1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "flang/Common/idioms.h" 13 #include "flang/Evaluate/common.h" 14 #include "flang/Evaluate/fold.h" 15 #include "flang/Evaluate/tools.h" 16 #include "flang/Parser/characters.h" 17 #include "flang/Parser/dump-parse-tree.h" 18 #include "flang/Parser/parse-tree-visitor.h" 19 #include "flang/Parser/parse-tree.h" 20 #include "flang/Semantics/scope.h" 21 #include "flang/Semantics/semantics.h" 22 #include "flang/Semantics/symbol.h" 23 #include "flang/Semantics/tools.h" 24 #include <algorithm> 25 #include <functional> 26 #include <optional> 27 #include <set> 28 #include <sstream> 29 30 // Typedef for optional generic expressions (ubiquitous in this file) 31 using MaybeExpr = 32 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 33 34 // Much of the code that implements semantic analysis of expressions is 35 // tightly coupled with their typed representations in lib/Evaluate, 36 // and appears here in namespace Fortran::evaluate for convenience. 37 namespace Fortran::evaluate { 38 39 using common::LanguageFeature; 40 using common::NumericOperator; 41 using common::TypeCategory; 42 43 static inline std::string ToUpperCase(const std::string &str) { 44 return parser::ToUpperCaseLetters(str); 45 } 46 47 struct DynamicTypeWithLength : public DynamicType { 48 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 49 std::optional<Expr<SubscriptInteger>> LEN() const; 50 std::optional<Expr<SubscriptInteger>> length; 51 }; 52 53 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 54 if (length) { 55 return length; 56 } 57 if (auto *lengthParam{charLength()}) { 58 if (const auto &len{lengthParam->GetExplicit()}) { 59 return ConvertToType<SubscriptInteger>(common::Clone(*len)); 60 } 61 } 62 return std::nullopt; // assumed or deferred length 63 } 64 65 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 66 const std::optional<parser::TypeSpec> &spec) { 67 if (spec) { 68 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 69 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 70 // (viz., an intrinsic type with valid known kind or a non-polymorphic 71 // & non-ABSTRACT derived type). 72 if (const semantics::IntrinsicTypeSpec * 73 intrinsic{typeSpec->AsIntrinsic()}) { 74 TypeCategory category{intrinsic->category()}; 75 if (auto optKind{ToInt64(intrinsic->kind())}) { 76 int kind{static_cast<int>(*optKind)}; 77 if (category == TypeCategory::Character) { 78 const semantics::CharacterTypeSpec &cts{ 79 typeSpec->characterTypeSpec()}; 80 const semantics::ParamValue &len{cts.length()}; 81 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 82 // type guards, but not in array constructors. 83 return DynamicTypeWithLength{DynamicType{kind, len}}; 84 } else { 85 return DynamicTypeWithLength{DynamicType{category, kind}}; 86 } 87 } 88 } else if (const semantics::DerivedTypeSpec * 89 derived{typeSpec->AsDerived()}) { 90 return DynamicTypeWithLength{DynamicType{*derived}}; 91 } 92 } 93 } 94 return std::nullopt; 95 } 96 97 // Wraps a object in an explicitly typed representation (e.g., Designator<> 98 // or FunctionRef<>) that has been instantiated on a dynamically chosen type. 99 template<TypeCategory CATEGORY, template<typename> typename WRAPPER, 100 typename WRAPPED> 101 common::IfNoLvalue<MaybeExpr, WRAPPED> WrapperHelper(int kind, WRAPPED &&x) { 102 return common::SearchTypes( 103 TypeKindVisitor<CATEGORY, WRAPPER, WRAPPED>{kind, std::move(x)}); 104 } 105 106 template<template<typename> typename WRAPPER, typename WRAPPED> 107 common::IfNoLvalue<MaybeExpr, WRAPPED> TypedWrapper( 108 const DynamicType &dyType, WRAPPED &&x) { 109 switch (dyType.category()) { 110 SWITCH_COVERS_ALL_CASES 111 case TypeCategory::Integer: 112 return WrapperHelper<TypeCategory::Integer, WRAPPER, WRAPPED>( 113 dyType.kind(), std::move(x)); 114 case TypeCategory::Real: 115 return WrapperHelper<TypeCategory::Real, WRAPPER, WRAPPED>( 116 dyType.kind(), std::move(x)); 117 case TypeCategory::Complex: 118 return WrapperHelper<TypeCategory::Complex, WRAPPER, WRAPPED>( 119 dyType.kind(), std::move(x)); 120 case TypeCategory::Character: 121 return WrapperHelper<TypeCategory::Character, WRAPPER, WRAPPED>( 122 dyType.kind(), std::move(x)); 123 case TypeCategory::Logical: 124 return WrapperHelper<TypeCategory::Logical, WRAPPER, WRAPPED>( 125 dyType.kind(), std::move(x)); 126 case TypeCategory::Derived: 127 return AsGenericExpr(Expr<SomeDerived>{WRAPPER<SomeDerived>{std::move(x)}}); 128 } 129 } 130 131 class ArgumentAnalyzer { 132 public: 133 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 134 : context_{context}, allowAssumedType_{false} {} 135 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 136 bool allowAssumedType = false) 137 : context_{context}, source_{source}, allowAssumedType_{allowAssumedType} {} 138 bool fatalErrors() const { return fatalErrors_; } 139 ActualArguments &&GetActuals() { 140 CHECK(!fatalErrors_); 141 return std::move(actuals_); 142 } 143 const Expr<SomeType> &GetExpr(std::size_t i) const { 144 return DEREF(actuals_.at(i).value().UnwrapExpr()); 145 } 146 Expr<SomeType> &&MoveExpr(std::size_t i) { 147 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 148 } 149 void Analyze(const common::Indirection<parser::Expr> &x) { 150 Analyze(x.value()); 151 } 152 void Analyze(const parser::Expr &x) { 153 actuals_.emplace_back(AnalyzeExpr(x)); 154 fatalErrors_ |= !actuals_.back(); 155 } 156 void Analyze(const parser::Variable &); 157 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 158 159 bool IsIntrinsicRelational(RelationalOperator) const; 160 bool IsIntrinsicLogical() const; 161 bool IsIntrinsicNumeric(NumericOperator) const; 162 bool IsIntrinsicConcat() const; 163 164 // Find and return a user-defined operator or report an error. 165 // The provided message is used if there is no such operator. 166 MaybeExpr TryDefinedOp( 167 const char *, parser::MessageFixedText &&, bool isUserOp = false); 168 template<typename E> 169 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 170 return TryDefinedOp( 171 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 172 } 173 // Find and return a user-defined assignment 174 std::optional<ProcedureRef> TryDefinedAssignment(); 175 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 176 void Dump(std::ostream &); 177 178 private: 179 MaybeExpr TryDefinedOp( 180 std::vector<const char *>, parser::MessageFixedText &&); 181 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 182 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 183 bool AreConformable() const; 184 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 185 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 186 std::optional<DynamicType> GetType(std::size_t) const; 187 int GetRank(std::size_t) const; 188 bool IsBOZLiteral(std::size_t i) const { 189 return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u); 190 } 191 void SayNoMatch(const std::string &, bool isAssignment = false); 192 std::string TypeAsFortran(std::size_t); 193 bool AnyUntypedOperand(); 194 195 ExpressionAnalyzer &context_; 196 ActualArguments actuals_; 197 parser::CharBlock source_; 198 bool fatalErrors_{false}; 199 const bool allowAssumedType_; 200 const Symbol *sawDefinedOp_{nullptr}; 201 }; 202 203 // Wraps a data reference in a typed Designator<>, and a procedure 204 // or procedure pointer reference in a ProcedureDesignator. 205 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 206 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 207 if (semantics::IsProcedure(symbol)) { 208 if (auto *component{std::get_if<Component>(&ref.u)}) { 209 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 210 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 211 DIE("unexpected alternative in DataRef"); 212 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 213 return Expr<SomeType>{ProcedureDesignator{symbol}}; 214 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 215 symbol.name().ToString())}) { 216 SpecificIntrinsic intrinsic{ 217 symbol.name().ToString(), std::move(*interface)}; 218 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 219 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 220 } else { 221 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 222 symbol.name()); 223 return std::nullopt; 224 } 225 } else if (auto dyType{DynamicType::From(symbol)}) { 226 return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); 227 } 228 return std::nullopt; 229 } 230 231 // Some subscript semantic checks must be deferred until all of the 232 // subscripts are in hand. 233 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 234 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 235 const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 236 int symbolRank{symbol.Rank()}; 237 int subscripts{static_cast<int>(ref.size())}; 238 if (subscripts == 0) { 239 // nothing to check 240 } else if (subscripts != symbolRank) { 241 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 242 symbolRank, symbol.name(), subscripts); 243 return std::nullopt; 244 } else if (Component * component{ref.base().UnwrapComponent()}) { 245 int baseRank{component->base().Rank()}; 246 if (baseRank > 0) { 247 int subscriptRank{0}; 248 for (const auto &expr : ref.subscript()) { 249 subscriptRank += expr.Rank(); 250 } 251 if (subscriptRank > 0) { 252 Say("Subscripts of component '%s' of rank-%d derived type " 253 "array have rank %d but must all be scalar"_err_en_US, 254 symbol.name(), baseRank, subscriptRank); 255 return std::nullopt; 256 } 257 } 258 } else if (object) { 259 // C928 & C1002 260 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 261 if (!last->upper() && object->IsAssumedSize()) { 262 Say("Assumed-size array '%s' must have explicit final " 263 "subscript upper bound value"_err_en_US, 264 symbol.name()); 265 return std::nullopt; 266 } 267 } 268 } 269 return Designate(DataRef{std::move(ref)}); 270 } 271 272 // Applies subscripts to a data reference. 273 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 274 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 275 return std::visit( 276 common::visitors{ 277 [&](SymbolRef &&symbol) { 278 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 279 }, 280 [&](Component &&c) { 281 return CompleteSubscripts( 282 ArrayRef{std::move(c), std::move(subscripts)}); 283 }, 284 [&](auto &&) -> MaybeExpr { 285 DIE("bad base for ArrayRef"); 286 return std::nullopt; 287 }, 288 }, 289 std::move(dataRef.u)); 290 } 291 292 // Top-level checks for data references. 293 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 294 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 295 const Symbol &symbol{component->GetLastSymbol()}; 296 int componentRank{symbol.Rank()}; 297 if (componentRank > 0) { 298 int baseRank{component->base().Rank()}; 299 if (baseRank > 0) { 300 Say("Reference to whole rank-%d component '%%%s' of " 301 "rank-%d array of derived type is not allowed"_err_en_US, 302 componentRank, symbol.name(), baseRank); 303 } 304 } 305 } 306 return Designate(std::move(dataRef)); 307 } 308 309 // Parse tree correction after a substring S(j:k) was misparsed as an 310 // array section. N.B. Fortran substrings have to have a range, not a 311 // single index. 312 static void FixMisparsedSubstring(const parser::Designator &d) { 313 auto &mutate{const_cast<parser::Designator &>(d)}; 314 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 315 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 316 &dataRef->u)}) { 317 parser::ArrayElement &arrElement{ae->value()}; 318 if (!arrElement.subscripts.empty()) { 319 auto iter{arrElement.subscripts.begin()}; 320 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 321 if (!std::get<2>(triplet->t) /* no stride */ && 322 ++iter == arrElement.subscripts.end() /* one subscript */) { 323 if (Symbol * 324 symbol{std::visit( 325 common::visitors{ 326 [](parser::Name &n) { return n.symbol; }, 327 [](common::Indirection<parser::StructureComponent> 328 &sc) { return sc.value().component.symbol; }, 329 [](auto &) -> Symbol * { return nullptr; }, 330 }, 331 arrElement.base.u)}) { 332 const Symbol &ultimate{symbol->GetUltimate()}; 333 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 334 if (!ultimate.IsObjectArray() && 335 type->category() == semantics::DeclTypeSpec::Character) { 336 // The ambiguous S(j:k) was parsed as an array section 337 // reference, but it's now clear that it's a substring. 338 // Fix the parse tree in situ. 339 mutate.u = arrElement.ConvertToSubstring(); 340 } 341 } 342 } 343 } 344 } 345 } 346 } 347 } 348 } 349 350 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 351 auto restorer{GetContextualMessages().SetLocation(d.source)}; 352 FixMisparsedSubstring(d); 353 // These checks have to be deferred to these "top level" data-refs where 354 // we can be sure that there are no following subscripts (yet). 355 if (MaybeExpr result{Analyze(d.u)}) { 356 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 357 return TopLevelChecks(std::move(*dataRef)); 358 } 359 return result; 360 } 361 return std::nullopt; 362 } 363 364 // A utility subroutine to repackage optional expressions of various levels 365 // of type specificity as fully general MaybeExpr values. 366 template<typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 367 return std::make_optional(AsGenericExpr(std::move(x))); 368 } 369 template<typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 370 if (x) { 371 return AsMaybeExpr(std::move(*x)); 372 } 373 return std::nullopt; 374 } 375 376 // Type kind parameter values for literal constants. 377 int ExpressionAnalyzer::AnalyzeKindParam( 378 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 379 if (!kindParam) { 380 return defaultKind; 381 } 382 return std::visit( 383 common::visitors{ 384 [](std::uint64_t k) { return static_cast<int>(k); }, 385 [&](const parser::Scalar< 386 parser::Integer<parser::Constant<parser::Name>>> &n) { 387 if (MaybeExpr ie{Analyze(n)}) { 388 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 389 int iv = *i64; 390 if (iv == *i64) { 391 return iv; 392 } 393 } 394 } 395 return defaultKind; 396 }, 397 }, 398 kindParam->u); 399 } 400 401 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 402 struct IntTypeVisitor { 403 using Result = MaybeExpr; 404 using Types = IntegerTypes; 405 template<typename T> Result Test() { 406 if (T::kind >= kind) { 407 const char *p{digits.begin()}; 408 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 409 if (!value.overflow) { 410 if (T::kind > kind) { 411 if (!isDefaultKind || 412 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 413 return std::nullopt; 414 } else if (analyzer.context().ShouldWarn( 415 LanguageFeature::BigIntLiterals)) { 416 analyzer.Say(digits, 417 "Integer literal is too large for default INTEGER(KIND=%d); " 418 "assuming INTEGER(KIND=%d)"_en_US, 419 kind, T::kind); 420 } 421 } 422 return Expr<SomeType>{ 423 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 424 } 425 } 426 return std::nullopt; 427 } 428 ExpressionAnalyzer &analyzer; 429 parser::CharBlock digits; 430 int kind; 431 bool isDefaultKind; 432 }; 433 434 template<typename PARSED> 435 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 436 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 437 bool isDefaultKind{!kindParam}; 438 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 439 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 440 auto digits{std::get<parser::CharBlock>(x.t)}; 441 if (MaybeExpr result{common::SearchTypes( 442 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 443 return result; 444 } else if (isDefaultKind) { 445 Say(digits, 446 "Integer literal is too large for any allowable " 447 "kind of INTEGER"_err_en_US); 448 } else { 449 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 450 kind); 451 } 452 } 453 return std::nullopt; 454 } 455 456 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 457 return IntLiteralConstant(x); 458 } 459 460 MaybeExpr ExpressionAnalyzer::Analyze( 461 const parser::SignedIntLiteralConstant &x) { 462 return IntLiteralConstant(x); 463 } 464 465 template<typename TYPE> 466 Constant<TYPE> ReadRealLiteral( 467 parser::CharBlock source, FoldingContext &context) { 468 const char *p{source.begin()}; 469 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 470 CHECK(p == source.end()); 471 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 472 auto value{valWithFlags.value}; 473 if (context.flushSubnormalsToZero()) { 474 value = value.FlushSubnormalToZero(); 475 } 476 return {value}; 477 } 478 479 struct RealTypeVisitor { 480 using Result = std::optional<Expr<SomeReal>>; 481 using Types = RealTypes; 482 483 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 484 : kind{k}, literal{lit}, context{ctx} {} 485 486 template<typename T> Result Test() { 487 if (kind == T::kind) { 488 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 489 } 490 return std::nullopt; 491 } 492 493 int kind; 494 parser::CharBlock literal; 495 FoldingContext &context; 496 }; 497 498 // Reads a real literal constant and encodes it with the right kind. 499 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 500 // Use a local message context around the real literal for better 501 // provenance on any messages. 502 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 503 // If a kind parameter appears, it defines the kind of the literal and any 504 // letter used in an exponent part (e.g., the 'E' in "6.02214E+23") 505 // should agree. In the absence of an explicit kind parameter, any exponent 506 // letter determines the kind. Otherwise, defaults apply. 507 auto &defaults{context_.defaultKinds()}; 508 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 509 const char *end{x.real.source.end()}; 510 char expoLetter{' '}; 511 std::optional<int> letterKind; 512 for (const char *p{x.real.source.begin()}; p < end; ++p) { 513 if (parser::IsLetter(*p)) { 514 expoLetter = *p; 515 switch (expoLetter) { 516 case 'e': letterKind = defaults.GetDefaultKind(TypeCategory::Real); break; 517 case 'd': letterKind = defaults.doublePrecisionKind(); break; 518 case 'q': letterKind = defaults.quadPrecisionKind(); break; 519 default: Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 520 } 521 break; 522 } 523 } 524 if (letterKind) { 525 defaultKind = *letterKind; 526 } 527 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 528 if (letterKind && kind != *letterKind && expoLetter != 'e') { 529 Say("Explicit kind parameter on real constant disagrees with " 530 "exponent letter '%c'"_en_US, 531 expoLetter); 532 } 533 auto result{common::SearchTypes( 534 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 535 if (!result) { 536 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 537 } 538 return AsMaybeExpr(std::move(result)); 539 } 540 541 MaybeExpr ExpressionAnalyzer::Analyze( 542 const parser::SignedRealLiteralConstant &x) { 543 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 544 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 545 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 546 if (sign == parser::Sign::Negative) { 547 return {AsGenericExpr(-std::move(realExpr))}; 548 } 549 } 550 return result; 551 } 552 return std::nullopt; 553 } 554 555 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 556 return Analyze(x.u); 557 } 558 559 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 560 return AsMaybeExpr( 561 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 562 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 563 } 564 565 // CHARACTER literal processing. 566 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 567 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 568 return std::nullopt; 569 } 570 switch (kind) { 571 case 1: 572 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 573 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 574 string, true)}); 575 case 2: 576 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 577 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 578 string, true)}); 579 case 4: 580 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 581 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 582 string, true)}); 583 default: CRASH_NO_CASE; 584 } 585 } 586 587 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 588 int kind{ 589 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 590 auto value{std::get<std::string>(x.t)}; 591 return AnalyzeString(std::move(value), kind); 592 } 593 594 MaybeExpr ExpressionAnalyzer::Analyze( 595 const parser::HollerithLiteralConstant &x) { 596 int kind{GetDefaultKind(TypeCategory::Character)}; 597 auto value{x.v}; 598 return AnalyzeString(std::move(value), kind); 599 } 600 601 // .TRUE. and .FALSE. of various kinds 602 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 603 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 604 GetDefaultKind(TypeCategory::Logical))}; 605 bool value{std::get<bool>(x.t)}; 606 auto result{common::SearchTypes( 607 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 608 kind, std::move(value)})}; 609 if (!result) { 610 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); 611 } 612 return result; 613 } 614 615 // BOZ typeless literals 616 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 617 const char *p{x.v.c_str()}; 618 std::uint64_t base{16}; 619 switch (*p++) { 620 case 'b': base = 2; break; 621 case 'o': base = 8; break; 622 case 'z': break; 623 case 'x': break; 624 default: CRASH_NO_CASE; 625 } 626 CHECK(*p == '"'); 627 ++p; 628 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 629 if (*p != '"') { 630 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, x.v); 631 return std::nullopt; 632 } 633 if (value.overflow) { 634 Say("BOZ literal '%s' too large"_err_en_US, x.v); 635 return std::nullopt; 636 } 637 return AsGenericExpr(std::move(value.value)); 638 } 639 640 // For use with SearchTypes to create a TypeParamInquiry with the 641 // right integer kind. 642 struct TypeParamInquiryVisitor { 643 using Result = std::optional<Expr<SomeInteger>>; 644 using Types = IntegerTypes; 645 TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol ¶m) 646 : kind{k}, base{std::move(b)}, parameter{param} {} 647 TypeParamInquiryVisitor(int k, const Symbol ¶m) 648 : kind{k}, parameter{param} {} 649 template<typename T> Result Test() { 650 if (kind == T::kind) { 651 return Expr<SomeInteger>{ 652 Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}}; 653 } 654 return std::nullopt; 655 } 656 int kind; 657 std::optional<NamedEntity> base; 658 const Symbol ¶meter; 659 }; 660 661 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry( 662 const Symbol *symbol) { 663 if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) { 664 if (dyType->category() == TypeCategory::Integer) { 665 return common::SearchTypes( 666 TypeParamInquiryVisitor{dyType->kind(), *symbol}); 667 } 668 } 669 return std::nullopt; 670 } 671 672 // Names and named constants 673 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 674 if (std::optional<int> kind{IsAcImpliedDo(n.source)}) { 675 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 676 *kind, AsExpr(ImpliedDoIndex{n.source}))); 677 } else if (context_.HasError(n) || !n.symbol) { 678 return std::nullopt; 679 } else { 680 const Symbol &ultimate{n.symbol->GetUltimate()}; 681 if (ultimate.has<semantics::TypeParamDetails>()) { 682 // A bare reference to a derived type parameter (within a parameterized 683 // derived type definition) 684 return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate)); 685 } else { 686 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 687 if (const semantics::Scope * 688 pure{semantics::FindPureProcedureContaining( 689 context_.FindScope(n.source))}) { 690 SayAt(n, 691 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 692 n.source, DEREF(pure->symbol()).name()); 693 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 694 } 695 } 696 return Designate(DataRef{*n.symbol}); 697 } 698 } 699 } 700 701 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 702 if (MaybeExpr value{Analyze(n.v)}) { 703 Expr<SomeType> folded{Fold(std::move(*value))}; 704 if (IsConstantExpr(folded)) { 705 return {folded}; 706 } 707 Say(n.v.source, "must be a constant"_err_en_US); 708 } 709 return std::nullopt; 710 } 711 712 // Substring references 713 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 714 const std::optional<parser::ScalarIntExpr> &bound) { 715 if (bound) { 716 if (MaybeExpr expr{Analyze(*bound)}) { 717 if (expr->Rank() > 1) { 718 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 719 } 720 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 721 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 722 return {std::move(*ssIntExpr)}; 723 } 724 return {Expr<SubscriptInteger>{ 725 Convert<SubscriptInteger, TypeCategory::Integer>{ 726 std::move(*intExpr)}}}; 727 } else { 728 Say("substring bound expression is not INTEGER"_err_en_US); 729 } 730 } 731 } 732 return std::nullopt; 733 } 734 735 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 736 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 737 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 738 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 739 if (std::optional<DataRef> checked{ 740 ExtractDataRef(std::move(*newBaseExpr))}) { 741 const parser::SubstringRange &range{ 742 std::get<parser::SubstringRange>(ss.t)}; 743 std::optional<Expr<SubscriptInteger>> first{ 744 GetSubstringBound(std::get<0>(range.t))}; 745 std::optional<Expr<SubscriptInteger>> last{ 746 GetSubstringBound(std::get<1>(range.t))}; 747 const Symbol &symbol{checked->GetLastSymbol()}; 748 if (std::optional<DynamicType> dynamicType{ 749 DynamicType::From(symbol)}) { 750 if (dynamicType->category() == TypeCategory::Character) { 751 return WrapperHelper<TypeCategory::Character, Designator, 752 Substring>(dynamicType->kind(), 753 Substring{std::move(checked.value()), std::move(first), 754 std::move(last)}); 755 } 756 } 757 Say("substring may apply only to CHARACTER"_err_en_US); 758 } 759 } 760 } 761 } 762 return std::nullopt; 763 } 764 765 // CHARACTER literal substrings 766 MaybeExpr ExpressionAnalyzer::Analyze( 767 const parser::CharLiteralConstantSubstring &x) { 768 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 769 std::optional<Expr<SubscriptInteger>> lower{ 770 GetSubstringBound(std::get<0>(range.t))}; 771 std::optional<Expr<SubscriptInteger>> upper{ 772 GetSubstringBound(std::get<1>(range.t))}; 773 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 774 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 775 Expr<SubscriptInteger> length{ 776 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 777 charExpr->u)}; 778 if (!lower) { 779 lower = Expr<SubscriptInteger>{1}; 780 } 781 if (!upper) { 782 upper = Expr<SubscriptInteger>{ 783 static_cast<std::int64_t>(ToInt64(length).value())}; 784 } 785 return std::visit( 786 [&](auto &&ckExpr) -> MaybeExpr { 787 using Result = ResultType<decltype(ckExpr)>; 788 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 789 CHECK(DEREF(cp).size() == 1); 790 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 791 staticData->set_alignment(Result::kind) 792 .set_itemBytes(Result::kind) 793 .Push(cp->GetScalarValue().value()); 794 Substring substring{std::move(staticData), std::move(lower.value()), 795 std::move(upper.value())}; 796 return AsGenericExpr(Expr<SomeCharacter>{ 797 Expr<Result>{Designator<Result>{std::move(substring)}}}); 798 }, 799 std::move(charExpr->u)); 800 } 801 } 802 return std::nullopt; 803 } 804 805 // Subscripted array references 806 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 807 MaybeExpr &&expr) { 808 if (expr) { 809 if (expr->Rank() > 1) { 810 Say("Subscript expression has rank %d greater than 1"_err_en_US, 811 expr->Rank()); 812 } 813 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 814 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 815 return std::move(*ssIntExpr); 816 } else { 817 return Expr<SubscriptInteger>{ 818 Convert<SubscriptInteger, TypeCategory::Integer>{ 819 std::move(*intExpr)}}; 820 } 821 } else { 822 Say("Subscript expression is not INTEGER"_err_en_US); 823 } 824 } 825 return std::nullopt; 826 } 827 828 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 829 const std::optional<parser::Subscript> &s) { 830 if (s) { 831 return AsSubscript(Analyze(*s)); 832 } else { 833 return std::nullopt; 834 } 835 } 836 837 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 838 const parser::SectionSubscript &ss) { 839 return std::visit( 840 common::visitors{ 841 [&](const parser::SubscriptTriplet &t) { 842 return std::make_optional<Subscript>(Triplet{ 843 TripletPart(std::get<0>(t.t)), TripletPart(std::get<1>(t.t)), 844 TripletPart(std::get<2>(t.t))}); 845 }, 846 [&](const auto &s) -> std::optional<Subscript> { 847 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 848 return Subscript{std::move(*subscriptExpr)}; 849 } else { 850 return std::nullopt; 851 } 852 }, 853 }, 854 ss.u); 855 } 856 857 // Empty result means an error occurred 858 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 859 const std::list<parser::SectionSubscript> &sss) { 860 bool error{false}; 861 std::vector<Subscript> subscripts; 862 for (const auto &s : sss) { 863 if (auto subscript{AnalyzeSectionSubscript(s)}) { 864 subscripts.emplace_back(std::move(*subscript)); 865 } else { 866 error = true; 867 } 868 } 869 return !error ? subscripts : std::vector<Subscript>{}; 870 } 871 872 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 873 std::vector<Subscript> subscripts{AnalyzeSectionSubscripts(ae.subscripts)}; 874 if (MaybeExpr baseExpr{Analyze(ae.base)}) { 875 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 876 if (!subscripts.empty()) { 877 return ApplySubscripts(std::move(*dataRef), std::move(subscripts)); 878 } 879 } else { 880 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 881 } 882 } 883 return std::nullopt; 884 } 885 886 // Type parameter inquiries apply to data references, but don't depend 887 // on any trailing (co)subscripts. 888 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 889 return std::visit( 890 common::visitors{ 891 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 892 [](Component &&component) { 893 return NamedEntity{std::move(component)}; 894 }, 895 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 896 [](CoarrayRef &&coarrayRef) { 897 return NamedEntity{coarrayRef.GetLastSymbol()}; 898 }, 899 }, 900 std::move(designator.u)); 901 } 902 903 // Components of parent derived types are explicitly represented as such. 904 static std::optional<Component> CreateComponent( 905 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 906 if (&component.owner() == &scope) { 907 return Component{std::move(base), component}; 908 } 909 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 910 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 911 return CreateComponent( 912 DataRef{Component{std::move(base), *parentComponent}}, component, 913 *parentScope); 914 } 915 } 916 return std::nullopt; 917 } 918 919 // Derived type component references and type parameter inquiries 920 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 921 MaybeExpr base{Analyze(sc.base)}; 922 if (!base) { 923 return std::nullopt; 924 } 925 Symbol *sym{sc.component.symbol}; 926 if (context_.HasError(sym)) { 927 return std::nullopt; 928 } 929 const auto &name{sc.component.source}; 930 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 931 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 932 if (sym->detailsIf<semantics::TypeParamDetails>()) { 933 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 934 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 935 if (dyType->category() == TypeCategory::Integer) { 936 return AsMaybeExpr( 937 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(), 938 IgnoreAnySubscripts(std::move(*designator)), *sym})); 939 } 940 } 941 Say(name, "Type parameter is not INTEGER"_err_en_US); 942 } else { 943 Say(name, 944 "A type parameter inquiry must be applied to " 945 "a designator"_err_en_US); 946 } 947 } else if (!dtSpec || !dtSpec->scope()) { 948 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 949 return std::nullopt; 950 } else if (std::optional<DataRef> dataRef{ 951 ExtractDataRef(std::move(*dtExpr))}) { 952 if (auto component{ 953 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 954 return Designate(DataRef{std::move(*component)}); 955 } else { 956 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 957 dtSpec->typeSymbol().name()); 958 } 959 } else { 960 Say(name, 961 "Base of component reference must be a data reference"_err_en_US); 962 } 963 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 964 // special part-ref: %re, %im, %kind, %len 965 // Type errors are detected and reported in semantics. 966 using MiscKind = semantics::MiscDetails::Kind; 967 MiscKind kind{details->kind()}; 968 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 969 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 970 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 971 Expr<SomeReal> realExpr{std::visit( 972 [&](const auto &z) { 973 using PartType = typename ResultType<decltype(z)>::Part; 974 auto part{kind == MiscKind::ComplexPartRe 975 ? ComplexPart::Part::RE 976 : ComplexPart::Part::IM}; 977 return AsCategoryExpr(Designator<PartType>{ 978 ComplexPart{std::move(*dataRef), part}}); 979 }, 980 zExpr->u)}; 981 return {AsGenericExpr(std::move(realExpr))}; 982 } 983 } 984 } else if (kind == MiscKind::KindParamInquiry || 985 kind == MiscKind::LenParamInquiry) { 986 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 987 return MakeFunctionRef( 988 name, ActualArguments{ActualArgument{std::move(*base)}}); 989 } else { 990 DIE("unexpected MiscDetails::Kind"); 991 } 992 } else { 993 Say(name, "derived type required before component reference"_err_en_US); 994 } 995 return std::nullopt; 996 } 997 998 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 999 if (auto dataRef{ExtractDataRef(Analyze(x.base))}) { 1000 std::vector<Subscript> subscripts; 1001 SymbolVector reversed; 1002 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1003 subscripts = std::move(aRef->subscript()); 1004 reversed.push_back(aRef->GetLastSymbol()); 1005 if (Component * component{aRef->base().UnwrapComponent()}) { 1006 *dataRef = std::move(component->base()); 1007 } else { 1008 dataRef.reset(); 1009 } 1010 } 1011 if (dataRef) { 1012 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1013 reversed.push_back(component->GetLastSymbol()); 1014 *dataRef = std::move(component->base()); 1015 } 1016 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1017 reversed.push_back(*baseSym); 1018 } else { 1019 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1020 } 1021 } 1022 std::vector<Expr<SubscriptInteger>> cosubscripts; 1023 bool cosubsOk{true}; 1024 for (const auto &cosub : 1025 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1026 MaybeExpr coex{Analyze(cosub)}; 1027 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1028 cosubscripts.push_back( 1029 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1030 } else { 1031 cosubsOk = false; 1032 } 1033 } 1034 if (cosubsOk && !reversed.empty()) { 1035 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1036 const Symbol &symbol{reversed.front()}; 1037 if (numCosubscripts != symbol.Corank()) { 1038 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1039 symbol.name(), symbol.Corank(), numCosubscripts); 1040 } 1041 } 1042 // TODO: stat=/team=/team_number= 1043 // Reverse the chain of symbols so that the base is first and coarray 1044 // ultimate component is last. 1045 return Designate( 1046 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1047 std::move(subscripts), std::move(cosubscripts)}}); 1048 } 1049 return std::nullopt; 1050 } 1051 1052 int ExpressionAnalyzer::IntegerTypeSpecKind( 1053 const parser::IntegerTypeSpec &spec) { 1054 Expr<SubscriptInteger> value{ 1055 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1056 if (auto kind{ToInt64(value)}) { 1057 return static_cast<int>(*kind); 1058 } 1059 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1060 return GetDefaultKind(TypeCategory::Integer); 1061 } 1062 1063 // Array constructors 1064 1065 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1066 // all happen to have the same actual type T into one ArrayConstructor<T>. 1067 template<typename T> 1068 ArrayConstructorValues<T> MakeSpecific( 1069 ArrayConstructorValues<SomeType> &&from) { 1070 ArrayConstructorValues<T> to; 1071 for (ArrayConstructorValue<SomeType> &x : from) { 1072 std::visit( 1073 common::visitors{ 1074 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1075 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1076 to.Push(std::move(DEREF(typed))); 1077 }, 1078 [&](ImpliedDo<SomeType> &&impliedDo) { 1079 to.Push(ImpliedDo<T>{impliedDo.name(), 1080 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1081 std::move(impliedDo.stride()), 1082 MakeSpecific<T>(std::move(impliedDo.values()))}); 1083 }, 1084 }, 1085 std::move(x.u)); 1086 } 1087 return to; 1088 } 1089 1090 class ArrayConstructorContext { 1091 public: 1092 ArrayConstructorContext( 1093 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1094 : exprAnalyzer_{c}, type_{std::move(t)} {} 1095 1096 void Add(const parser::AcValue &); 1097 MaybeExpr ToExpr(); 1098 1099 // These interfaces allow *this to be used as a type visitor argument to 1100 // common::SearchTypes() to convert the array constructor to a typed 1101 // expression in ToExpr(). 1102 using Result = MaybeExpr; 1103 using Types = AllTypes; 1104 template<typename T> Result Test() { 1105 if (type_ && type_->category() == T::category) { 1106 if constexpr (T::category == TypeCategory::Derived) { 1107 return AsMaybeExpr(ArrayConstructor<T>{ 1108 type_->GetDerivedTypeSpec(), MakeSpecific<T>(std::move(values_))}); 1109 } else if (type_->kind() == T::kind) { 1110 if constexpr (T::category == TypeCategory::Character) { 1111 if (auto len{type_->LEN()}) { 1112 return AsMaybeExpr(ArrayConstructor<T>{ 1113 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1114 } 1115 } else { 1116 return AsMaybeExpr( 1117 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1118 } 1119 } 1120 } 1121 return std::nullopt; 1122 } 1123 1124 private: 1125 void Push(MaybeExpr &&); 1126 1127 template<int KIND, typename A> 1128 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1129 const A &x) { 1130 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1131 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1132 return ConvertToType<Type<TypeCategory::Integer, KIND>>( 1133 std::move(DEREF(intExpr))); 1134 } 1135 return std::nullopt; 1136 } 1137 1138 // Nested array constructors all reference the same ExpressionAnalyzer, 1139 // which represents the nest of active implied DO loop indices. 1140 ExpressionAnalyzer &exprAnalyzer_; 1141 std::optional<DynamicTypeWithLength> type_; 1142 bool explicitType_{type_.has_value()}; 1143 std::optional<std::int64_t> constantLength_; 1144 ArrayConstructorValues<SomeType> values_; 1145 }; 1146 1147 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1148 if (!x) { 1149 return; 1150 } 1151 if (auto dyType{x->GetType()}) { 1152 DynamicTypeWithLength xType{*dyType}; 1153 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1154 CHECK(xType.category() == TypeCategory::Character); 1155 xType.length = 1156 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1157 } 1158 if (!type_) { 1159 // If there is no explicit type-spec in an array constructor, the type 1160 // of the array is the declared type of all of the elements, which must 1161 // be well-defined and all match. 1162 // TODO: Possible language extension: use the most general type of 1163 // the values as the type of a numeric constructed array, convert all 1164 // of the other values to that type. Alternative: let the first value 1165 // determine the type, and convert the others to that type. 1166 CHECK(!explicitType_); 1167 type_ = std::move(xType); 1168 constantLength_ = ToInt64(type_->length); 1169 values_.Push(std::move(*x)); 1170 } else if (!explicitType_) { 1171 if (static_cast<const DynamicType &>(*type_) == 1172 static_cast<const DynamicType &>(xType)) { 1173 values_.Push(std::move(*x)); 1174 if (auto thisLen{ToInt64(xType.LEN())}) { 1175 if (constantLength_) { 1176 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1177 *thisLen != *constantLength_) { 1178 exprAnalyzer_.Say( 1179 "Character literal in array constructor without explicit " 1180 "type has different length than earlier element"_en_US); 1181 } 1182 if (*thisLen > *constantLength_) { 1183 // Language extension: use the longest literal to determine the 1184 // length of the array constructor's character elements, not the 1185 // first, when there is no explicit type. 1186 *constantLength_ = *thisLen; 1187 type_->length = xType.LEN(); 1188 } 1189 } else { 1190 constantLength_ = *thisLen; 1191 type_->length = xType.LEN(); 1192 } 1193 } 1194 } else { 1195 exprAnalyzer_.Say( 1196 "Values in array constructor must have the same declared type " 1197 "when no explicit type appears"_err_en_US); 1198 } 1199 } else { 1200 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1201 values_.Push(std::move(*cast)); 1202 } else { 1203 exprAnalyzer_.Say( 1204 "Value in array constructor could not be converted to the type " 1205 "of the array"_err_en_US); 1206 } 1207 } 1208 } 1209 } 1210 1211 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1212 using IntType = ResultType<ImpliedDoIndex>; 1213 std::visit( 1214 common::visitors{ 1215 [&](const parser::AcValue::Triplet &triplet) { 1216 // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1217 std::optional<Expr<IntType>> lower{ 1218 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))}; 1219 std::optional<Expr<IntType>> upper{ 1220 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))}; 1221 std::optional<Expr<IntType>> stride{ 1222 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))}; 1223 if (lower && upper) { 1224 if (!stride) { 1225 stride = Expr<IntType>{1}; 1226 } 1227 if (!type_) { 1228 type_ = DynamicTypeWithLength{IntType::GetType()}; 1229 } 1230 auto v{std::move(values_)}; 1231 parser::CharBlock anonymous; 1232 Push(Expr<SomeType>{ 1233 Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}}); 1234 std::swap(v, values_); 1235 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1236 std::move(*upper), std::move(*stride), std::move(v)}); 1237 } 1238 }, 1239 [&](const common::Indirection<parser::Expr> &expr) { 1240 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation( 1241 expr.value().source)}; 1242 if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) { 1243 Push(std::move(*v)); 1244 } 1245 }, 1246 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1247 const auto &control{ 1248 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)}; 1249 const auto &bounds{ 1250 std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1251 exprAnalyzer_.Analyze(bounds.name); 1252 parser::CharBlock name{bounds.name.thing.thing.source}; 1253 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1254 int kind{IntType::kind}; 1255 if (const auto dynamicType{DynamicType::From(symbol)}) { 1256 kind = dynamicType->kind(); 1257 } 1258 if (exprAnalyzer_.AddAcImpliedDo(name, kind)) { 1259 std::optional<Expr<IntType>> lower{ 1260 GetSpecificIntExpr<IntType::kind>(bounds.lower)}; 1261 std::optional<Expr<IntType>> upper{ 1262 GetSpecificIntExpr<IntType::kind>(bounds.upper)}; 1263 if (lower && upper) { 1264 std::optional<Expr<IntType>> stride{ 1265 GetSpecificIntExpr<IntType::kind>(bounds.step)}; 1266 auto v{std::move(values_)}; 1267 for (const auto &value : 1268 std::get<std::list<parser::AcValue>>(impliedDo.value().t)) { 1269 Add(value); 1270 } 1271 if (!stride) { 1272 stride = Expr<IntType>{1}; 1273 } 1274 std::swap(v, values_); 1275 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1276 std::move(*upper), std::move(*stride), std::move(v)}); 1277 } 1278 exprAnalyzer_.RemoveAcImpliedDo(name); 1279 } else { 1280 exprAnalyzer_.SayAt(name, 1281 "Implied DO index is active in surrounding implied DO loop " 1282 "and may not have the same name"_err_en_US); 1283 } 1284 }, 1285 }, 1286 x.u); 1287 } 1288 1289 MaybeExpr ArrayConstructorContext::ToExpr() { 1290 return common::SearchTypes(std::move(*this)); 1291 } 1292 1293 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1294 const parser::AcSpec &acSpec{array.v}; 1295 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1296 for (const parser::AcValue &value : acSpec.values) { 1297 acContext.Add(value); 1298 } 1299 return acContext.ToExpr(); 1300 } 1301 1302 MaybeExpr ExpressionAnalyzer::Analyze( 1303 const parser::StructureConstructor &structure) { 1304 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1305 parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; 1306 if (!parsedType.derivedTypeSpec) { 1307 return std::nullopt; 1308 } 1309 const auto &spec{*parsedType.derivedTypeSpec}; 1310 const Symbol &typeSymbol{spec.typeSymbol()}; 1311 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1312 return std::nullopt; // error recovery 1313 } 1314 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1315 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1316 1317 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1318 AttachDeclaration(Say(typeName, 1319 "ABSTRACT derived type '%s' may not be used in a " 1320 "structure constructor"_err_en_US, 1321 typeName), 1322 typeSymbol); 1323 } 1324 1325 // This iterator traverses all of the components in the derived type and its 1326 // parents. The symbols for whole parent components appear after their 1327 // own components and before the components of the types that extend them. 1328 // E.g., TYPE :: A; REAL X; END TYPE 1329 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1330 // produces the component list X, A, Y. 1331 // The order is important below because a structure constructor can 1332 // initialize X or A by name, but not both. 1333 auto components{semantics::OrderedComponentIterator{spec}}; 1334 auto nextAnonymous{components.begin()}; 1335 1336 std::set<parser::CharBlock> unavailable; 1337 bool anyKeyword{false}; 1338 StructureConstructor result{spec}; 1339 bool checkConflicts{true}; // until we hit one 1340 1341 for (const auto &component : 1342 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1343 const parser::Expr &expr{ 1344 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1345 parser::CharBlock source{expr.source}; 1346 auto &messages{GetContextualMessages()}; 1347 auto restorer{messages.SetLocation(source)}; 1348 const Symbol *symbol{nullptr}; 1349 MaybeExpr value{Analyze(expr)}; 1350 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1351 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1352 anyKeyword = true; 1353 source = kw->v.source; 1354 symbol = kw->v.symbol; 1355 if (!symbol) { 1356 auto componentIter{std::find_if(components.begin(), components.end(), 1357 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1358 if (componentIter != components.end()) { 1359 symbol = &*componentIter; 1360 } 1361 } 1362 if (!symbol) { // C7101 1363 Say(source, 1364 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1365 source, typeName); 1366 } 1367 } else { 1368 if (anyKeyword) { // C7100 1369 Say(source, 1370 "Value in structure constructor lacks a component name"_err_en_US); 1371 checkConflicts = false; // stem cascade 1372 } 1373 // Here's a regrettably common extension of the standard: anonymous 1374 // initialization of parent components, e.g., T(PT(1)) rather than 1375 // T(1) or T(PT=PT(1)). 1376 if (nextAnonymous == components.begin() && parentComponent && 1377 valueType == DynamicType::From(*parentComponent) && 1378 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1379 auto iter{ 1380 std::find(components.begin(), components.end(), *parentComponent)}; 1381 if (iter != components.end()) { 1382 symbol = parentComponent; 1383 nextAnonymous = ++iter; 1384 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1385 Say(source, 1386 "Whole parent component '%s' in structure " 1387 "constructor should not be anonymous"_en_US, 1388 symbol->name()); 1389 } 1390 } 1391 } 1392 while (!symbol && nextAnonymous != components.end()) { 1393 const Symbol &next{*nextAnonymous}; 1394 ++nextAnonymous; 1395 if (!next.test(Symbol::Flag::ParentComp)) { 1396 symbol = &next; 1397 } 1398 } 1399 if (!symbol) { 1400 Say(source, "Unexpected value in structure constructor"_err_en_US); 1401 } 1402 } 1403 if (symbol) { 1404 if (checkConflicts) { 1405 auto componentIter{ 1406 std::find(components.begin(), components.end(), *symbol)}; 1407 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1408 // C797, C798 1409 Say(source, 1410 "Component '%s' conflicts with another component earlier in " 1411 "this structure constructor"_err_en_US, 1412 symbol->name()); 1413 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1414 // Make earlier components unavailable once a whole parent appears. 1415 for (auto it{components.begin()}; it != componentIter; ++it) { 1416 unavailable.insert(it->name()); 1417 } 1418 } else { 1419 // Make whole parent components unavailable after any of their 1420 // constituents appear. 1421 for (auto it{componentIter}; it != components.end(); ++it) { 1422 if (it->test(Symbol::Flag::ParentComp)) { 1423 unavailable.insert(it->name()); 1424 } 1425 } 1426 } 1427 } 1428 unavailable.insert(symbol->name()); 1429 if (value) { 1430 if (symbol->has<semantics::ProcEntityDetails>()) { 1431 CHECK(IsPointer(*symbol)); 1432 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1433 // C1594(4) 1434 const auto &innermost{context_.FindScope(expr.source)}; 1435 if (const auto *pureProc{ 1436 semantics::FindPureProcedureContaining(innermost)}) { 1437 if (const Symbol * 1438 pointer{semantics::FindPointerComponent(*symbol)}) { 1439 if (const Symbol * 1440 object{semantics::FindExternallyVisibleObject( 1441 *value, *pureProc)}) { 1442 if (auto *msg{Say(expr.source, 1443 "Externally visible object '%s' may not be " 1444 "associated with pointer component '%s' in a " 1445 "pure procedure"_err_en_US, 1446 object->name(), pointer->name())}) { 1447 msg->Attach(object->name(), "Object declaration"_en_US) 1448 .Attach(pointer->name(), "Pointer declaration"_en_US); 1449 } 1450 } 1451 } 1452 } 1453 } else if (symbol->has<semantics::TypeParamDetails>()) { 1454 Say(expr.source, 1455 "Type parameter '%s' may not appear as a component " 1456 "of a structure constructor"_err_en_US, 1457 symbol->name()); 1458 continue; 1459 } else { 1460 Say(expr.source, 1461 "Component '%s' is neither a procedure pointer " 1462 "nor a data object"_err_en_US, 1463 symbol->name()); 1464 continue; 1465 } 1466 if (IsPointer(*symbol)) { 1467 semantics::CheckPointerAssignment( 1468 GetFoldingContext(), *symbol, *value); // C7104, C7105 1469 result.Add(*symbol, Fold(std::move(*value))); 1470 } else if (MaybeExpr converted{ 1471 ConvertToType(*symbol, std::move(*value))}) { 1472 result.Add(*symbol, std::move(*converted)); 1473 } else if (IsAllocatable(*symbol) && 1474 std::holds_alternative<NullPointer>(value->u)) { 1475 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1476 } else if (auto symType{DynamicType::From(symbol)}) { 1477 if (valueType) { 1478 AttachDeclaration( 1479 Say(expr.source, 1480 "Value in structure constructor of type %s is " 1481 "incompatible with component '%s' of type %s"_err_en_US, 1482 valueType->AsFortran(), symbol->name(), 1483 symType->AsFortran()), 1484 *symbol); 1485 } else { 1486 AttachDeclaration( 1487 Say(expr.source, 1488 "Value in structure constructor is incompatible with " 1489 " component '%s' of type %s"_err_en_US, 1490 symbol->name(), symType->AsFortran()), 1491 *symbol); 1492 } 1493 } 1494 } 1495 } 1496 } 1497 1498 // Ensure that unmentioned component objects have default initializers. 1499 for (const Symbol &symbol : components) { 1500 if (!symbol.test(Symbol::Flag::ParentComp) && 1501 unavailable.find(symbol.name()) == unavailable.cend() && 1502 !IsAllocatable(symbol)) { 1503 if (const auto *details{ 1504 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1505 if (details->init()) { 1506 result.Add(symbol, common::Clone(*details->init())); 1507 } else { // C799 1508 AttachDeclaration(Say(typeName, 1509 "Structure constructor lacks a value for " 1510 "component '%s'"_err_en_US, 1511 symbol.name()), 1512 symbol); 1513 } 1514 } 1515 } 1516 } 1517 1518 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1519 } 1520 1521 static std::optional<parser::CharBlock> GetPassName( 1522 const semantics::Symbol &proc) { 1523 return std::visit( 1524 [](const auto &details) { 1525 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1526 std::decay_t<decltype(details)>>) { 1527 return details.passName(); 1528 } else { 1529 return std::optional<parser::CharBlock>{}; 1530 } 1531 }, 1532 proc.details()); 1533 } 1534 1535 static int GetPassIndex(const Symbol &proc) { 1536 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1537 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1538 const auto *interface{semantics::FindInterface(proc)}; 1539 if (!passName || !interface) { 1540 return 0; // first argument is passed-object 1541 } 1542 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1543 int index{0}; 1544 for (const auto *arg : subp.dummyArgs()) { 1545 if (arg && arg->name() == passName) { 1546 return index; 1547 } 1548 ++index; 1549 } 1550 DIE("PASS argument name not in dummy argument list"); 1551 } 1552 1553 // Injects an expression into an actual argument list as the "passed object" 1554 // for a type-bound procedure reference that is not NOPASS. Adds an 1555 // argument keyword if possible, but not when the passed object goes 1556 // before a positional argument. 1557 // e.g., obj%tbp(x) -> tbp(obj,x). 1558 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1559 const Symbol &component, bool isPassedObject = true) { 1560 if (component.attrs().test(semantics::Attr::NOPASS)) { 1561 return; 1562 } 1563 int passIndex{GetPassIndex(component)}; 1564 auto iter{actuals.begin()}; 1565 int at{0}; 1566 while (iter < actuals.end() && at < passIndex) { 1567 if (*iter && (*iter)->keyword()) { 1568 iter = actuals.end(); 1569 break; 1570 } 1571 ++iter; 1572 ++at; 1573 } 1574 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1575 passed.set_isPassedObject(isPassedObject); 1576 if (iter == actuals.end()) { 1577 if (auto passName{GetPassName(component)}) { 1578 passed.set_keyword(*passName); 1579 } 1580 } 1581 actuals.emplace(iter, std::move(passed)); 1582 } 1583 1584 // Return the compile-time resolution of a procedure binding, if possible. 1585 static const Symbol *GetBindingResolution( 1586 const std::optional<DynamicType> &baseType, const Symbol &component) { 1587 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1588 if (!binding) { 1589 return nullptr; 1590 } 1591 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1592 (!baseType || baseType->IsPolymorphic())) { 1593 return nullptr; 1594 } 1595 return &binding->symbol(); 1596 } 1597 1598 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1599 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1600 -> std::optional<CalleeAndArguments> { 1601 const parser::StructureComponent &sc{pcr.v.thing}; 1602 const auto &name{sc.component.source}; 1603 if (MaybeExpr base{Analyze(sc.base)}) { 1604 if (const Symbol * sym{sc.component.symbol}) { 1605 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1606 if (sym->has<semantics::GenericDetails>()) { 1607 AdjustActuals adjustment{ 1608 [&](const Symbol &proc, ActualArguments &actuals) { 1609 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1610 AddPassArg(actuals, std::move(*dtExpr), proc); 1611 } 1612 return true; 1613 }}; 1614 sym = ResolveGeneric(*sym, arguments, adjustment); 1615 if (!sym) { 1616 EmitGenericResolutionError(*sc.component.symbol); 1617 return std::nullopt; 1618 } 1619 } 1620 if (const Symbol * 1621 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1622 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1623 return CalleeAndArguments{ 1624 ProcedureDesignator{*resolution}, std::move(arguments)}; 1625 } else if (std::optional<DataRef> dataRef{ 1626 ExtractDataRef(std::move(*dtExpr))}) { 1627 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1628 return CalleeAndArguments{ 1629 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1630 std::move(arguments)}; 1631 } else { 1632 AddPassArg(arguments, 1633 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1634 *sym); 1635 return CalleeAndArguments{ 1636 ProcedureDesignator{*sym}, std::move(arguments)}; 1637 } 1638 } 1639 } 1640 Say(name, 1641 "Base of procedure component reference is not a derived-type object"_err_en_US); 1642 } 1643 } 1644 CHECK(!GetContextualMessages().empty()); 1645 return std::nullopt; 1646 } 1647 1648 // Can actual be argument associated with dummy? 1649 static bool CheckCompatibleArgument(bool isElemental, 1650 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1651 return std::visit( 1652 common::visitors{ 1653 [&](const characteristics::DummyDataObject &x) { 1654 characteristics::TypeAndShape dummyTypeAndShape{x.type}; 1655 if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) { 1656 return false; 1657 } else if (auto actualType{actual.GetType()}) { 1658 return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType); 1659 } else { 1660 return false; 1661 } 1662 }, 1663 [&](const characteristics::DummyProcedure &) { 1664 const auto *expr{actual.UnwrapExpr()}; 1665 return expr && IsProcedurePointer(*expr); 1666 }, 1667 [&](const characteristics::AlternateReturn &) { 1668 return actual.isAlternateReturn(); 1669 }, 1670 }, 1671 dummy.u); 1672 } 1673 1674 // Are the actual arguments compatible with the dummy arguments of procedure? 1675 static bool CheckCompatibleArguments( 1676 const characteristics::Procedure &procedure, 1677 const ActualArguments &actuals) { 1678 bool isElemental{procedure.IsElemental()}; 1679 const auto &dummies{procedure.dummyArguments}; 1680 CHECK(dummies.size() == actuals.size()); 1681 for (std::size_t i{0}; i < dummies.size(); ++i) { 1682 const characteristics::DummyArgument &dummy{dummies[i]}; 1683 const std::optional<ActualArgument> &actual{actuals[i]}; 1684 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1685 return false; 1686 } 1687 } 1688 return true; 1689 } 1690 1691 // Resolve a call to a generic procedure with given actual arguments. 1692 // adjustActuals is called on procedure bindings to handle pass arg. 1693 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1694 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1695 bool mightBeStructureConstructor) { 1696 const Symbol *elemental{nullptr}; // matching elemental specific proc 1697 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1698 for (const Symbol &specific : details.specificProcs()) { 1699 if (std::optional<characteristics::Procedure> procedure{ 1700 characteristics::Procedure::Characterize( 1701 ProcedureDesignator{specific}, context_.intrinsics())}) { 1702 ActualArguments localActuals{actuals}; 1703 if (specific.has<semantics::ProcBindingDetails>()) { 1704 if (!adjustActuals.value()(specific, localActuals)) { 1705 continue; 1706 } 1707 } 1708 if (semantics::CheckInterfaceForGeneric( 1709 *procedure, localActuals, GetFoldingContext())) { 1710 if (CheckCompatibleArguments(*procedure, localActuals)) { 1711 if (!procedure->IsElemental()) { 1712 return &specific; // takes priority over elemental match 1713 } 1714 elemental = &specific; 1715 } 1716 } 1717 } 1718 } 1719 if (elemental) { 1720 return elemental; 1721 } 1722 // Check parent derived type 1723 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 1724 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 1725 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 1726 if (const Symbol * 1727 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 1728 return result; 1729 } 1730 } 1731 } 1732 } 1733 if (mightBeStructureConstructor && details.derivedType()) { 1734 return details.derivedType(); 1735 } 1736 return nullptr; 1737 } 1738 1739 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 1740 if (semantics::IsGenericDefinedOp(symbol)) { 1741 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 1742 symbol.name()); 1743 } else { 1744 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 1745 symbol.name()); 1746 } 1747 } 1748 1749 auto ExpressionAnalyzer::GetCalleeAndArguments( 1750 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 1751 bool isSubroutine, bool mightBeStructureConstructor) 1752 -> std::optional<CalleeAndArguments> { 1753 return std::visit( 1754 common::visitors{ 1755 [&](const parser::Name &name) { 1756 return GetCalleeAndArguments(name, std::move(arguments), 1757 isSubroutine, mightBeStructureConstructor); 1758 }, 1759 [&](const parser::ProcComponentRef &pcr) { 1760 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 1761 }, 1762 }, 1763 pd.u); 1764 } 1765 1766 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 1767 ActualArguments &&arguments, bool isSubroutine, 1768 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 1769 const Symbol *symbol{name.symbol}; 1770 if (context_.HasError(symbol)) { 1771 return std::nullopt; // also handles null symbol 1772 } 1773 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 1774 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 1775 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 1776 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 1777 arguments, GetFoldingContext())}) { 1778 return CalleeAndArguments{ 1779 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1780 std::move(specificCall->arguments)}; 1781 } 1782 } else { 1783 CheckForBadRecursion(name.source, ultimate); 1784 if (ultimate.has<semantics::GenericDetails>()) { 1785 ExpressionAnalyzer::AdjustActuals noAdjustment; 1786 symbol = ResolveGeneric( 1787 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 1788 } 1789 if (symbol) { 1790 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 1791 if (mightBeStructureConstructor) { 1792 return CalleeAndArguments{ 1793 semantics::SymbolRef{*symbol}, std::move(arguments)}; 1794 } 1795 } else { 1796 return CalleeAndArguments{ 1797 ProcedureDesignator{*symbol}, std::move(arguments)}; 1798 } 1799 } else if (std::optional<SpecificCall> specificCall{ 1800 context_.intrinsics().Probe( 1801 CallCharacteristics{ 1802 ultimate.name().ToString(), isSubroutine}, 1803 arguments, GetFoldingContext())}) { 1804 // Generics can extend intrinsics 1805 return CalleeAndArguments{ 1806 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1807 std::move(specificCall->arguments)}; 1808 } else { 1809 EmitGenericResolutionError(*name.symbol); 1810 } 1811 } 1812 return std::nullopt; 1813 } 1814 1815 void ExpressionAnalyzer::CheckForBadRecursion( 1816 parser::CharBlock callSite, const semantics::Symbol &proc) { 1817 if (const auto *scope{proc.scope()}) { 1818 if (scope->sourceRange().Contains(callSite)) { 1819 parser::Message *msg{nullptr}; 1820 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 1821 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 1822 callSite); 1823 } else if (IsAssumedLengthCharacterFunction(proc)) { // 15.6.2.1(3) 1824 msg = Say( 1825 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 1826 callSite); 1827 } 1828 AttachDeclaration(msg, proc); 1829 } 1830 } 1831 } 1832 1833 template<typename A> static const Symbol *AssumedTypeDummy(const A &x) { 1834 if (const auto *designator{ 1835 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 1836 if (const auto *dataRef{ 1837 std::get_if<parser::DataRef>(&designator->value().u)}) { 1838 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 1839 if (const Symbol * symbol{name->symbol}) { 1840 if (const auto *type{symbol->GetType()}) { 1841 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 1842 return symbol; 1843 } 1844 } 1845 } 1846 } 1847 } 1848 } 1849 return nullptr; 1850 } 1851 1852 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 1853 std::optional<parser::StructureConstructor> *structureConstructor) { 1854 const parser::Call &call{funcRef.v}; 1855 auto restorer{GetContextualMessages().SetLocation(call.source)}; 1856 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 1857 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 1858 analyzer.Analyze(arg, false /* not subroutine call */); 1859 } 1860 if (analyzer.fatalErrors()) { 1861 return std::nullopt; 1862 } 1863 if (std::optional<CalleeAndArguments> callee{ 1864 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 1865 analyzer.GetActuals(), false /* not subroutine */, 1866 true /* might be structure constructor */)}) { 1867 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 1868 return MakeFunctionRef( 1869 call.source, std::move(*proc), std::move(callee->arguments)); 1870 } else if (structureConstructor) { 1871 // Structure constructor misparsed as function reference? 1872 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 1873 const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)}; 1874 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 1875 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 1876 semantics::Scope &scope{context_.FindScope(name->source)}; 1877 const semantics::DeclTypeSpec &type{ 1878 semantics::FindOrInstantiateDerivedType(scope, 1879 semantics::DerivedTypeSpec{ 1880 name->source, derivedType.GetUltimate()}, 1881 context_)}; 1882 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 1883 *structureConstructor = 1884 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 1885 return Analyze(structureConstructor->value()); 1886 } 1887 } 1888 } 1889 return std::nullopt; 1890 } 1891 1892 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 1893 const parser::Call &call{callStmt.v}; 1894 auto restorer{GetContextualMessages().SetLocation(call.source)}; 1895 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 1896 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 1897 analyzer.Analyze(arg, true /* is subroutine call */); 1898 } 1899 if (!analyzer.fatalErrors()) { 1900 if (std::optional<CalleeAndArguments> callee{ 1901 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 1902 analyzer.GetActuals(), true /* subroutine */)}) { 1903 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 1904 CHECK(proc); 1905 if (CheckCall(call.source, *proc, callee->arguments)) { 1906 callStmt.typedCall.reset( 1907 new ProcedureRef{std::move(*proc), std::move(callee->arguments)}); 1908 } 1909 } 1910 } 1911 } 1912 1913 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 1914 if (!x.typedAssignment) { 1915 ArgumentAnalyzer analyzer{*this}; 1916 analyzer.Analyze(std::get<parser::Variable>(x.t)); 1917 analyzer.Analyze(std::get<parser::Expr>(x.t)); 1918 if (analyzer.fatalErrors()) { 1919 x.typedAssignment.reset(new GenericAssignmentWrapper{}); 1920 } else { 1921 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 1922 Assignment assignment{ 1923 Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))}; 1924 if (procRef) { 1925 assignment.u = std::move(*procRef); 1926 } 1927 x.typedAssignment.reset( 1928 new GenericAssignmentWrapper{std::move(assignment)}); 1929 } 1930 } 1931 return common::GetPtrFromOptional(x.typedAssignment->v); 1932 } 1933 1934 const Assignment *ExpressionAnalyzer::Analyze( 1935 const parser::PointerAssignmentStmt &x) { 1936 if (!x.typedAssignment) { 1937 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 1938 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 1939 if (!lhs || !rhs) { 1940 x.typedAssignment.reset(new GenericAssignmentWrapper{}); 1941 } else { 1942 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 1943 std::visit( 1944 common::visitors{ 1945 [&](const std::list<parser::BoundsRemapping> &list) { 1946 Assignment::BoundsRemapping bounds; 1947 for (const auto &elem : list) { 1948 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 1949 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 1950 if (lower && upper) { 1951 bounds.emplace_back( 1952 Fold(std::move(*lower)), Fold(std::move(*upper))); 1953 } 1954 } 1955 assignment.u = std::move(bounds); 1956 }, 1957 [&](const std::list<parser::BoundsSpec> &list) { 1958 Assignment::BoundsSpec bounds; 1959 for (const auto &bound : list) { 1960 if (auto lower{AsSubscript(Analyze(bound.v))}) { 1961 bounds.emplace_back(Fold(std::move(*lower))); 1962 } 1963 } 1964 assignment.u = std::move(bounds); 1965 }, 1966 }, 1967 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 1968 x.typedAssignment.reset( 1969 new GenericAssignmentWrapper{std::move(assignment)}); 1970 } 1971 } 1972 return common::GetPtrFromOptional(x.typedAssignment->v); 1973 } 1974 1975 static bool IsExternalCalledImplicitly( 1976 parser::CharBlock callSite, const ProcedureDesignator &proc) { 1977 if (const auto *symbol{proc.GetSymbol()}) { 1978 return symbol->has<semantics::SubprogramDetails>() && 1979 symbol->owner().IsGlobal() && 1980 !symbol->scope()->sourceRange().Contains(callSite); 1981 } else { 1982 return false; 1983 } 1984 } 1985 1986 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 1987 parser::CharBlock callSite, const ProcedureDesignator &proc, 1988 ActualArguments &arguments) { 1989 auto chars{ 1990 characteristics::Procedure::Characterize(proc, context_.intrinsics())}; 1991 if (chars) { 1992 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 1993 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 1994 Say(callSite, 1995 "References to the procedure '%s' require an explicit interface"_en_US, 1996 DEREF(proc.GetSymbol()).name()); 1997 } 1998 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 1999 context_.FindScope(callSite), treatExternalAsImplicit); 2000 if (!chars->attrs.test(characteristics::Procedure::Attr::Pure)) { 2001 if (const semantics::Scope * 2002 pure{semantics::FindPureProcedureContaining( 2003 context_.FindScope(callSite))}) { 2004 Say(callSite, 2005 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2006 DEREF(proc.GetSymbol()).name(), DEREF(pure->symbol()).name()); 2007 } 2008 } 2009 } 2010 return chars; 2011 } 2012 2013 // Unary operations 2014 2015 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2016 if (MaybeExpr operand{Analyze(x.v.value())}) { 2017 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2018 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2019 if (semantics::IsProcedurePointer(*result)) { 2020 Say("A function reference that returns a procedure " 2021 "pointer may not be parenthesized"_err_en_US); // C1003 2022 } 2023 } 2024 } 2025 return Parenthesize(std::move(*operand)); 2026 } 2027 return std::nullopt; 2028 } 2029 2030 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2031 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2032 ArgumentAnalyzer analyzer{context}; 2033 analyzer.Analyze(x.v); 2034 if (analyzer.fatalErrors()) { 2035 return std::nullopt; 2036 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2037 if (opr == NumericOperator::Add) { 2038 return analyzer.MoveExpr(0); 2039 } else { 2040 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2041 } 2042 } else { 2043 return analyzer.TryDefinedOp(AsFortran(opr), 2044 "Operand of unary %s must be numeric; have %s"_err_en_US); 2045 } 2046 } 2047 2048 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2049 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2050 } 2051 2052 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2053 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2054 } 2055 2056 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2057 ArgumentAnalyzer analyzer{*this}; 2058 analyzer.Analyze(x.v); 2059 if (analyzer.fatalErrors()) { 2060 return std::nullopt; 2061 } else if (analyzer.IsIntrinsicLogical()) { 2062 return AsGenericExpr( 2063 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2064 } else { 2065 return analyzer.TryDefinedOp(LogicalOperator::Not, 2066 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2067 } 2068 } 2069 2070 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2071 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2072 // intrinsic function. 2073 // Use the actual source for the name of the call for error reporting. 2074 std::optional<ActualArgument> arg; 2075 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2076 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2077 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2078 arg = ActualArgument{std::move(*argExpr)}; 2079 } else { 2080 return std::nullopt; 2081 } 2082 parser::CharBlock at{GetContextualMessages().at()}; 2083 CHECK(at.size() >= 4); 2084 parser::CharBlock loc{at.begin() + 1, 3}; 2085 CHECK(loc == "loc"); 2086 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2087 } 2088 2089 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2090 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2091 ArgumentAnalyzer analyzer{*this, name.source}; 2092 analyzer.Analyze(std::get<1>(x.t)); 2093 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2094 "No operator %s defined for %s"_err_en_US, true); 2095 } 2096 2097 // Binary (dyadic) operations 2098 2099 template<template<typename> class OPR> 2100 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2101 const parser::Expr::IntrinsicBinary &x) { 2102 ArgumentAnalyzer analyzer{context}; 2103 analyzer.Analyze(std::get<0>(x.t)); 2104 analyzer.Analyze(std::get<1>(x.t)); 2105 if (analyzer.fatalErrors()) { 2106 return std::nullopt; 2107 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2108 return NumericOperation<OPR>(context.GetContextualMessages(), 2109 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2110 context.GetDefaultKind(TypeCategory::Real)); 2111 } else { 2112 return analyzer.TryDefinedOp(AsFortran(opr), 2113 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2114 } 2115 } 2116 2117 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2118 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2119 } 2120 2121 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2122 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2123 } 2124 2125 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2126 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2127 } 2128 2129 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2130 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2131 } 2132 2133 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2134 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2135 } 2136 2137 MaybeExpr ExpressionAnalyzer::Analyze( 2138 const parser::Expr::ComplexConstructor &x) { 2139 auto re{Analyze(std::get<0>(x.t).value())}; 2140 auto im{Analyze(std::get<1>(x.t).value())}; 2141 if (re && im) { 2142 ConformabilityCheck(GetContextualMessages(), *re, *im); 2143 } 2144 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2145 std::move(im), GetDefaultKind(TypeCategory::Real))); 2146 } 2147 2148 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2149 ArgumentAnalyzer analyzer{*this}; 2150 analyzer.Analyze(std::get<0>(x.t)); 2151 analyzer.Analyze(std::get<1>(x.t)); 2152 if (analyzer.fatalErrors()) { 2153 return std::nullopt; 2154 } else if (analyzer.IsIntrinsicConcat()) { 2155 return std::visit( 2156 [&](auto &&x, auto &&y) -> MaybeExpr { 2157 using T = ResultType<decltype(x)>; 2158 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2159 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2160 } else { 2161 DIE("different types for intrinsic concat"); 2162 } 2163 }, 2164 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2165 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2166 } else { 2167 return analyzer.TryDefinedOp("//", 2168 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2169 } 2170 } 2171 2172 // The Name represents a user-defined intrinsic operator. 2173 // If the actuals match one of the specific procedures, return a function ref. 2174 // Otherwise report the error in messages. 2175 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2176 const parser::Name &name, ActualArguments &&actuals) { 2177 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2178 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2179 return MakeFunctionRef(name.source, 2180 std::move(std::get<ProcedureDesignator>(callee->u)), 2181 std::move(callee->arguments)); 2182 } else { 2183 return std::nullopt; 2184 } 2185 } 2186 2187 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2188 const parser::Expr::IntrinsicBinary &x) { 2189 ArgumentAnalyzer analyzer{context}; 2190 analyzer.Analyze(std::get<0>(x.t)); 2191 analyzer.Analyze(std::get<1>(x.t)); 2192 if (analyzer.fatalErrors()) { 2193 return std::nullopt; 2194 } else if (analyzer.IsIntrinsicRelational(opr)) { 2195 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2196 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2197 } else { 2198 return analyzer.TryDefinedOp(opr, 2199 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2200 } 2201 } 2202 2203 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2204 return RelationHelper(*this, RelationalOperator::LT, x); 2205 } 2206 2207 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2208 return RelationHelper(*this, RelationalOperator::LE, x); 2209 } 2210 2211 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2212 return RelationHelper(*this, RelationalOperator::EQ, x); 2213 } 2214 2215 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2216 return RelationHelper(*this, RelationalOperator::NE, x); 2217 } 2218 2219 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2220 return RelationHelper(*this, RelationalOperator::GE, x); 2221 } 2222 2223 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2224 return RelationHelper(*this, RelationalOperator::GT, x); 2225 } 2226 2227 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2228 const parser::Expr::IntrinsicBinary &x) { 2229 ArgumentAnalyzer analyzer{context}; 2230 analyzer.Analyze(std::get<0>(x.t)); 2231 analyzer.Analyze(std::get<1>(x.t)); 2232 if (analyzer.fatalErrors()) { 2233 return std::nullopt; 2234 } else if (analyzer.IsIntrinsicLogical()) { 2235 return AsGenericExpr(BinaryLogicalOperation(opr, 2236 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2237 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2238 } else { 2239 return analyzer.TryDefinedOp( 2240 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2241 } 2242 } 2243 2244 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2245 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2246 } 2247 2248 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2249 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2250 } 2251 2252 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2253 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2254 } 2255 2256 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2257 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2258 } 2259 2260 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2261 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2262 ArgumentAnalyzer analyzer{*this, name.source}; 2263 analyzer.Analyze(std::get<1>(x.t)); 2264 analyzer.Analyze(std::get<2>(x.t)); 2265 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2266 "No operator %s defined for %s and %s"_err_en_US, true); 2267 } 2268 2269 static void CheckFuncRefToArrayElementRefHasSubscripts( 2270 semantics::SemanticsContext &context, 2271 const parser::FunctionReference &funcRef) { 2272 // Emit message if the function reference fix will end up an array element 2273 // reference with no subscripts because it will not be possible to later tell 2274 // the difference in expressions between empty subscript list due to bad 2275 // subscripts error recovery or because the user did not put any. 2276 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2277 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2278 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2279 if (!name) { 2280 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2281 } 2282 auto &msg{context.Say(funcRef.v.source, 2283 "Reference to array '%s' with empty subscript list"_err_en_US, 2284 name->source)}; 2285 if (name->symbol) { 2286 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2287 msg.Attach(name->source, 2288 "A result variable must be declared with RESULT to allow recursive " 2289 "function calls"_en_US); 2290 } else { 2291 AttachDeclaration(&msg, *name->symbol); 2292 } 2293 } 2294 } 2295 } 2296 2297 // Converts, if appropriate, an original misparse of ambiguous syntax like 2298 // A(1) as a function reference into an array reference. 2299 // Misparse structure constructors are detected elsewhere after generic 2300 // function call resolution fails. 2301 template<typename... A> 2302 static void FixMisparsedFunctionReference( 2303 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2304 // The parse tree is updated in situ when resolving an ambiguous parse. 2305 using uType = std::decay_t<decltype(constU)>; 2306 auto &u{const_cast<uType &>(constU)}; 2307 if (auto *func{ 2308 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2309 parser::FunctionReference &funcRef{func->value()}; 2310 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2311 if (Symbol * 2312 origSymbol{std::visit( 2313 common::visitors{ 2314 [&](parser::Name &name) { return name.symbol; }, 2315 [&](parser::ProcComponentRef &pcr) { 2316 return pcr.v.thing.component.symbol; 2317 }, 2318 }, 2319 proc.u)}) { 2320 Symbol &symbol{origSymbol->GetUltimate()}; 2321 if (symbol.has<semantics::ObjectEntityDetails>() || 2322 symbol.has<semantics::AssocEntityDetails>()) { 2323 // Note that expression in AssocEntityDetails cannot be a procedure 2324 // pointer as per C1105 so this cannot be a function reference. 2325 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2326 uType>) { 2327 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2328 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2329 } else { 2330 DIE("can't fix misparsed function as array reference"); 2331 } 2332 } 2333 } 2334 } 2335 } 2336 2337 // Common handling of parser::Expr and parser::Variable 2338 template<typename PARSED> 2339 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) { 2340 if (!x.typedExpr) { 2341 FixMisparsedFunctionReference(context_, x.u); 2342 MaybeExpr result; 2343 if (AssumedTypeDummy(x)) { // C710 2344 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2345 } else { 2346 if constexpr (std::is_same_v<PARSED, parser::Expr>) { 2347 // Analyze the expression in a specified source position context for 2348 // better error reporting. 2349 auto restorer{GetContextualMessages().SetLocation(x.source)}; 2350 result = evaluate::Fold(foldingContext_, Analyze(x.u)); 2351 } else { 2352 result = Analyze(x.u); 2353 } 2354 } 2355 x.typedExpr.reset(new GenericExprWrapper{std::move(result)}); 2356 if (!x.typedExpr->v) { 2357 if (!context_.AnyFatalError()) { 2358 std::stringstream dump; 2359 parser::DumpTree(dump, x); 2360 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2361 dump.str()); 2362 } 2363 fatalErrors_ = true; 2364 } 2365 } 2366 return x.typedExpr->v; 2367 } 2368 2369 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2370 auto restorer{GetContextualMessages().SetLocation(expr.source)}; 2371 return ExprOrVariable(expr); 2372 } 2373 2374 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2375 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; 2376 return ExprOrVariable(variable); 2377 } 2378 2379 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2380 TypeCategory category, 2381 const std::optional<parser::KindSelector> &selector) { 2382 int defaultKind{GetDefaultKind(category)}; 2383 if (!selector) { 2384 return Expr<SubscriptInteger>{defaultKind}; 2385 } 2386 return std::visit( 2387 common::visitors{ 2388 [&](const parser::ScalarIntConstantExpr &x) { 2389 if (MaybeExpr kind{Analyze(x)}) { 2390 Expr<SomeType> folded{Fold(std::move(*kind))}; 2391 if (std::optional<std::int64_t> code{ToInt64(folded)}) { 2392 if (CheckIntrinsicKind(category, *code)) { 2393 return Expr<SubscriptInteger>{*code}; 2394 } 2395 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) { 2396 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2397 } 2398 } 2399 return Expr<SubscriptInteger>{defaultKind}; 2400 }, 2401 [&](const parser::KindSelector::StarSize &x) { 2402 std::intmax_t size = x.v; 2403 if (!CheckIntrinsicSize(category, size)) { 2404 size = defaultKind; 2405 } else if (category == TypeCategory::Complex) { 2406 size /= 2; 2407 } 2408 return Expr<SubscriptInteger>{size}; 2409 }, 2410 }, 2411 selector->u); 2412 } 2413 2414 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2415 return context_.GetDefaultKind(category); 2416 } 2417 2418 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2419 common::TypeCategory category) { 2420 return {category, GetDefaultKind(category)}; 2421 } 2422 2423 bool ExpressionAnalyzer::CheckIntrinsicKind( 2424 TypeCategory category, std::int64_t kind) { 2425 if (IsValidKindOfIntrinsicType(category, kind)) { 2426 return true; 2427 } else { 2428 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2429 ToUpperCase(EnumToString(category)), kind); 2430 return false; 2431 } 2432 } 2433 2434 bool ExpressionAnalyzer::CheckIntrinsicSize( 2435 TypeCategory category, std::int64_t size) { 2436 if (category == TypeCategory::Complex) { 2437 // COMPLEX*16 == COMPLEX(KIND=8) 2438 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2439 return true; 2440 } 2441 } else if (IsValidKindOfIntrinsicType(category, size)) { 2442 return true; 2443 } 2444 Say("%s*%jd is not a supported type"_err_en_US, 2445 ToUpperCase(EnumToString(category)), size); 2446 return false; 2447 } 2448 2449 bool ExpressionAnalyzer::AddAcImpliedDo(parser::CharBlock name, int kind) { 2450 return acImpliedDos_.insert(std::make_pair(name, kind)).second; 2451 } 2452 2453 void ExpressionAnalyzer::RemoveAcImpliedDo(parser::CharBlock name) { 2454 auto iter{acImpliedDos_.find(name)}; 2455 if (iter != acImpliedDos_.end()) { 2456 acImpliedDos_.erase(iter); 2457 } 2458 } 2459 2460 std::optional<int> ExpressionAnalyzer::IsAcImpliedDo( 2461 parser::CharBlock name) const { 2462 auto iter{acImpliedDos_.find(name)}; 2463 if (iter != acImpliedDos_.cend()) { 2464 return {iter->second}; 2465 } else { 2466 return std::nullopt; 2467 } 2468 } 2469 2470 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 2471 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 2472 if (result) { 2473 if (auto type{result->GetType()}) { 2474 if (type->category() != category) { // C885 2475 Say(at, "Must have %s type, but is %s"_err_en_US, 2476 ToUpperCase(EnumToString(category)), 2477 ToUpperCase(type->AsFortran())); 2478 return false; 2479 } else if (defaultKind) { 2480 int kind{context_.GetDefaultKind(category)}; 2481 if (type->kind() != kind) { 2482 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 2483 kind, ToUpperCase(EnumToString(category)), 2484 ToUpperCase(type->AsFortran())); 2485 return false; 2486 } 2487 } 2488 } else { 2489 Say(at, "Must have %s type, but is typeless"_err_en_US, 2490 ToUpperCase(EnumToString(category))); 2491 return false; 2492 } 2493 } 2494 return true; 2495 } 2496 2497 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 2498 ProcedureDesignator &&proc, ActualArguments &&arguments) { 2499 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 2500 if (intrinsic->name == "null" && arguments.empty()) { 2501 return Expr<SomeType>{NullPointer{}}; 2502 } 2503 } 2504 if (auto chars{CheckCall(callSite, proc, arguments)}) { 2505 if (chars->functionResult) { 2506 const auto &result{*chars->functionResult}; 2507 if (result.IsProcedurePointer()) { 2508 return Expr<SomeType>{ 2509 ProcedureRef{std::move(proc), std::move(arguments)}}; 2510 } else { 2511 // Not a procedure pointer, so type and shape are known. 2512 return TypedWrapper<FunctionRef, ProcedureRef>( 2513 DEREF(result.GetTypeAndShape()).type(), 2514 ProcedureRef{std::move(proc), std::move(arguments)}); 2515 } 2516 } 2517 } 2518 if (const Symbol * symbol{proc.GetSymbol()}) { 2519 if (const auto *details{ 2520 symbol->detailsIf<semantics::SubprogramNameDetails>()}) { 2521 // If this symbol is still a SubprogramNameDetails, we must be 2522 // checking a specification expression in a sibling module or internal 2523 // procedure. Since recursion is disallowed in specification 2524 // expressions, we should handle such references by processing the 2525 // sibling procedure's specification part right now (recursively), 2526 // but until we can do so, just complain about the forward reference. 2527 // TODO: recursively process sibling's specification part. 2528 if (details->kind() == semantics::SubprogramKind::Module) { 2529 Say("The module function '%s' must have been previously defined " 2530 "when referenced in a specification expression"_err_en_US, 2531 symbol->name()); 2532 } else { 2533 Say("The internal function '%s' cannot be referenced in " 2534 "a specification expression"_err_en_US, 2535 symbol->name()); 2536 } 2537 return std::nullopt; 2538 } 2539 } 2540 return std::nullopt; 2541 } 2542 2543 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 2544 parser::CharBlock intrinsic, ActualArguments &&arguments) { 2545 if (std::optional<SpecificCall> specificCall{ 2546 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 2547 arguments, context_.foldingContext())}) { 2548 return MakeFunctionRef(intrinsic, 2549 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2550 std::move(specificCall->arguments)); 2551 } else { 2552 return std::nullopt; 2553 } 2554 } 2555 2556 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 2557 source_.ExtendToCover(x.GetSource()); 2558 if (MaybeExpr expr{context_.Analyze(x)}) { 2559 actuals_.emplace_back(std::move(*expr)); 2560 } else { 2561 fatalErrors_ = true; 2562 } 2563 } 2564 2565 void ArgumentAnalyzer::Analyze( 2566 const parser::ActualArgSpec &arg, bool isSubroutine) { 2567 // TODO: C1002: Allow a whole assumed-size array to appear if the dummy 2568 // argument would accept it. Handle by special-casing the context 2569 // ActualArg -> Variable -> Designator. 2570 // TODO: Actual arguments that are procedures and procedure pointers need to 2571 // be detected and represented (they're not expressions). 2572 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 2573 std::optional<ActualArgument> actual; 2574 std::visit( 2575 common::visitors{ 2576 [&](const common::Indirection<parser::Expr> &x) { 2577 // TODO: Distinguish & handle procedure name and 2578 // proc-component-ref 2579 actual = AnalyzeExpr(x.value()); 2580 }, 2581 [&](const parser::AltReturnSpec &) { 2582 if (!isSubroutine) { 2583 context_.Say("alternate return specification may not appear on" 2584 " function reference"_err_en_US); 2585 } 2586 }, 2587 [&](const parser::ActualArg::PercentRef &) { 2588 context_.Say("TODO: %REF() argument"_err_en_US); 2589 }, 2590 [&](const parser::ActualArg::PercentVal &) { 2591 context_.Say("TODO: %VAL() argument"_err_en_US); 2592 }, 2593 }, 2594 std::get<parser::ActualArg>(arg.t).u); 2595 if (actual) { 2596 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 2597 actual->set_keyword(argKW->v.source); 2598 } 2599 actuals_.emplace_back(std::move(*actual)); 2600 } else { 2601 fatalErrors_ = true; 2602 } 2603 } 2604 2605 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 2606 CHECK(actuals_.size() == 2); 2607 return semantics::IsIntrinsicRelational( 2608 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2609 } 2610 2611 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 2612 std::optional<DynamicType> type0{GetType(0)}; 2613 if (actuals_.size() == 1) { 2614 if (IsBOZLiteral(0)) { 2615 return opr == NumericOperator::Add; 2616 } else { 2617 return type0 && semantics::IsIntrinsicNumeric(*type0); 2618 } 2619 } else { 2620 std::optional<DynamicType> type1{GetType(1)}; 2621 if (IsBOZLiteral(0) && type1) { 2622 auto cat1{type1->category()}; 2623 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 2624 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 2625 auto cat0{type0->category()}; 2626 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 2627 } else { 2628 return type0 && type1 && 2629 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 2630 } 2631 } 2632 } 2633 2634 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 2635 if (actuals_.size() == 1) { 2636 return semantics::IsIntrinsicLogical(*GetType(0)); 2637 return GetType(0)->category() == TypeCategory::Logical; 2638 } else { 2639 return semantics::IsIntrinsicLogical( 2640 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2641 } 2642 } 2643 2644 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 2645 return semantics::IsIntrinsicConcat( 2646 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2647 } 2648 2649 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2650 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 2651 if (AnyUntypedOperand()) { 2652 context_.Say( 2653 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2654 return std::nullopt; 2655 } 2656 { 2657 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2658 std::string oprNameString{ 2659 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 2660 parser::CharBlock oprName{oprNameString}; 2661 const auto &scope{context_.context().FindScope(source_)}; 2662 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 2663 parser::Name name{symbol->name(), symbol}; 2664 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 2665 return result; 2666 } 2667 sawDefinedOp_ = symbol; 2668 } 2669 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2670 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 2671 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 2672 return result; 2673 } 2674 } 2675 } 2676 } 2677 if (sawDefinedOp_) { 2678 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 2679 } else if (actuals_.size() == 1 || AreConformable()) { 2680 context_.Say( 2681 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2682 } else { 2683 context_.Say( 2684 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 2685 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 2686 } 2687 return std::nullopt; 2688 } 2689 2690 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2691 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 2692 for (std::size_t i{1}; i < oprs.size(); ++i) { 2693 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2694 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 2695 return result; 2696 } 2697 } 2698 return TryDefinedOp(oprs[0], std::move(error)); 2699 } 2700 2701 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 2702 ActualArguments localActuals{actuals_}; 2703 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 2704 if (!proc) { 2705 proc = &symbol; 2706 localActuals.at(passIndex).value().set_isPassedObject(); 2707 } 2708 return context_.MakeFunctionRef( 2709 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 2710 } 2711 2712 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 2713 using semantics::Tristate; 2714 const Expr<SomeType> &lhs{GetExpr(0)}; 2715 const Expr<SomeType> &rhs{GetExpr(1)}; 2716 std::optional<DynamicType> lhsType{lhs.GetType()}; 2717 std::optional<DynamicType> rhsType{rhs.GetType()}; 2718 int lhsRank{lhs.Rank()}; 2719 int rhsRank{rhs.Rank()}; 2720 Tristate isDefined{ 2721 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 2722 if (isDefined == Tristate::No) { 2723 return std::nullopt; // user-defined assignment not allowed for these args 2724 } 2725 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 2726 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 2727 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 2728 return std::move(*procRef); 2729 } 2730 if (isDefined == Tristate::Yes) { 2731 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 2732 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 2733 SayNoMatch("ASSIGNMENT(=)", true); 2734 } 2735 } 2736 return std::nullopt; 2737 } 2738 2739 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 2740 TypeCategory lhs, TypeCategory rhs) { 2741 if (!context_.context().languageFeatures().IsEnabled( 2742 common::LanguageFeature::LogicalIntegerAssignment)) { 2743 return false; 2744 } 2745 std::optional<parser::MessageFixedText> msg; 2746 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 2747 // allow assignment to LOGICAL from INTEGER as a legacy extension 2748 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 2749 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 2750 // ... and assignment to LOGICAL from INTEGER 2751 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 2752 } else { 2753 return false; 2754 } 2755 if (context_.context().languageFeatures().ShouldWarn( 2756 common::LanguageFeature::LogicalIntegerAssignment)) { 2757 context_.Say(std::move(*msg)); 2758 } 2759 return true; 2760 } 2761 2762 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 2763 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2764 std::string oprNameString{"assignment(=)"}; 2765 parser::CharBlock oprName{oprNameString}; 2766 const Symbol *proc{nullptr}; 2767 const auto &scope{context_.context().FindScope(source_)}; 2768 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 2769 ExpressionAnalyzer::AdjustActuals noAdjustment; 2770 if (const Symbol * 2771 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 2772 proc = specific; 2773 } else { 2774 context_.EmitGenericResolutionError(*symbol); 2775 } 2776 } 2777 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2778 if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) { 2779 proc = specific; 2780 } 2781 } 2782 if (proc) { 2783 ActualArguments actualsCopy{actuals_}; 2784 actualsCopy[1]->Parenthesize(); 2785 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 2786 } else { 2787 return std::nullopt; 2788 } 2789 } 2790 2791 void ArgumentAnalyzer::Dump(std::ostream &os) { 2792 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 2793 << '\n'; 2794 for (const auto &actual : actuals_) { 2795 if (!actual.has_value()) { 2796 os << "- error\n"; 2797 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 2798 os << "- assumed type: " << symbol->name().ToString() << '\n'; 2799 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 2800 expr->AsFortran(os << "- expr: ") << '\n'; 2801 } else { 2802 DIE("bad ActualArgument"); 2803 } 2804 } 2805 } 2806 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 2807 const parser::Expr &expr) { 2808 source_.ExtendToCover(expr.source); 2809 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 2810 expr.typedExpr.reset(new GenericExprWrapper{}); 2811 if (allowAssumedType_) { 2812 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2813 } else { 2814 context_.SayAt(expr.source, 2815 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2816 return std::nullopt; 2817 } 2818 } else if (MaybeExpr argExpr{context_.Analyze(expr)}) { 2819 return ActualArgument{context_.Fold(std::move(*argExpr))}; 2820 } else { 2821 return std::nullopt; 2822 } 2823 } 2824 2825 bool ArgumentAnalyzer::AreConformable() const { 2826 CHECK(!fatalErrors_ && actuals_.size() == 2); 2827 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 2828 } 2829 2830 // Look for a type-bound operator in the type of arg number passIndex. 2831 const Symbol *ArgumentAnalyzer::FindBoundOp( 2832 parser::CharBlock oprName, int passIndex) { 2833 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 2834 if (!type || !type->scope()) { 2835 return nullptr; 2836 } 2837 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 2838 if (!symbol) { 2839 return nullptr; 2840 } 2841 sawDefinedOp_ = symbol; 2842 ExpressionAnalyzer::AdjustActuals adjustment{ 2843 [&](const Symbol &proc, ActualArguments &) { 2844 return passIndex == GetPassIndex(proc); 2845 }}; 2846 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 2847 if (!result) { 2848 context_.EmitGenericResolutionError(*symbol); 2849 } 2850 return result; 2851 } 2852 2853 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 2854 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 2855 } 2856 int ArgumentAnalyzer::GetRank(std::size_t i) const { 2857 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 2858 } 2859 2860 // Report error resolving opr when there is a user-defined one available 2861 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 2862 std::string type0{TypeAsFortran(0)}; 2863 auto rank0{actuals_[0]->Rank()}; 2864 if (actuals_.size() == 1) { 2865 if (rank0 > 0) { 2866 context_.Say("No intrinsic or user-defined %s matches " 2867 "rank %d array of %s"_err_en_US, 2868 opr, rank0, type0); 2869 } else { 2870 context_.Say("No intrinsic or user-defined %s matches " 2871 "operand type %s"_err_en_US, 2872 opr, type0); 2873 } 2874 } else { 2875 std::string type1{TypeAsFortran(1)}; 2876 auto rank1{actuals_[1]->Rank()}; 2877 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 2878 context_.Say("No intrinsic or user-defined %s matches " 2879 "rank %d array of %s and rank %d array of %s"_err_en_US, 2880 opr, rank0, type0, rank1, type1); 2881 } else if (isAssignment && rank0 != rank1) { 2882 if (rank0 == 0) { 2883 context_.Say("No intrinsic or user-defined %s matches " 2884 "scalar %s and rank %d array of %s"_err_en_US, 2885 opr, type0, rank1, type1); 2886 } else { 2887 context_.Say("No intrinsic or user-defined %s matches " 2888 "rank %d array of %s and scalar %s"_err_en_US, 2889 opr, rank0, type0, type1); 2890 } 2891 } else { 2892 context_.Say("No intrinsic or user-defined %s matches " 2893 "operand types %s and %s"_err_en_US, 2894 opr, type0, type1); 2895 } 2896 } 2897 } 2898 2899 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 2900 if (std::optional<DynamicType> type{GetType(i)}) { 2901 return type->category() == TypeCategory::Derived 2902 ? "TYPE("s + type->AsFortran() + ')' 2903 : type->category() == TypeCategory::Character 2904 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 2905 : ToUpperCase(type->AsFortran()); 2906 } else { 2907 return "untyped"; 2908 } 2909 } 2910 2911 bool ArgumentAnalyzer::AnyUntypedOperand() { 2912 for (const auto &actual : actuals_) { 2913 if (!actual.value().GetType()) { 2914 return true; 2915 } 2916 } 2917 return false; 2918 } 2919 2920 } // namespace Fortran::evaluate 2921 2922 namespace Fortran::semantics { 2923 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 2924 SemanticsContext &context, common::TypeCategory category, 2925 const std::optional<parser::KindSelector> &selector) { 2926 evaluate::ExpressionAnalyzer analyzer{context}; 2927 auto restorer{ 2928 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 2929 return analyzer.AnalyzeKindSelector(category, selector); 2930 } 2931 2932 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 2933 evaluate::ExpressionAnalyzer{context}.Analyze(call); 2934 } 2935 2936 const evaluate::Assignment *AnalyzeAssignmentStmt( 2937 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 2938 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 2939 } 2940 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 2941 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 2942 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 2943 } 2944 2945 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 2946 2947 bool ExprChecker::Walk(const parser::Program &program) { 2948 parser::Walk(program, *this); 2949 return !context_.AnyFatalError(); 2950 } 2951 } 2952