1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/Fortran.h"
14 #include "flang/Common/idioms.h"
15 #include "flang/Evaluate/common.h"
16 #include "flang/Evaluate/fold.h"
17 #include "flang/Evaluate/tools.h"
18 #include "flang/Parser/characters.h"
19 #include "flang/Parser/dump-parse-tree.h"
20 #include "flang/Parser/parse-tree-visitor.h"
21 #include "flang/Parser/parse-tree.h"
22 #include "flang/Semantics/scope.h"
23 #include "flang/Semantics/semantics.h"
24 #include "flang/Semantics/symbol.h"
25 #include "flang/Semantics/tools.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <functional>
29 #include <optional>
30 #include <set>
31 
32 // Typedef for optional generic expressions (ubiquitous in this file)
33 using MaybeExpr =
34     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
35 
36 // Much of the code that implements semantic analysis of expressions is
37 // tightly coupled with their typed representations in lib/Evaluate,
38 // and appears here in namespace Fortran::evaluate for convenience.
39 namespace Fortran::evaluate {
40 
41 using common::LanguageFeature;
42 using common::NumericOperator;
43 using common::TypeCategory;
44 
45 static inline std::string ToUpperCase(const std::string &str) {
46   return parser::ToUpperCaseLetters(str);
47 }
48 
49 struct DynamicTypeWithLength : public DynamicType {
50   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
51   std::optional<Expr<SubscriptInteger>> LEN() const;
52   std::optional<Expr<SubscriptInteger>> length;
53 };
54 
55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
56   if (length) {
57     return length;
58   } else {
59     return GetCharLength();
60   }
61 }
62 
63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
64     const std::optional<parser::TypeSpec> &spec) {
65   if (spec) {
66     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
67       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
68       // (viz., an intrinsic type with valid known kind or a non-polymorphic
69       // & non-ABSTRACT derived type).
70       if (const semantics::IntrinsicTypeSpec *
71           intrinsic{typeSpec->AsIntrinsic()}) {
72         TypeCategory category{intrinsic->category()};
73         if (auto optKind{ToInt64(intrinsic->kind())}) {
74           int kind{static_cast<int>(*optKind)};
75           if (category == TypeCategory::Character) {
76             const semantics::CharacterTypeSpec &cts{
77                 typeSpec->characterTypeSpec()};
78             const semantics::ParamValue &len{cts.length()};
79             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
80             // type guards, but not in array constructors.
81             return DynamicTypeWithLength{DynamicType{kind, len}};
82           } else {
83             return DynamicTypeWithLength{DynamicType{category, kind}};
84           }
85         }
86       } else if (const semantics::DerivedTypeSpec *
87           derived{typeSpec->AsDerived()}) {
88         return DynamicTypeWithLength{DynamicType{*derived}};
89       }
90     }
91   }
92   return std::nullopt;
93 }
94 
95 class ArgumentAnalyzer {
96 public:
97   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
98       : context_{context}, source_{context.GetContextualMessages().at()},
99         isProcedureCall_{false} {}
100   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
101       bool isProcedureCall = false)
102       : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
103   bool fatalErrors() const { return fatalErrors_; }
104   ActualArguments &&GetActuals() {
105     CHECK(!fatalErrors_);
106     return std::move(actuals_);
107   }
108   const Expr<SomeType> &GetExpr(std::size_t i) const {
109     return DEREF(actuals_.at(i).value().UnwrapExpr());
110   }
111   Expr<SomeType> &&MoveExpr(std::size_t i) {
112     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
113   }
114   void Analyze(const common::Indirection<parser::Expr> &x) {
115     Analyze(x.value());
116   }
117   void Analyze(const parser::Expr &x) {
118     actuals_.emplace_back(AnalyzeExpr(x));
119     fatalErrors_ |= !actuals_.back();
120   }
121   void Analyze(const parser::Variable &);
122   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
123   void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType);
124 
125   bool IsIntrinsicRelational(RelationalOperator) const;
126   bool IsIntrinsicLogical() const;
127   bool IsIntrinsicNumeric(NumericOperator) const;
128   bool IsIntrinsicConcat() const;
129 
130   bool CheckConformance() const;
131 
132   // Find and return a user-defined operator or report an error.
133   // The provided message is used if there is no such operator.
134   MaybeExpr TryDefinedOp(
135       const char *, parser::MessageFixedText &&, bool isUserOp = false);
136   template <typename E>
137   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) {
138     return TryDefinedOp(
139         context_.context().languageFeatures().GetNames(opr), std::move(msg));
140   }
141   // Find and return a user-defined assignment
142   std::optional<ProcedureRef> TryDefinedAssignment();
143   std::optional<ProcedureRef> GetDefinedAssignmentProc();
144   std::optional<DynamicType> GetType(std::size_t) const;
145   void Dump(llvm::raw_ostream &);
146 
147 private:
148   MaybeExpr TryDefinedOp(
149       std::vector<const char *>, parser::MessageFixedText &&);
150   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
151   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
152   MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &);
153   bool AreConformable() const;
154   const Symbol *FindBoundOp(parser::CharBlock, int passIndex);
155   void AddAssignmentConversion(
156       const DynamicType &lhsType, const DynamicType &rhsType);
157   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
158   int GetRank(std::size_t) const;
159   bool IsBOZLiteral(std::size_t i) const {
160     return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u);
161   }
162   void SayNoMatch(const std::string &, bool isAssignment = false);
163   std::string TypeAsFortran(std::size_t);
164   bool AnyUntypedOrMissingOperand();
165 
166   ExpressionAnalyzer &context_;
167   ActualArguments actuals_;
168   parser::CharBlock source_;
169   bool fatalErrors_{false};
170   const bool isProcedureCall_; // false for user-defined op or assignment
171   const Symbol *sawDefinedOp_{nullptr};
172 };
173 
174 // Wraps a data reference in a typed Designator<>, and a procedure
175 // or procedure pointer reference in a ProcedureDesignator.
176 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
177   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
178   if (semantics::IsProcedure(symbol)) {
179     if (auto *component{std::get_if<Component>(&ref.u)}) {
180       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
181     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
182       DIE("unexpected alternative in DataRef");
183     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
184       return Expr<SomeType>{ProcedureDesignator{symbol}};
185     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
186                    symbol.name().ToString())}) {
187       SpecificIntrinsic intrinsic{
188           symbol.name().ToString(), std::move(*interface)};
189       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
190       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
191     } else {
192       Say("'%s' is not a specific intrinsic procedure"_err_en_US,
193           symbol.name());
194     }
195     return std::nullopt;
196   } else {
197     return AsGenericExpr(std::move(ref));
198   }
199 }
200 
201 // Some subscript semantic checks must be deferred until all of the
202 // subscripts are in hand.
203 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
204   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
205   int symbolRank{symbol.Rank()};
206   int subscripts{static_cast<int>(ref.size())};
207   if (subscripts == 0) {
208     return std::nullopt; // error recovery
209   } else if (subscripts != symbolRank) {
210     if (symbolRank != 0) {
211       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
212           symbolRank, symbol.name(), subscripts);
213     }
214     return std::nullopt;
215   } else if (Component * component{ref.base().UnwrapComponent()}) {
216     int baseRank{component->base().Rank()};
217     if (baseRank > 0) {
218       int subscriptRank{0};
219       for (const auto &expr : ref.subscript()) {
220         subscriptRank += expr.Rank();
221       }
222       if (subscriptRank > 0) {
223         Say("Subscripts of component '%s' of rank-%d derived type "
224             "array have rank %d but must all be scalar"_err_en_US,
225             symbol.name(), baseRank, subscriptRank);
226         return std::nullopt;
227       }
228     }
229   } else if (const auto *object{
230                  symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
231     // C928 & C1002
232     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
233       if (!last->upper() && object->IsAssumedSize()) {
234         Say("Assumed-size array '%s' must have explicit final "
235             "subscript upper bound value"_err_en_US,
236             symbol.name());
237         return std::nullopt;
238       }
239     }
240   } else {
241     // Shouldn't get here from Analyze(ArrayElement) without a valid base,
242     // which, if not an object, must be a construct entity from
243     // SELECT TYPE/RANK or ASSOCIATE.
244     CHECK(symbol.has<semantics::AssocEntityDetails>());
245   }
246   return Designate(DataRef{std::move(ref)});
247 }
248 
249 // Applies subscripts to a data reference.
250 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
251     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
252   if (subscripts.empty()) {
253     return std::nullopt; // error recovery
254   }
255   return std::visit(
256       common::visitors{
257           [&](SymbolRef &&symbol) {
258             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
259           },
260           [&](Component &&c) {
261             return CompleteSubscripts(
262                 ArrayRef{std::move(c), std::move(subscripts)});
263           },
264           [&](auto &&) -> MaybeExpr {
265             DIE("bad base for ArrayRef");
266             return std::nullopt;
267           },
268       },
269       std::move(dataRef.u));
270 }
271 
272 // Top-level checks for data references.
273 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
274   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
275     const Symbol &symbol{component->GetLastSymbol()};
276     int componentRank{symbol.Rank()};
277     if (componentRank > 0) {
278       int baseRank{component->base().Rank()};
279       if (baseRank > 0) {
280         Say("Reference to whole rank-%d component '%%%s' of "
281             "rank-%d array of derived type is not allowed"_err_en_US,
282             componentRank, symbol.name(), baseRank);
283       }
284     }
285   }
286   return Designate(std::move(dataRef));
287 }
288 
289 // Parse tree correction after a substring S(j:k) was misparsed as an
290 // array section.  N.B. Fortran substrings have to have a range, not a
291 // single index.
292 static void FixMisparsedSubstring(const parser::Designator &d) {
293   auto &mutate{const_cast<parser::Designator &>(d)};
294   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
295     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
296             &dataRef->u)}) {
297       parser::ArrayElement &arrElement{ae->value()};
298       if (!arrElement.subscripts.empty()) {
299         auto iter{arrElement.subscripts.begin()};
300         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
301           if (!std::get<2>(triplet->t) /* no stride */ &&
302               ++iter == arrElement.subscripts.end() /* one subscript */) {
303             if (Symbol *
304                 symbol{std::visit(
305                     common::visitors{
306                         [](parser::Name &n) { return n.symbol; },
307                         [](common::Indirection<parser::StructureComponent>
308                                 &sc) { return sc.value().component.symbol; },
309                         [](auto &) -> Symbol * { return nullptr; },
310                     },
311                     arrElement.base.u)}) {
312               const Symbol &ultimate{symbol->GetUltimate()};
313               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
314                 if (!ultimate.IsObjectArray() &&
315                     type->category() == semantics::DeclTypeSpec::Character) {
316                   // The ambiguous S(j:k) was parsed as an array section
317                   // reference, but it's now clear that it's a substring.
318                   // Fix the parse tree in situ.
319                   mutate.u = arrElement.ConvertToSubstring();
320                 }
321               }
322             }
323           }
324         }
325       }
326     }
327   }
328 }
329 
330 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
331   auto restorer{GetContextualMessages().SetLocation(d.source)};
332   FixMisparsedSubstring(d);
333   // These checks have to be deferred to these "top level" data-refs where
334   // we can be sure that there are no following subscripts (yet).
335   // Substrings have already been run through TopLevelChecks() and
336   // won't be returned by ExtractDataRef().
337   if (MaybeExpr result{Analyze(d.u)}) {
338     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
339       return TopLevelChecks(std::move(*dataRef));
340     }
341     return result;
342   }
343   return std::nullopt;
344 }
345 
346 // A utility subroutine to repackage optional expressions of various levels
347 // of type specificity as fully general MaybeExpr values.
348 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
349   return AsGenericExpr(std::move(x));
350 }
351 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
352   if (x) {
353     return AsMaybeExpr(std::move(*x));
354   }
355   return std::nullopt;
356 }
357 
358 // Type kind parameter values for literal constants.
359 int ExpressionAnalyzer::AnalyzeKindParam(
360     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
361   if (!kindParam) {
362     return defaultKind;
363   }
364   return std::visit(
365       common::visitors{
366           [](std::uint64_t k) { return static_cast<int>(k); },
367           [&](const parser::Scalar<
368               parser::Integer<parser::Constant<parser::Name>>> &n) {
369             if (MaybeExpr ie{Analyze(n)}) {
370               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
371                 int iv = *i64;
372                 if (iv == *i64) {
373                   return iv;
374                 }
375               }
376             }
377             return defaultKind;
378           },
379       },
380       kindParam->u);
381 }
382 
383 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
384 struct IntTypeVisitor {
385   using Result = MaybeExpr;
386   using Types = IntegerTypes;
387   template <typename T> Result Test() {
388     if (T::kind >= kind) {
389       const char *p{digits.begin()};
390       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
391       if (!value.overflow) {
392         if (T::kind > kind) {
393           if (!isDefaultKind ||
394               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
395             return std::nullopt;
396           } else if (analyzer.context().ShouldWarn(
397                          LanguageFeature::BigIntLiterals)) {
398             analyzer.Say(digits,
399                 "Integer literal is too large for default INTEGER(KIND=%d); "
400                 "assuming INTEGER(KIND=%d)"_en_US,
401                 kind, T::kind);
402           }
403         }
404         return Expr<SomeType>{
405             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
406       }
407     }
408     return std::nullopt;
409   }
410   ExpressionAnalyzer &analyzer;
411   parser::CharBlock digits;
412   int kind;
413   bool isDefaultKind;
414 };
415 
416 template <typename PARSED>
417 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
418   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
419   bool isDefaultKind{!kindParam};
420   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
421   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
422     auto digits{std::get<parser::CharBlock>(x.t)};
423     if (MaybeExpr result{common::SearchTypes(
424             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
425       return result;
426     } else if (isDefaultKind) {
427       Say(digits,
428           "Integer literal is too large for any allowable "
429           "kind of INTEGER"_err_en_US);
430     } else {
431       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
432           kind);
433     }
434   }
435   return std::nullopt;
436 }
437 
438 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
439   auto restorer{
440       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
441   return IntLiteralConstant(x);
442 }
443 
444 MaybeExpr ExpressionAnalyzer::Analyze(
445     const parser::SignedIntLiteralConstant &x) {
446   auto restorer{GetContextualMessages().SetLocation(x.source)};
447   return IntLiteralConstant(x);
448 }
449 
450 template <typename TYPE>
451 Constant<TYPE> ReadRealLiteral(
452     parser::CharBlock source, FoldingContext &context) {
453   const char *p{source.begin()};
454   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
455   CHECK(p == source.end());
456   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
457   auto value{valWithFlags.value};
458   if (context.flushSubnormalsToZero()) {
459     value = value.FlushSubnormalToZero();
460   }
461   return {value};
462 }
463 
464 struct RealTypeVisitor {
465   using Result = std::optional<Expr<SomeReal>>;
466   using Types = RealTypes;
467 
468   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
469       : kind{k}, literal{lit}, context{ctx} {}
470 
471   template <typename T> Result Test() {
472     if (kind == T::kind) {
473       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
474     }
475     return std::nullopt;
476   }
477 
478   int kind;
479   parser::CharBlock literal;
480   FoldingContext &context;
481 };
482 
483 // Reads a real literal constant and encodes it with the right kind.
484 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
485   // Use a local message context around the real literal for better
486   // provenance on any messages.
487   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
488   // If a kind parameter appears, it defines the kind of the literal and the
489   // letter used in an exponent part must be 'E' (e.g., the 'E' in
490   // "6.02214E+23").  In the absence of an explicit kind parameter, any
491   // exponent letter determines the kind.  Otherwise, defaults apply.
492   auto &defaults{context_.defaultKinds()};
493   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
494   const char *end{x.real.source.end()};
495   char expoLetter{' '};
496   std::optional<int> letterKind;
497   for (const char *p{x.real.source.begin()}; p < end; ++p) {
498     if (parser::IsLetter(*p)) {
499       expoLetter = *p;
500       switch (expoLetter) {
501       case 'e':
502         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
503         break;
504       case 'd':
505         letterKind = defaults.doublePrecisionKind();
506         break;
507       case 'q':
508         letterKind = defaults.quadPrecisionKind();
509         break;
510       default:
511         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
512       }
513       break;
514     }
515   }
516   if (letterKind) {
517     defaultKind = *letterKind;
518   }
519   // C716 requires 'E' as an exponent, but this is more useful
520   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
521   if (letterKind && kind != *letterKind && expoLetter != 'e') {
522     Say("Explicit kind parameter on real constant disagrees with "
523         "exponent letter '%c'"_en_US,
524         expoLetter);
525   }
526   auto result{common::SearchTypes(
527       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
528   if (!result) { // C717
529     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
530   }
531   return AsMaybeExpr(std::move(result));
532 }
533 
534 MaybeExpr ExpressionAnalyzer::Analyze(
535     const parser::SignedRealLiteralConstant &x) {
536   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
537     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
538     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
539       if (sign == parser::Sign::Negative) {
540         return AsGenericExpr(-std::move(realExpr));
541       }
542     }
543     return result;
544   }
545   return std::nullopt;
546 }
547 
548 MaybeExpr ExpressionAnalyzer::Analyze(
549     const parser::SignedComplexLiteralConstant &x) {
550   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
551   if (!result) {
552     return std::nullopt;
553   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
554     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
555   } else {
556     return result;
557   }
558 }
559 
560 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
561   return Analyze(x.u);
562 }
563 
564 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
565   return AsMaybeExpr(
566       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
567           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
568 }
569 
570 // CHARACTER literal processing.
571 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
572   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
573     return std::nullopt;
574   }
575   switch (kind) {
576   case 1:
577     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
578         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
579             string, true)});
580   case 2:
581     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
582         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
583             string, true)});
584   case 4:
585     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
586         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
587             string, true)});
588   default:
589     CRASH_NO_CASE;
590   }
591 }
592 
593 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
594   int kind{
595       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
596   auto value{std::get<std::string>(x.t)};
597   return AnalyzeString(std::move(value), kind);
598 }
599 
600 MaybeExpr ExpressionAnalyzer::Analyze(
601     const parser::HollerithLiteralConstant &x) {
602   int kind{GetDefaultKind(TypeCategory::Character)};
603   auto value{x.v};
604   return AnalyzeString(std::move(value), kind);
605 }
606 
607 // .TRUE. and .FALSE. of various kinds
608 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
609   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
610       GetDefaultKind(TypeCategory::Logical))};
611   bool value{std::get<bool>(x.t)};
612   auto result{common::SearchTypes(
613       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
614           kind, std::move(value)})};
615   if (!result) {
616     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
617   }
618   return result;
619 }
620 
621 // BOZ typeless literals
622 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
623   const char *p{x.v.c_str()};
624   std::uint64_t base{16};
625   switch (*p++) {
626   case 'b':
627     base = 2;
628     break;
629   case 'o':
630     base = 8;
631     break;
632   case 'z':
633     break;
634   case 'x':
635     break;
636   default:
637     CRASH_NO_CASE;
638   }
639   CHECK(*p == '"');
640   ++p;
641   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
642   if (*p != '"') {
643     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
644         x.v); // C7107, C7108
645     return std::nullopt;
646   }
647   if (value.overflow) {
648     Say("BOZ literal '%s' too large"_err_en_US, x.v);
649     return std::nullopt;
650   }
651   return AsGenericExpr(std::move(value.value));
652 }
653 
654 // Names and named constants
655 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
656   auto restorer{GetContextualMessages().SetLocation(n.source)};
657   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
658     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
659         *kind, AsExpr(ImpliedDoIndex{n.source})));
660   } else if (context_.HasError(n)) {
661     return std::nullopt;
662   } else if (!n.symbol) {
663     SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source);
664     return std::nullopt;
665   } else {
666     const Symbol &ultimate{n.symbol->GetUltimate()};
667     if (ultimate.has<semantics::TypeParamDetails>()) {
668       // A bare reference to a derived type parameter (within a parameterized
669       // derived type definition)
670       return Fold(ConvertToType(
671           ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate})));
672     } else {
673       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
674         if (const semantics::Scope *
675             pure{semantics::FindPureProcedureContaining(
676                 context_.FindScope(n.source))}) {
677           SayAt(n,
678               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
679               n.source, DEREF(pure->symbol()).name());
680           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
681         }
682       }
683       if (!isWholeAssumedSizeArrayOk_ &&
684           semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231
685         AttachDeclaration(
686             SayAt(n,
687                 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US,
688                 n.source),
689             *n.symbol);
690       }
691       return Designate(DataRef{*n.symbol});
692     }
693   }
694 }
695 
696 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
697   auto restorer{GetContextualMessages().SetLocation(n.v.source)};
698   if (MaybeExpr value{Analyze(n.v)}) {
699     Expr<SomeType> folded{Fold(std::move(*value))};
700     if (IsConstantExpr(folded)) {
701       return folded;
702     }
703     Say(n.v.source, "must be a constant"_err_en_US); // C718
704   }
705   return std::nullopt;
706 }
707 
708 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) {
709   if (MaybeExpr value{Analyze(n.v)}) {
710     // Subtle: when the NullInit is a DataStmtConstant, it might
711     // be a misparse of a structure constructor without parameters
712     // or components (e.g., T()).  Checking the result to ensure
713     // that a "=>" data entity initializer actually resolved to
714     // a null pointer has to be done by the caller.
715     return Fold(std::move(*value));
716   }
717   return std::nullopt;
718 }
719 
720 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
721   return Analyze(x.value());
722 }
723 
724 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
725   if (const auto &repeat{
726           std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
727     x.repetitions = -1;
728     if (MaybeExpr expr{Analyze(repeat->u)}) {
729       Expr<SomeType> folded{Fold(std::move(*expr))};
730       if (auto value{ToInt64(folded)}) {
731         if (*value >= 0) { // C882
732           x.repetitions = *value;
733         } else {
734           Say(FindSourceLocation(repeat),
735               "Repeat count (%jd) for data value must not be negative"_err_en_US,
736               *value);
737         }
738       }
739     }
740   }
741   return Analyze(std::get<parser::DataStmtConstant>(x.t));
742 }
743 
744 // Substring references
745 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
746     const std::optional<parser::ScalarIntExpr> &bound) {
747   if (bound) {
748     if (MaybeExpr expr{Analyze(*bound)}) {
749       if (expr->Rank() > 1) {
750         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
751       }
752       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
753         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
754           return {std::move(*ssIntExpr)};
755         }
756         return {Expr<SubscriptInteger>{
757             Convert<SubscriptInteger, TypeCategory::Integer>{
758                 std::move(*intExpr)}}};
759       } else {
760         Say("substring bound expression is not INTEGER"_err_en_US);
761       }
762     }
763   }
764   return std::nullopt;
765 }
766 
767 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
768   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
769     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
770       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
771         if (std::optional<DataRef> checked{
772                 ExtractDataRef(std::move(*newBaseExpr))}) {
773           const parser::SubstringRange &range{
774               std::get<parser::SubstringRange>(ss.t)};
775           std::optional<Expr<SubscriptInteger>> first{
776               GetSubstringBound(std::get<0>(range.t))};
777           std::optional<Expr<SubscriptInteger>> last{
778               GetSubstringBound(std::get<1>(range.t))};
779           const Symbol &symbol{checked->GetLastSymbol()};
780           if (std::optional<DynamicType> dynamicType{
781                   DynamicType::From(symbol)}) {
782             if (dynamicType->category() == TypeCategory::Character) {
783               return WrapperHelper<TypeCategory::Character, Designator,
784                   Substring>(dynamicType->kind(),
785                   Substring{std::move(checked.value()), std::move(first),
786                       std::move(last)});
787             }
788           }
789           Say("substring may apply only to CHARACTER"_err_en_US);
790         }
791       }
792     }
793   }
794   return std::nullopt;
795 }
796 
797 // CHARACTER literal substrings
798 MaybeExpr ExpressionAnalyzer::Analyze(
799     const parser::CharLiteralConstantSubstring &x) {
800   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
801   std::optional<Expr<SubscriptInteger>> lower{
802       GetSubstringBound(std::get<0>(range.t))};
803   std::optional<Expr<SubscriptInteger>> upper{
804       GetSubstringBound(std::get<1>(range.t))};
805   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
806     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
807       Expr<SubscriptInteger> length{
808           std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
809               charExpr->u)};
810       if (!lower) {
811         lower = Expr<SubscriptInteger>{1};
812       }
813       if (!upper) {
814         upper = Expr<SubscriptInteger>{
815             static_cast<std::int64_t>(ToInt64(length).value())};
816       }
817       return std::visit(
818           [&](auto &&ckExpr) -> MaybeExpr {
819             using Result = ResultType<decltype(ckExpr)>;
820             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
821             CHECK(DEREF(cp).size() == 1);
822             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
823             staticData->set_alignment(Result::kind)
824                 .set_itemBytes(Result::kind)
825                 .Push(cp->GetScalarValue().value());
826             Substring substring{std::move(staticData), std::move(lower.value()),
827                 std::move(upper.value())};
828             return AsGenericExpr(
829                 Expr<Result>{Designator<Result>{std::move(substring)}});
830           },
831           std::move(charExpr->u));
832     }
833   }
834   return std::nullopt;
835 }
836 
837 // Subscripted array references
838 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
839     MaybeExpr &&expr) {
840   if (expr) {
841     if (expr->Rank() > 1) {
842       Say("Subscript expression has rank %d greater than 1"_err_en_US,
843           expr->Rank());
844     }
845     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
846       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
847         return std::move(*ssIntExpr);
848       } else {
849         return Expr<SubscriptInteger>{
850             Convert<SubscriptInteger, TypeCategory::Integer>{
851                 std::move(*intExpr)}};
852       }
853     } else {
854       Say("Subscript expression is not INTEGER"_err_en_US);
855     }
856   }
857   return std::nullopt;
858 }
859 
860 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
861     const std::optional<parser::Subscript> &s) {
862   if (s) {
863     return AsSubscript(Analyze(*s));
864   } else {
865     return std::nullopt;
866   }
867 }
868 
869 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
870     const parser::SectionSubscript &ss) {
871   return std::visit(
872       common::visitors{
873           [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
874             const auto &lower{std::get<0>(t.t)};
875             const auto &upper{std::get<1>(t.t)};
876             const auto &stride{std::get<2>(t.t)};
877             auto result{Triplet{
878                 TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
879             if ((lower && !result.lower()) || (upper && !result.upper())) {
880               return std::nullopt;
881             } else {
882               return std::make_optional<Subscript>(result);
883             }
884           },
885           [&](const auto &s) -> std::optional<Subscript> {
886             if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
887               return Subscript{std::move(*subscriptExpr)};
888             } else {
889               return std::nullopt;
890             }
891           },
892       },
893       ss.u);
894 }
895 
896 // Empty result means an error occurred
897 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
898     const std::list<parser::SectionSubscript> &sss) {
899   bool error{false};
900   std::vector<Subscript> subscripts;
901   for (const auto &s : sss) {
902     if (auto subscript{AnalyzeSectionSubscript(s)}) {
903       subscripts.emplace_back(std::move(*subscript));
904     } else {
905       error = true;
906     }
907   }
908   return !error ? subscripts : std::vector<Subscript>{};
909 }
910 
911 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
912   MaybeExpr baseExpr;
913   {
914     auto restorer{AllowWholeAssumedSizeArray()};
915     baseExpr = Analyze(ae.base);
916   }
917   if (baseExpr) {
918     if (ae.subscripts.empty()) {
919       // will be converted to function call later or error reported
920     } else if (baseExpr->Rank() == 0) {
921       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
922         if (!context_.HasError(symbol)) {
923           Say("'%s' is not an array"_err_en_US, symbol->name());
924           context_.SetError(*symbol);
925         }
926       }
927     } else if (std::optional<DataRef> dataRef{
928                    ExtractDataRef(std::move(*baseExpr))}) {
929       return ApplySubscripts(
930           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
931     } else {
932       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
933     }
934   }
935   // error was reported: analyze subscripts without reporting more errors
936   auto restorer{GetContextualMessages().DiscardMessages()};
937   AnalyzeSectionSubscripts(ae.subscripts);
938   return std::nullopt;
939 }
940 
941 // Type parameter inquiries apply to data references, but don't depend
942 // on any trailing (co)subscripts.
943 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
944   return std::visit(
945       common::visitors{
946           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
947           [](Component &&component) {
948             return NamedEntity{std::move(component)};
949           },
950           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
951           [](CoarrayRef &&coarrayRef) {
952             return NamedEntity{coarrayRef.GetLastSymbol()};
953           },
954       },
955       std::move(designator.u));
956 }
957 
958 // Components of parent derived types are explicitly represented as such.
959 static std::optional<Component> CreateComponent(
960     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
961   if (&component.owner() == &scope) {
962     return Component{std::move(base), component};
963   }
964   if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) {
965     if (const Symbol * parentComponent{parentScope->GetSymbol()}) {
966       return CreateComponent(
967           DataRef{Component{std::move(base), *parentComponent}}, component,
968           *parentScope);
969     }
970   }
971   return std::nullopt;
972 }
973 
974 // Derived type component references and type parameter inquiries
975 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
976   MaybeExpr base{Analyze(sc.base)};
977   Symbol *sym{sc.component.symbol};
978   if (!base || !sym || context_.HasError(sym)) {
979     return std::nullopt;
980   }
981   const auto &name{sc.component.source};
982   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
983     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
984     if (sym->detailsIf<semantics::TypeParamDetails>()) {
985       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
986         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
987           if (dyType->category() == TypeCategory::Integer) {
988             auto restorer{GetContextualMessages().SetLocation(name)};
989             return Fold(ConvertToType(*dyType,
990                 AsGenericExpr(TypeParamInquiry{
991                     IgnoreAnySubscripts(std::move(*designator)), *sym})));
992           }
993         }
994         Say(name, "Type parameter is not INTEGER"_err_en_US);
995       } else {
996         Say(name,
997             "A type parameter inquiry must be applied to "
998             "a designator"_err_en_US);
999       }
1000     } else if (!dtSpec || !dtSpec->scope()) {
1001       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
1002       return std::nullopt;
1003     } else if (std::optional<DataRef> dataRef{
1004                    ExtractDataRef(std::move(*dtExpr))}) {
1005       if (auto component{
1006               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
1007         return Designate(DataRef{std::move(*component)});
1008       } else {
1009         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1010             dtSpec->typeSymbol().name());
1011       }
1012     } else {
1013       Say(name,
1014           "Base of component reference must be a data reference"_err_en_US);
1015     }
1016   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1017     // special part-ref: %re, %im, %kind, %len
1018     // Type errors are detected and reported in semantics.
1019     using MiscKind = semantics::MiscDetails::Kind;
1020     MiscKind kind{details->kind()};
1021     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1022       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1023         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
1024           Expr<SomeReal> realExpr{std::visit(
1025               [&](const auto &z) {
1026                 using PartType = typename ResultType<decltype(z)>::Part;
1027                 auto part{kind == MiscKind::ComplexPartRe
1028                         ? ComplexPart::Part::RE
1029                         : ComplexPart::Part::IM};
1030                 return AsCategoryExpr(Designator<PartType>{
1031                     ComplexPart{std::move(*dataRef), part}});
1032               },
1033               zExpr->u)};
1034           return AsGenericExpr(std::move(realExpr));
1035         }
1036       }
1037     } else if (kind == MiscKind::KindParamInquiry ||
1038         kind == MiscKind::LenParamInquiry) {
1039       // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
1040       return MakeFunctionRef(
1041           name, ActualArguments{ActualArgument{std::move(*base)}});
1042     } else {
1043       DIE("unexpected MiscDetails::Kind");
1044     }
1045   } else {
1046     Say(name, "derived type required before component reference"_err_en_US);
1047   }
1048   return std::nullopt;
1049 }
1050 
1051 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1052   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1053     DataRef *dataRef{&*maybeDataRef};
1054     std::vector<Subscript> subscripts;
1055     SymbolVector reversed;
1056     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1057       subscripts = std::move(aRef->subscript());
1058       reversed.push_back(aRef->GetLastSymbol());
1059       if (Component * component{aRef->base().UnwrapComponent()}) {
1060         dataRef = &component->base();
1061       } else {
1062         dataRef = nullptr;
1063       }
1064     }
1065     if (dataRef) {
1066       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1067         reversed.push_back(component->GetLastSymbol());
1068         dataRef = &component->base();
1069       }
1070       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1071         reversed.push_back(*baseSym);
1072       } else {
1073         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1074       }
1075     }
1076     std::vector<Expr<SubscriptInteger>> cosubscripts;
1077     bool cosubsOk{true};
1078     for (const auto &cosub :
1079         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1080       MaybeExpr coex{Analyze(cosub)};
1081       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1082         cosubscripts.push_back(
1083             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1084       } else {
1085         cosubsOk = false;
1086       }
1087     }
1088     if (cosubsOk && !reversed.empty()) {
1089       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1090       const Symbol &symbol{reversed.front()};
1091       if (numCosubscripts != symbol.Corank()) {
1092         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1093             symbol.name(), symbol.Corank(), numCosubscripts);
1094       }
1095     }
1096     for (const auto &imageSelSpec :
1097         std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1098       std::visit(
1099           common::visitors{
1100               [&](const auto &x) { Analyze(x.v); },
1101           },
1102           imageSelSpec.u);
1103     }
1104     // Reverse the chain of symbols so that the base is first and coarray
1105     // ultimate component is last.
1106     if (cosubsOk) {
1107       return Designate(
1108           DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1109               std::move(subscripts), std::move(cosubscripts)}});
1110     }
1111   }
1112   return std::nullopt;
1113 }
1114 
1115 int ExpressionAnalyzer::IntegerTypeSpecKind(
1116     const parser::IntegerTypeSpec &spec) {
1117   Expr<SubscriptInteger> value{
1118       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1119   if (auto kind{ToInt64(value)}) {
1120     return static_cast<int>(*kind);
1121   }
1122   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1123   return GetDefaultKind(TypeCategory::Integer);
1124 }
1125 
1126 // Array constructors
1127 
1128 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1129 // all happen to have the same actual type T into one ArrayConstructor<T>.
1130 template <typename T>
1131 ArrayConstructorValues<T> MakeSpecific(
1132     ArrayConstructorValues<SomeType> &&from) {
1133   ArrayConstructorValues<T> to;
1134   for (ArrayConstructorValue<SomeType> &x : from) {
1135     std::visit(
1136         common::visitors{
1137             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1138               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1139               to.Push(std::move(DEREF(typed)));
1140             },
1141             [&](ImpliedDo<SomeType> &&impliedDo) {
1142               to.Push(ImpliedDo<T>{impliedDo.name(),
1143                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1144                   std::move(impliedDo.stride()),
1145                   MakeSpecific<T>(std::move(impliedDo.values()))});
1146             },
1147         },
1148         std::move(x.u));
1149   }
1150   return to;
1151 }
1152 
1153 class ArrayConstructorContext {
1154 public:
1155   ArrayConstructorContext(
1156       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1157       : exprAnalyzer_{c}, type_{std::move(t)} {}
1158 
1159   void Add(const parser::AcValue &);
1160   MaybeExpr ToExpr();
1161 
1162   // These interfaces allow *this to be used as a type visitor argument to
1163   // common::SearchTypes() to convert the array constructor to a typed
1164   // expression in ToExpr().
1165   using Result = MaybeExpr;
1166   using Types = AllTypes;
1167   template <typename T> Result Test() {
1168     if (type_ && type_->category() == T::category) {
1169       if constexpr (T::category == TypeCategory::Derived) {
1170         if (!type_->IsUnlimitedPolymorphic()) {
1171           return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1172               MakeSpecific<T>(std::move(values_))});
1173         }
1174       } else if (type_->kind() == T::kind) {
1175         if constexpr (T::category == TypeCategory::Character) {
1176           if (auto len{type_->LEN()}) {
1177             return AsMaybeExpr(ArrayConstructor<T>{
1178                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1179           }
1180         } else {
1181           return AsMaybeExpr(
1182               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1183         }
1184       }
1185     }
1186     return std::nullopt;
1187   }
1188 
1189 private:
1190   using ImpliedDoIntType = ResultType<ImpliedDoIndex>;
1191 
1192   void Push(MaybeExpr &&);
1193   void Add(const parser::AcValue::Triplet &);
1194   void Add(const parser::Expr &);
1195   void Add(const parser::AcImpliedDo &);
1196   void UnrollConstantImpliedDo(const parser::AcImpliedDo &,
1197       parser::CharBlock name, std::int64_t lower, std::int64_t upper,
1198       std::int64_t stride);
1199 
1200   template <int KIND, typename A>
1201   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1202       const A &x) {
1203     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1204       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1205       return Fold(exprAnalyzer_.GetFoldingContext(),
1206           ConvertToType<Type<TypeCategory::Integer, KIND>>(
1207               std::move(DEREF(intExpr))));
1208     }
1209     return std::nullopt;
1210   }
1211 
1212   // Nested array constructors all reference the same ExpressionAnalyzer,
1213   // which represents the nest of active implied DO loop indices.
1214   ExpressionAnalyzer &exprAnalyzer_;
1215   std::optional<DynamicTypeWithLength> type_;
1216   bool explicitType_{type_.has_value()};
1217   std::optional<std::int64_t> constantLength_;
1218   ArrayConstructorValues<SomeType> values_;
1219   std::uint64_t messageDisplayedSet_{0};
1220 };
1221 
1222 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1223   if (!x) {
1224     return;
1225   }
1226   if (!type_) {
1227     if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1228       // Treat an array constructor of BOZ as if default integer.
1229       if (exprAnalyzer_.context().ShouldWarn(
1230               common::LanguageFeature::BOZAsDefaultInteger)) {
1231         exprAnalyzer_.Say(
1232             "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US);
1233       }
1234       x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1235           exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1236           std::move(*boz)));
1237     }
1238   }
1239   if (auto dyType{x->GetType()}) {
1240     DynamicTypeWithLength xType{*dyType};
1241     if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1242       CHECK(xType.category() == TypeCategory::Character);
1243       xType.length =
1244           std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1245     }
1246     if (!type_) {
1247       // If there is no explicit type-spec in an array constructor, the type
1248       // of the array is the declared type of all of the elements, which must
1249       // be well-defined and all match.
1250       // TODO: Possible language extension: use the most general type of
1251       // the values as the type of a numeric constructed array, convert all
1252       // of the other values to that type.  Alternative: let the first value
1253       // determine the type, and convert the others to that type.
1254       CHECK(!explicitType_);
1255       type_ = std::move(xType);
1256       constantLength_ = ToInt64(type_->length);
1257       values_.Push(std::move(*x));
1258     } else if (!explicitType_) {
1259       if (type_->IsTkCompatibleWith(xType) &&
1260           xType.IsTkCompatibleWith(*type_)) {
1261         values_.Push(std::move(*x));
1262         if (auto thisLen{ToInt64(xType.LEN())}) {
1263           if (constantLength_) {
1264             if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1265                 *thisLen != *constantLength_) {
1266               if (!(messageDisplayedSet_ & 1)) {
1267                 exprAnalyzer_.Say(
1268                     "Character literal in array constructor without explicit "
1269                     "type has different length than earlier elements"_en_US);
1270                 messageDisplayedSet_ |= 1;
1271               }
1272             }
1273             if (*thisLen > *constantLength_) {
1274               // Language extension: use the longest literal to determine the
1275               // length of the array constructor's character elements, not the
1276               // first, when there is no explicit type.
1277               *constantLength_ = *thisLen;
1278               type_->length = xType.LEN();
1279             }
1280           } else {
1281             constantLength_ = *thisLen;
1282             type_->length = xType.LEN();
1283           }
1284         }
1285       } else {
1286         if (!(messageDisplayedSet_ & 2)) {
1287           exprAnalyzer_.Say(
1288               "Values in array constructor must have the same declared type "
1289               "when no explicit type appears"_err_en_US); // C7110
1290           messageDisplayedSet_ |= 2;
1291         }
1292       }
1293     } else {
1294       if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1295         values_.Push(std::move(*cast));
1296       } else if (!(messageDisplayedSet_ & 4)) {
1297         exprAnalyzer_.Say(
1298             "Value in array constructor of type '%s' could not "
1299             "be converted to the type of the array '%s'"_err_en_US,
1300             x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
1301         messageDisplayedSet_ |= 4;
1302       }
1303     }
1304   }
1305 }
1306 
1307 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1308   std::visit(
1309       common::visitors{
1310           [&](const parser::AcValue::Triplet &triplet) { Add(triplet); },
1311           [&](const common::Indirection<parser::Expr> &expr) {
1312             Add(expr.value());
1313           },
1314           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1315             Add(impliedDo.value());
1316           },
1317       },
1318       x.u);
1319 }
1320 
1321 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1322 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) {
1323   std::optional<Expr<ImpliedDoIntType>> lower{
1324       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))};
1325   std::optional<Expr<ImpliedDoIntType>> upper{
1326       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))};
1327   std::optional<Expr<ImpliedDoIntType>> stride{
1328       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))};
1329   if (lower && upper) {
1330     if (!stride) {
1331       stride = Expr<ImpliedDoIntType>{1};
1332     }
1333     if (!type_) {
1334       type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()};
1335     }
1336     auto v{std::move(values_)};
1337     parser::CharBlock anonymous;
1338     Push(Expr<SomeType>{
1339         Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}});
1340     std::swap(v, values_);
1341     values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1342         std::move(*upper), std::move(*stride), std::move(v)});
1343   }
1344 }
1345 
1346 void ArrayConstructorContext::Add(const parser::Expr &expr) {
1347   auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)};
1348   if (MaybeExpr v{exprAnalyzer_.Analyze(expr)}) {
1349     if (auto exprType{v->GetType()}) {
1350       if (!(messageDisplayedSet_ & 8) && exprType->IsUnlimitedPolymorphic()) {
1351         exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an "
1352                           "array constructor"_err_en_US); // C7113
1353         messageDisplayedSet_ |= 8;
1354       }
1355     }
1356     Push(std::move(*v));
1357   }
1358 }
1359 
1360 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) {
1361   const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)};
1362   const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1363   exprAnalyzer_.Analyze(bounds.name);
1364   parser::CharBlock name{bounds.name.thing.thing.source};
1365   const Symbol *symbol{bounds.name.thing.thing.symbol};
1366   int kind{ImpliedDoIntType::kind};
1367   if (const auto dynamicType{DynamicType::From(symbol)}) {
1368     kind = dynamicType->kind();
1369   }
1370   if (!exprAnalyzer_.AddImpliedDo(name, kind)) {
1371     if (!(messageDisplayedSet_ & 0x20)) {
1372       exprAnalyzer_.SayAt(name,
1373           "Implied DO index is active in surrounding implied DO loop "
1374           "and may not have the same name"_err_en_US); // C7115
1375       messageDisplayedSet_ |= 0x20;
1376     }
1377     return;
1378   }
1379   std::optional<Expr<ImpliedDoIntType>> lower{
1380       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)};
1381   std::optional<Expr<ImpliedDoIntType>> upper{
1382       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)};
1383   if (lower && upper) {
1384     std::optional<Expr<ImpliedDoIntType>> stride{
1385         GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)};
1386     if (!stride) {
1387       stride = Expr<ImpliedDoIntType>{1};
1388     }
1389     // Check for constant bounds; the loop may require complete unrolling
1390     // of the parse tree if all bounds are constant in order to allow the
1391     // implied DO loop index to qualify as a constant expression.
1392     auto cLower{ToInt64(lower)};
1393     auto cUpper{ToInt64(upper)};
1394     auto cStride{ToInt64(stride)};
1395     if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) {
1396       exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source,
1397           "The stride of an implied DO loop must not be zero"_err_en_US);
1398       messageDisplayedSet_ |= 0x10;
1399     }
1400     bool isConstant{cLower && cUpper && cStride && *cStride != 0};
1401     bool isNonemptyConstant{isConstant &&
1402         ((*cStride > 0 && *cLower <= *cUpper) ||
1403             (*cStride < 0 && *cLower >= *cUpper))};
1404     bool unrollConstantLoop{false};
1405     parser::Messages buffer;
1406     auto saveMessagesDisplayed{messageDisplayedSet_};
1407     {
1408       auto messageRestorer{
1409           exprAnalyzer_.GetContextualMessages().SetMessages(buffer)};
1410       auto v{std::move(values_)};
1411       for (const auto &value :
1412           std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1413         Add(value);
1414       }
1415       std::swap(v, values_);
1416       if (isNonemptyConstant && buffer.AnyFatalError()) {
1417         unrollConstantLoop = true;
1418       } else {
1419         values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1420             std::move(*upper), std::move(*stride), std::move(v)});
1421       }
1422     }
1423     if (unrollConstantLoop) {
1424       messageDisplayedSet_ = saveMessagesDisplayed;
1425       UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride);
1426     } else if (auto *messages{
1427                    exprAnalyzer_.GetContextualMessages().messages()}) {
1428       messages->Annex(std::move(buffer));
1429     }
1430   }
1431   exprAnalyzer_.RemoveImpliedDo(name);
1432 }
1433 
1434 // Fortran considers an implied DO index of an array constructor to be
1435 // a constant expression if the bounds of the implied DO loop are constant.
1436 // Usually this doesn't matter, but if we emitted spurious messages as a
1437 // result of not using constant values for the index while analyzing the
1438 // items, we need to do it again the "hard" way with multiple iterations over
1439 // the parse tree.
1440 void ArrayConstructorContext::UnrollConstantImpliedDo(
1441     const parser::AcImpliedDo &impliedDo, parser::CharBlock name,
1442     std::int64_t lower, std::int64_t upper, std::int64_t stride) {
1443   auto &foldingContext{exprAnalyzer_.GetFoldingContext()};
1444   auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()};
1445   for (auto &at{foldingContext.StartImpliedDo(name, lower)};
1446        (stride > 0 && at <= upper) || (stride < 0 && at >= upper);
1447        at += stride) {
1448     for (const auto &value :
1449         std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1450       Add(value);
1451     }
1452   }
1453   foldingContext.EndImpliedDo(name);
1454 }
1455 
1456 MaybeExpr ArrayConstructorContext::ToExpr() {
1457   return common::SearchTypes(std::move(*this));
1458 }
1459 
1460 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1461   const parser::AcSpec &acSpec{array.v};
1462   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1463   for (const parser::AcValue &value : acSpec.values) {
1464     acContext.Add(value);
1465   }
1466   return acContext.ToExpr();
1467 }
1468 
1469 MaybeExpr ExpressionAnalyzer::Analyze(
1470     const parser::StructureConstructor &structure) {
1471   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1472   parser::Name structureType{std::get<parser::Name>(parsedType.t)};
1473   parser::CharBlock &typeName{structureType.source};
1474   if (semantics::Symbol * typeSymbol{structureType.symbol}) {
1475     if (typeSymbol->has<semantics::DerivedTypeDetails>()) {
1476       semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()};
1477       if (!CheckIsValidForwardReference(dtSpec)) {
1478         return std::nullopt;
1479       }
1480     }
1481   }
1482   if (!parsedType.derivedTypeSpec) {
1483     return std::nullopt;
1484   }
1485   const auto &spec{*parsedType.derivedTypeSpec};
1486   const Symbol &typeSymbol{spec.typeSymbol()};
1487   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1488     return std::nullopt; // error recovery
1489   }
1490   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1491   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1492 
1493   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1494     AttachDeclaration(Say(typeName,
1495                           "ABSTRACT derived type '%s' may not be used in a "
1496                           "structure constructor"_err_en_US,
1497                           typeName),
1498         typeSymbol); // C7114
1499   }
1500 
1501   // This iterator traverses all of the components in the derived type and its
1502   // parents.  The symbols for whole parent components appear after their
1503   // own components and before the components of the types that extend them.
1504   // E.g., TYPE :: A; REAL X; END TYPE
1505   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1506   // produces the component list X, A, Y.
1507   // The order is important below because a structure constructor can
1508   // initialize X or A by name, but not both.
1509   auto components{semantics::OrderedComponentIterator{spec}};
1510   auto nextAnonymous{components.begin()};
1511 
1512   std::set<parser::CharBlock> unavailable;
1513   bool anyKeyword{false};
1514   StructureConstructor result{spec};
1515   bool checkConflicts{true}; // until we hit one
1516   auto &messages{GetContextualMessages()};
1517 
1518   for (const auto &component :
1519       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1520     const parser::Expr &expr{
1521         std::get<parser::ComponentDataSource>(component.t).v.value()};
1522     parser::CharBlock source{expr.source};
1523     auto restorer{messages.SetLocation(source)};
1524     const Symbol *symbol{nullptr};
1525     MaybeExpr value{Analyze(expr)};
1526     std::optional<DynamicType> valueType{DynamicType::From(value)};
1527     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1528       anyKeyword = true;
1529       source = kw->v.source;
1530       symbol = kw->v.symbol;
1531       if (!symbol) {
1532         auto componentIter{std::find_if(components.begin(), components.end(),
1533             [=](const Symbol &symbol) { return symbol.name() == source; })};
1534         if (componentIter != components.end()) {
1535           symbol = &*componentIter;
1536         }
1537       }
1538       if (!symbol) { // C7101
1539         Say(source,
1540             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1541             source, typeName);
1542       }
1543     } else {
1544       if (anyKeyword) { // C7100
1545         Say(source,
1546             "Value in structure constructor lacks a component name"_err_en_US);
1547         checkConflicts = false; // stem cascade
1548       }
1549       // Here's a regrettably common extension of the standard: anonymous
1550       // initialization of parent components, e.g., T(PT(1)) rather than
1551       // T(1) or T(PT=PT(1)).
1552       if (nextAnonymous == components.begin() && parentComponent &&
1553           valueType == DynamicType::From(*parentComponent) &&
1554           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1555         auto iter{
1556             std::find(components.begin(), components.end(), *parentComponent)};
1557         if (iter != components.end()) {
1558           symbol = parentComponent;
1559           nextAnonymous = ++iter;
1560           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1561             Say(source,
1562                 "Whole parent component '%s' in structure "
1563                 "constructor should not be anonymous"_en_US,
1564                 symbol->name());
1565           }
1566         }
1567       }
1568       while (!symbol && nextAnonymous != components.end()) {
1569         const Symbol &next{*nextAnonymous};
1570         ++nextAnonymous;
1571         if (!next.test(Symbol::Flag::ParentComp)) {
1572           symbol = &next;
1573         }
1574       }
1575       if (!symbol) {
1576         Say(source, "Unexpected value in structure constructor"_err_en_US);
1577       }
1578     }
1579     if (symbol) {
1580       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1581         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1582           Say(source, *msg);
1583         }
1584       }
1585       if (checkConflicts) {
1586         auto componentIter{
1587             std::find(components.begin(), components.end(), *symbol)};
1588         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1589           // C797, C798
1590           Say(source,
1591               "Component '%s' conflicts with another component earlier in "
1592               "this structure constructor"_err_en_US,
1593               symbol->name());
1594         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1595           // Make earlier components unavailable once a whole parent appears.
1596           for (auto it{components.begin()}; it != componentIter; ++it) {
1597             unavailable.insert(it->name());
1598           }
1599         } else {
1600           // Make whole parent components unavailable after any of their
1601           // constituents appear.
1602           for (auto it{componentIter}; it != components.end(); ++it) {
1603             if (it->test(Symbol::Flag::ParentComp)) {
1604               unavailable.insert(it->name());
1605             }
1606           }
1607         }
1608       }
1609       unavailable.insert(symbol->name());
1610       if (value) {
1611         if (symbol->has<semantics::ProcEntityDetails>()) {
1612           CHECK(IsPointer(*symbol));
1613         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1614           // C1594(4)
1615           const auto &innermost{context_.FindScope(expr.source)};
1616           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1617             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1618               if (const Symbol *
1619                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1620                 if (auto *msg{Say(expr.source,
1621                         "Externally visible object '%s' may not be "
1622                         "associated with pointer component '%s' in a "
1623                         "pure procedure"_err_en_US,
1624                         object->name(), pointer->name())}) {
1625                   msg->Attach(object->name(), "Object declaration"_en_US)
1626                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1627                 }
1628               }
1629             }
1630           }
1631         } else if (symbol->has<semantics::TypeParamDetails>()) {
1632           Say(expr.source,
1633               "Type parameter '%s' may not appear as a component "
1634               "of a structure constructor"_err_en_US,
1635               symbol->name());
1636           continue;
1637         } else {
1638           Say(expr.source,
1639               "Component '%s' is neither a procedure pointer "
1640               "nor a data object"_err_en_US,
1641               symbol->name());
1642           continue;
1643         }
1644         if (IsPointer(*symbol)) {
1645           semantics::CheckPointerAssignment(
1646               GetFoldingContext(), *symbol, *value); // C7104, C7105
1647           result.Add(*symbol, Fold(std::move(*value)));
1648         } else if (MaybeExpr converted{
1649                        ConvertToType(*symbol, std::move(*value))}) {
1650           if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
1651             if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
1652               if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
1653                 AttachDeclaration(
1654                     Say(expr.source,
1655                         "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
1656                         GetRank(*valueShape), symbol->name()),
1657                     *symbol);
1658               } else {
1659                 auto checked{
1660                     CheckConformance(messages, *componentShape, *valueShape,
1661                         CheckConformanceFlags::RightIsExpandableDeferred,
1662                         "component", "value")};
1663                 if (checked && *checked && GetRank(*componentShape) > 0 &&
1664                     GetRank(*valueShape) == 0 &&
1665                     !IsExpandableScalar(*converted)) {
1666                   AttachDeclaration(
1667                       Say(expr.source,
1668                           "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
1669                           symbol->name()),
1670                       *symbol);
1671                 }
1672                 if (checked.value_or(true)) {
1673                   result.Add(*symbol, std::move(*converted));
1674                 }
1675               }
1676             } else {
1677               Say(expr.source, "Shape of value cannot be determined"_err_en_US);
1678             }
1679           } else {
1680             AttachDeclaration(
1681                 Say(expr.source,
1682                     "Shape of component '%s' cannot be determined"_err_en_US,
1683                     symbol->name()),
1684                 *symbol);
1685           }
1686         } else if (IsAllocatable(*symbol) &&
1687             std::holds_alternative<NullPointer>(value->u)) {
1688           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE
1689         } else if (auto symType{DynamicType::From(symbol)}) {
1690           if (valueType) {
1691             AttachDeclaration(
1692                 Say(expr.source,
1693                     "Value in structure constructor of type %s is "
1694                     "incompatible with component '%s' of type %s"_err_en_US,
1695                     valueType->AsFortran(), symbol->name(),
1696                     symType->AsFortran()),
1697                 *symbol);
1698           } else {
1699             AttachDeclaration(
1700                 Say(expr.source,
1701                     "Value in structure constructor is incompatible with "
1702                     " component '%s' of type %s"_err_en_US,
1703                     symbol->name(), symType->AsFortran()),
1704                 *symbol);
1705           }
1706         }
1707       }
1708     }
1709   }
1710 
1711   // Ensure that unmentioned component objects have default initializers.
1712   for (const Symbol &symbol : components) {
1713     if (!symbol.test(Symbol::Flag::ParentComp) &&
1714         unavailable.find(symbol.name()) == unavailable.cend() &&
1715         !IsAllocatable(symbol)) {
1716       if (const auto *details{
1717               symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1718         if (details->init()) {
1719           result.Add(symbol, common::Clone(*details->init()));
1720         } else { // C799
1721           AttachDeclaration(Say(typeName,
1722                                 "Structure constructor lacks a value for "
1723                                 "component '%s'"_err_en_US,
1724                                 symbol.name()),
1725               symbol);
1726         }
1727       }
1728     }
1729   }
1730 
1731   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1732 }
1733 
1734 static std::optional<parser::CharBlock> GetPassName(
1735     const semantics::Symbol &proc) {
1736   return std::visit(
1737       [](const auto &details) {
1738         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1739                           std::decay_t<decltype(details)>>) {
1740           return details.passName();
1741         } else {
1742           return std::optional<parser::CharBlock>{};
1743         }
1744       },
1745       proc.details());
1746 }
1747 
1748 static int GetPassIndex(const Symbol &proc) {
1749   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1750   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1751   const auto *interface{semantics::FindInterface(proc)};
1752   if (!passName || !interface) {
1753     return 0; // first argument is passed-object
1754   }
1755   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1756   int index{0};
1757   for (const auto *arg : subp.dummyArgs()) {
1758     if (arg && arg->name() == passName) {
1759       return index;
1760     }
1761     ++index;
1762   }
1763   DIE("PASS argument name not in dummy argument list");
1764 }
1765 
1766 // Injects an expression into an actual argument list as the "passed object"
1767 // for a type-bound procedure reference that is not NOPASS.  Adds an
1768 // argument keyword if possible, but not when the passed object goes
1769 // before a positional argument.
1770 // e.g., obj%tbp(x) -> tbp(obj,x).
1771 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1772     const Symbol &component, bool isPassedObject = true) {
1773   if (component.attrs().test(semantics::Attr::NOPASS)) {
1774     return;
1775   }
1776   int passIndex{GetPassIndex(component)};
1777   auto iter{actuals.begin()};
1778   int at{0};
1779   while (iter < actuals.end() && at < passIndex) {
1780     if (*iter && (*iter)->keyword()) {
1781       iter = actuals.end();
1782       break;
1783     }
1784     ++iter;
1785     ++at;
1786   }
1787   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1788   passed.set_isPassedObject(isPassedObject);
1789   if (iter == actuals.end()) {
1790     if (auto passName{GetPassName(component)}) {
1791       passed.set_keyword(*passName);
1792     }
1793   }
1794   actuals.emplace(iter, std::move(passed));
1795 }
1796 
1797 // Return the compile-time resolution of a procedure binding, if possible.
1798 static const Symbol *GetBindingResolution(
1799     const std::optional<DynamicType> &baseType, const Symbol &component) {
1800   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1801   if (!binding) {
1802     return nullptr;
1803   }
1804   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1805       (!baseType || baseType->IsPolymorphic())) {
1806     return nullptr;
1807   }
1808   return &binding->symbol();
1809 }
1810 
1811 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1812     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1813     -> std::optional<CalleeAndArguments> {
1814   const parser::StructureComponent &sc{pcr.v.thing};
1815   if (MaybeExpr base{Analyze(sc.base)}) {
1816     if (const Symbol * sym{sc.component.symbol}) {
1817       if (context_.HasError(sym)) {
1818         return std::nullopt;
1819       }
1820       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1821         if (sym->has<semantics::GenericDetails>()) {
1822           AdjustActuals adjustment{
1823               [&](const Symbol &proc, ActualArguments &actuals) {
1824                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1825                   AddPassArg(actuals, std::move(*dtExpr), proc);
1826                 }
1827                 return true;
1828               }};
1829           sym = ResolveGeneric(*sym, arguments, adjustment);
1830           if (!sym) {
1831             EmitGenericResolutionError(*sc.component.symbol);
1832             return std::nullopt;
1833           }
1834         }
1835         if (const Symbol *
1836             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1837           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1838           return CalleeAndArguments{
1839               ProcedureDesignator{*resolution}, std::move(arguments)};
1840         } else if (std::optional<DataRef> dataRef{
1841                        ExtractDataRef(std::move(*dtExpr))}) {
1842           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1843             return CalleeAndArguments{
1844                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1845                 std::move(arguments)};
1846           } else {
1847             AddPassArg(arguments,
1848                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1849                 *sym);
1850             return CalleeAndArguments{
1851                 ProcedureDesignator{*sym}, std::move(arguments)};
1852           }
1853         }
1854       }
1855       Say(sc.component.source,
1856           "Base of procedure component reference is not a derived-type object"_err_en_US);
1857     }
1858   }
1859   CHECK(!GetContextualMessages().empty());
1860   return std::nullopt;
1861 }
1862 
1863 // Can actual be argument associated with dummy?
1864 static bool CheckCompatibleArgument(bool isElemental,
1865     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1866   return std::visit(
1867       common::visitors{
1868           [&](const characteristics::DummyDataObject &x) {
1869             if (!isElemental && actual.Rank() != x.type.Rank() &&
1870                 !x.type.attrs().test(
1871                     characteristics::TypeAndShape::Attr::AssumedRank)) {
1872               return false;
1873             } else if (auto actualType{actual.GetType()}) {
1874               return x.type.type().IsTkCompatibleWith(*actualType);
1875             } else {
1876               return false;
1877             }
1878           },
1879           [&](const characteristics::DummyProcedure &) {
1880             const auto *expr{actual.UnwrapExpr()};
1881             return expr && IsProcedurePointerTarget(*expr);
1882           },
1883           [&](const characteristics::AlternateReturn &) {
1884             return actual.isAlternateReturn();
1885           },
1886       },
1887       dummy.u);
1888 }
1889 
1890 // Are the actual arguments compatible with the dummy arguments of procedure?
1891 static bool CheckCompatibleArguments(
1892     const characteristics::Procedure &procedure,
1893     const ActualArguments &actuals) {
1894   bool isElemental{procedure.IsElemental()};
1895   const auto &dummies{procedure.dummyArguments};
1896   CHECK(dummies.size() == actuals.size());
1897   for (std::size_t i{0}; i < dummies.size(); ++i) {
1898     const characteristics::DummyArgument &dummy{dummies[i]};
1899     const std::optional<ActualArgument> &actual{actuals[i]};
1900     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1901       return false;
1902     }
1903   }
1904   return true;
1905 }
1906 
1907 // Handles a forward reference to a module function from what must
1908 // be a specification expression.  Return false if the symbol is
1909 // an invalid forward reference.
1910 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
1911   if (context_.HasError(symbol)) {
1912     return false;
1913   }
1914   if (const auto *details{
1915           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
1916     if (details->kind() == semantics::SubprogramKind::Module) {
1917       // If this symbol is still a SubprogramNameDetails, we must be
1918       // checking a specification expression in a sibling module
1919       // procedure.  Resolve its names now so that its interface
1920       // is known.
1921       semantics::ResolveSpecificationParts(context_, symbol);
1922       if (symbol.has<semantics::SubprogramNameDetails>()) {
1923         // When the symbol hasn't had its details updated, we must have
1924         // already been in the process of resolving the function's
1925         // specification part; but recursive function calls are not
1926         // allowed in specification parts (10.1.11 para 5).
1927         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
1928             symbol.name());
1929         context_.SetError(symbol);
1930         return false;
1931       }
1932     } else { // 10.1.11 para 4
1933       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
1934           symbol.name());
1935       context_.SetError(symbol);
1936       return false;
1937     }
1938   }
1939   return true;
1940 }
1941 
1942 // Resolve a call to a generic procedure with given actual arguments.
1943 // adjustActuals is called on procedure bindings to handle pass arg.
1944 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol,
1945     const ActualArguments &actuals, const AdjustActuals &adjustActuals,
1946     bool mightBeStructureConstructor) {
1947   const Symbol *elemental{nullptr}; // matching elemental specific proc
1948   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
1949   for (const Symbol &specific : details.specificProcs()) {
1950     if (!ResolveForward(specific)) {
1951       continue;
1952     }
1953     if (std::optional<characteristics::Procedure> procedure{
1954             characteristics::Procedure::Characterize(
1955                 ProcedureDesignator{specific}, context_.foldingContext())}) {
1956       ActualArguments localActuals{actuals};
1957       if (specific.has<semantics::ProcBindingDetails>()) {
1958         if (!adjustActuals.value()(specific, localActuals)) {
1959           continue;
1960         }
1961       }
1962       if (semantics::CheckInterfaceForGeneric(
1963               *procedure, localActuals, GetFoldingContext())) {
1964         if (CheckCompatibleArguments(*procedure, localActuals)) {
1965           if (!procedure->IsElemental()) {
1966             // takes priority over elemental match
1967             return &AccessSpecific(symbol, specific);
1968           }
1969           elemental = &specific;
1970         }
1971       }
1972     }
1973   }
1974   if (elemental) {
1975     return &AccessSpecific(symbol, *elemental);
1976   }
1977   // Check parent derived type
1978   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
1979     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
1980       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
1981         if (const Symbol *
1982             result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) {
1983           return result;
1984         }
1985       }
1986     }
1987   }
1988   if (mightBeStructureConstructor && details.derivedType()) {
1989     return details.derivedType();
1990   }
1991   return nullptr;
1992 }
1993 
1994 const Symbol &ExpressionAnalyzer::AccessSpecific(
1995     const Symbol &originalGeneric, const Symbol &specific) {
1996   if (const auto *hosted{
1997           originalGeneric.detailsIf<semantics::HostAssocDetails>()}) {
1998     return AccessSpecific(hosted->symbol(), specific);
1999   } else if (const auto *used{
2000                  originalGeneric.detailsIf<semantics::UseDetails>()}) {
2001     const auto &scope{originalGeneric.owner()};
2002     if (auto iter{scope.find(specific.name())}; iter != scope.end()) {
2003       if (const auto *useDetails{
2004               iter->second->detailsIf<semantics::UseDetails>()}) {
2005         const Symbol &usedSymbol{useDetails->symbol()};
2006         const auto *usedGeneric{
2007             usedSymbol.detailsIf<semantics::GenericDetails>()};
2008         if (&usedSymbol == &specific ||
2009             (usedGeneric && usedGeneric->specific() == &specific)) {
2010           return specific;
2011         }
2012       }
2013     }
2014     // Create a renaming USE of the specific procedure.
2015     auto rename{context_.SaveTempName(
2016         used->symbol().owner().GetName().value().ToString() + "$" +
2017         specific.name().ToString())};
2018     return *const_cast<semantics::Scope &>(scope)
2019                 .try_emplace(rename, specific.attrs(),
2020                     semantics::UseDetails{rename, specific})
2021                 .first->second;
2022   } else {
2023     return specific;
2024   }
2025 }
2026 
2027 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) {
2028   if (semantics::IsGenericDefinedOp(symbol)) {
2029     Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US,
2030         symbol.name());
2031   } else {
2032     Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
2033         symbol.name());
2034   }
2035 }
2036 
2037 auto ExpressionAnalyzer::GetCalleeAndArguments(
2038     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
2039     bool isSubroutine, bool mightBeStructureConstructor)
2040     -> std::optional<CalleeAndArguments> {
2041   return std::visit(
2042       common::visitors{
2043           [&](const parser::Name &name) {
2044             return GetCalleeAndArguments(name, std::move(arguments),
2045                 isSubroutine, mightBeStructureConstructor);
2046           },
2047           [&](const parser::ProcComponentRef &pcr) {
2048             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
2049           },
2050       },
2051       pd.u);
2052 }
2053 
2054 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
2055     ActualArguments &&arguments, bool isSubroutine,
2056     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
2057   const Symbol *symbol{name.symbol};
2058   if (context_.HasError(symbol)) {
2059     return std::nullopt; // also handles null symbol
2060   }
2061   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
2062   if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
2063     if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
2064             CallCharacteristics{ultimate.name().ToString(), isSubroutine},
2065             arguments, GetFoldingContext())}) {
2066       CheckBadExplicitType(*specificCall, *symbol);
2067       return CalleeAndArguments{
2068           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2069           std::move(specificCall->arguments)};
2070     }
2071   } else {
2072     CheckForBadRecursion(name.source, ultimate);
2073     if (ultimate.has<semantics::GenericDetails>()) {
2074       ExpressionAnalyzer::AdjustActuals noAdjustment;
2075       symbol = ResolveGeneric(
2076           *symbol, arguments, noAdjustment, mightBeStructureConstructor);
2077     }
2078     if (symbol) {
2079       if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
2080         if (mightBeStructureConstructor) {
2081           return CalleeAndArguments{
2082               semantics::SymbolRef{*symbol}, std::move(arguments)};
2083         }
2084       } else {
2085         return CalleeAndArguments{
2086             ProcedureDesignator{*symbol}, std::move(arguments)};
2087       }
2088     } else if (std::optional<SpecificCall> specificCall{
2089                    context_.intrinsics().Probe(
2090                        CallCharacteristics{
2091                            ultimate.name().ToString(), isSubroutine},
2092                        arguments, GetFoldingContext())}) {
2093       // Generics can extend intrinsics
2094       return CalleeAndArguments{
2095           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2096           std::move(specificCall->arguments)};
2097     } else {
2098       EmitGenericResolutionError(*name.symbol);
2099     }
2100   }
2101   return std::nullopt;
2102 }
2103 
2104 // Fortran 2018 expressly states (8.2 p3) that any declared type for a
2105 // generic intrinsic function "has no effect" on the result type of a
2106 // call to that intrinsic.  So one can declare "character*8 cos" and
2107 // still get a real result from "cos(1.)".  This is a dangerous feature,
2108 // especially since implementations are free to extend their sets of
2109 // intrinsics, and in doing so might clash with a name in a program.
2110 // So we emit a warning in this situation, and perhaps it should be an
2111 // error -- any correctly working program can silence the message by
2112 // simply deleting the pointless type declaration.
2113 void ExpressionAnalyzer::CheckBadExplicitType(
2114     const SpecificCall &call, const Symbol &intrinsic) {
2115   if (intrinsic.GetUltimate().GetType()) {
2116     const auto &procedure{call.specificIntrinsic.characteristics.value()};
2117     if (const auto &result{procedure.functionResult}) {
2118       if (const auto *typeAndShape{result->GetTypeAndShape()}) {
2119         if (auto declared{
2120                 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) {
2121           if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) {
2122             if (auto *msg{Say(
2123                     "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US,
2124                     typeAndShape->AsFortran(), intrinsic.name(),
2125                     declared->AsFortran())}) {
2126               msg->Attach(intrinsic.name(),
2127                   "Ignored declaration of intrinsic function '%s'"_en_US,
2128                   intrinsic.name());
2129             }
2130           }
2131         }
2132       }
2133     }
2134   }
2135 }
2136 
2137 void ExpressionAnalyzer::CheckForBadRecursion(
2138     parser::CharBlock callSite, const semantics::Symbol &proc) {
2139   if (const auto *scope{proc.scope()}) {
2140     if (scope->sourceRange().Contains(callSite)) {
2141       parser::Message *msg{nullptr};
2142       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
2143         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
2144             callSite);
2145       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
2146         msg = Say( // 15.6.2.1(3)
2147             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
2148             callSite);
2149       }
2150       AttachDeclaration(msg, proc);
2151     }
2152   }
2153 }
2154 
2155 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
2156   if (const auto *designator{
2157           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
2158     if (const auto *dataRef{
2159             std::get_if<parser::DataRef>(&designator->value().u)}) {
2160       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
2161         return AssumedTypeDummy(*name);
2162       }
2163     }
2164   }
2165   return nullptr;
2166 }
2167 template <>
2168 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) {
2169   if (const Symbol * symbol{name.symbol}) {
2170     if (const auto *type{symbol->GetType()}) {
2171       if (type->category() == semantics::DeclTypeSpec::TypeStar) {
2172         return symbol;
2173       }
2174     }
2175   }
2176   return nullptr;
2177 }
2178 template <typename A>
2179 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) {
2180   // It is illegal for allocatable of pointer objects to be TYPE(*), but at that
2181   // point it is is not guaranteed that it has been checked the object has
2182   // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly
2183   // returned.
2184   return std::visit(
2185       common::visitors{
2186           [&](const parser::StructureComponent &x) {
2187             return AssumedTypeDummy(x.component);
2188           },
2189           [&](const parser::Name &x) { return AssumedTypeDummy(x); },
2190       },
2191       object.u);
2192 }
2193 template <>
2194 const Symbol *AssumedTypeDummy<parser::AllocateObject>(
2195     const parser::AllocateObject &x) {
2196   return AssumedTypePointerOrAllocatableDummy(x);
2197 }
2198 template <>
2199 const Symbol *AssumedTypeDummy<parser::PointerObject>(
2200     const parser::PointerObject &x) {
2201   return AssumedTypePointerOrAllocatableDummy(x);
2202 }
2203 
2204 bool ExpressionAnalyzer::CheckIsValidForwardReference(
2205     const semantics::DerivedTypeSpec &dtSpec) {
2206   if (dtSpec.IsForwardReferenced()) {
2207     Say("Cannot construct value for derived type '%s' "
2208         "before it is defined"_err_en_US,
2209         dtSpec.name());
2210     return false;
2211   }
2212   return true;
2213 }
2214 
2215 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
2216     std::optional<parser::StructureConstructor> *structureConstructor) {
2217   const parser::Call &call{funcRef.v};
2218   auto restorer{GetContextualMessages().SetLocation(call.source)};
2219   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2220   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
2221     analyzer.Analyze(arg, false /* not subroutine call */);
2222   }
2223   if (analyzer.fatalErrors()) {
2224     return std::nullopt;
2225   }
2226   if (std::optional<CalleeAndArguments> callee{
2227           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2228               analyzer.GetActuals(), false /* not subroutine */,
2229               true /* might be structure constructor */)}) {
2230     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
2231       return MakeFunctionRef(
2232           call.source, std::move(*proc), std::move(callee->arguments));
2233     }
2234     CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
2235     const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)};
2236     if (structureConstructor) {
2237       // Structure constructor misparsed as function reference?
2238       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
2239       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
2240         semantics::Scope &scope{context_.FindScope(name->source)};
2241         semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()};
2242         if (!CheckIsValidForwardReference(dtSpec)) {
2243           return std::nullopt;
2244         }
2245         const semantics::DeclTypeSpec &type{
2246             semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))};
2247         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
2248         *structureConstructor =
2249             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
2250         return Analyze(structureConstructor->value());
2251       }
2252     }
2253     if (!context_.HasError(symbol)) {
2254       AttachDeclaration(
2255           Say("'%s' is called like a function but is not a procedure"_err_en_US,
2256               symbol.name()),
2257           symbol);
2258       context_.SetError(symbol);
2259     }
2260   }
2261   return std::nullopt;
2262 }
2263 
2264 static bool HasAlternateReturns(const evaluate::ActualArguments &args) {
2265   for (const auto &arg : args) {
2266     if (arg && arg->isAlternateReturn()) {
2267       return true;
2268     }
2269   }
2270   return false;
2271 }
2272 
2273 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
2274   const parser::Call &call{callStmt.v};
2275   auto restorer{GetContextualMessages().SetLocation(call.source)};
2276   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2277   const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
2278   for (const auto &arg : actualArgList) {
2279     analyzer.Analyze(arg, true /* is subroutine call */);
2280   }
2281   if (!analyzer.fatalErrors()) {
2282     if (std::optional<CalleeAndArguments> callee{
2283             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2284                 analyzer.GetActuals(), true /* subroutine */)}) {
2285       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
2286       CHECK(proc);
2287       if (CheckCall(call.source, *proc, callee->arguments)) {
2288         bool hasAlternateReturns{HasAlternateReturns(callee->arguments)};
2289         callStmt.typedCall.Reset(
2290             new ProcedureRef{std::move(*proc), std::move(callee->arguments),
2291                 hasAlternateReturns},
2292             ProcedureRef::Deleter);
2293       }
2294     }
2295   }
2296 }
2297 
2298 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
2299   if (!x.typedAssignment) {
2300     ArgumentAnalyzer analyzer{*this};
2301     analyzer.Analyze(std::get<parser::Variable>(x.t));
2302     analyzer.Analyze(std::get<parser::Expr>(x.t));
2303     if (analyzer.fatalErrors()) {
2304       x.typedAssignment.Reset(
2305           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2306     } else {
2307       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
2308       Assignment assignment{analyzer.MoveExpr(0), analyzer.MoveExpr(1)};
2309       if (procRef) {
2310         assignment.u = std::move(*procRef);
2311       }
2312       x.typedAssignment.Reset(
2313           new GenericAssignmentWrapper{std::move(assignment)},
2314           GenericAssignmentWrapper::Deleter);
2315     }
2316   }
2317   return common::GetPtrFromOptional(x.typedAssignment->v);
2318 }
2319 
2320 const Assignment *ExpressionAnalyzer::Analyze(
2321     const parser::PointerAssignmentStmt &x) {
2322   if (!x.typedAssignment) {
2323     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2324     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2325     if (!lhs || !rhs) {
2326       x.typedAssignment.Reset(
2327           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2328     } else {
2329       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2330       std::visit(common::visitors{
2331                      [&](const std::list<parser::BoundsRemapping> &list) {
2332                        Assignment::BoundsRemapping bounds;
2333                        for (const auto &elem : list) {
2334                          auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2335                          auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2336                          if (lower && upper) {
2337                            bounds.emplace_back(Fold(std::move(*lower)),
2338                                Fold(std::move(*upper)));
2339                          }
2340                        }
2341                        assignment.u = std::move(bounds);
2342                      },
2343                      [&](const std::list<parser::BoundsSpec> &list) {
2344                        Assignment::BoundsSpec bounds;
2345                        for (const auto &bound : list) {
2346                          if (auto lower{AsSubscript(Analyze(bound.v))}) {
2347                            bounds.emplace_back(Fold(std::move(*lower)));
2348                          }
2349                        }
2350                        assignment.u = std::move(bounds);
2351                      },
2352                  },
2353           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2354       x.typedAssignment.Reset(
2355           new GenericAssignmentWrapper{std::move(assignment)},
2356           GenericAssignmentWrapper::Deleter);
2357     }
2358   }
2359   return common::GetPtrFromOptional(x.typedAssignment->v);
2360 }
2361 
2362 static bool IsExternalCalledImplicitly(
2363     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2364   if (const auto *symbol{proc.GetSymbol()}) {
2365     return symbol->has<semantics::SubprogramDetails>() &&
2366         symbol->owner().IsGlobal() &&
2367         (!symbol->scope() /*ENTRY*/ ||
2368             !symbol->scope()->sourceRange().Contains(callSite));
2369   } else {
2370     return false;
2371   }
2372 }
2373 
2374 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2375     parser::CharBlock callSite, const ProcedureDesignator &proc,
2376     ActualArguments &arguments) {
2377   auto chars{characteristics::Procedure::Characterize(
2378       proc, context_.foldingContext())};
2379   if (chars) {
2380     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2381     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2382       Say(callSite,
2383           "References to the procedure '%s' require an explicit interface"_en_US,
2384           DEREF(proc.GetSymbol()).name());
2385     }
2386     // Checks for ASSOCIATED() are done in intrinsic table processing
2387     bool procIsAssociated{false};
2388     if (const SpecificIntrinsic *
2389         specificIntrinsic{proc.GetSpecificIntrinsic()}) {
2390       if (specificIntrinsic->name == "associated") {
2391         procIsAssociated = true;
2392       }
2393     }
2394     if (!procIsAssociated) {
2395       semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2396           context_.FindScope(callSite), treatExternalAsImplicit,
2397           proc.GetSpecificIntrinsic());
2398       const Symbol *procSymbol{proc.GetSymbol()};
2399       if (procSymbol && !IsPureProcedure(*procSymbol)) {
2400         if (const semantics::Scope *
2401             pure{semantics::FindPureProcedureContaining(
2402                 context_.FindScope(callSite))}) {
2403           Say(callSite,
2404               "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2405               procSymbol->name(), DEREF(pure->symbol()).name());
2406         }
2407       }
2408     }
2409   }
2410   return chars;
2411 }
2412 
2413 // Unary operations
2414 
2415 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2416   if (MaybeExpr operand{Analyze(x.v.value())}) {
2417     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2418       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2419         if (semantics::IsProcedurePointer(*result)) {
2420           Say("A function reference that returns a procedure "
2421               "pointer may not be parenthesized"_err_en_US); // C1003
2422         }
2423       }
2424     }
2425     return Parenthesize(std::move(*operand));
2426   }
2427   return std::nullopt;
2428 }
2429 
2430 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2431     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2432   ArgumentAnalyzer analyzer{context};
2433   analyzer.Analyze(x.v);
2434   if (analyzer.fatalErrors()) {
2435     return std::nullopt;
2436   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2437     if (opr == NumericOperator::Add) {
2438       return analyzer.MoveExpr(0);
2439     } else {
2440       return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2441     }
2442   } else {
2443     return analyzer.TryDefinedOp(AsFortran(opr),
2444         "Operand of unary %s must be numeric; have %s"_err_en_US);
2445   }
2446 }
2447 
2448 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2449   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2450 }
2451 
2452 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2453   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2454 }
2455 
2456 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2457   ArgumentAnalyzer analyzer{*this};
2458   analyzer.Analyze(x.v);
2459   if (analyzer.fatalErrors()) {
2460     return std::nullopt;
2461   } else if (analyzer.IsIntrinsicLogical()) {
2462     return AsGenericExpr(
2463         LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2464   } else {
2465     return analyzer.TryDefinedOp(LogicalOperator::Not,
2466         "Operand of %s must be LOGICAL; have %s"_err_en_US);
2467   }
2468 }
2469 
2470 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2471   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2472   // intrinsic function.
2473   // Use the actual source for the name of the call for error reporting.
2474   std::optional<ActualArgument> arg;
2475   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2476     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2477   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2478     arg = ActualArgument{std::move(*argExpr)};
2479   } else {
2480     return std::nullopt;
2481   }
2482   parser::CharBlock at{GetContextualMessages().at()};
2483   CHECK(at.size() >= 4);
2484   parser::CharBlock loc{at.begin() + 1, 3};
2485   CHECK(loc == "loc");
2486   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2487 }
2488 
2489 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2490   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2491   ArgumentAnalyzer analyzer{*this, name.source};
2492   analyzer.Analyze(std::get<1>(x.t));
2493   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2494       "No operator %s defined for %s"_err_en_US, true);
2495 }
2496 
2497 // Binary (dyadic) operations
2498 
2499 template <template <typename> class OPR>
2500 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2501     const parser::Expr::IntrinsicBinary &x) {
2502   ArgumentAnalyzer analyzer{context};
2503   analyzer.Analyze(std::get<0>(x.t));
2504   analyzer.Analyze(std::get<1>(x.t));
2505   if (analyzer.fatalErrors()) {
2506     return std::nullopt;
2507   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2508     analyzer.CheckConformance();
2509     return NumericOperation<OPR>(context.GetContextualMessages(),
2510         analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2511         context.GetDefaultKind(TypeCategory::Real));
2512   } else {
2513     return analyzer.TryDefinedOp(AsFortran(opr),
2514         "Operands of %s must be numeric; have %s and %s"_err_en_US);
2515   }
2516 }
2517 
2518 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2519   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2520 }
2521 
2522 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2523   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2524 }
2525 
2526 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2527   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2528 }
2529 
2530 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2531   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2532 }
2533 
2534 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2535   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2536 }
2537 
2538 MaybeExpr ExpressionAnalyzer::Analyze(
2539     const parser::Expr::ComplexConstructor &x) {
2540   auto re{Analyze(std::get<0>(x.t).value())};
2541   auto im{Analyze(std::get<1>(x.t).value())};
2542   if (re && im) {
2543     ConformabilityCheck(GetContextualMessages(), *re, *im);
2544   }
2545   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2546       std::move(im), GetDefaultKind(TypeCategory::Real)));
2547 }
2548 
2549 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2550   ArgumentAnalyzer analyzer{*this};
2551   analyzer.Analyze(std::get<0>(x.t));
2552   analyzer.Analyze(std::get<1>(x.t));
2553   if (analyzer.fatalErrors()) {
2554     return std::nullopt;
2555   } else if (analyzer.IsIntrinsicConcat()) {
2556     return std::visit(
2557         [&](auto &&x, auto &&y) -> MaybeExpr {
2558           using T = ResultType<decltype(x)>;
2559           if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2560             return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2561           } else {
2562             DIE("different types for intrinsic concat");
2563           }
2564         },
2565         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2566         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2567   } else {
2568     return analyzer.TryDefinedOp("//",
2569         "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2570   }
2571 }
2572 
2573 // The Name represents a user-defined intrinsic operator.
2574 // If the actuals match one of the specific procedures, return a function ref.
2575 // Otherwise report the error in messages.
2576 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2577     const parser::Name &name, ActualArguments &&actuals) {
2578   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2579     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2580     return MakeFunctionRef(name.source,
2581         std::move(std::get<ProcedureDesignator>(callee->u)),
2582         std::move(callee->arguments));
2583   } else {
2584     return std::nullopt;
2585   }
2586 }
2587 
2588 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2589     const parser::Expr::IntrinsicBinary &x) {
2590   ArgumentAnalyzer analyzer{context};
2591   analyzer.Analyze(std::get<0>(x.t));
2592   analyzer.Analyze(std::get<1>(x.t));
2593   if (analyzer.fatalErrors()) {
2594     return std::nullopt;
2595   } else {
2596     if (IsNullPointer(analyzer.GetExpr(0)) ||
2597         IsNullPointer(analyzer.GetExpr(1))) {
2598       context.Say("NULL() not allowed as an operand of a relational "
2599                   "operator"_err_en_US);
2600       return std::nullopt;
2601     }
2602     std::optional<DynamicType> leftType{analyzer.GetType(0)};
2603     std::optional<DynamicType> rightType{analyzer.GetType(1)};
2604     analyzer.ConvertBOZ(0, rightType);
2605     analyzer.ConvertBOZ(1, leftType);
2606     if (analyzer.IsIntrinsicRelational(opr)) {
2607       return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2608           analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2609     } else if (leftType && leftType->category() == TypeCategory::Logical &&
2610         rightType && rightType->category() == TypeCategory::Logical) {
2611       context.Say("LOGICAL operands must be compared using .EQV. or "
2612                   ".NEQV."_err_en_US);
2613       return std::nullopt;
2614     } else {
2615       return analyzer.TryDefinedOp(opr,
2616           "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2617     }
2618   }
2619 }
2620 
2621 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2622   return RelationHelper(*this, RelationalOperator::LT, x);
2623 }
2624 
2625 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2626   return RelationHelper(*this, RelationalOperator::LE, x);
2627 }
2628 
2629 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2630   return RelationHelper(*this, RelationalOperator::EQ, x);
2631 }
2632 
2633 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2634   return RelationHelper(*this, RelationalOperator::NE, x);
2635 }
2636 
2637 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2638   return RelationHelper(*this, RelationalOperator::GE, x);
2639 }
2640 
2641 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2642   return RelationHelper(*this, RelationalOperator::GT, x);
2643 }
2644 
2645 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2646     const parser::Expr::IntrinsicBinary &x) {
2647   ArgumentAnalyzer analyzer{context};
2648   analyzer.Analyze(std::get<0>(x.t));
2649   analyzer.Analyze(std::get<1>(x.t));
2650   if (analyzer.fatalErrors()) {
2651     return std::nullopt;
2652   } else if (analyzer.IsIntrinsicLogical()) {
2653     return AsGenericExpr(BinaryLogicalOperation(opr,
2654         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2655         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2656   } else {
2657     return analyzer.TryDefinedOp(
2658         opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2659   }
2660 }
2661 
2662 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2663   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2664 }
2665 
2666 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2667   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2668 }
2669 
2670 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2671   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2672 }
2673 
2674 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2675   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2676 }
2677 
2678 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2679   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2680   ArgumentAnalyzer analyzer{*this, name.source};
2681   analyzer.Analyze(std::get<1>(x.t));
2682   analyzer.Analyze(std::get<2>(x.t));
2683   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2684       "No operator %s defined for %s and %s"_err_en_US, true);
2685 }
2686 
2687 static void CheckFuncRefToArrayElementRefHasSubscripts(
2688     semantics::SemanticsContext &context,
2689     const parser::FunctionReference &funcRef) {
2690   // Emit message if the function reference fix will end up an array element
2691   // reference with no subscripts because it will not be possible to later tell
2692   // the difference in expressions between empty subscript list due to bad
2693   // subscripts error recovery or because the user did not put any.
2694   if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2695     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2696     const auto *name{std::get_if<parser::Name>(&proc.u)};
2697     if (!name) {
2698       name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2699     }
2700     auto &msg{context.Say(funcRef.v.source,
2701         name->symbol && name->symbol->Rank() == 0
2702             ? "'%s' is not a function"_err_en_US
2703             : "Reference to array '%s' with empty subscript list"_err_en_US,
2704         name->source)};
2705     if (name->symbol) {
2706       if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) {
2707         msg.Attach(name->source,
2708             "A result variable must be declared with RESULT to allow recursive "
2709             "function calls"_en_US);
2710       } else {
2711         AttachDeclaration(&msg, *name->symbol);
2712       }
2713     }
2714   }
2715 }
2716 
2717 // Converts, if appropriate, an original misparse of ambiguous syntax like
2718 // A(1) as a function reference into an array reference.
2719 // Misparse structure constructors are detected elsewhere after generic
2720 // function call resolution fails.
2721 template <typename... A>
2722 static void FixMisparsedFunctionReference(
2723     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2724   // The parse tree is updated in situ when resolving an ambiguous parse.
2725   using uType = std::decay_t<decltype(constU)>;
2726   auto &u{const_cast<uType &>(constU)};
2727   if (auto *func{
2728           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2729     parser::FunctionReference &funcRef{func->value()};
2730     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2731     if (Symbol *
2732         origSymbol{
2733             std::visit(common::visitors{
2734                            [&](parser::Name &name) { return name.symbol; },
2735                            [&](parser::ProcComponentRef &pcr) {
2736                              return pcr.v.thing.component.symbol;
2737                            },
2738                        },
2739                 proc.u)}) {
2740       Symbol &symbol{origSymbol->GetUltimate()};
2741       if (symbol.has<semantics::ObjectEntityDetails>() ||
2742           symbol.has<semantics::AssocEntityDetails>()) {
2743         // Note that expression in AssocEntityDetails cannot be a procedure
2744         // pointer as per C1105 so this cannot be a function reference.
2745         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2746                           uType>) {
2747           CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef);
2748           u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2749         } else {
2750           DIE("can't fix misparsed function as array reference");
2751         }
2752       }
2753     }
2754   }
2755 }
2756 
2757 // Common handling of parse tree node types that retain the
2758 // representation of the analyzed expression.
2759 template <typename PARSED>
2760 MaybeExpr ExpressionAnalyzer::ExprOrVariable(
2761     const PARSED &x, parser::CharBlock source) {
2762   if (useSavedTypedExprs_ && x.typedExpr) {
2763     return x.typedExpr->v;
2764   }
2765   auto restorer{GetContextualMessages().SetLocation(source)};
2766   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2767       std::is_same_v<PARSED, parser::Variable>) {
2768     FixMisparsedFunctionReference(context_, x.u);
2769   }
2770   if (AssumedTypeDummy(x)) { // C710
2771     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2772     ResetExpr(x);
2773     return std::nullopt;
2774   }
2775   MaybeExpr result;
2776   if constexpr (common::HasMember<parser::StructureConstructor,
2777                     std::decay_t<decltype(x.u)>> &&
2778       common::HasMember<common::Indirection<parser::FunctionReference>,
2779           std::decay_t<decltype(x.u)>>) {
2780     if (const auto *funcRef{
2781             std::get_if<common::Indirection<parser::FunctionReference>>(
2782                 &x.u)}) {
2783       // Function references in Exprs might turn out to be misparsed structure
2784       // constructors; we have to try generic procedure resolution
2785       // first to be sure.
2786       std::optional<parser::StructureConstructor> ctor;
2787       result = Analyze(funcRef->value(), &ctor);
2788       if (result && ctor) {
2789         // A misparsed function reference is really a structure
2790         // constructor.  Repair the parse tree in situ.
2791         const_cast<PARSED &>(x).u = std::move(*ctor);
2792       }
2793     } else {
2794       result = Analyze(x.u);
2795     }
2796   } else {
2797     result = Analyze(x.u);
2798   }
2799   if (result) {
2800     SetExpr(x, Fold(std::move(*result)));
2801     return x.typedExpr->v;
2802   } else {
2803     ResetExpr(x);
2804     if (!context_.AnyFatalError()) {
2805       std::string buf;
2806       llvm::raw_string_ostream dump{buf};
2807       parser::DumpTree(dump, x);
2808       Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2809           dump.str());
2810     }
2811     return std::nullopt;
2812   }
2813 }
2814 
2815 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2816   return ExprOrVariable(expr, expr.source);
2817 }
2818 
2819 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2820   return ExprOrVariable(variable, variable.GetSource());
2821 }
2822 
2823 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) {
2824   if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) {
2825     if (!useSavedTypedExprs_ || !var->typedExpr) {
2826       parser::CharBlock source{var->GetSource()};
2827       auto restorer{GetContextualMessages().SetLocation(source)};
2828       FixMisparsedFunctionReference(context_, var->u);
2829       if (const auto *funcRef{
2830               std::get_if<common::Indirection<parser::FunctionReference>>(
2831                   &var->u)}) {
2832         // A Selector that parsed as a Variable might turn out during analysis
2833         // to actually be a structure constructor.  In that case, repair the
2834         // Variable parse tree node into an Expr
2835         std::optional<parser::StructureConstructor> ctor;
2836         if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) {
2837           if (ctor) {
2838             auto &writable{const_cast<parser::Selector &>(selector)};
2839             writable.u = parser::Expr{std::move(*ctor)};
2840             auto &expr{std::get<parser::Expr>(writable.u)};
2841             expr.source = source;
2842             SetExpr(expr, Fold(std::move(*result)));
2843             return expr.typedExpr->v;
2844           } else {
2845             SetExpr(*var, Fold(std::move(*result)));
2846             return var->typedExpr->v;
2847           }
2848         } else {
2849           ResetExpr(*var);
2850           if (context_.AnyFatalError()) {
2851             return std::nullopt;
2852           }
2853         }
2854       }
2855     }
2856   }
2857   // Not a Variable -> FunctionReference; handle normally as Variable or Expr
2858   return Analyze(selector.u);
2859 }
2860 
2861 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
2862   return ExprOrVariable(x, x.source);
2863 }
2864 
2865 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) {
2866   return ExprOrVariable(x, parser::FindSourceLocation(x));
2867 }
2868 
2869 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) {
2870   return ExprOrVariable(x, parser::FindSourceLocation(x));
2871 }
2872 
2873 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
2874     TypeCategory category,
2875     const std::optional<parser::KindSelector> &selector) {
2876   int defaultKind{GetDefaultKind(category)};
2877   if (!selector) {
2878     return Expr<SubscriptInteger>{defaultKind};
2879   }
2880   return std::visit(
2881       common::visitors{
2882           [&](const parser::ScalarIntConstantExpr &x) {
2883             if (MaybeExpr kind{Analyze(x)}) {
2884               if (std::optional<std::int64_t> code{ToInt64(*kind)}) {
2885                 if (CheckIntrinsicKind(category, *code)) {
2886                   return Expr<SubscriptInteger>{*code};
2887                 }
2888               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) {
2889                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
2890               }
2891             }
2892             return Expr<SubscriptInteger>{defaultKind};
2893           },
2894           [&](const parser::KindSelector::StarSize &x) {
2895             std::intmax_t size = x.v;
2896             if (!CheckIntrinsicSize(category, size)) {
2897               size = defaultKind;
2898             } else if (category == TypeCategory::Complex) {
2899               size /= 2;
2900             }
2901             return Expr<SubscriptInteger>{size};
2902           },
2903       },
2904       selector->u);
2905 }
2906 
2907 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
2908   return context_.GetDefaultKind(category);
2909 }
2910 
2911 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
2912     common::TypeCategory category) {
2913   return {category, GetDefaultKind(category)};
2914 }
2915 
2916 bool ExpressionAnalyzer::CheckIntrinsicKind(
2917     TypeCategory category, std::int64_t kind) {
2918   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
2919     return true;
2920   } else {
2921     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
2922         ToUpperCase(EnumToString(category)), kind);
2923     return false;
2924   }
2925 }
2926 
2927 bool ExpressionAnalyzer::CheckIntrinsicSize(
2928     TypeCategory category, std::int64_t size) {
2929   if (category == TypeCategory::Complex) {
2930     // COMPLEX*16 == COMPLEX(KIND=8)
2931     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
2932       return true;
2933     }
2934   } else if (IsValidKindOfIntrinsicType(category, size)) {
2935     return true;
2936   }
2937   Say("%s*%jd is not a supported type"_err_en_US,
2938       ToUpperCase(EnumToString(category)), size);
2939   return false;
2940 }
2941 
2942 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
2943   return impliedDos_.insert(std::make_pair(name, kind)).second;
2944 }
2945 
2946 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
2947   auto iter{impliedDos_.find(name)};
2948   if (iter != impliedDos_.end()) {
2949     impliedDos_.erase(iter);
2950   }
2951 }
2952 
2953 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
2954     parser::CharBlock name) const {
2955   auto iter{impliedDos_.find(name)};
2956   if (iter != impliedDos_.cend()) {
2957     return {iter->second};
2958   } else {
2959     return std::nullopt;
2960   }
2961 }
2962 
2963 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
2964     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
2965   if (result) {
2966     if (auto type{result->GetType()}) {
2967       if (type->category() != category) { // C885
2968         Say(at, "Must have %s type, but is %s"_err_en_US,
2969             ToUpperCase(EnumToString(category)),
2970             ToUpperCase(type->AsFortran()));
2971         return false;
2972       } else if (defaultKind) {
2973         int kind{context_.GetDefaultKind(category)};
2974         if (type->kind() != kind) {
2975           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
2976               kind, ToUpperCase(EnumToString(category)),
2977               ToUpperCase(type->AsFortran()));
2978           return false;
2979         }
2980       }
2981     } else {
2982       Say(at, "Must have %s type, but is typeless"_err_en_US,
2983           ToUpperCase(EnumToString(category)));
2984       return false;
2985     }
2986   }
2987   return true;
2988 }
2989 
2990 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
2991     ProcedureDesignator &&proc, ActualArguments &&arguments) {
2992   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
2993     if (intrinsic->name == "null" && arguments.empty()) {
2994       return Expr<SomeType>{NullPointer{}};
2995     }
2996   }
2997   if (const Symbol * symbol{proc.GetSymbol()}) {
2998     if (!ResolveForward(*symbol)) {
2999       return std::nullopt;
3000     }
3001   }
3002   if (auto chars{CheckCall(callSite, proc, arguments)}) {
3003     if (chars->functionResult) {
3004       const auto &result{*chars->functionResult};
3005       if (result.IsProcedurePointer()) {
3006         return Expr<SomeType>{
3007             ProcedureRef{std::move(proc), std::move(arguments)}};
3008       } else {
3009         // Not a procedure pointer, so type and shape are known.
3010         return TypedWrapper<FunctionRef, ProcedureRef>(
3011             DEREF(result.GetTypeAndShape()).type(),
3012             ProcedureRef{std::move(proc), std::move(arguments)});
3013       }
3014     } else {
3015       Say("Function result characteristics are not known"_err_en_US);
3016     }
3017   }
3018   return std::nullopt;
3019 }
3020 
3021 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
3022     parser::CharBlock intrinsic, ActualArguments &&arguments) {
3023   if (std::optional<SpecificCall> specificCall{
3024           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
3025               arguments, context_.foldingContext())}) {
3026     return MakeFunctionRef(intrinsic,
3027         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
3028         std::move(specificCall->arguments));
3029   } else {
3030     return std::nullopt;
3031   }
3032 }
3033 
3034 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
3035   source_.ExtendToCover(x.GetSource());
3036   if (MaybeExpr expr{context_.Analyze(x)}) {
3037     if (!IsConstantExpr(*expr)) {
3038       actuals_.emplace_back(std::move(*expr));
3039       return;
3040     }
3041     const Symbol *symbol{GetLastSymbol(*expr)};
3042     if (!symbol) {
3043       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3044           x.GetSource());
3045     } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
3046       auto *msg{context_.SayAt(x,
3047           "Assignment to subprogram '%s' is not allowed"_err_en_US,
3048           symbol->name())};
3049       if (subp->isFunction()) {
3050         const auto &result{subp->result().name()};
3051         msg->Attach(result, "Function result is '%s'"_err_en_US, result);
3052       }
3053     } else {
3054       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3055           symbol->name());
3056     }
3057   }
3058   fatalErrors_ = true;
3059 }
3060 
3061 void ArgumentAnalyzer::Analyze(
3062     const parser::ActualArgSpec &arg, bool isSubroutine) {
3063   // TODO: Actual arguments that are procedures and procedure pointers need to
3064   // be detected and represented (they're not expressions).
3065   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
3066   std::optional<ActualArgument> actual;
3067   std::visit(common::visitors{
3068                  [&](const common::Indirection<parser::Expr> &x) {
3069                    // TODO: Distinguish & handle procedure name and
3070                    // proc-component-ref
3071                    actual = AnalyzeExpr(x.value());
3072                  },
3073                  [&](const parser::AltReturnSpec &label) {
3074                    if (!isSubroutine) {
3075                      context_.Say(
3076                          "alternate return specification may not appear on"
3077                          " function reference"_err_en_US);
3078                    }
3079                    actual = ActualArgument(label.v);
3080                  },
3081                  [&](const parser::ActualArg::PercentRef &) {
3082                    context_.Say("TODO: %REF() argument"_err_en_US);
3083                  },
3084                  [&](const parser::ActualArg::PercentVal &) {
3085                    context_.Say("TODO: %VAL() argument"_err_en_US);
3086                  },
3087              },
3088       std::get<parser::ActualArg>(arg.t).u);
3089   if (actual) {
3090     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
3091       actual->set_keyword(argKW->v.source);
3092     }
3093     actuals_.emplace_back(std::move(*actual));
3094   } else {
3095     fatalErrors_ = true;
3096   }
3097 }
3098 
3099 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const {
3100   CHECK(actuals_.size() == 2);
3101   return semantics::IsIntrinsicRelational(
3102       opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1));
3103 }
3104 
3105 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
3106   std::optional<DynamicType> type0{GetType(0)};
3107   if (actuals_.size() == 1) {
3108     if (IsBOZLiteral(0)) {
3109       return opr == NumericOperator::Add;
3110     } else {
3111       return type0 && semantics::IsIntrinsicNumeric(*type0);
3112     }
3113   } else {
3114     std::optional<DynamicType> type1{GetType(1)};
3115     if (IsBOZLiteral(0) && type1) {
3116       auto cat1{type1->category()};
3117       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
3118     } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ
3119       auto cat0{type0->category()};
3120       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
3121     } else {
3122       return type0 && type1 &&
3123           semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1));
3124     }
3125   }
3126 }
3127 
3128 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
3129   if (actuals_.size() == 1) {
3130     return semantics::IsIntrinsicLogical(*GetType(0));
3131     return GetType(0)->category() == TypeCategory::Logical;
3132   } else {
3133     return semantics::IsIntrinsicLogical(
3134         *GetType(0), GetRank(0), *GetType(1), GetRank(1));
3135   }
3136 }
3137 
3138 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
3139   return semantics::IsIntrinsicConcat(
3140       *GetType(0), GetRank(0), *GetType(1), GetRank(1));
3141 }
3142 
3143 bool ArgumentAnalyzer::CheckConformance() const {
3144   if (actuals_.size() == 2) {
3145     const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
3146     const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
3147     if (lhs && rhs) {
3148       auto &foldingContext{context_.GetFoldingContext()};
3149       auto lhShape{GetShape(foldingContext, *lhs)};
3150       auto rhShape{GetShape(foldingContext, *rhs)};
3151       if (lhShape && rhShape) {
3152         return evaluate::CheckConformance(foldingContext.messages(), *lhShape,
3153             *rhShape, CheckConformanceFlags::EitherScalarExpandable,
3154             "left operand", "right operand")
3155             .value_or(false /*fail when conformance is not known now*/);
3156       }
3157     }
3158   }
3159   return true; // no proven problem
3160 }
3161 
3162 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
3163     const char *opr, parser::MessageFixedText &&error, bool isUserOp) {
3164   if (AnyUntypedOrMissingOperand()) {
3165     context_.Say(
3166         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3167     return std::nullopt;
3168   }
3169   {
3170     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3171     std::string oprNameString{
3172         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
3173     parser::CharBlock oprName{oprNameString};
3174     const auto &scope{context_.context().FindScope(source_)};
3175     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
3176       parser::Name name{symbol->name(), symbol};
3177       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
3178         return result;
3179       }
3180       sawDefinedOp_ = symbol;
3181     }
3182     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
3183       if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) {
3184         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
3185           return result;
3186         }
3187       }
3188     }
3189   }
3190   if (sawDefinedOp_) {
3191     SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString()));
3192   } else if (actuals_.size() == 1 || AreConformable()) {
3193     context_.Say(
3194         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3195   } else {
3196     context_.Say(
3197         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
3198         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
3199   }
3200   return std::nullopt;
3201 }
3202 
3203 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
3204     std::vector<const char *> oprs, parser::MessageFixedText &&error) {
3205   for (std::size_t i{1}; i < oprs.size(); ++i) {
3206     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3207     if (auto result{TryDefinedOp(oprs[i], std::move(error))}) {
3208       return result;
3209     }
3210   }
3211   return TryDefinedOp(oprs[0], std::move(error));
3212 }
3213 
3214 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
3215   ActualArguments localActuals{actuals_};
3216   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
3217   if (!proc) {
3218     proc = &symbol;
3219     localActuals.at(passIndex).value().set_isPassedObject();
3220   }
3221   CheckConformance();
3222   return context_.MakeFunctionRef(
3223       source_, ProcedureDesignator{*proc}, std::move(localActuals));
3224 }
3225 
3226 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
3227   using semantics::Tristate;
3228   const Expr<SomeType> &lhs{GetExpr(0)};
3229   const Expr<SomeType> &rhs{GetExpr(1)};
3230   std::optional<DynamicType> lhsType{lhs.GetType()};
3231   std::optional<DynamicType> rhsType{rhs.GetType()};
3232   int lhsRank{lhs.Rank()};
3233   int rhsRank{rhs.Rank()};
3234   Tristate isDefined{
3235       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
3236   if (isDefined == Tristate::No) {
3237     if (lhsType && rhsType) {
3238       AddAssignmentConversion(*lhsType, *rhsType);
3239     }
3240     return std::nullopt; // user-defined assignment not allowed for these args
3241   }
3242   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
3243   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
3244     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
3245     return std::move(*procRef);
3246   }
3247   if (isDefined == Tristate::Yes) {
3248     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
3249         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
3250       SayNoMatch("ASSIGNMENT(=)", true);
3251     }
3252   }
3253   return std::nullopt;
3254 }
3255 
3256 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
3257     TypeCategory lhs, TypeCategory rhs) {
3258   if (!context_.context().languageFeatures().IsEnabled(
3259           common::LanguageFeature::LogicalIntegerAssignment)) {
3260     return false;
3261   }
3262   std::optional<parser::MessageFixedText> msg;
3263   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
3264     // allow assignment to LOGICAL from INTEGER as a legacy extension
3265     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US;
3266   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
3267     // ... and assignment to LOGICAL from INTEGER
3268     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US;
3269   } else {
3270     return false;
3271   }
3272   if (context_.context().languageFeatures().ShouldWarn(
3273           common::LanguageFeature::LogicalIntegerAssignment)) {
3274     context_.Say(std::move(*msg));
3275   }
3276   return true;
3277 }
3278 
3279 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
3280   auto restorer{context_.GetContextualMessages().DiscardMessages()};
3281   std::string oprNameString{"assignment(=)"};
3282   parser::CharBlock oprName{oprNameString};
3283   const Symbol *proc{nullptr};
3284   const auto &scope{context_.context().FindScope(source_)};
3285   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
3286     ExpressionAnalyzer::AdjustActuals noAdjustment;
3287     if (const Symbol *
3288         specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) {
3289       proc = specific;
3290     } else {
3291       context_.EmitGenericResolutionError(*symbol);
3292     }
3293   }
3294   int passedObjectIndex{-1};
3295   for (std::size_t i{0}; i < actuals_.size(); ++i) {
3296     if (const Symbol * specific{FindBoundOp(oprName, i)}) {
3297       if (const Symbol *
3298           resolution{GetBindingResolution(GetType(i), *specific)}) {
3299         proc = resolution;
3300       } else {
3301         proc = specific;
3302         passedObjectIndex = i;
3303       }
3304     }
3305   }
3306   if (!proc) {
3307     return std::nullopt;
3308   }
3309   ActualArguments actualsCopy{actuals_};
3310   if (passedObjectIndex >= 0) {
3311     actualsCopy[passedObjectIndex]->set_isPassedObject();
3312   }
3313   return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
3314 }
3315 
3316 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
3317   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
3318      << '\n';
3319   for (const auto &actual : actuals_) {
3320     if (!actual.has_value()) {
3321       os << "- error\n";
3322     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
3323       os << "- assumed type: " << symbol->name().ToString() << '\n';
3324     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
3325       expr->AsFortran(os << "- expr: ") << '\n';
3326     } else {
3327       DIE("bad ActualArgument");
3328     }
3329   }
3330 }
3331 
3332 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
3333     const parser::Expr &expr) {
3334   source_.ExtendToCover(expr.source);
3335   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
3336     expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
3337     if (isProcedureCall_) {
3338       return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
3339     }
3340     context_.SayAt(expr.source,
3341         "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
3342   } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) {
3343     if (isProcedureCall_ || !IsProcedure(*argExpr)) {
3344       return ActualArgument{std::move(*argExpr)};
3345     }
3346     context_.SayAt(expr.source,
3347         IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US
3348                              : "Subroutine name is not allowed here"_err_en_US);
3349   }
3350   return std::nullopt;
3351 }
3352 
3353 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray(
3354     const parser::Expr &expr) {
3355   // If an expression's parse tree is a whole assumed-size array:
3356   //   Expr -> Designator -> DataRef -> Name
3357   // treat it as a special case for argument passing and bypass
3358   // the C1002/C1014 constraint checking in expression semantics.
3359   if (const auto *name{parser::Unwrap<parser::Name>(expr)}) {
3360     if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) {
3361       auto restorer{context_.AllowWholeAssumedSizeArray()};
3362       return context_.Analyze(expr);
3363     }
3364   }
3365   return context_.Analyze(expr);
3366 }
3367 
3368 bool ArgumentAnalyzer::AreConformable() const {
3369   CHECK(!fatalErrors_ && actuals_.size() == 2);
3370   return evaluate::AreConformable(*actuals_[0], *actuals_[1]);
3371 }
3372 
3373 // Look for a type-bound operator in the type of arg number passIndex.
3374 const Symbol *ArgumentAnalyzer::FindBoundOp(
3375     parser::CharBlock oprName, int passIndex) {
3376   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
3377   if (!type || !type->scope()) {
3378     return nullptr;
3379   }
3380   const Symbol *symbol{type->scope()->FindComponent(oprName)};
3381   if (!symbol) {
3382     return nullptr;
3383   }
3384   sawDefinedOp_ = symbol;
3385   ExpressionAnalyzer::AdjustActuals adjustment{
3386       [&](const Symbol &proc, ActualArguments &) {
3387         return passIndex == GetPassIndex(proc);
3388       }};
3389   const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
3390   if (!result) {
3391     context_.EmitGenericResolutionError(*symbol);
3392   }
3393   return result;
3394 }
3395 
3396 // If there is an implicit conversion between intrinsic types, make it explicit
3397 void ArgumentAnalyzer::AddAssignmentConversion(
3398     const DynamicType &lhsType, const DynamicType &rhsType) {
3399   if (lhsType.category() == rhsType.category() &&
3400       lhsType.kind() == rhsType.kind()) {
3401     // no conversion necessary
3402   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
3403     actuals_[1] = ActualArgument{*rhsExpr};
3404   } else {
3405     actuals_[1] = std::nullopt;
3406   }
3407 }
3408 
3409 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
3410   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
3411 }
3412 int ArgumentAnalyzer::GetRank(std::size_t i) const {
3413   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
3414 }
3415 
3416 // If the argument at index i is a BOZ literal, convert its type to match the
3417 // otherType.  If it's REAL convert to REAL, otherwise convert to INTEGER.
3418 // Note that IBM supports comparing BOZ literals to CHARACTER operands.  That
3419 // is not currently supported.
3420 void ArgumentAnalyzer::ConvertBOZ(
3421     std::size_t i, std::optional<DynamicType> otherType) {
3422   if (IsBOZLiteral(i)) {
3423     Expr<SomeType> &&argExpr{MoveExpr(i)};
3424     auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
3425     if (otherType && otherType->category() == TypeCategory::Real) {
3426       MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>(
3427           context_.context().GetDefaultKind(TypeCategory::Real),
3428           std::move(*boz))};
3429       actuals_[i] = std::move(*realExpr);
3430     } else {
3431       MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>(
3432           context_.context().GetDefaultKind(TypeCategory::Integer),
3433           std::move(*boz))};
3434       actuals_[i] = std::move(*intExpr);
3435     }
3436   }
3437 }
3438 
3439 // Report error resolving opr when there is a user-defined one available
3440 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
3441   std::string type0{TypeAsFortran(0)};
3442   auto rank0{actuals_[0]->Rank()};
3443   if (actuals_.size() == 1) {
3444     if (rank0 > 0) {
3445       context_.Say("No intrinsic or user-defined %s matches "
3446                    "rank %d array of %s"_err_en_US,
3447           opr, rank0, type0);
3448     } else {
3449       context_.Say("No intrinsic or user-defined %s matches "
3450                    "operand type %s"_err_en_US,
3451           opr, type0);
3452     }
3453   } else {
3454     std::string type1{TypeAsFortran(1)};
3455     auto rank1{actuals_[1]->Rank()};
3456     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
3457       context_.Say("No intrinsic or user-defined %s matches "
3458                    "rank %d array of %s and rank %d array of %s"_err_en_US,
3459           opr, rank0, type0, rank1, type1);
3460     } else if (isAssignment && rank0 != rank1) {
3461       if (rank0 == 0) {
3462         context_.Say("No intrinsic or user-defined %s matches "
3463                      "scalar %s and rank %d array of %s"_err_en_US,
3464             opr, type0, rank1, type1);
3465       } else {
3466         context_.Say("No intrinsic or user-defined %s matches "
3467                      "rank %d array of %s and scalar %s"_err_en_US,
3468             opr, rank0, type0, type1);
3469       }
3470     } else {
3471       context_.Say("No intrinsic or user-defined %s matches "
3472                    "operand types %s and %s"_err_en_US,
3473           opr, type0, type1);
3474     }
3475   }
3476 }
3477 
3478 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
3479   if (i >= actuals_.size() || !actuals_[i]) {
3480     return "missing argument";
3481   } else if (std::optional<DynamicType> type{GetType(i)}) {
3482     return type->category() == TypeCategory::Derived
3483         ? "TYPE("s + type->AsFortran() + ')'
3484         : type->category() == TypeCategory::Character
3485         ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
3486         : ToUpperCase(type->AsFortran());
3487   } else {
3488     return "untyped";
3489   }
3490 }
3491 
3492 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() {
3493   for (const auto &actual : actuals_) {
3494     if (!actual || !actual->GetType()) {
3495       return true;
3496     }
3497   }
3498   return false;
3499 }
3500 
3501 } // namespace Fortran::evaluate
3502 
3503 namespace Fortran::semantics {
3504 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
3505     SemanticsContext &context, common::TypeCategory category,
3506     const std::optional<parser::KindSelector> &selector) {
3507   evaluate::ExpressionAnalyzer analyzer{context};
3508   auto restorer{
3509       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3510   return analyzer.AnalyzeKindSelector(category, selector);
3511 }
3512 
3513 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) {
3514   evaluate::ExpressionAnalyzer{context}.Analyze(call);
3515 }
3516 
3517 const evaluate::Assignment *AnalyzeAssignmentStmt(
3518     SemanticsContext &context, const parser::AssignmentStmt &stmt) {
3519   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3520 }
3521 const evaluate::Assignment *AnalyzePointerAssignmentStmt(
3522     SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) {
3523   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3524 }
3525 
3526 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3527 
3528 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
3529   parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
3530   const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
3531   auto name{bounds.name.thing.thing};
3532   int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
3533   if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
3534     if (dynamicType->category() == TypeCategory::Integer) {
3535       kind = dynamicType->kind();
3536     }
3537   }
3538   exprAnalyzer_.AddImpliedDo(name.source, kind);
3539   parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
3540   exprAnalyzer_.RemoveImpliedDo(name.source);
3541   return false;
3542 }
3543 
3544 bool ExprChecker::Walk(const parser::Program &program) {
3545   parser::Walk(program, *this);
3546   return !context_.AnyFatalError();
3547 }
3548 } // namespace Fortran::semantics
3549