1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/Fortran.h"
14 #include "flang/Common/idioms.h"
15 #include "flang/Evaluate/common.h"
16 #include "flang/Evaluate/fold.h"
17 #include "flang/Evaluate/tools.h"
18 #include "flang/Parser/characters.h"
19 #include "flang/Parser/dump-parse-tree.h"
20 #include "flang/Parser/parse-tree-visitor.h"
21 #include "flang/Parser/parse-tree.h"
22 #include "flang/Semantics/scope.h"
23 #include "flang/Semantics/semantics.h"
24 #include "flang/Semantics/symbol.h"
25 #include "flang/Semantics/tools.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <functional>
29 #include <optional>
30 #include <set>
31 
32 // Typedef for optional generic expressions (ubiquitous in this file)
33 using MaybeExpr =
34     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
35 
36 // Much of the code that implements semantic analysis of expressions is
37 // tightly coupled with their typed representations in lib/Evaluate,
38 // and appears here in namespace Fortran::evaluate for convenience.
39 namespace Fortran::evaluate {
40 
41 using common::LanguageFeature;
42 using common::NumericOperator;
43 using common::TypeCategory;
44 
45 static inline std::string ToUpperCase(const std::string &str) {
46   return parser::ToUpperCaseLetters(str);
47 }
48 
49 struct DynamicTypeWithLength : public DynamicType {
50   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
51   std::optional<Expr<SubscriptInteger>> LEN() const;
52   std::optional<Expr<SubscriptInteger>> length;
53 };
54 
55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
56   if (length) {
57     return length;
58   } else {
59     return GetCharLength();
60   }
61 }
62 
63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
64     const std::optional<parser::TypeSpec> &spec) {
65   if (spec) {
66     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
67       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
68       // (viz., an intrinsic type with valid known kind or a non-polymorphic
69       // & non-ABSTRACT derived type).
70       if (const semantics::IntrinsicTypeSpec *
71           intrinsic{typeSpec->AsIntrinsic()}) {
72         TypeCategory category{intrinsic->category()};
73         if (auto optKind{ToInt64(intrinsic->kind())}) {
74           int kind{static_cast<int>(*optKind)};
75           if (category == TypeCategory::Character) {
76             const semantics::CharacterTypeSpec &cts{
77                 typeSpec->characterTypeSpec()};
78             const semantics::ParamValue &len{cts.length()};
79             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
80             // type guards, but not in array constructors.
81             return DynamicTypeWithLength{DynamicType{kind, len}};
82           } else {
83             return DynamicTypeWithLength{DynamicType{category, kind}};
84           }
85         }
86       } else if (const semantics::DerivedTypeSpec *
87           derived{typeSpec->AsDerived()}) {
88         return DynamicTypeWithLength{DynamicType{*derived}};
89       }
90     }
91   }
92   return std::nullopt;
93 }
94 
95 class ArgumentAnalyzer {
96 public:
97   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
98       : context_{context}, source_{context.GetContextualMessages().at()},
99         isProcedureCall_{false} {}
100   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
101       bool isProcedureCall = false)
102       : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
103   bool fatalErrors() const { return fatalErrors_; }
104   ActualArguments &&GetActuals() {
105     CHECK(!fatalErrors_);
106     return std::move(actuals_);
107   }
108   const Expr<SomeType> &GetExpr(std::size_t i) const {
109     return DEREF(actuals_.at(i).value().UnwrapExpr());
110   }
111   Expr<SomeType> &&MoveExpr(std::size_t i) {
112     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
113   }
114   void Analyze(const common::Indirection<parser::Expr> &x) {
115     Analyze(x.value());
116   }
117   void Analyze(const parser::Expr &x) {
118     actuals_.emplace_back(AnalyzeExpr(x));
119     fatalErrors_ |= !actuals_.back();
120   }
121   void Analyze(const parser::Variable &);
122   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
123   void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i,
124       std::optional<DynamicType> otherType);
125 
126   bool IsIntrinsicRelational(
127       RelationalOperator, const DynamicType &, const DynamicType &) const;
128   bool IsIntrinsicLogical() const;
129   bool IsIntrinsicNumeric(NumericOperator) const;
130   bool IsIntrinsicConcat() const;
131 
132   bool CheckConformance();
133   bool CheckForNullPointer(const char *where = "as an operand here");
134 
135   // Find and return a user-defined operator or report an error.
136   // The provided message is used if there is no such operator.
137   MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText,
138       const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false);
139   template <typename E>
140   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) {
141     return TryDefinedOp(
142         context_.context().languageFeatures().GetNames(opr), msg);
143   }
144   // Find and return a user-defined assignment
145   std::optional<ProcedureRef> TryDefinedAssignment();
146   std::optional<ProcedureRef> GetDefinedAssignmentProc();
147   std::optional<DynamicType> GetType(std::size_t) const;
148   void Dump(llvm::raw_ostream &);
149 
150 private:
151   MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText);
152   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
153   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
154   MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &);
155   bool AreConformable() const;
156   const Symbol *FindBoundOp(
157       parser::CharBlock, int passIndex, const Symbol *&definedOp);
158   void AddAssignmentConversion(
159       const DynamicType &lhsType, const DynamicType &rhsType);
160   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
161   int GetRank(std::size_t) const;
162   bool IsBOZLiteral(std::size_t i) const {
163     return evaluate::IsBOZLiteral(GetExpr(i));
164   }
165   void SayNoMatch(const std::string &, bool isAssignment = false);
166   std::string TypeAsFortran(std::size_t);
167   bool AnyUntypedOrMissingOperand();
168 
169   ExpressionAnalyzer &context_;
170   ActualArguments actuals_;
171   parser::CharBlock source_;
172   bool fatalErrors_{false};
173   const bool isProcedureCall_; // false for user-defined op or assignment
174 };
175 
176 // Wraps a data reference in a typed Designator<>, and a procedure
177 // or procedure pointer reference in a ProcedureDesignator.
178 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
179   const Symbol &last{ref.GetLastSymbol()};
180   const Symbol &symbol{BypassGeneric(last).GetUltimate()};
181   if (semantics::IsProcedure(symbol)) {
182     if (auto *component{std::get_if<Component>(&ref.u)}) {
183       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
184     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
185       DIE("unexpected alternative in DataRef");
186     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
187       if (symbol.has<semantics::GenericDetails>()) {
188         Say("'%s' is not a specific procedure"_err_en_US, symbol.name());
189       } else {
190         return Expr<SomeType>{ProcedureDesignator{symbol}};
191       }
192     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
193                    symbol.name().ToString())};
194                interface && !interface->isRestrictedSpecific) {
195       SpecificIntrinsic intrinsic{
196           symbol.name().ToString(), std::move(*interface)};
197       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
198       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
199     } else {
200       Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US,
201           symbol.name());
202     }
203     return std::nullopt;
204   } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) {
205     return result;
206   } else {
207     if (!context_.HasError(last) && !context_.HasError(symbol)) {
208       AttachDeclaration(
209           Say("'%s' is not an object that can appear in an expression"_err_en_US,
210               last.name()),
211           symbol);
212       context_.SetError(last);
213     }
214     return std::nullopt;
215   }
216 }
217 
218 // Some subscript semantic checks must be deferred until all of the
219 // subscripts are in hand.
220 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
221   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
222   int symbolRank{symbol.Rank()};
223   int subscripts{static_cast<int>(ref.size())};
224   if (subscripts == 0) {
225     return std::nullopt; // error recovery
226   } else if (subscripts != symbolRank) {
227     if (symbolRank != 0) {
228       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
229           symbolRank, symbol.name(), subscripts);
230     }
231     return std::nullopt;
232   } else if (Component * component{ref.base().UnwrapComponent()}) {
233     int baseRank{component->base().Rank()};
234     if (baseRank > 0) {
235       int subscriptRank{0};
236       for (const auto &expr : ref.subscript()) {
237         subscriptRank += expr.Rank();
238       }
239       if (subscriptRank > 0) { // C919a
240         Say("Subscripts of component '%s' of rank-%d derived type "
241             "array have rank %d but must all be scalar"_err_en_US,
242             symbol.name(), baseRank, subscriptRank);
243         return std::nullopt;
244       }
245     }
246   } else if (const auto *object{
247                  symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
248     // C928 & C1002
249     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
250       if (!last->upper() && object->IsAssumedSize()) {
251         Say("Assumed-size array '%s' must have explicit final "
252             "subscript upper bound value"_err_en_US,
253             symbol.name());
254         return std::nullopt;
255       }
256     }
257   } else {
258     // Shouldn't get here from Analyze(ArrayElement) without a valid base,
259     // which, if not an object, must be a construct entity from
260     // SELECT TYPE/RANK or ASSOCIATE.
261     CHECK(symbol.has<semantics::AssocEntityDetails>());
262   }
263   return Designate(DataRef{std::move(ref)});
264 }
265 
266 // Applies subscripts to a data reference.
267 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
268     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
269   if (subscripts.empty()) {
270     return std::nullopt; // error recovery
271   }
272   return std::visit(
273       common::visitors{
274           [&](SymbolRef &&symbol) {
275             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
276           },
277           [&](Component &&c) {
278             return CompleteSubscripts(
279                 ArrayRef{std::move(c), std::move(subscripts)});
280           },
281           [&](auto &&) -> MaybeExpr {
282             DIE("bad base for ArrayRef");
283             return std::nullopt;
284           },
285       },
286       std::move(dataRef.u));
287 }
288 
289 // Top-level checks for data references.
290 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
291   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
292     const Symbol &symbol{component->GetLastSymbol()};
293     int componentRank{symbol.Rank()};
294     if (componentRank > 0) {
295       int baseRank{component->base().Rank()};
296       if (baseRank > 0) { // C919a
297         Say("Reference to whole rank-%d component '%%%s' of "
298             "rank-%d array of derived type is not allowed"_err_en_US,
299             componentRank, symbol.name(), baseRank);
300       }
301     }
302   }
303   return Designate(std::move(dataRef));
304 }
305 
306 // Parse tree correction after a substring S(j:k) was misparsed as an
307 // array section.  N.B. Fortran substrings have to have a range, not a
308 // single index.
309 static void FixMisparsedSubstring(const parser::Designator &d) {
310   auto &mutate{const_cast<parser::Designator &>(d)};
311   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
312     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
313             &dataRef->u)}) {
314       parser::ArrayElement &arrElement{ae->value()};
315       if (!arrElement.subscripts.empty()) {
316         auto iter{arrElement.subscripts.begin()};
317         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
318           if (!std::get<2>(triplet->t) /* no stride */ &&
319               ++iter == arrElement.subscripts.end() /* one subscript */) {
320             if (Symbol *
321                 symbol{std::visit(
322                     common::visitors{
323                         [](parser::Name &n) { return n.symbol; },
324                         [](common::Indirection<parser::StructureComponent>
325                                 &sc) { return sc.value().component.symbol; },
326                         [](auto &) -> Symbol * { return nullptr; },
327                     },
328                     arrElement.base.u)}) {
329               const Symbol &ultimate{symbol->GetUltimate()};
330               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
331                 if (!ultimate.IsObjectArray() &&
332                     type->category() == semantics::DeclTypeSpec::Character) {
333                   // The ambiguous S(j:k) was parsed as an array section
334                   // reference, but it's now clear that it's a substring.
335                   // Fix the parse tree in situ.
336                   mutate.u = arrElement.ConvertToSubstring();
337                 }
338               }
339             }
340           }
341         }
342       }
343     }
344   }
345 }
346 
347 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
348   auto restorer{GetContextualMessages().SetLocation(d.source)};
349   FixMisparsedSubstring(d);
350   // These checks have to be deferred to these "top level" data-refs where
351   // we can be sure that there are no following subscripts (yet).
352   // Substrings have already been run through TopLevelChecks() and
353   // won't be returned by ExtractDataRef().
354   if (MaybeExpr result{Analyze(d.u)}) {
355     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
356       return TopLevelChecks(std::move(*dataRef));
357     }
358     return result;
359   }
360   return std::nullopt;
361 }
362 
363 // A utility subroutine to repackage optional expressions of various levels
364 // of type specificity as fully general MaybeExpr values.
365 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
366   return AsGenericExpr(std::move(x));
367 }
368 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
369   if (x) {
370     return AsMaybeExpr(std::move(*x));
371   }
372   return std::nullopt;
373 }
374 
375 // Type kind parameter values for literal constants.
376 int ExpressionAnalyzer::AnalyzeKindParam(
377     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
378   if (!kindParam) {
379     return defaultKind;
380   }
381   return std::visit(
382       common::visitors{
383           [](std::uint64_t k) { return static_cast<int>(k); },
384           [&](const parser::Scalar<
385               parser::Integer<parser::Constant<parser::Name>>> &n) {
386             if (MaybeExpr ie{Analyze(n)}) {
387               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
388                 int iv = *i64;
389                 if (iv == *i64) {
390                   return iv;
391                 }
392               }
393             }
394             return defaultKind;
395           },
396       },
397       kindParam->u);
398 }
399 
400 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
401 struct IntTypeVisitor {
402   using Result = MaybeExpr;
403   using Types = IntegerTypes;
404   template <typename T> Result Test() {
405     if (T::kind >= kind) {
406       const char *p{digits.begin()};
407       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
408       if (!value.overflow) {
409         if (T::kind > kind) {
410           if (!isDefaultKind ||
411               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
412             return std::nullopt;
413           } else if (analyzer.context().ShouldWarn(
414                          LanguageFeature::BigIntLiterals)) {
415             analyzer.Say(digits,
416                 "Integer literal is too large for default INTEGER(KIND=%d); "
417                 "assuming INTEGER(KIND=%d)"_en_US,
418                 kind, T::kind);
419           }
420         }
421         return Expr<SomeType>{
422             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
423       }
424     }
425     return std::nullopt;
426   }
427   ExpressionAnalyzer &analyzer;
428   parser::CharBlock digits;
429   int kind;
430   bool isDefaultKind;
431 };
432 
433 template <typename PARSED>
434 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
435   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
436   bool isDefaultKind{!kindParam};
437   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
438   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
439     auto digits{std::get<parser::CharBlock>(x.t)};
440     if (MaybeExpr result{common::SearchTypes(
441             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
442       return result;
443     } else if (isDefaultKind) {
444       Say(digits,
445           "Integer literal is too large for any allowable "
446           "kind of INTEGER"_err_en_US);
447     } else {
448       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
449           kind);
450     }
451   }
452   return std::nullopt;
453 }
454 
455 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
456   auto restorer{
457       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
458   return IntLiteralConstant(x);
459 }
460 
461 MaybeExpr ExpressionAnalyzer::Analyze(
462     const parser::SignedIntLiteralConstant &x) {
463   auto restorer{GetContextualMessages().SetLocation(x.source)};
464   return IntLiteralConstant(x);
465 }
466 
467 template <typename TYPE>
468 Constant<TYPE> ReadRealLiteral(
469     parser::CharBlock source, FoldingContext &context) {
470   const char *p{source.begin()};
471   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
472   CHECK(p == source.end());
473   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
474   auto value{valWithFlags.value};
475   if (context.flushSubnormalsToZero()) {
476     value = value.FlushSubnormalToZero();
477   }
478   return {value};
479 }
480 
481 struct RealTypeVisitor {
482   using Result = std::optional<Expr<SomeReal>>;
483   using Types = RealTypes;
484 
485   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
486       : kind{k}, literal{lit}, context{ctx} {}
487 
488   template <typename T> Result Test() {
489     if (kind == T::kind) {
490       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
491     }
492     return std::nullopt;
493   }
494 
495   int kind;
496   parser::CharBlock literal;
497   FoldingContext &context;
498 };
499 
500 // Reads a real literal constant and encodes it with the right kind.
501 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
502   // Use a local message context around the real literal for better
503   // provenance on any messages.
504   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
505   // If a kind parameter appears, it defines the kind of the literal and the
506   // letter used in an exponent part must be 'E' (e.g., the 'E' in
507   // "6.02214E+23").  In the absence of an explicit kind parameter, any
508   // exponent letter determines the kind.  Otherwise, defaults apply.
509   auto &defaults{context_.defaultKinds()};
510   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
511   const char *end{x.real.source.end()};
512   char expoLetter{' '};
513   std::optional<int> letterKind;
514   for (const char *p{x.real.source.begin()}; p < end; ++p) {
515     if (parser::IsLetter(*p)) {
516       expoLetter = *p;
517       switch (expoLetter) {
518       case 'e':
519         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
520         break;
521       case 'd':
522         letterKind = defaults.doublePrecisionKind();
523         break;
524       case 'q':
525         letterKind = defaults.quadPrecisionKind();
526         break;
527       default:
528         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
529       }
530       break;
531     }
532   }
533   if (letterKind) {
534     defaultKind = *letterKind;
535   }
536   // C716 requires 'E' as an exponent, but this is more useful
537   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
538   if (letterKind && kind != *letterKind && expoLetter != 'e') {
539     Say("Explicit kind parameter on real constant disagrees with "
540         "exponent letter '%c'"_en_US,
541         expoLetter);
542   }
543   auto result{common::SearchTypes(
544       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
545   if (!result) { // C717
546     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
547   }
548   return AsMaybeExpr(std::move(result));
549 }
550 
551 MaybeExpr ExpressionAnalyzer::Analyze(
552     const parser::SignedRealLiteralConstant &x) {
553   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
554     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
555     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
556       if (sign == parser::Sign::Negative) {
557         return AsGenericExpr(-std::move(realExpr));
558       }
559     }
560     return result;
561   }
562   return std::nullopt;
563 }
564 
565 MaybeExpr ExpressionAnalyzer::Analyze(
566     const parser::SignedComplexLiteralConstant &x) {
567   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
568   if (!result) {
569     return std::nullopt;
570   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
571     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
572   } else {
573     return result;
574   }
575 }
576 
577 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
578   return Analyze(x.u);
579 }
580 
581 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
582   return AsMaybeExpr(
583       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
584           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
585 }
586 
587 // CHARACTER literal processing.
588 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
589   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
590     return std::nullopt;
591   }
592   switch (kind) {
593   case 1:
594     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
595         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
596             string, true)});
597   case 2:
598     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
599         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
600             string, true)});
601   case 4:
602     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
603         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
604             string, true)});
605   default:
606     CRASH_NO_CASE;
607   }
608 }
609 
610 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
611   int kind{
612       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
613   auto value{std::get<std::string>(x.t)};
614   return AnalyzeString(std::move(value), kind);
615 }
616 
617 MaybeExpr ExpressionAnalyzer::Analyze(
618     const parser::HollerithLiteralConstant &x) {
619   int kind{GetDefaultKind(TypeCategory::Character)};
620   auto value{x.v};
621   return AnalyzeString(std::move(value), kind);
622 }
623 
624 // .TRUE. and .FALSE. of various kinds
625 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
626   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
627       GetDefaultKind(TypeCategory::Logical))};
628   bool value{std::get<bool>(x.t)};
629   auto result{common::SearchTypes(
630       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
631           kind, std::move(value)})};
632   if (!result) {
633     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
634   }
635   return result;
636 }
637 
638 // BOZ typeless literals
639 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
640   const char *p{x.v.c_str()};
641   std::uint64_t base{16};
642   switch (*p++) {
643   case 'b':
644     base = 2;
645     break;
646   case 'o':
647     base = 8;
648     break;
649   case 'z':
650     break;
651   case 'x':
652     break;
653   default:
654     CRASH_NO_CASE;
655   }
656   CHECK(*p == '"');
657   ++p;
658   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
659   if (*p != '"') {
660     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
661         x.v); // C7107, C7108
662     return std::nullopt;
663   }
664   if (value.overflow) {
665     Say("BOZ literal '%s' too large"_err_en_US, x.v);
666     return std::nullopt;
667   }
668   return AsGenericExpr(std::move(value.value));
669 }
670 
671 // Names and named constants
672 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
673   auto restorer{GetContextualMessages().SetLocation(n.source)};
674   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
675     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
676         *kind, AsExpr(ImpliedDoIndex{n.source})));
677   } else if (context_.HasError(n)) {
678     return std::nullopt;
679   } else if (!n.symbol) {
680     SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source);
681     return std::nullopt;
682   } else {
683     const Symbol &ultimate{n.symbol->GetUltimate()};
684     if (ultimate.has<semantics::TypeParamDetails>()) {
685       // A bare reference to a derived type parameter (within a parameterized
686       // derived type definition)
687       return Fold(ConvertToType(
688           ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate})));
689     } else {
690       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
691         if (const semantics::Scope *
692             pure{semantics::FindPureProcedureContaining(
693                 context_.FindScope(n.source))}) {
694           SayAt(n,
695               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
696               n.source, DEREF(pure->symbol()).name());
697           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
698         }
699       }
700       if (!isWholeAssumedSizeArrayOk_ &&
701           semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231
702         AttachDeclaration(
703             SayAt(n,
704                 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US,
705                 n.source),
706             *n.symbol);
707       }
708       return Designate(DataRef{*n.symbol});
709     }
710   }
711 }
712 
713 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
714   auto restorer{GetContextualMessages().SetLocation(n.v.source)};
715   if (MaybeExpr value{Analyze(n.v)}) {
716     Expr<SomeType> folded{Fold(std::move(*value))};
717     if (IsConstantExpr(folded)) {
718       return folded;
719     }
720     Say(n.v.source, "must be a constant"_err_en_US); // C718
721   }
722   return std::nullopt;
723 }
724 
725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) {
726   if (MaybeExpr value{Analyze(n.v)}) {
727     // Subtle: when the NullInit is a DataStmtConstant, it might
728     // be a misparse of a structure constructor without parameters
729     // or components (e.g., T()).  Checking the result to ensure
730     // that a "=>" data entity initializer actually resolved to
731     // a null pointer has to be done by the caller.
732     return Fold(std::move(*value));
733   }
734   return std::nullopt;
735 }
736 
737 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
738   return Analyze(x.value());
739 }
740 
741 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
742   if (const auto &repeat{
743           std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
744     x.repetitions = -1;
745     if (MaybeExpr expr{Analyze(repeat->u)}) {
746       Expr<SomeType> folded{Fold(std::move(*expr))};
747       if (auto value{ToInt64(folded)}) {
748         if (*value >= 0) { // C882
749           x.repetitions = *value;
750         } else {
751           Say(FindSourceLocation(repeat),
752               "Repeat count (%jd) for data value must not be negative"_err_en_US,
753               *value);
754         }
755       }
756     }
757   }
758   return Analyze(std::get<parser::DataStmtConstant>(x.t));
759 }
760 
761 // Substring references
762 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
763     const std::optional<parser::ScalarIntExpr> &bound) {
764   if (bound) {
765     if (MaybeExpr expr{Analyze(*bound)}) {
766       if (expr->Rank() > 1) {
767         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
768       }
769       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
770         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
771           return {std::move(*ssIntExpr)};
772         }
773         return {Expr<SubscriptInteger>{
774             Convert<SubscriptInteger, TypeCategory::Integer>{
775                 std::move(*intExpr)}}};
776       } else {
777         Say("substring bound expression is not INTEGER"_err_en_US);
778       }
779     }
780   }
781   return std::nullopt;
782 }
783 
784 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
785   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
786     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
787       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
788         if (std::optional<DataRef> checked{
789                 ExtractDataRef(std::move(*newBaseExpr))}) {
790           const parser::SubstringRange &range{
791               std::get<parser::SubstringRange>(ss.t)};
792           std::optional<Expr<SubscriptInteger>> first{
793               GetSubstringBound(std::get<0>(range.t))};
794           std::optional<Expr<SubscriptInteger>> last{
795               GetSubstringBound(std::get<1>(range.t))};
796           const Symbol &symbol{checked->GetLastSymbol()};
797           if (std::optional<DynamicType> dynamicType{
798                   DynamicType::From(symbol)}) {
799             if (dynamicType->category() == TypeCategory::Character) {
800               return WrapperHelper<TypeCategory::Character, Designator,
801                   Substring>(dynamicType->kind(),
802                   Substring{std::move(checked.value()), std::move(first),
803                       std::move(last)});
804             }
805           }
806           Say("substring may apply only to CHARACTER"_err_en_US);
807         }
808       }
809     }
810   }
811   return std::nullopt;
812 }
813 
814 // CHARACTER literal substrings
815 MaybeExpr ExpressionAnalyzer::Analyze(
816     const parser::CharLiteralConstantSubstring &x) {
817   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
818   std::optional<Expr<SubscriptInteger>> lower{
819       GetSubstringBound(std::get<0>(range.t))};
820   std::optional<Expr<SubscriptInteger>> upper{
821       GetSubstringBound(std::get<1>(range.t))};
822   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
823     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
824       Expr<SubscriptInteger> length{
825           std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
826               charExpr->u)};
827       if (!lower) {
828         lower = Expr<SubscriptInteger>{1};
829       }
830       if (!upper) {
831         upper = Expr<SubscriptInteger>{
832             static_cast<std::int64_t>(ToInt64(length).value())};
833       }
834       return std::visit(
835           [&](auto &&ckExpr) -> MaybeExpr {
836             using Result = ResultType<decltype(ckExpr)>;
837             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
838             CHECK(DEREF(cp).size() == 1);
839             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
840             staticData->set_alignment(Result::kind)
841                 .set_itemBytes(Result::kind)
842                 .Push(cp->GetScalarValue().value());
843             Substring substring{std::move(staticData), std::move(lower.value()),
844                 std::move(upper.value())};
845             return AsGenericExpr(
846                 Expr<Result>{Designator<Result>{std::move(substring)}});
847           },
848           std::move(charExpr->u));
849     }
850   }
851   return std::nullopt;
852 }
853 
854 // Subscripted array references
855 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
856     MaybeExpr &&expr) {
857   if (expr) {
858     if (expr->Rank() > 1) {
859       Say("Subscript expression has rank %d greater than 1"_err_en_US,
860           expr->Rank());
861     }
862     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
863       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
864         return std::move(*ssIntExpr);
865       } else {
866         return Expr<SubscriptInteger>{
867             Convert<SubscriptInteger, TypeCategory::Integer>{
868                 std::move(*intExpr)}};
869       }
870     } else {
871       Say("Subscript expression is not INTEGER"_err_en_US);
872     }
873   }
874   return std::nullopt;
875 }
876 
877 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
878     const std::optional<parser::Subscript> &s) {
879   if (s) {
880     return AsSubscript(Analyze(*s));
881   } else {
882     return std::nullopt;
883   }
884 }
885 
886 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
887     const parser::SectionSubscript &ss) {
888   return std::visit(
889       common::visitors{
890           [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
891             const auto &lower{std::get<0>(t.t)};
892             const auto &upper{std::get<1>(t.t)};
893             const auto &stride{std::get<2>(t.t)};
894             auto result{Triplet{
895                 TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
896             if ((lower && !result.lower()) || (upper && !result.upper())) {
897               return std::nullopt;
898             } else {
899               return std::make_optional<Subscript>(result);
900             }
901           },
902           [&](const auto &s) -> std::optional<Subscript> {
903             if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
904               return Subscript{std::move(*subscriptExpr)};
905             } else {
906               return std::nullopt;
907             }
908           },
909       },
910       ss.u);
911 }
912 
913 // Empty result means an error occurred
914 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
915     const std::list<parser::SectionSubscript> &sss) {
916   bool error{false};
917   std::vector<Subscript> subscripts;
918   for (const auto &s : sss) {
919     if (auto subscript{AnalyzeSectionSubscript(s)}) {
920       subscripts.emplace_back(std::move(*subscript));
921     } else {
922       error = true;
923     }
924   }
925   return !error ? subscripts : std::vector<Subscript>{};
926 }
927 
928 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
929   MaybeExpr baseExpr;
930   {
931     auto restorer{AllowWholeAssumedSizeArray()};
932     baseExpr = Analyze(ae.base);
933   }
934   if (baseExpr) {
935     if (ae.subscripts.empty()) {
936       // will be converted to function call later or error reported
937     } else if (baseExpr->Rank() == 0) {
938       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
939         if (!context_.HasError(symbol)) {
940           if (inDataStmtConstant_) {
941             // Better error for NULL(X) with a MOLD= argument
942             Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US,
943                 symbol->name());
944           } else {
945             Say("'%s' is not an array"_err_en_US, symbol->name());
946           }
947           context_.SetError(*symbol);
948         }
949       }
950     } else if (std::optional<DataRef> dataRef{
951                    ExtractDataRef(std::move(*baseExpr))}) {
952       return ApplySubscripts(
953           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
954     } else {
955       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
956     }
957   }
958   // error was reported: analyze subscripts without reporting more errors
959   auto restorer{GetContextualMessages().DiscardMessages()};
960   AnalyzeSectionSubscripts(ae.subscripts);
961   return std::nullopt;
962 }
963 
964 // Type parameter inquiries apply to data references, but don't depend
965 // on any trailing (co)subscripts.
966 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
967   return std::visit(
968       common::visitors{
969           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
970           [](Component &&component) {
971             return NamedEntity{std::move(component)};
972           },
973           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
974           [](CoarrayRef &&coarrayRef) {
975             return NamedEntity{coarrayRef.GetLastSymbol()};
976           },
977       },
978       std::move(designator.u));
979 }
980 
981 // Components of parent derived types are explicitly represented as such.
982 std::optional<Component> ExpressionAnalyzer::CreateComponent(
983     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
984   if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b
985     Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US);
986   }
987   if (&component.owner() == &scope) {
988     return Component{std::move(base), component};
989   }
990   if (const Symbol * typeSymbol{scope.GetSymbol()}) {
991     if (const Symbol *
992         parentComponent{typeSymbol->GetParentComponent(&scope)}) {
993       if (const auto *object{
994               parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) {
995         if (const auto *parentType{object->type()}) {
996           if (const semantics::Scope *
997               parentScope{parentType->derivedTypeSpec().scope()}) {
998             return CreateComponent(
999                 DataRef{Component{std::move(base), *parentComponent}},
1000                 component, *parentScope);
1001           }
1002         }
1003       }
1004     }
1005   }
1006   return std::nullopt;
1007 }
1008 
1009 // Derived type component references and type parameter inquiries
1010 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
1011   MaybeExpr base{Analyze(sc.base)};
1012   Symbol *sym{sc.component.symbol};
1013   if (!base || !sym || context_.HasError(sym)) {
1014     return std::nullopt;
1015   }
1016   const auto &name{sc.component.source};
1017   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1018     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
1019     if (sym->detailsIf<semantics::TypeParamDetails>()) {
1020       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
1021         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
1022           if (dyType->category() == TypeCategory::Integer) {
1023             auto restorer{GetContextualMessages().SetLocation(name)};
1024             return Fold(ConvertToType(*dyType,
1025                 AsGenericExpr(TypeParamInquiry{
1026                     IgnoreAnySubscripts(std::move(*designator)), *sym})));
1027           }
1028         }
1029         Say(name, "Type parameter is not INTEGER"_err_en_US);
1030       } else {
1031         Say(name,
1032             "A type parameter inquiry must be applied to "
1033             "a designator"_err_en_US);
1034       }
1035     } else if (!dtSpec || !dtSpec->scope()) {
1036       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
1037       return std::nullopt;
1038     } else if (std::optional<DataRef> dataRef{
1039                    ExtractDataRef(std::move(*dtExpr))}) {
1040       if (auto component{
1041               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
1042         return Designate(DataRef{std::move(*component)});
1043       } else {
1044         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1045             dtSpec->typeSymbol().name());
1046       }
1047     } else {
1048       Say(name,
1049           "Base of component reference must be a data reference"_err_en_US);
1050     }
1051   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1052     // special part-ref: %re, %im, %kind, %len
1053     // Type errors are detected and reported in semantics.
1054     using MiscKind = semantics::MiscDetails::Kind;
1055     MiscKind kind{details->kind()};
1056     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1057       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1058         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
1059           Expr<SomeReal> realExpr{std::visit(
1060               [&](const auto &z) {
1061                 using PartType = typename ResultType<decltype(z)>::Part;
1062                 auto part{kind == MiscKind::ComplexPartRe
1063                         ? ComplexPart::Part::RE
1064                         : ComplexPart::Part::IM};
1065                 return AsCategoryExpr(Designator<PartType>{
1066                     ComplexPart{std::move(*dataRef), part}});
1067               },
1068               zExpr->u)};
1069           return AsGenericExpr(std::move(realExpr));
1070         }
1071       }
1072     } else if (kind == MiscKind::KindParamInquiry ||
1073         kind == MiscKind::LenParamInquiry) {
1074       // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
1075       return MakeFunctionRef(
1076           name, ActualArguments{ActualArgument{std::move(*base)}});
1077     } else {
1078       DIE("unexpected MiscDetails::Kind");
1079     }
1080   } else {
1081     Say(name, "derived type required before component reference"_err_en_US);
1082   }
1083   return std::nullopt;
1084 }
1085 
1086 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1087   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1088     DataRef *dataRef{&*maybeDataRef};
1089     std::vector<Subscript> subscripts;
1090     SymbolVector reversed;
1091     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1092       subscripts = std::move(aRef->subscript());
1093       reversed.push_back(aRef->GetLastSymbol());
1094       if (Component * component{aRef->base().UnwrapComponent()}) {
1095         dataRef = &component->base();
1096       } else {
1097         dataRef = nullptr;
1098       }
1099     }
1100     if (dataRef) {
1101       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1102         reversed.push_back(component->GetLastSymbol());
1103         dataRef = &component->base();
1104       }
1105       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1106         reversed.push_back(*baseSym);
1107       } else {
1108         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1109       }
1110     }
1111     std::vector<Expr<SubscriptInteger>> cosubscripts;
1112     bool cosubsOk{true};
1113     for (const auto &cosub :
1114         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1115       MaybeExpr coex{Analyze(cosub)};
1116       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1117         cosubscripts.push_back(
1118             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1119       } else {
1120         cosubsOk = false;
1121       }
1122     }
1123     if (cosubsOk && !reversed.empty()) {
1124       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1125       const Symbol &symbol{reversed.front()};
1126       if (numCosubscripts != symbol.Corank()) {
1127         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1128             symbol.name(), symbol.Corank(), numCosubscripts);
1129       }
1130     }
1131     for (const auto &imageSelSpec :
1132         std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1133       std::visit(
1134           common::visitors{
1135               [&](const auto &x) { Analyze(x.v); },
1136           },
1137           imageSelSpec.u);
1138     }
1139     // Reverse the chain of symbols so that the base is first and coarray
1140     // ultimate component is last.
1141     if (cosubsOk) {
1142       return Designate(
1143           DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1144               std::move(subscripts), std::move(cosubscripts)}});
1145     }
1146   }
1147   return std::nullopt;
1148 }
1149 
1150 int ExpressionAnalyzer::IntegerTypeSpecKind(
1151     const parser::IntegerTypeSpec &spec) {
1152   Expr<SubscriptInteger> value{
1153       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1154   if (auto kind{ToInt64(value)}) {
1155     return static_cast<int>(*kind);
1156   }
1157   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1158   return GetDefaultKind(TypeCategory::Integer);
1159 }
1160 
1161 // Array constructors
1162 
1163 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1164 // all happen to have the same actual type T into one ArrayConstructor<T>.
1165 template <typename T>
1166 ArrayConstructorValues<T> MakeSpecific(
1167     ArrayConstructorValues<SomeType> &&from) {
1168   ArrayConstructorValues<T> to;
1169   for (ArrayConstructorValue<SomeType> &x : from) {
1170     std::visit(
1171         common::visitors{
1172             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1173               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1174               to.Push(std::move(DEREF(typed)));
1175             },
1176             [&](ImpliedDo<SomeType> &&impliedDo) {
1177               to.Push(ImpliedDo<T>{impliedDo.name(),
1178                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1179                   std::move(impliedDo.stride()),
1180                   MakeSpecific<T>(std::move(impliedDo.values()))});
1181             },
1182         },
1183         std::move(x.u));
1184   }
1185   return to;
1186 }
1187 
1188 class ArrayConstructorContext {
1189 public:
1190   ArrayConstructorContext(
1191       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1192       : exprAnalyzer_{c}, type_{std::move(t)} {}
1193 
1194   void Add(const parser::AcValue &);
1195   MaybeExpr ToExpr();
1196 
1197   // These interfaces allow *this to be used as a type visitor argument to
1198   // common::SearchTypes() to convert the array constructor to a typed
1199   // expression in ToExpr().
1200   using Result = MaybeExpr;
1201   using Types = AllTypes;
1202   template <typename T> Result Test() {
1203     if (type_ && type_->category() == T::category) {
1204       if constexpr (T::category == TypeCategory::Derived) {
1205         if (!type_->IsUnlimitedPolymorphic()) {
1206           return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1207               MakeSpecific<T>(std::move(values_))});
1208         }
1209       } else if (type_->kind() == T::kind) {
1210         if constexpr (T::category == TypeCategory::Character) {
1211           if (auto len{type_->LEN()}) {
1212             return AsMaybeExpr(ArrayConstructor<T>{
1213                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1214           }
1215         } else {
1216           return AsMaybeExpr(
1217               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1218         }
1219       }
1220     }
1221     return std::nullopt;
1222   }
1223 
1224 private:
1225   using ImpliedDoIntType = ResultType<ImpliedDoIndex>;
1226 
1227   void Push(MaybeExpr &&);
1228   void Add(const parser::AcValue::Triplet &);
1229   void Add(const parser::Expr &);
1230   void Add(const parser::AcImpliedDo &);
1231   void UnrollConstantImpliedDo(const parser::AcImpliedDo &,
1232       parser::CharBlock name, std::int64_t lower, std::int64_t upper,
1233       std::int64_t stride);
1234 
1235   template <int KIND, typename A>
1236   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1237       const A &x) {
1238     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1239       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1240       return Fold(exprAnalyzer_.GetFoldingContext(),
1241           ConvertToType<Type<TypeCategory::Integer, KIND>>(
1242               std::move(DEREF(intExpr))));
1243     }
1244     return std::nullopt;
1245   }
1246 
1247   // Nested array constructors all reference the same ExpressionAnalyzer,
1248   // which represents the nest of active implied DO loop indices.
1249   ExpressionAnalyzer &exprAnalyzer_;
1250   std::optional<DynamicTypeWithLength> type_;
1251   bool explicitType_{type_.has_value()};
1252   std::optional<std::int64_t> constantLength_;
1253   ArrayConstructorValues<SomeType> values_;
1254   std::uint64_t messageDisplayedSet_{0};
1255 };
1256 
1257 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1258   if (!x) {
1259     return;
1260   }
1261   if (!type_) {
1262     if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1263       // Treat an array constructor of BOZ as if default integer.
1264       if (exprAnalyzer_.context().ShouldWarn(
1265               common::LanguageFeature::BOZAsDefaultInteger)) {
1266         exprAnalyzer_.Say(
1267             "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US);
1268       }
1269       x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1270           exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1271           std::move(*boz)));
1272     }
1273   }
1274   std::optional<DynamicType> dyType{x->GetType()};
1275   if (!dyType) {
1276     if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1277       if (!type_) {
1278         // Treat an array constructor of BOZ as if default integer.
1279         if (exprAnalyzer_.context().ShouldWarn(
1280                 common::LanguageFeature::BOZAsDefaultInteger)) {
1281           exprAnalyzer_.Say(
1282               "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US);
1283         }
1284         x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1285             exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1286             std::move(*boz)));
1287         dyType = x.value().GetType();
1288       } else if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1289         x = std::move(cast);
1290         dyType = *type_;
1291       } else {
1292         if (!(messageDisplayedSet_ & 0x80)) {
1293           exprAnalyzer_.Say(
1294               "BOZ literal is not suitable for use in this array constructor"_err_en_US);
1295           messageDisplayedSet_ |= 0x80;
1296         }
1297         return;
1298       }
1299     } else { // procedure name, &c.
1300       if (!(messageDisplayedSet_ & 0x40)) {
1301         exprAnalyzer_.Say(
1302             "Item is not suitable for use in an array constructor"_err_en_US);
1303         messageDisplayedSet_ |= 0x40;
1304       }
1305       return;
1306     }
1307   } else if (dyType->IsUnlimitedPolymorphic()) {
1308     if (!(messageDisplayedSet_ & 8)) {
1309       exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an "
1310                         "array constructor"_err_en_US); // C7113
1311       messageDisplayedSet_ |= 8;
1312     }
1313     return;
1314   }
1315   DynamicTypeWithLength xType{dyType.value()};
1316   if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1317     CHECK(xType.category() == TypeCategory::Character);
1318     xType.length =
1319         std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1320   }
1321   if (!type_) {
1322     // If there is no explicit type-spec in an array constructor, the type
1323     // of the array is the declared type of all of the elements, which must
1324     // be well-defined and all match.
1325     // TODO: Possible language extension: use the most general type of
1326     // the values as the type of a numeric constructed array, convert all
1327     // of the other values to that type.  Alternative: let the first value
1328     // determine the type, and convert the others to that type.
1329     CHECK(!explicitType_);
1330     type_ = std::move(xType);
1331     constantLength_ = ToInt64(type_->length);
1332     values_.Push(std::move(*x));
1333   } else if (!explicitType_) {
1334     if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) {
1335       values_.Push(std::move(*x));
1336       if (auto thisLen{ToInt64(xType.LEN())}) {
1337         if (constantLength_) {
1338           if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1339               *thisLen != *constantLength_) {
1340             if (!(messageDisplayedSet_ & 1)) {
1341               exprAnalyzer_.Say(
1342                   "Character literal in array constructor without explicit "
1343                   "type has different length than earlier elements"_en_US);
1344               messageDisplayedSet_ |= 1;
1345             }
1346           }
1347           if (*thisLen > *constantLength_) {
1348             // Language extension: use the longest literal to determine the
1349             // length of the array constructor's character elements, not the
1350             // first, when there is no explicit type.
1351             *constantLength_ = *thisLen;
1352             type_->length = xType.LEN();
1353           }
1354         } else {
1355           constantLength_ = *thisLen;
1356           type_->length = xType.LEN();
1357         }
1358       }
1359     } else {
1360       if (!(messageDisplayedSet_ & 2)) {
1361         exprAnalyzer_.Say(
1362             "Values in array constructor must have the same declared type "
1363             "when no explicit type appears"_err_en_US); // C7110
1364         messageDisplayedSet_ |= 2;
1365       }
1366     }
1367   } else {
1368     if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1369       values_.Push(std::move(*cast));
1370     } else if (!(messageDisplayedSet_ & 4)) {
1371       exprAnalyzer_.Say("Value in array constructor of type '%s' could not "
1372                         "be converted to the type of the array '%s'"_err_en_US,
1373           x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
1374       messageDisplayedSet_ |= 4;
1375     }
1376   }
1377 }
1378 
1379 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1380   std::visit(
1381       common::visitors{
1382           [&](const parser::AcValue::Triplet &triplet) { Add(triplet); },
1383           [&](const common::Indirection<parser::Expr> &expr) {
1384             Add(expr.value());
1385           },
1386           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1387             Add(impliedDo.value());
1388           },
1389       },
1390       x.u);
1391 }
1392 
1393 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1394 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) {
1395   std::optional<Expr<ImpliedDoIntType>> lower{
1396       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))};
1397   std::optional<Expr<ImpliedDoIntType>> upper{
1398       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))};
1399   std::optional<Expr<ImpliedDoIntType>> stride{
1400       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))};
1401   if (lower && upper) {
1402     if (!stride) {
1403       stride = Expr<ImpliedDoIntType>{1};
1404     }
1405     if (!type_) {
1406       type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()};
1407     }
1408     auto v{std::move(values_)};
1409     parser::CharBlock anonymous;
1410     Push(Expr<SomeType>{
1411         Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}});
1412     std::swap(v, values_);
1413     values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1414         std::move(*upper), std::move(*stride), std::move(v)});
1415   }
1416 }
1417 
1418 void ArrayConstructorContext::Add(const parser::Expr &expr) {
1419   auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)};
1420   Push(exprAnalyzer_.Analyze(expr));
1421 }
1422 
1423 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) {
1424   const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)};
1425   const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1426   exprAnalyzer_.Analyze(bounds.name);
1427   parser::CharBlock name{bounds.name.thing.thing.source};
1428   const Symbol *symbol{bounds.name.thing.thing.symbol};
1429   int kind{ImpliedDoIntType::kind};
1430   if (const auto dynamicType{DynamicType::From(symbol)}) {
1431     kind = dynamicType->kind();
1432   }
1433   std::optional<Expr<ImpliedDoIntType>> lower{
1434       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)};
1435   std::optional<Expr<ImpliedDoIntType>> upper{
1436       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)};
1437   if (lower && upper) {
1438     std::optional<Expr<ImpliedDoIntType>> stride{
1439         GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)};
1440     if (!stride) {
1441       stride = Expr<ImpliedDoIntType>{1};
1442     }
1443     if (exprAnalyzer_.AddImpliedDo(name, kind)) {
1444       // Check for constant bounds; the loop may require complete unrolling
1445       // of the parse tree if all bounds are constant in order to allow the
1446       // implied DO loop index to qualify as a constant expression.
1447       auto cLower{ToInt64(lower)};
1448       auto cUpper{ToInt64(upper)};
1449       auto cStride{ToInt64(stride)};
1450       if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) {
1451         exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source,
1452             "The stride of an implied DO loop must not be zero"_err_en_US);
1453         messageDisplayedSet_ |= 0x10;
1454       }
1455       bool isConstant{cLower && cUpper && cStride && *cStride != 0};
1456       bool isNonemptyConstant{isConstant &&
1457           ((*cStride > 0 && *cLower <= *cUpper) ||
1458               (*cStride < 0 && *cLower >= *cUpper))};
1459       bool unrollConstantLoop{false};
1460       parser::Messages buffer;
1461       auto saveMessagesDisplayed{messageDisplayedSet_};
1462       {
1463         auto messageRestorer{
1464             exprAnalyzer_.GetContextualMessages().SetMessages(buffer)};
1465         auto v{std::move(values_)};
1466         for (const auto &value :
1467             std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1468           Add(value);
1469         }
1470         std::swap(v, values_);
1471         if (isNonemptyConstant && buffer.AnyFatalError()) {
1472           unrollConstantLoop = true;
1473         } else {
1474           values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1475               std::move(*upper), std::move(*stride), std::move(v)});
1476         }
1477       }
1478       if (unrollConstantLoop) {
1479         messageDisplayedSet_ = saveMessagesDisplayed;
1480         UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride);
1481       } else if (auto *messages{
1482                      exprAnalyzer_.GetContextualMessages().messages()}) {
1483         messages->Annex(std::move(buffer));
1484       }
1485       exprAnalyzer_.RemoveImpliedDo(name);
1486     } else if (!(messageDisplayedSet_ & 0x20)) {
1487       exprAnalyzer_.SayAt(name,
1488           "Implied DO index '%s' is active in a surrounding implied DO loop "
1489           "and may not have the same name"_err_en_US,
1490           name); // C7115
1491       messageDisplayedSet_ |= 0x20;
1492     }
1493   }
1494 }
1495 
1496 // Fortran considers an implied DO index of an array constructor to be
1497 // a constant expression if the bounds of the implied DO loop are constant.
1498 // Usually this doesn't matter, but if we emitted spurious messages as a
1499 // result of not using constant values for the index while analyzing the
1500 // items, we need to do it again the "hard" way with multiple iterations over
1501 // the parse tree.
1502 void ArrayConstructorContext::UnrollConstantImpliedDo(
1503     const parser::AcImpliedDo &impliedDo, parser::CharBlock name,
1504     std::int64_t lower, std::int64_t upper, std::int64_t stride) {
1505   auto &foldingContext{exprAnalyzer_.GetFoldingContext()};
1506   auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()};
1507   for (auto &at{foldingContext.StartImpliedDo(name, lower)};
1508        (stride > 0 && at <= upper) || (stride < 0 && at >= upper);
1509        at += stride) {
1510     for (const auto &value :
1511         std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1512       Add(value);
1513     }
1514   }
1515   foldingContext.EndImpliedDo(name);
1516 }
1517 
1518 MaybeExpr ArrayConstructorContext::ToExpr() {
1519   return common::SearchTypes(std::move(*this));
1520 }
1521 
1522 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1523   const parser::AcSpec &acSpec{array.v};
1524   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1525   for (const parser::AcValue &value : acSpec.values) {
1526     acContext.Add(value);
1527   }
1528   return acContext.ToExpr();
1529 }
1530 
1531 MaybeExpr ExpressionAnalyzer::Analyze(
1532     const parser::StructureConstructor &structure) {
1533   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1534   parser::Name structureType{std::get<parser::Name>(parsedType.t)};
1535   parser::CharBlock &typeName{structureType.source};
1536   if (semantics::Symbol * typeSymbol{structureType.symbol}) {
1537     if (typeSymbol->has<semantics::DerivedTypeDetails>()) {
1538       semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()};
1539       if (!CheckIsValidForwardReference(dtSpec)) {
1540         return std::nullopt;
1541       }
1542     }
1543   }
1544   if (!parsedType.derivedTypeSpec) {
1545     return std::nullopt;
1546   }
1547   const auto &spec{*parsedType.derivedTypeSpec};
1548   const Symbol &typeSymbol{spec.typeSymbol()};
1549   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1550     return std::nullopt; // error recovery
1551   }
1552   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1553   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1554 
1555   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1556     AttachDeclaration(Say(typeName,
1557                           "ABSTRACT derived type '%s' may not be used in a "
1558                           "structure constructor"_err_en_US,
1559                           typeName),
1560         typeSymbol); // C7114
1561   }
1562 
1563   // This iterator traverses all of the components in the derived type and its
1564   // parents.  The symbols for whole parent components appear after their
1565   // own components and before the components of the types that extend them.
1566   // E.g., TYPE :: A; REAL X; END TYPE
1567   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1568   // produces the component list X, A, Y.
1569   // The order is important below because a structure constructor can
1570   // initialize X or A by name, but not both.
1571   auto components{semantics::OrderedComponentIterator{spec}};
1572   auto nextAnonymous{components.begin()};
1573 
1574   std::set<parser::CharBlock> unavailable;
1575   bool anyKeyword{false};
1576   StructureConstructor result{spec};
1577   bool checkConflicts{true}; // until we hit one
1578   auto &messages{GetContextualMessages()};
1579 
1580   for (const auto &component :
1581       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1582     const parser::Expr &expr{
1583         std::get<parser::ComponentDataSource>(component.t).v.value()};
1584     parser::CharBlock source{expr.source};
1585     auto restorer{messages.SetLocation(source)};
1586     const Symbol *symbol{nullptr};
1587     MaybeExpr value{Analyze(expr)};
1588     std::optional<DynamicType> valueType{DynamicType::From(value)};
1589     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1590       anyKeyword = true;
1591       source = kw->v.source;
1592       symbol = kw->v.symbol;
1593       if (!symbol) {
1594         auto componentIter{std::find_if(components.begin(), components.end(),
1595             [=](const Symbol &symbol) { return symbol.name() == source; })};
1596         if (componentIter != components.end()) {
1597           symbol = &*componentIter;
1598         }
1599       }
1600       if (!symbol) { // C7101
1601         Say(source,
1602             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1603             source, typeName);
1604       }
1605     } else {
1606       if (anyKeyword) { // C7100
1607         Say(source,
1608             "Value in structure constructor lacks a component name"_err_en_US);
1609         checkConflicts = false; // stem cascade
1610       }
1611       // Here's a regrettably common extension of the standard: anonymous
1612       // initialization of parent components, e.g., T(PT(1)) rather than
1613       // T(1) or T(PT=PT(1)).
1614       if (nextAnonymous == components.begin() && parentComponent &&
1615           valueType == DynamicType::From(*parentComponent) &&
1616           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1617         auto iter{
1618             std::find(components.begin(), components.end(), *parentComponent)};
1619         if (iter != components.end()) {
1620           symbol = parentComponent;
1621           nextAnonymous = ++iter;
1622           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1623             Say(source,
1624                 "Whole parent component '%s' in structure "
1625                 "constructor should not be anonymous"_en_US,
1626                 symbol->name());
1627           }
1628         }
1629       }
1630       while (!symbol && nextAnonymous != components.end()) {
1631         const Symbol &next{*nextAnonymous};
1632         ++nextAnonymous;
1633         if (!next.test(Symbol::Flag::ParentComp)) {
1634           symbol = &next;
1635         }
1636       }
1637       if (!symbol) {
1638         Say(source, "Unexpected value in structure constructor"_err_en_US);
1639       }
1640     }
1641     if (symbol) {
1642       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1643         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1644           Say(source, *msg);
1645         }
1646       }
1647       if (checkConflicts) {
1648         auto componentIter{
1649             std::find(components.begin(), components.end(), *symbol)};
1650         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1651           // C797, C798
1652           Say(source,
1653               "Component '%s' conflicts with another component earlier in "
1654               "this structure constructor"_err_en_US,
1655               symbol->name());
1656         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1657           // Make earlier components unavailable once a whole parent appears.
1658           for (auto it{components.begin()}; it != componentIter; ++it) {
1659             unavailable.insert(it->name());
1660           }
1661         } else {
1662           // Make whole parent components unavailable after any of their
1663           // constituents appear.
1664           for (auto it{componentIter}; it != components.end(); ++it) {
1665             if (it->test(Symbol::Flag::ParentComp)) {
1666               unavailable.insert(it->name());
1667             }
1668           }
1669         }
1670       }
1671       unavailable.insert(symbol->name());
1672       if (value) {
1673         if (symbol->has<semantics::ProcEntityDetails>()) {
1674           CHECK(IsPointer(*symbol));
1675         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1676           // C1594(4)
1677           const auto &innermost{context_.FindScope(expr.source)};
1678           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1679             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1680               if (const Symbol *
1681                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1682                 if (auto *msg{Say(expr.source,
1683                         "Externally visible object '%s' may not be "
1684                         "associated with pointer component '%s' in a "
1685                         "pure procedure"_err_en_US,
1686                         object->name(), pointer->name())}) {
1687                   msg->Attach(object->name(), "Object declaration"_en_US)
1688                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1689                 }
1690               }
1691             }
1692           }
1693         } else if (symbol->has<semantics::TypeParamDetails>()) {
1694           Say(expr.source,
1695               "Type parameter '%s' may not appear as a component "
1696               "of a structure constructor"_err_en_US,
1697               symbol->name());
1698           continue;
1699         } else {
1700           Say(expr.source,
1701               "Component '%s' is neither a procedure pointer "
1702               "nor a data object"_err_en_US,
1703               symbol->name());
1704           continue;
1705         }
1706         if (IsPointer(*symbol)) {
1707           semantics::CheckPointerAssignment(
1708               GetFoldingContext(), *symbol, *value); // C7104, C7105
1709           result.Add(*symbol, Fold(std::move(*value)));
1710         } else if (MaybeExpr converted{
1711                        ConvertToType(*symbol, std::move(*value))}) {
1712           if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
1713             if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
1714               if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
1715                 AttachDeclaration(
1716                     Say(expr.source,
1717                         "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
1718                         GetRank(*valueShape), symbol->name()),
1719                     *symbol);
1720               } else {
1721                 auto checked{
1722                     CheckConformance(messages, *componentShape, *valueShape,
1723                         CheckConformanceFlags::RightIsExpandableDeferred,
1724                         "component", "value")};
1725                 if (checked && *checked && GetRank(*componentShape) > 0 &&
1726                     GetRank(*valueShape) == 0 &&
1727                     !IsExpandableScalar(*converted)) {
1728                   AttachDeclaration(
1729                       Say(expr.source,
1730                           "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
1731                           symbol->name()),
1732                       *symbol);
1733                 }
1734                 if (checked.value_or(true)) {
1735                   result.Add(*symbol, std::move(*converted));
1736                 }
1737               }
1738             } else {
1739               Say(expr.source, "Shape of value cannot be determined"_err_en_US);
1740             }
1741           } else {
1742             AttachDeclaration(
1743                 Say(expr.source,
1744                     "Shape of component '%s' cannot be determined"_err_en_US,
1745                     symbol->name()),
1746                 *symbol);
1747           }
1748         } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) {
1749           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE
1750         } else if (auto symType{DynamicType::From(symbol)}) {
1751           if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() &&
1752               valueType) {
1753             // ok
1754           } else if (valueType) {
1755             AttachDeclaration(
1756                 Say(expr.source,
1757                     "Value in structure constructor of type %s is "
1758                     "incompatible with component '%s' of type %s"_err_en_US,
1759                     valueType->AsFortran(), symbol->name(),
1760                     symType->AsFortran()),
1761                 *symbol);
1762           } else {
1763             AttachDeclaration(
1764                 Say(expr.source,
1765                     "Value in structure constructor is incompatible with "
1766                     " component '%s' of type %s"_err_en_US,
1767                     symbol->name(), symType->AsFortran()),
1768                 *symbol);
1769           }
1770         }
1771       }
1772     }
1773   }
1774 
1775   // Ensure that unmentioned component objects have default initializers.
1776   for (const Symbol &symbol : components) {
1777     if (!symbol.test(Symbol::Flag::ParentComp) &&
1778         unavailable.find(symbol.name()) == unavailable.cend() &&
1779         !IsAllocatable(symbol)) {
1780       if (const auto *details{
1781               symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1782         if (details->init()) {
1783           result.Add(symbol, common::Clone(*details->init()));
1784         } else { // C799
1785           AttachDeclaration(Say(typeName,
1786                                 "Structure constructor lacks a value for "
1787                                 "component '%s'"_err_en_US,
1788                                 symbol.name()),
1789               symbol);
1790         }
1791       }
1792     }
1793   }
1794 
1795   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1796 }
1797 
1798 static std::optional<parser::CharBlock> GetPassName(
1799     const semantics::Symbol &proc) {
1800   return std::visit(
1801       [](const auto &details) {
1802         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1803                           std::decay_t<decltype(details)>>) {
1804           return details.passName();
1805         } else {
1806           return std::optional<parser::CharBlock>{};
1807         }
1808       },
1809       proc.details());
1810 }
1811 
1812 static int GetPassIndex(const Symbol &proc) {
1813   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1814   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1815   const auto *interface{semantics::FindInterface(proc)};
1816   if (!passName || !interface) {
1817     return 0; // first argument is passed-object
1818   }
1819   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1820   int index{0};
1821   for (const auto *arg : subp.dummyArgs()) {
1822     if (arg && arg->name() == passName) {
1823       return index;
1824     }
1825     ++index;
1826   }
1827   DIE("PASS argument name not in dummy argument list");
1828 }
1829 
1830 // Injects an expression into an actual argument list as the "passed object"
1831 // for a type-bound procedure reference that is not NOPASS.  Adds an
1832 // argument keyword if possible, but not when the passed object goes
1833 // before a positional argument.
1834 // e.g., obj%tbp(x) -> tbp(obj,x).
1835 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1836     const Symbol &component, bool isPassedObject = true) {
1837   if (component.attrs().test(semantics::Attr::NOPASS)) {
1838     return;
1839   }
1840   int passIndex{GetPassIndex(component)};
1841   auto iter{actuals.begin()};
1842   int at{0};
1843   while (iter < actuals.end() && at < passIndex) {
1844     if (*iter && (*iter)->keyword()) {
1845       iter = actuals.end();
1846       break;
1847     }
1848     ++iter;
1849     ++at;
1850   }
1851   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1852   passed.set_isPassedObject(isPassedObject);
1853   if (iter == actuals.end()) {
1854     if (auto passName{GetPassName(component)}) {
1855       passed.set_keyword(*passName);
1856     }
1857   }
1858   actuals.emplace(iter, std::move(passed));
1859 }
1860 
1861 // Return the compile-time resolution of a procedure binding, if possible.
1862 static const Symbol *GetBindingResolution(
1863     const std::optional<DynamicType> &baseType, const Symbol &component) {
1864   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1865   if (!binding) {
1866     return nullptr;
1867   }
1868   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1869       (!baseType || baseType->IsPolymorphic())) {
1870     return nullptr;
1871   }
1872   return &binding->symbol();
1873 }
1874 
1875 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1876     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1877     -> std::optional<CalleeAndArguments> {
1878   const parser::StructureComponent &sc{pcr.v.thing};
1879   if (MaybeExpr base{Analyze(sc.base)}) {
1880     if (const Symbol * sym{sc.component.symbol}) {
1881       if (context_.HasError(sym)) {
1882         return std::nullopt;
1883       }
1884       if (!IsProcedure(*sym)) {
1885         AttachDeclaration(
1886             Say(sc.component.source, "'%s' is not a procedure"_err_en_US,
1887                 sc.component.source),
1888             *sym);
1889         return std::nullopt;
1890       }
1891       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1892         if (sym->has<semantics::GenericDetails>()) {
1893           AdjustActuals adjustment{
1894               [&](const Symbol &proc, ActualArguments &actuals) {
1895                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1896                   AddPassArg(actuals, std::move(*dtExpr), proc);
1897                 }
1898                 return true;
1899               }};
1900           auto pair{ResolveGeneric(*sym, arguments, adjustment)};
1901           sym = pair.first;
1902           if (!sym) {
1903             EmitGenericResolutionError(*sc.component.symbol, pair.second);
1904             return std::nullopt;
1905           }
1906         }
1907         if (const Symbol *
1908             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1909           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1910           return CalleeAndArguments{
1911               ProcedureDesignator{*resolution}, std::move(arguments)};
1912         } else if (std::optional<DataRef> dataRef{
1913                        ExtractDataRef(std::move(*dtExpr))}) {
1914           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1915             return CalleeAndArguments{
1916                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1917                 std::move(arguments)};
1918           } else {
1919             AddPassArg(arguments,
1920                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1921                 *sym);
1922             return CalleeAndArguments{
1923                 ProcedureDesignator{*sym}, std::move(arguments)};
1924           }
1925         }
1926       }
1927       Say(sc.component.source,
1928           "Base of procedure component reference is not a derived-type object"_err_en_US);
1929     }
1930   }
1931   CHECK(context_.AnyFatalError());
1932   return std::nullopt;
1933 }
1934 
1935 // Can actual be argument associated with dummy?
1936 static bool CheckCompatibleArgument(bool isElemental,
1937     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1938   const auto *expr{actual.UnwrapExpr()};
1939   return std::visit(
1940       common::visitors{
1941           [&](const characteristics::DummyDataObject &x) {
1942             if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) &&
1943                 IsBareNullPointer(expr)) {
1944               // NULL() without MOLD= is compatible with any dummy data pointer
1945               // but cannot be allowed to lead to ambiguity.
1946               return true;
1947             } else if (!isElemental && actual.Rank() != x.type.Rank() &&
1948                 !x.type.attrs().test(
1949                     characteristics::TypeAndShape::Attr::AssumedRank)) {
1950               return false;
1951             } else if (auto actualType{actual.GetType()}) {
1952               return x.type.type().IsTkCompatibleWith(*actualType);
1953             }
1954             return false;
1955           },
1956           [&](const characteristics::DummyProcedure &) {
1957             return expr && IsProcedurePointerTarget(*expr);
1958           },
1959           [&](const characteristics::AlternateReturn &) {
1960             return actual.isAlternateReturn();
1961           },
1962       },
1963       dummy.u);
1964 }
1965 
1966 // Are the actual arguments compatible with the dummy arguments of procedure?
1967 static bool CheckCompatibleArguments(
1968     const characteristics::Procedure &procedure,
1969     const ActualArguments &actuals) {
1970   bool isElemental{procedure.IsElemental()};
1971   const auto &dummies{procedure.dummyArguments};
1972   CHECK(dummies.size() == actuals.size());
1973   for (std::size_t i{0}; i < dummies.size(); ++i) {
1974     const characteristics::DummyArgument &dummy{dummies[i]};
1975     const std::optional<ActualArgument> &actual{actuals[i]};
1976     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1977       return false;
1978     }
1979   }
1980   return true;
1981 }
1982 
1983 // Handles a forward reference to a module function from what must
1984 // be a specification expression.  Return false if the symbol is
1985 // an invalid forward reference.
1986 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
1987   if (context_.HasError(symbol)) {
1988     return false;
1989   }
1990   if (const auto *details{
1991           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
1992     if (details->kind() == semantics::SubprogramKind::Module) {
1993       // If this symbol is still a SubprogramNameDetails, we must be
1994       // checking a specification expression in a sibling module
1995       // procedure.  Resolve its names now so that its interface
1996       // is known.
1997       semantics::ResolveSpecificationParts(context_, symbol);
1998       if (symbol.has<semantics::SubprogramNameDetails>()) {
1999         // When the symbol hasn't had its details updated, we must have
2000         // already been in the process of resolving the function's
2001         // specification part; but recursive function calls are not
2002         // allowed in specification parts (10.1.11 para 5).
2003         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
2004             symbol.name());
2005         context_.SetError(symbol);
2006         return false;
2007       }
2008     } else { // 10.1.11 para 4
2009       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
2010           symbol.name());
2011       context_.SetError(symbol);
2012       return false;
2013     }
2014   }
2015   return true;
2016 }
2017 
2018 // Resolve a call to a generic procedure with given actual arguments.
2019 // adjustActuals is called on procedure bindings to handle pass arg.
2020 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric(
2021     const Symbol &symbol, const ActualArguments &actuals,
2022     const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) {
2023   const Symbol *elemental{nullptr}; // matching elemental specific proc
2024   const Symbol *nonElemental{nullptr}; // matching non-elemental specific
2025   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
2026   bool anyBareNullActual{
2027       std::find_if(actuals.begin(), actuals.end(), [](auto iter) {
2028         return IsBareNullPointer(iter->UnwrapExpr());
2029       }) != actuals.end()};
2030   for (const Symbol &specific : details.specificProcs()) {
2031     if (!ResolveForward(specific)) {
2032       continue;
2033     }
2034     if (std::optional<characteristics::Procedure> procedure{
2035             characteristics::Procedure::Characterize(
2036                 ProcedureDesignator{specific}, context_.foldingContext())}) {
2037       ActualArguments localActuals{actuals};
2038       if (specific.has<semantics::ProcBindingDetails>()) {
2039         if (!adjustActuals.value()(specific, localActuals)) {
2040           continue;
2041         }
2042       }
2043       if (semantics::CheckInterfaceForGeneric(*procedure, localActuals,
2044               GetFoldingContext(), false /* no integer conversions */) &&
2045           CheckCompatibleArguments(*procedure, localActuals)) {
2046         if ((procedure->IsElemental() && elemental) ||
2047             (!procedure->IsElemental() && nonElemental)) {
2048           // 16.9.144(6): a bare NULL() is not allowed as an actual
2049           // argument to a generic procedure if the specific procedure
2050           // cannot be unambiguously distinguished
2051           return {nullptr, true /* due to NULL actuals */};
2052         }
2053         if (!procedure->IsElemental()) {
2054           // takes priority over elemental match
2055           nonElemental = &specific;
2056           if (!anyBareNullActual) {
2057             break; // unambiguous case
2058           }
2059         } else {
2060           elemental = &specific;
2061         }
2062       }
2063     }
2064   }
2065   if (nonElemental) {
2066     return {&AccessSpecific(symbol, *nonElemental), false};
2067   } else if (elemental) {
2068     return {&AccessSpecific(symbol, *elemental), false};
2069   }
2070   // Check parent derived type
2071   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
2072     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
2073       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
2074         auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)};
2075         if (pair.first) {
2076           return pair;
2077         }
2078       }
2079     }
2080   }
2081   if (mightBeStructureConstructor && details.derivedType()) {
2082     return {details.derivedType(), false};
2083   }
2084   return {nullptr, false};
2085 }
2086 
2087 const Symbol &ExpressionAnalyzer::AccessSpecific(
2088     const Symbol &originalGeneric, const Symbol &specific) {
2089   if (const auto *hosted{
2090           originalGeneric.detailsIf<semantics::HostAssocDetails>()}) {
2091     return AccessSpecific(hosted->symbol(), specific);
2092   } else if (const auto *used{
2093                  originalGeneric.detailsIf<semantics::UseDetails>()}) {
2094     const auto &scope{originalGeneric.owner()};
2095     if (auto iter{scope.find(specific.name())}; iter != scope.end()) {
2096       if (const auto *useDetails{
2097               iter->second->detailsIf<semantics::UseDetails>()}) {
2098         const Symbol &usedSymbol{useDetails->symbol()};
2099         const auto *usedGeneric{
2100             usedSymbol.detailsIf<semantics::GenericDetails>()};
2101         if (&usedSymbol == &specific ||
2102             (usedGeneric && usedGeneric->specific() == &specific)) {
2103           return specific;
2104         }
2105       }
2106     }
2107     // Create a renaming USE of the specific procedure.
2108     auto rename{context_.SaveTempName(
2109         used->symbol().owner().GetName().value().ToString() + "$" +
2110         specific.name().ToString())};
2111     return *const_cast<semantics::Scope &>(scope)
2112                 .try_emplace(rename, specific.attrs(),
2113                     semantics::UseDetails{rename, specific})
2114                 .first->second;
2115   } else {
2116     return specific;
2117   }
2118 }
2119 
2120 void ExpressionAnalyzer::EmitGenericResolutionError(
2121     const Symbol &symbol, bool dueToNullActuals) {
2122   Say(dueToNullActuals
2123           ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US
2124           : semantics::IsGenericDefinedOp(symbol)
2125           ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US
2126           : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
2127       symbol.name());
2128 }
2129 
2130 auto ExpressionAnalyzer::GetCalleeAndArguments(
2131     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
2132     bool isSubroutine, bool mightBeStructureConstructor)
2133     -> std::optional<CalleeAndArguments> {
2134   return std::visit(
2135       common::visitors{
2136           [&](const parser::Name &name) {
2137             return GetCalleeAndArguments(name, std::move(arguments),
2138                 isSubroutine, mightBeStructureConstructor);
2139           },
2140           [&](const parser::ProcComponentRef &pcr) {
2141             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
2142           },
2143       },
2144       pd.u);
2145 }
2146 
2147 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
2148     ActualArguments &&arguments, bool isSubroutine,
2149     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
2150   const Symbol *symbol{name.symbol};
2151   if (context_.HasError(symbol)) {
2152     return std::nullopt; // also handles null symbol
2153   }
2154   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
2155   if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
2156     if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
2157             CallCharacteristics{ultimate.name().ToString(), isSubroutine},
2158             arguments, GetFoldingContext())}) {
2159       CheckBadExplicitType(*specificCall, *symbol);
2160       return CalleeAndArguments{
2161           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2162           std::move(specificCall->arguments)};
2163     }
2164   } else {
2165     CheckForBadRecursion(name.source, ultimate);
2166     bool dueToNullActual{false};
2167     if (ultimate.has<semantics::GenericDetails>()) {
2168       ExpressionAnalyzer::AdjustActuals noAdjustment;
2169       auto pair{ResolveGeneric(
2170           *symbol, arguments, noAdjustment, mightBeStructureConstructor)};
2171       symbol = pair.first;
2172       dueToNullActual = pair.second;
2173     }
2174     if (symbol) {
2175       if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
2176         if (mightBeStructureConstructor) {
2177           return CalleeAndArguments{
2178               semantics::SymbolRef{*symbol}, std::move(arguments)};
2179         }
2180       } else if (IsProcedure(*symbol)) {
2181         return CalleeAndArguments{
2182             ProcedureDesignator{*symbol}, std::move(arguments)};
2183       }
2184       if (!context_.HasError(*symbol)) {
2185         AttachDeclaration(
2186             Say(name.source, "'%s' is not a callable procedure"_err_en_US,
2187                 name.source),
2188             *symbol);
2189       }
2190     } else if (std::optional<SpecificCall> specificCall{
2191                    context_.intrinsics().Probe(
2192                        CallCharacteristics{
2193                            ultimate.name().ToString(), isSubroutine},
2194                        arguments, GetFoldingContext())}) {
2195       // Generics can extend intrinsics
2196       return CalleeAndArguments{
2197           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2198           std::move(specificCall->arguments)};
2199     } else {
2200       EmitGenericResolutionError(*name.symbol, dueToNullActual);
2201     }
2202   }
2203   return std::nullopt;
2204 }
2205 
2206 // Fortran 2018 expressly states (8.2 p3) that any declared type for a
2207 // generic intrinsic function "has no effect" on the result type of a
2208 // call to that intrinsic.  So one can declare "character*8 cos" and
2209 // still get a real result from "cos(1.)".  This is a dangerous feature,
2210 // especially since implementations are free to extend their sets of
2211 // intrinsics, and in doing so might clash with a name in a program.
2212 // So we emit a warning in this situation, and perhaps it should be an
2213 // error -- any correctly working program can silence the message by
2214 // simply deleting the pointless type declaration.
2215 void ExpressionAnalyzer::CheckBadExplicitType(
2216     const SpecificCall &call, const Symbol &intrinsic) {
2217   if (intrinsic.GetUltimate().GetType()) {
2218     const auto &procedure{call.specificIntrinsic.characteristics.value()};
2219     if (const auto &result{procedure.functionResult}) {
2220       if (const auto *typeAndShape{result->GetTypeAndShape()}) {
2221         if (auto declared{
2222                 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) {
2223           if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) {
2224             if (auto *msg{Say(
2225                     "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US,
2226                     typeAndShape->AsFortran(), intrinsic.name(),
2227                     declared->AsFortran())}) {
2228               msg->Attach(intrinsic.name(),
2229                   "Ignored declaration of intrinsic function '%s'"_en_US,
2230                   intrinsic.name());
2231             }
2232           }
2233         }
2234       }
2235     }
2236   }
2237 }
2238 
2239 void ExpressionAnalyzer::CheckForBadRecursion(
2240     parser::CharBlock callSite, const semantics::Symbol &proc) {
2241   if (const auto *scope{proc.scope()}) {
2242     if (scope->sourceRange().Contains(callSite)) {
2243       parser::Message *msg{nullptr};
2244       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
2245         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
2246             callSite);
2247       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
2248         msg = Say( // 15.6.2.1(3)
2249             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
2250             callSite);
2251       }
2252       AttachDeclaration(msg, proc);
2253     }
2254   }
2255 }
2256 
2257 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
2258   if (const auto *designator{
2259           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
2260     if (const auto *dataRef{
2261             std::get_if<parser::DataRef>(&designator->value().u)}) {
2262       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
2263         return AssumedTypeDummy(*name);
2264       }
2265     }
2266   }
2267   return nullptr;
2268 }
2269 template <>
2270 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) {
2271   if (const Symbol * symbol{name.symbol}) {
2272     if (const auto *type{symbol->GetType()}) {
2273       if (type->category() == semantics::DeclTypeSpec::TypeStar) {
2274         return symbol;
2275       }
2276     }
2277   }
2278   return nullptr;
2279 }
2280 template <typename A>
2281 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) {
2282   // It is illegal for allocatable of pointer objects to be TYPE(*), but at that
2283   // point it is is not guaranteed that it has been checked the object has
2284   // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly
2285   // returned.
2286   return std::visit(
2287       common::visitors{
2288           [&](const parser::StructureComponent &x) {
2289             return AssumedTypeDummy(x.component);
2290           },
2291           [&](const parser::Name &x) { return AssumedTypeDummy(x); },
2292       },
2293       object.u);
2294 }
2295 template <>
2296 const Symbol *AssumedTypeDummy<parser::AllocateObject>(
2297     const parser::AllocateObject &x) {
2298   return AssumedTypePointerOrAllocatableDummy(x);
2299 }
2300 template <>
2301 const Symbol *AssumedTypeDummy<parser::PointerObject>(
2302     const parser::PointerObject &x) {
2303   return AssumedTypePointerOrAllocatableDummy(x);
2304 }
2305 
2306 bool ExpressionAnalyzer::CheckIsValidForwardReference(
2307     const semantics::DerivedTypeSpec &dtSpec) {
2308   if (dtSpec.IsForwardReferenced()) {
2309     Say("Cannot construct value for derived type '%s' "
2310         "before it is defined"_err_en_US,
2311         dtSpec.name());
2312     return false;
2313   }
2314   return true;
2315 }
2316 
2317 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
2318     std::optional<parser::StructureConstructor> *structureConstructor) {
2319   const parser::Call &call{funcRef.v};
2320   auto restorer{GetContextualMessages().SetLocation(call.source)};
2321   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2322   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
2323     analyzer.Analyze(arg, false /* not subroutine call */);
2324   }
2325   if (analyzer.fatalErrors()) {
2326     return std::nullopt;
2327   }
2328   if (std::optional<CalleeAndArguments> callee{
2329           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2330               analyzer.GetActuals(), false /* not subroutine */,
2331               true /* might be structure constructor */)}) {
2332     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
2333       return MakeFunctionRef(
2334           call.source, std::move(*proc), std::move(callee->arguments));
2335     }
2336     CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
2337     const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)};
2338     if (structureConstructor) {
2339       // Structure constructor misparsed as function reference?
2340       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
2341       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
2342         semantics::Scope &scope{context_.FindScope(name->source)};
2343         semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()};
2344         if (!CheckIsValidForwardReference(dtSpec)) {
2345           return std::nullopt;
2346         }
2347         const semantics::DeclTypeSpec &type{
2348             semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))};
2349         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
2350         *structureConstructor =
2351             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
2352         return Analyze(structureConstructor->value());
2353       }
2354     }
2355     if (!context_.HasError(symbol)) {
2356       AttachDeclaration(
2357           Say("'%s' is called like a function but is not a procedure"_err_en_US,
2358               symbol.name()),
2359           symbol);
2360       context_.SetError(symbol);
2361     }
2362   }
2363   return std::nullopt;
2364 }
2365 
2366 static bool HasAlternateReturns(const evaluate::ActualArguments &args) {
2367   for (const auto &arg : args) {
2368     if (arg && arg->isAlternateReturn()) {
2369       return true;
2370     }
2371   }
2372   return false;
2373 }
2374 
2375 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
2376   const parser::Call &call{callStmt.v};
2377   auto restorer{GetContextualMessages().SetLocation(call.source)};
2378   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2379   const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
2380   for (const auto &arg : actualArgList) {
2381     analyzer.Analyze(arg, true /* is subroutine call */);
2382   }
2383   if (!analyzer.fatalErrors()) {
2384     if (std::optional<CalleeAndArguments> callee{
2385             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2386                 analyzer.GetActuals(), true /* subroutine */)}) {
2387       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
2388       CHECK(proc);
2389       if (CheckCall(call.source, *proc, callee->arguments)) {
2390         bool hasAlternateReturns{HasAlternateReturns(callee->arguments)};
2391         callStmt.typedCall.Reset(
2392             new ProcedureRef{std::move(*proc), std::move(callee->arguments),
2393                 hasAlternateReturns},
2394             ProcedureRef::Deleter);
2395       }
2396     }
2397   }
2398 }
2399 
2400 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
2401   if (!x.typedAssignment) {
2402     ArgumentAnalyzer analyzer{*this};
2403     analyzer.Analyze(std::get<parser::Variable>(x.t));
2404     analyzer.Analyze(std::get<parser::Expr>(x.t));
2405     std::optional<Assignment> assignment;
2406     if (!analyzer.fatalErrors()) {
2407       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
2408       if (!procRef) {
2409         analyzer.CheckForNullPointer(
2410             "in a non-pointer intrinsic assignment statement");
2411       }
2412       assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1));
2413       if (procRef) {
2414         assignment->u = std::move(*procRef);
2415       }
2416     }
2417     x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)},
2418         GenericAssignmentWrapper::Deleter);
2419   }
2420   return common::GetPtrFromOptional(x.typedAssignment->v);
2421 }
2422 
2423 const Assignment *ExpressionAnalyzer::Analyze(
2424     const parser::PointerAssignmentStmt &x) {
2425   if (!x.typedAssignment) {
2426     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2427     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2428     if (!lhs || !rhs) {
2429       x.typedAssignment.Reset(
2430           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2431     } else {
2432       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2433       std::visit(common::visitors{
2434                      [&](const std::list<parser::BoundsRemapping> &list) {
2435                        Assignment::BoundsRemapping bounds;
2436                        for (const auto &elem : list) {
2437                          auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2438                          auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2439                          if (lower && upper) {
2440                            bounds.emplace_back(Fold(std::move(*lower)),
2441                                Fold(std::move(*upper)));
2442                          }
2443                        }
2444                        assignment.u = std::move(bounds);
2445                      },
2446                      [&](const std::list<parser::BoundsSpec> &list) {
2447                        Assignment::BoundsSpec bounds;
2448                        for (const auto &bound : list) {
2449                          if (auto lower{AsSubscript(Analyze(bound.v))}) {
2450                            bounds.emplace_back(Fold(std::move(*lower)));
2451                          }
2452                        }
2453                        assignment.u = std::move(bounds);
2454                      },
2455                  },
2456           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2457       x.typedAssignment.Reset(
2458           new GenericAssignmentWrapper{std::move(assignment)},
2459           GenericAssignmentWrapper::Deleter);
2460     }
2461   }
2462   return common::GetPtrFromOptional(x.typedAssignment->v);
2463 }
2464 
2465 static bool IsExternalCalledImplicitly(
2466     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2467   if (const auto *symbol{proc.GetSymbol()}) {
2468     return symbol->has<semantics::SubprogramDetails>() &&
2469         symbol->owner().IsGlobal() &&
2470         (!symbol->scope() /*ENTRY*/ ||
2471             !symbol->scope()->sourceRange().Contains(callSite));
2472   } else {
2473     return false;
2474   }
2475 }
2476 
2477 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2478     parser::CharBlock callSite, const ProcedureDesignator &proc,
2479     ActualArguments &arguments) {
2480   auto chars{characteristics::Procedure::Characterize(
2481       proc, context_.foldingContext())};
2482   if (chars) {
2483     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2484     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2485       Say(callSite,
2486           "References to the procedure '%s' require an explicit interface"_err_en_US,
2487           DEREF(proc.GetSymbol()).name());
2488     }
2489     // Checks for ASSOCIATED() are done in intrinsic table processing
2490     bool procIsAssociated{false};
2491     if (const SpecificIntrinsic *
2492         specificIntrinsic{proc.GetSpecificIntrinsic()}) {
2493       if (specificIntrinsic->name == "associated") {
2494         procIsAssociated = true;
2495       }
2496     }
2497     if (!procIsAssociated) {
2498       semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2499           context_.FindScope(callSite), treatExternalAsImplicit,
2500           proc.GetSpecificIntrinsic());
2501       const Symbol *procSymbol{proc.GetSymbol()};
2502       if (procSymbol && !IsPureProcedure(*procSymbol)) {
2503         if (const semantics::Scope *
2504             pure{semantics::FindPureProcedureContaining(
2505                 context_.FindScope(callSite))}) {
2506           Say(callSite,
2507               "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2508               procSymbol->name(), DEREF(pure->symbol()).name());
2509         }
2510       }
2511     }
2512   }
2513   return chars;
2514 }
2515 
2516 // Unary operations
2517 
2518 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2519   if (MaybeExpr operand{Analyze(x.v.value())}) {
2520     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2521       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2522         if (semantics::IsProcedurePointer(*result)) {
2523           Say("A function reference that returns a procedure "
2524               "pointer may not be parenthesized"_err_en_US); // C1003
2525         }
2526       }
2527     }
2528     return Parenthesize(std::move(*operand));
2529   }
2530   return std::nullopt;
2531 }
2532 
2533 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2534     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2535   ArgumentAnalyzer analyzer{context};
2536   analyzer.Analyze(x.v);
2537   if (!analyzer.fatalErrors()) {
2538     if (analyzer.IsIntrinsicNumeric(opr)) {
2539       analyzer.CheckForNullPointer();
2540       if (opr == NumericOperator::Add) {
2541         return analyzer.MoveExpr(0);
2542       } else {
2543         return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2544       }
2545     } else {
2546       return analyzer.TryDefinedOp(AsFortran(opr),
2547           "Operand of unary %s must be numeric; have %s"_err_en_US);
2548     }
2549   }
2550   return std::nullopt;
2551 }
2552 
2553 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2554   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2555 }
2556 
2557 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2558   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2559 }
2560 
2561 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2562   ArgumentAnalyzer analyzer{*this};
2563   analyzer.Analyze(x.v);
2564   if (!analyzer.fatalErrors()) {
2565     if (analyzer.IsIntrinsicLogical()) {
2566       analyzer.CheckForNullPointer();
2567       return AsGenericExpr(
2568           LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2569     } else {
2570       return analyzer.TryDefinedOp(LogicalOperator::Not,
2571           "Operand of %s must be LOGICAL; have %s"_err_en_US);
2572     }
2573   }
2574   return std::nullopt;
2575 }
2576 
2577 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2578   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2579   // intrinsic function.
2580   // Use the actual source for the name of the call for error reporting.
2581   std::optional<ActualArgument> arg;
2582   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2583     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2584   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2585     arg = ActualArgument{std::move(*argExpr)};
2586   } else {
2587     return std::nullopt;
2588   }
2589   parser::CharBlock at{GetContextualMessages().at()};
2590   CHECK(at.size() >= 4);
2591   parser::CharBlock loc{at.begin() + 1, 3};
2592   CHECK(loc == "loc");
2593   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2594 }
2595 
2596 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2597   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2598   ArgumentAnalyzer analyzer{*this, name.source};
2599   analyzer.Analyze(std::get<1>(x.t));
2600   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2601       "No operator %s defined for %s"_err_en_US, nullptr, true);
2602 }
2603 
2604 // Binary (dyadic) operations
2605 
2606 template <template <typename> class OPR>
2607 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2608     const parser::Expr::IntrinsicBinary &x) {
2609   ArgumentAnalyzer analyzer{context};
2610   analyzer.Analyze(std::get<0>(x.t));
2611   analyzer.Analyze(std::get<1>(x.t));
2612   if (!analyzer.fatalErrors()) {
2613     if (analyzer.IsIntrinsicNumeric(opr)) {
2614       analyzer.CheckForNullPointer();
2615       analyzer.CheckConformance();
2616       return NumericOperation<OPR>(context.GetContextualMessages(),
2617           analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2618           context.GetDefaultKind(TypeCategory::Real));
2619     } else {
2620       return analyzer.TryDefinedOp(AsFortran(opr),
2621           "Operands of %s must be numeric; have %s and %s"_err_en_US);
2622     }
2623   }
2624   return std::nullopt;
2625 }
2626 
2627 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2628   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2629 }
2630 
2631 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2632   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2633 }
2634 
2635 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2636   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2637 }
2638 
2639 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2640   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2641 }
2642 
2643 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2644   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2645 }
2646 
2647 MaybeExpr ExpressionAnalyzer::Analyze(
2648     const parser::Expr::ComplexConstructor &x) {
2649   auto re{Analyze(std::get<0>(x.t).value())};
2650   auto im{Analyze(std::get<1>(x.t).value())};
2651   if (re && im) {
2652     ConformabilityCheck(GetContextualMessages(), *re, *im);
2653   }
2654   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2655       std::move(im), GetDefaultKind(TypeCategory::Real)));
2656 }
2657 
2658 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2659   ArgumentAnalyzer analyzer{*this};
2660   analyzer.Analyze(std::get<0>(x.t));
2661   analyzer.Analyze(std::get<1>(x.t));
2662   if (!analyzer.fatalErrors()) {
2663     if (analyzer.IsIntrinsicConcat()) {
2664       analyzer.CheckForNullPointer();
2665       return std::visit(
2666           [&](auto &&x, auto &&y) -> MaybeExpr {
2667             using T = ResultType<decltype(x)>;
2668             if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2669               return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2670             } else {
2671               DIE("different types for intrinsic concat");
2672             }
2673           },
2674           std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2675           std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2676     } else {
2677       return analyzer.TryDefinedOp("//",
2678           "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2679     }
2680   }
2681   return std::nullopt;
2682 }
2683 
2684 // The Name represents a user-defined intrinsic operator.
2685 // If the actuals match one of the specific procedures, return a function ref.
2686 // Otherwise report the error in messages.
2687 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2688     const parser::Name &name, ActualArguments &&actuals) {
2689   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2690     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2691     return MakeFunctionRef(name.source,
2692         std::move(std::get<ProcedureDesignator>(callee->u)),
2693         std::move(callee->arguments));
2694   } else {
2695     return std::nullopt;
2696   }
2697 }
2698 
2699 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2700     const parser::Expr::IntrinsicBinary &x) {
2701   ArgumentAnalyzer analyzer{context};
2702   analyzer.Analyze(std::get<0>(x.t));
2703   analyzer.Analyze(std::get<1>(x.t));
2704   if (!analyzer.fatalErrors()) {
2705     std::optional<DynamicType> leftType{analyzer.GetType(0)};
2706     std::optional<DynamicType> rightType{analyzer.GetType(1)};
2707     analyzer.ConvertBOZ(leftType, 0, rightType);
2708     analyzer.ConvertBOZ(rightType, 1, leftType);
2709     if (leftType && rightType &&
2710         analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) {
2711       analyzer.CheckForNullPointer("as a relational operand");
2712       return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2713           analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2714     } else {
2715       return analyzer.TryDefinedOp(opr,
2716           leftType && leftType->category() == TypeCategory::Logical &&
2717                   rightType && rightType->category() == TypeCategory::Logical
2718               ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US
2719               : "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2720     }
2721   }
2722   return std::nullopt;
2723 }
2724 
2725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2726   return RelationHelper(*this, RelationalOperator::LT, x);
2727 }
2728 
2729 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2730   return RelationHelper(*this, RelationalOperator::LE, x);
2731 }
2732 
2733 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2734   return RelationHelper(*this, RelationalOperator::EQ, x);
2735 }
2736 
2737 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2738   return RelationHelper(*this, RelationalOperator::NE, x);
2739 }
2740 
2741 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2742   return RelationHelper(*this, RelationalOperator::GE, x);
2743 }
2744 
2745 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2746   return RelationHelper(*this, RelationalOperator::GT, x);
2747 }
2748 
2749 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2750     const parser::Expr::IntrinsicBinary &x) {
2751   ArgumentAnalyzer analyzer{context};
2752   analyzer.Analyze(std::get<0>(x.t));
2753   analyzer.Analyze(std::get<1>(x.t));
2754   if (!analyzer.fatalErrors()) {
2755     if (analyzer.IsIntrinsicLogical()) {
2756       analyzer.CheckForNullPointer("as a logical operand");
2757       return AsGenericExpr(BinaryLogicalOperation(opr,
2758           std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2759           std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2760     } else {
2761       return analyzer.TryDefinedOp(
2762           opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2763     }
2764   }
2765   return std::nullopt;
2766 }
2767 
2768 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2769   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2770 }
2771 
2772 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2773   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2774 }
2775 
2776 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2777   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2778 }
2779 
2780 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2781   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2782 }
2783 
2784 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2785   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2786   ArgumentAnalyzer analyzer{*this, name.source};
2787   analyzer.Analyze(std::get<1>(x.t));
2788   analyzer.Analyze(std::get<2>(x.t));
2789   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2790       "No operator %s defined for %s and %s"_err_en_US, nullptr, true);
2791 }
2792 
2793 // Returns true if a parsed function reference should be converted
2794 // into an array element reference.
2795 static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context,
2796     const parser::FunctionReference &funcRef) {
2797   // Emit message if the function reference fix will end up an array element
2798   // reference with no subscripts, or subscripts on a scalar, because it will
2799   // not be possible to later distinguish in expressions between an empty
2800   // subscript list due to bad subscripts error recovery or because the
2801   // user did not put any.
2802   auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2803   const auto *name{std::get_if<parser::Name>(&proc.u)};
2804   if (!name) {
2805     name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2806   }
2807   if (!name->symbol) {
2808     return false;
2809   } else if (name->symbol->Rank() == 0) {
2810     if (const Symbol *
2811         function{
2812             semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) {
2813       auto &msg{context.Say(funcRef.v.source,
2814           "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US,
2815           name->source)};
2816       AttachDeclaration(&msg, *function);
2817       name->symbol = const_cast<Symbol *>(function);
2818     }
2819     return false;
2820   } else {
2821     if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2822       auto &msg{context.Say(funcRef.v.source,
2823           "Reference to array '%s' with empty subscript list"_err_en_US,
2824           name->source)};
2825       if (name->symbol) {
2826         AttachDeclaration(&msg, *name->symbol);
2827       }
2828     }
2829     return true;
2830   }
2831 }
2832 
2833 // Converts, if appropriate, an original misparse of ambiguous syntax like
2834 // A(1) as a function reference into an array reference.
2835 // Misparsed structure constructors are detected elsewhere after generic
2836 // function call resolution fails.
2837 template <typename... A>
2838 static void FixMisparsedFunctionReference(
2839     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2840   // The parse tree is updated in situ when resolving an ambiguous parse.
2841   using uType = std::decay_t<decltype(constU)>;
2842   auto &u{const_cast<uType &>(constU)};
2843   if (auto *func{
2844           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2845     parser::FunctionReference &funcRef{func->value()};
2846     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2847     if (Symbol *
2848         origSymbol{
2849             std::visit(common::visitors{
2850                            [&](parser::Name &name) { return name.symbol; },
2851                            [&](parser::ProcComponentRef &pcr) {
2852                              return pcr.v.thing.component.symbol;
2853                            },
2854                        },
2855                 proc.u)}) {
2856       Symbol &symbol{origSymbol->GetUltimate()};
2857       if (symbol.has<semantics::ObjectEntityDetails>() ||
2858           symbol.has<semantics::AssocEntityDetails>()) {
2859         // Note that expression in AssocEntityDetails cannot be a procedure
2860         // pointer as per C1105 so this cannot be a function reference.
2861         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2862                           uType>) {
2863           if (CheckFuncRefToArrayElement(context, funcRef)) {
2864             u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2865           }
2866         } else {
2867           DIE("can't fix misparsed function as array reference");
2868         }
2869       }
2870     }
2871   }
2872 }
2873 
2874 // Common handling of parse tree node types that retain the
2875 // representation of the analyzed expression.
2876 template <typename PARSED>
2877 MaybeExpr ExpressionAnalyzer::ExprOrVariable(
2878     const PARSED &x, parser::CharBlock source) {
2879   if (useSavedTypedExprs_ && x.typedExpr) {
2880     return x.typedExpr->v;
2881   }
2882   auto restorer{GetContextualMessages().SetLocation(source)};
2883   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2884       std::is_same_v<PARSED, parser::Variable>) {
2885     FixMisparsedFunctionReference(context_, x.u);
2886   }
2887   if (AssumedTypeDummy(x)) { // C710
2888     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2889     ResetExpr(x);
2890     return std::nullopt;
2891   }
2892   MaybeExpr result;
2893   if constexpr (common::HasMember<parser::StructureConstructor,
2894                     std::decay_t<decltype(x.u)>> &&
2895       common::HasMember<common::Indirection<parser::FunctionReference>,
2896           std::decay_t<decltype(x.u)>>) {
2897     if (const auto *funcRef{
2898             std::get_if<common::Indirection<parser::FunctionReference>>(
2899                 &x.u)}) {
2900       // Function references in Exprs might turn out to be misparsed structure
2901       // constructors; we have to try generic procedure resolution
2902       // first to be sure.
2903       std::optional<parser::StructureConstructor> ctor;
2904       result = Analyze(funcRef->value(), &ctor);
2905       if (result && ctor) {
2906         // A misparsed function reference is really a structure
2907         // constructor.  Repair the parse tree in situ.
2908         const_cast<PARSED &>(x).u = std::move(*ctor);
2909       }
2910     } else {
2911       result = Analyze(x.u);
2912     }
2913   } else {
2914     result = Analyze(x.u);
2915   }
2916   if (result) {
2917     SetExpr(x, Fold(std::move(*result)));
2918     return x.typedExpr->v;
2919   } else {
2920     ResetExpr(x);
2921     if (!context_.AnyFatalError()) {
2922       std::string buf;
2923       llvm::raw_string_ostream dump{buf};
2924       parser::DumpTree(dump, x);
2925       Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2926           dump.str());
2927     }
2928     return std::nullopt;
2929   }
2930 }
2931 
2932 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2933   return ExprOrVariable(expr, expr.source);
2934 }
2935 
2936 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2937   return ExprOrVariable(variable, variable.GetSource());
2938 }
2939 
2940 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) {
2941   if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) {
2942     if (!useSavedTypedExprs_ || !var->typedExpr) {
2943       parser::CharBlock source{var->GetSource()};
2944       auto restorer{GetContextualMessages().SetLocation(source)};
2945       FixMisparsedFunctionReference(context_, var->u);
2946       if (const auto *funcRef{
2947               std::get_if<common::Indirection<parser::FunctionReference>>(
2948                   &var->u)}) {
2949         // A Selector that parsed as a Variable might turn out during analysis
2950         // to actually be a structure constructor.  In that case, repair the
2951         // Variable parse tree node into an Expr
2952         std::optional<parser::StructureConstructor> ctor;
2953         if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) {
2954           if (ctor) {
2955             auto &writable{const_cast<parser::Selector &>(selector)};
2956             writable.u = parser::Expr{std::move(*ctor)};
2957             auto &expr{std::get<parser::Expr>(writable.u)};
2958             expr.source = source;
2959             SetExpr(expr, Fold(std::move(*result)));
2960             return expr.typedExpr->v;
2961           } else {
2962             SetExpr(*var, Fold(std::move(*result)));
2963             return var->typedExpr->v;
2964           }
2965         } else {
2966           ResetExpr(*var);
2967           if (context_.AnyFatalError()) {
2968             return std::nullopt;
2969           }
2970         }
2971       }
2972     }
2973   }
2974   // Not a Variable -> FunctionReference; handle normally as Variable or Expr
2975   return Analyze(selector.u);
2976 }
2977 
2978 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
2979   auto restorer{common::ScopedSet(inDataStmtConstant_, true)};
2980   return ExprOrVariable(x, x.source);
2981 }
2982 
2983 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) {
2984   return ExprOrVariable(x, parser::FindSourceLocation(x));
2985 }
2986 
2987 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) {
2988   return ExprOrVariable(x, parser::FindSourceLocation(x));
2989 }
2990 
2991 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
2992     TypeCategory category,
2993     const std::optional<parser::KindSelector> &selector) {
2994   int defaultKind{GetDefaultKind(category)};
2995   if (!selector) {
2996     return Expr<SubscriptInteger>{defaultKind};
2997   }
2998   return std::visit(
2999       common::visitors{
3000           [&](const parser::ScalarIntConstantExpr &x) {
3001             if (MaybeExpr kind{Analyze(x)}) {
3002               if (std::optional<std::int64_t> code{ToInt64(*kind)}) {
3003                 if (CheckIntrinsicKind(category, *code)) {
3004                   return Expr<SubscriptInteger>{*code};
3005                 }
3006               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) {
3007                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
3008               }
3009             }
3010             return Expr<SubscriptInteger>{defaultKind};
3011           },
3012           [&](const parser::KindSelector::StarSize &x) {
3013             std::intmax_t size = x.v;
3014             if (!CheckIntrinsicSize(category, size)) {
3015               size = defaultKind;
3016             } else if (category == TypeCategory::Complex) {
3017               size /= 2;
3018             }
3019             return Expr<SubscriptInteger>{size};
3020           },
3021       },
3022       selector->u);
3023 }
3024 
3025 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
3026   return context_.GetDefaultKind(category);
3027 }
3028 
3029 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
3030     common::TypeCategory category) {
3031   return {category, GetDefaultKind(category)};
3032 }
3033 
3034 bool ExpressionAnalyzer::CheckIntrinsicKind(
3035     TypeCategory category, std::int64_t kind) {
3036   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
3037     return true;
3038   } else {
3039     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
3040         ToUpperCase(EnumToString(category)), kind);
3041     return false;
3042   }
3043 }
3044 
3045 bool ExpressionAnalyzer::CheckIntrinsicSize(
3046     TypeCategory category, std::int64_t size) {
3047   if (category == TypeCategory::Complex) {
3048     // COMPLEX*16 == COMPLEX(KIND=8)
3049     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
3050       return true;
3051     }
3052   } else if (IsValidKindOfIntrinsicType(category, size)) {
3053     return true;
3054   }
3055   Say("%s*%jd is not a supported type"_err_en_US,
3056       ToUpperCase(EnumToString(category)), size);
3057   return false;
3058 }
3059 
3060 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
3061   return impliedDos_.insert(std::make_pair(name, kind)).second;
3062 }
3063 
3064 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
3065   auto iter{impliedDos_.find(name)};
3066   if (iter != impliedDos_.end()) {
3067     impliedDos_.erase(iter);
3068   }
3069 }
3070 
3071 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
3072     parser::CharBlock name) const {
3073   auto iter{impliedDos_.find(name)};
3074   if (iter != impliedDos_.cend()) {
3075     return {iter->second};
3076   } else {
3077     return std::nullopt;
3078   }
3079 }
3080 
3081 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
3082     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
3083   if (result) {
3084     if (auto type{result->GetType()}) {
3085       if (type->category() != category) { // C885
3086         Say(at, "Must have %s type, but is %s"_err_en_US,
3087             ToUpperCase(EnumToString(category)),
3088             ToUpperCase(type->AsFortran()));
3089         return false;
3090       } else if (defaultKind) {
3091         int kind{context_.GetDefaultKind(category)};
3092         if (type->kind() != kind) {
3093           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
3094               kind, ToUpperCase(EnumToString(category)),
3095               ToUpperCase(type->AsFortran()));
3096           return false;
3097         }
3098       }
3099     } else {
3100       Say(at, "Must have %s type, but is typeless"_err_en_US,
3101           ToUpperCase(EnumToString(category)));
3102       return false;
3103     }
3104   }
3105   return true;
3106 }
3107 
3108 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
3109     ProcedureDesignator &&proc, ActualArguments &&arguments) {
3110   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
3111     if (intrinsic->name == "null" && arguments.empty()) {
3112       return Expr<SomeType>{NullPointer{}};
3113     }
3114   }
3115   if (const Symbol * symbol{proc.GetSymbol()}) {
3116     if (!ResolveForward(*symbol)) {
3117       return std::nullopt;
3118     }
3119   }
3120   if (auto chars{CheckCall(callSite, proc, arguments)}) {
3121     if (chars->functionResult) {
3122       const auto &result{*chars->functionResult};
3123       if (result.IsProcedurePointer()) {
3124         return Expr<SomeType>{
3125             ProcedureRef{std::move(proc), std::move(arguments)}};
3126       } else {
3127         // Not a procedure pointer, so type and shape are known.
3128         return TypedWrapper<FunctionRef, ProcedureRef>(
3129             DEREF(result.GetTypeAndShape()).type(),
3130             ProcedureRef{std::move(proc), std::move(arguments)});
3131       }
3132     } else {
3133       Say("Function result characteristics are not known"_err_en_US);
3134     }
3135   }
3136   return std::nullopt;
3137 }
3138 
3139 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
3140     parser::CharBlock intrinsic, ActualArguments &&arguments) {
3141   if (std::optional<SpecificCall> specificCall{
3142           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
3143               arguments, GetFoldingContext())}) {
3144     return MakeFunctionRef(intrinsic,
3145         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
3146         std::move(specificCall->arguments));
3147   } else {
3148     return std::nullopt;
3149   }
3150 }
3151 
3152 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
3153   source_.ExtendToCover(x.GetSource());
3154   if (MaybeExpr expr{context_.Analyze(x)}) {
3155     if (!IsConstantExpr(*expr)) {
3156       actuals_.emplace_back(std::move(*expr));
3157       return;
3158     }
3159     const Symbol *symbol{GetLastSymbol(*expr)};
3160     if (!symbol) {
3161       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3162           x.GetSource());
3163     } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
3164       auto *msg{context_.SayAt(x,
3165           "Assignment to subprogram '%s' is not allowed"_err_en_US,
3166           symbol->name())};
3167       if (subp->isFunction()) {
3168         const auto &result{subp->result().name()};
3169         msg->Attach(result, "Function result is '%s'"_err_en_US, result);
3170       }
3171     } else {
3172       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3173           symbol->name());
3174     }
3175   }
3176   fatalErrors_ = true;
3177 }
3178 
3179 void ArgumentAnalyzer::Analyze(
3180     const parser::ActualArgSpec &arg, bool isSubroutine) {
3181   // TODO: Actual arguments that are procedures and procedure pointers need to
3182   // be detected and represented (they're not expressions).
3183   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
3184   std::optional<ActualArgument> actual;
3185   std::visit(common::visitors{
3186                  [&](const common::Indirection<parser::Expr> &x) {
3187                    actual = AnalyzeExpr(x.value());
3188                  },
3189                  [&](const parser::AltReturnSpec &label) {
3190                    if (!isSubroutine) {
3191                      context_.Say(
3192                          "alternate return specification may not appear on"
3193                          " function reference"_err_en_US);
3194                    }
3195                    actual = ActualArgument(label.v);
3196                  },
3197                  [&](const parser::ActualArg::PercentRef &) {
3198                    context_.Say("TODO: %REF() argument"_err_en_US);
3199                  },
3200                  [&](const parser::ActualArg::PercentVal &) {
3201                    context_.Say("TODO: %VAL() argument"_err_en_US);
3202                  },
3203              },
3204       std::get<parser::ActualArg>(arg.t).u);
3205   if (actual) {
3206     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
3207       actual->set_keyword(argKW->v.source);
3208     }
3209     actuals_.emplace_back(std::move(*actual));
3210   } else {
3211     fatalErrors_ = true;
3212   }
3213 }
3214 
3215 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr,
3216     const DynamicType &leftType, const DynamicType &rightType) const {
3217   CHECK(actuals_.size() == 2);
3218   return semantics::IsIntrinsicRelational(
3219       opr, leftType, GetRank(0), rightType, GetRank(1));
3220 }
3221 
3222 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
3223   std::optional<DynamicType> leftType{GetType(0)};
3224   if (actuals_.size() == 1) {
3225     if (IsBOZLiteral(0)) {
3226       return opr == NumericOperator::Add; // unary '+'
3227     } else {
3228       return leftType && semantics::IsIntrinsicNumeric(*leftType);
3229     }
3230   } else {
3231     std::optional<DynamicType> rightType{GetType(1)};
3232     if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real
3233       auto cat1{rightType->category()};
3234       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
3235     } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ
3236       auto cat0{leftType->category()};
3237       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
3238     } else {
3239       return leftType && rightType &&
3240           semantics::IsIntrinsicNumeric(
3241               *leftType, GetRank(0), *rightType, GetRank(1));
3242     }
3243   }
3244 }
3245 
3246 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
3247   if (std::optional<DynamicType> leftType{GetType(0)}) {
3248     if (actuals_.size() == 1) {
3249       return semantics::IsIntrinsicLogical(*leftType);
3250     } else if (std::optional<DynamicType> rightType{GetType(1)}) {
3251       return semantics::IsIntrinsicLogical(
3252           *leftType, GetRank(0), *rightType, GetRank(1));
3253     }
3254   }
3255   return false;
3256 }
3257 
3258 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
3259   if (std::optional<DynamicType> leftType{GetType(0)}) {
3260     if (std::optional<DynamicType> rightType{GetType(1)}) {
3261       return semantics::IsIntrinsicConcat(
3262           *leftType, GetRank(0), *rightType, GetRank(1));
3263     }
3264   }
3265   return false;
3266 }
3267 
3268 bool ArgumentAnalyzer::CheckConformance() {
3269   if (actuals_.size() == 2) {
3270     const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
3271     const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
3272     if (lhs && rhs) {
3273       auto &foldingContext{context_.GetFoldingContext()};
3274       auto lhShape{GetShape(foldingContext, *lhs)};
3275       auto rhShape{GetShape(foldingContext, *rhs)};
3276       if (lhShape && rhShape) {
3277         if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape,
3278                 *rhShape, CheckConformanceFlags::EitherScalarExpandable,
3279                 "left operand", "right operand")
3280                  .value_or(false /*fail when conformance is not known now*/)) {
3281           fatalErrors_ = true;
3282           return false;
3283         }
3284       }
3285     }
3286   }
3287   return true; // no proven problem
3288 }
3289 
3290 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) {
3291   for (const std::optional<ActualArgument> &arg : actuals_) {
3292     if (arg) {
3293       if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) {
3294         if (IsNullPointer(*expr)) {
3295           context_.Say(
3296               source_, "A NULL() pointer is not allowed %s"_err_en_US, where);
3297           fatalErrors_ = true;
3298           return false;
3299         }
3300       }
3301     }
3302   }
3303   return true;
3304 }
3305 
3306 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr,
3307     parser::MessageFixedText error, const Symbol **definedOpSymbolPtr,
3308     bool isUserOp) {
3309   if (AnyUntypedOrMissingOperand()) {
3310     context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3311     return std::nullopt;
3312   }
3313   const Symbol *localDefinedOpSymbolPtr{nullptr};
3314   if (!definedOpSymbolPtr) {
3315     definedOpSymbolPtr = &localDefinedOpSymbolPtr;
3316   }
3317   {
3318     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3319     std::string oprNameString{
3320         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
3321     parser::CharBlock oprName{oprNameString};
3322     const auto &scope{context_.context().FindScope(source_)};
3323     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
3324       *definedOpSymbolPtr = symbol;
3325       parser::Name name{symbol->name(), symbol};
3326       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
3327         return result;
3328       }
3329     }
3330     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
3331       if (const Symbol *
3332           symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) {
3333         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
3334           return result;
3335         }
3336       }
3337     }
3338   }
3339   if (*definedOpSymbolPtr) {
3340     SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString()));
3341   } else if (actuals_.size() == 1 || AreConformable()) {
3342     if (CheckForNullPointer()) {
3343       context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3344     }
3345   } else {
3346     context_.Say(
3347         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
3348         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
3349   }
3350   return std::nullopt;
3351 }
3352 
3353 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
3354     std::vector<const char *> oprs, parser::MessageFixedText error) {
3355   const Symbol *definedOpSymbolPtr{nullptr};
3356   for (std::size_t i{1}; i < oprs.size(); ++i) {
3357     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3358     if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) {
3359       return result;
3360     }
3361   }
3362   return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr);
3363 }
3364 
3365 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
3366   ActualArguments localActuals{actuals_};
3367   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
3368   if (!proc) {
3369     proc = &symbol;
3370     localActuals.at(passIndex).value().set_isPassedObject();
3371   }
3372   CheckConformance();
3373   return context_.MakeFunctionRef(
3374       source_, ProcedureDesignator{*proc}, std::move(localActuals));
3375 }
3376 
3377 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
3378   using semantics::Tristate;
3379   const Expr<SomeType> &lhs{GetExpr(0)};
3380   const Expr<SomeType> &rhs{GetExpr(1)};
3381   std::optional<DynamicType> lhsType{lhs.GetType()};
3382   std::optional<DynamicType> rhsType{rhs.GetType()};
3383   int lhsRank{lhs.Rank()};
3384   int rhsRank{rhs.Rank()};
3385   Tristate isDefined{
3386       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
3387   if (isDefined == Tristate::No) {
3388     if (lhsType && rhsType) {
3389       AddAssignmentConversion(*lhsType, *rhsType);
3390     }
3391     return std::nullopt; // user-defined assignment not allowed for these args
3392   }
3393   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
3394   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
3395     if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032
3396       context_.Say(
3397           "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US,
3398           DEREF(procRef->proc().GetSymbol()).name());
3399     }
3400     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
3401     return std::move(*procRef);
3402   }
3403   if (isDefined == Tristate::Yes) {
3404     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
3405         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
3406       SayNoMatch("ASSIGNMENT(=)", true);
3407     }
3408   }
3409   return std::nullopt;
3410 }
3411 
3412 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
3413     TypeCategory lhs, TypeCategory rhs) {
3414   if (!context_.context().languageFeatures().IsEnabled(
3415           common::LanguageFeature::LogicalIntegerAssignment)) {
3416     return false;
3417   }
3418   std::optional<parser::MessageFixedText> msg;
3419   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
3420     // allow assignment to LOGICAL from INTEGER as a legacy extension
3421     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US;
3422   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
3423     // ... and assignment to LOGICAL from INTEGER
3424     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US;
3425   } else {
3426     return false;
3427   }
3428   if (context_.context().languageFeatures().ShouldWarn(
3429           common::LanguageFeature::LogicalIntegerAssignment)) {
3430     context_.Say(std::move(*msg));
3431   }
3432   return true;
3433 }
3434 
3435 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
3436   auto restorer{context_.GetContextualMessages().DiscardMessages()};
3437   std::string oprNameString{"assignment(=)"};
3438   parser::CharBlock oprName{oprNameString};
3439   const Symbol *proc{nullptr};
3440   const auto &scope{context_.context().FindScope(source_)};
3441   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
3442     ExpressionAnalyzer::AdjustActuals noAdjustment;
3443     auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)};
3444     if (pair.first) {
3445       proc = pair.first;
3446     } else {
3447       context_.EmitGenericResolutionError(*symbol, pair.second);
3448     }
3449   }
3450   int passedObjectIndex{-1};
3451   const Symbol *definedOpSymbol{nullptr};
3452   for (std::size_t i{0}; i < actuals_.size(); ++i) {
3453     if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) {
3454       if (const Symbol *
3455           resolution{GetBindingResolution(GetType(i), *specific)}) {
3456         proc = resolution;
3457       } else {
3458         proc = specific;
3459         passedObjectIndex = i;
3460       }
3461     }
3462   }
3463   if (!proc) {
3464     return std::nullopt;
3465   }
3466   ActualArguments actualsCopy{actuals_};
3467   if (passedObjectIndex >= 0) {
3468     actualsCopy[passedObjectIndex]->set_isPassedObject();
3469   }
3470   return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
3471 }
3472 
3473 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
3474   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
3475      << '\n';
3476   for (const auto &actual : actuals_) {
3477     if (!actual.has_value()) {
3478       os << "- error\n";
3479     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
3480       os << "- assumed type: " << symbol->name().ToString() << '\n';
3481     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
3482       expr->AsFortran(os << "- expr: ") << '\n';
3483     } else {
3484       DIE("bad ActualArgument");
3485     }
3486   }
3487 }
3488 
3489 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
3490     const parser::Expr &expr) {
3491   source_.ExtendToCover(expr.source);
3492   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
3493     expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
3494     if (isProcedureCall_) {
3495       return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
3496     }
3497     context_.SayAt(expr.source,
3498         "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
3499   } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) {
3500     if (isProcedureCall_ || !IsProcedure(*argExpr)) {
3501       return ActualArgument{std::move(*argExpr)};
3502     }
3503     context_.SayAt(expr.source,
3504         IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US
3505                              : "Subroutine name is not allowed here"_err_en_US);
3506   }
3507   return std::nullopt;
3508 }
3509 
3510 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray(
3511     const parser::Expr &expr) {
3512   // If an expression's parse tree is a whole assumed-size array:
3513   //   Expr -> Designator -> DataRef -> Name
3514   // treat it as a special case for argument passing and bypass
3515   // the C1002/C1014 constraint checking in expression semantics.
3516   if (const auto *name{parser::Unwrap<parser::Name>(expr)}) {
3517     if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) {
3518       auto restorer{context_.AllowWholeAssumedSizeArray()};
3519       return context_.Analyze(expr);
3520     }
3521   }
3522   return context_.Analyze(expr);
3523 }
3524 
3525 bool ArgumentAnalyzer::AreConformable() const {
3526   CHECK(actuals_.size() == 2);
3527   return actuals_[0] && actuals_[1] &&
3528       evaluate::AreConformable(*actuals_[0], *actuals_[1]);
3529 }
3530 
3531 // Look for a type-bound operator in the type of arg number passIndex.
3532 const Symbol *ArgumentAnalyzer::FindBoundOp(
3533     parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) {
3534   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
3535   if (!type || !type->scope()) {
3536     return nullptr;
3537   }
3538   const Symbol *symbol{type->scope()->FindComponent(oprName)};
3539   if (!symbol) {
3540     return nullptr;
3541   }
3542   definedOp = symbol;
3543   ExpressionAnalyzer::AdjustActuals adjustment{
3544       [&](const Symbol &proc, ActualArguments &) {
3545         return passIndex == GetPassIndex(proc);
3546       }};
3547   auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
3548   if (!pair.first) {
3549     context_.EmitGenericResolutionError(*symbol, pair.second);
3550   }
3551   return pair.first;
3552 }
3553 
3554 // If there is an implicit conversion between intrinsic types, make it explicit
3555 void ArgumentAnalyzer::AddAssignmentConversion(
3556     const DynamicType &lhsType, const DynamicType &rhsType) {
3557   if (lhsType.category() == rhsType.category() &&
3558       lhsType.kind() == rhsType.kind()) {
3559     // no conversion necessary
3560   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
3561     actuals_[1] = ActualArgument{*rhsExpr};
3562   } else {
3563     actuals_[1] = std::nullopt;
3564   }
3565 }
3566 
3567 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
3568   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
3569 }
3570 int ArgumentAnalyzer::GetRank(std::size_t i) const {
3571   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
3572 }
3573 
3574 // If the argument at index i is a BOZ literal, convert its type to match the
3575 // otherType.  If it's REAL convert to REAL, otherwise convert to INTEGER.
3576 // Note that IBM supports comparing BOZ literals to CHARACTER operands.  That
3577 // is not currently supported.
3578 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType,
3579     std::size_t i, std::optional<DynamicType> otherType) {
3580   if (IsBOZLiteral(i)) {
3581     Expr<SomeType> &&argExpr{MoveExpr(i)};
3582     auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
3583     if (otherType && otherType->category() == TypeCategory::Real) {
3584       int kind{context_.context().GetDefaultKind(TypeCategory::Real)};
3585       MaybeExpr realExpr{
3586           ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))};
3587       actuals_[i] = std::move(*realExpr);
3588       thisType.emplace(TypeCategory::Real, kind);
3589     } else {
3590       int kind{context_.context().GetDefaultKind(TypeCategory::Integer)};
3591       MaybeExpr intExpr{
3592           ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))};
3593       actuals_[i] = std::move(*intExpr);
3594       thisType.emplace(TypeCategory::Integer, kind);
3595     }
3596   }
3597 }
3598 
3599 // Report error resolving opr when there is a user-defined one available
3600 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
3601   std::string type0{TypeAsFortran(0)};
3602   auto rank0{actuals_[0]->Rank()};
3603   if (actuals_.size() == 1) {
3604     if (rank0 > 0) {
3605       context_.Say("No intrinsic or user-defined %s matches "
3606                    "rank %d array of %s"_err_en_US,
3607           opr, rank0, type0);
3608     } else {
3609       context_.Say("No intrinsic or user-defined %s matches "
3610                    "operand type %s"_err_en_US,
3611           opr, type0);
3612     }
3613   } else {
3614     std::string type1{TypeAsFortran(1)};
3615     auto rank1{actuals_[1]->Rank()};
3616     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
3617       context_.Say("No intrinsic or user-defined %s matches "
3618                    "rank %d array of %s and rank %d array of %s"_err_en_US,
3619           opr, rank0, type0, rank1, type1);
3620     } else if (isAssignment && rank0 != rank1) {
3621       if (rank0 == 0) {
3622         context_.Say("No intrinsic or user-defined %s matches "
3623                      "scalar %s and rank %d array of %s"_err_en_US,
3624             opr, type0, rank1, type1);
3625       } else {
3626         context_.Say("No intrinsic or user-defined %s matches "
3627                      "rank %d array of %s and scalar %s"_err_en_US,
3628             opr, rank0, type0, type1);
3629       }
3630     } else {
3631       context_.Say("No intrinsic or user-defined %s matches "
3632                    "operand types %s and %s"_err_en_US,
3633           opr, type0, type1);
3634     }
3635   }
3636 }
3637 
3638 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
3639   if (i >= actuals_.size() || !actuals_[i]) {
3640     return "missing argument";
3641   } else if (std::optional<DynamicType> type{GetType(i)}) {
3642     return type->category() == TypeCategory::Derived
3643         ? "TYPE("s + type->AsFortran() + ')'
3644         : type->category() == TypeCategory::Character
3645         ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
3646         : ToUpperCase(type->AsFortran());
3647   } else {
3648     return "untyped";
3649   }
3650 }
3651 
3652 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() {
3653   for (const auto &actual : actuals_) {
3654     if (!actual ||
3655         (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) {
3656       return true;
3657     }
3658   }
3659   return false;
3660 }
3661 } // namespace Fortran::evaluate
3662 
3663 namespace Fortran::semantics {
3664 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
3665     SemanticsContext &context, common::TypeCategory category,
3666     const std::optional<parser::KindSelector> &selector) {
3667   evaluate::ExpressionAnalyzer analyzer{context};
3668   auto restorer{
3669       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3670   return analyzer.AnalyzeKindSelector(category, selector);
3671 }
3672 
3673 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3674 
3675 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
3676   parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
3677   const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
3678   auto name{bounds.name.thing.thing};
3679   int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
3680   if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
3681     if (dynamicType->category() == TypeCategory::Integer) {
3682       kind = dynamicType->kind();
3683     }
3684   }
3685   exprAnalyzer_.AddImpliedDo(name.source, kind);
3686   parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
3687   exprAnalyzer_.RemoveImpliedDo(name.source);
3688   return false;
3689 }
3690 
3691 bool ExprChecker::Walk(const parser::Program &program) {
3692   parser::Walk(program, *this);
3693   return !context_.AnyFatalError();
3694 }
3695 } // namespace Fortran::semantics
3696