018 // Resolve a call to a generic procedure with given actual arguments. 2019 // adjustActuals is called on procedure bindings to handle pass arg. 2020 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 2021 const Symbol &symbol, const ActualArguments &actuals, 2022 const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) { 2023 const Symbol *elemental{nullptr}; // matching elemental specific proc 2024 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2025 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 2026 bool anyBareNullActual{ 2027 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2028 return IsBareNullPointer(iter->UnwrapExpr()); 2029 }) != actuals.end()}; 2030 for (const Symbol &specific : details.specificProcs()) { 2031 if (!ResolveForward(specific)) { 2032 continue; 2033 } 2034 if (std::optional<characteristics::Procedure> procedure{ 2035 characteristics::Procedure::Characterize( 2036 ProcedureDesignator{specific}, context_.foldingContext())}) { 2037 ActualArguments localActuals{actuals}; 2038 if (specific.has<semantics::ProcBindingDetails>()) { 2039 if (!adjustActuals.value()(specific, localActuals)) { 2040 continue; 2041 } 2042 } 2043 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, 2044 GetFoldingContext(), false /* no integer conversions */) && 2045 CheckCompatibleArguments(*procedure, localActuals)) { 2046 if ((procedure->IsElemental() && elemental) || 2047 (!procedure->IsElemental() && nonElemental)) { 2048 // 16.9.144(6): a bare NULL() is not allowed as an actual 2049 // argument to a generic procedure if the specific procedure 2050 // cannot be unambiguously distinguished 2051 return {nullptr, true /* due to NULL actuals */}; 2052 } 2053 if (!procedure->IsElemental()) { 2054 // takes priority over elemental match 2055 nonElemental = &specific; 2056 if (!anyBareNullActual) { 2057 break; // unambiguous case 2058 } 2059 } else { 2060 elemental = &specific; 2061 } 2062 } 2063 } 2064 } 2065 if (nonElemental) { 2066 return {&AccessSpecific(symbol, *nonElemental), false}; 2067 } else if (elemental) { 2068 return {&AccessSpecific(symbol, *elemental), false}; 2069 } 2070 // Check parent derived type 2071 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2072 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2073 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 2074 auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)}; 2075 if (pair.first) { 2076 return pair; 2077 } 2078 } 2079 } 2080 } 2081 if (mightBeStructureConstructor && details.derivedType()) { 2082 return {details.derivedType(), false}; 2083 } 2084 return {nullptr, false}; 2085 } 2086 2087 const Symbol &ExpressionAnalyzer::AccessSpecific( 2088 const Symbol &originalGeneric, const Symbol &specific) { 2089 if (const auto *hosted{ 2090 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2091 return AccessSpecific(hosted->symbol(), specific); 2092 } else if (const auto *used{ 2093 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2094 const auto &scope{originalGeneric.owner()}; 2095 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2096 if (const auto *useDetails{ 2097 iter->second->detailsIf<semantics::UseDetails>()}) { 2098 const Symbol &usedSymbol{useDetails->symbol()}; 2099 const auto *usedGeneric{ 2100 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2101 if (&usedSymbol == &specific || 2102 (usedGeneric && usedGeneric->specific() == &specific)) { 2103 return specific; 2104 } 2105 } 2106 } 2107 // Create a renaming USE of the specific procedure. 2108 auto rename{context_.SaveTempName( 2109 used->symbol().owner().GetName().value().ToString() + "$" + 2110 specific.name().ToString())}; 2111 return *const_cast<semantics::Scope &>(scope) 2112 .try_emplace(rename, specific.attrs(), 2113 semantics::UseDetails{rename, specific}) 2114 .first->second; 2115 } else { 2116 return specific; 2117 } 2118 } 2119 2120 void ExpressionAnalyzer::EmitGenericResolutionError( 2121 const Symbol &symbol, bool dueToNullActuals) { 2122 Say(dueToNullActuals 2123 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2124 : semantics::IsGenericDefinedOp(symbol) 2125 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2126 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2127 symbol.name()); 2128 } 2129 2130 auto ExpressionAnalyzer::GetCalleeAndArguments( 2131 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2132 bool isSubroutine, bool mightBeStructureConstructor) 2133 -> std::optional<CalleeAndArguments> { 2134 return std::visit( 2135 common::visitors{ 2136 [&](const parser::Name &name) { 2137 return GetCalleeAndArguments(name, std::move(arguments), 2138 isSubroutine, mightBeStructureConstructor); 2139 }, 2140 [&](const parser::ProcComponentRef &pcr) { 2141 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2142 }, 2143 }, 2144 pd.u); 2145 } 2146 2147 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2148 ActualArguments &&arguments, bool isSubroutine, 2149 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2150 const Symbol *symbol{name.symbol}; 2151 if (context_.HasError(symbol)) { 2152 return std::nullopt; // also handles null symbol 2153 } 2154 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2155 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2156 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2157 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2158 arguments, GetFoldingContext())}) { 2159 CheckBadExplicitType(*specificCall, *symbol); 2160 return CalleeAndArguments{ 2161 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2162 std::move(specificCall->arguments)}; 2163 } 2164 } else { 2165 CheckForBadRecursion(name.source, ultimate); 2166 bool dueToNullActual{false}; 2167 if (ultimate.has<semantics::GenericDetails>()) { 2168 ExpressionAnalyzer::AdjustActuals noAdjustment; 2169 auto pair{ResolveGeneric( 2170 *symbol, arguments, noAdjustment, mightBeStructureConstructor)}; 2171 symbol = pair.first; 2172 dueToNullActual = pair.second; 2173 } 2174 if (symbol) { 2175 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2176 if (mightBeStructureConstructor) { 2177 return CalleeAndArguments{ 2178 semantics::SymbolRef{*symbol}, std::move(arguments)}; 2179 } 2180 } else if (IsProcedure(*symbol)) { 2181 return CalleeAndArguments{ 2182 ProcedureDesignator{*symbol}, std::move(arguments)}; 2183 } 2184 if (!context_.HasError(*symbol)) { 2185 AttachDeclaration( 2186 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2187 name.source), 2188 *symbol); 2189 } 2190 } else if (std::optional<SpecificCall> specificCall{ 2191 context_.intrinsics().Probe( 2192 CallCharacteristics{ 2193 ultimate.name().ToString(), isSubroutine}, 2194 arguments, GetFoldingContext())}) { 2195 // Generics can extend intrinsics 2196 return CalleeAndArguments{ 2197 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2198 std::move(specificCall->arguments)}; 2199 } else { 2200 EmitGenericResolutionError(*name.symbol, dueToNullActual); 2201 } 2202 } 2203 return std::nullopt; 2204 } 2205 2206 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2207 // generic intrinsic function "has no effect" on the result type of a 2208 // call to that intrinsic. So one can declare "character*8 cos" and 2209 // still get a real result from "cos(1.)". This is a dangerous feature, 2210 // especially since implementations are free to extend their sets of 2211 // intrinsics, and in doing so might clash with a name in a program. 2212 // So we emit a warning in this situation, and perhaps it should be an 2213 // error -- any correctly working program can silence the message by 2214 // simply deleting the pointless type declaration. 2215 void ExpressionAnalyzer::CheckBadExplicitType( 2216 const SpecificCall &call, const Symbol &intrinsic) { 2217 if (intrinsic.GetUltimate().GetType()) { 2218 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2219 if (const auto &result{procedure.functionResult}) { 2220 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2221 if (auto declared{ 2222 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2223 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2224 if (auto *msg{Say( 2225 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US, 2226 typeAndShape->AsFortran(), intrinsic.name(), 2227 declared->AsFortran())}) { 2228 msg->Attach(intrinsic.name(), 2229 "Ignored declaration of intrinsic function '%s'"_en_US, 2230 intrinsic.name()); 2231 } 2232 } 2233 } 2234 } 2235 } 2236 } 2237 } 2238 2239 void ExpressionAnalyzer::CheckForBadRecursion( 2240 parser::CharBlock callSite, const semantics::Symbol &proc) { 2241 if (const auto *scope{proc.scope()}) { 2242 if (scope->sourceRange().Contains(callSite)) { 2243 parser::Message *msg{nullptr}; 2244 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2245 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2246 callSite); 2247 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2248 msg = Say( // 15.6.2.1(3) 2249 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2250 callSite); 2251 } 2252 AttachDeclaration(msg, proc); 2253 } 2254 } 2255 } 2256 2257 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2258 if (const auto *designator{ 2259 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2260 if (const auto *dataRef{ 2261 std::get_if<parser::DataRef>(&designator->value().u)}) { 2262 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2263 return AssumedTypeDummy(*name); 2264 } 2265 } 2266 } 2267 return nullptr; 2268 } 2269 template <> 2270 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2271 if (const Symbol * symbol{name.symbol}) { 2272 if (const auto *type{symbol->GetType()}) { 2273 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2274 return symbol; 2275 } 2276 } 2277 } 2278 return nullptr; 2279 } 2280 template <typename A> 2281 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2282 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2283 // point it is is not guaranteed that it has been checked the object has 2284 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2285 // returned. 2286 return std::visit( 2287 common::visitors{ 2288 [&](const parser::StructureComponent &x) { 2289 return AssumedTypeDummy(x.component); 2290 }, 2291 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2292 }, 2293 object.u); 2294 } 2295 template <> 2296 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2297 const parser::AllocateObject &x) { 2298 return AssumedTypePointerOrAllocatableDummy(x); 2299 } 2300 template <> 2301 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2302 const parser::PointerObject &x) { 2303 return AssumedTypePointerOrAllocatableDummy(x); 2304 } 2305 2306 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2307 const semantics::DerivedTypeSpec &dtSpec) { 2308 if (dtSpec.IsForwardReferenced()) { 2309 Say("Cannot construct value for derived type '%s' " 2310 "before it is defined"_err_en_US, 2311 dtSpec.name()); 2312 return false; 2313 } 2314 return true; 2315 } 2316 2317 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2318 std::optional<parser::StructureConstructor> *structureConstructor) { 2319 const parser::Call &call{funcRef.v}; 2320 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2321 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2322 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2323 analyzer.Analyze(arg, false /* not subroutine call */); 2324 } 2325 if (analyzer.fatalErrors()) { 2326 return std::nullopt; 2327 } 2328 if (std::optional<CalleeAndArguments> callee{ 2329 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2330 analyzer.GetActuals(), false /* not subroutine */, 2331 true /* might be structure constructor */)}) { 2332 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2333 return MakeFunctionRef( 2334 call.source, std::move(*proc), std::move(callee->arguments)); 2335 } 2336 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2337 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2338 if (structureConstructor) { 2339 // Structure constructor misparsed as function reference? 2340 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2341 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2342 semantics::Scope &scope{context_.FindScope(name->source)}; 2343 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2344 if (!CheckIsValidForwardReference(dtSpec)) { 2345 return std::nullopt; 2346 } 2347 const semantics::DeclTypeSpec &type{ 2348 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2349 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2350 *structureConstructor = 2351 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2352 return Analyze(structureConstructor->value()); 2353 } 2354 } 2355 if (!context_.HasError(symbol)) { 2356 AttachDeclaration( 2357 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2358 symbol.name()), 2359 symbol); 2360 context_.SetError(symbol); 2361 } 2362 } 2363 return std::nullopt; 2364 } 2365 2366 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2367 for (const auto &arg : args) { 2368 if (arg && arg->isAlternateReturn()) { 2369 return true; 2370 } 2371 } 2372 return false; 2373 } 2374 2375 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2376 const parser::Call &call{callStmt.v}; 2377 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2378 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2379 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2380 for (const auto &arg : actualArgList) { 2381 analyzer.Analyze(arg, true /* is subroutine call */); 2382 } 2383 if (!analyzer.fatalErrors()) { 2384 if (std::optional<CalleeAndArguments> callee{ 2385 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2386 analyzer.GetActuals(), true /* subroutine */)}) { 2387 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2388 CHECK(proc); 2389 if (CheckCall(call.source, *proc, callee->arguments)) { 2390 bool hasAlternateReturns{HasAlternateReturns(callee->arguments)}; 2391 callStmt.typedCall.Reset( 2392 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2393 hasAlternateReturns}, 2394 ProcedureRef::Deleter); 2395 } 2396 } 2397 } 2398 } 2399 2400 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2401 if (!x.typedAssignment) { 2402 ArgumentAnalyzer analyzer{*this}; 2403 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2404 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2405 std::optional<Assignment> assignment; 2406 if (!analyzer.fatalErrors()) { 2407 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2408 if (!procRef) { 2409 analyzer.CheckForNullPointer( 2410 "in a non-pointer intrinsic assignment statement"); 2411 } 2412 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2413 if (procRef) { 2414 assignment->u = std::move(*procRef); 2415 } 2416 } 2417 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2418 GenericAssignmentWrapper::Deleter); 2419 } 2420 return common::GetPtrFromOptional(x.typedAssignment->v); 2421 } 2422 2423 const Assignment *ExpressionAnalyzer::Analyze( 2424 const parser::PointerAssignmentStmt &x) { 2425 if (!x.typedAssignment) { 2426 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2427 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2428 if (!lhs || !rhs) { 2429 x.typedAssignment.Reset( 2430 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2431 } else { 2432 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2433 std::visit(common::visitors{ 2434 [&](const std::list<parser::BoundsRemapping> &list) { 2435 Assignment::BoundsRemapping bounds; 2436 for (const auto &elem : list) { 2437 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2438 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2439 if (lower && upper) { 2440 bounds.emplace_back(Fold(std::move(*lower)), 2441 Fold(std::move(*upper))); 2442 } 2443 } 2444 assignment.u = std::move(bounds); 2445 }, 2446 [&](const std::list<parser::BoundsSpec> &list) { 2447 Assignment::BoundsSpec bounds; 2448 for (const auto &bound : list) { 2449 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2450 bounds.emplace_back(Fold(std::move(*lower))); 2451 } 2452 } 2453 assignment.u = std::move(bounds); 2454 }, 2455 }, 2456 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2457 x.typedAssignment.Reset( 2458 new GenericAssignmentWrapper{std::move(assignment)}, 2459 GenericAssignmentWrapper::Deleter); 2460 } 2461 } 2462 return common::GetPtrFromOptional(x.typedAssignment->v); 2463 } 2464 2465 static bool IsExternalCalledImplicitly( 2466 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2467 if (const auto *symbol{proc.GetSymbol()}) { 2468 return symbol->has<semantics::SubprogramDetails>() && 2469 symbol->owner().IsGlobal() && 2470 (!symbol->scope() /*ENTRY*/ || 2471 !symbol->scope()->sourceRange().Contains(callSite)); 2472 } else { 2473 return false; 2474 } 2475 } 2476 2477 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2478 parser::CharBlock callSite, const ProcedureDesignator &proc, 2479 ActualArguments &arguments) { 2480 auto chars{characteristics::Procedure::Characterize( 2481 proc, context_.foldingContext())}; 2482 if (chars) { 2483 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2484 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2485 Say(callSite, 2486 "References to the procedure '%s' require an explicit interface"_err_en_US, 2487 DEREF(proc.GetSymbol()).name()); 2488 } 2489 // Checks for ASSOCIATED() are done in intrinsic table processing 2490 bool procIsAssociated{false}; 2491 if (const SpecificIntrinsic * 2492 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2493 if (specificIntrinsic->name == "associated") { 2494 procIsAssociated = true; 2495 } 2496 } 2497 if (!procIsAssociated) { 2498 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2499 context_.FindScope(callSite), treatExternalAsImplicit, 2500 proc.GetSpecificIntrinsic()); 2501 const Symbol *procSymbol{proc.GetSymbol()}; 2502 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2503 if (const semantics::Scope * 2504 pure{semantics::FindPureProcedureContaining( 2505 context_.FindScope(callSite))}) { 2506 Say(callSite, 2507 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2508 procSymbol->name(), DEREF(pure->symbol()).name()); 2509 } 2510 } 2511 } 2512 } 2513 return chars; 2514 } 2515 2516 // Unary operations 2517 2518 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2519 if (MaybeExpr operand{Analyze(x.v.value())}) { 2520 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2521 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2522 if (semantics::IsProcedurePointer(*result)) { 2523 Say("A function reference that returns a procedure " 2524 "pointer may not be parenthesized"_err_en_US); // C1003 2525 } 2526 } 2527 } 2528 return Parenthesize(std::move(*operand)); 2529 } 2530 return std::nullopt; 2531 } 2532 2533 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2534 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2535 ArgumentAnalyzer analyzer{context}; 2536 analyzer.Analyze(x.v); 2537 if (!analyzer.fatalErrors()) { 2538 if (analyzer.IsIntrinsicNumeric(opr)) { 2539 analyzer.CheckForNullPointer(); 2540 if (opr == NumericOperator::Add) { 2541 return analyzer.MoveExpr(0); 2542 } else { 2543 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2544 } 2545 } else { 2546 return analyzer.TryDefinedOp(AsFortran(opr), 2547 "Operand of unary %s must be numeric; have %s"_err_en_US); 2548 } 2549 } 2550 return std::nullopt; 2551 } 2552 2553 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2554 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2555 } 2556 2557 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2558 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2559 } 2560 2561 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2562 ArgumentAnalyzer analyzer{*this}; 2563 analyzer.Analyze(x.v); 2564 if (!analyzer.fatalErrors()) { 2565 if (analyzer.IsIntrinsicLogical()) { 2566 analyzer.CheckForNullPointer(); 2567 return AsGenericExpr( 2568 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2569 } else { 2570 return analyzer.TryDefinedOp(LogicalOperator::Not, 2571 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2572 } 2573 } 2574 return std::nullopt; 2575 } 2576 2577 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2578 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2579 // intrinsic function. 2580 // Use the actual source for the name of the call for error reporting. 2581 std::optional<ActualArgument> arg; 2582 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2583 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2584 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2585 arg = ActualArgument{std::move(*argExpr)}; 2586 } else { 2587 return std::nullopt; 2588 } 2589 parser::CharBlock at{GetContextualMessages().at()}; 2590 CHECK(at.size() >= 4); 2591 parser::CharBlock loc{at.begin() + 1, 3}; 2592 CHECK(loc == "loc"); 2593 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2594 } 2595 2596 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2597 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2598 ArgumentAnalyzer analyzer{*this, name.source}; 2599 analyzer.Analyze(std::get<1>(x.t)); 2600 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2601 "No operator %s defined for %s"_err_en_US, nullptr, true); 2602 } 2603 2604 // Binary (dyadic) operations 2605 2606 template <template <typename> class OPR> 2607 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2608 const parser::Expr::IntrinsicBinary &x) { 2609 ArgumentAnalyzer analyzer{context}; 2610 analyzer.Analyze(std::get<0>(x.t)); 2611 analyzer.Analyze(std::get<1>(x.t)); 2612 if (!analyzer.fatalErrors()) { 2613 if (analyzer.IsIntrinsicNumeric(opr)) { 2614 analyzer.CheckForNullPointer(); 2615 analyzer.CheckConformance(); 2616 return NumericOperation<OPR>(context.GetContextualMessages(), 2617 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2618 context.GetDefaultKind(TypeCategory::Real)); 2619 } else { 2620 return analyzer.TryDefinedOp(AsFortran(opr), 2621 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2622 } 2623 } 2624 return std::nullopt; 2625 } 2626 2627 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2628 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2629 } 2630 2631 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2632 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2633 } 2634 2635 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2636 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2637 } 2638 2639 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2640 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2641 } 2642 2643 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2644 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2645 } 2646 2647 MaybeExpr ExpressionAnalyzer::Analyze( 2648 const parser::Expr::ComplexConstructor &x) { 2649 auto re{Analyze(std::get<0>(x.t).value())}; 2650 auto im{Analyze(std::get<1>(x.t).value())}; 2651 if (re && im) { 2652 ConformabilityCheck(GetContextualMessages(), *re, *im); 2653 } 2654 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2655 std::move(im), GetDefaultKind(TypeCategory::Real))); 2656 } 2657 2658 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2659 ArgumentAnalyzer analyzer{*this}; 2660 analyzer.Analyze(std::get<0>(x.t)); 2661 analyzer.Analyze(std::get<1>(x.t)); 2662 if (!analyzer.fatalErrors()) { 2663 if (analyzer.IsIntrinsicConcat()) { 2664 analyzer.CheckForNullPointer(); 2665 return std::visit( 2666 [&](auto &&x, auto &&y) -> MaybeExpr { 2667 using T = ResultType<decltype(x)>; 2668 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2669 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2670 } else { 2671 DIE("different types for intrinsic concat"); 2672 } 2673 }, 2674 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2675 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2676 } else { 2677 return analyzer.TryDefinedOp("//", 2678 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2679 } 2680 } 2681 return std::nullopt; 2682 } 2683 2684 // The Name represents a user-defined intrinsic operator. 2685 // If the actuals match one of the specific procedures, return a function ref. 2686 // Otherwise report the error in messages. 2687 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2688 const parser::Name &name, ActualArguments &&actuals) { 2689 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2690 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2691 return MakeFunctionRef(name.source, 2692 std::move(std::get<ProcedureDesignator>(callee->u)), 2693 std::move(callee->arguments)); 2694 } else { 2695 return std::nullopt; 2696 } 2697 } 2698 2699 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2700 const parser::Expr::IntrinsicBinary &x) { 2701 ArgumentAnalyzer analyzer{context}; 2702 analyzer.Analyze(std::get<0>(x.t)); 2703 analyzer.Analyze(std::get<1>(x.t)); 2704 if (!analyzer.fatalErrors()) { 2705 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2706 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2707 analyzer.ConvertBOZ(leftType, 0, rightType); 2708 analyzer.ConvertBOZ(rightType, 1, leftType); 2709 if (leftType && rightType && 2710 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2711 analyzer.CheckForNullPointer("as a relational operand"); 2712 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2713 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2714 } else { 2715 return analyzer.TryDefinedOp(opr, 2716 leftType && leftType->category() == TypeCategory::Logical && 2717 rightType && rightType->category() == TypeCategory::Logical 2718 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2719 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2720 } 2721 } 2722 return std::nullopt; 2723 } 2724 2725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2726 return RelationHelper(*this, RelationalOperator::LT, x); 2727 } 2728 2729 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2730 return RelationHelper(*this, RelationalOperator::LE, x); 2731 } 2732 2733 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2734 return RelationHelper(*this, RelationalOperator::EQ, x); 2735 } 2736 2737 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2738 return RelationHelper(*this, RelationalOperator::NE, x); 2739 } 2740 2741 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2742 return RelationHelper(*this, RelationalOperator::GE, x); 2743 } 2744 2745 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2746 return RelationHelper(*this, RelationalOperator::GT, x); 2747 } 2748 2749 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2750 const parser::Expr::IntrinsicBinary &x) { 2751 ArgumentAnalyzer analyzer{context}; 2752 analyzer.Analyze(std::get<0>(x.t)); 2753 analyzer.Analyze(std::get<1>(x.t)); 2754 if (!analyzer.fatalErrors()) { 2755 if (analyzer.IsIntrinsicLogical()) { 2756 analyzer.CheckForNullPointer("as a logical operand"); 2757 return AsGenericExpr(BinaryLogicalOperation(opr, 2758 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2759 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2760 } else { 2761 return analyzer.TryDefinedOp( 2762 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2763 } 2764 } 2765 return std::nullopt; 2766 } 2767 2768 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2769 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2770 } 2771 2772 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2773 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2774 } 2775 2776 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2777 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2778 } 2779 2780 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2781 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2782 } 2783 2784 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2785 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2786 ArgumentAnalyzer analyzer{*this, name.source}; 2787 analyzer.Analyze(std::get<1>(x.t)); 2788 analyzer.Analyze(std::get<2>(x.t)); 2789 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2790 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2791 } 2792 2793 // Returns true if a parsed function reference should be converted 2794 // into an array element reference. 2795 static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context, 2796 const parser::FunctionReference &funcRef) { 2797 // Emit message if the function reference fix will end up an array element 2798 // reference with no subscripts, or subscripts on a scalar, because it will 2799 // not be possible to later distinguish in expressions between an empty 2800 // subscript list due to bad subscripts error recovery or because the 2801 // user did not put any. 2802 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2803 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2804 if (!name) { 2805 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2806 } 2807 if (!name->symbol) { 2808 return false; 2809 } else if (name->symbol->Rank() == 0) { 2810 if (const Symbol * 2811 function{ 2812 semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) { 2813 auto &msg{context.Say(funcRef.v.source, 2814 "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US, 2815 name->source)}; 2816 AttachDeclaration(&msg, *function); 2817 name->symbol = const_cast<Symbol *>(function); 2818 } 2819 return false; 2820 } else { 2821 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2822 auto &msg{context.Say(funcRef.v.source, 2823 "Reference to array '%s' with empty subscript list"_err_en_US, 2824 name->source)}; 2825 if (name->symbol) { 2826 AttachDeclaration(&msg, *name->symbol); 2827 } 2828 } 2829 return true; 2830 } 2831 } 2832 2833 // Converts, if appropriate, an original misparse of ambiguous syntax like 2834 // A(1) as a function reference into an array reference. 2835 // Misparsed structure constructors are detected elsewhere after generic 2836 // function call resolution fails. 2837 template <typename... A> 2838 static void FixMisparsedFunctionReference( 2839 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2840 // The parse tree is updated in situ when resolving an ambiguous parse. 2841 using uType = std::decay_t<decltype(constU)>; 2842 auto &u{const_cast<uType &>(constU)}; 2843 if (auto *func{ 2844 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2845 parser::FunctionReference &funcRef{func->value()}; 2846 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2847 if (Symbol * 2848 origSymbol{ 2849 std::visit(common::visitors{ 2850 [&](parser::Name &name) { return name.symbol; }, 2851 [&](parser::ProcComponentRef &pcr) { 2852 return pcr.v.thing.component.symbol; 2853 }, 2854 }, 2855 proc.u)}) { 2856 Symbol &symbol{origSymbol->GetUltimate()}; 2857 if (symbol.has<semantics::ObjectEntityDetails>() || 2858 symbol.has<semantics::AssocEntityDetails>()) { 2859 // Note that expression in AssocEntityDetails cannot be a procedure 2860 // pointer as per C1105 so this cannot be a function reference. 2861 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2862 uType>) { 2863 if (CheckFuncRefToArrayElement(context, funcRef)) { 2864 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2865 } 2866 } else { 2867 DIE("can't fix misparsed function as array reference"); 2868 } 2869 } 2870 } 2871 } 2872 } 2873 2874 // Common handling of parse tree node types that retain the 2875 // representation of the analyzed expression. 2876 template <typename PARSED> 2877 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2878 const PARSED &x, parser::CharBlock source) { 2879 if (useSavedTypedExprs_ && x.typedExpr) { 2880 return x.typedExpr->v; 2881 } 2882 auto restorer{GetContextualMessages().SetLocation(source)}; 2883 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2884 std::is_same_v<PARSED, parser::Variable>) { 2885 FixMisparsedFunctionReference(context_, x.u); 2886 } 2887 if (AssumedTypeDummy(x)) { // C710 2888 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2889 ResetExpr(x); 2890 return std::nullopt; 2891 } 2892 MaybeExpr result; 2893 if constexpr (common::HasMember<parser::StructureConstructor, 2894 std::decay_t<decltype(x.u)>> && 2895 common::HasMember<common::Indirection<parser::FunctionReference>, 2896 std::decay_t<decltype(x.u)>>) { 2897 if (const auto *funcRef{ 2898 std::get_if<common::Indirection<parser::FunctionReference>>( 2899 &x.u)}) { 2900 // Function references in Exprs might turn out to be misparsed structure 2901 // constructors; we have to try generic procedure resolution 2902 // first to be sure. 2903 std::optional<parser::StructureConstructor> ctor; 2904 result = Analyze(funcRef->value(), &ctor); 2905 if (result && ctor) { 2906 // A misparsed function reference is really a structure 2907 // constructor. Repair the parse tree in situ. 2908 const_cast<PARSED &>(x).u = std::move(*ctor); 2909 } 2910 } else { 2911 result = Analyze(x.u); 2912 } 2913 } else { 2914 result = Analyze(x.u); 2915 } 2916 if (result) { 2917 SetExpr(x, Fold(std::move(*result))); 2918 return x.typedExpr->v; 2919 } else { 2920 ResetExpr(x); 2921 if (!context_.AnyFatalError()) { 2922 std::string buf; 2923 llvm::raw_string_ostream dump{buf}; 2924 parser::DumpTree(dump, x); 2925 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2926 dump.str()); 2927 } 2928 return std::nullopt; 2929 } 2930 } 2931 2932 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2933 return ExprOrVariable(expr, expr.source); 2934 } 2935 2936 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2937 return ExprOrVariable(variable, variable.GetSource()); 2938 } 2939 2940 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 2941 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 2942 if (!useSavedTypedExprs_ || !var->typedExpr) { 2943 parser::CharBlock source{var->GetSource()}; 2944 auto restorer{GetContextualMessages().SetLocation(source)}; 2945 FixMisparsedFunctionReference(context_, var->u); 2946 if (const auto *funcRef{ 2947 std::get_if<common::Indirection<parser::FunctionReference>>( 2948 &var->u)}) { 2949 // A Selector that parsed as a Variable might turn out during analysis 2950 // to actually be a structure constructor. In that case, repair the 2951 // Variable parse tree node into an Expr 2952 std::optional<parser::StructureConstructor> ctor; 2953 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 2954 if (ctor) { 2955 auto &writable{const_cast<parser::Selector &>(selector)}; 2956 writable.u = parser::Expr{std::move(*ctor)}; 2957 auto &expr{std::get<parser::Expr>(writable.u)}; 2958 expr.source = source; 2959 SetExpr(expr, Fold(std::move(*result))); 2960 return expr.typedExpr->v; 2961 } else { 2962 SetExpr(*var, Fold(std::move(*result))); 2963 return var->typedExpr->v; 2964 } 2965 } else { 2966 ResetExpr(*var); 2967 if (context_.AnyFatalError()) { 2968 return std::nullopt; 2969 } 2970 } 2971 } 2972 } 2973 } 2974 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 2975 return Analyze(selector.u); 2976 } 2977 2978 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2979 auto restorer{common::ScopedSet(inDataStmtConstant_, true)}; 2980 return ExprOrVariable(x, x.source); 2981 } 2982 2983 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 2984 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2985 } 2986 2987 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 2988 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2989 } 2990 2991 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2992 TypeCategory category, 2993 const std::optional<parser::KindSelector> &selector) { 2994 int defaultKind{GetDefaultKind(category)}; 2995 if (!selector) { 2996 return Expr<SubscriptInteger>{defaultKind}; 2997 } 2998 return std::visit( 2999 common::visitors{ 3000 [&](const parser::ScalarIntConstantExpr &x) { 3001 if (MaybeExpr kind{Analyze(x)}) { 3002 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 3003 if (CheckIntrinsicKind(category, *code)) { 3004 return Expr<SubscriptInteger>{*code}; 3005 } 3006 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 3007 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 3008 } 3009 } 3010 return Expr<SubscriptInteger>{defaultKind}; 3011 }, 3012 [&](const parser::KindSelector::StarSize &x) { 3013 std::intmax_t size = x.v; 3014 if (!CheckIntrinsicSize(category, size)) { 3015 size = defaultKind; 3016 } else if (category == TypeCategory::Complex) { 3017 size /= 2; 3018 } 3019 return Expr<SubscriptInteger>{size}; 3020 }, 3021 }, 3022 selector->u); 3023 } 3024 3025 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 3026 return context_.GetDefaultKind(category); 3027 } 3028 3029 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 3030 common::TypeCategory category) { 3031 return {category, GetDefaultKind(category)}; 3032 } 3033 3034 bool ExpressionAnalyzer::CheckIntrinsicKind( 3035 TypeCategory category, std::int64_t kind) { 3036 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 3037 return true; 3038 } else { 3039 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3040 ToUpperCase(EnumToString(category)), kind); 3041 return false; 3042 } 3043 } 3044 3045 bool ExpressionAnalyzer::CheckIntrinsicSize( 3046 TypeCategory category, std::int64_t size) { 3047 if (category == TypeCategory::Complex) { 3048 // COMPLEX*16 == COMPLEX(KIND=8) 3049 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 3050 return true; 3051 } 3052 } else if (IsValidKindOfIntrinsicType(category, size)) { 3053 return true; 3054 } 3055 Say("%s*%jd is not a supported type"_err_en_US, 3056 ToUpperCase(EnumToString(category)), size); 3057 return false; 3058 } 3059 3060 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3061 return impliedDos_.insert(std::make_pair(name, kind)).second; 3062 } 3063 3064 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3065 auto iter{impliedDos_.find(name)}; 3066 if (iter != impliedDos_.end()) { 3067 impliedDos_.erase(iter); 3068 } 3069 } 3070 3071 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3072 parser::CharBlock name) const { 3073 auto iter{impliedDos_.find(name)}; 3074 if (iter != impliedDos_.cend()) { 3075 return {iter->second}; 3076 } else { 3077 return std::nullopt; 3078 } 3079 } 3080 3081 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3082 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3083 if (result) { 3084 if (auto type{result->GetType()}) { 3085 if (type->category() != category) { // C885 3086 Say(at, "Must have %s type, but is %s"_err_en_US, 3087 ToUpperCase(EnumToString(category)), 3088 ToUpperCase(type->AsFortran())); 3089 return false; 3090 } else if (defaultKind) { 3091 int kind{context_.GetDefaultKind(category)}; 3092 if (type->kind() != kind) { 3093 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3094 kind, ToUpperCase(EnumToString(category)), 3095 ToUpperCase(type->AsFortran())); 3096 return false; 3097 } 3098 } 3099 } else { 3100 Say(at, "Must have %s type, but is typeless"_err_en_US, 3101 ToUpperCase(EnumToString(category))); 3102 return false; 3103 } 3104 } 3105 return true; 3106 } 3107 3108 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3109 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3110 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3111 if (intrinsic->name == "null" && arguments.empty()) { 3112 return Expr<SomeType>{NullPointer{}}; 3113 } 3114 } 3115 if (const Symbol * symbol{proc.GetSymbol()}) { 3116 if (!ResolveForward(*symbol)) { 3117 return std::nullopt; 3118 } 3119 } 3120 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3121 if (chars->functionResult) { 3122 const auto &result{*chars->functionResult}; 3123 if (result.IsProcedurePointer()) { 3124 return Expr<SomeType>{ 3125 ProcedureRef{std::move(proc), std::move(arguments)}}; 3126 } else { 3127 // Not a procedure pointer, so type and shape are known. 3128 return TypedWrapper<FunctionRef, ProcedureRef>( 3129 DEREF(result.GetTypeAndShape()).type(), 3130 ProcedureRef{std::move(proc), std::move(arguments)}); 3131 } 3132 } else { 3133 Say("Function result characteristics are not known"_err_en_US); 3134 } 3135 } 3136 return std::nullopt; 3137 } 3138 3139 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3140 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3141 if (std::optional<SpecificCall> specificCall{ 3142 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3143 arguments, GetFoldingContext())}) { 3144 return MakeFunctionRef(intrinsic, 3145 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3146 std::move(specificCall->arguments)); 3147 } else { 3148 return std::nullopt; 3149 } 3150 } 3151 3152 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3153 source_.ExtendToCover(x.GetSource()); 3154 if (MaybeExpr expr{context_.Analyze(x)}) { 3155 if (!IsConstantExpr(*expr)) { 3156 actuals_.emplace_back(std::move(*expr)); 3157 return; 3158 } 3159 const Symbol *symbol{GetLastSymbol(*expr)}; 3160 if (!symbol) { 3161 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3162 x.GetSource()); 3163 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3164 auto *msg{context_.SayAt(x, 3165 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3166 symbol->name())}; 3167 if (subp->isFunction()) { 3168 const auto &result{subp->result().name()}; 3169 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 3170 } 3171 } else { 3172 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3173 symbol->name()); 3174 } 3175 } 3176 fatalErrors_ = true; 3177 } 3178 3179 void ArgumentAnalyzer::Analyze( 3180 const parser::ActualArgSpec &arg, bool isSubroutine) { 3181 // TODO: Actual arguments that are procedures and procedure pointers need to 3182 // be detected and represented (they're not expressions). 3183 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3184 std::optional<ActualArgument> actual; 3185 std::visit(common::visitors{ 3186 [&](const common::Indirection<parser::Expr> &x) { 3187 actual = AnalyzeExpr(x.value()); 3188 }, 3189 [&](const parser::AltReturnSpec &label) { 3190 if (!isSubroutine) { 3191 context_.Say( 3192 "alternate return specification may not appear on" 3193 " function reference"_err_en_US); 3194 } 3195 actual = ActualArgument(label.v); 3196 }, 3197 [&](const parser::ActualArg::PercentRef &) { 3198 context_.Say("TODO: %REF() argument"_err_en_US); 3199 }, 3200 [&](const parser::ActualArg::PercentVal &) { 3201 context_.Say("TODO: %VAL() argument"_err_en_US); 3202 }, 3203 }, 3204 std::get<parser::ActualArg>(arg.t).u); 3205 if (actual) { 3206 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3207 actual->set_keyword(argKW->v.source); 3208 } 3209 actuals_.emplace_back(std::move(*actual)); 3210 } else { 3211 fatalErrors_ = true; 3212 } 3213 } 3214 3215 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3216 const DynamicType &leftType, const DynamicType &rightType) const { 3217 CHECK(actuals_.size() == 2); 3218 return semantics::IsIntrinsicRelational( 3219 opr, leftType, GetRank(0), rightType, GetRank(1)); 3220 } 3221 3222 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3223 std::optional<DynamicType> leftType{GetType(0)}; 3224 if (actuals_.size() == 1) { 3225 if (IsBOZLiteral(0)) { 3226 return opr == NumericOperator::Add; // unary '+' 3227 } else { 3228 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3229 } 3230 } else { 3231 std::optional<DynamicType> rightType{GetType(1)}; 3232 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3233 auto cat1{rightType->category()}; 3234 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3235 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3236 auto cat0{leftType->category()}; 3237 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3238 } else { 3239 return leftType && rightType && 3240 semantics::IsIntrinsicNumeric( 3241 *leftType, GetRank(0), *rightType, GetRank(1)); 3242 } 3243 } 3244 } 3245 3246 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3247 if (std::optional<DynamicType> leftType{GetType(0)}) { 3248 if (actuals_.size() == 1) { 3249 return semantics::IsIntrinsicLogical(*leftType); 3250 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3251 return semantics::IsIntrinsicLogical( 3252 *leftType, GetRank(0), *rightType, GetRank(1)); 3253 } 3254 } 3255 return false; 3256 } 3257 3258 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3259 if (std::optional<DynamicType> leftType{GetType(0)}) { 3260 if (std::optional<DynamicType> rightType{GetType(1)}) { 3261 return semantics::IsIntrinsicConcat( 3262 *leftType, GetRank(0), *rightType, GetRank(1)); 3263 } 3264 } 3265 return false; 3266 } 3267 3268 bool ArgumentAnalyzer::CheckConformance() { 3269 if (actuals_.size() == 2) { 3270 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3271 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3272 if (lhs && rhs) { 3273 auto &foldingContext{context_.GetFoldingContext()}; 3274 auto lhShape{GetShape(foldingContext, *lhs)}; 3275 auto rhShape{GetShape(foldingContext, *rhs)}; 3276 if (lhShape && rhShape) { 3277 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3278 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3279 "left operand", "right operand") 3280 .value_or(false /*fail when conformance is not known now*/)) { 3281 fatalErrors_ = true; 3282 return false; 3283 } 3284 } 3285 } 3286 } 3287 return true; // no proven problem 3288 } 3289 3290 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3291 for (const std::optional<ActualArgument> &arg : actuals_) { 3292 if (arg) { 3293 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3294 if (IsNullPointer(*expr)) { 3295 context_.Say( 3296 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3297 fatalErrors_ = true; 3298 return false; 3299 } 3300 } 3301 } 3302 } 3303 return true; 3304 } 3305 3306 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3307 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3308 bool isUserOp) { 3309 if (AnyUntypedOrMissingOperand()) { 3310 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3311 return std::nullopt; 3312 } 3313 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3314 if (!definedOpSymbolPtr) { 3315 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3316 } 3317 { 3318 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3319 std::string oprNameString{ 3320 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3321 parser::CharBlock oprName{oprNameString}; 3322 const auto &scope{context_.context().FindScope(source_)}; 3323 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3324 *definedOpSymbolPtr = symbol; 3325 parser::Name name{symbol->name(), symbol}; 3326 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3327 return result; 3328 } 3329 } 3330 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3331 if (const Symbol * 3332 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3333 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3334 return result; 3335 } 3336 } 3337 } 3338 } 3339 if (*definedOpSymbolPtr) { 3340 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3341 } else if (actuals_.size() == 1 || AreConformable()) { 3342 if (CheckForNullPointer()) { 3343 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3344 } 3345 } else { 3346 context_.Say( 3347 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3348 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3349 } 3350 return std::nullopt; 3351 } 3352 3353 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3354 std::vector<const char *> oprs, parser::MessageFixedText error) { 3355 const Symbol *definedOpSymbolPtr{nullptr}; 3356 for (std::size_t i{1}; i < oprs.size(); ++i) { 3357 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3358 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3359 return result; 3360 } 3361 } 3362 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3363 } 3364 3365 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3366 ActualArguments localActuals{actuals_}; 3367 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3368 if (!proc) { 3369 proc = &symbol; 3370 localActuals.at(passIndex).value().set_isPassedObject(); 3371 } 3372 CheckConformance(); 3373 return context_.MakeFunctionRef( 3374 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3375 } 3376 3377 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3378 using semantics::Tristate; 3379 const Expr<SomeType> &lhs{GetExpr(0)}; 3380 const Expr<SomeType> &rhs{GetExpr(1)}; 3381 std::optional<DynamicType> lhsType{lhs.GetType()}; 3382 std::optional<DynamicType> rhsType{rhs.GetType()}; 3383 int lhsRank{lhs.Rank()}; 3384 int rhsRank{rhs.Rank()}; 3385 Tristate isDefined{ 3386 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3387 if (isDefined == Tristate::No) { 3388 if (lhsType && rhsType) { 3389 AddAssignmentConversion(*lhsType, *rhsType); 3390 } 3391 return std::nullopt; // user-defined assignment not allowed for these args 3392 } 3393 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3394 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3395 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3396 context_.Say( 3397 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3398 DEREF(procRef->proc().GetSymbol()).name()); 3399 } 3400 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3401 return std::move(*procRef); 3402 } 3403 if (isDefined == Tristate::Yes) { 3404 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3405 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3406 SayNoMatch("ASSIGNMENT(=)", true); 3407 } 3408 } 3409 return std::nullopt; 3410 } 3411 3412 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3413 TypeCategory lhs, TypeCategory rhs) { 3414 if (!context_.context().languageFeatures().IsEnabled( 3415 common::LanguageFeature::LogicalIntegerAssignment)) { 3416 return false; 3417 } 3418 std::optional<parser::MessageFixedText> msg; 3419 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3420 // allow assignment to LOGICAL from INTEGER as a legacy extension 3421 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 3422 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3423 // ... and assignment to LOGICAL from INTEGER 3424 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 3425 } else { 3426 return false; 3427 } 3428 if (context_.context().languageFeatures().ShouldWarn( 3429 common::LanguageFeature::LogicalIntegerAssignment)) { 3430 context_.Say(std::move(*msg)); 3431 } 3432 return true; 3433 } 3434 3435 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3436 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3437 std::string oprNameString{"assignment(=)"}; 3438 parser::CharBlock oprName{oprNameString}; 3439 const Symbol *proc{nullptr}; 3440 const auto &scope{context_.context().FindScope(source_)}; 3441 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3442 ExpressionAnalyzer::AdjustActuals noAdjustment; 3443 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}; 3444 if (pair.first) { 3445 proc = pair.first; 3446 } else { 3447 context_.EmitGenericResolutionError(*symbol, pair.second); 3448 } 3449 } 3450 int passedObjectIndex{-1}; 3451 const Symbol *definedOpSymbol{nullptr}; 3452 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3453 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3454 if (const Symbol * 3455 resolution{GetBindingResolution(GetType(i), *specific)}) { 3456 proc = resolution; 3457 } else { 3458 proc = specific; 3459 passedObjectIndex = i; 3460 } 3461 } 3462 } 3463 if (!proc) { 3464 return std::nullopt; 3465 } 3466 ActualArguments actualsCopy{actuals_}; 3467 if (passedObjectIndex >= 0) { 3468 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3469 } 3470 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3471 } 3472 3473 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3474 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3475 << '\n'; 3476 for (const auto &actual : actuals_) { 3477 if (!actual.has_value()) { 3478 os << "- error\n"; 3479 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3480 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3481 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3482 expr->AsFortran(os << "- expr: ") << '\n'; 3483 } else { 3484 DIE("bad ActualArgument"); 3485 } 3486 } 3487 } 3488 3489 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3490 const parser::Expr &expr) { 3491 source_.ExtendToCover(expr.source); 3492 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3493 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3494 if (isProcedureCall_) { 3495 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 3496 } 3497 context_.SayAt(expr.source, 3498 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3499 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3500 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3501 return ActualArgument{std::move(*argExpr)}; 3502 } 3503 context_.SayAt(expr.source, 3504 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3505 : "Subroutine name is not allowed here"_err_en_US); 3506 } 3507 return std::nullopt; 3508 } 3509 3510 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3511 const parser::Expr &expr) { 3512 // If an expression's parse tree is a whole assumed-size array: 3513 // Expr -> Designator -> DataRef -> Name 3514 // treat it as a special case for argument passing and bypass 3515 // the C1002/C1014 constraint checking in expression semantics. 3516 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3517 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3518 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3519 return context_.Analyze(expr); 3520 } 3521 } 3522 return context_.Analyze(expr); 3523 } 3524 3525 bool ArgumentAnalyzer::AreConformable() const { 3526 CHECK(actuals_.size() == 2); 3527 return actuals_[0] && actuals_[1] && 3528 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3529 } 3530 3531 // Look for a type-bound operator in the type of arg number passIndex. 3532 const Symbol *ArgumentAnalyzer::FindBoundOp( 3533 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3534 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3535 if (!type || !type->scope()) { 3536 return nullptr; 3537 } 3538 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3539 if (!symbol) { 3540 return nullptr; 3541 } 3542 definedOp = symbol; 3543 ExpressionAnalyzer::AdjustActuals adjustment{ 3544 [&](const Symbol &proc, ActualArguments &) { 3545 return passIndex == GetPassIndex(proc); 3546 }}; 3547 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3548 if (!pair.first) { 3549 context_.EmitGenericResolutionError(*symbol, pair.second); 3550 } 3551 return pair.first; 3552 } 3553 3554 // If there is an implicit conversion between intrinsic types, make it explicit 3555 void ArgumentAnalyzer::AddAssignmentConversion( 3556 const DynamicType &lhsType, const DynamicType &rhsType) { 3557 if (lhsType.category() == rhsType.category() && 3558 lhsType.kind() == rhsType.kind()) { 3559 // no conversion necessary 3560 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3561 actuals_[1] = ActualArgument{*rhsExpr}; 3562 } else { 3563 actuals_[1] = std::nullopt; 3564 } 3565 } 3566 3567 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3568 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3569 } 3570 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3571 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3572 } 3573 3574 // If the argument at index i is a BOZ literal, convert its type to match the 3575 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3576 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3577 // is not currently supported. 3578 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3579 std::size_t i, std::optional<DynamicType> otherType) { 3580 if (IsBOZLiteral(i)) { 3581 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3582 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3583 if (otherType && otherType->category() == TypeCategory::Real) { 3584 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3585 MaybeExpr realExpr{ 3586 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3587 actuals_[i] = std::move(*realExpr); 3588 thisType.emplace(TypeCategory::Real, kind); 3589 } else { 3590 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3591 MaybeExpr intExpr{ 3592 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3593 actuals_[i] = std::move(*intExpr); 3594 thisType.emplace(TypeCategory::Integer, kind); 3595 } 3596 } 3597 } 3598 3599 // Report error resolving opr when there is a user-defined one available 3600 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3601 std::string type0{TypeAsFortran(0)}; 3602 auto rank0{actuals_[0]->Rank()}; 3603 if (actuals_.size() == 1) { 3604 if (rank0 > 0) { 3605 context_.Say("No intrinsic or user-defined %s matches " 3606 "rank %d array of %s"_err_en_US, 3607 opr, rank0, type0); 3608 } else { 3609 context_.Say("No intrinsic or user-defined %s matches " 3610 "operand type %s"_err_en_US, 3611 opr, type0); 3612 } 3613 } else { 3614 std::string type1{TypeAsFortran(1)}; 3615 auto rank1{actuals_[1]->Rank()}; 3616 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3617 context_.Say("No intrinsic or user-defined %s matches " 3618 "rank %d array of %s and rank %d array of %s"_err_en_US, 3619 opr, rank0, type0, rank1, type1); 3620 } else if (isAssignment && rank0 != rank1) { 3621 if (rank0 == 0) { 3622 context_.Say("No intrinsic or user-defined %s matches " 3623 "scalar %s and rank %d array of %s"_err_en_US, 3624 opr, type0, rank1, type1); 3625 } else { 3626 context_.Say("No intrinsic or user-defined %s matches " 3627 "rank %d array of %s and scalar %s"_err_en_US, 3628 opr, rank0, type0, type1); 3629 } 3630 } else { 3631 context_.Say("No intrinsic or user-defined %s matches " 3632 "operand types %s and %s"_err_en_US, 3633 opr, type0, type1); 3634 } 3635 } 3636 } 3637 3638 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3639 if (i >= actuals_.size() || !actuals_[i]) { 3640 return "missing argument"; 3641 } else if (std::optional<DynamicType> type{GetType(i)}) { 3642 return type->category() == TypeCategory::Derived 3643 ? "TYPE("s + type->AsFortran() + ')' 3644 : type->category() == TypeCategory::Character 3645 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3646 : ToUpperCase(type->AsFortran()); 3647 } else { 3648 return "untyped"; 3649 } 3650 } 3651 3652 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3653 for (const auto &actual : actuals_) { 3654 if (!actual || 3655 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3656 return true; 3657 } 3658 } 3659 return false; 3660 } 3661 } // namespace Fortran::evaluate 3662 3663 namespace Fortran::semantics { 3664 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3665 SemanticsContext &context, common::TypeCategory category, 3666 const std::optional<parser::KindSelector> &selector) { 3667 evaluate::ExpressionAnalyzer analyzer{context}; 3668 auto restorer{ 3669 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3670 return analyzer.AnalyzeKindSelector(category, selector); 3671 } 3672 3673 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3674 3675 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3676 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3677 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3678 auto name{bounds.name.thing.thing}; 3679 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3680 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3681 if (dynamicType->category() == TypeCategory::Integer) { 3682 kind = dynamicType->kind(); 3683 } 3684 } 3685 exprAnalyzer_.AddImpliedDo(name.source, kind); 3686 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3687 exprAnalyzer_.RemoveImpliedDo(name.source); 3688 return false; 3689 } 3690 3691 bool ExprChecker::Walk(const parser::Program &program) { 3692 parser::Walk(program, *this); 3693 return !context_.AnyFatalError(); 3694 } 3695 } // namespace Fortran::semantics 3696