1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } else { 59 return GetCharLength(); 60 } 61 } 62 63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 64 const std::optional<parser::TypeSpec> &spec) { 65 if (spec) { 66 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 67 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 68 // (viz., an intrinsic type with valid known kind or a non-polymorphic 69 // & non-ABSTRACT derived type). 70 if (const semantics::IntrinsicTypeSpec * 71 intrinsic{typeSpec->AsIntrinsic()}) { 72 TypeCategory category{intrinsic->category()}; 73 if (auto optKind{ToInt64(intrinsic->kind())}) { 74 int kind{static_cast<int>(*optKind)}; 75 if (category == TypeCategory::Character) { 76 const semantics::CharacterTypeSpec &cts{ 77 typeSpec->characterTypeSpec()}; 78 const semantics::ParamValue &len{cts.length()}; 79 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 80 // type guards, but not in array constructors. 81 return DynamicTypeWithLength{DynamicType{kind, len}}; 82 } else { 83 return DynamicTypeWithLength{DynamicType{category, kind}}; 84 } 85 } 86 } else if (const semantics::DerivedTypeSpec * 87 derived{typeSpec->AsDerived()}) { 88 return DynamicTypeWithLength{DynamicType{*derived}}; 89 } 90 } 91 } 92 return std::nullopt; 93 } 94 95 class ArgumentAnalyzer { 96 public: 97 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 98 : context_{context}, source_{context.GetContextualMessages().at()}, 99 isProcedureCall_{false} {} 100 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 101 bool isProcedureCall = false) 102 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 103 bool fatalErrors() const { return fatalErrors_; } 104 ActualArguments &&GetActuals() { 105 CHECK(!fatalErrors_); 106 return std::move(actuals_); 107 } 108 const Expr<SomeType> &GetExpr(std::size_t i) const { 109 return DEREF(actuals_.at(i).value().UnwrapExpr()); 110 } 111 Expr<SomeType> &&MoveExpr(std::size_t i) { 112 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 113 } 114 void Analyze(const common::Indirection<parser::Expr> &x) { 115 Analyze(x.value()); 116 } 117 void Analyze(const parser::Expr &x) { 118 actuals_.emplace_back(AnalyzeExpr(x)); 119 fatalErrors_ |= !actuals_.back(); 120 } 121 void Analyze(const parser::Variable &); 122 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 123 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 124 std::optional<DynamicType> otherType); 125 126 bool IsIntrinsicRelational( 127 RelationalOperator, const DynamicType &, const DynamicType &) const; 128 bool IsIntrinsicLogical() const; 129 bool IsIntrinsicNumeric(NumericOperator) const; 130 bool IsIntrinsicConcat() const; 131 132 bool CheckConformance(); 133 bool CheckForNullPointer(const char *where = "as an operand here"); 134 135 // Find and return a user-defined operator or report an error. 136 // The provided message is used if there is no such operator. 137 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 138 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 139 template <typename E> 140 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 141 return TryDefinedOp( 142 context_.context().languageFeatures().GetNames(opr), msg); 143 } 144 // Find and return a user-defined assignment 145 std::optional<ProcedureRef> TryDefinedAssignment(); 146 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 147 std::optional<DynamicType> GetType(std::size_t) const; 148 void Dump(llvm::raw_ostream &); 149 150 private: 151 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 152 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 153 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 154 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 155 bool AreConformable() const; 156 const Symbol *FindBoundOp( 157 parser::CharBlock, int passIndex, const Symbol *&definedOp); 158 void AddAssignmentConversion( 159 const DynamicType &lhsType, const DynamicType &rhsType); 160 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 161 int GetRank(std::size_t) const; 162 bool IsBOZLiteral(std::size_t i) const { 163 return evaluate::IsBOZLiteral(GetExpr(i)); 164 } 165 void SayNoMatch(const std::string &, bool isAssignment = false); 166 std::string TypeAsFortran(std::size_t); 167 bool AnyUntypedOrMissingOperand(); 168 169 ExpressionAnalyzer &context_; 170 ActualArguments actuals_; 171 parser::CharBlock source_; 172 bool fatalErrors_{false}; 173 const bool isProcedureCall_; // false for user-defined op or assignment 174 }; 175 176 // Wraps a data reference in a typed Designator<>, and a procedure 177 // or procedure pointer reference in a ProcedureDesignator. 178 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 179 const Symbol &last{ref.GetLastSymbol()}; 180 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 181 if (semantics::IsProcedure(symbol)) { 182 if (auto *component{std::get_if<Component>(&ref.u)}) { 183 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 184 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 185 DIE("unexpected alternative in DataRef"); 186 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 187 if (symbol.has<semantics::GenericDetails>()) { 188 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 189 } else { 190 return Expr<SomeType>{ProcedureDesignator{symbol}}; 191 } 192 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 193 symbol.name().ToString())}) { 194 SpecificIntrinsic intrinsic{ 195 symbol.name().ToString(), std::move(*interface)}; 196 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 197 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 198 } else { 199 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 200 symbol.name()); 201 } 202 return std::nullopt; 203 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 204 return result; 205 } else { 206 if (!context_.HasError(last) && !context_.HasError(symbol)) { 207 AttachDeclaration( 208 Say("'%s' is not an object that can appear in an expression"_err_en_US, 209 last.name()), 210 symbol); 211 context_.SetError(last); 212 } 213 return std::nullopt; 214 } 215 } 216 217 // Some subscript semantic checks must be deferred until all of the 218 // subscripts are in hand. 219 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 220 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 221 int symbolRank{symbol.Rank()}; 222 int subscripts{static_cast<int>(ref.size())}; 223 if (subscripts == 0) { 224 return std::nullopt; // error recovery 225 } else if (subscripts != symbolRank) { 226 if (symbolRank != 0) { 227 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 228 symbolRank, symbol.name(), subscripts); 229 } 230 return std::nullopt; 231 } else if (Component * component{ref.base().UnwrapComponent()}) { 232 int baseRank{component->base().Rank()}; 233 if (baseRank > 0) { 234 int subscriptRank{0}; 235 for (const auto &expr : ref.subscript()) { 236 subscriptRank += expr.Rank(); 237 } 238 if (subscriptRank > 0) { 239 Say("Subscripts of component '%s' of rank-%d derived type " 240 "array have rank %d but must all be scalar"_err_en_US, 241 symbol.name(), baseRank, subscriptRank); 242 return std::nullopt; 243 } 244 } 245 } else if (const auto *object{ 246 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 247 // C928 & C1002 248 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 249 if (!last->upper() && object->IsAssumedSize()) { 250 Say("Assumed-size array '%s' must have explicit final " 251 "subscript upper bound value"_err_en_US, 252 symbol.name()); 253 return std::nullopt; 254 } 255 } 256 } else { 257 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 258 // which, if not an object, must be a construct entity from 259 // SELECT TYPE/RANK or ASSOCIATE. 260 CHECK(symbol.has<semantics::AssocEntityDetails>()); 261 } 262 return Designate(DataRef{std::move(ref)}); 263 } 264 265 // Applies subscripts to a data reference. 266 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 267 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 268 if (subscripts.empty()) { 269 return std::nullopt; // error recovery 270 } 271 return std::visit( 272 common::visitors{ 273 [&](SymbolRef &&symbol) { 274 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 275 }, 276 [&](Component &&c) { 277 return CompleteSubscripts( 278 ArrayRef{std::move(c), std::move(subscripts)}); 279 }, 280 [&](auto &&) -> MaybeExpr { 281 DIE("bad base for ArrayRef"); 282 return std::nullopt; 283 }, 284 }, 285 std::move(dataRef.u)); 286 } 287 288 // Top-level checks for data references. 289 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 290 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 291 const Symbol &symbol{component->GetLastSymbol()}; 292 int componentRank{symbol.Rank()}; 293 if (componentRank > 0) { 294 int baseRank{component->base().Rank()}; 295 if (baseRank > 0) { 296 Say("Reference to whole rank-%d component '%%%s' of " 297 "rank-%d array of derived type is not allowed"_err_en_US, 298 componentRank, symbol.name(), baseRank); 299 } 300 } 301 } 302 return Designate(std::move(dataRef)); 303 } 304 305 // Parse tree correction after a substring S(j:k) was misparsed as an 306 // array section. N.B. Fortran substrings have to have a range, not a 307 // single index. 308 static void FixMisparsedSubstring(const parser::Designator &d) { 309 auto &mutate{const_cast<parser::Designator &>(d)}; 310 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 311 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 312 &dataRef->u)}) { 313 parser::ArrayElement &arrElement{ae->value()}; 314 if (!arrElement.subscripts.empty()) { 315 auto iter{arrElement.subscripts.begin()}; 316 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 317 if (!std::get<2>(triplet->t) /* no stride */ && 318 ++iter == arrElement.subscripts.end() /* one subscript */) { 319 if (Symbol * 320 symbol{std::visit( 321 common::visitors{ 322 [](parser::Name &n) { return n.symbol; }, 323 [](common::Indirection<parser::StructureComponent> 324 &sc) { return sc.value().component.symbol; }, 325 [](auto &) -> Symbol * { return nullptr; }, 326 }, 327 arrElement.base.u)}) { 328 const Symbol &ultimate{symbol->GetUltimate()}; 329 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 330 if (!ultimate.IsObjectArray() && 331 type->category() == semantics::DeclTypeSpec::Character) { 332 // The ambiguous S(j:k) was parsed as an array section 333 // reference, but it's now clear that it's a substring. 334 // Fix the parse tree in situ. 335 mutate.u = arrElement.ConvertToSubstring(); 336 } 337 } 338 } 339 } 340 } 341 } 342 } 343 } 344 } 345 346 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 347 auto restorer{GetContextualMessages().SetLocation(d.source)}; 348 FixMisparsedSubstring(d); 349 // These checks have to be deferred to these "top level" data-refs where 350 // we can be sure that there are no following subscripts (yet). 351 // Substrings have already been run through TopLevelChecks() and 352 // won't be returned by ExtractDataRef(). 353 if (MaybeExpr result{Analyze(d.u)}) { 354 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 355 return TopLevelChecks(std::move(*dataRef)); 356 } 357 return result; 358 } 359 return std::nullopt; 360 } 361 362 // A utility subroutine to repackage optional expressions of various levels 363 // of type specificity as fully general MaybeExpr values. 364 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 365 return AsGenericExpr(std::move(x)); 366 } 367 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 368 if (x) { 369 return AsMaybeExpr(std::move(*x)); 370 } 371 return std::nullopt; 372 } 373 374 // Type kind parameter values for literal constants. 375 int ExpressionAnalyzer::AnalyzeKindParam( 376 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 377 if (!kindParam) { 378 return defaultKind; 379 } 380 return std::visit( 381 common::visitors{ 382 [](std::uint64_t k) { return static_cast<int>(k); }, 383 [&](const parser::Scalar< 384 parser::Integer<parser::Constant<parser::Name>>> &n) { 385 if (MaybeExpr ie{Analyze(n)}) { 386 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 387 int iv = *i64; 388 if (iv == *i64) { 389 return iv; 390 } 391 } 392 } 393 return defaultKind; 394 }, 395 }, 396 kindParam->u); 397 } 398 399 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 400 struct IntTypeVisitor { 401 using Result = MaybeExpr; 402 using Types = IntegerTypes; 403 template <typename T> Result Test() { 404 if (T::kind >= kind) { 405 const char *p{digits.begin()}; 406 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 407 if (!value.overflow) { 408 if (T::kind > kind) { 409 if (!isDefaultKind || 410 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 411 return std::nullopt; 412 } else if (analyzer.context().ShouldWarn( 413 LanguageFeature::BigIntLiterals)) { 414 analyzer.Say(digits, 415 "Integer literal is too large for default INTEGER(KIND=%d); " 416 "assuming INTEGER(KIND=%d)"_en_US, 417 kind, T::kind); 418 } 419 } 420 return Expr<SomeType>{ 421 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 422 } 423 } 424 return std::nullopt; 425 } 426 ExpressionAnalyzer &analyzer; 427 parser::CharBlock digits; 428 int kind; 429 bool isDefaultKind; 430 }; 431 432 template <typename PARSED> 433 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 434 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 435 bool isDefaultKind{!kindParam}; 436 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 437 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 438 auto digits{std::get<parser::CharBlock>(x.t)}; 439 if (MaybeExpr result{common::SearchTypes( 440 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 441 return result; 442 } else if (isDefaultKind) { 443 Say(digits, 444 "Integer literal is too large for any allowable " 445 "kind of INTEGER"_err_en_US); 446 } else { 447 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 448 kind); 449 } 450 } 451 return std::nullopt; 452 } 453 454 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 455 auto restorer{ 456 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 457 return IntLiteralConstant(x); 458 } 459 460 MaybeExpr ExpressionAnalyzer::Analyze( 461 const parser::SignedIntLiteralConstant &x) { 462 auto restorer{GetContextualMessages().SetLocation(x.source)}; 463 return IntLiteralConstant(x); 464 } 465 466 template <typename TYPE> 467 Constant<TYPE> ReadRealLiteral( 468 parser::CharBlock source, FoldingContext &context) { 469 const char *p{source.begin()}; 470 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 471 CHECK(p == source.end()); 472 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 473 auto value{valWithFlags.value}; 474 if (context.flushSubnormalsToZero()) { 475 value = value.FlushSubnormalToZero(); 476 } 477 return {value}; 478 } 479 480 struct RealTypeVisitor { 481 using Result = std::optional<Expr<SomeReal>>; 482 using Types = RealTypes; 483 484 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 485 : kind{k}, literal{lit}, context{ctx} {} 486 487 template <typename T> Result Test() { 488 if (kind == T::kind) { 489 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 490 } 491 return std::nullopt; 492 } 493 494 int kind; 495 parser::CharBlock literal; 496 FoldingContext &context; 497 }; 498 499 // Reads a real literal constant and encodes it with the right kind. 500 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 501 // Use a local message context around the real literal for better 502 // provenance on any messages. 503 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 504 // If a kind parameter appears, it defines the kind of the literal and the 505 // letter used in an exponent part must be 'E' (e.g., the 'E' in 506 // "6.02214E+23"). In the absence of an explicit kind parameter, any 507 // exponent letter determines the kind. Otherwise, defaults apply. 508 auto &defaults{context_.defaultKinds()}; 509 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 510 const char *end{x.real.source.end()}; 511 char expoLetter{' '}; 512 std::optional<int> letterKind; 513 for (const char *p{x.real.source.begin()}; p < end; ++p) { 514 if (parser::IsLetter(*p)) { 515 expoLetter = *p; 516 switch (expoLetter) { 517 case 'e': 518 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 519 break; 520 case 'd': 521 letterKind = defaults.doublePrecisionKind(); 522 break; 523 case 'q': 524 letterKind = defaults.quadPrecisionKind(); 525 break; 526 default: 527 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 528 } 529 break; 530 } 531 } 532 if (letterKind) { 533 defaultKind = *letterKind; 534 } 535 // C716 requires 'E' as an exponent, but this is more useful 536 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 537 if (letterKind && kind != *letterKind && expoLetter != 'e') { 538 Say("Explicit kind parameter on real constant disagrees with " 539 "exponent letter '%c'"_en_US, 540 expoLetter); 541 } 542 auto result{common::SearchTypes( 543 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 544 if (!result) { // C717 545 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 546 } 547 return AsMaybeExpr(std::move(result)); 548 } 549 550 MaybeExpr ExpressionAnalyzer::Analyze( 551 const parser::SignedRealLiteralConstant &x) { 552 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 553 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 554 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 555 if (sign == parser::Sign::Negative) { 556 return AsGenericExpr(-std::move(realExpr)); 557 } 558 } 559 return result; 560 } 561 return std::nullopt; 562 } 563 564 MaybeExpr ExpressionAnalyzer::Analyze( 565 const parser::SignedComplexLiteralConstant &x) { 566 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 567 if (!result) { 568 return std::nullopt; 569 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 570 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 571 } else { 572 return result; 573 } 574 } 575 576 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 577 return Analyze(x.u); 578 } 579 580 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 581 return AsMaybeExpr( 582 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 583 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 584 } 585 586 // CHARACTER literal processing. 587 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 588 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 589 return std::nullopt; 590 } 591 switch (kind) { 592 case 1: 593 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 594 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 595 string, true)}); 596 case 2: 597 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 598 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 599 string, true)}); 600 case 4: 601 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 602 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 603 string, true)}); 604 default: 605 CRASH_NO_CASE; 606 } 607 } 608 609 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 610 int kind{ 611 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 612 auto value{std::get<std::string>(x.t)}; 613 return AnalyzeString(std::move(value), kind); 614 } 615 616 MaybeExpr ExpressionAnalyzer::Analyze( 617 const parser::HollerithLiteralConstant &x) { 618 int kind{GetDefaultKind(TypeCategory::Character)}; 619 auto value{x.v}; 620 return AnalyzeString(std::move(value), kind); 621 } 622 623 // .TRUE. and .FALSE. of various kinds 624 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 625 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 626 GetDefaultKind(TypeCategory::Logical))}; 627 bool value{std::get<bool>(x.t)}; 628 auto result{common::SearchTypes( 629 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 630 kind, std::move(value)})}; 631 if (!result) { 632 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 633 } 634 return result; 635 } 636 637 // BOZ typeless literals 638 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 639 const char *p{x.v.c_str()}; 640 std::uint64_t base{16}; 641 switch (*p++) { 642 case 'b': 643 base = 2; 644 break; 645 case 'o': 646 base = 8; 647 break; 648 case 'z': 649 break; 650 case 'x': 651 break; 652 default: 653 CRASH_NO_CASE; 654 } 655 CHECK(*p == '"'); 656 ++p; 657 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 658 if (*p != '"') { 659 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 660 x.v); // C7107, C7108 661 return std::nullopt; 662 } 663 if (value.overflow) { 664 Say("BOZ literal '%s' too large"_err_en_US, x.v); 665 return std::nullopt; 666 } 667 return AsGenericExpr(std::move(value.value)); 668 } 669 670 // Names and named constants 671 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 672 auto restorer{GetContextualMessages().SetLocation(n.source)}; 673 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 674 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 675 *kind, AsExpr(ImpliedDoIndex{n.source}))); 676 } else if (context_.HasError(n)) { 677 return std::nullopt; 678 } else if (!n.symbol) { 679 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 680 return std::nullopt; 681 } else { 682 const Symbol &ultimate{n.symbol->GetUltimate()}; 683 if (ultimate.has<semantics::TypeParamDetails>()) { 684 // A bare reference to a derived type parameter (within a parameterized 685 // derived type definition) 686 return Fold(ConvertToType( 687 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 688 } else { 689 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 690 if (const semantics::Scope * 691 pure{semantics::FindPureProcedureContaining( 692 context_.FindScope(n.source))}) { 693 SayAt(n, 694 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 695 n.source, DEREF(pure->symbol()).name()); 696 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 697 } 698 } 699 if (!isWholeAssumedSizeArrayOk_ && 700 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 701 AttachDeclaration( 702 SayAt(n, 703 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 704 n.source), 705 *n.symbol); 706 } 707 return Designate(DataRef{*n.symbol}); 708 } 709 } 710 } 711 712 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 713 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 714 if (MaybeExpr value{Analyze(n.v)}) { 715 Expr<SomeType> folded{Fold(std::move(*value))}; 716 if (IsConstantExpr(folded)) { 717 return folded; 718 } 719 Say(n.v.source, "must be a constant"_err_en_US); // C718 720 } 721 return std::nullopt; 722 } 723 724 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 725 if (MaybeExpr value{Analyze(n.v)}) { 726 // Subtle: when the NullInit is a DataStmtConstant, it might 727 // be a misparse of a structure constructor without parameters 728 // or components (e.g., T()). Checking the result to ensure 729 // that a "=>" data entity initializer actually resolved to 730 // a null pointer has to be done by the caller. 731 return Fold(std::move(*value)); 732 } 733 return std::nullopt; 734 } 735 736 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 737 return Analyze(x.value()); 738 } 739 740 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 741 if (const auto &repeat{ 742 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 743 x.repetitions = -1; 744 if (MaybeExpr expr{Analyze(repeat->u)}) { 745 Expr<SomeType> folded{Fold(std::move(*expr))}; 746 if (auto value{ToInt64(folded)}) { 747 if (*value >= 0) { // C882 748 x.repetitions = *value; 749 } else { 750 Say(FindSourceLocation(repeat), 751 "Repeat count (%jd) for data value must not be negative"_err_en_US, 752 *value); 753 } 754 } 755 } 756 } 757 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 758 } 759 760 // Substring references 761 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 762 const std::optional<parser::ScalarIntExpr> &bound) { 763 if (bound) { 764 if (MaybeExpr expr{Analyze(*bound)}) { 765 if (expr->Rank() > 1) { 766 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 767 } 768 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 769 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 770 return {std::move(*ssIntExpr)}; 771 } 772 return {Expr<SubscriptInteger>{ 773 Convert<SubscriptInteger, TypeCategory::Integer>{ 774 std::move(*intExpr)}}}; 775 } else { 776 Say("substring bound expression is not INTEGER"_err_en_US); 777 } 778 } 779 } 780 return std::nullopt; 781 } 782 783 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 784 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 785 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 786 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 787 if (std::optional<DataRef> checked{ 788 ExtractDataRef(std::move(*newBaseExpr))}) { 789 const parser::SubstringRange &range{ 790 std::get<parser::SubstringRange>(ss.t)}; 791 std::optional<Expr<SubscriptInteger>> first{ 792 GetSubstringBound(std::get<0>(range.t))}; 793 std::optional<Expr<SubscriptInteger>> last{ 794 GetSubstringBound(std::get<1>(range.t))}; 795 const Symbol &symbol{checked->GetLastSymbol()}; 796 if (std::optional<DynamicType> dynamicType{ 797 DynamicType::From(symbol)}) { 798 if (dynamicType->category() == TypeCategory::Character) { 799 return WrapperHelper<TypeCategory::Character, Designator, 800 Substring>(dynamicType->kind(), 801 Substring{std::move(checked.value()), std::move(first), 802 std::move(last)}); 803 } 804 } 805 Say("substring may apply only to CHARACTER"_err_en_US); 806 } 807 } 808 } 809 } 810 return std::nullopt; 811 } 812 813 // CHARACTER literal substrings 814 MaybeExpr ExpressionAnalyzer::Analyze( 815 const parser::CharLiteralConstantSubstring &x) { 816 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 817 std::optional<Expr<SubscriptInteger>> lower{ 818 GetSubstringBound(std::get<0>(range.t))}; 819 std::optional<Expr<SubscriptInteger>> upper{ 820 GetSubstringBound(std::get<1>(range.t))}; 821 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 822 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 823 Expr<SubscriptInteger> length{ 824 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 825 charExpr->u)}; 826 if (!lower) { 827 lower = Expr<SubscriptInteger>{1}; 828 } 829 if (!upper) { 830 upper = Expr<SubscriptInteger>{ 831 static_cast<std::int64_t>(ToInt64(length).value())}; 832 } 833 return std::visit( 834 [&](auto &&ckExpr) -> MaybeExpr { 835 using Result = ResultType<decltype(ckExpr)>; 836 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 837 CHECK(DEREF(cp).size() == 1); 838 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 839 staticData->set_alignment(Result::kind) 840 .set_itemBytes(Result::kind) 841 .Push(cp->GetScalarValue().value()); 842 Substring substring{std::move(staticData), std::move(lower.value()), 843 std::move(upper.value())}; 844 return AsGenericExpr( 845 Expr<Result>{Designator<Result>{std::move(substring)}}); 846 }, 847 std::move(charExpr->u)); 848 } 849 } 850 return std::nullopt; 851 } 852 853 // Subscripted array references 854 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 855 MaybeExpr &&expr) { 856 if (expr) { 857 if (expr->Rank() > 1) { 858 Say("Subscript expression has rank %d greater than 1"_err_en_US, 859 expr->Rank()); 860 } 861 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 862 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 863 return std::move(*ssIntExpr); 864 } else { 865 return Expr<SubscriptInteger>{ 866 Convert<SubscriptInteger, TypeCategory::Integer>{ 867 std::move(*intExpr)}}; 868 } 869 } else { 870 Say("Subscript expression is not INTEGER"_err_en_US); 871 } 872 } 873 return std::nullopt; 874 } 875 876 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 877 const std::optional<parser::Subscript> &s) { 878 if (s) { 879 return AsSubscript(Analyze(*s)); 880 } else { 881 return std::nullopt; 882 } 883 } 884 885 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 886 const parser::SectionSubscript &ss) { 887 return std::visit( 888 common::visitors{ 889 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 890 const auto &lower{std::get<0>(t.t)}; 891 const auto &upper{std::get<1>(t.t)}; 892 const auto &stride{std::get<2>(t.t)}; 893 auto result{Triplet{ 894 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 895 if ((lower && !result.lower()) || (upper && !result.upper())) { 896 return std::nullopt; 897 } else { 898 return std::make_optional<Subscript>(result); 899 } 900 }, 901 [&](const auto &s) -> std::optional<Subscript> { 902 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 903 return Subscript{std::move(*subscriptExpr)}; 904 } else { 905 return std::nullopt; 906 } 907 }, 908 }, 909 ss.u); 910 } 911 912 // Empty result means an error occurred 913 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 914 const std::list<parser::SectionSubscript> &sss) { 915 bool error{false}; 916 std::vector<Subscript> subscripts; 917 for (const auto &s : sss) { 918 if (auto subscript{AnalyzeSectionSubscript(s)}) { 919 subscripts.emplace_back(std::move(*subscript)); 920 } else { 921 error = true; 922 } 923 } 924 return !error ? subscripts : std::vector<Subscript>{}; 925 } 926 927 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 928 MaybeExpr baseExpr; 929 { 930 auto restorer{AllowWholeAssumedSizeArray()}; 931 baseExpr = Analyze(ae.base); 932 } 933 if (baseExpr) { 934 if (ae.subscripts.empty()) { 935 // will be converted to function call later or error reported 936 } else if (baseExpr->Rank() == 0) { 937 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 938 if (!context_.HasError(symbol)) { 939 Say("'%s' is not an array"_err_en_US, symbol->name()); 940 context_.SetError(*symbol); 941 } 942 } 943 } else if (std::optional<DataRef> dataRef{ 944 ExtractDataRef(std::move(*baseExpr))}) { 945 return ApplySubscripts( 946 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 947 } else { 948 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 949 } 950 } 951 // error was reported: analyze subscripts without reporting more errors 952 auto restorer{GetContextualMessages().DiscardMessages()}; 953 AnalyzeSectionSubscripts(ae.subscripts); 954 return std::nullopt; 955 } 956 957 // Type parameter inquiries apply to data references, but don't depend 958 // on any trailing (co)subscripts. 959 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 960 return std::visit( 961 common::visitors{ 962 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 963 [](Component &&component) { 964 return NamedEntity{std::move(component)}; 965 }, 966 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 967 [](CoarrayRef &&coarrayRef) { 968 return NamedEntity{coarrayRef.GetLastSymbol()}; 969 }, 970 }, 971 std::move(designator.u)); 972 } 973 974 // Components of parent derived types are explicitly represented as such. 975 static std::optional<Component> CreateComponent( 976 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 977 if (&component.owner() == &scope) { 978 return Component{std::move(base), component}; 979 } 980 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 981 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 982 return CreateComponent( 983 DataRef{Component{std::move(base), *parentComponent}}, component, 984 *parentScope); 985 } 986 } 987 return std::nullopt; 988 } 989 990 // Derived type component references and type parameter inquiries 991 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 992 MaybeExpr base{Analyze(sc.base)}; 993 Symbol *sym{sc.component.symbol}; 994 if (!base || !sym || context_.HasError(sym)) { 995 return std::nullopt; 996 } 997 const auto &name{sc.component.source}; 998 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 999 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1000 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1001 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1002 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1003 if (dyType->category() == TypeCategory::Integer) { 1004 auto restorer{GetContextualMessages().SetLocation(name)}; 1005 return Fold(ConvertToType(*dyType, 1006 AsGenericExpr(TypeParamInquiry{ 1007 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1008 } 1009 } 1010 Say(name, "Type parameter is not INTEGER"_err_en_US); 1011 } else { 1012 Say(name, 1013 "A type parameter inquiry must be applied to " 1014 "a designator"_err_en_US); 1015 } 1016 } else if (!dtSpec || !dtSpec->scope()) { 1017 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1018 return std::nullopt; 1019 } else if (std::optional<DataRef> dataRef{ 1020 ExtractDataRef(std::move(*dtExpr))}) { 1021 if (auto component{ 1022 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1023 return Designate(DataRef{std::move(*component)}); 1024 } else { 1025 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1026 dtSpec->typeSymbol().name()); 1027 } 1028 } else { 1029 Say(name, 1030 "Base of component reference must be a data reference"_err_en_US); 1031 } 1032 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1033 // special part-ref: %re, %im, %kind, %len 1034 // Type errors are detected and reported in semantics. 1035 using MiscKind = semantics::MiscDetails::Kind; 1036 MiscKind kind{details->kind()}; 1037 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1038 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1039 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1040 Expr<SomeReal> realExpr{std::visit( 1041 [&](const auto &z) { 1042 using PartType = typename ResultType<decltype(z)>::Part; 1043 auto part{kind == MiscKind::ComplexPartRe 1044 ? ComplexPart::Part::RE 1045 : ComplexPart::Part::IM}; 1046 return AsCategoryExpr(Designator<PartType>{ 1047 ComplexPart{std::move(*dataRef), part}}); 1048 }, 1049 zExpr->u)}; 1050 return AsGenericExpr(std::move(realExpr)); 1051 } 1052 } 1053 } else if (kind == MiscKind::KindParamInquiry || 1054 kind == MiscKind::LenParamInquiry) { 1055 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1056 return MakeFunctionRef( 1057 name, ActualArguments{ActualArgument{std::move(*base)}}); 1058 } else { 1059 DIE("unexpected MiscDetails::Kind"); 1060 } 1061 } else { 1062 Say(name, "derived type required before component reference"_err_en_US); 1063 } 1064 return std::nullopt; 1065 } 1066 1067 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1068 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1069 DataRef *dataRef{&*maybeDataRef}; 1070 std::vector<Subscript> subscripts; 1071 SymbolVector reversed; 1072 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1073 subscripts = std::move(aRef->subscript()); 1074 reversed.push_back(aRef->GetLastSymbol()); 1075 if (Component * component{aRef->base().UnwrapComponent()}) { 1076 dataRef = &component->base(); 1077 } else { 1078 dataRef = nullptr; 1079 } 1080 } 1081 if (dataRef) { 1082 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1083 reversed.push_back(component->GetLastSymbol()); 1084 dataRef = &component->base(); 1085 } 1086 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1087 reversed.push_back(*baseSym); 1088 } else { 1089 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1090 } 1091 } 1092 std::vector<Expr<SubscriptInteger>> cosubscripts; 1093 bool cosubsOk{true}; 1094 for (const auto &cosub : 1095 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1096 MaybeExpr coex{Analyze(cosub)}; 1097 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1098 cosubscripts.push_back( 1099 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1100 } else { 1101 cosubsOk = false; 1102 } 1103 } 1104 if (cosubsOk && !reversed.empty()) { 1105 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1106 const Symbol &symbol{reversed.front()}; 1107 if (numCosubscripts != symbol.Corank()) { 1108 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1109 symbol.name(), symbol.Corank(), numCosubscripts); 1110 } 1111 } 1112 for (const auto &imageSelSpec : 1113 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1114 std::visit( 1115 common::visitors{ 1116 [&](const auto &x) { Analyze(x.v); }, 1117 }, 1118 imageSelSpec.u); 1119 } 1120 // Reverse the chain of symbols so that the base is first and coarray 1121 // ultimate component is last. 1122 if (cosubsOk) { 1123 return Designate( 1124 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1125 std::move(subscripts), std::move(cosubscripts)}}); 1126 } 1127 } 1128 return std::nullopt; 1129 } 1130 1131 int ExpressionAnalyzer::IntegerTypeSpecKind( 1132 const parser::IntegerTypeSpec &spec) { 1133 Expr<SubscriptInteger> value{ 1134 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1135 if (auto kind{ToInt64(value)}) { 1136 return static_cast<int>(*kind); 1137 } 1138 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1139 return GetDefaultKind(TypeCategory::Integer); 1140 } 1141 1142 // Array constructors 1143 1144 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1145 // all happen to have the same actual type T into one ArrayConstructor<T>. 1146 template <typename T> 1147 ArrayConstructorValues<T> MakeSpecific( 1148 ArrayConstructorValues<SomeType> &&from) { 1149 ArrayConstructorValues<T> to; 1150 for (ArrayConstructorValue<SomeType> &x : from) { 1151 std::visit( 1152 common::visitors{ 1153 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1154 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1155 to.Push(std::move(DEREF(typed))); 1156 }, 1157 [&](ImpliedDo<SomeType> &&impliedDo) { 1158 to.Push(ImpliedDo<T>{impliedDo.name(), 1159 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1160 std::move(impliedDo.stride()), 1161 MakeSpecific<T>(std::move(impliedDo.values()))}); 1162 }, 1163 }, 1164 std::move(x.u)); 1165 } 1166 return to; 1167 } 1168 1169 class ArrayConstructorContext { 1170 public: 1171 ArrayConstructorContext( 1172 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1173 : exprAnalyzer_{c}, type_{std::move(t)} {} 1174 1175 void Add(const parser::AcValue &); 1176 MaybeExpr ToExpr(); 1177 1178 // These interfaces allow *this to be used as a type visitor argument to 1179 // common::SearchTypes() to convert the array constructor to a typed 1180 // expression in ToExpr(). 1181 using Result = MaybeExpr; 1182 using Types = AllTypes; 1183 template <typename T> Result Test() { 1184 if (type_ && type_->category() == T::category) { 1185 if constexpr (T::category == TypeCategory::Derived) { 1186 if (!type_->IsUnlimitedPolymorphic()) { 1187 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1188 MakeSpecific<T>(std::move(values_))}); 1189 } 1190 } else if (type_->kind() == T::kind) { 1191 if constexpr (T::category == TypeCategory::Character) { 1192 if (auto len{type_->LEN()}) { 1193 return AsMaybeExpr(ArrayConstructor<T>{ 1194 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1195 } 1196 } else { 1197 return AsMaybeExpr( 1198 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1199 } 1200 } 1201 } 1202 return std::nullopt; 1203 } 1204 1205 private: 1206 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1207 1208 void Push(MaybeExpr &&); 1209 void Add(const parser::AcValue::Triplet &); 1210 void Add(const parser::Expr &); 1211 void Add(const parser::AcImpliedDo &); 1212 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1213 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1214 std::int64_t stride); 1215 1216 template <int KIND, typename A> 1217 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1218 const A &x) { 1219 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1220 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1221 return Fold(exprAnalyzer_.GetFoldingContext(), 1222 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1223 std::move(DEREF(intExpr)))); 1224 } 1225 return std::nullopt; 1226 } 1227 1228 // Nested array constructors all reference the same ExpressionAnalyzer, 1229 // which represents the nest of active implied DO loop indices. 1230 ExpressionAnalyzer &exprAnalyzer_; 1231 std::optional<DynamicTypeWithLength> type_; 1232 bool explicitType_{type_.has_value()}; 1233 std::optional<std::int64_t> constantLength_; 1234 ArrayConstructorValues<SomeType> values_; 1235 std::uint64_t messageDisplayedSet_{0}; 1236 }; 1237 1238 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1239 if (!x) { 1240 return; 1241 } 1242 if (!type_) { 1243 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1244 // Treat an array constructor of BOZ as if default integer. 1245 if (exprAnalyzer_.context().ShouldWarn( 1246 common::LanguageFeature::BOZAsDefaultInteger)) { 1247 exprAnalyzer_.Say( 1248 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1249 } 1250 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1251 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1252 std::move(*boz))); 1253 } 1254 } 1255 std::optional<DynamicType> dyType{x->GetType()}; 1256 if (!dyType) { 1257 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1258 if (!type_) { 1259 // Treat an array constructor of BOZ as if default integer. 1260 if (exprAnalyzer_.context().ShouldWarn( 1261 common::LanguageFeature::BOZAsDefaultInteger)) { 1262 exprAnalyzer_.Say( 1263 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1264 } 1265 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1266 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1267 std::move(*boz))); 1268 dyType = x.value().GetType(); 1269 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1270 x = std::move(cast); 1271 dyType = *type_; 1272 } else { 1273 if (!(messageDisplayedSet_ & 0x80)) { 1274 exprAnalyzer_.Say( 1275 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1276 messageDisplayedSet_ |= 0x80; 1277 } 1278 return; 1279 } 1280 } else { // procedure name, &c. 1281 if (!(messageDisplayedSet_ & 0x40)) { 1282 exprAnalyzer_.Say( 1283 "Item is not suitable for use in an array constructor"_err_en_US); 1284 messageDisplayedSet_ |= 0x40; 1285 } 1286 return; 1287 } 1288 } else if (dyType->IsUnlimitedPolymorphic()) { 1289 if (!(messageDisplayedSet_ & 8)) { 1290 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1291 "array constructor"_err_en_US); // C7113 1292 messageDisplayedSet_ |= 8; 1293 } 1294 return; 1295 } 1296 DynamicTypeWithLength xType{dyType.value()}; 1297 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1298 CHECK(xType.category() == TypeCategory::Character); 1299 xType.length = 1300 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1301 } 1302 if (!type_) { 1303 // If there is no explicit type-spec in an array constructor, the type 1304 // of the array is the declared type of all of the elements, which must 1305 // be well-defined and all match. 1306 // TODO: Possible language extension: use the most general type of 1307 // the values as the type of a numeric constructed array, convert all 1308 // of the other values to that type. Alternative: let the first value 1309 // determine the type, and convert the others to that type. 1310 CHECK(!explicitType_); 1311 type_ = std::move(xType); 1312 constantLength_ = ToInt64(type_->length); 1313 values_.Push(std::move(*x)); 1314 } else if (!explicitType_) { 1315 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1316 values_.Push(std::move(*x)); 1317 if (auto thisLen{ToInt64(xType.LEN())}) { 1318 if (constantLength_) { 1319 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1320 *thisLen != *constantLength_) { 1321 if (!(messageDisplayedSet_ & 1)) { 1322 exprAnalyzer_.Say( 1323 "Character literal in array constructor without explicit " 1324 "type has different length than earlier elements"_en_US); 1325 messageDisplayedSet_ |= 1; 1326 } 1327 } 1328 if (*thisLen > *constantLength_) { 1329 // Language extension: use the longest literal to determine the 1330 // length of the array constructor's character elements, not the 1331 // first, when there is no explicit type. 1332 *constantLength_ = *thisLen; 1333 type_->length = xType.LEN(); 1334 } 1335 } else { 1336 constantLength_ = *thisLen; 1337 type_->length = xType.LEN(); 1338 } 1339 } 1340 } else { 1341 if (!(messageDisplayedSet_ & 2)) { 1342 exprAnalyzer_.Say( 1343 "Values in array constructor must have the same declared type " 1344 "when no explicit type appears"_err_en_US); // C7110 1345 messageDisplayedSet_ |= 2; 1346 } 1347 } 1348 } else { 1349 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1350 values_.Push(std::move(*cast)); 1351 } else if (!(messageDisplayedSet_ & 4)) { 1352 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1353 "be converted to the type of the array '%s'"_err_en_US, 1354 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1355 messageDisplayedSet_ |= 4; 1356 } 1357 } 1358 } 1359 1360 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1361 std::visit( 1362 common::visitors{ 1363 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1364 [&](const common::Indirection<parser::Expr> &expr) { 1365 Add(expr.value()); 1366 }, 1367 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1368 Add(impliedDo.value()); 1369 }, 1370 }, 1371 x.u); 1372 } 1373 1374 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1375 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1376 std::optional<Expr<ImpliedDoIntType>> lower{ 1377 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1378 std::optional<Expr<ImpliedDoIntType>> upper{ 1379 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1380 std::optional<Expr<ImpliedDoIntType>> stride{ 1381 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1382 if (lower && upper) { 1383 if (!stride) { 1384 stride = Expr<ImpliedDoIntType>{1}; 1385 } 1386 if (!type_) { 1387 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1388 } 1389 auto v{std::move(values_)}; 1390 parser::CharBlock anonymous; 1391 Push(Expr<SomeType>{ 1392 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1393 std::swap(v, values_); 1394 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1395 std::move(*upper), std::move(*stride), std::move(v)}); 1396 } 1397 } 1398 1399 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1400 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1401 Push(exprAnalyzer_.Analyze(expr)); 1402 } 1403 1404 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1405 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1406 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1407 exprAnalyzer_.Analyze(bounds.name); 1408 parser::CharBlock name{bounds.name.thing.thing.source}; 1409 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1410 int kind{ImpliedDoIntType::kind}; 1411 if (const auto dynamicType{DynamicType::From(symbol)}) { 1412 kind = dynamicType->kind(); 1413 } 1414 std::optional<Expr<ImpliedDoIntType>> lower{ 1415 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1416 std::optional<Expr<ImpliedDoIntType>> upper{ 1417 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1418 if (lower && upper) { 1419 std::optional<Expr<ImpliedDoIntType>> stride{ 1420 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1421 if (!stride) { 1422 stride = Expr<ImpliedDoIntType>{1}; 1423 } 1424 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1425 // Check for constant bounds; the loop may require complete unrolling 1426 // of the parse tree if all bounds are constant in order to allow the 1427 // implied DO loop index to qualify as a constant expression. 1428 auto cLower{ToInt64(lower)}; 1429 auto cUpper{ToInt64(upper)}; 1430 auto cStride{ToInt64(stride)}; 1431 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1432 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1433 "The stride of an implied DO loop must not be zero"_err_en_US); 1434 messageDisplayedSet_ |= 0x10; 1435 } 1436 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1437 bool isNonemptyConstant{isConstant && 1438 ((*cStride > 0 && *cLower <= *cUpper) || 1439 (*cStride < 0 && *cLower >= *cUpper))}; 1440 bool unrollConstantLoop{false}; 1441 parser::Messages buffer; 1442 auto saveMessagesDisplayed{messageDisplayedSet_}; 1443 { 1444 auto messageRestorer{ 1445 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1446 auto v{std::move(values_)}; 1447 for (const auto &value : 1448 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1449 Add(value); 1450 } 1451 std::swap(v, values_); 1452 if (isNonemptyConstant && buffer.AnyFatalError()) { 1453 unrollConstantLoop = true; 1454 } else { 1455 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1456 std::move(*upper), std::move(*stride), std::move(v)}); 1457 } 1458 } 1459 if (unrollConstantLoop) { 1460 messageDisplayedSet_ = saveMessagesDisplayed; 1461 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1462 } else if (auto *messages{ 1463 exprAnalyzer_.GetContextualMessages().messages()}) { 1464 messages->Annex(std::move(buffer)); 1465 } 1466 exprAnalyzer_.RemoveImpliedDo(name); 1467 } else if (!(messageDisplayedSet_ & 0x20)) { 1468 exprAnalyzer_.SayAt(name, 1469 "Implied DO index '%s' is active in a surrounding implied DO loop " 1470 "and may not have the same name"_err_en_US, 1471 name); // C7115 1472 messageDisplayedSet_ |= 0x20; 1473 } 1474 } 1475 } 1476 1477 // Fortran considers an implied DO index of an array constructor to be 1478 // a constant expression if the bounds of the implied DO loop are constant. 1479 // Usually this doesn't matter, but if we emitted spurious messages as a 1480 // result of not using constant values for the index while analyzing the 1481 // items, we need to do it again the "hard" way with multiple iterations over 1482 // the parse tree. 1483 void ArrayConstructorContext::UnrollConstantImpliedDo( 1484 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1485 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1486 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1487 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1488 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1489 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1490 at += stride) { 1491 for (const auto &value : 1492 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1493 Add(value); 1494 } 1495 } 1496 foldingContext.EndImpliedDo(name); 1497 } 1498 1499 MaybeExpr ArrayConstructorContext::ToExpr() { 1500 return common::SearchTypes(std::move(*this)); 1501 } 1502 1503 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1504 const parser::AcSpec &acSpec{array.v}; 1505 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1506 for (const parser::AcValue &value : acSpec.values) { 1507 acContext.Add(value); 1508 } 1509 return acContext.ToExpr(); 1510 } 1511 1512 MaybeExpr ExpressionAnalyzer::Analyze( 1513 const parser::StructureConstructor &structure) { 1514 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1515 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1516 parser::CharBlock &typeName{structureType.source}; 1517 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1518 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1519 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1520 if (!CheckIsValidForwardReference(dtSpec)) { 1521 return std::nullopt; 1522 } 1523 } 1524 } 1525 if (!parsedType.derivedTypeSpec) { 1526 return std::nullopt; 1527 } 1528 const auto &spec{*parsedType.derivedTypeSpec}; 1529 const Symbol &typeSymbol{spec.typeSymbol()}; 1530 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1531 return std::nullopt; // error recovery 1532 } 1533 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1534 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1535 1536 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1537 AttachDeclaration(Say(typeName, 1538 "ABSTRACT derived type '%s' may not be used in a " 1539 "structure constructor"_err_en_US, 1540 typeName), 1541 typeSymbol); // C7114 1542 } 1543 1544 // This iterator traverses all of the components in the derived type and its 1545 // parents. The symbols for whole parent components appear after their 1546 // own components and before the components of the types that extend them. 1547 // E.g., TYPE :: A; REAL X; END TYPE 1548 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1549 // produces the component list X, A, Y. 1550 // The order is important below because a structure constructor can 1551 // initialize X or A by name, but not both. 1552 auto components{semantics::OrderedComponentIterator{spec}}; 1553 auto nextAnonymous{components.begin()}; 1554 1555 std::set<parser::CharBlock> unavailable; 1556 bool anyKeyword{false}; 1557 StructureConstructor result{spec}; 1558 bool checkConflicts{true}; // until we hit one 1559 auto &messages{GetContextualMessages()}; 1560 1561 for (const auto &component : 1562 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1563 const parser::Expr &expr{ 1564 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1565 parser::CharBlock source{expr.source}; 1566 auto restorer{messages.SetLocation(source)}; 1567 const Symbol *symbol{nullptr}; 1568 MaybeExpr value{Analyze(expr)}; 1569 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1570 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1571 anyKeyword = true; 1572 source = kw->v.source; 1573 symbol = kw->v.symbol; 1574 if (!symbol) { 1575 auto componentIter{std::find_if(components.begin(), components.end(), 1576 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1577 if (componentIter != components.end()) { 1578 symbol = &*componentIter; 1579 } 1580 } 1581 if (!symbol) { // C7101 1582 Say(source, 1583 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1584 source, typeName); 1585 } 1586 } else { 1587 if (anyKeyword) { // C7100 1588 Say(source, 1589 "Value in structure constructor lacks a component name"_err_en_US); 1590 checkConflicts = false; // stem cascade 1591 } 1592 // Here's a regrettably common extension of the standard: anonymous 1593 // initialization of parent components, e.g., T(PT(1)) rather than 1594 // T(1) or T(PT=PT(1)). 1595 if (nextAnonymous == components.begin() && parentComponent && 1596 valueType == DynamicType::From(*parentComponent) && 1597 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1598 auto iter{ 1599 std::find(components.begin(), components.end(), *parentComponent)}; 1600 if (iter != components.end()) { 1601 symbol = parentComponent; 1602 nextAnonymous = ++iter; 1603 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1604 Say(source, 1605 "Whole parent component '%s' in structure " 1606 "constructor should not be anonymous"_en_US, 1607 symbol->name()); 1608 } 1609 } 1610 } 1611 while (!symbol && nextAnonymous != components.end()) { 1612 const Symbol &next{*nextAnonymous}; 1613 ++nextAnonymous; 1614 if (!next.test(Symbol::Flag::ParentComp)) { 1615 symbol = &next; 1616 } 1617 } 1618 if (!symbol) { 1619 Say(source, "Unexpected value in structure constructor"_err_en_US); 1620 } 1621 } 1622 if (symbol) { 1623 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1624 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1625 Say(source, *msg); 1626 } 1627 } 1628 if (checkConflicts) { 1629 auto componentIter{ 1630 std::find(components.begin(), components.end(), *symbol)}; 1631 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1632 // C797, C798 1633 Say(source, 1634 "Component '%s' conflicts with another component earlier in " 1635 "this structure constructor"_err_en_US, 1636 symbol->name()); 1637 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1638 // Make earlier components unavailable once a whole parent appears. 1639 for (auto it{components.begin()}; it != componentIter; ++it) { 1640 unavailable.insert(it->name()); 1641 } 1642 } else { 1643 // Make whole parent components unavailable after any of their 1644 // constituents appear. 1645 for (auto it{componentIter}; it != components.end(); ++it) { 1646 if (it->test(Symbol::Flag::ParentComp)) { 1647 unavailable.insert(it->name()); 1648 } 1649 } 1650 } 1651 } 1652 unavailable.insert(symbol->name()); 1653 if (value) { 1654 if (symbol->has<semantics::ProcEntityDetails>()) { 1655 CHECK(IsPointer(*symbol)); 1656 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1657 // C1594(4) 1658 const auto &innermost{context_.FindScope(expr.source)}; 1659 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1660 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1661 if (const Symbol * 1662 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1663 if (auto *msg{Say(expr.source, 1664 "Externally visible object '%s' may not be " 1665 "associated with pointer component '%s' in a " 1666 "pure procedure"_err_en_US, 1667 object->name(), pointer->name())}) { 1668 msg->Attach(object->name(), "Object declaration"_en_US) 1669 .Attach(pointer->name(), "Pointer declaration"_en_US); 1670 } 1671 } 1672 } 1673 } 1674 } else if (symbol->has<semantics::TypeParamDetails>()) { 1675 Say(expr.source, 1676 "Type parameter '%s' may not appear as a component " 1677 "of a structure constructor"_err_en_US, 1678 symbol->name()); 1679 continue; 1680 } else { 1681 Say(expr.source, 1682 "Component '%s' is neither a procedure pointer " 1683 "nor a data object"_err_en_US, 1684 symbol->name()); 1685 continue; 1686 } 1687 if (IsPointer(*symbol)) { 1688 semantics::CheckPointerAssignment( 1689 GetFoldingContext(), *symbol, *value); // C7104, C7105 1690 result.Add(*symbol, Fold(std::move(*value))); 1691 } else if (MaybeExpr converted{ 1692 ConvertToType(*symbol, std::move(*value))}) { 1693 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1694 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1695 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1696 AttachDeclaration( 1697 Say(expr.source, 1698 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1699 GetRank(*valueShape), symbol->name()), 1700 *symbol); 1701 } else { 1702 auto checked{ 1703 CheckConformance(messages, *componentShape, *valueShape, 1704 CheckConformanceFlags::RightIsExpandableDeferred, 1705 "component", "value")}; 1706 if (checked && *checked && GetRank(*componentShape) > 0 && 1707 GetRank(*valueShape) == 0 && 1708 !IsExpandableScalar(*converted)) { 1709 AttachDeclaration( 1710 Say(expr.source, 1711 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1712 symbol->name()), 1713 *symbol); 1714 } 1715 if (checked.value_or(true)) { 1716 result.Add(*symbol, std::move(*converted)); 1717 } 1718 } 1719 } else { 1720 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1721 } 1722 } else { 1723 AttachDeclaration( 1724 Say(expr.source, 1725 "Shape of component '%s' cannot be determined"_err_en_US, 1726 symbol->name()), 1727 *symbol); 1728 } 1729 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1730 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1731 } else if (auto symType{DynamicType::From(symbol)}) { 1732 if (valueType) { 1733 AttachDeclaration( 1734 Say(expr.source, 1735 "Value in structure constructor of type %s is " 1736 "incompatible with component '%s' of type %s"_err_en_US, 1737 valueType->AsFortran(), symbol->name(), 1738 symType->AsFortran()), 1739 *symbol); 1740 } else { 1741 AttachDeclaration( 1742 Say(expr.source, 1743 "Value in structure constructor is incompatible with " 1744 " component '%s' of type %s"_err_en_US, 1745 symbol->name(), symType->AsFortran()), 1746 *symbol); 1747 } 1748 } 1749 } 1750 } 1751 } 1752 1753 // Ensure that unmentioned component objects have default initializers. 1754 for (const Symbol &symbol : components) { 1755 if (!symbol.test(Symbol::Flag::ParentComp) && 1756 unavailable.find(symbol.name()) == unavailable.cend() && 1757 !IsAllocatable(symbol)) { 1758 if (const auto *details{ 1759 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1760 if (details->init()) { 1761 result.Add(symbol, common::Clone(*details->init())); 1762 } else { // C799 1763 AttachDeclaration(Say(typeName, 1764 "Structure constructor lacks a value for " 1765 "component '%s'"_err_en_US, 1766 symbol.name()), 1767 symbol); 1768 } 1769 } 1770 } 1771 } 1772 1773 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1774 } 1775 1776 static std::optional<parser::CharBlock> GetPassName( 1777 const semantics::Symbol &proc) { 1778 return std::visit( 1779 [](const auto &details) { 1780 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1781 std::decay_t<decltype(details)>>) { 1782 return details.passName(); 1783 } else { 1784 return std::optional<parser::CharBlock>{}; 1785 } 1786 }, 1787 proc.details()); 1788 } 1789 1790 static int GetPassIndex(const Symbol &proc) { 1791 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1792 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1793 const auto *interface{semantics::FindInterface(proc)}; 1794 if (!passName || !interface) { 1795 return 0; // first argument is passed-object 1796 } 1797 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1798 int index{0}; 1799 for (const auto *arg : subp.dummyArgs()) { 1800 if (arg && arg->name() == passName) { 1801 return index; 1802 } 1803 ++index; 1804 } 1805 DIE("PASS argument name not in dummy argument list"); 1806 } 1807 1808 // Injects an expression into an actual argument list as the "passed object" 1809 // for a type-bound procedure reference that is not NOPASS. Adds an 1810 // argument keyword if possible, but not when the passed object goes 1811 // before a positional argument. 1812 // e.g., obj%tbp(x) -> tbp(obj,x). 1813 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1814 const Symbol &component, bool isPassedObject = true) { 1815 if (component.attrs().test(semantics::Attr::NOPASS)) { 1816 return; 1817 } 1818 int passIndex{GetPassIndex(component)}; 1819 auto iter{actuals.begin()}; 1820 int at{0}; 1821 while (iter < actuals.end() && at < passIndex) { 1822 if (*iter && (*iter)->keyword()) { 1823 iter = actuals.end(); 1824 break; 1825 } 1826 ++iter; 1827 ++at; 1828 } 1829 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1830 passed.set_isPassedObject(isPassedObject); 1831 if (iter == actuals.end()) { 1832 if (auto passName{GetPassName(component)}) { 1833 passed.set_keyword(*passName); 1834 } 1835 } 1836 actuals.emplace(iter, std::move(passed)); 1837 } 1838 1839 // Return the compile-time resolution of a procedure binding, if possible. 1840 static const Symbol *GetBindingResolution( 1841 const std::optional<DynamicType> &baseType, const Symbol &component) { 1842 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1843 if (!binding) { 1844 return nullptr; 1845 } 1846 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1847 (!baseType || baseType->IsPolymorphic())) { 1848 return nullptr; 1849 } 1850 return &binding->symbol(); 1851 } 1852 1853 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1854 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1855 -> std::optional<CalleeAndArguments> { 1856 const parser::StructureComponent &sc{pcr.v.thing}; 1857 if (MaybeExpr base{Analyze(sc.base)}) { 1858 if (const Symbol * sym{sc.component.symbol}) { 1859 if (context_.HasError(sym)) { 1860 return std::nullopt; 1861 } 1862 if (!IsProcedure(*sym)) { 1863 AttachDeclaration( 1864 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1865 sc.component.source), 1866 *sym); 1867 return std::nullopt; 1868 } 1869 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1870 if (sym->has<semantics::GenericDetails>()) { 1871 AdjustActuals adjustment{ 1872 [&](const Symbol &proc, ActualArguments &actuals) { 1873 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1874 AddPassArg(actuals, std::move(*dtExpr), proc); 1875 } 1876 return true; 1877 }}; 1878 auto pair{ResolveGeneric(*sym, arguments, adjustment)}; 1879 sym = pair.first; 1880 if (!sym) { 1881 EmitGenericResolutionError(*sc.component.symbol, pair.second); 1882 return std::nullopt; 1883 } 1884 } 1885 if (const Symbol * 1886 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1887 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1888 return CalleeAndArguments{ 1889 ProcedureDesignator{*resolution}, std::move(arguments)}; 1890 } else if (std::optional<DataRef> dataRef{ 1891 ExtractDataRef(std::move(*dtExpr))}) { 1892 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1893 return CalleeAndArguments{ 1894 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1895 std::move(arguments)}; 1896 } else { 1897 AddPassArg(arguments, 1898 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1899 *sym); 1900 return CalleeAndArguments{ 1901 ProcedureDesignator{*sym}, std::move(arguments)}; 1902 } 1903 } 1904 } 1905 Say(sc.component.source, 1906 "Base of procedure component reference is not a derived-type object"_err_en_US); 1907 } 1908 } 1909 CHECK(!GetContextualMessages().empty()); 1910 return std::nullopt; 1911 } 1912 1913 // Can actual be argument associated with dummy? 1914 static bool CheckCompatibleArgument(bool isElemental, 1915 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1916 const auto *expr{actual.UnwrapExpr()}; 1917 return std::visit( 1918 common::visitors{ 1919 [&](const characteristics::DummyDataObject &x) { 1920 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 1921 IsBareNullPointer(expr)) { 1922 // NULL() without MOLD= is compatible with any dummy data pointer 1923 // but cannot be allowed to lead to ambiguity. 1924 return true; 1925 } else if (!isElemental && actual.Rank() != x.type.Rank() && 1926 !x.type.attrs().test( 1927 characteristics::TypeAndShape::Attr::AssumedRank)) { 1928 return false; 1929 } else if (auto actualType{actual.GetType()}) { 1930 return x.type.type().IsTkCompatibleWith(*actualType); 1931 } 1932 return false; 1933 }, 1934 [&](const characteristics::DummyProcedure &) { 1935 return expr && IsProcedurePointerTarget(*expr); 1936 }, 1937 [&](const characteristics::AlternateReturn &) { 1938 return actual.isAlternateReturn(); 1939 }, 1940 }, 1941 dummy.u); 1942 } 1943 1944 // Are the actual arguments compatible with the dummy arguments of procedure? 1945 static bool CheckCompatibleArguments( 1946 const characteristics::Procedure &procedure, 1947 const ActualArguments &actuals) { 1948 bool isElemental{procedure.IsElemental()}; 1949 const auto &dummies{procedure.dummyArguments}; 1950 CHECK(dummies.size() == actuals.size()); 1951 for (std::size_t i{0}; i < dummies.size(); ++i) { 1952 const characteristics::DummyArgument &dummy{dummies[i]}; 1953 const std::optional<ActualArgument> &actual{actuals[i]}; 1954 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1955 return false; 1956 } 1957 } 1958 return true; 1959 } 1960 1961 // Handles a forward reference to a module function from what must 1962 // be a specification expression. Return false if the symbol is 1963 // an invalid forward reference. 1964 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1965 if (context_.HasError(symbol)) { 1966 return false; 1967 } 1968 if (const auto *details{ 1969 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1970 if (details->kind() == semantics::SubprogramKind::Module) { 1971 // If this symbol is still a SubprogramNameDetails, we must be 1972 // checking a specification expression in a sibling module 1973 // procedure. Resolve its names now so that its interface 1974 // is known. 1975 semantics::ResolveSpecificationParts(context_, symbol); 1976 if (symbol.has<semantics::SubprogramNameDetails>()) { 1977 // When the symbol hasn't had its details updated, we must have 1978 // already been in the process of resolving the function's 1979 // specification part; but recursive function calls are not 1980 // allowed in specification parts (10.1.11 para 5). 1981 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1982 symbol.name()); 1983 context_.SetError(symbol); 1984 return false; 1985 } 1986 } else { // 10.1.11 para 4 1987 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1988 symbol.name()); 1989 context_.SetError(symbol); 1990 return false; 1991 } 1992 } 1993 return true; 1994 } 1995 1996 // Resolve a call to a generic procedure with given actual arguments. 1997 // adjustActuals is called on procedure bindings to handle pass arg. 1998 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 1999 const Symbol &symbol, const ActualArguments &actuals, 2000 const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) { 2001 const Symbol *elemental{nullptr}; // matching elemental specific proc 2002 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2003 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 2004 bool anyBareNullActual{ 2005 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2006 return IsBareNullPointer(iter->UnwrapExpr()); 2007 }) != actuals.end()}; 2008 for (const Symbol &specific : details.specificProcs()) { 2009 if (!ResolveForward(specific)) { 2010 continue; 2011 } 2012 if (std::optional<characteristics::Procedure> procedure{ 2013 characteristics::Procedure::Characterize( 2014 ProcedureDesignator{specific}, context_.foldingContext())}) { 2015 ActualArguments localActuals{actuals}; 2016 if (specific.has<semantics::ProcBindingDetails>()) { 2017 if (!adjustActuals.value()(specific, localActuals)) { 2018 continue; 2019 } 2020 } 2021 if (semantics::CheckInterfaceForGeneric( 2022 *procedure, localActuals, GetFoldingContext()) && 2023 CheckCompatibleArguments(*procedure, localActuals)) { 2024 if ((procedure->IsElemental() && elemental) || 2025 (!procedure->IsElemental() && nonElemental)) { 2026 // 16.9.144(6): a bare NULL() is not allowed as an actual 2027 // argument to a generic procedure if the specific procedure 2028 // cannot be unambiguously distinguished 2029 return {nullptr, true /* due to NULL actuals */}; 2030 } 2031 if (!procedure->IsElemental()) { 2032 // takes priority over elemental match 2033 nonElemental = &specific; 2034 if (!anyBareNullActual) { 2035 break; // unambiguous case 2036 } 2037 } else { 2038 elemental = &specific; 2039 } 2040 } 2041 } 2042 } 2043 if (nonElemental) { 2044 return {&AccessSpecific(symbol, *nonElemental), false}; 2045 } else if (elemental) { 2046 return {&AccessSpecific(symbol, *elemental), false}; 2047 } 2048 // Check parent derived type 2049 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2050 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2051 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 2052 auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)}; 2053 if (pair.first) { 2054 return pair; 2055 } 2056 } 2057 } 2058 } 2059 if (mightBeStructureConstructor && details.derivedType()) { 2060 return {details.derivedType(), false}; 2061 } 2062 return {nullptr, false}; 2063 } 2064 2065 const Symbol &ExpressionAnalyzer::AccessSpecific( 2066 const Symbol &originalGeneric, const Symbol &specific) { 2067 if (const auto *hosted{ 2068 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2069 return AccessSpecific(hosted->symbol(), specific); 2070 } else if (const auto *used{ 2071 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2072 const auto &scope{originalGeneric.owner()}; 2073 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2074 if (const auto *useDetails{ 2075 iter->second->detailsIf<semantics::UseDetails>()}) { 2076 const Symbol &usedSymbol{useDetails->symbol()}; 2077 const auto *usedGeneric{ 2078 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2079 if (&usedSymbol == &specific || 2080 (usedGeneric && usedGeneric->specific() == &specific)) { 2081 return specific; 2082 } 2083 } 2084 } 2085 // Create a renaming USE of the specific procedure. 2086 auto rename{context_.SaveTempName( 2087 used->symbol().owner().GetName().value().ToString() + "$" + 2088 specific.name().ToString())}; 2089 return *const_cast<semantics::Scope &>(scope) 2090 .try_emplace(rename, specific.attrs(), 2091 semantics::UseDetails{rename, specific}) 2092 .first->second; 2093 } else { 2094 return specific; 2095 } 2096 } 2097 2098 void ExpressionAnalyzer::EmitGenericResolutionError( 2099 const Symbol &symbol, bool dueToNullActuals) { 2100 Say(dueToNullActuals 2101 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2102 : semantics::IsGenericDefinedOp(symbol) 2103 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2104 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2105 symbol.name()); 2106 } 2107 2108 auto ExpressionAnalyzer::GetCalleeAndArguments( 2109 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2110 bool isSubroutine, bool mightBeStructureConstructor) 2111 -> std::optional<CalleeAndArguments> { 2112 return std::visit( 2113 common::visitors{ 2114 [&](const parser::Name &name) { 2115 return GetCalleeAndArguments(name, std::move(arguments), 2116 isSubroutine, mightBeStructureConstructor); 2117 }, 2118 [&](const parser::ProcComponentRef &pcr) { 2119 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2120 }, 2121 }, 2122 pd.u); 2123 } 2124 2125 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2126 ActualArguments &&arguments, bool isSubroutine, 2127 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2128 const Symbol *symbol{name.symbol}; 2129 if (context_.HasError(symbol)) { 2130 return std::nullopt; // also handles null symbol 2131 } 2132 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2133 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2134 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2135 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2136 arguments, GetFoldingContext())}) { 2137 CheckBadExplicitType(*specificCall, *symbol); 2138 return CalleeAndArguments{ 2139 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2140 std::move(specificCall->arguments)}; 2141 } 2142 } else { 2143 CheckForBadRecursion(name.source, ultimate); 2144 bool dueToNullActual{false}; 2145 if (ultimate.has<semantics::GenericDetails>()) { 2146 ExpressionAnalyzer::AdjustActuals noAdjustment; 2147 auto pair{ResolveGeneric( 2148 *symbol, arguments, noAdjustment, mightBeStructureConstructor)}; 2149 symbol = pair.first; 2150 dueToNullActual = pair.second; 2151 } 2152 if (symbol) { 2153 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2154 if (mightBeStructureConstructor) { 2155 return CalleeAndArguments{ 2156 semantics::SymbolRef{*symbol}, std::move(arguments)}; 2157 } 2158 } else if (IsProcedure(*symbol)) { 2159 return CalleeAndArguments{ 2160 ProcedureDesignator{*symbol}, std::move(arguments)}; 2161 } 2162 if (!context_.HasError(*symbol)) { 2163 AttachDeclaration( 2164 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2165 name.source), 2166 *symbol); 2167 } 2168 } else if (std::optional<SpecificCall> specificCall{ 2169 context_.intrinsics().Probe( 2170 CallCharacteristics{ 2171 ultimate.name().ToString(), isSubroutine}, 2172 arguments, GetFoldingContext())}) { 2173 // Generics can extend intrinsics 2174 return CalleeAndArguments{ 2175 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2176 std::move(specificCall->arguments)}; 2177 } else { 2178 EmitGenericResolutionError(*name.symbol, dueToNullActual); 2179 } 2180 } 2181 return std::nullopt; 2182 } 2183 2184 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2185 // generic intrinsic function "has no effect" on the result type of a 2186 // call to that intrinsic. So one can declare "character*8 cos" and 2187 // still get a real result from "cos(1.)". This is a dangerous feature, 2188 // especially since implementations are free to extend their sets of 2189 // intrinsics, and in doing so might clash with a name in a program. 2190 // So we emit a warning in this situation, and perhaps it should be an 2191 // error -- any correctly working program can silence the message by 2192 // simply deleting the pointless type declaration. 2193 void ExpressionAnalyzer::CheckBadExplicitType( 2194 const SpecificCall &call, const Symbol &intrinsic) { 2195 if (intrinsic.GetUltimate().GetType()) { 2196 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2197 if (const auto &result{procedure.functionResult}) { 2198 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2199 if (auto declared{ 2200 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2201 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2202 if (auto *msg{Say( 2203 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US, 2204 typeAndShape->AsFortran(), intrinsic.name(), 2205 declared->AsFortran())}) { 2206 msg->Attach(intrinsic.name(), 2207 "Ignored declaration of intrinsic function '%s'"_en_US, 2208 intrinsic.name()); 2209 } 2210 } 2211 } 2212 } 2213 } 2214 } 2215 } 2216 2217 void ExpressionAnalyzer::CheckForBadRecursion( 2218 parser::CharBlock callSite, const semantics::Symbol &proc) { 2219 if (const auto *scope{proc.scope()}) { 2220 if (scope->sourceRange().Contains(callSite)) { 2221 parser::Message *msg{nullptr}; 2222 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2223 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2224 callSite); 2225 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2226 msg = Say( // 15.6.2.1(3) 2227 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2228 callSite); 2229 } 2230 AttachDeclaration(msg, proc); 2231 } 2232 } 2233 } 2234 2235 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2236 if (const auto *designator{ 2237 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2238 if (const auto *dataRef{ 2239 std::get_if<parser::DataRef>(&designator->value().u)}) { 2240 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2241 return AssumedTypeDummy(*name); 2242 } 2243 } 2244 } 2245 return nullptr; 2246 } 2247 template <> 2248 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2249 if (const Symbol * symbol{name.symbol}) { 2250 if (const auto *type{symbol->GetType()}) { 2251 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2252 return symbol; 2253 } 2254 } 2255 } 2256 return nullptr; 2257 } 2258 template <typename A> 2259 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2260 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2261 // point it is is not guaranteed that it has been checked the object has 2262 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2263 // returned. 2264 return std::visit( 2265 common::visitors{ 2266 [&](const parser::StructureComponent &x) { 2267 return AssumedTypeDummy(x.component); 2268 }, 2269 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2270 }, 2271 object.u); 2272 } 2273 template <> 2274 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2275 const parser::AllocateObject &x) { 2276 return AssumedTypePointerOrAllocatableDummy(x); 2277 } 2278 template <> 2279 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2280 const parser::PointerObject &x) { 2281 return AssumedTypePointerOrAllocatableDummy(x); 2282 } 2283 2284 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2285 const semantics::DerivedTypeSpec &dtSpec) { 2286 if (dtSpec.IsForwardReferenced()) { 2287 Say("Cannot construct value for derived type '%s' " 2288 "before it is defined"_err_en_US, 2289 dtSpec.name()); 2290 return false; 2291 } 2292 return true; 2293 } 2294 2295 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2296 std::optional<parser::StructureConstructor> *structureConstructor) { 2297 const parser::Call &call{funcRef.v}; 2298 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2299 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2300 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2301 analyzer.Analyze(arg, false /* not subroutine call */); 2302 } 2303 if (analyzer.fatalErrors()) { 2304 return std::nullopt; 2305 } 2306 if (std::optional<CalleeAndArguments> callee{ 2307 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2308 analyzer.GetActuals(), false /* not subroutine */, 2309 true /* might be structure constructor */)}) { 2310 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2311 return MakeFunctionRef( 2312 call.source, std::move(*proc), std::move(callee->arguments)); 2313 } 2314 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2315 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2316 if (structureConstructor) { 2317 // Structure constructor misparsed as function reference? 2318 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2319 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2320 semantics::Scope &scope{context_.FindScope(name->source)}; 2321 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2322 if (!CheckIsValidForwardReference(dtSpec)) { 2323 return std::nullopt; 2324 } 2325 const semantics::DeclTypeSpec &type{ 2326 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2327 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2328 *structureConstructor = 2329 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2330 return Analyze(structureConstructor->value()); 2331 } 2332 } 2333 if (!context_.HasError(symbol)) { 2334 AttachDeclaration( 2335 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2336 symbol.name()), 2337 symbol); 2338 context_.SetError(symbol); 2339 } 2340 } 2341 return std::nullopt; 2342 } 2343 2344 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2345 for (const auto &arg : args) { 2346 if (arg && arg->isAlternateReturn()) { 2347 return true; 2348 } 2349 } 2350 return false; 2351 } 2352 2353 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2354 const parser::Call &call{callStmt.v}; 2355 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2356 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2357 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2358 for (const auto &arg : actualArgList) { 2359 analyzer.Analyze(arg, true /* is subroutine call */); 2360 } 2361 if (!analyzer.fatalErrors()) { 2362 if (std::optional<CalleeAndArguments> callee{ 2363 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2364 analyzer.GetActuals(), true /* subroutine */)}) { 2365 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2366 CHECK(proc); 2367 if (CheckCall(call.source, *proc, callee->arguments)) { 2368 bool hasAlternateReturns{HasAlternateReturns(callee->arguments)}; 2369 callStmt.typedCall.Reset( 2370 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2371 hasAlternateReturns}, 2372 ProcedureRef::Deleter); 2373 } 2374 } 2375 } 2376 } 2377 2378 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2379 if (!x.typedAssignment) { 2380 ArgumentAnalyzer analyzer{*this}; 2381 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2382 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2383 std::optional<Assignment> assignment; 2384 if (!analyzer.fatalErrors()) { 2385 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2386 if (!procRef) { 2387 analyzer.CheckForNullPointer( 2388 "in a non-pointer intrinsic assignment statement"); 2389 } 2390 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2391 if (procRef) { 2392 assignment->u = std::move(*procRef); 2393 } 2394 } 2395 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2396 GenericAssignmentWrapper::Deleter); 2397 } 2398 return common::GetPtrFromOptional(x.typedAssignment->v); 2399 } 2400 2401 const Assignment *ExpressionAnalyzer::Analyze( 2402 const parser::PointerAssignmentStmt &x) { 2403 if (!x.typedAssignment) { 2404 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2405 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2406 if (!lhs || !rhs) { 2407 x.typedAssignment.Reset( 2408 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2409 } else { 2410 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2411 std::visit(common::visitors{ 2412 [&](const std::list<parser::BoundsRemapping> &list) { 2413 Assignment::BoundsRemapping bounds; 2414 for (const auto &elem : list) { 2415 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2416 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2417 if (lower && upper) { 2418 bounds.emplace_back(Fold(std::move(*lower)), 2419 Fold(std::move(*upper))); 2420 } 2421 } 2422 assignment.u = std::move(bounds); 2423 }, 2424 [&](const std::list<parser::BoundsSpec> &list) { 2425 Assignment::BoundsSpec bounds; 2426 for (const auto &bound : list) { 2427 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2428 bounds.emplace_back(Fold(std::move(*lower))); 2429 } 2430 } 2431 assignment.u = std::move(bounds); 2432 }, 2433 }, 2434 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2435 x.typedAssignment.Reset( 2436 new GenericAssignmentWrapper{std::move(assignment)}, 2437 GenericAssignmentWrapper::Deleter); 2438 } 2439 } 2440 return common::GetPtrFromOptional(x.typedAssignment->v); 2441 } 2442 2443 static bool IsExternalCalledImplicitly( 2444 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2445 if (const auto *symbol{proc.GetSymbol()}) { 2446 return symbol->has<semantics::SubprogramDetails>() && 2447 symbol->owner().IsGlobal() && 2448 (!symbol->scope() /*ENTRY*/ || 2449 !symbol->scope()->sourceRange().Contains(callSite)); 2450 } else { 2451 return false; 2452 } 2453 } 2454 2455 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2456 parser::CharBlock callSite, const ProcedureDesignator &proc, 2457 ActualArguments &arguments) { 2458 auto chars{characteristics::Procedure::Characterize( 2459 proc, context_.foldingContext())}; 2460 if (chars) { 2461 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2462 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2463 Say(callSite, 2464 "References to the procedure '%s' require an explicit interface"_en_US, 2465 DEREF(proc.GetSymbol()).name()); 2466 } 2467 // Checks for ASSOCIATED() are done in intrinsic table processing 2468 bool procIsAssociated{false}; 2469 if (const SpecificIntrinsic * 2470 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2471 if (specificIntrinsic->name == "associated") { 2472 procIsAssociated = true; 2473 } 2474 } 2475 if (!procIsAssociated) { 2476 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2477 context_.FindScope(callSite), treatExternalAsImplicit, 2478 proc.GetSpecificIntrinsic()); 2479 const Symbol *procSymbol{proc.GetSymbol()}; 2480 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2481 if (const semantics::Scope * 2482 pure{semantics::FindPureProcedureContaining( 2483 context_.FindScope(callSite))}) { 2484 Say(callSite, 2485 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2486 procSymbol->name(), DEREF(pure->symbol()).name()); 2487 } 2488 } 2489 } 2490 } 2491 return chars; 2492 } 2493 2494 // Unary operations 2495 2496 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2497 if (MaybeExpr operand{Analyze(x.v.value())}) { 2498 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2499 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2500 if (semantics::IsProcedurePointer(*result)) { 2501 Say("A function reference that returns a procedure " 2502 "pointer may not be parenthesized"_err_en_US); // C1003 2503 } 2504 } 2505 } 2506 return Parenthesize(std::move(*operand)); 2507 } 2508 return std::nullopt; 2509 } 2510 2511 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2512 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2513 ArgumentAnalyzer analyzer{context}; 2514 analyzer.Analyze(x.v); 2515 if (!analyzer.fatalErrors()) { 2516 if (analyzer.IsIntrinsicNumeric(opr)) { 2517 analyzer.CheckForNullPointer(); 2518 if (opr == NumericOperator::Add) { 2519 return analyzer.MoveExpr(0); 2520 } else { 2521 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2522 } 2523 } else { 2524 return analyzer.TryDefinedOp(AsFortran(opr), 2525 "Operand of unary %s must be numeric; have %s"_err_en_US); 2526 } 2527 } 2528 return std::nullopt; 2529 } 2530 2531 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2532 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2533 } 2534 2535 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2536 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2537 } 2538 2539 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2540 ArgumentAnalyzer analyzer{*this}; 2541 analyzer.Analyze(x.v); 2542 if (!analyzer.fatalErrors()) { 2543 if (analyzer.IsIntrinsicLogical()) { 2544 analyzer.CheckForNullPointer(); 2545 return AsGenericExpr( 2546 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2547 } else { 2548 return analyzer.TryDefinedOp(LogicalOperator::Not, 2549 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2550 } 2551 } 2552 return std::nullopt; 2553 } 2554 2555 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2556 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2557 // intrinsic function. 2558 // Use the actual source for the name of the call for error reporting. 2559 std::optional<ActualArgument> arg; 2560 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2561 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2562 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2563 arg = ActualArgument{std::move(*argExpr)}; 2564 } else { 2565 return std::nullopt; 2566 } 2567 parser::CharBlock at{GetContextualMessages().at()}; 2568 CHECK(at.size() >= 4); 2569 parser::CharBlock loc{at.begin() + 1, 3}; 2570 CHECK(loc == "loc"); 2571 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2572 } 2573 2574 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2575 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2576 ArgumentAnalyzer analyzer{*this, name.source}; 2577 analyzer.Analyze(std::get<1>(x.t)); 2578 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2579 "No operator %s defined for %s"_err_en_US, nullptr, true); 2580 } 2581 2582 // Binary (dyadic) operations 2583 2584 template <template <typename> class OPR> 2585 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2586 const parser::Expr::IntrinsicBinary &x) { 2587 ArgumentAnalyzer analyzer{context}; 2588 analyzer.Analyze(std::get<0>(x.t)); 2589 analyzer.Analyze(std::get<1>(x.t)); 2590 if (!analyzer.fatalErrors()) { 2591 if (analyzer.IsIntrinsicNumeric(opr)) { 2592 analyzer.CheckForNullPointer(); 2593 analyzer.CheckConformance(); 2594 return NumericOperation<OPR>(context.GetContextualMessages(), 2595 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2596 context.GetDefaultKind(TypeCategory::Real)); 2597 } else { 2598 return analyzer.TryDefinedOp(AsFortran(opr), 2599 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2600 } 2601 } 2602 return std::nullopt; 2603 } 2604 2605 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2606 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2607 } 2608 2609 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2610 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2611 } 2612 2613 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2614 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2615 } 2616 2617 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2618 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2619 } 2620 2621 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2622 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2623 } 2624 2625 MaybeExpr ExpressionAnalyzer::Analyze( 2626 const parser::Expr::ComplexConstructor &x) { 2627 auto re{Analyze(std::get<0>(x.t).value())}; 2628 auto im{Analyze(std::get<1>(x.t).value())}; 2629 if (re && im) { 2630 ConformabilityCheck(GetContextualMessages(), *re, *im); 2631 } 2632 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2633 std::move(im), GetDefaultKind(TypeCategory::Real))); 2634 } 2635 2636 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2637 ArgumentAnalyzer analyzer{*this}; 2638 analyzer.Analyze(std::get<0>(x.t)); 2639 analyzer.Analyze(std::get<1>(x.t)); 2640 if (!analyzer.fatalErrors()) { 2641 if (analyzer.IsIntrinsicConcat()) { 2642 analyzer.CheckForNullPointer(); 2643 return std::visit( 2644 [&](auto &&x, auto &&y) -> MaybeExpr { 2645 using T = ResultType<decltype(x)>; 2646 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2647 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2648 } else { 2649 DIE("different types for intrinsic concat"); 2650 } 2651 }, 2652 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2653 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2654 } else { 2655 return analyzer.TryDefinedOp("//", 2656 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2657 } 2658 } 2659 return std::nullopt; 2660 } 2661 2662 // The Name represents a user-defined intrinsic operator. 2663 // If the actuals match one of the specific procedures, return a function ref. 2664 // Otherwise report the error in messages. 2665 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2666 const parser::Name &name, ActualArguments &&actuals) { 2667 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2668 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2669 return MakeFunctionRef(name.source, 2670 std::move(std::get<ProcedureDesignator>(callee->u)), 2671 std::move(callee->arguments)); 2672 } else { 2673 return std::nullopt; 2674 } 2675 } 2676 2677 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2678 const parser::Expr::IntrinsicBinary &x) { 2679 ArgumentAnalyzer analyzer{context}; 2680 analyzer.Analyze(std::get<0>(x.t)); 2681 analyzer.Analyze(std::get<1>(x.t)); 2682 if (!analyzer.fatalErrors()) { 2683 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2684 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2685 analyzer.ConvertBOZ(leftType, 0, rightType); 2686 analyzer.ConvertBOZ(rightType, 1, leftType); 2687 if (leftType && rightType && 2688 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2689 analyzer.CheckForNullPointer("as a relational operand"); 2690 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2691 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2692 } else { 2693 return analyzer.TryDefinedOp(opr, 2694 leftType && leftType->category() == TypeCategory::Logical && 2695 rightType && rightType->category() == TypeCategory::Logical 2696 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2697 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2698 } 2699 } 2700 return std::nullopt; 2701 } 2702 2703 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2704 return RelationHelper(*this, RelationalOperator::LT, x); 2705 } 2706 2707 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2708 return RelationHelper(*this, RelationalOperator::LE, x); 2709 } 2710 2711 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2712 return RelationHelper(*this, RelationalOperator::EQ, x); 2713 } 2714 2715 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2716 return RelationHelper(*this, RelationalOperator::NE, x); 2717 } 2718 2719 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2720 return RelationHelper(*this, RelationalOperator::GE, x); 2721 } 2722 2723 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2724 return RelationHelper(*this, RelationalOperator::GT, x); 2725 } 2726 2727 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2728 const parser::Expr::IntrinsicBinary &x) { 2729 ArgumentAnalyzer analyzer{context}; 2730 analyzer.Analyze(std::get<0>(x.t)); 2731 analyzer.Analyze(std::get<1>(x.t)); 2732 if (!analyzer.fatalErrors()) { 2733 if (analyzer.IsIntrinsicLogical()) { 2734 analyzer.CheckForNullPointer("as a logical operand"); 2735 return AsGenericExpr(BinaryLogicalOperation(opr, 2736 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2737 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2738 } else { 2739 return analyzer.TryDefinedOp( 2740 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2741 } 2742 } 2743 return std::nullopt; 2744 } 2745 2746 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2747 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2748 } 2749 2750 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2751 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2752 } 2753 2754 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2755 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2756 } 2757 2758 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2759 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2760 } 2761 2762 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2763 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2764 ArgumentAnalyzer analyzer{*this, name.source}; 2765 analyzer.Analyze(std::get<1>(x.t)); 2766 analyzer.Analyze(std::get<2>(x.t)); 2767 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2768 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2769 } 2770 2771 static void CheckFuncRefToArrayElementRefHasSubscripts( 2772 semantics::SemanticsContext &context, 2773 const parser::FunctionReference &funcRef) { 2774 // Emit message if the function reference fix will end up an array element 2775 // reference with no subscripts because it will not be possible to later tell 2776 // the difference in expressions between empty subscript list due to bad 2777 // subscripts error recovery or because the user did not put any. 2778 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2779 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2780 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2781 if (!name) { 2782 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2783 } 2784 auto &msg{context.Say(funcRef.v.source, 2785 name->symbol && name->symbol->Rank() == 0 2786 ? "'%s' is not a function"_err_en_US 2787 : "Reference to array '%s' with empty subscript list"_err_en_US, 2788 name->source)}; 2789 if (name->symbol) { 2790 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2791 msg.Attach(name->source, 2792 "A result variable must be declared with RESULT to allow recursive " 2793 "function calls"_en_US); 2794 } else { 2795 AttachDeclaration(&msg, *name->symbol); 2796 } 2797 } 2798 } 2799 } 2800 2801 // Converts, if appropriate, an original misparse of ambiguous syntax like 2802 // A(1) as a function reference into an array reference. 2803 // Misparsed structure constructors are detected elsewhere after generic 2804 // function call resolution fails. 2805 template <typename... A> 2806 static void FixMisparsedFunctionReference( 2807 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2808 // The parse tree is updated in situ when resolving an ambiguous parse. 2809 using uType = std::decay_t<decltype(constU)>; 2810 auto &u{const_cast<uType &>(constU)}; 2811 if (auto *func{ 2812 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2813 parser::FunctionReference &funcRef{func->value()}; 2814 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2815 if (Symbol * 2816 origSymbol{ 2817 std::visit(common::visitors{ 2818 [&](parser::Name &name) { return name.symbol; }, 2819 [&](parser::ProcComponentRef &pcr) { 2820 return pcr.v.thing.component.symbol; 2821 }, 2822 }, 2823 proc.u)}) { 2824 Symbol &symbol{origSymbol->GetUltimate()}; 2825 if (symbol.has<semantics::ObjectEntityDetails>() || 2826 symbol.has<semantics::AssocEntityDetails>()) { 2827 // Note that expression in AssocEntityDetails cannot be a procedure 2828 // pointer as per C1105 so this cannot be a function reference. 2829 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2830 uType>) { 2831 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2832 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2833 } else { 2834 DIE("can't fix misparsed function as array reference"); 2835 } 2836 } 2837 } 2838 } 2839 } 2840 2841 // Common handling of parse tree node types that retain the 2842 // representation of the analyzed expression. 2843 template <typename PARSED> 2844 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2845 const PARSED &x, parser::CharBlock source) { 2846 if (useSavedTypedExprs_ && x.typedExpr) { 2847 return x.typedExpr->v; 2848 } 2849 auto restorer{GetContextualMessages().SetLocation(source)}; 2850 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2851 std::is_same_v<PARSED, parser::Variable>) { 2852 FixMisparsedFunctionReference(context_, x.u); 2853 } 2854 if (AssumedTypeDummy(x)) { // C710 2855 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2856 ResetExpr(x); 2857 return std::nullopt; 2858 } 2859 MaybeExpr result; 2860 if constexpr (common::HasMember<parser::StructureConstructor, 2861 std::decay_t<decltype(x.u)>> && 2862 common::HasMember<common::Indirection<parser::FunctionReference>, 2863 std::decay_t<decltype(x.u)>>) { 2864 if (const auto *funcRef{ 2865 std::get_if<common::Indirection<parser::FunctionReference>>( 2866 &x.u)}) { 2867 // Function references in Exprs might turn out to be misparsed structure 2868 // constructors; we have to try generic procedure resolution 2869 // first to be sure. 2870 std::optional<parser::StructureConstructor> ctor; 2871 result = Analyze(funcRef->value(), &ctor); 2872 if (result && ctor) { 2873 // A misparsed function reference is really a structure 2874 // constructor. Repair the parse tree in situ. 2875 const_cast<PARSED &>(x).u = std::move(*ctor); 2876 } 2877 } else { 2878 result = Analyze(x.u); 2879 } 2880 } else { 2881 result = Analyze(x.u); 2882 } 2883 if (result) { 2884 SetExpr(x, Fold(std::move(*result))); 2885 return x.typedExpr->v; 2886 } else { 2887 ResetExpr(x); 2888 if (!context_.AnyFatalError()) { 2889 std::string buf; 2890 llvm::raw_string_ostream dump{buf}; 2891 parser::DumpTree(dump, x); 2892 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2893 dump.str()); 2894 } 2895 return std::nullopt; 2896 } 2897 } 2898 2899 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2900 return ExprOrVariable(expr, expr.source); 2901 } 2902 2903 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2904 return ExprOrVariable(variable, variable.GetSource()); 2905 } 2906 2907 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 2908 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 2909 if (!useSavedTypedExprs_ || !var->typedExpr) { 2910 parser::CharBlock source{var->GetSource()}; 2911 auto restorer{GetContextualMessages().SetLocation(source)}; 2912 FixMisparsedFunctionReference(context_, var->u); 2913 if (const auto *funcRef{ 2914 std::get_if<common::Indirection<parser::FunctionReference>>( 2915 &var->u)}) { 2916 // A Selector that parsed as a Variable might turn out during analysis 2917 // to actually be a structure constructor. In that case, repair the 2918 // Variable parse tree node into an Expr 2919 std::optional<parser::StructureConstructor> ctor; 2920 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 2921 if (ctor) { 2922 auto &writable{const_cast<parser::Selector &>(selector)}; 2923 writable.u = parser::Expr{std::move(*ctor)}; 2924 auto &expr{std::get<parser::Expr>(writable.u)}; 2925 expr.source = source; 2926 SetExpr(expr, Fold(std::move(*result))); 2927 return expr.typedExpr->v; 2928 } else { 2929 SetExpr(*var, Fold(std::move(*result))); 2930 return var->typedExpr->v; 2931 } 2932 } else { 2933 ResetExpr(*var); 2934 if (context_.AnyFatalError()) { 2935 return std::nullopt; 2936 } 2937 } 2938 } 2939 } 2940 } 2941 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 2942 return Analyze(selector.u); 2943 } 2944 2945 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2946 return ExprOrVariable(x, x.source); 2947 } 2948 2949 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 2950 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2951 } 2952 2953 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 2954 return ExprOrVariable(x, parser::FindSourceLocation(x)); 2955 } 2956 2957 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2958 TypeCategory category, 2959 const std::optional<parser::KindSelector> &selector) { 2960 int defaultKind{GetDefaultKind(category)}; 2961 if (!selector) { 2962 return Expr<SubscriptInteger>{defaultKind}; 2963 } 2964 return std::visit( 2965 common::visitors{ 2966 [&](const parser::ScalarIntConstantExpr &x) { 2967 if (MaybeExpr kind{Analyze(x)}) { 2968 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 2969 if (CheckIntrinsicKind(category, *code)) { 2970 return Expr<SubscriptInteger>{*code}; 2971 } 2972 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 2973 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2974 } 2975 } 2976 return Expr<SubscriptInteger>{defaultKind}; 2977 }, 2978 [&](const parser::KindSelector::StarSize &x) { 2979 std::intmax_t size = x.v; 2980 if (!CheckIntrinsicSize(category, size)) { 2981 size = defaultKind; 2982 } else if (category == TypeCategory::Complex) { 2983 size /= 2; 2984 } 2985 return Expr<SubscriptInteger>{size}; 2986 }, 2987 }, 2988 selector->u); 2989 } 2990 2991 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2992 return context_.GetDefaultKind(category); 2993 } 2994 2995 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2996 common::TypeCategory category) { 2997 return {category, GetDefaultKind(category)}; 2998 } 2999 3000 bool ExpressionAnalyzer::CheckIntrinsicKind( 3001 TypeCategory category, std::int64_t kind) { 3002 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 3003 return true; 3004 } else { 3005 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3006 ToUpperCase(EnumToString(category)), kind); 3007 return false; 3008 } 3009 } 3010 3011 bool ExpressionAnalyzer::CheckIntrinsicSize( 3012 TypeCategory category, std::int64_t size) { 3013 if (category == TypeCategory::Complex) { 3014 // COMPLEX*16 == COMPLEX(KIND=8) 3015 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 3016 return true; 3017 } 3018 } else if (IsValidKindOfIntrinsicType(category, size)) { 3019 return true; 3020 } 3021 Say("%s*%jd is not a supported type"_err_en_US, 3022 ToUpperCase(EnumToString(category)), size); 3023 return false; 3024 } 3025 3026 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3027 return impliedDos_.insert(std::make_pair(name, kind)).second; 3028 } 3029 3030 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3031 auto iter{impliedDos_.find(name)}; 3032 if (iter != impliedDos_.end()) { 3033 impliedDos_.erase(iter); 3034 } 3035 } 3036 3037 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3038 parser::CharBlock name) const { 3039 auto iter{impliedDos_.find(name)}; 3040 if (iter != impliedDos_.cend()) { 3041 return {iter->second}; 3042 } else { 3043 return std::nullopt; 3044 } 3045 } 3046 3047 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3048 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3049 if (result) { 3050 if (auto type{result->GetType()}) { 3051 if (type->category() != category) { // C885 3052 Say(at, "Must have %s type, but is %s"_err_en_US, 3053 ToUpperCase(EnumToString(category)), 3054 ToUpperCase(type->AsFortran())); 3055 return false; 3056 } else if (defaultKind) { 3057 int kind{context_.GetDefaultKind(category)}; 3058 if (type->kind() != kind) { 3059 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3060 kind, ToUpperCase(EnumToString(category)), 3061 ToUpperCase(type->AsFortran())); 3062 return false; 3063 } 3064 } 3065 } else { 3066 Say(at, "Must have %s type, but is typeless"_err_en_US, 3067 ToUpperCase(EnumToString(category))); 3068 return false; 3069 } 3070 } 3071 return true; 3072 } 3073 3074 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3075 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3076 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3077 if (intrinsic->name == "null" && arguments.empty()) { 3078 return Expr<SomeType>{NullPointer{}}; 3079 } 3080 } 3081 if (const Symbol * symbol{proc.GetSymbol()}) { 3082 if (!ResolveForward(*symbol)) { 3083 return std::nullopt; 3084 } 3085 } 3086 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3087 if (chars->functionResult) { 3088 const auto &result{*chars->functionResult}; 3089 if (result.IsProcedurePointer()) { 3090 return Expr<SomeType>{ 3091 ProcedureRef{std::move(proc), std::move(arguments)}}; 3092 } else { 3093 // Not a procedure pointer, so type and shape are known. 3094 return TypedWrapper<FunctionRef, ProcedureRef>( 3095 DEREF(result.GetTypeAndShape()).type(), 3096 ProcedureRef{std::move(proc), std::move(arguments)}); 3097 } 3098 } else { 3099 Say("Function result characteristics are not known"_err_en_US); 3100 } 3101 } 3102 return std::nullopt; 3103 } 3104 3105 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3106 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3107 if (std::optional<SpecificCall> specificCall{ 3108 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3109 arguments, GetFoldingContext())}) { 3110 return MakeFunctionRef(intrinsic, 3111 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3112 std::move(specificCall->arguments)); 3113 } else { 3114 return std::nullopt; 3115 } 3116 } 3117 3118 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3119 source_.ExtendToCover(x.GetSource()); 3120 if (MaybeExpr expr{context_.Analyze(x)}) { 3121 if (!IsConstantExpr(*expr)) { 3122 actuals_.emplace_back(std::move(*expr)); 3123 return; 3124 } 3125 const Symbol *symbol{GetLastSymbol(*expr)}; 3126 if (!symbol) { 3127 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3128 x.GetSource()); 3129 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3130 auto *msg{context_.SayAt(x, 3131 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3132 symbol->name())}; 3133 if (subp->isFunction()) { 3134 const auto &result{subp->result().name()}; 3135 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 3136 } 3137 } else { 3138 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3139 symbol->name()); 3140 } 3141 } 3142 fatalErrors_ = true; 3143 } 3144 3145 void ArgumentAnalyzer::Analyze( 3146 const parser::ActualArgSpec &arg, bool isSubroutine) { 3147 // TODO: Actual arguments that are procedures and procedure pointers need to 3148 // be detected and represented (they're not expressions). 3149 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3150 std::optional<ActualArgument> actual; 3151 std::visit(common::visitors{ 3152 [&](const common::Indirection<parser::Expr> &x) { 3153 actual = AnalyzeExpr(x.value()); 3154 }, 3155 [&](const parser::AltReturnSpec &label) { 3156 if (!isSubroutine) { 3157 context_.Say( 3158 "alternate return specification may not appear on" 3159 " function reference"_err_en_US); 3160 } 3161 actual = ActualArgument(label.v); 3162 }, 3163 [&](const parser::ActualArg::PercentRef &) { 3164 context_.Say("TODO: %REF() argument"_err_en_US); 3165 }, 3166 [&](const parser::ActualArg::PercentVal &) { 3167 context_.Say("TODO: %VAL() argument"_err_en_US); 3168 }, 3169 }, 3170 std::get<parser::ActualArg>(arg.t).u); 3171 if (actual) { 3172 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3173 actual->set_keyword(argKW->v.source); 3174 } 3175 actuals_.emplace_back(std::move(*actual)); 3176 } else { 3177 fatalErrors_ = true; 3178 } 3179 } 3180 3181 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3182 const DynamicType &leftType, const DynamicType &rightType) const { 3183 CHECK(actuals_.size() == 2); 3184 return semantics::IsIntrinsicRelational( 3185 opr, leftType, GetRank(0), rightType, GetRank(1)); 3186 } 3187 3188 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3189 std::optional<DynamicType> leftType{GetType(0)}; 3190 if (actuals_.size() == 1) { 3191 if (IsBOZLiteral(0)) { 3192 return opr == NumericOperator::Add; // unary '+' 3193 } else { 3194 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3195 } 3196 } else { 3197 std::optional<DynamicType> rightType{GetType(1)}; 3198 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3199 auto cat1{rightType->category()}; 3200 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3201 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3202 auto cat0{leftType->category()}; 3203 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3204 } else { 3205 return leftType && rightType && 3206 semantics::IsIntrinsicNumeric( 3207 *leftType, GetRank(0), *rightType, GetRank(1)); 3208 } 3209 } 3210 } 3211 3212 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3213 if (std::optional<DynamicType> leftType{GetType(0)}) { 3214 if (actuals_.size() == 1) { 3215 return semantics::IsIntrinsicLogical(*leftType); 3216 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3217 return semantics::IsIntrinsicLogical( 3218 *leftType, GetRank(0), *rightType, GetRank(1)); 3219 } 3220 } 3221 return false; 3222 } 3223 3224 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3225 if (std::optional<DynamicType> leftType{GetType(0)}) { 3226 if (std::optional<DynamicType> rightType{GetType(1)}) { 3227 return semantics::IsIntrinsicConcat( 3228 *leftType, GetRank(0), *rightType, GetRank(1)); 3229 } 3230 } 3231 return false; 3232 } 3233 3234 bool ArgumentAnalyzer::CheckConformance() { 3235 if (actuals_.size() == 2) { 3236 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3237 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3238 if (lhs && rhs) { 3239 auto &foldingContext{context_.GetFoldingContext()}; 3240 auto lhShape{GetShape(foldingContext, *lhs)}; 3241 auto rhShape{GetShape(foldingContext, *rhs)}; 3242 if (lhShape && rhShape) { 3243 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3244 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3245 "left operand", "right operand") 3246 .value_or(false /*fail when conformance is not known now*/)) { 3247 fatalErrors_ = true; 3248 return false; 3249 } 3250 } 3251 } 3252 } 3253 return true; // no proven problem 3254 } 3255 3256 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3257 for (const std::optional<ActualArgument> &arg : actuals_) { 3258 if (arg) { 3259 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3260 if (IsNullPointer(*expr)) { 3261 context_.Say( 3262 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3263 fatalErrors_ = true; 3264 return false; 3265 } 3266 } 3267 } 3268 } 3269 return true; 3270 } 3271 3272 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3273 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3274 bool isUserOp) { 3275 if (AnyUntypedOrMissingOperand()) { 3276 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3277 return std::nullopt; 3278 } 3279 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3280 if (!definedOpSymbolPtr) { 3281 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3282 } 3283 { 3284 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3285 std::string oprNameString{ 3286 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3287 parser::CharBlock oprName{oprNameString}; 3288 const auto &scope{context_.context().FindScope(source_)}; 3289 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3290 *definedOpSymbolPtr = symbol; 3291 parser::Name name{symbol->name(), symbol}; 3292 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3293 return result; 3294 } 3295 } 3296 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3297 if (const Symbol * 3298 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3299 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3300 return result; 3301 } 3302 } 3303 } 3304 } 3305 if (*definedOpSymbolPtr) { 3306 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3307 } else if (actuals_.size() == 1 || AreConformable()) { 3308 if (CheckForNullPointer()) { 3309 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3310 } 3311 } else { 3312 context_.Say( 3313 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3314 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3315 } 3316 return std::nullopt; 3317 } 3318 3319 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3320 std::vector<const char *> oprs, parser::MessageFixedText error) { 3321 const Symbol *definedOpSymbolPtr{nullptr}; 3322 for (std::size_t i{1}; i < oprs.size(); ++i) { 3323 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3324 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3325 return result; 3326 } 3327 } 3328 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3329 } 3330 3331 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3332 ActualArguments localActuals{actuals_}; 3333 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3334 if (!proc) { 3335 proc = &symbol; 3336 localActuals.at(passIndex).value().set_isPassedObject(); 3337 } 3338 CheckConformance(); 3339 return context_.MakeFunctionRef( 3340 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3341 } 3342 3343 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3344 using semantics::Tristate; 3345 const Expr<SomeType> &lhs{GetExpr(0)}; 3346 const Expr<SomeType> &rhs{GetExpr(1)}; 3347 std::optional<DynamicType> lhsType{lhs.GetType()}; 3348 std::optional<DynamicType> rhsType{rhs.GetType()}; 3349 int lhsRank{lhs.Rank()}; 3350 int rhsRank{rhs.Rank()}; 3351 Tristate isDefined{ 3352 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3353 if (isDefined == Tristate::No) { 3354 if (lhsType && rhsType) { 3355 AddAssignmentConversion(*lhsType, *rhsType); 3356 } 3357 return std::nullopt; // user-defined assignment not allowed for these args 3358 } 3359 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3360 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3361 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3362 context_.Say( 3363 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3364 DEREF(procRef->proc().GetSymbol()).name()); 3365 } 3366 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3367 return std::move(*procRef); 3368 } 3369 if (isDefined == Tristate::Yes) { 3370 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3371 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3372 SayNoMatch("ASSIGNMENT(=)", true); 3373 } 3374 } 3375 return std::nullopt; 3376 } 3377 3378 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3379 TypeCategory lhs, TypeCategory rhs) { 3380 if (!context_.context().languageFeatures().IsEnabled( 3381 common::LanguageFeature::LogicalIntegerAssignment)) { 3382 return false; 3383 } 3384 std::optional<parser::MessageFixedText> msg; 3385 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3386 // allow assignment to LOGICAL from INTEGER as a legacy extension 3387 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 3388 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3389 // ... and assignment to LOGICAL from INTEGER 3390 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 3391 } else { 3392 return false; 3393 } 3394 if (context_.context().languageFeatures().ShouldWarn( 3395 common::LanguageFeature::LogicalIntegerAssignment)) { 3396 context_.Say(std::move(*msg)); 3397 } 3398 return true; 3399 } 3400 3401 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3402 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3403 std::string oprNameString{"assignment(=)"}; 3404 parser::CharBlock oprName{oprNameString}; 3405 const Symbol *proc{nullptr}; 3406 const auto &scope{context_.context().FindScope(source_)}; 3407 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3408 ExpressionAnalyzer::AdjustActuals noAdjustment; 3409 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}; 3410 if (pair.first) { 3411 proc = pair.first; 3412 } else { 3413 context_.EmitGenericResolutionError(*symbol, pair.second); 3414 } 3415 } 3416 int passedObjectIndex{-1}; 3417 const Symbol *definedOpSymbol{nullptr}; 3418 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3419 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3420 if (const Symbol * 3421 resolution{GetBindingResolution(GetType(i), *specific)}) { 3422 proc = resolution; 3423 } else { 3424 proc = specific; 3425 passedObjectIndex = i; 3426 } 3427 } 3428 } 3429 if (!proc) { 3430 return std::nullopt; 3431 } 3432 ActualArguments actualsCopy{actuals_}; 3433 if (passedObjectIndex >= 0) { 3434 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3435 } 3436 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3437 } 3438 3439 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3440 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3441 << '\n'; 3442 for (const auto &actual : actuals_) { 3443 if (!actual.has_value()) { 3444 os << "- error\n"; 3445 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3446 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3447 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3448 expr->AsFortran(os << "- expr: ") << '\n'; 3449 } else { 3450 DIE("bad ActualArgument"); 3451 } 3452 } 3453 } 3454 3455 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3456 const parser::Expr &expr) { 3457 source_.ExtendToCover(expr.source); 3458 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3459 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3460 if (isProcedureCall_) { 3461 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 3462 } 3463 context_.SayAt(expr.source, 3464 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3465 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3466 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3467 return ActualArgument{std::move(*argExpr)}; 3468 } 3469 context_.SayAt(expr.source, 3470 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3471 : "Subroutine name is not allowed here"_err_en_US); 3472 } 3473 return std::nullopt; 3474 } 3475 3476 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3477 const parser::Expr &expr) { 3478 // If an expression's parse tree is a whole assumed-size array: 3479 // Expr -> Designator -> DataRef -> Name 3480 // treat it as a special case for argument passing and bypass 3481 // the C1002/C1014 constraint checking in expression semantics. 3482 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3483 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3484 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3485 return context_.Analyze(expr); 3486 } 3487 } 3488 return context_.Analyze(expr); 3489 } 3490 3491 bool ArgumentAnalyzer::AreConformable() const { 3492 CHECK(actuals_.size() == 2); 3493 return actuals_[0] && actuals_[1] && 3494 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3495 } 3496 3497 // Look for a type-bound operator in the type of arg number passIndex. 3498 const Symbol *ArgumentAnalyzer::FindBoundOp( 3499 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3500 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3501 if (!type || !type->scope()) { 3502 return nullptr; 3503 } 3504 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3505 if (!symbol) { 3506 return nullptr; 3507 } 3508 definedOp = symbol; 3509 ExpressionAnalyzer::AdjustActuals adjustment{ 3510 [&](const Symbol &proc, ActualArguments &) { 3511 return passIndex == GetPassIndex(proc); 3512 }}; 3513 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3514 if (!pair.first) { 3515 context_.EmitGenericResolutionError(*symbol, pair.second); 3516 } 3517 return pair.first; 3518 } 3519 3520 // If there is an implicit conversion between intrinsic types, make it explicit 3521 void ArgumentAnalyzer::AddAssignmentConversion( 3522 const DynamicType &lhsType, const DynamicType &rhsType) { 3523 if (lhsType.category() == rhsType.category() && 3524 lhsType.kind() == rhsType.kind()) { 3525 // no conversion necessary 3526 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3527 actuals_[1] = ActualArgument{*rhsExpr}; 3528 } else { 3529 actuals_[1] = std::nullopt; 3530 } 3531 } 3532 3533 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3534 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3535 } 3536 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3537 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3538 } 3539 3540 // If the argument at index i is a BOZ literal, convert its type to match the 3541 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3542 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3543 // is not currently supported. 3544 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3545 std::size_t i, std::optional<DynamicType> otherType) { 3546 if (IsBOZLiteral(i)) { 3547 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3548 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3549 if (otherType && otherType->category() == TypeCategory::Real) { 3550 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3551 MaybeExpr realExpr{ 3552 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3553 actuals_[i] = std::move(*realExpr); 3554 thisType.emplace(TypeCategory::Real, kind); 3555 } else { 3556 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3557 MaybeExpr intExpr{ 3558 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3559 actuals_[i] = std::move(*intExpr); 3560 thisType.emplace(TypeCategory::Integer, kind); 3561 } 3562 } 3563 } 3564 3565 // Report error resolving opr when there is a user-defined one available 3566 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3567 std::string type0{TypeAsFortran(0)}; 3568 auto rank0{actuals_[0]->Rank()}; 3569 if (actuals_.size() == 1) { 3570 if (rank0 > 0) { 3571 context_.Say("No intrinsic or user-defined %s matches " 3572 "rank %d array of %s"_err_en_US, 3573 opr, rank0, type0); 3574 } else { 3575 context_.Say("No intrinsic or user-defined %s matches " 3576 "operand type %s"_err_en_US, 3577 opr, type0); 3578 } 3579 } else { 3580 std::string type1{TypeAsFortran(1)}; 3581 auto rank1{actuals_[1]->Rank()}; 3582 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3583 context_.Say("No intrinsic or user-defined %s matches " 3584 "rank %d array of %s and rank %d array of %s"_err_en_US, 3585 opr, rank0, type0, rank1, type1); 3586 } else if (isAssignment && rank0 != rank1) { 3587 if (rank0 == 0) { 3588 context_.Say("No intrinsic or user-defined %s matches " 3589 "scalar %s and rank %d array of %s"_err_en_US, 3590 opr, type0, rank1, type1); 3591 } else { 3592 context_.Say("No intrinsic or user-defined %s matches " 3593 "rank %d array of %s and scalar %s"_err_en_US, 3594 opr, rank0, type0, type1); 3595 } 3596 } else { 3597 context_.Say("No intrinsic or user-defined %s matches " 3598 "operand types %s and %s"_err_en_US, 3599 opr, type0, type1); 3600 } 3601 } 3602 } 3603 3604 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3605 if (i >= actuals_.size() || !actuals_[i]) { 3606 return "missing argument"; 3607 } else if (std::optional<DynamicType> type{GetType(i)}) { 3608 return type->category() == TypeCategory::Derived 3609 ? "TYPE("s + type->AsFortran() + ')' 3610 : type->category() == TypeCategory::Character 3611 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3612 : ToUpperCase(type->AsFortran()); 3613 } else { 3614 return "untyped"; 3615 } 3616 } 3617 3618 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3619 for (const auto &actual : actuals_) { 3620 if (!actual || 3621 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3622 return true; 3623 } 3624 } 3625 return false; 3626 } 3627 } // namespace Fortran::evaluate 3628 3629 namespace Fortran::semantics { 3630 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3631 SemanticsContext &context, common::TypeCategory category, 3632 const std::optional<parser::KindSelector> &selector) { 3633 evaluate::ExpressionAnalyzer analyzer{context}; 3634 auto restorer{ 3635 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3636 return analyzer.AnalyzeKindSelector(category, selector); 3637 } 3638 3639 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3640 3641 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3642 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3643 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3644 auto name{bounds.name.thing.thing}; 3645 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3646 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3647 if (dynamicType->category() == TypeCategory::Integer) { 3648 kind = dynamicType->kind(); 3649 } 3650 } 3651 exprAnalyzer_.AddImpliedDo(name.source, kind); 3652 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3653 exprAnalyzer_.RemoveImpliedDo(name.source); 3654 return false; 3655 } 3656 3657 bool ExprChecker::Walk(const parser::Program &program) { 3658 parser::Walk(program, *this); 3659 return !context_.AnyFatalError(); 3660 } 3661 } // namespace Fortran::semantics 3662