1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/Fortran.h"
14 #include "flang/Common/idioms.h"
15 #include "flang/Evaluate/common.h"
16 #include "flang/Evaluate/fold.h"
17 #include "flang/Evaluate/tools.h"
18 #include "flang/Parser/characters.h"
19 #include "flang/Parser/dump-parse-tree.h"
20 #include "flang/Parser/parse-tree-visitor.h"
21 #include "flang/Parser/parse-tree.h"
22 #include "flang/Semantics/scope.h"
23 #include "flang/Semantics/semantics.h"
24 #include "flang/Semantics/symbol.h"
25 #include "flang/Semantics/tools.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <functional>
29 #include <optional>
30 #include <set>
31 
32 // Typedef for optional generic expressions (ubiquitous in this file)
33 using MaybeExpr =
34     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
35 
36 // Much of the code that implements semantic analysis of expressions is
37 // tightly coupled with their typed representations in lib/Evaluate,
38 // and appears here in namespace Fortran::evaluate for convenience.
39 namespace Fortran::evaluate {
40 
41 using common::LanguageFeature;
42 using common::NumericOperator;
43 using common::TypeCategory;
44 
45 static inline std::string ToUpperCase(const std::string &str) {
46   return parser::ToUpperCaseLetters(str);
47 }
48 
49 struct DynamicTypeWithLength : public DynamicType {
50   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
51   std::optional<Expr<SubscriptInteger>> LEN() const;
52   std::optional<Expr<SubscriptInteger>> length;
53 };
54 
55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
56   if (length) {
57     return length;
58   } else {
59     return GetCharLength();
60   }
61 }
62 
63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
64     const std::optional<parser::TypeSpec> &spec) {
65   if (spec) {
66     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
67       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
68       // (viz., an intrinsic type with valid known kind or a non-polymorphic
69       // & non-ABSTRACT derived type).
70       if (const semantics::IntrinsicTypeSpec *
71           intrinsic{typeSpec->AsIntrinsic()}) {
72         TypeCategory category{intrinsic->category()};
73         if (auto optKind{ToInt64(intrinsic->kind())}) {
74           int kind{static_cast<int>(*optKind)};
75           if (category == TypeCategory::Character) {
76             const semantics::CharacterTypeSpec &cts{
77                 typeSpec->characterTypeSpec()};
78             const semantics::ParamValue &len{cts.length()};
79             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
80             // type guards, but not in array constructors.
81             return DynamicTypeWithLength{DynamicType{kind, len}};
82           } else {
83             return DynamicTypeWithLength{DynamicType{category, kind}};
84           }
85         }
86       } else if (const semantics::DerivedTypeSpec *
87           derived{typeSpec->AsDerived()}) {
88         return DynamicTypeWithLength{DynamicType{*derived}};
89       }
90     }
91   }
92   return std::nullopt;
93 }
94 
95 class ArgumentAnalyzer {
96 public:
97   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
98       : context_{context}, source_{context.GetContextualMessages().at()},
99         isProcedureCall_{false} {}
100   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
101       bool isProcedureCall = false)
102       : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
103   bool fatalErrors() const { return fatalErrors_; }
104   ActualArguments &&GetActuals() {
105     CHECK(!fatalErrors_);
106     return std::move(actuals_);
107   }
108   const Expr<SomeType> &GetExpr(std::size_t i) const {
109     return DEREF(actuals_.at(i).value().UnwrapExpr());
110   }
111   Expr<SomeType> &&MoveExpr(std::size_t i) {
112     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
113   }
114   void Analyze(const common::Indirection<parser::Expr> &x) {
115     Analyze(x.value());
116   }
117   void Analyze(const parser::Expr &x) {
118     actuals_.emplace_back(AnalyzeExpr(x));
119     fatalErrors_ |= !actuals_.back();
120   }
121   void Analyze(const parser::Variable &);
122   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
123   void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i,
124       std::optional<DynamicType> otherType);
125 
126   bool IsIntrinsicRelational(
127       RelationalOperator, const DynamicType &, const DynamicType &) const;
128   bool IsIntrinsicLogical() const;
129   bool IsIntrinsicNumeric(NumericOperator) const;
130   bool IsIntrinsicConcat() const;
131 
132   bool CheckConformance();
133   bool CheckForNullPointer(const char *where = "as an operand here");
134 
135   // Find and return a user-defined operator or report an error.
136   // The provided message is used if there is no such operator.
137   MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText,
138       const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false);
139   template <typename E>
140   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) {
141     return TryDefinedOp(
142         context_.context().languageFeatures().GetNames(opr), msg);
143   }
144   // Find and return a user-defined assignment
145   std::optional<ProcedureRef> TryDefinedAssignment();
146   std::optional<ProcedureRef> GetDefinedAssignmentProc();
147   std::optional<DynamicType> GetType(std::size_t) const;
148   void Dump(llvm::raw_ostream &);
149 
150 private:
151   MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText);
152   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
153   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
154   MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &);
155   bool AreConformable() const;
156   const Symbol *FindBoundOp(
157       parser::CharBlock, int passIndex, const Symbol *&definedOp);
158   void AddAssignmentConversion(
159       const DynamicType &lhsType, const DynamicType &rhsType);
160   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
161   int GetRank(std::size_t) const;
162   bool IsBOZLiteral(std::size_t i) const {
163     return evaluate::IsBOZLiteral(GetExpr(i));
164   }
165   void SayNoMatch(const std::string &, bool isAssignment = false);
166   std::string TypeAsFortran(std::size_t);
167   bool AnyUntypedOrMissingOperand();
168 
169   ExpressionAnalyzer &context_;
170   ActualArguments actuals_;
171   parser::CharBlock source_;
172   bool fatalErrors_{false};
173   const bool isProcedureCall_; // false for user-defined op or assignment
174 };
175 
176 // Wraps a data reference in a typed Designator<>, and a procedure
177 // or procedure pointer reference in a ProcedureDesignator.
178 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
179   const Symbol &last{ref.GetLastSymbol()};
180   const Symbol &symbol{BypassGeneric(last).GetUltimate()};
181   if (semantics::IsProcedure(symbol)) {
182     if (auto *component{std::get_if<Component>(&ref.u)}) {
183       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
184     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
185       DIE("unexpected alternative in DataRef");
186     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
187       if (symbol.has<semantics::GenericDetails>()) {
188         Say("'%s' is not a specific procedure"_err_en_US, symbol.name());
189       } else {
190         return Expr<SomeType>{ProcedureDesignator{symbol}};
191       }
192     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
193                    symbol.name().ToString())}) {
194       SpecificIntrinsic intrinsic{
195           symbol.name().ToString(), std::move(*interface)};
196       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
197       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
198     } else {
199       Say("'%s' is not a specific intrinsic procedure"_err_en_US,
200           symbol.name());
201     }
202     return std::nullopt;
203   } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) {
204     return result;
205   } else {
206     if (!context_.HasError(last) && !context_.HasError(symbol)) {
207       AttachDeclaration(
208           Say("'%s' is not an object that can appear in an expression"_err_en_US,
209               last.name()),
210           symbol);
211       context_.SetError(last);
212     }
213     return std::nullopt;
214   }
215 }
216 
217 // Some subscript semantic checks must be deferred until all of the
218 // subscripts are in hand.
219 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
220   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
221   int symbolRank{symbol.Rank()};
222   int subscripts{static_cast<int>(ref.size())};
223   if (subscripts == 0) {
224     return std::nullopt; // error recovery
225   } else if (subscripts != symbolRank) {
226     if (symbolRank != 0) {
227       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
228           symbolRank, symbol.name(), subscripts);
229     }
230     return std::nullopt;
231   } else if (Component * component{ref.base().UnwrapComponent()}) {
232     int baseRank{component->base().Rank()};
233     if (baseRank > 0) {
234       int subscriptRank{0};
235       for (const auto &expr : ref.subscript()) {
236         subscriptRank += expr.Rank();
237       }
238       if (subscriptRank > 0) {
239         Say("Subscripts of component '%s' of rank-%d derived type "
240             "array have rank %d but must all be scalar"_err_en_US,
241             symbol.name(), baseRank, subscriptRank);
242         return std::nullopt;
243       }
244     }
245   } else if (const auto *object{
246                  symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
247     // C928 & C1002
248     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
249       if (!last->upper() && object->IsAssumedSize()) {
250         Say("Assumed-size array '%s' must have explicit final "
251             "subscript upper bound value"_err_en_US,
252             symbol.name());
253         return std::nullopt;
254       }
255     }
256   } else {
257     // Shouldn't get here from Analyze(ArrayElement) without a valid base,
258     // which, if not an object, must be a construct entity from
259     // SELECT TYPE/RANK or ASSOCIATE.
260     CHECK(symbol.has<semantics::AssocEntityDetails>());
261   }
262   return Designate(DataRef{std::move(ref)});
263 }
264 
265 // Applies subscripts to a data reference.
266 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
267     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
268   if (subscripts.empty()) {
269     return std::nullopt; // error recovery
270   }
271   return std::visit(
272       common::visitors{
273           [&](SymbolRef &&symbol) {
274             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
275           },
276           [&](Component &&c) {
277             return CompleteSubscripts(
278                 ArrayRef{std::move(c), std::move(subscripts)});
279           },
280           [&](auto &&) -> MaybeExpr {
281             DIE("bad base for ArrayRef");
282             return std::nullopt;
283           },
284       },
285       std::move(dataRef.u));
286 }
287 
288 // Top-level checks for data references.
289 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
290   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
291     const Symbol &symbol{component->GetLastSymbol()};
292     int componentRank{symbol.Rank()};
293     if (componentRank > 0) {
294       int baseRank{component->base().Rank()};
295       if (baseRank > 0) {
296         Say("Reference to whole rank-%d component '%%%s' of "
297             "rank-%d array of derived type is not allowed"_err_en_US,
298             componentRank, symbol.name(), baseRank);
299       }
300     }
301   }
302   return Designate(std::move(dataRef));
303 }
304 
305 // Parse tree correction after a substring S(j:k) was misparsed as an
306 // array section.  N.B. Fortran substrings have to have a range, not a
307 // single index.
308 static void FixMisparsedSubstring(const parser::Designator &d) {
309   auto &mutate{const_cast<parser::Designator &>(d)};
310   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
311     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
312             &dataRef->u)}) {
313       parser::ArrayElement &arrElement{ae->value()};
314       if (!arrElement.subscripts.empty()) {
315         auto iter{arrElement.subscripts.begin()};
316         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
317           if (!std::get<2>(triplet->t) /* no stride */ &&
318               ++iter == arrElement.subscripts.end() /* one subscript */) {
319             if (Symbol *
320                 symbol{std::visit(
321                     common::visitors{
322                         [](parser::Name &n) { return n.symbol; },
323                         [](common::Indirection<parser::StructureComponent>
324                                 &sc) { return sc.value().component.symbol; },
325                         [](auto &) -> Symbol * { return nullptr; },
326                     },
327                     arrElement.base.u)}) {
328               const Symbol &ultimate{symbol->GetUltimate()};
329               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
330                 if (!ultimate.IsObjectArray() &&
331                     type->category() == semantics::DeclTypeSpec::Character) {
332                   // The ambiguous S(j:k) was parsed as an array section
333                   // reference, but it's now clear that it's a substring.
334                   // Fix the parse tree in situ.
335                   mutate.u = arrElement.ConvertToSubstring();
336                 }
337               }
338             }
339           }
340         }
341       }
342     }
343   }
344 }
345 
346 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
347   auto restorer{GetContextualMessages().SetLocation(d.source)};
348   FixMisparsedSubstring(d);
349   // These checks have to be deferred to these "top level" data-refs where
350   // we can be sure that there are no following subscripts (yet).
351   // Substrings have already been run through TopLevelChecks() and
352   // won't be returned by ExtractDataRef().
353   if (MaybeExpr result{Analyze(d.u)}) {
354     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
355       return TopLevelChecks(std::move(*dataRef));
356     }
357     return result;
358   }
359   return std::nullopt;
360 }
361 
362 // A utility subroutine to repackage optional expressions of various levels
363 // of type specificity as fully general MaybeExpr values.
364 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
365   return AsGenericExpr(std::move(x));
366 }
367 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
368   if (x) {
369     return AsMaybeExpr(std::move(*x));
370   }
371   return std::nullopt;
372 }
373 
374 // Type kind parameter values for literal constants.
375 int ExpressionAnalyzer::AnalyzeKindParam(
376     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
377   if (!kindParam) {
378     return defaultKind;
379   }
380   return std::visit(
381       common::visitors{
382           [](std::uint64_t k) { return static_cast<int>(k); },
383           [&](const parser::Scalar<
384               parser::Integer<parser::Constant<parser::Name>>> &n) {
385             if (MaybeExpr ie{Analyze(n)}) {
386               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
387                 int iv = *i64;
388                 if (iv == *i64) {
389                   return iv;
390                 }
391               }
392             }
393             return defaultKind;
394           },
395       },
396       kindParam->u);
397 }
398 
399 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
400 struct IntTypeVisitor {
401   using Result = MaybeExpr;
402   using Types = IntegerTypes;
403   template <typename T> Result Test() {
404     if (T::kind >= kind) {
405       const char *p{digits.begin()};
406       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
407       if (!value.overflow) {
408         if (T::kind > kind) {
409           if (!isDefaultKind ||
410               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
411             return std::nullopt;
412           } else if (analyzer.context().ShouldWarn(
413                          LanguageFeature::BigIntLiterals)) {
414             analyzer.Say(digits,
415                 "Integer literal is too large for default INTEGER(KIND=%d); "
416                 "assuming INTEGER(KIND=%d)"_en_US,
417                 kind, T::kind);
418           }
419         }
420         return Expr<SomeType>{
421             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
422       }
423     }
424     return std::nullopt;
425   }
426   ExpressionAnalyzer &analyzer;
427   parser::CharBlock digits;
428   int kind;
429   bool isDefaultKind;
430 };
431 
432 template <typename PARSED>
433 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
434   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
435   bool isDefaultKind{!kindParam};
436   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
437   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
438     auto digits{std::get<parser::CharBlock>(x.t)};
439     if (MaybeExpr result{common::SearchTypes(
440             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
441       return result;
442     } else if (isDefaultKind) {
443       Say(digits,
444           "Integer literal is too large for any allowable "
445           "kind of INTEGER"_err_en_US);
446     } else {
447       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
448           kind);
449     }
450   }
451   return std::nullopt;
452 }
453 
454 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
455   auto restorer{
456       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
457   return IntLiteralConstant(x);
458 }
459 
460 MaybeExpr ExpressionAnalyzer::Analyze(
461     const parser::SignedIntLiteralConstant &x) {
462   auto restorer{GetContextualMessages().SetLocation(x.source)};
463   return IntLiteralConstant(x);
464 }
465 
466 template <typename TYPE>
467 Constant<TYPE> ReadRealLiteral(
468     parser::CharBlock source, FoldingContext &context) {
469   const char *p{source.begin()};
470   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
471   CHECK(p == source.end());
472   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
473   auto value{valWithFlags.value};
474   if (context.flushSubnormalsToZero()) {
475     value = value.FlushSubnormalToZero();
476   }
477   return {value};
478 }
479 
480 struct RealTypeVisitor {
481   using Result = std::optional<Expr<SomeReal>>;
482   using Types = RealTypes;
483 
484   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
485       : kind{k}, literal{lit}, context{ctx} {}
486 
487   template <typename T> Result Test() {
488     if (kind == T::kind) {
489       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
490     }
491     return std::nullopt;
492   }
493 
494   int kind;
495   parser::CharBlock literal;
496   FoldingContext &context;
497 };
498 
499 // Reads a real literal constant and encodes it with the right kind.
500 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
501   // Use a local message context around the real literal for better
502   // provenance on any messages.
503   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
504   // If a kind parameter appears, it defines the kind of the literal and the
505   // letter used in an exponent part must be 'E' (e.g., the 'E' in
506   // "6.02214E+23").  In the absence of an explicit kind parameter, any
507   // exponent letter determines the kind.  Otherwise, defaults apply.
508   auto &defaults{context_.defaultKinds()};
509   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
510   const char *end{x.real.source.end()};
511   char expoLetter{' '};
512   std::optional<int> letterKind;
513   for (const char *p{x.real.source.begin()}; p < end; ++p) {
514     if (parser::IsLetter(*p)) {
515       expoLetter = *p;
516       switch (expoLetter) {
517       case 'e':
518         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
519         break;
520       case 'd':
521         letterKind = defaults.doublePrecisionKind();
522         break;
523       case 'q':
524         letterKind = defaults.quadPrecisionKind();
525         break;
526       default:
527         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
528       }
529       break;
530     }
531   }
532   if (letterKind) {
533     defaultKind = *letterKind;
534   }
535   // C716 requires 'E' as an exponent, but this is more useful
536   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
537   if (letterKind && kind != *letterKind && expoLetter != 'e') {
538     Say("Explicit kind parameter on real constant disagrees with "
539         "exponent letter '%c'"_en_US,
540         expoLetter);
541   }
542   auto result{common::SearchTypes(
543       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
544   if (!result) { // C717
545     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
546   }
547   return AsMaybeExpr(std::move(result));
548 }
549 
550 MaybeExpr ExpressionAnalyzer::Analyze(
551     const parser::SignedRealLiteralConstant &x) {
552   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
553     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
554     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
555       if (sign == parser::Sign::Negative) {
556         return AsGenericExpr(-std::move(realExpr));
557       }
558     }
559     return result;
560   }
561   return std::nullopt;
562 }
563 
564 MaybeExpr ExpressionAnalyzer::Analyze(
565     const parser::SignedComplexLiteralConstant &x) {
566   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
567   if (!result) {
568     return std::nullopt;
569   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
570     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
571   } else {
572     return result;
573   }
574 }
575 
576 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
577   return Analyze(x.u);
578 }
579 
580 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
581   return AsMaybeExpr(
582       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
583           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
584 }
585 
586 // CHARACTER literal processing.
587 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
588   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
589     return std::nullopt;
590   }
591   switch (kind) {
592   case 1:
593     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
594         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
595             string, true)});
596   case 2:
597     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
598         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
599             string, true)});
600   case 4:
601     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
602         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
603             string, true)});
604   default:
605     CRASH_NO_CASE;
606   }
607 }
608 
609 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
610   int kind{
611       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
612   auto value{std::get<std::string>(x.t)};
613   return AnalyzeString(std::move(value), kind);
614 }
615 
616 MaybeExpr ExpressionAnalyzer::Analyze(
617     const parser::HollerithLiteralConstant &x) {
618   int kind{GetDefaultKind(TypeCategory::Character)};
619   auto value{x.v};
620   return AnalyzeString(std::move(value), kind);
621 }
622 
623 // .TRUE. and .FALSE. of various kinds
624 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
625   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
626       GetDefaultKind(TypeCategory::Logical))};
627   bool value{std::get<bool>(x.t)};
628   auto result{common::SearchTypes(
629       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
630           kind, std::move(value)})};
631   if (!result) {
632     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
633   }
634   return result;
635 }
636 
637 // BOZ typeless literals
638 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
639   const char *p{x.v.c_str()};
640   std::uint64_t base{16};
641   switch (*p++) {
642   case 'b':
643     base = 2;
644     break;
645   case 'o':
646     base = 8;
647     break;
648   case 'z':
649     break;
650   case 'x':
651     break;
652   default:
653     CRASH_NO_CASE;
654   }
655   CHECK(*p == '"');
656   ++p;
657   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
658   if (*p != '"') {
659     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
660         x.v); // C7107, C7108
661     return std::nullopt;
662   }
663   if (value.overflow) {
664     Say("BOZ literal '%s' too large"_err_en_US, x.v);
665     return std::nullopt;
666   }
667   return AsGenericExpr(std::move(value.value));
668 }
669 
670 // Names and named constants
671 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
672   auto restorer{GetContextualMessages().SetLocation(n.source)};
673   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
674     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
675         *kind, AsExpr(ImpliedDoIndex{n.source})));
676   } else if (context_.HasError(n)) {
677     return std::nullopt;
678   } else if (!n.symbol) {
679     SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source);
680     return std::nullopt;
681   } else {
682     const Symbol &ultimate{n.symbol->GetUltimate()};
683     if (ultimate.has<semantics::TypeParamDetails>()) {
684       // A bare reference to a derived type parameter (within a parameterized
685       // derived type definition)
686       return Fold(ConvertToType(
687           ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate})));
688     } else {
689       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
690         if (const semantics::Scope *
691             pure{semantics::FindPureProcedureContaining(
692                 context_.FindScope(n.source))}) {
693           SayAt(n,
694               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
695               n.source, DEREF(pure->symbol()).name());
696           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
697         }
698       }
699       if (!isWholeAssumedSizeArrayOk_ &&
700           semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231
701         AttachDeclaration(
702             SayAt(n,
703                 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US,
704                 n.source),
705             *n.symbol);
706       }
707       return Designate(DataRef{*n.symbol});
708     }
709   }
710 }
711 
712 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
713   auto restorer{GetContextualMessages().SetLocation(n.v.source)};
714   if (MaybeExpr value{Analyze(n.v)}) {
715     Expr<SomeType> folded{Fold(std::move(*value))};
716     if (IsConstantExpr(folded)) {
717       return folded;
718     }
719     Say(n.v.source, "must be a constant"_err_en_US); // C718
720   }
721   return std::nullopt;
722 }
723 
724 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) {
725   if (MaybeExpr value{Analyze(n.v)}) {
726     // Subtle: when the NullInit is a DataStmtConstant, it might
727     // be a misparse of a structure constructor without parameters
728     // or components (e.g., T()).  Checking the result to ensure
729     // that a "=>" data entity initializer actually resolved to
730     // a null pointer has to be done by the caller.
731     return Fold(std::move(*value));
732   }
733   return std::nullopt;
734 }
735 
736 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
737   return Analyze(x.value());
738 }
739 
740 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
741   if (const auto &repeat{
742           std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
743     x.repetitions = -1;
744     if (MaybeExpr expr{Analyze(repeat->u)}) {
745       Expr<SomeType> folded{Fold(std::move(*expr))};
746       if (auto value{ToInt64(folded)}) {
747         if (*value >= 0) { // C882
748           x.repetitions = *value;
749         } else {
750           Say(FindSourceLocation(repeat),
751               "Repeat count (%jd) for data value must not be negative"_err_en_US,
752               *value);
753         }
754       }
755     }
756   }
757   return Analyze(std::get<parser::DataStmtConstant>(x.t));
758 }
759 
760 // Substring references
761 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
762     const std::optional<parser::ScalarIntExpr> &bound) {
763   if (bound) {
764     if (MaybeExpr expr{Analyze(*bound)}) {
765       if (expr->Rank() > 1) {
766         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
767       }
768       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
769         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
770           return {std::move(*ssIntExpr)};
771         }
772         return {Expr<SubscriptInteger>{
773             Convert<SubscriptInteger, TypeCategory::Integer>{
774                 std::move(*intExpr)}}};
775       } else {
776         Say("substring bound expression is not INTEGER"_err_en_US);
777       }
778     }
779   }
780   return std::nullopt;
781 }
782 
783 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
784   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
785     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
786       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
787         if (std::optional<DataRef> checked{
788                 ExtractDataRef(std::move(*newBaseExpr))}) {
789           const parser::SubstringRange &range{
790               std::get<parser::SubstringRange>(ss.t)};
791           std::optional<Expr<SubscriptInteger>> first{
792               GetSubstringBound(std::get<0>(range.t))};
793           std::optional<Expr<SubscriptInteger>> last{
794               GetSubstringBound(std::get<1>(range.t))};
795           const Symbol &symbol{checked->GetLastSymbol()};
796           if (std::optional<DynamicType> dynamicType{
797                   DynamicType::From(symbol)}) {
798             if (dynamicType->category() == TypeCategory::Character) {
799               return WrapperHelper<TypeCategory::Character, Designator,
800                   Substring>(dynamicType->kind(),
801                   Substring{std::move(checked.value()), std::move(first),
802                       std::move(last)});
803             }
804           }
805           Say("substring may apply only to CHARACTER"_err_en_US);
806         }
807       }
808     }
809   }
810   return std::nullopt;
811 }
812 
813 // CHARACTER literal substrings
814 MaybeExpr ExpressionAnalyzer::Analyze(
815     const parser::CharLiteralConstantSubstring &x) {
816   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
817   std::optional<Expr<SubscriptInteger>> lower{
818       GetSubstringBound(std::get<0>(range.t))};
819   std::optional<Expr<SubscriptInteger>> upper{
820       GetSubstringBound(std::get<1>(range.t))};
821   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
822     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
823       Expr<SubscriptInteger> length{
824           std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
825               charExpr->u)};
826       if (!lower) {
827         lower = Expr<SubscriptInteger>{1};
828       }
829       if (!upper) {
830         upper = Expr<SubscriptInteger>{
831             static_cast<std::int64_t>(ToInt64(length).value())};
832       }
833       return std::visit(
834           [&](auto &&ckExpr) -> MaybeExpr {
835             using Result = ResultType<decltype(ckExpr)>;
836             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
837             CHECK(DEREF(cp).size() == 1);
838             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
839             staticData->set_alignment(Result::kind)
840                 .set_itemBytes(Result::kind)
841                 .Push(cp->GetScalarValue().value());
842             Substring substring{std::move(staticData), std::move(lower.value()),
843                 std::move(upper.value())};
844             return AsGenericExpr(
845                 Expr<Result>{Designator<Result>{std::move(substring)}});
846           },
847           std::move(charExpr->u));
848     }
849   }
850   return std::nullopt;
851 }
852 
853 // Subscripted array references
854 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
855     MaybeExpr &&expr) {
856   if (expr) {
857     if (expr->Rank() > 1) {
858       Say("Subscript expression has rank %d greater than 1"_err_en_US,
859           expr->Rank());
860     }
861     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
862       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
863         return std::move(*ssIntExpr);
864       } else {
865         return Expr<SubscriptInteger>{
866             Convert<SubscriptInteger, TypeCategory::Integer>{
867                 std::move(*intExpr)}};
868       }
869     } else {
870       Say("Subscript expression is not INTEGER"_err_en_US);
871     }
872   }
873   return std::nullopt;
874 }
875 
876 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
877     const std::optional<parser::Subscript> &s) {
878   if (s) {
879     return AsSubscript(Analyze(*s));
880   } else {
881     return std::nullopt;
882   }
883 }
884 
885 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
886     const parser::SectionSubscript &ss) {
887   return std::visit(
888       common::visitors{
889           [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
890             const auto &lower{std::get<0>(t.t)};
891             const auto &upper{std::get<1>(t.t)};
892             const auto &stride{std::get<2>(t.t)};
893             auto result{Triplet{
894                 TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
895             if ((lower && !result.lower()) || (upper && !result.upper())) {
896               return std::nullopt;
897             } else {
898               return std::make_optional<Subscript>(result);
899             }
900           },
901           [&](const auto &s) -> std::optional<Subscript> {
902             if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
903               return Subscript{std::move(*subscriptExpr)};
904             } else {
905               return std::nullopt;
906             }
907           },
908       },
909       ss.u);
910 }
911 
912 // Empty result means an error occurred
913 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
914     const std::list<parser::SectionSubscript> &sss) {
915   bool error{false};
916   std::vector<Subscript> subscripts;
917   for (const auto &s : sss) {
918     if (auto subscript{AnalyzeSectionSubscript(s)}) {
919       subscripts.emplace_back(std::move(*subscript));
920     } else {
921       error = true;
922     }
923   }
924   return !error ? subscripts : std::vector<Subscript>{};
925 }
926 
927 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
928   MaybeExpr baseExpr;
929   {
930     auto restorer{AllowWholeAssumedSizeArray()};
931     baseExpr = Analyze(ae.base);
932   }
933   if (baseExpr) {
934     if (ae.subscripts.empty()) {
935       // will be converted to function call later or error reported
936     } else if (baseExpr->Rank() == 0) {
937       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
938         if (!context_.HasError(symbol)) {
939           Say("'%s' is not an array"_err_en_US, symbol->name());
940           context_.SetError(*symbol);
941         }
942       }
943     } else if (std::optional<DataRef> dataRef{
944                    ExtractDataRef(std::move(*baseExpr))}) {
945       return ApplySubscripts(
946           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
947     } else {
948       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
949     }
950   }
951   // error was reported: analyze subscripts without reporting more errors
952   auto restorer{GetContextualMessages().DiscardMessages()};
953   AnalyzeSectionSubscripts(ae.subscripts);
954   return std::nullopt;
955 }
956 
957 // Type parameter inquiries apply to data references, but don't depend
958 // on any trailing (co)subscripts.
959 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
960   return std::visit(
961       common::visitors{
962           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
963           [](Component &&component) {
964             return NamedEntity{std::move(component)};
965           },
966           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
967           [](CoarrayRef &&coarrayRef) {
968             return NamedEntity{coarrayRef.GetLastSymbol()};
969           },
970       },
971       std::move(designator.u));
972 }
973 
974 // Components of parent derived types are explicitly represented as such.
975 static std::optional<Component> CreateComponent(
976     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
977   if (&component.owner() == &scope) {
978     return Component{std::move(base), component};
979   }
980   if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) {
981     if (const Symbol * parentComponent{parentScope->GetSymbol()}) {
982       return CreateComponent(
983           DataRef{Component{std::move(base), *parentComponent}}, component,
984           *parentScope);
985     }
986   }
987   return std::nullopt;
988 }
989 
990 // Derived type component references and type parameter inquiries
991 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
992   MaybeExpr base{Analyze(sc.base)};
993   Symbol *sym{sc.component.symbol};
994   if (!base || !sym || context_.HasError(sym)) {
995     return std::nullopt;
996   }
997   const auto &name{sc.component.source};
998   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
999     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
1000     if (sym->detailsIf<semantics::TypeParamDetails>()) {
1001       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
1002         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
1003           if (dyType->category() == TypeCategory::Integer) {
1004             auto restorer{GetContextualMessages().SetLocation(name)};
1005             return Fold(ConvertToType(*dyType,
1006                 AsGenericExpr(TypeParamInquiry{
1007                     IgnoreAnySubscripts(std::move(*designator)), *sym})));
1008           }
1009         }
1010         Say(name, "Type parameter is not INTEGER"_err_en_US);
1011       } else {
1012         Say(name,
1013             "A type parameter inquiry must be applied to "
1014             "a designator"_err_en_US);
1015       }
1016     } else if (!dtSpec || !dtSpec->scope()) {
1017       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
1018       return std::nullopt;
1019     } else if (std::optional<DataRef> dataRef{
1020                    ExtractDataRef(std::move(*dtExpr))}) {
1021       if (auto component{
1022               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
1023         return Designate(DataRef{std::move(*component)});
1024       } else {
1025         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1026             dtSpec->typeSymbol().name());
1027       }
1028     } else {
1029       Say(name,
1030           "Base of component reference must be a data reference"_err_en_US);
1031     }
1032   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1033     // special part-ref: %re, %im, %kind, %len
1034     // Type errors are detected and reported in semantics.
1035     using MiscKind = semantics::MiscDetails::Kind;
1036     MiscKind kind{details->kind()};
1037     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1038       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1039         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
1040           Expr<SomeReal> realExpr{std::visit(
1041               [&](const auto &z) {
1042                 using PartType = typename ResultType<decltype(z)>::Part;
1043                 auto part{kind == MiscKind::ComplexPartRe
1044                         ? ComplexPart::Part::RE
1045                         : ComplexPart::Part::IM};
1046                 return AsCategoryExpr(Designator<PartType>{
1047                     ComplexPart{std::move(*dataRef), part}});
1048               },
1049               zExpr->u)};
1050           return AsGenericExpr(std::move(realExpr));
1051         }
1052       }
1053     } else if (kind == MiscKind::KindParamInquiry ||
1054         kind == MiscKind::LenParamInquiry) {
1055       // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
1056       return MakeFunctionRef(
1057           name, ActualArguments{ActualArgument{std::move(*base)}});
1058     } else {
1059       DIE("unexpected MiscDetails::Kind");
1060     }
1061   } else {
1062     Say(name, "derived type required before component reference"_err_en_US);
1063   }
1064   return std::nullopt;
1065 }
1066 
1067 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1068   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1069     DataRef *dataRef{&*maybeDataRef};
1070     std::vector<Subscript> subscripts;
1071     SymbolVector reversed;
1072     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1073       subscripts = std::move(aRef->subscript());
1074       reversed.push_back(aRef->GetLastSymbol());
1075       if (Component * component{aRef->base().UnwrapComponent()}) {
1076         dataRef = &component->base();
1077       } else {
1078         dataRef = nullptr;
1079       }
1080     }
1081     if (dataRef) {
1082       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1083         reversed.push_back(component->GetLastSymbol());
1084         dataRef = &component->base();
1085       }
1086       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1087         reversed.push_back(*baseSym);
1088       } else {
1089         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1090       }
1091     }
1092     std::vector<Expr<SubscriptInteger>> cosubscripts;
1093     bool cosubsOk{true};
1094     for (const auto &cosub :
1095         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1096       MaybeExpr coex{Analyze(cosub)};
1097       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1098         cosubscripts.push_back(
1099             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1100       } else {
1101         cosubsOk = false;
1102       }
1103     }
1104     if (cosubsOk && !reversed.empty()) {
1105       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1106       const Symbol &symbol{reversed.front()};
1107       if (numCosubscripts != symbol.Corank()) {
1108         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1109             symbol.name(), symbol.Corank(), numCosubscripts);
1110       }
1111     }
1112     for (const auto &imageSelSpec :
1113         std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1114       std::visit(
1115           common::visitors{
1116               [&](const auto &x) { Analyze(x.v); },
1117           },
1118           imageSelSpec.u);
1119     }
1120     // Reverse the chain of symbols so that the base is first and coarray
1121     // ultimate component is last.
1122     if (cosubsOk) {
1123       return Designate(
1124           DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1125               std::move(subscripts), std::move(cosubscripts)}});
1126     }
1127   }
1128   return std::nullopt;
1129 }
1130 
1131 int ExpressionAnalyzer::IntegerTypeSpecKind(
1132     const parser::IntegerTypeSpec &spec) {
1133   Expr<SubscriptInteger> value{
1134       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1135   if (auto kind{ToInt64(value)}) {
1136     return static_cast<int>(*kind);
1137   }
1138   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1139   return GetDefaultKind(TypeCategory::Integer);
1140 }
1141 
1142 // Array constructors
1143 
1144 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1145 // all happen to have the same actual type T into one ArrayConstructor<T>.
1146 template <typename T>
1147 ArrayConstructorValues<T> MakeSpecific(
1148     ArrayConstructorValues<SomeType> &&from) {
1149   ArrayConstructorValues<T> to;
1150   for (ArrayConstructorValue<SomeType> &x : from) {
1151     std::visit(
1152         common::visitors{
1153             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1154               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1155               to.Push(std::move(DEREF(typed)));
1156             },
1157             [&](ImpliedDo<SomeType> &&impliedDo) {
1158               to.Push(ImpliedDo<T>{impliedDo.name(),
1159                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1160                   std::move(impliedDo.stride()),
1161                   MakeSpecific<T>(std::move(impliedDo.values()))});
1162             },
1163         },
1164         std::move(x.u));
1165   }
1166   return to;
1167 }
1168 
1169 class ArrayConstructorContext {
1170 public:
1171   ArrayConstructorContext(
1172       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1173       : exprAnalyzer_{c}, type_{std::move(t)} {}
1174 
1175   void Add(const parser::AcValue &);
1176   MaybeExpr ToExpr();
1177 
1178   // These interfaces allow *this to be used as a type visitor argument to
1179   // common::SearchTypes() to convert the array constructor to a typed
1180   // expression in ToExpr().
1181   using Result = MaybeExpr;
1182   using Types = AllTypes;
1183   template <typename T> Result Test() {
1184     if (type_ && type_->category() == T::category) {
1185       if constexpr (T::category == TypeCategory::Derived) {
1186         if (!type_->IsUnlimitedPolymorphic()) {
1187           return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1188               MakeSpecific<T>(std::move(values_))});
1189         }
1190       } else if (type_->kind() == T::kind) {
1191         if constexpr (T::category == TypeCategory::Character) {
1192           if (auto len{type_->LEN()}) {
1193             return AsMaybeExpr(ArrayConstructor<T>{
1194                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1195           }
1196         } else {
1197           return AsMaybeExpr(
1198               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1199         }
1200       }
1201     }
1202     return std::nullopt;
1203   }
1204 
1205 private:
1206   using ImpliedDoIntType = ResultType<ImpliedDoIndex>;
1207 
1208   void Push(MaybeExpr &&);
1209   void Add(const parser::AcValue::Triplet &);
1210   void Add(const parser::Expr &);
1211   void Add(const parser::AcImpliedDo &);
1212   void UnrollConstantImpliedDo(const parser::AcImpliedDo &,
1213       parser::CharBlock name, std::int64_t lower, std::int64_t upper,
1214       std::int64_t stride);
1215 
1216   template <int KIND, typename A>
1217   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1218       const A &x) {
1219     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1220       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1221       return Fold(exprAnalyzer_.GetFoldingContext(),
1222           ConvertToType<Type<TypeCategory::Integer, KIND>>(
1223               std::move(DEREF(intExpr))));
1224     }
1225     return std::nullopt;
1226   }
1227 
1228   // Nested array constructors all reference the same ExpressionAnalyzer,
1229   // which represents the nest of active implied DO loop indices.
1230   ExpressionAnalyzer &exprAnalyzer_;
1231   std::optional<DynamicTypeWithLength> type_;
1232   bool explicitType_{type_.has_value()};
1233   std::optional<std::int64_t> constantLength_;
1234   ArrayConstructorValues<SomeType> values_;
1235   std::uint64_t messageDisplayedSet_{0};
1236 };
1237 
1238 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1239   if (!x) {
1240     return;
1241   }
1242   if (!type_) {
1243     if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1244       // Treat an array constructor of BOZ as if default integer.
1245       if (exprAnalyzer_.context().ShouldWarn(
1246               common::LanguageFeature::BOZAsDefaultInteger)) {
1247         exprAnalyzer_.Say(
1248             "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US);
1249       }
1250       x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1251           exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1252           std::move(*boz)));
1253     }
1254   }
1255   std::optional<DynamicType> dyType{x->GetType()};
1256   if (!dyType) {
1257     if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1258       if (!type_) {
1259         // Treat an array constructor of BOZ as if default integer.
1260         if (exprAnalyzer_.context().ShouldWarn(
1261                 common::LanguageFeature::BOZAsDefaultInteger)) {
1262           exprAnalyzer_.Say(
1263               "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US);
1264         }
1265         x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1266             exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1267             std::move(*boz)));
1268         dyType = x.value().GetType();
1269       } else if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1270         x = std::move(cast);
1271         dyType = *type_;
1272       } else {
1273         if (!(messageDisplayedSet_ & 0x80)) {
1274           exprAnalyzer_.Say(
1275               "BOZ literal is not suitable for use in this array constructor"_err_en_US);
1276           messageDisplayedSet_ |= 0x80;
1277         }
1278         return;
1279       }
1280     } else { // procedure name, &c.
1281       if (!(messageDisplayedSet_ & 0x40)) {
1282         exprAnalyzer_.Say(
1283             "Item is not suitable for use in an array constructor"_err_en_US);
1284         messageDisplayedSet_ |= 0x40;
1285       }
1286       return;
1287     }
1288   } else if (dyType->IsUnlimitedPolymorphic()) {
1289     if (!(messageDisplayedSet_ & 8)) {
1290       exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an "
1291                         "array constructor"_err_en_US); // C7113
1292       messageDisplayedSet_ |= 8;
1293     }
1294     return;
1295   }
1296   DynamicTypeWithLength xType{dyType.value()};
1297   if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1298     CHECK(xType.category() == TypeCategory::Character);
1299     xType.length =
1300         std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1301   }
1302   if (!type_) {
1303     // If there is no explicit type-spec in an array constructor, the type
1304     // of the array is the declared type of all of the elements, which must
1305     // be well-defined and all match.
1306     // TODO: Possible language extension: use the most general type of
1307     // the values as the type of a numeric constructed array, convert all
1308     // of the other values to that type.  Alternative: let the first value
1309     // determine the type, and convert the others to that type.
1310     CHECK(!explicitType_);
1311     type_ = std::move(xType);
1312     constantLength_ = ToInt64(type_->length);
1313     values_.Push(std::move(*x));
1314   } else if (!explicitType_) {
1315     if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) {
1316       values_.Push(std::move(*x));
1317       if (auto thisLen{ToInt64(xType.LEN())}) {
1318         if (constantLength_) {
1319           if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1320               *thisLen != *constantLength_) {
1321             if (!(messageDisplayedSet_ & 1)) {
1322               exprAnalyzer_.Say(
1323                   "Character literal in array constructor without explicit "
1324                   "type has different length than earlier elements"_en_US);
1325               messageDisplayedSet_ |= 1;
1326             }
1327           }
1328           if (*thisLen > *constantLength_) {
1329             // Language extension: use the longest literal to determine the
1330             // length of the array constructor's character elements, not the
1331             // first, when there is no explicit type.
1332             *constantLength_ = *thisLen;
1333             type_->length = xType.LEN();
1334           }
1335         } else {
1336           constantLength_ = *thisLen;
1337           type_->length = xType.LEN();
1338         }
1339       }
1340     } else {
1341       if (!(messageDisplayedSet_ & 2)) {
1342         exprAnalyzer_.Say(
1343             "Values in array constructor must have the same declared type "
1344             "when no explicit type appears"_err_en_US); // C7110
1345         messageDisplayedSet_ |= 2;
1346       }
1347     }
1348   } else {
1349     if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1350       values_.Push(std::move(*cast));
1351     } else if (!(messageDisplayedSet_ & 4)) {
1352       exprAnalyzer_.Say("Value in array constructor of type '%s' could not "
1353                         "be converted to the type of the array '%s'"_err_en_US,
1354           x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
1355       messageDisplayedSet_ |= 4;
1356     }
1357   }
1358 }
1359 
1360 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1361   std::visit(
1362       common::visitors{
1363           [&](const parser::AcValue::Triplet &triplet) { Add(triplet); },
1364           [&](const common::Indirection<parser::Expr> &expr) {
1365             Add(expr.value());
1366           },
1367           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1368             Add(impliedDo.value());
1369           },
1370       },
1371       x.u);
1372 }
1373 
1374 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1375 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) {
1376   std::optional<Expr<ImpliedDoIntType>> lower{
1377       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))};
1378   std::optional<Expr<ImpliedDoIntType>> upper{
1379       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))};
1380   std::optional<Expr<ImpliedDoIntType>> stride{
1381       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))};
1382   if (lower && upper) {
1383     if (!stride) {
1384       stride = Expr<ImpliedDoIntType>{1};
1385     }
1386     if (!type_) {
1387       type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()};
1388     }
1389     auto v{std::move(values_)};
1390     parser::CharBlock anonymous;
1391     Push(Expr<SomeType>{
1392         Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}});
1393     std::swap(v, values_);
1394     values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1395         std::move(*upper), std::move(*stride), std::move(v)});
1396   }
1397 }
1398 
1399 void ArrayConstructorContext::Add(const parser::Expr &expr) {
1400   auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)};
1401   Push(exprAnalyzer_.Analyze(expr));
1402 }
1403 
1404 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) {
1405   const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)};
1406   const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1407   exprAnalyzer_.Analyze(bounds.name);
1408   parser::CharBlock name{bounds.name.thing.thing.source};
1409   const Symbol *symbol{bounds.name.thing.thing.symbol};
1410   int kind{ImpliedDoIntType::kind};
1411   if (const auto dynamicType{DynamicType::From(symbol)}) {
1412     kind = dynamicType->kind();
1413   }
1414   std::optional<Expr<ImpliedDoIntType>> lower{
1415       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)};
1416   std::optional<Expr<ImpliedDoIntType>> upper{
1417       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)};
1418   if (lower && upper) {
1419     std::optional<Expr<ImpliedDoIntType>> stride{
1420         GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)};
1421     if (!stride) {
1422       stride = Expr<ImpliedDoIntType>{1};
1423     }
1424     if (exprAnalyzer_.AddImpliedDo(name, kind)) {
1425       // Check for constant bounds; the loop may require complete unrolling
1426       // of the parse tree if all bounds are constant in order to allow the
1427       // implied DO loop index to qualify as a constant expression.
1428       auto cLower{ToInt64(lower)};
1429       auto cUpper{ToInt64(upper)};
1430       auto cStride{ToInt64(stride)};
1431       if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) {
1432         exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source,
1433             "The stride of an implied DO loop must not be zero"_err_en_US);
1434         messageDisplayedSet_ |= 0x10;
1435       }
1436       bool isConstant{cLower && cUpper && cStride && *cStride != 0};
1437       bool isNonemptyConstant{isConstant &&
1438           ((*cStride > 0 && *cLower <= *cUpper) ||
1439               (*cStride < 0 && *cLower >= *cUpper))};
1440       bool unrollConstantLoop{false};
1441       parser::Messages buffer;
1442       auto saveMessagesDisplayed{messageDisplayedSet_};
1443       {
1444         auto messageRestorer{
1445             exprAnalyzer_.GetContextualMessages().SetMessages(buffer)};
1446         auto v{std::move(values_)};
1447         for (const auto &value :
1448             std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1449           Add(value);
1450         }
1451         std::swap(v, values_);
1452         if (isNonemptyConstant && buffer.AnyFatalError()) {
1453           unrollConstantLoop = true;
1454         } else {
1455           values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1456               std::move(*upper), std::move(*stride), std::move(v)});
1457         }
1458       }
1459       if (unrollConstantLoop) {
1460         messageDisplayedSet_ = saveMessagesDisplayed;
1461         UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride);
1462       } else if (auto *messages{
1463                      exprAnalyzer_.GetContextualMessages().messages()}) {
1464         messages->Annex(std::move(buffer));
1465       }
1466       exprAnalyzer_.RemoveImpliedDo(name);
1467     } else if (!(messageDisplayedSet_ & 0x20)) {
1468       exprAnalyzer_.SayAt(name,
1469           "Implied DO index '%s' is active in a surrounding implied DO loop "
1470           "and may not have the same name"_err_en_US,
1471           name); // C7115
1472       messageDisplayedSet_ |= 0x20;
1473     }
1474   }
1475 }
1476 
1477 // Fortran considers an implied DO index of an array constructor to be
1478 // a constant expression if the bounds of the implied DO loop are constant.
1479 // Usually this doesn't matter, but if we emitted spurious messages as a
1480 // result of not using constant values for the index while analyzing the
1481 // items, we need to do it again the "hard" way with multiple iterations over
1482 // the parse tree.
1483 void ArrayConstructorContext::UnrollConstantImpliedDo(
1484     const parser::AcImpliedDo &impliedDo, parser::CharBlock name,
1485     std::int64_t lower, std::int64_t upper, std::int64_t stride) {
1486   auto &foldingContext{exprAnalyzer_.GetFoldingContext()};
1487   auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()};
1488   for (auto &at{foldingContext.StartImpliedDo(name, lower)};
1489        (stride > 0 && at <= upper) || (stride < 0 && at >= upper);
1490        at += stride) {
1491     for (const auto &value :
1492         std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1493       Add(value);
1494     }
1495   }
1496   foldingContext.EndImpliedDo(name);
1497 }
1498 
1499 MaybeExpr ArrayConstructorContext::ToExpr() {
1500   return common::SearchTypes(std::move(*this));
1501 }
1502 
1503 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1504   const parser::AcSpec &acSpec{array.v};
1505   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1506   for (const parser::AcValue &value : acSpec.values) {
1507     acContext.Add(value);
1508   }
1509   return acContext.ToExpr();
1510 }
1511 
1512 MaybeExpr ExpressionAnalyzer::Analyze(
1513     const parser::StructureConstructor &structure) {
1514   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1515   parser::Name structureType{std::get<parser::Name>(parsedType.t)};
1516   parser::CharBlock &typeName{structureType.source};
1517   if (semantics::Symbol * typeSymbol{structureType.symbol}) {
1518     if (typeSymbol->has<semantics::DerivedTypeDetails>()) {
1519       semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()};
1520       if (!CheckIsValidForwardReference(dtSpec)) {
1521         return std::nullopt;
1522       }
1523     }
1524   }
1525   if (!parsedType.derivedTypeSpec) {
1526     return std::nullopt;
1527   }
1528   const auto &spec{*parsedType.derivedTypeSpec};
1529   const Symbol &typeSymbol{spec.typeSymbol()};
1530   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1531     return std::nullopt; // error recovery
1532   }
1533   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1534   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1535 
1536   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1537     AttachDeclaration(Say(typeName,
1538                           "ABSTRACT derived type '%s' may not be used in a "
1539                           "structure constructor"_err_en_US,
1540                           typeName),
1541         typeSymbol); // C7114
1542   }
1543 
1544   // This iterator traverses all of the components in the derived type and its
1545   // parents.  The symbols for whole parent components appear after their
1546   // own components and before the components of the types that extend them.
1547   // E.g., TYPE :: A; REAL X; END TYPE
1548   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1549   // produces the component list X, A, Y.
1550   // The order is important below because a structure constructor can
1551   // initialize X or A by name, but not both.
1552   auto components{semantics::OrderedComponentIterator{spec}};
1553   auto nextAnonymous{components.begin()};
1554 
1555   std::set<parser::CharBlock> unavailable;
1556   bool anyKeyword{false};
1557   StructureConstructor result{spec};
1558   bool checkConflicts{true}; // until we hit one
1559   auto &messages{GetContextualMessages()};
1560 
1561   for (const auto &component :
1562       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1563     const parser::Expr &expr{
1564         std::get<parser::ComponentDataSource>(component.t).v.value()};
1565     parser::CharBlock source{expr.source};
1566     auto restorer{messages.SetLocation(source)};
1567     const Symbol *symbol{nullptr};
1568     MaybeExpr value{Analyze(expr)};
1569     std::optional<DynamicType> valueType{DynamicType::From(value)};
1570     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1571       anyKeyword = true;
1572       source = kw->v.source;
1573       symbol = kw->v.symbol;
1574       if (!symbol) {
1575         auto componentIter{std::find_if(components.begin(), components.end(),
1576             [=](const Symbol &symbol) { return symbol.name() == source; })};
1577         if (componentIter != components.end()) {
1578           symbol = &*componentIter;
1579         }
1580       }
1581       if (!symbol) { // C7101
1582         Say(source,
1583             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1584             source, typeName);
1585       }
1586     } else {
1587       if (anyKeyword) { // C7100
1588         Say(source,
1589             "Value in structure constructor lacks a component name"_err_en_US);
1590         checkConflicts = false; // stem cascade
1591       }
1592       // Here's a regrettably common extension of the standard: anonymous
1593       // initialization of parent components, e.g., T(PT(1)) rather than
1594       // T(1) or T(PT=PT(1)).
1595       if (nextAnonymous == components.begin() && parentComponent &&
1596           valueType == DynamicType::From(*parentComponent) &&
1597           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1598         auto iter{
1599             std::find(components.begin(), components.end(), *parentComponent)};
1600         if (iter != components.end()) {
1601           symbol = parentComponent;
1602           nextAnonymous = ++iter;
1603           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1604             Say(source,
1605                 "Whole parent component '%s' in structure "
1606                 "constructor should not be anonymous"_en_US,
1607                 symbol->name());
1608           }
1609         }
1610       }
1611       while (!symbol && nextAnonymous != components.end()) {
1612         const Symbol &next{*nextAnonymous};
1613         ++nextAnonymous;
1614         if (!next.test(Symbol::Flag::ParentComp)) {
1615           symbol = &next;
1616         }
1617       }
1618       if (!symbol) {
1619         Say(source, "Unexpected value in structure constructor"_err_en_US);
1620       }
1621     }
1622     if (symbol) {
1623       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1624         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1625           Say(source, *msg);
1626         }
1627       }
1628       if (checkConflicts) {
1629         auto componentIter{
1630             std::find(components.begin(), components.end(), *symbol)};
1631         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1632           // C797, C798
1633           Say(source,
1634               "Component '%s' conflicts with another component earlier in "
1635               "this structure constructor"_err_en_US,
1636               symbol->name());
1637         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1638           // Make earlier components unavailable once a whole parent appears.
1639           for (auto it{components.begin()}; it != componentIter; ++it) {
1640             unavailable.insert(it->name());
1641           }
1642         } else {
1643           // Make whole parent components unavailable after any of their
1644           // constituents appear.
1645           for (auto it{componentIter}; it != components.end(); ++it) {
1646             if (it->test(Symbol::Flag::ParentComp)) {
1647               unavailable.insert(it->name());
1648             }
1649           }
1650         }
1651       }
1652       unavailable.insert(symbol->name());
1653       if (value) {
1654         if (symbol->has<semantics::ProcEntityDetails>()) {
1655           CHECK(IsPointer(*symbol));
1656         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1657           // C1594(4)
1658           const auto &innermost{context_.FindScope(expr.source)};
1659           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1660             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1661               if (const Symbol *
1662                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1663                 if (auto *msg{Say(expr.source,
1664                         "Externally visible object '%s' may not be "
1665                         "associated with pointer component '%s' in a "
1666                         "pure procedure"_err_en_US,
1667                         object->name(), pointer->name())}) {
1668                   msg->Attach(object->name(), "Object declaration"_en_US)
1669                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1670                 }
1671               }
1672             }
1673           }
1674         } else if (symbol->has<semantics::TypeParamDetails>()) {
1675           Say(expr.source,
1676               "Type parameter '%s' may not appear as a component "
1677               "of a structure constructor"_err_en_US,
1678               symbol->name());
1679           continue;
1680         } else {
1681           Say(expr.source,
1682               "Component '%s' is neither a procedure pointer "
1683               "nor a data object"_err_en_US,
1684               symbol->name());
1685           continue;
1686         }
1687         if (IsPointer(*symbol)) {
1688           semantics::CheckPointerAssignment(
1689               GetFoldingContext(), *symbol, *value); // C7104, C7105
1690           result.Add(*symbol, Fold(std::move(*value)));
1691         } else if (MaybeExpr converted{
1692                        ConvertToType(*symbol, std::move(*value))}) {
1693           if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
1694             if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
1695               if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
1696                 AttachDeclaration(
1697                     Say(expr.source,
1698                         "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
1699                         GetRank(*valueShape), symbol->name()),
1700                     *symbol);
1701               } else {
1702                 auto checked{
1703                     CheckConformance(messages, *componentShape, *valueShape,
1704                         CheckConformanceFlags::RightIsExpandableDeferred,
1705                         "component", "value")};
1706                 if (checked && *checked && GetRank(*componentShape) > 0 &&
1707                     GetRank(*valueShape) == 0 &&
1708                     !IsExpandableScalar(*converted)) {
1709                   AttachDeclaration(
1710                       Say(expr.source,
1711                           "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
1712                           symbol->name()),
1713                       *symbol);
1714                 }
1715                 if (checked.value_or(true)) {
1716                   result.Add(*symbol, std::move(*converted));
1717                 }
1718               }
1719             } else {
1720               Say(expr.source, "Shape of value cannot be determined"_err_en_US);
1721             }
1722           } else {
1723             AttachDeclaration(
1724                 Say(expr.source,
1725                     "Shape of component '%s' cannot be determined"_err_en_US,
1726                     symbol->name()),
1727                 *symbol);
1728           }
1729         } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) {
1730           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE
1731         } else if (auto symType{DynamicType::From(symbol)}) {
1732           if (valueType) {
1733             AttachDeclaration(
1734                 Say(expr.source,
1735                     "Value in structure constructor of type %s is "
1736                     "incompatible with component '%s' of type %s"_err_en_US,
1737                     valueType->AsFortran(), symbol->name(),
1738                     symType->AsFortran()),
1739                 *symbol);
1740           } else {
1741             AttachDeclaration(
1742                 Say(expr.source,
1743                     "Value in structure constructor is incompatible with "
1744                     " component '%s' of type %s"_err_en_US,
1745                     symbol->name(), symType->AsFortran()),
1746                 *symbol);
1747           }
1748         }
1749       }
1750     }
1751   }
1752 
1753   // Ensure that unmentioned component objects have default initializers.
1754   for (const Symbol &symbol : components) {
1755     if (!symbol.test(Symbol::Flag::ParentComp) &&
1756         unavailable.find(symbol.name()) == unavailable.cend() &&
1757         !IsAllocatable(symbol)) {
1758       if (const auto *details{
1759               symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1760         if (details->init()) {
1761           result.Add(symbol, common::Clone(*details->init()));
1762         } else { // C799
1763           AttachDeclaration(Say(typeName,
1764                                 "Structure constructor lacks a value for "
1765                                 "component '%s'"_err_en_US,
1766                                 symbol.name()),
1767               symbol);
1768         }
1769       }
1770     }
1771   }
1772 
1773   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1774 }
1775 
1776 static std::optional<parser::CharBlock> GetPassName(
1777     const semantics::Symbol &proc) {
1778   return std::visit(
1779       [](const auto &details) {
1780         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1781                           std::decay_t<decltype(details)>>) {
1782           return details.passName();
1783         } else {
1784           return std::optional<parser::CharBlock>{};
1785         }
1786       },
1787       proc.details());
1788 }
1789 
1790 static int GetPassIndex(const Symbol &proc) {
1791   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1792   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1793   const auto *interface{semantics::FindInterface(proc)};
1794   if (!passName || !interface) {
1795     return 0; // first argument is passed-object
1796   }
1797   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1798   int index{0};
1799   for (const auto *arg : subp.dummyArgs()) {
1800     if (arg && arg->name() == passName) {
1801       return index;
1802     }
1803     ++index;
1804   }
1805   DIE("PASS argument name not in dummy argument list");
1806 }
1807 
1808 // Injects an expression into an actual argument list as the "passed object"
1809 // for a type-bound procedure reference that is not NOPASS.  Adds an
1810 // argument keyword if possible, but not when the passed object goes
1811 // before a positional argument.
1812 // e.g., obj%tbp(x) -> tbp(obj,x).
1813 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1814     const Symbol &component, bool isPassedObject = true) {
1815   if (component.attrs().test(semantics::Attr::NOPASS)) {
1816     return;
1817   }
1818   int passIndex{GetPassIndex(component)};
1819   auto iter{actuals.begin()};
1820   int at{0};
1821   while (iter < actuals.end() && at < passIndex) {
1822     if (*iter && (*iter)->keyword()) {
1823       iter = actuals.end();
1824       break;
1825     }
1826     ++iter;
1827     ++at;
1828   }
1829   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1830   passed.set_isPassedObject(isPassedObject);
1831   if (iter == actuals.end()) {
1832     if (auto passName{GetPassName(component)}) {
1833       passed.set_keyword(*passName);
1834     }
1835   }
1836   actuals.emplace(iter, std::move(passed));
1837 }
1838 
1839 // Return the compile-time resolution of a procedure binding, if possible.
1840 static const Symbol *GetBindingResolution(
1841     const std::optional<DynamicType> &baseType, const Symbol &component) {
1842   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1843   if (!binding) {
1844     return nullptr;
1845   }
1846   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1847       (!baseType || baseType->IsPolymorphic())) {
1848     return nullptr;
1849   }
1850   return &binding->symbol();
1851 }
1852 
1853 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1854     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1855     -> std::optional<CalleeAndArguments> {
1856   const parser::StructureComponent &sc{pcr.v.thing};
1857   if (MaybeExpr base{Analyze(sc.base)}) {
1858     if (const Symbol * sym{sc.component.symbol}) {
1859       if (context_.HasError(sym)) {
1860         return std::nullopt;
1861       }
1862       if (!IsProcedure(*sym)) {
1863         AttachDeclaration(
1864             Say(sc.component.source, "'%s' is not a procedure"_err_en_US,
1865                 sc.component.source),
1866             *sym);
1867         return std::nullopt;
1868       }
1869       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1870         if (sym->has<semantics::GenericDetails>()) {
1871           AdjustActuals adjustment{
1872               [&](const Symbol &proc, ActualArguments &actuals) {
1873                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1874                   AddPassArg(actuals, std::move(*dtExpr), proc);
1875                 }
1876                 return true;
1877               }};
1878           auto pair{ResolveGeneric(*sym, arguments, adjustment)};
1879           sym = pair.first;
1880           if (!sym) {
1881             EmitGenericResolutionError(*sc.component.symbol, pair.second);
1882             return std::nullopt;
1883           }
1884         }
1885         if (const Symbol *
1886             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1887           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1888           return CalleeAndArguments{
1889               ProcedureDesignator{*resolution}, std::move(arguments)};
1890         } else if (std::optional<DataRef> dataRef{
1891                        ExtractDataRef(std::move(*dtExpr))}) {
1892           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1893             return CalleeAndArguments{
1894                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1895                 std::move(arguments)};
1896           } else {
1897             AddPassArg(arguments,
1898                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1899                 *sym);
1900             return CalleeAndArguments{
1901                 ProcedureDesignator{*sym}, std::move(arguments)};
1902           }
1903         }
1904       }
1905       Say(sc.component.source,
1906           "Base of procedure component reference is not a derived-type object"_err_en_US);
1907     }
1908   }
1909   CHECK(!GetContextualMessages().empty());
1910   return std::nullopt;
1911 }
1912 
1913 // Can actual be argument associated with dummy?
1914 static bool CheckCompatibleArgument(bool isElemental,
1915     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1916   const auto *expr{actual.UnwrapExpr()};
1917   return std::visit(
1918       common::visitors{
1919           [&](const characteristics::DummyDataObject &x) {
1920             if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) &&
1921                 IsBareNullPointer(expr)) {
1922               // NULL() without MOLD= is compatible with any dummy data pointer
1923               // but cannot be allowed to lead to ambiguity.
1924               return true;
1925             } else if (!isElemental && actual.Rank() != x.type.Rank() &&
1926                 !x.type.attrs().test(
1927                     characteristics::TypeAndShape::Attr::AssumedRank)) {
1928               return false;
1929             } else if (auto actualType{actual.GetType()}) {
1930               return x.type.type().IsTkCompatibleWith(*actualType);
1931             }
1932             return false;
1933           },
1934           [&](const characteristics::DummyProcedure &) {
1935             return expr && IsProcedurePointerTarget(*expr);
1936           },
1937           [&](const characteristics::AlternateReturn &) {
1938             return actual.isAlternateReturn();
1939           },
1940       },
1941       dummy.u);
1942 }
1943 
1944 // Are the actual arguments compatible with the dummy arguments of procedure?
1945 static bool CheckCompatibleArguments(
1946     const characteristics::Procedure &procedure,
1947     const ActualArguments &actuals) {
1948   bool isElemental{procedure.IsElemental()};
1949   const auto &dummies{procedure.dummyArguments};
1950   CHECK(dummies.size() == actuals.size());
1951   for (std::size_t i{0}; i < dummies.size(); ++i) {
1952     const characteristics::DummyArgument &dummy{dummies[i]};
1953     const std::optional<ActualArgument> &actual{actuals[i]};
1954     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1955       return false;
1956     }
1957   }
1958   return true;
1959 }
1960 
1961 // Handles a forward reference to a module function from what must
1962 // be a specification expression.  Return false if the symbol is
1963 // an invalid forward reference.
1964 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
1965   if (context_.HasError(symbol)) {
1966     return false;
1967   }
1968   if (const auto *details{
1969           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
1970     if (details->kind() == semantics::SubprogramKind::Module) {
1971       // If this symbol is still a SubprogramNameDetails, we must be
1972       // checking a specification expression in a sibling module
1973       // procedure.  Resolve its names now so that its interface
1974       // is known.
1975       semantics::ResolveSpecificationParts(context_, symbol);
1976       if (symbol.has<semantics::SubprogramNameDetails>()) {
1977         // When the symbol hasn't had its details updated, we must have
1978         // already been in the process of resolving the function's
1979         // specification part; but recursive function calls are not
1980         // allowed in specification parts (10.1.11 para 5).
1981         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
1982             symbol.name());
1983         context_.SetError(symbol);
1984         return false;
1985       }
1986     } else { // 10.1.11 para 4
1987       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
1988           symbol.name());
1989       context_.SetError(symbol);
1990       return false;
1991     }
1992   }
1993   return true;
1994 }
1995 
1996 // Resolve a call to a generic procedure with given actual arguments.
1997 // adjustActuals is called on procedure bindings to handle pass arg.
1998 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric(
1999     const Symbol &symbol, const ActualArguments &actuals,
2000     const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) {
2001   const Symbol *elemental{nullptr}; // matching elemental specific proc
2002   const Symbol *nonElemental{nullptr}; // matching non-elemental specific
2003   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
2004   bool anyBareNullActual{
2005       std::find_if(actuals.begin(), actuals.end(), [](auto iter) {
2006         return IsBareNullPointer(iter->UnwrapExpr());
2007       }) != actuals.end()};
2008   for (const Symbol &specific : details.specificProcs()) {
2009     if (!ResolveForward(specific)) {
2010       continue;
2011     }
2012     if (std::optional<characteristics::Procedure> procedure{
2013             characteristics::Procedure::Characterize(
2014                 ProcedureDesignator{specific}, context_.foldingContext())}) {
2015       ActualArguments localActuals{actuals};
2016       if (specific.has<semantics::ProcBindingDetails>()) {
2017         if (!adjustActuals.value()(specific, localActuals)) {
2018           continue;
2019         }
2020       }
2021       if (semantics::CheckInterfaceForGeneric(
2022               *procedure, localActuals, GetFoldingContext()) &&
2023           CheckCompatibleArguments(*procedure, localActuals)) {
2024         if ((procedure->IsElemental() && elemental) ||
2025             (!procedure->IsElemental() && nonElemental)) {
2026           // 16.9.144(6): a bare NULL() is not allowed as an actual
2027           // argument to a generic procedure if the specific procedure
2028           // cannot be unambiguously distinguished
2029           return {nullptr, true /* due to NULL actuals */};
2030         }
2031         if (!procedure->IsElemental()) {
2032           // takes priority over elemental match
2033           nonElemental = &specific;
2034           if (!anyBareNullActual) {
2035             break; // unambiguous case
2036           }
2037         } else {
2038           elemental = &specific;
2039         }
2040       }
2041     }
2042   }
2043   if (nonElemental) {
2044     return {&AccessSpecific(symbol, *nonElemental), false};
2045   } else if (elemental) {
2046     return {&AccessSpecific(symbol, *elemental), false};
2047   }
2048   // Check parent derived type
2049   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
2050     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
2051       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
2052         auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)};
2053         if (pair.first) {
2054           return pair;
2055         }
2056       }
2057     }
2058   }
2059   if (mightBeStructureConstructor && details.derivedType()) {
2060     return {details.derivedType(), false};
2061   }
2062   return {nullptr, false};
2063 }
2064 
2065 const Symbol &ExpressionAnalyzer::AccessSpecific(
2066     const Symbol &originalGeneric, const Symbol &specific) {
2067   if (const auto *hosted{
2068           originalGeneric.detailsIf<semantics::HostAssocDetails>()}) {
2069     return AccessSpecific(hosted->symbol(), specific);
2070   } else if (const auto *used{
2071                  originalGeneric.detailsIf<semantics::UseDetails>()}) {
2072     const auto &scope{originalGeneric.owner()};
2073     if (auto iter{scope.find(specific.name())}; iter != scope.end()) {
2074       if (const auto *useDetails{
2075               iter->second->detailsIf<semantics::UseDetails>()}) {
2076         const Symbol &usedSymbol{useDetails->symbol()};
2077         const auto *usedGeneric{
2078             usedSymbol.detailsIf<semantics::GenericDetails>()};
2079         if (&usedSymbol == &specific ||
2080             (usedGeneric && usedGeneric->specific() == &specific)) {
2081           return specific;
2082         }
2083       }
2084     }
2085     // Create a renaming USE of the specific procedure.
2086     auto rename{context_.SaveTempName(
2087         used->symbol().owner().GetName().value().ToString() + "$" +
2088         specific.name().ToString())};
2089     return *const_cast<semantics::Scope &>(scope)
2090                 .try_emplace(rename, specific.attrs(),
2091                     semantics::UseDetails{rename, specific})
2092                 .first->second;
2093   } else {
2094     return specific;
2095   }
2096 }
2097 
2098 void ExpressionAnalyzer::EmitGenericResolutionError(
2099     const Symbol &symbol, bool dueToNullActuals) {
2100   Say(dueToNullActuals
2101           ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US
2102           : semantics::IsGenericDefinedOp(symbol)
2103           ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US
2104           : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
2105       symbol.name());
2106 }
2107 
2108 auto ExpressionAnalyzer::GetCalleeAndArguments(
2109     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
2110     bool isSubroutine, bool mightBeStructureConstructor)
2111     -> std::optional<CalleeAndArguments> {
2112   return std::visit(
2113       common::visitors{
2114           [&](const parser::Name &name) {
2115             return GetCalleeAndArguments(name, std::move(arguments),
2116                 isSubroutine, mightBeStructureConstructor);
2117           },
2118           [&](const parser::ProcComponentRef &pcr) {
2119             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
2120           },
2121       },
2122       pd.u);
2123 }
2124 
2125 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
2126     ActualArguments &&arguments, bool isSubroutine,
2127     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
2128   const Symbol *symbol{name.symbol};
2129   if (context_.HasError(symbol)) {
2130     return std::nullopt; // also handles null symbol
2131   }
2132   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
2133   if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
2134     if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
2135             CallCharacteristics{ultimate.name().ToString(), isSubroutine},
2136             arguments, GetFoldingContext())}) {
2137       CheckBadExplicitType(*specificCall, *symbol);
2138       return CalleeAndArguments{
2139           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2140           std::move(specificCall->arguments)};
2141     }
2142   } else {
2143     CheckForBadRecursion(name.source, ultimate);
2144     bool dueToNullActual{false};
2145     if (ultimate.has<semantics::GenericDetails>()) {
2146       ExpressionAnalyzer::AdjustActuals noAdjustment;
2147       auto pair{ResolveGeneric(
2148           *symbol, arguments, noAdjustment, mightBeStructureConstructor)};
2149       symbol = pair.first;
2150       dueToNullActual = pair.second;
2151     }
2152     if (symbol) {
2153       if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
2154         if (mightBeStructureConstructor) {
2155           return CalleeAndArguments{
2156               semantics::SymbolRef{*symbol}, std::move(arguments)};
2157         }
2158       } else if (IsProcedure(*symbol)) {
2159         return CalleeAndArguments{
2160             ProcedureDesignator{*symbol}, std::move(arguments)};
2161       }
2162       if (!context_.HasError(*symbol)) {
2163         AttachDeclaration(
2164             Say(name.source, "'%s' is not a callable procedure"_err_en_US,
2165                 name.source),
2166             *symbol);
2167       }
2168     } else if (std::optional<SpecificCall> specificCall{
2169                    context_.intrinsics().Probe(
2170                        CallCharacteristics{
2171                            ultimate.name().ToString(), isSubroutine},
2172                        arguments, GetFoldingContext())}) {
2173       // Generics can extend intrinsics
2174       return CalleeAndArguments{
2175           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2176           std::move(specificCall->arguments)};
2177     } else {
2178       EmitGenericResolutionError(*name.symbol, dueToNullActual);
2179     }
2180   }
2181   return std::nullopt;
2182 }
2183 
2184 // Fortran 2018 expressly states (8.2 p3) that any declared type for a
2185 // generic intrinsic function "has no effect" on the result type of a
2186 // call to that intrinsic.  So one can declare "character*8 cos" and
2187 // still get a real result from "cos(1.)".  This is a dangerous feature,
2188 // especially since implementations are free to extend their sets of
2189 // intrinsics, and in doing so might clash with a name in a program.
2190 // So we emit a warning in this situation, and perhaps it should be an
2191 // error -- any correctly working program can silence the message by
2192 // simply deleting the pointless type declaration.
2193 void ExpressionAnalyzer::CheckBadExplicitType(
2194     const SpecificCall &call, const Symbol &intrinsic) {
2195   if (intrinsic.GetUltimate().GetType()) {
2196     const auto &procedure{call.specificIntrinsic.characteristics.value()};
2197     if (const auto &result{procedure.functionResult}) {
2198       if (const auto *typeAndShape{result->GetTypeAndShape()}) {
2199         if (auto declared{
2200                 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) {
2201           if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) {
2202             if (auto *msg{Say(
2203                     "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US,
2204                     typeAndShape->AsFortran(), intrinsic.name(),
2205                     declared->AsFortran())}) {
2206               msg->Attach(intrinsic.name(),
2207                   "Ignored declaration of intrinsic function '%s'"_en_US,
2208                   intrinsic.name());
2209             }
2210           }
2211         }
2212       }
2213     }
2214   }
2215 }
2216 
2217 void ExpressionAnalyzer::CheckForBadRecursion(
2218     parser::CharBlock callSite, const semantics::Symbol &proc) {
2219   if (const auto *scope{proc.scope()}) {
2220     if (scope->sourceRange().Contains(callSite)) {
2221       parser::Message *msg{nullptr};
2222       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
2223         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
2224             callSite);
2225       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
2226         msg = Say( // 15.6.2.1(3)
2227             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
2228             callSite);
2229       }
2230       AttachDeclaration(msg, proc);
2231     }
2232   }
2233 }
2234 
2235 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
2236   if (const auto *designator{
2237           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
2238     if (const auto *dataRef{
2239             std::get_if<parser::DataRef>(&designator->value().u)}) {
2240       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
2241         return AssumedTypeDummy(*name);
2242       }
2243     }
2244   }
2245   return nullptr;
2246 }
2247 template <>
2248 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) {
2249   if (const Symbol * symbol{name.symbol}) {
2250     if (const auto *type{symbol->GetType()}) {
2251       if (type->category() == semantics::DeclTypeSpec::TypeStar) {
2252         return symbol;
2253       }
2254     }
2255   }
2256   return nullptr;
2257 }
2258 template <typename A>
2259 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) {
2260   // It is illegal for allocatable of pointer objects to be TYPE(*), but at that
2261   // point it is is not guaranteed that it has been checked the object has
2262   // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly
2263   // returned.
2264   return std::visit(
2265       common::visitors{
2266           [&](const parser::StructureComponent &x) {
2267             return AssumedTypeDummy(x.component);
2268           },
2269           [&](const parser::Name &x) { return AssumedTypeDummy(x); },
2270       },
2271       object.u);
2272 }
2273 template <>
2274 const Symbol *AssumedTypeDummy<parser::AllocateObject>(
2275     const parser::AllocateObject &x) {
2276   return AssumedTypePointerOrAllocatableDummy(x);
2277 }
2278 template <>
2279 const Symbol *AssumedTypeDummy<parser::PointerObject>(
2280     const parser::PointerObject &x) {
2281   return AssumedTypePointerOrAllocatableDummy(x);
2282 }
2283 
2284 bool ExpressionAnalyzer::CheckIsValidForwardReference(
2285     const semantics::DerivedTypeSpec &dtSpec) {
2286   if (dtSpec.IsForwardReferenced()) {
2287     Say("Cannot construct value for derived type '%s' "
2288         "before it is defined"_err_en_US,
2289         dtSpec.name());
2290     return false;
2291   }
2292   return true;
2293 }
2294 
2295 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
2296     std::optional<parser::StructureConstructor> *structureConstructor) {
2297   const parser::Call &call{funcRef.v};
2298   auto restorer{GetContextualMessages().SetLocation(call.source)};
2299   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2300   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
2301     analyzer.Analyze(arg, false /* not subroutine call */);
2302   }
2303   if (analyzer.fatalErrors()) {
2304     return std::nullopt;
2305   }
2306   if (std::optional<CalleeAndArguments> callee{
2307           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2308               analyzer.GetActuals(), false /* not subroutine */,
2309               true /* might be structure constructor */)}) {
2310     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
2311       return MakeFunctionRef(
2312           call.source, std::move(*proc), std::move(callee->arguments));
2313     }
2314     CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
2315     const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)};
2316     if (structureConstructor) {
2317       // Structure constructor misparsed as function reference?
2318       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
2319       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
2320         semantics::Scope &scope{context_.FindScope(name->source)};
2321         semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()};
2322         if (!CheckIsValidForwardReference(dtSpec)) {
2323           return std::nullopt;
2324         }
2325         const semantics::DeclTypeSpec &type{
2326             semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))};
2327         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
2328         *structureConstructor =
2329             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
2330         return Analyze(structureConstructor->value());
2331       }
2332     }
2333     if (!context_.HasError(symbol)) {
2334       AttachDeclaration(
2335           Say("'%s' is called like a function but is not a procedure"_err_en_US,
2336               symbol.name()),
2337           symbol);
2338       context_.SetError(symbol);
2339     }
2340   }
2341   return std::nullopt;
2342 }
2343 
2344 static bool HasAlternateReturns(const evaluate::ActualArguments &args) {
2345   for (const auto &arg : args) {
2346     if (arg && arg->isAlternateReturn()) {
2347       return true;
2348     }
2349   }
2350   return false;
2351 }
2352 
2353 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
2354   const parser::Call &call{callStmt.v};
2355   auto restorer{GetContextualMessages().SetLocation(call.source)};
2356   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2357   const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
2358   for (const auto &arg : actualArgList) {
2359     analyzer.Analyze(arg, true /* is subroutine call */);
2360   }
2361   if (!analyzer.fatalErrors()) {
2362     if (std::optional<CalleeAndArguments> callee{
2363             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2364                 analyzer.GetActuals(), true /* subroutine */)}) {
2365       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
2366       CHECK(proc);
2367       if (CheckCall(call.source, *proc, callee->arguments)) {
2368         bool hasAlternateReturns{HasAlternateReturns(callee->arguments)};
2369         callStmt.typedCall.Reset(
2370             new ProcedureRef{std::move(*proc), std::move(callee->arguments),
2371                 hasAlternateReturns},
2372             ProcedureRef::Deleter);
2373       }
2374     }
2375   }
2376 }
2377 
2378 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
2379   if (!x.typedAssignment) {
2380     ArgumentAnalyzer analyzer{*this};
2381     analyzer.Analyze(std::get<parser::Variable>(x.t));
2382     analyzer.Analyze(std::get<parser::Expr>(x.t));
2383     std::optional<Assignment> assignment;
2384     if (!analyzer.fatalErrors()) {
2385       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
2386       if (!procRef) {
2387         analyzer.CheckForNullPointer(
2388             "in a non-pointer intrinsic assignment statement");
2389       }
2390       assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1));
2391       if (procRef) {
2392         assignment->u = std::move(*procRef);
2393       }
2394     }
2395     x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)},
2396         GenericAssignmentWrapper::Deleter);
2397   }
2398   return common::GetPtrFromOptional(x.typedAssignment->v);
2399 }
2400 
2401 const Assignment *ExpressionAnalyzer::Analyze(
2402     const parser::PointerAssignmentStmt &x) {
2403   if (!x.typedAssignment) {
2404     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2405     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2406     if (!lhs || !rhs) {
2407       x.typedAssignment.Reset(
2408           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2409     } else {
2410       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2411       std::visit(common::visitors{
2412                      [&](const std::list<parser::BoundsRemapping> &list) {
2413                        Assignment::BoundsRemapping bounds;
2414                        for (const auto &elem : list) {
2415                          auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2416                          auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2417                          if (lower && upper) {
2418                            bounds.emplace_back(Fold(std::move(*lower)),
2419                                Fold(std::move(*upper)));
2420                          }
2421                        }
2422                        assignment.u = std::move(bounds);
2423                      },
2424                      [&](const std::list<parser::BoundsSpec> &list) {
2425                        Assignment::BoundsSpec bounds;
2426                        for (const auto &bound : list) {
2427                          if (auto lower{AsSubscript(Analyze(bound.v))}) {
2428                            bounds.emplace_back(Fold(std::move(*lower)));
2429                          }
2430                        }
2431                        assignment.u = std::move(bounds);
2432                      },
2433                  },
2434           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2435       x.typedAssignment.Reset(
2436           new GenericAssignmentWrapper{std::move(assignment)},
2437           GenericAssignmentWrapper::Deleter);
2438     }
2439   }
2440   return common::GetPtrFromOptional(x.typedAssignment->v);
2441 }
2442 
2443 static bool IsExternalCalledImplicitly(
2444     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2445   if (const auto *symbol{proc.GetSymbol()}) {
2446     return symbol->has<semantics::SubprogramDetails>() &&
2447         symbol->owner().IsGlobal() &&
2448         (!symbol->scope() /*ENTRY*/ ||
2449             !symbol->scope()->sourceRange().Contains(callSite));
2450   } else {
2451     return false;
2452   }
2453 }
2454 
2455 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2456     parser::CharBlock callSite, const ProcedureDesignator &proc,
2457     ActualArguments &arguments) {
2458   auto chars{characteristics::Procedure::Characterize(
2459       proc, context_.foldingContext())};
2460   if (chars) {
2461     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2462     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2463       Say(callSite,
2464           "References to the procedure '%s' require an explicit interface"_en_US,
2465           DEREF(proc.GetSymbol()).name());
2466     }
2467     // Checks for ASSOCIATED() are done in intrinsic table processing
2468     bool procIsAssociated{false};
2469     if (const SpecificIntrinsic *
2470         specificIntrinsic{proc.GetSpecificIntrinsic()}) {
2471       if (specificIntrinsic->name == "associated") {
2472         procIsAssociated = true;
2473       }
2474     }
2475     if (!procIsAssociated) {
2476       semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2477           context_.FindScope(callSite), treatExternalAsImplicit,
2478           proc.GetSpecificIntrinsic());
2479       const Symbol *procSymbol{proc.GetSymbol()};
2480       if (procSymbol && !IsPureProcedure(*procSymbol)) {
2481         if (const semantics::Scope *
2482             pure{semantics::FindPureProcedureContaining(
2483                 context_.FindScope(callSite))}) {
2484           Say(callSite,
2485               "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2486               procSymbol->name(), DEREF(pure->symbol()).name());
2487         }
2488       }
2489     }
2490   }
2491   return chars;
2492 }
2493 
2494 // Unary operations
2495 
2496 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2497   if (MaybeExpr operand{Analyze(x.v.value())}) {
2498     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2499       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2500         if (semantics::IsProcedurePointer(*result)) {
2501           Say("A function reference that returns a procedure "
2502               "pointer may not be parenthesized"_err_en_US); // C1003
2503         }
2504       }
2505     }
2506     return Parenthesize(std::move(*operand));
2507   }
2508   return std::nullopt;
2509 }
2510 
2511 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2512     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2513   ArgumentAnalyzer analyzer{context};
2514   analyzer.Analyze(x.v);
2515   if (!analyzer.fatalErrors()) {
2516     if (analyzer.IsIntrinsicNumeric(opr)) {
2517       analyzer.CheckForNullPointer();
2518       if (opr == NumericOperator::Add) {
2519         return analyzer.MoveExpr(0);
2520       } else {
2521         return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2522       }
2523     } else {
2524       return analyzer.TryDefinedOp(AsFortran(opr),
2525           "Operand of unary %s must be numeric; have %s"_err_en_US);
2526     }
2527   }
2528   return std::nullopt;
2529 }
2530 
2531 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2532   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2533 }
2534 
2535 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2536   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2537 }
2538 
2539 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2540   ArgumentAnalyzer analyzer{*this};
2541   analyzer.Analyze(x.v);
2542   if (!analyzer.fatalErrors()) {
2543     if (analyzer.IsIntrinsicLogical()) {
2544       analyzer.CheckForNullPointer();
2545       return AsGenericExpr(
2546           LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2547     } else {
2548       return analyzer.TryDefinedOp(LogicalOperator::Not,
2549           "Operand of %s must be LOGICAL; have %s"_err_en_US);
2550     }
2551   }
2552   return std::nullopt;
2553 }
2554 
2555 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2556   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2557   // intrinsic function.
2558   // Use the actual source for the name of the call for error reporting.
2559   std::optional<ActualArgument> arg;
2560   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2561     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2562   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2563     arg = ActualArgument{std::move(*argExpr)};
2564   } else {
2565     return std::nullopt;
2566   }
2567   parser::CharBlock at{GetContextualMessages().at()};
2568   CHECK(at.size() >= 4);
2569   parser::CharBlock loc{at.begin() + 1, 3};
2570   CHECK(loc == "loc");
2571   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2572 }
2573 
2574 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2575   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2576   ArgumentAnalyzer analyzer{*this, name.source};
2577   analyzer.Analyze(std::get<1>(x.t));
2578   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2579       "No operator %s defined for %s"_err_en_US, nullptr, true);
2580 }
2581 
2582 // Binary (dyadic) operations
2583 
2584 template <template <typename> class OPR>
2585 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2586     const parser::Expr::IntrinsicBinary &x) {
2587   ArgumentAnalyzer analyzer{context};
2588   analyzer.Analyze(std::get<0>(x.t));
2589   analyzer.Analyze(std::get<1>(x.t));
2590   if (!analyzer.fatalErrors()) {
2591     if (analyzer.IsIntrinsicNumeric(opr)) {
2592       analyzer.CheckForNullPointer();
2593       analyzer.CheckConformance();
2594       return NumericOperation<OPR>(context.GetContextualMessages(),
2595           analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2596           context.GetDefaultKind(TypeCategory::Real));
2597     } else {
2598       return analyzer.TryDefinedOp(AsFortran(opr),
2599           "Operands of %s must be numeric; have %s and %s"_err_en_US);
2600     }
2601   }
2602   return std::nullopt;
2603 }
2604 
2605 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2606   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2607 }
2608 
2609 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2610   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2611 }
2612 
2613 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2614   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2615 }
2616 
2617 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2618   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2619 }
2620 
2621 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2622   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2623 }
2624 
2625 MaybeExpr ExpressionAnalyzer::Analyze(
2626     const parser::Expr::ComplexConstructor &x) {
2627   auto re{Analyze(std::get<0>(x.t).value())};
2628   auto im{Analyze(std::get<1>(x.t).value())};
2629   if (re && im) {
2630     ConformabilityCheck(GetContextualMessages(), *re, *im);
2631   }
2632   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2633       std::move(im), GetDefaultKind(TypeCategory::Real)));
2634 }
2635 
2636 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2637   ArgumentAnalyzer analyzer{*this};
2638   analyzer.Analyze(std::get<0>(x.t));
2639   analyzer.Analyze(std::get<1>(x.t));
2640   if (!analyzer.fatalErrors()) {
2641     if (analyzer.IsIntrinsicConcat()) {
2642       analyzer.CheckForNullPointer();
2643       return std::visit(
2644           [&](auto &&x, auto &&y) -> MaybeExpr {
2645             using T = ResultType<decltype(x)>;
2646             if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2647               return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2648             } else {
2649               DIE("different types for intrinsic concat");
2650             }
2651           },
2652           std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2653           std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2654     } else {
2655       return analyzer.TryDefinedOp("//",
2656           "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2657     }
2658   }
2659   return std::nullopt;
2660 }
2661 
2662 // The Name represents a user-defined intrinsic operator.
2663 // If the actuals match one of the specific procedures, return a function ref.
2664 // Otherwise report the error in messages.
2665 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2666     const parser::Name &name, ActualArguments &&actuals) {
2667   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2668     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2669     return MakeFunctionRef(name.source,
2670         std::move(std::get<ProcedureDesignator>(callee->u)),
2671         std::move(callee->arguments));
2672   } else {
2673     return std::nullopt;
2674   }
2675 }
2676 
2677 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2678     const parser::Expr::IntrinsicBinary &x) {
2679   ArgumentAnalyzer analyzer{context};
2680   analyzer.Analyze(std::get<0>(x.t));
2681   analyzer.Analyze(std::get<1>(x.t));
2682   if (!analyzer.fatalErrors()) {
2683     std::optional<DynamicType> leftType{analyzer.GetType(0)};
2684     std::optional<DynamicType> rightType{analyzer.GetType(1)};
2685     analyzer.ConvertBOZ(leftType, 0, rightType);
2686     analyzer.ConvertBOZ(rightType, 1, leftType);
2687     if (leftType && rightType &&
2688         analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) {
2689       analyzer.CheckForNullPointer("as a relational operand");
2690       return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2691           analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2692     } else {
2693       return analyzer.TryDefinedOp(opr,
2694           leftType && leftType->category() == TypeCategory::Logical &&
2695                   rightType && rightType->category() == TypeCategory::Logical
2696               ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US
2697               : "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2698     }
2699   }
2700   return std::nullopt;
2701 }
2702 
2703 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2704   return RelationHelper(*this, RelationalOperator::LT, x);
2705 }
2706 
2707 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2708   return RelationHelper(*this, RelationalOperator::LE, x);
2709 }
2710 
2711 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2712   return RelationHelper(*this, RelationalOperator::EQ, x);
2713 }
2714 
2715 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2716   return RelationHelper(*this, RelationalOperator::NE, x);
2717 }
2718 
2719 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2720   return RelationHelper(*this, RelationalOperator::GE, x);
2721 }
2722 
2723 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2724   return RelationHelper(*this, RelationalOperator::GT, x);
2725 }
2726 
2727 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2728     const parser::Expr::IntrinsicBinary &x) {
2729   ArgumentAnalyzer analyzer{context};
2730   analyzer.Analyze(std::get<0>(x.t));
2731   analyzer.Analyze(std::get<1>(x.t));
2732   if (!analyzer.fatalErrors()) {
2733     if (analyzer.IsIntrinsicLogical()) {
2734       analyzer.CheckForNullPointer("as a logical operand");
2735       return AsGenericExpr(BinaryLogicalOperation(opr,
2736           std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2737           std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2738     } else {
2739       return analyzer.TryDefinedOp(
2740           opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2741     }
2742   }
2743   return std::nullopt;
2744 }
2745 
2746 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2747   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2748 }
2749 
2750 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2751   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2752 }
2753 
2754 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2755   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2756 }
2757 
2758 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2759   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2760 }
2761 
2762 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2763   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2764   ArgumentAnalyzer analyzer{*this, name.source};
2765   analyzer.Analyze(std::get<1>(x.t));
2766   analyzer.Analyze(std::get<2>(x.t));
2767   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2768       "No operator %s defined for %s and %s"_err_en_US, nullptr, true);
2769 }
2770 
2771 static void CheckFuncRefToArrayElementRefHasSubscripts(
2772     semantics::SemanticsContext &context,
2773     const parser::FunctionReference &funcRef) {
2774   // Emit message if the function reference fix will end up an array element
2775   // reference with no subscripts because it will not be possible to later tell
2776   // the difference in expressions between empty subscript list due to bad
2777   // subscripts error recovery or because the user did not put any.
2778   if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2779     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2780     const auto *name{std::get_if<parser::Name>(&proc.u)};
2781     if (!name) {
2782       name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2783     }
2784     auto &msg{context.Say(funcRef.v.source,
2785         name->symbol && name->symbol->Rank() == 0
2786             ? "'%s' is not a function"_err_en_US
2787             : "Reference to array '%s' with empty subscript list"_err_en_US,
2788         name->source)};
2789     if (name->symbol) {
2790       if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) {
2791         msg.Attach(name->source,
2792             "A result variable must be declared with RESULT to allow recursive "
2793             "function calls"_en_US);
2794       } else {
2795         AttachDeclaration(&msg, *name->symbol);
2796       }
2797     }
2798   }
2799 }
2800 
2801 // Converts, if appropriate, an original misparse of ambiguous syntax like
2802 // A(1) as a function reference into an array reference.
2803 // Misparsed structure constructors are detected elsewhere after generic
2804 // function call resolution fails.
2805 template <typename... A>
2806 static void FixMisparsedFunctionReference(
2807     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2808   // The parse tree is updated in situ when resolving an ambiguous parse.
2809   using uType = std::decay_t<decltype(constU)>;
2810   auto &u{const_cast<uType &>(constU)};
2811   if (auto *func{
2812           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2813     parser::FunctionReference &funcRef{func->value()};
2814     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2815     if (Symbol *
2816         origSymbol{
2817             std::visit(common::visitors{
2818                            [&](parser::Name &name) { return name.symbol; },
2819                            [&](parser::ProcComponentRef &pcr) {
2820                              return pcr.v.thing.component.symbol;
2821                            },
2822                        },
2823                 proc.u)}) {
2824       Symbol &symbol{origSymbol->GetUltimate()};
2825       if (symbol.has<semantics::ObjectEntityDetails>() ||
2826           symbol.has<semantics::AssocEntityDetails>()) {
2827         // Note that expression in AssocEntityDetails cannot be a procedure
2828         // pointer as per C1105 so this cannot be a function reference.
2829         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2830                           uType>) {
2831           CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef);
2832           u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2833         } else {
2834           DIE("can't fix misparsed function as array reference");
2835         }
2836       }
2837     }
2838   }
2839 }
2840 
2841 // Common handling of parse tree node types that retain the
2842 // representation of the analyzed expression.
2843 template <typename PARSED>
2844 MaybeExpr ExpressionAnalyzer::ExprOrVariable(
2845     const PARSED &x, parser::CharBlock source) {
2846   if (useSavedTypedExprs_ && x.typedExpr) {
2847     return x.typedExpr->v;
2848   }
2849   auto restorer{GetContextualMessages().SetLocation(source)};
2850   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2851       std::is_same_v<PARSED, parser::Variable>) {
2852     FixMisparsedFunctionReference(context_, x.u);
2853   }
2854   if (AssumedTypeDummy(x)) { // C710
2855     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2856     ResetExpr(x);
2857     return std::nullopt;
2858   }
2859   MaybeExpr result;
2860   if constexpr (common::HasMember<parser::StructureConstructor,
2861                     std::decay_t<decltype(x.u)>> &&
2862       common::HasMember<common::Indirection<parser::FunctionReference>,
2863           std::decay_t<decltype(x.u)>>) {
2864     if (const auto *funcRef{
2865             std::get_if<common::Indirection<parser::FunctionReference>>(
2866                 &x.u)}) {
2867       // Function references in Exprs might turn out to be misparsed structure
2868       // constructors; we have to try generic procedure resolution
2869       // first to be sure.
2870       std::optional<parser::StructureConstructor> ctor;
2871       result = Analyze(funcRef->value(), &ctor);
2872       if (result && ctor) {
2873         // A misparsed function reference is really a structure
2874         // constructor.  Repair the parse tree in situ.
2875         const_cast<PARSED &>(x).u = std::move(*ctor);
2876       }
2877     } else {
2878       result = Analyze(x.u);
2879     }
2880   } else {
2881     result = Analyze(x.u);
2882   }
2883   if (result) {
2884     SetExpr(x, Fold(std::move(*result)));
2885     return x.typedExpr->v;
2886   } else {
2887     ResetExpr(x);
2888     if (!context_.AnyFatalError()) {
2889       std::string buf;
2890       llvm::raw_string_ostream dump{buf};
2891       parser::DumpTree(dump, x);
2892       Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2893           dump.str());
2894     }
2895     return std::nullopt;
2896   }
2897 }
2898 
2899 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2900   return ExprOrVariable(expr, expr.source);
2901 }
2902 
2903 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2904   return ExprOrVariable(variable, variable.GetSource());
2905 }
2906 
2907 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) {
2908   if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) {
2909     if (!useSavedTypedExprs_ || !var->typedExpr) {
2910       parser::CharBlock source{var->GetSource()};
2911       auto restorer{GetContextualMessages().SetLocation(source)};
2912       FixMisparsedFunctionReference(context_, var->u);
2913       if (const auto *funcRef{
2914               std::get_if<common::Indirection<parser::FunctionReference>>(
2915                   &var->u)}) {
2916         // A Selector that parsed as a Variable might turn out during analysis
2917         // to actually be a structure constructor.  In that case, repair the
2918         // Variable parse tree node into an Expr
2919         std::optional<parser::StructureConstructor> ctor;
2920         if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) {
2921           if (ctor) {
2922             auto &writable{const_cast<parser::Selector &>(selector)};
2923             writable.u = parser::Expr{std::move(*ctor)};
2924             auto &expr{std::get<parser::Expr>(writable.u)};
2925             expr.source = source;
2926             SetExpr(expr, Fold(std::move(*result)));
2927             return expr.typedExpr->v;
2928           } else {
2929             SetExpr(*var, Fold(std::move(*result)));
2930             return var->typedExpr->v;
2931           }
2932         } else {
2933           ResetExpr(*var);
2934           if (context_.AnyFatalError()) {
2935             return std::nullopt;
2936           }
2937         }
2938       }
2939     }
2940   }
2941   // Not a Variable -> FunctionReference; handle normally as Variable or Expr
2942   return Analyze(selector.u);
2943 }
2944 
2945 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
2946   return ExprOrVariable(x, x.source);
2947 }
2948 
2949 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) {
2950   return ExprOrVariable(x, parser::FindSourceLocation(x));
2951 }
2952 
2953 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) {
2954   return ExprOrVariable(x, parser::FindSourceLocation(x));
2955 }
2956 
2957 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
2958     TypeCategory category,
2959     const std::optional<parser::KindSelector> &selector) {
2960   int defaultKind{GetDefaultKind(category)};
2961   if (!selector) {
2962     return Expr<SubscriptInteger>{defaultKind};
2963   }
2964   return std::visit(
2965       common::visitors{
2966           [&](const parser::ScalarIntConstantExpr &x) {
2967             if (MaybeExpr kind{Analyze(x)}) {
2968               if (std::optional<std::int64_t> code{ToInt64(*kind)}) {
2969                 if (CheckIntrinsicKind(category, *code)) {
2970                   return Expr<SubscriptInteger>{*code};
2971                 }
2972               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) {
2973                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
2974               }
2975             }
2976             return Expr<SubscriptInteger>{defaultKind};
2977           },
2978           [&](const parser::KindSelector::StarSize &x) {
2979             std::intmax_t size = x.v;
2980             if (!CheckIntrinsicSize(category, size)) {
2981               size = defaultKind;
2982             } else if (category == TypeCategory::Complex) {
2983               size /= 2;
2984             }
2985             return Expr<SubscriptInteger>{size};
2986           },
2987       },
2988       selector->u);
2989 }
2990 
2991 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
2992   return context_.GetDefaultKind(category);
2993 }
2994 
2995 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
2996     common::TypeCategory category) {
2997   return {category, GetDefaultKind(category)};
2998 }
2999 
3000 bool ExpressionAnalyzer::CheckIntrinsicKind(
3001     TypeCategory category, std::int64_t kind) {
3002   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
3003     return true;
3004   } else {
3005     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
3006         ToUpperCase(EnumToString(category)), kind);
3007     return false;
3008   }
3009 }
3010 
3011 bool ExpressionAnalyzer::CheckIntrinsicSize(
3012     TypeCategory category, std::int64_t size) {
3013   if (category == TypeCategory::Complex) {
3014     // COMPLEX*16 == COMPLEX(KIND=8)
3015     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
3016       return true;
3017     }
3018   } else if (IsValidKindOfIntrinsicType(category, size)) {
3019     return true;
3020   }
3021   Say("%s*%jd is not a supported type"_err_en_US,
3022       ToUpperCase(EnumToString(category)), size);
3023   return false;
3024 }
3025 
3026 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
3027   return impliedDos_.insert(std::make_pair(name, kind)).second;
3028 }
3029 
3030 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
3031   auto iter{impliedDos_.find(name)};
3032   if (iter != impliedDos_.end()) {
3033     impliedDos_.erase(iter);
3034   }
3035 }
3036 
3037 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
3038     parser::CharBlock name) const {
3039   auto iter{impliedDos_.find(name)};
3040   if (iter != impliedDos_.cend()) {
3041     return {iter->second};
3042   } else {
3043     return std::nullopt;
3044   }
3045 }
3046 
3047 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
3048     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
3049   if (result) {
3050     if (auto type{result->GetType()}) {
3051       if (type->category() != category) { // C885
3052         Say(at, "Must have %s type, but is %s"_err_en_US,
3053             ToUpperCase(EnumToString(category)),
3054             ToUpperCase(type->AsFortran()));
3055         return false;
3056       } else if (defaultKind) {
3057         int kind{context_.GetDefaultKind(category)};
3058         if (type->kind() != kind) {
3059           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
3060               kind, ToUpperCase(EnumToString(category)),
3061               ToUpperCase(type->AsFortran()));
3062           return false;
3063         }
3064       }
3065     } else {
3066       Say(at, "Must have %s type, but is typeless"_err_en_US,
3067           ToUpperCase(EnumToString(category)));
3068       return false;
3069     }
3070   }
3071   return true;
3072 }
3073 
3074 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
3075     ProcedureDesignator &&proc, ActualArguments &&arguments) {
3076   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
3077     if (intrinsic->name == "null" && arguments.empty()) {
3078       return Expr<SomeType>{NullPointer{}};
3079     }
3080   }
3081   if (const Symbol * symbol{proc.GetSymbol()}) {
3082     if (!ResolveForward(*symbol)) {
3083       return std::nullopt;
3084     }
3085   }
3086   if (auto chars{CheckCall(callSite, proc, arguments)}) {
3087     if (chars->functionResult) {
3088       const auto &result{*chars->functionResult};
3089       if (result.IsProcedurePointer()) {
3090         return Expr<SomeType>{
3091             ProcedureRef{std::move(proc), std::move(arguments)}};
3092       } else {
3093         // Not a procedure pointer, so type and shape are known.
3094         return TypedWrapper<FunctionRef, ProcedureRef>(
3095             DEREF(result.GetTypeAndShape()).type(),
3096             ProcedureRef{std::move(proc), std::move(arguments)});
3097       }
3098     } else {
3099       Say("Function result characteristics are not known"_err_en_US);
3100     }
3101   }
3102   return std::nullopt;
3103 }
3104 
3105 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
3106     parser::CharBlock intrinsic, ActualArguments &&arguments) {
3107   if (std::optional<SpecificCall> specificCall{
3108           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
3109               arguments, GetFoldingContext())}) {
3110     return MakeFunctionRef(intrinsic,
3111         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
3112         std::move(specificCall->arguments));
3113   } else {
3114     return std::nullopt;
3115   }
3116 }
3117 
3118 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
3119   source_.ExtendToCover(x.GetSource());
3120   if (MaybeExpr expr{context_.Analyze(x)}) {
3121     if (!IsConstantExpr(*expr)) {
3122       actuals_.emplace_back(std::move(*expr));
3123       return;
3124     }
3125     const Symbol *symbol{GetLastSymbol(*expr)};
3126     if (!symbol) {
3127       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3128           x.GetSource());
3129     } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
3130       auto *msg{context_.SayAt(x,
3131           "Assignment to subprogram '%s' is not allowed"_err_en_US,
3132           symbol->name())};
3133       if (subp->isFunction()) {
3134         const auto &result{subp->result().name()};
3135         msg->Attach(result, "Function result is '%s'"_err_en_US, result);
3136       }
3137     } else {
3138       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3139           symbol->name());
3140     }
3141   }
3142   fatalErrors_ = true;
3143 }
3144 
3145 void ArgumentAnalyzer::Analyze(
3146     const parser::ActualArgSpec &arg, bool isSubroutine) {
3147   // TODO: Actual arguments that are procedures and procedure pointers need to
3148   // be detected and represented (they're not expressions).
3149   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
3150   std::optional<ActualArgument> actual;
3151   std::visit(common::visitors{
3152                  [&](const common::Indirection<parser::Expr> &x) {
3153                    actual = AnalyzeExpr(x.value());
3154                  },
3155                  [&](const parser::AltReturnSpec &label) {
3156                    if (!isSubroutine) {
3157                      context_.Say(
3158                          "alternate return specification may not appear on"
3159                          " function reference"_err_en_US);
3160                    }
3161                    actual = ActualArgument(label.v);
3162                  },
3163                  [&](const parser::ActualArg::PercentRef &) {
3164                    context_.Say("TODO: %REF() argument"_err_en_US);
3165                  },
3166                  [&](const parser::ActualArg::PercentVal &) {
3167                    context_.Say("TODO: %VAL() argument"_err_en_US);
3168                  },
3169              },
3170       std::get<parser::ActualArg>(arg.t).u);
3171   if (actual) {
3172     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
3173       actual->set_keyword(argKW->v.source);
3174     }
3175     actuals_.emplace_back(std::move(*actual));
3176   } else {
3177     fatalErrors_ = true;
3178   }
3179 }
3180 
3181 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr,
3182     const DynamicType &leftType, const DynamicType &rightType) const {
3183   CHECK(actuals_.size() == 2);
3184   return semantics::IsIntrinsicRelational(
3185       opr, leftType, GetRank(0), rightType, GetRank(1));
3186 }
3187 
3188 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
3189   std::optional<DynamicType> leftType{GetType(0)};
3190   if (actuals_.size() == 1) {
3191     if (IsBOZLiteral(0)) {
3192       return opr == NumericOperator::Add; // unary '+'
3193     } else {
3194       return leftType && semantics::IsIntrinsicNumeric(*leftType);
3195     }
3196   } else {
3197     std::optional<DynamicType> rightType{GetType(1)};
3198     if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real
3199       auto cat1{rightType->category()};
3200       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
3201     } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ
3202       auto cat0{leftType->category()};
3203       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
3204     } else {
3205       return leftType && rightType &&
3206           semantics::IsIntrinsicNumeric(
3207               *leftType, GetRank(0), *rightType, GetRank(1));
3208     }
3209   }
3210 }
3211 
3212 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
3213   if (std::optional<DynamicType> leftType{GetType(0)}) {
3214     if (actuals_.size() == 1) {
3215       return semantics::IsIntrinsicLogical(*leftType);
3216     } else if (std::optional<DynamicType> rightType{GetType(1)}) {
3217       return semantics::IsIntrinsicLogical(
3218           *leftType, GetRank(0), *rightType, GetRank(1));
3219     }
3220   }
3221   return false;
3222 }
3223 
3224 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
3225   if (std::optional<DynamicType> leftType{GetType(0)}) {
3226     if (std::optional<DynamicType> rightType{GetType(1)}) {
3227       return semantics::IsIntrinsicConcat(
3228           *leftType, GetRank(0), *rightType, GetRank(1));
3229     }
3230   }
3231   return false;
3232 }
3233 
3234 bool ArgumentAnalyzer::CheckConformance() {
3235   if (actuals_.size() == 2) {
3236     const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
3237     const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
3238     if (lhs && rhs) {
3239       auto &foldingContext{context_.GetFoldingContext()};
3240       auto lhShape{GetShape(foldingContext, *lhs)};
3241       auto rhShape{GetShape(foldingContext, *rhs)};
3242       if (lhShape && rhShape) {
3243         if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape,
3244                 *rhShape, CheckConformanceFlags::EitherScalarExpandable,
3245                 "left operand", "right operand")
3246                  .value_or(false /*fail when conformance is not known now*/)) {
3247           fatalErrors_ = true;
3248           return false;
3249         }
3250       }
3251     }
3252   }
3253   return true; // no proven problem
3254 }
3255 
3256 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) {
3257   for (const std::optional<ActualArgument> &arg : actuals_) {
3258     if (arg) {
3259       if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) {
3260         if (IsNullPointer(*expr)) {
3261           context_.Say(
3262               source_, "A NULL() pointer is not allowed %s"_err_en_US, where);
3263           fatalErrors_ = true;
3264           return false;
3265         }
3266       }
3267     }
3268   }
3269   return true;
3270 }
3271 
3272 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr,
3273     parser::MessageFixedText error, const Symbol **definedOpSymbolPtr,
3274     bool isUserOp) {
3275   if (AnyUntypedOrMissingOperand()) {
3276     context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3277     return std::nullopt;
3278   }
3279   const Symbol *localDefinedOpSymbolPtr{nullptr};
3280   if (!definedOpSymbolPtr) {
3281     definedOpSymbolPtr = &localDefinedOpSymbolPtr;
3282   }
3283   {
3284     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3285     std::string oprNameString{
3286         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
3287     parser::CharBlock oprName{oprNameString};
3288     const auto &scope{context_.context().FindScope(source_)};
3289     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
3290       *definedOpSymbolPtr = symbol;
3291       parser::Name name{symbol->name(), symbol};
3292       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
3293         return result;
3294       }
3295     }
3296     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
3297       if (const Symbol *
3298           symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) {
3299         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
3300           return result;
3301         }
3302       }
3303     }
3304   }
3305   if (*definedOpSymbolPtr) {
3306     SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString()));
3307   } else if (actuals_.size() == 1 || AreConformable()) {
3308     if (CheckForNullPointer()) {
3309       context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3310     }
3311   } else {
3312     context_.Say(
3313         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
3314         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
3315   }
3316   return std::nullopt;
3317 }
3318 
3319 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
3320     std::vector<const char *> oprs, parser::MessageFixedText error) {
3321   const Symbol *definedOpSymbolPtr{nullptr};
3322   for (std::size_t i{1}; i < oprs.size(); ++i) {
3323     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3324     if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) {
3325       return result;
3326     }
3327   }
3328   return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr);
3329 }
3330 
3331 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
3332   ActualArguments localActuals{actuals_};
3333   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
3334   if (!proc) {
3335     proc = &symbol;
3336     localActuals.at(passIndex).value().set_isPassedObject();
3337   }
3338   CheckConformance();
3339   return context_.MakeFunctionRef(
3340       source_, ProcedureDesignator{*proc}, std::move(localActuals));
3341 }
3342 
3343 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
3344   using semantics::Tristate;
3345   const Expr<SomeType> &lhs{GetExpr(0)};
3346   const Expr<SomeType> &rhs{GetExpr(1)};
3347   std::optional<DynamicType> lhsType{lhs.GetType()};
3348   std::optional<DynamicType> rhsType{rhs.GetType()};
3349   int lhsRank{lhs.Rank()};
3350   int rhsRank{rhs.Rank()};
3351   Tristate isDefined{
3352       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
3353   if (isDefined == Tristate::No) {
3354     if (lhsType && rhsType) {
3355       AddAssignmentConversion(*lhsType, *rhsType);
3356     }
3357     return std::nullopt; // user-defined assignment not allowed for these args
3358   }
3359   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
3360   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
3361     if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032
3362       context_.Say(
3363           "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US,
3364           DEREF(procRef->proc().GetSymbol()).name());
3365     }
3366     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
3367     return std::move(*procRef);
3368   }
3369   if (isDefined == Tristate::Yes) {
3370     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
3371         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
3372       SayNoMatch("ASSIGNMENT(=)", true);
3373     }
3374   }
3375   return std::nullopt;
3376 }
3377 
3378 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
3379     TypeCategory lhs, TypeCategory rhs) {
3380   if (!context_.context().languageFeatures().IsEnabled(
3381           common::LanguageFeature::LogicalIntegerAssignment)) {
3382     return false;
3383   }
3384   std::optional<parser::MessageFixedText> msg;
3385   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
3386     // allow assignment to LOGICAL from INTEGER as a legacy extension
3387     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US;
3388   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
3389     // ... and assignment to LOGICAL from INTEGER
3390     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US;
3391   } else {
3392     return false;
3393   }
3394   if (context_.context().languageFeatures().ShouldWarn(
3395           common::LanguageFeature::LogicalIntegerAssignment)) {
3396     context_.Say(std::move(*msg));
3397   }
3398   return true;
3399 }
3400 
3401 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
3402   auto restorer{context_.GetContextualMessages().DiscardMessages()};
3403   std::string oprNameString{"assignment(=)"};
3404   parser::CharBlock oprName{oprNameString};
3405   const Symbol *proc{nullptr};
3406   const auto &scope{context_.context().FindScope(source_)};
3407   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
3408     ExpressionAnalyzer::AdjustActuals noAdjustment;
3409     auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)};
3410     if (pair.first) {
3411       proc = pair.first;
3412     } else {
3413       context_.EmitGenericResolutionError(*symbol, pair.second);
3414     }
3415   }
3416   int passedObjectIndex{-1};
3417   const Symbol *definedOpSymbol{nullptr};
3418   for (std::size_t i{0}; i < actuals_.size(); ++i) {
3419     if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) {
3420       if (const Symbol *
3421           resolution{GetBindingResolution(GetType(i), *specific)}) {
3422         proc = resolution;
3423       } else {
3424         proc = specific;
3425         passedObjectIndex = i;
3426       }
3427     }
3428   }
3429   if (!proc) {
3430     return std::nullopt;
3431   }
3432   ActualArguments actualsCopy{actuals_};
3433   if (passedObjectIndex >= 0) {
3434     actualsCopy[passedObjectIndex]->set_isPassedObject();
3435   }
3436   return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
3437 }
3438 
3439 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
3440   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
3441      << '\n';
3442   for (const auto &actual : actuals_) {
3443     if (!actual.has_value()) {
3444       os << "- error\n";
3445     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
3446       os << "- assumed type: " << symbol->name().ToString() << '\n';
3447     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
3448       expr->AsFortran(os << "- expr: ") << '\n';
3449     } else {
3450       DIE("bad ActualArgument");
3451     }
3452   }
3453 }
3454 
3455 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
3456     const parser::Expr &expr) {
3457   source_.ExtendToCover(expr.source);
3458   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
3459     expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
3460     if (isProcedureCall_) {
3461       return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
3462     }
3463     context_.SayAt(expr.source,
3464         "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
3465   } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) {
3466     if (isProcedureCall_ || !IsProcedure(*argExpr)) {
3467       return ActualArgument{std::move(*argExpr)};
3468     }
3469     context_.SayAt(expr.source,
3470         IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US
3471                              : "Subroutine name is not allowed here"_err_en_US);
3472   }
3473   return std::nullopt;
3474 }
3475 
3476 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray(
3477     const parser::Expr &expr) {
3478   // If an expression's parse tree is a whole assumed-size array:
3479   //   Expr -> Designator -> DataRef -> Name
3480   // treat it as a special case for argument passing and bypass
3481   // the C1002/C1014 constraint checking in expression semantics.
3482   if (const auto *name{parser::Unwrap<parser::Name>(expr)}) {
3483     if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) {
3484       auto restorer{context_.AllowWholeAssumedSizeArray()};
3485       return context_.Analyze(expr);
3486     }
3487   }
3488   return context_.Analyze(expr);
3489 }
3490 
3491 bool ArgumentAnalyzer::AreConformable() const {
3492   CHECK(actuals_.size() == 2);
3493   return actuals_[0] && actuals_[1] &&
3494       evaluate::AreConformable(*actuals_[0], *actuals_[1]);
3495 }
3496 
3497 // Look for a type-bound operator in the type of arg number passIndex.
3498 const Symbol *ArgumentAnalyzer::FindBoundOp(
3499     parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) {
3500   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
3501   if (!type || !type->scope()) {
3502     return nullptr;
3503   }
3504   const Symbol *symbol{type->scope()->FindComponent(oprName)};
3505   if (!symbol) {
3506     return nullptr;
3507   }
3508   definedOp = symbol;
3509   ExpressionAnalyzer::AdjustActuals adjustment{
3510       [&](const Symbol &proc, ActualArguments &) {
3511         return passIndex == GetPassIndex(proc);
3512       }};
3513   auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
3514   if (!pair.first) {
3515     context_.EmitGenericResolutionError(*symbol, pair.second);
3516   }
3517   return pair.first;
3518 }
3519 
3520 // If there is an implicit conversion between intrinsic types, make it explicit
3521 void ArgumentAnalyzer::AddAssignmentConversion(
3522     const DynamicType &lhsType, const DynamicType &rhsType) {
3523   if (lhsType.category() == rhsType.category() &&
3524       lhsType.kind() == rhsType.kind()) {
3525     // no conversion necessary
3526   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
3527     actuals_[1] = ActualArgument{*rhsExpr};
3528   } else {
3529     actuals_[1] = std::nullopt;
3530   }
3531 }
3532 
3533 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
3534   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
3535 }
3536 int ArgumentAnalyzer::GetRank(std::size_t i) const {
3537   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
3538 }
3539 
3540 // If the argument at index i is a BOZ literal, convert its type to match the
3541 // otherType.  If it's REAL convert to REAL, otherwise convert to INTEGER.
3542 // Note that IBM supports comparing BOZ literals to CHARACTER operands.  That
3543 // is not currently supported.
3544 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType,
3545     std::size_t i, std::optional<DynamicType> otherType) {
3546   if (IsBOZLiteral(i)) {
3547     Expr<SomeType> &&argExpr{MoveExpr(i)};
3548     auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
3549     if (otherType && otherType->category() == TypeCategory::Real) {
3550       int kind{context_.context().GetDefaultKind(TypeCategory::Real)};
3551       MaybeExpr realExpr{
3552           ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))};
3553       actuals_[i] = std::move(*realExpr);
3554       thisType.emplace(TypeCategory::Real, kind);
3555     } else {
3556       int kind{context_.context().GetDefaultKind(TypeCategory::Integer)};
3557       MaybeExpr intExpr{
3558           ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))};
3559       actuals_[i] = std::move(*intExpr);
3560       thisType.emplace(TypeCategory::Integer, kind);
3561     }
3562   }
3563 }
3564 
3565 // Report error resolving opr when there is a user-defined one available
3566 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
3567   std::string type0{TypeAsFortran(0)};
3568   auto rank0{actuals_[0]->Rank()};
3569   if (actuals_.size() == 1) {
3570     if (rank0 > 0) {
3571       context_.Say("No intrinsic or user-defined %s matches "
3572                    "rank %d array of %s"_err_en_US,
3573           opr, rank0, type0);
3574     } else {
3575       context_.Say("No intrinsic or user-defined %s matches "
3576                    "operand type %s"_err_en_US,
3577           opr, type0);
3578     }
3579   } else {
3580     std::string type1{TypeAsFortran(1)};
3581     auto rank1{actuals_[1]->Rank()};
3582     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
3583       context_.Say("No intrinsic or user-defined %s matches "
3584                    "rank %d array of %s and rank %d array of %s"_err_en_US,
3585           opr, rank0, type0, rank1, type1);
3586     } else if (isAssignment && rank0 != rank1) {
3587       if (rank0 == 0) {
3588         context_.Say("No intrinsic or user-defined %s matches "
3589                      "scalar %s and rank %d array of %s"_err_en_US,
3590             opr, type0, rank1, type1);
3591       } else {
3592         context_.Say("No intrinsic or user-defined %s matches "
3593                      "rank %d array of %s and scalar %s"_err_en_US,
3594             opr, rank0, type0, type1);
3595       }
3596     } else {
3597       context_.Say("No intrinsic or user-defined %s matches "
3598                    "operand types %s and %s"_err_en_US,
3599           opr, type0, type1);
3600     }
3601   }
3602 }
3603 
3604 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
3605   if (i >= actuals_.size() || !actuals_[i]) {
3606     return "missing argument";
3607   } else if (std::optional<DynamicType> type{GetType(i)}) {
3608     return type->category() == TypeCategory::Derived
3609         ? "TYPE("s + type->AsFortran() + ')'
3610         : type->category() == TypeCategory::Character
3611         ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
3612         : ToUpperCase(type->AsFortran());
3613   } else {
3614     return "untyped";
3615   }
3616 }
3617 
3618 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() {
3619   for (const auto &actual : actuals_) {
3620     if (!actual ||
3621         (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) {
3622       return true;
3623     }
3624   }
3625   return false;
3626 }
3627 } // namespace Fortran::evaluate
3628 
3629 namespace Fortran::semantics {
3630 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
3631     SemanticsContext &context, common::TypeCategory category,
3632     const std::optional<parser::KindSelector> &selector) {
3633   evaluate::ExpressionAnalyzer analyzer{context};
3634   auto restorer{
3635       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3636   return analyzer.AnalyzeKindSelector(category, selector);
3637 }
3638 
3639 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3640 
3641 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
3642   parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
3643   const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
3644   auto name{bounds.name.thing.thing};
3645   int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
3646   if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
3647     if (dynamicType->category() == TypeCategory::Integer) {
3648       kind = dynamicType->kind();
3649     }
3650   }
3651   exprAnalyzer_.AddImpliedDo(name.source, kind);
3652   parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
3653   exprAnalyzer_.RemoveImpliedDo(name.source);
3654   return false;
3655 }
3656 
3657 bool ExprChecker::Walk(const parser::Program &program) {
3658   parser::Walk(program, *this);
3659   return !context_.AnyFatalError();
3660 }
3661 } // namespace Fortran::semantics
3662