1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/idioms.h"
14 #include "flang/Evaluate/common.h"
15 #include "flang/Evaluate/fold.h"
16 #include "flang/Evaluate/tools.h"
17 #include "flang/Parser/characters.h"
18 #include "flang/Parser/dump-parse-tree.h"
19 #include "flang/Parser/parse-tree-visitor.h"
20 #include "flang/Parser/parse-tree.h"
21 #include "flang/Semantics/scope.h"
22 #include "flang/Semantics/semantics.h"
23 #include "flang/Semantics/symbol.h"
24 #include "flang/Semantics/tools.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <functional>
28 #include <optional>
29 #include <set>
30 
31 // Typedef for optional generic expressions (ubiquitous in this file)
32 using MaybeExpr =
33     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
34 
35 // Much of the code that implements semantic analysis of expressions is
36 // tightly coupled with their typed representations in lib/Evaluate,
37 // and appears here in namespace Fortran::evaluate for convenience.
38 namespace Fortran::evaluate {
39 
40 using common::LanguageFeature;
41 using common::NumericOperator;
42 using common::TypeCategory;
43 
44 static inline std::string ToUpperCase(const std::string &str) {
45   return parser::ToUpperCaseLetters(str);
46 }
47 
48 struct DynamicTypeWithLength : public DynamicType {
49   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
50   std::optional<Expr<SubscriptInteger>> LEN() const;
51   std::optional<Expr<SubscriptInteger>> length;
52 };
53 
54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
55   if (length) {
56     return length;
57   }
58   if (auto *lengthParam{charLength()}) {
59     if (const auto &len{lengthParam->GetExplicit()}) {
60       return ConvertToType<SubscriptInteger>(common::Clone(*len));
61     }
62   }
63   return std::nullopt; // assumed or deferred length
64 }
65 
66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
67     const std::optional<parser::TypeSpec> &spec) {
68   if (spec) {
69     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
70       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
71       // (viz., an intrinsic type with valid known kind or a non-polymorphic
72       // & non-ABSTRACT derived type).
73       if (const semantics::IntrinsicTypeSpec *
74           intrinsic{typeSpec->AsIntrinsic()}) {
75         TypeCategory category{intrinsic->category()};
76         if (auto optKind{ToInt64(intrinsic->kind())}) {
77           int kind{static_cast<int>(*optKind)};
78           if (category == TypeCategory::Character) {
79             const semantics::CharacterTypeSpec &cts{
80                 typeSpec->characterTypeSpec()};
81             const semantics::ParamValue &len{cts.length()};
82             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
83             // type guards, but not in array constructors.
84             return DynamicTypeWithLength{DynamicType{kind, len}};
85           } else {
86             return DynamicTypeWithLength{DynamicType{category, kind}};
87           }
88         }
89       } else if (const semantics::DerivedTypeSpec *
90           derived{typeSpec->AsDerived()}) {
91         return DynamicTypeWithLength{DynamicType{*derived}};
92       }
93     }
94   }
95   return std::nullopt;
96 }
97 
98 class ArgumentAnalyzer {
99 public:
100   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
101       : context_{context}, allowAssumedType_{false} {}
102   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
103       bool allowAssumedType = false)
104       : context_{context}, source_{source}, allowAssumedType_{
105                                                 allowAssumedType} {}
106   bool fatalErrors() const { return fatalErrors_; }
107   ActualArguments &&GetActuals() {
108     CHECK(!fatalErrors_);
109     return std::move(actuals_);
110   }
111   const Expr<SomeType> &GetExpr(std::size_t i) const {
112     return DEREF(actuals_.at(i).value().UnwrapExpr());
113   }
114   Expr<SomeType> &&MoveExpr(std::size_t i) {
115     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
116   }
117   void Analyze(const common::Indirection<parser::Expr> &x) {
118     Analyze(x.value());
119   }
120   void Analyze(const parser::Expr &x) {
121     actuals_.emplace_back(AnalyzeExpr(x));
122     fatalErrors_ |= !actuals_.back();
123   }
124   void Analyze(const parser::Variable &);
125   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
126 
127   bool IsIntrinsicRelational(RelationalOperator) const;
128   bool IsIntrinsicLogical() const;
129   bool IsIntrinsicNumeric(NumericOperator) const;
130   bool IsIntrinsicConcat() const;
131 
132   // Find and return a user-defined operator or report an error.
133   // The provided message is used if there is no such operator.
134   MaybeExpr TryDefinedOp(
135       const char *, parser::MessageFixedText &&, bool isUserOp = false);
136   template <typename E>
137   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) {
138     return TryDefinedOp(
139         context_.context().languageFeatures().GetNames(opr), std::move(msg));
140   }
141   // Find and return a user-defined assignment
142   std::optional<ProcedureRef> TryDefinedAssignment();
143   std::optional<ProcedureRef> GetDefinedAssignmentProc();
144   void Dump(llvm::raw_ostream &);
145 
146 private:
147   MaybeExpr TryDefinedOp(
148       std::vector<const char *>, parser::MessageFixedText &&);
149   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
150   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
151   bool AreConformable() const;
152   const Symbol *FindBoundOp(parser::CharBlock, int passIndex);
153   void AddAssignmentConversion(
154       const DynamicType &lhsType, const DynamicType &rhsType);
155   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
156   std::optional<DynamicType> GetType(std::size_t) const;
157   int GetRank(std::size_t) const;
158   bool IsBOZLiteral(std::size_t i) const {
159     return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u);
160   }
161   void SayNoMatch(const std::string &, bool isAssignment = false);
162   std::string TypeAsFortran(std::size_t);
163   bool AnyUntypedOperand();
164 
165   ExpressionAnalyzer &context_;
166   ActualArguments actuals_;
167   parser::CharBlock source_;
168   bool fatalErrors_{false};
169   const bool allowAssumedType_;
170   const Symbol *sawDefinedOp_{nullptr};
171 };
172 
173 // Wraps a data reference in a typed Designator<>, and a procedure
174 // or procedure pointer reference in a ProcedureDesignator.
175 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
176   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
177   if (semantics::IsProcedure(symbol)) {
178     if (auto *component{std::get_if<Component>(&ref.u)}) {
179       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
180     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
181       DIE("unexpected alternative in DataRef");
182     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
183       return Expr<SomeType>{ProcedureDesignator{symbol}};
184     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
185                    symbol.name().ToString())}) {
186       SpecificIntrinsic intrinsic{
187           symbol.name().ToString(), std::move(*interface)};
188       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
189       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
190     } else {
191       Say("'%s' is not a specific intrinsic procedure"_err_en_US,
192           symbol.name());
193       return std::nullopt;
194     }
195   } else if (auto dyType{DynamicType::From(symbol)}) {
196     return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref));
197   }
198   return std::nullopt;
199 }
200 
201 // Some subscript semantic checks must be deferred until all of the
202 // subscripts are in hand.
203 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
204   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
205   const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()};
206   int symbolRank{symbol.Rank()};
207   int subscripts{static_cast<int>(ref.size())};
208   if (subscripts == 0) {
209     // nothing to check
210   } else if (subscripts != symbolRank) {
211     if (symbolRank != 0) {
212       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
213           symbolRank, symbol.name(), subscripts);
214     }
215     return std::nullopt;
216   } else if (Component * component{ref.base().UnwrapComponent()}) {
217     int baseRank{component->base().Rank()};
218     if (baseRank > 0) {
219       int subscriptRank{0};
220       for (const auto &expr : ref.subscript()) {
221         subscriptRank += expr.Rank();
222       }
223       if (subscriptRank > 0) {
224         Say("Subscripts of component '%s' of rank-%d derived type "
225             "array have rank %d but must all be scalar"_err_en_US,
226             symbol.name(), baseRank, subscriptRank);
227         return std::nullopt;
228       }
229     }
230   } else if (object) {
231     // C928 & C1002
232     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
233       if (!last->upper() && object->IsAssumedSize()) {
234         Say("Assumed-size array '%s' must have explicit final "
235             "subscript upper bound value"_err_en_US,
236             symbol.name());
237         return std::nullopt;
238       }
239     }
240   }
241   return Designate(DataRef{std::move(ref)});
242 }
243 
244 // Applies subscripts to a data reference.
245 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
246     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
247   return std::visit(
248       common::visitors{
249           [&](SymbolRef &&symbol) {
250             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
251           },
252           [&](Component &&c) {
253             return CompleteSubscripts(
254                 ArrayRef{std::move(c), std::move(subscripts)});
255           },
256           [&](auto &&) -> MaybeExpr {
257             DIE("bad base for ArrayRef");
258             return std::nullopt;
259           },
260       },
261       std::move(dataRef.u));
262 }
263 
264 // Top-level checks for data references.
265 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
266   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
267     const Symbol &symbol{component->GetLastSymbol()};
268     int componentRank{symbol.Rank()};
269     if (componentRank > 0) {
270       int baseRank{component->base().Rank()};
271       if (baseRank > 0) {
272         Say("Reference to whole rank-%d component '%%%s' of "
273             "rank-%d array of derived type is not allowed"_err_en_US,
274             componentRank, symbol.name(), baseRank);
275       }
276     }
277   }
278   return Designate(std::move(dataRef));
279 }
280 
281 // Parse tree correction after a substring S(j:k) was misparsed as an
282 // array section.  N.B. Fortran substrings have to have a range, not a
283 // single index.
284 static void FixMisparsedSubstring(const parser::Designator &d) {
285   auto &mutate{const_cast<parser::Designator &>(d)};
286   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
287     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
288             &dataRef->u)}) {
289       parser::ArrayElement &arrElement{ae->value()};
290       if (!arrElement.subscripts.empty()) {
291         auto iter{arrElement.subscripts.begin()};
292         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
293           if (!std::get<2>(triplet->t) /* no stride */ &&
294               ++iter == arrElement.subscripts.end() /* one subscript */) {
295             if (Symbol *
296                 symbol{std::visit(
297                     common::visitors{
298                         [](parser::Name &n) { return n.symbol; },
299                         [](common::Indirection<parser::StructureComponent>
300                                 &sc) { return sc.value().component.symbol; },
301                         [](auto &) -> Symbol * { return nullptr; },
302                     },
303                     arrElement.base.u)}) {
304               const Symbol &ultimate{symbol->GetUltimate()};
305               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
306                 if (!ultimate.IsObjectArray() &&
307                     type->category() == semantics::DeclTypeSpec::Character) {
308                   // The ambiguous S(j:k) was parsed as an array section
309                   // reference, but it's now clear that it's a substring.
310                   // Fix the parse tree in situ.
311                   mutate.u = arrElement.ConvertToSubstring();
312                 }
313               }
314             }
315           }
316         }
317       }
318     }
319   }
320 }
321 
322 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
323   auto restorer{GetContextualMessages().SetLocation(d.source)};
324   FixMisparsedSubstring(d);
325   // These checks have to be deferred to these "top level" data-refs where
326   // we can be sure that there are no following subscripts (yet).
327   // Substrings have already been run through TopLevelChecks() and
328   // won't be returned by ExtractDataRef().
329   if (MaybeExpr result{Analyze(d.u)}) {
330     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
331       return TopLevelChecks(std::move(*dataRef));
332     }
333     return result;
334   }
335   return std::nullopt;
336 }
337 
338 // A utility subroutine to repackage optional expressions of various levels
339 // of type specificity as fully general MaybeExpr values.
340 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
341   return std::make_optional(AsGenericExpr(std::move(x)));
342 }
343 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
344   if (x) {
345     return AsMaybeExpr(std::move(*x));
346   }
347   return std::nullopt;
348 }
349 
350 // Type kind parameter values for literal constants.
351 int ExpressionAnalyzer::AnalyzeKindParam(
352     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
353   if (!kindParam) {
354     return defaultKind;
355   }
356   return std::visit(
357       common::visitors{
358           [](std::uint64_t k) { return static_cast<int>(k); },
359           [&](const parser::Scalar<
360               parser::Integer<parser::Constant<parser::Name>>> &n) {
361             if (MaybeExpr ie{Analyze(n)}) {
362               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
363                 int iv = *i64;
364                 if (iv == *i64) {
365                   return iv;
366                 }
367               }
368             }
369             return defaultKind;
370           },
371       },
372       kindParam->u);
373 }
374 
375 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
376 struct IntTypeVisitor {
377   using Result = MaybeExpr;
378   using Types = IntegerTypes;
379   template <typename T> Result Test() {
380     if (T::kind >= kind) {
381       const char *p{digits.begin()};
382       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
383       if (!value.overflow) {
384         if (T::kind > kind) {
385           if (!isDefaultKind ||
386               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
387             return std::nullopt;
388           } else if (analyzer.context().ShouldWarn(
389                          LanguageFeature::BigIntLiterals)) {
390             analyzer.Say(digits,
391                 "Integer literal is too large for default INTEGER(KIND=%d); "
392                 "assuming INTEGER(KIND=%d)"_en_US,
393                 kind, T::kind);
394           }
395         }
396         return Expr<SomeType>{
397             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
398       }
399     }
400     return std::nullopt;
401   }
402   ExpressionAnalyzer &analyzer;
403   parser::CharBlock digits;
404   int kind;
405   bool isDefaultKind;
406 };
407 
408 template <typename PARSED>
409 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
410   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
411   bool isDefaultKind{!kindParam};
412   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
413   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
414     auto digits{std::get<parser::CharBlock>(x.t)};
415     if (MaybeExpr result{common::SearchTypes(
416             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
417       return result;
418     } else if (isDefaultKind) {
419       Say(digits,
420           "Integer literal is too large for any allowable "
421           "kind of INTEGER"_err_en_US);
422     } else {
423       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
424           kind);
425     }
426   }
427   return std::nullopt;
428 }
429 
430 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
431   auto restorer{
432       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
433   return IntLiteralConstant(x);
434 }
435 
436 MaybeExpr ExpressionAnalyzer::Analyze(
437     const parser::SignedIntLiteralConstant &x) {
438   auto restorer{GetContextualMessages().SetLocation(x.source)};
439   return IntLiteralConstant(x);
440 }
441 
442 template <typename TYPE>
443 Constant<TYPE> ReadRealLiteral(
444     parser::CharBlock source, FoldingContext &context) {
445   const char *p{source.begin()};
446   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
447   CHECK(p == source.end());
448   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
449   auto value{valWithFlags.value};
450   if (context.flushSubnormalsToZero()) {
451     value = value.FlushSubnormalToZero();
452   }
453   return {value};
454 }
455 
456 struct RealTypeVisitor {
457   using Result = std::optional<Expr<SomeReal>>;
458   using Types = RealTypes;
459 
460   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
461       : kind{k}, literal{lit}, context{ctx} {}
462 
463   template <typename T> Result Test() {
464     if (kind == T::kind) {
465       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
466     }
467     return std::nullopt;
468   }
469 
470   int kind;
471   parser::CharBlock literal;
472   FoldingContext &context;
473 };
474 
475 // Reads a real literal constant and encodes it with the right kind.
476 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
477   // Use a local message context around the real literal for better
478   // provenance on any messages.
479   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
480   // If a kind parameter appears, it defines the kind of the literal and the
481   // letter used in an exponent part must be 'E' (e.g., the 'E' in
482   // "6.02214E+23").  In the absence of an explicit kind parameter, any
483   // exponent letter determines the kind.  Otherwise, defaults apply.
484   auto &defaults{context_.defaultKinds()};
485   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
486   const char *end{x.real.source.end()};
487   char expoLetter{' '};
488   std::optional<int> letterKind;
489   for (const char *p{x.real.source.begin()}; p < end; ++p) {
490     if (parser::IsLetter(*p)) {
491       expoLetter = *p;
492       switch (expoLetter) {
493       case 'e':
494         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
495         break;
496       case 'd':
497         letterKind = defaults.doublePrecisionKind();
498         break;
499       case 'q':
500         letterKind = defaults.quadPrecisionKind();
501         break;
502       default:
503         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
504       }
505       break;
506     }
507   }
508   if (letterKind) {
509     defaultKind = *letterKind;
510   }
511   // C716 requires 'E' as an exponent, but this is more useful
512   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
513   if (letterKind && kind != *letterKind && expoLetter != 'e') {
514     Say("Explicit kind parameter on real constant disagrees with "
515         "exponent letter '%c'"_en_US,
516         expoLetter);
517   }
518   auto result{common::SearchTypes(
519       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
520   if (!result) { // C717
521     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
522   }
523   return AsMaybeExpr(std::move(result));
524 }
525 
526 MaybeExpr ExpressionAnalyzer::Analyze(
527     const parser::SignedRealLiteralConstant &x) {
528   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
529     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
530     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
531       if (sign == parser::Sign::Negative) {
532         return {AsGenericExpr(-std::move(realExpr))};
533       }
534     }
535     return result;
536   }
537   return std::nullopt;
538 }
539 
540 MaybeExpr ExpressionAnalyzer::Analyze(
541     const parser::SignedComplexLiteralConstant &x) {
542   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
543   if (!result) {
544     return std::nullopt;
545   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
546     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
547   } else {
548     return result;
549   }
550 }
551 
552 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
553   return Analyze(x.u);
554 }
555 
556 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
557   return AsMaybeExpr(
558       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
559           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
560 }
561 
562 // CHARACTER literal processing.
563 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
564   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
565     return std::nullopt;
566   }
567   switch (kind) {
568   case 1:
569     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
570         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
571             string, true)});
572   case 2:
573     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
574         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
575             string, true)});
576   case 4:
577     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
578         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
579             string, true)});
580   default:
581     CRASH_NO_CASE;
582   }
583 }
584 
585 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
586   int kind{
587       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
588   auto value{std::get<std::string>(x.t)};
589   return AnalyzeString(std::move(value), kind);
590 }
591 
592 MaybeExpr ExpressionAnalyzer::Analyze(
593     const parser::HollerithLiteralConstant &x) {
594   int kind{GetDefaultKind(TypeCategory::Character)};
595   auto value{x.v};
596   return AnalyzeString(std::move(value), kind);
597 }
598 
599 // .TRUE. and .FALSE. of various kinds
600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
601   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
602       GetDefaultKind(TypeCategory::Logical))};
603   bool value{std::get<bool>(x.t)};
604   auto result{common::SearchTypes(
605       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
606           kind, std::move(value)})};
607   if (!result) {
608     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
609   }
610   return result;
611 }
612 
613 // BOZ typeless literals
614 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
615   const char *p{x.v.c_str()};
616   std::uint64_t base{16};
617   switch (*p++) {
618   case 'b':
619     base = 2;
620     break;
621   case 'o':
622     base = 8;
623     break;
624   case 'z':
625     break;
626   case 'x':
627     break;
628   default:
629     CRASH_NO_CASE;
630   }
631   CHECK(*p == '"');
632   ++p;
633   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
634   if (*p != '"') {
635     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, x.v);
636     return std::nullopt;
637   }
638   if (value.overflow) {
639     Say("BOZ literal '%s' too large"_err_en_US, x.v);
640     return std::nullopt;
641   }
642   return AsGenericExpr(std::move(value.value));
643 }
644 
645 // For use with SearchTypes to create a TypeParamInquiry with the
646 // right integer kind.
647 struct TypeParamInquiryVisitor {
648   using Result = std::optional<Expr<SomeInteger>>;
649   using Types = IntegerTypes;
650   TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol &param)
651       : kind{k}, base{std::move(b)}, parameter{param} {}
652   TypeParamInquiryVisitor(int k, const Symbol &param)
653       : kind{k}, parameter{param} {}
654   template <typename T> Result Test() {
655     if (kind == T::kind) {
656       return Expr<SomeInteger>{
657           Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}};
658     }
659     return std::nullopt;
660   }
661   int kind;
662   std::optional<NamedEntity> base;
663   const Symbol &parameter;
664 };
665 
666 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry(
667     const Symbol *symbol) {
668   if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) {
669     if (dyType->category() == TypeCategory::Integer) {
670       return common::SearchTypes(
671           TypeParamInquiryVisitor{dyType->kind(), *symbol});
672     }
673   }
674   return std::nullopt;
675 }
676 
677 // Names and named constants
678 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
679   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
680     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
681         *kind, AsExpr(ImpliedDoIndex{n.source})));
682   } else if (context_.HasError(n) || !n.symbol) {
683     return std::nullopt;
684   } else {
685     const Symbol &ultimate{n.symbol->GetUltimate()};
686     if (ultimate.has<semantics::TypeParamDetails>()) {
687       // A bare reference to a derived type parameter (within a parameterized
688       // derived type definition)
689       return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate));
690     } else {
691       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
692         if (const semantics::Scope *
693             pure{semantics::FindPureProcedureContaining(
694                 context_.FindScope(n.source))}) {
695           SayAt(n,
696               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
697               n.source, DEREF(pure->symbol()).name());
698           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
699         }
700       }
701       return Designate(DataRef{*n.symbol});
702     }
703   }
704 }
705 
706 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
707   if (MaybeExpr value{Analyze(n.v)}) {
708     Expr<SomeType> folded{Fold(std::move(*value))};
709     if (IsConstantExpr(folded)) {
710       return {folded};
711     }
712     Say(n.v.source, "must be a constant"_err_en_US); // C718
713   }
714   return std::nullopt;
715 }
716 
717 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) {
718   return Expr<SomeType>{NullPointer{}};
719 }
720 
721 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
722   return Analyze(x.value());
723 }
724 
725 // Substring references
726 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
727     const std::optional<parser::ScalarIntExpr> &bound) {
728   if (bound) {
729     if (MaybeExpr expr{Analyze(*bound)}) {
730       if (expr->Rank() > 1) {
731         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
732       }
733       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
734         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
735           return {std::move(*ssIntExpr)};
736         }
737         return {Expr<SubscriptInteger>{
738             Convert<SubscriptInteger, TypeCategory::Integer>{
739                 std::move(*intExpr)}}};
740       } else {
741         Say("substring bound expression is not INTEGER"_err_en_US);
742       }
743     }
744   }
745   return std::nullopt;
746 }
747 
748 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
749   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
750     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
751       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
752         if (std::optional<DataRef> checked{
753                 ExtractDataRef(std::move(*newBaseExpr))}) {
754           const parser::SubstringRange &range{
755               std::get<parser::SubstringRange>(ss.t)};
756           std::optional<Expr<SubscriptInteger>> first{
757               GetSubstringBound(std::get<0>(range.t))};
758           std::optional<Expr<SubscriptInteger>> last{
759               GetSubstringBound(std::get<1>(range.t))};
760           const Symbol &symbol{checked->GetLastSymbol()};
761           if (std::optional<DynamicType> dynamicType{
762                   DynamicType::From(symbol)}) {
763             if (dynamicType->category() == TypeCategory::Character) {
764               return WrapperHelper<TypeCategory::Character, Designator,
765                   Substring>(dynamicType->kind(),
766                   Substring{std::move(checked.value()), std::move(first),
767                       std::move(last)});
768             }
769           }
770           Say("substring may apply only to CHARACTER"_err_en_US);
771         }
772       }
773     }
774   }
775   return std::nullopt;
776 }
777 
778 // CHARACTER literal substrings
779 MaybeExpr ExpressionAnalyzer::Analyze(
780     const parser::CharLiteralConstantSubstring &x) {
781   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
782   std::optional<Expr<SubscriptInteger>> lower{
783       GetSubstringBound(std::get<0>(range.t))};
784   std::optional<Expr<SubscriptInteger>> upper{
785       GetSubstringBound(std::get<1>(range.t))};
786   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
787     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
788       Expr<SubscriptInteger> length{
789           std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
790               charExpr->u)};
791       if (!lower) {
792         lower = Expr<SubscriptInteger>{1};
793       }
794       if (!upper) {
795         upper = Expr<SubscriptInteger>{
796             static_cast<std::int64_t>(ToInt64(length).value())};
797       }
798       return std::visit(
799           [&](auto &&ckExpr) -> MaybeExpr {
800             using Result = ResultType<decltype(ckExpr)>;
801             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
802             CHECK(DEREF(cp).size() == 1);
803             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
804             staticData->set_alignment(Result::kind)
805                 .set_itemBytes(Result::kind)
806                 .Push(cp->GetScalarValue().value());
807             Substring substring{std::move(staticData), std::move(lower.value()),
808                 std::move(upper.value())};
809             return AsGenericExpr(Expr<SomeCharacter>{
810                 Expr<Result>{Designator<Result>{std::move(substring)}}});
811           },
812           std::move(charExpr->u));
813     }
814   }
815   return std::nullopt;
816 }
817 
818 // Subscripted array references
819 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
820     MaybeExpr &&expr) {
821   if (expr) {
822     if (expr->Rank() > 1) {
823       Say("Subscript expression has rank %d greater than 1"_err_en_US,
824           expr->Rank());
825     }
826     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
827       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
828         return std::move(*ssIntExpr);
829       } else {
830         return Expr<SubscriptInteger>{
831             Convert<SubscriptInteger, TypeCategory::Integer>{
832                 std::move(*intExpr)}};
833       }
834     } else {
835       Say("Subscript expression is not INTEGER"_err_en_US);
836     }
837   }
838   return std::nullopt;
839 }
840 
841 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
842     const std::optional<parser::Subscript> &s) {
843   if (s) {
844     return AsSubscript(Analyze(*s));
845   } else {
846     return std::nullopt;
847   }
848 }
849 
850 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
851     const parser::SectionSubscript &ss) {
852   return std::visit(common::visitors{
853                         [&](const parser::SubscriptTriplet &t) {
854                           return std::make_optional<Subscript>(
855                               Triplet{TripletPart(std::get<0>(t.t)),
856                                   TripletPart(std::get<1>(t.t)),
857                                   TripletPart(std::get<2>(t.t))});
858                         },
859                         [&](const auto &s) -> std::optional<Subscript> {
860                           if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
861                             return Subscript{std::move(*subscriptExpr)};
862                           } else {
863                             return std::nullopt;
864                           }
865                         },
866                     },
867       ss.u);
868 }
869 
870 // Empty result means an error occurred
871 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
872     const std::list<parser::SectionSubscript> &sss) {
873   bool error{false};
874   std::vector<Subscript> subscripts;
875   for (const auto &s : sss) {
876     if (auto subscript{AnalyzeSectionSubscript(s)}) {
877       subscripts.emplace_back(std::move(*subscript));
878     } else {
879       error = true;
880     }
881   }
882   return !error ? subscripts : std::vector<Subscript>{};
883 }
884 
885 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
886   if (MaybeExpr baseExpr{Analyze(ae.base)}) {
887     if (ae.subscripts.empty()) {
888       // will be converted to function call later or error reported
889       return std::nullopt;
890     } else if (baseExpr->Rank() == 0) {
891       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
892         Say("'%s' is not an array"_err_en_US, symbol->name());
893       }
894     } else if (std::optional<DataRef> dataRef{
895                    ExtractDataRef(std::move(*baseExpr))}) {
896       return ApplySubscripts(
897           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
898     } else {
899       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
900     }
901   }
902   // error was reported: analyze subscripts without reporting more errors
903   auto restorer{GetContextualMessages().DiscardMessages()};
904   AnalyzeSectionSubscripts(ae.subscripts);
905   return std::nullopt;
906 }
907 
908 // Type parameter inquiries apply to data references, but don't depend
909 // on any trailing (co)subscripts.
910 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
911   return std::visit(
912       common::visitors{
913           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
914           [](Component &&component) {
915             return NamedEntity{std::move(component)};
916           },
917           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
918           [](CoarrayRef &&coarrayRef) {
919             return NamedEntity{coarrayRef.GetLastSymbol()};
920           },
921       },
922       std::move(designator.u));
923 }
924 
925 // Components of parent derived types are explicitly represented as such.
926 static std::optional<Component> CreateComponent(
927     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
928   if (&component.owner() == &scope) {
929     return Component{std::move(base), component};
930   }
931   if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) {
932     if (const Symbol * parentComponent{parentScope->GetSymbol()}) {
933       return CreateComponent(
934           DataRef{Component{std::move(base), *parentComponent}}, component,
935           *parentScope);
936     }
937   }
938   return std::nullopt;
939 }
940 
941 // Derived type component references and type parameter inquiries
942 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
943   MaybeExpr base{Analyze(sc.base)};
944   if (!base) {
945     return std::nullopt;
946   }
947   Symbol *sym{sc.component.symbol};
948   if (context_.HasError(sym)) {
949     return std::nullopt;
950   }
951   const auto &name{sc.component.source};
952   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
953     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
954     if (sym->detailsIf<semantics::TypeParamDetails>()) {
955       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
956         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
957           if (dyType->category() == TypeCategory::Integer) {
958             return AsMaybeExpr(
959                 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(),
960                     IgnoreAnySubscripts(std::move(*designator)), *sym}));
961           }
962         }
963         Say(name, "Type parameter is not INTEGER"_err_en_US);
964       } else {
965         Say(name,
966             "A type parameter inquiry must be applied to "
967             "a designator"_err_en_US);
968       }
969     } else if (!dtSpec || !dtSpec->scope()) {
970       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
971       return std::nullopt;
972     } else if (std::optional<DataRef> dataRef{
973                    ExtractDataRef(std::move(*dtExpr))}) {
974       if (auto component{
975               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
976         return Designate(DataRef{std::move(*component)});
977       } else {
978         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
979             dtSpec->typeSymbol().name());
980       }
981     } else {
982       Say(name,
983           "Base of component reference must be a data reference"_err_en_US);
984     }
985   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
986     // special part-ref: %re, %im, %kind, %len
987     // Type errors are detected and reported in semantics.
988     using MiscKind = semantics::MiscDetails::Kind;
989     MiscKind kind{details->kind()};
990     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
991       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
992         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
993           Expr<SomeReal> realExpr{std::visit(
994               [&](const auto &z) {
995                 using PartType = typename ResultType<decltype(z)>::Part;
996                 auto part{kind == MiscKind::ComplexPartRe
997                         ? ComplexPart::Part::RE
998                         : ComplexPart::Part::IM};
999                 return AsCategoryExpr(Designator<PartType>{
1000                     ComplexPart{std::move(*dataRef), part}});
1001               },
1002               zExpr->u)};
1003           return {AsGenericExpr(std::move(realExpr))};
1004         }
1005       }
1006     } else if (kind == MiscKind::KindParamInquiry ||
1007         kind == MiscKind::LenParamInquiry) {
1008       // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
1009       return MakeFunctionRef(
1010           name, ActualArguments{ActualArgument{std::move(*base)}});
1011     } else {
1012       DIE("unexpected MiscDetails::Kind");
1013     }
1014   } else {
1015     Say(name, "derived type required before component reference"_err_en_US);
1016   }
1017   return std::nullopt;
1018 }
1019 
1020 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1021   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1022     DataRef *dataRef{&*maybeDataRef};
1023     std::vector<Subscript> subscripts;
1024     SymbolVector reversed;
1025     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1026       subscripts = std::move(aRef->subscript());
1027       reversed.push_back(aRef->GetLastSymbol());
1028       if (Component * component{aRef->base().UnwrapComponent()}) {
1029         dataRef = &component->base();
1030       } else {
1031         dataRef = nullptr;
1032       }
1033     }
1034     if (dataRef) {
1035       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1036         reversed.push_back(component->GetLastSymbol());
1037         dataRef = &component->base();
1038       }
1039       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1040         reversed.push_back(*baseSym);
1041       } else {
1042         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1043       }
1044     }
1045     std::vector<Expr<SubscriptInteger>> cosubscripts;
1046     bool cosubsOk{true};
1047     for (const auto &cosub :
1048         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1049       MaybeExpr coex{Analyze(cosub)};
1050       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1051         cosubscripts.push_back(
1052             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1053       } else {
1054         cosubsOk = false;
1055       }
1056     }
1057     if (cosubsOk && !reversed.empty()) {
1058       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1059       const Symbol &symbol{reversed.front()};
1060       if (numCosubscripts != symbol.Corank()) {
1061         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1062             symbol.name(), symbol.Corank(), numCosubscripts);
1063       }
1064     }
1065     // TODO: stat=/team=/team_number=
1066     // Reverse the chain of symbols so that the base is first and coarray
1067     // ultimate component is last.
1068     return Designate(
1069         DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1070             std::move(subscripts), std::move(cosubscripts)}});
1071   }
1072   return std::nullopt;
1073 }
1074 
1075 int ExpressionAnalyzer::IntegerTypeSpecKind(
1076     const parser::IntegerTypeSpec &spec) {
1077   Expr<SubscriptInteger> value{
1078       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1079   if (auto kind{ToInt64(value)}) {
1080     return static_cast<int>(*kind);
1081   }
1082   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1083   return GetDefaultKind(TypeCategory::Integer);
1084 }
1085 
1086 // Array constructors
1087 
1088 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1089 // all happen to have the same actual type T into one ArrayConstructor<T>.
1090 template <typename T>
1091 ArrayConstructorValues<T> MakeSpecific(
1092     ArrayConstructorValues<SomeType> &&from) {
1093   ArrayConstructorValues<T> to;
1094   for (ArrayConstructorValue<SomeType> &x : from) {
1095     std::visit(
1096         common::visitors{
1097             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1098               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1099               to.Push(std::move(DEREF(typed)));
1100             },
1101             [&](ImpliedDo<SomeType> &&impliedDo) {
1102               to.Push(ImpliedDo<T>{impliedDo.name(),
1103                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1104                   std::move(impliedDo.stride()),
1105                   MakeSpecific<T>(std::move(impliedDo.values()))});
1106             },
1107         },
1108         std::move(x.u));
1109   }
1110   return to;
1111 }
1112 
1113 class ArrayConstructorContext {
1114 public:
1115   ArrayConstructorContext(
1116       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1117       : exprAnalyzer_{c}, type_{std::move(t)} {}
1118 
1119   void Add(const parser::AcValue &);
1120   MaybeExpr ToExpr();
1121 
1122   // These interfaces allow *this to be used as a type visitor argument to
1123   // common::SearchTypes() to convert the array constructor to a typed
1124   // expression in ToExpr().
1125   using Result = MaybeExpr;
1126   using Types = AllTypes;
1127   template <typename T> Result Test() {
1128     if (type_ && type_->category() == T::category) {
1129       if constexpr (T::category == TypeCategory::Derived) {
1130         return AsMaybeExpr(ArrayConstructor<T>{
1131             type_->GetDerivedTypeSpec(), MakeSpecific<T>(std::move(values_))});
1132       } else if (type_->kind() == T::kind) {
1133         if constexpr (T::category == TypeCategory::Character) {
1134           if (auto len{type_->LEN()}) {
1135             return AsMaybeExpr(ArrayConstructor<T>{
1136                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1137           }
1138         } else {
1139           return AsMaybeExpr(
1140               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1141         }
1142       }
1143     }
1144     return std::nullopt;
1145   }
1146 
1147 private:
1148   void Push(MaybeExpr &&);
1149 
1150   template <int KIND, typename A>
1151   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1152       const A &x) {
1153     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1154       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1155       return ConvertToType<Type<TypeCategory::Integer, KIND>>(
1156           std::move(DEREF(intExpr)));
1157     }
1158     return std::nullopt;
1159   }
1160 
1161   // Nested array constructors all reference the same ExpressionAnalyzer,
1162   // which represents the nest of active implied DO loop indices.
1163   ExpressionAnalyzer &exprAnalyzer_;
1164   std::optional<DynamicTypeWithLength> type_;
1165   bool explicitType_{type_.has_value()};
1166   std::optional<std::int64_t> constantLength_;
1167   ArrayConstructorValues<SomeType> values_;
1168 };
1169 
1170 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1171   if (!x) {
1172     return;
1173   }
1174   if (auto dyType{x->GetType()}) {
1175     DynamicTypeWithLength xType{*dyType};
1176     if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1177       CHECK(xType.category() == TypeCategory::Character);
1178       xType.length =
1179           std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1180     }
1181     if (!type_) {
1182       // If there is no explicit type-spec in an array constructor, the type
1183       // of the array is the declared type of all of the elements, which must
1184       // be well-defined and all match.
1185       // TODO: Possible language extension: use the most general type of
1186       // the values as the type of a numeric constructed array, convert all
1187       // of the other values to that type.  Alternative: let the first value
1188       // determine the type, and convert the others to that type.
1189       CHECK(!explicitType_);
1190       type_ = std::move(xType);
1191       constantLength_ = ToInt64(type_->length);
1192       values_.Push(std::move(*x));
1193     } else if (!explicitType_) {
1194       if (static_cast<const DynamicType &>(*type_) ==
1195           static_cast<const DynamicType &>(xType)) {
1196         values_.Push(std::move(*x));
1197         if (auto thisLen{ToInt64(xType.LEN())}) {
1198           if (constantLength_) {
1199             if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1200                 *thisLen != *constantLength_) {
1201               exprAnalyzer_.Say(
1202                   "Character literal in array constructor without explicit "
1203                   "type has different length than earlier element"_en_US);
1204             }
1205             if (*thisLen > *constantLength_) {
1206               // Language extension: use the longest literal to determine the
1207               // length of the array constructor's character elements, not the
1208               // first, when there is no explicit type.
1209               *constantLength_ = *thisLen;
1210               type_->length = xType.LEN();
1211             }
1212           } else {
1213             constantLength_ = *thisLen;
1214             type_->length = xType.LEN();
1215           }
1216         }
1217       } else {
1218         exprAnalyzer_.Say(
1219             "Values in array constructor must have the same declared type "
1220             "when no explicit type appears"_err_en_US);
1221       }
1222     } else {
1223       if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1224         values_.Push(std::move(*cast));
1225       } else {
1226         exprAnalyzer_.Say(
1227             "Value in array constructor could not be converted to the type "
1228             "of the array"_err_en_US);
1229       }
1230     }
1231   }
1232 }
1233 
1234 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1235   using IntType = ResultType<ImpliedDoIndex>;
1236   std::visit(
1237       common::visitors{
1238           [&](const parser::AcValue::Triplet &triplet) {
1239             // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
1240             std::optional<Expr<IntType>> lower{
1241                 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))};
1242             std::optional<Expr<IntType>> upper{
1243                 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))};
1244             std::optional<Expr<IntType>> stride{
1245                 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))};
1246             if (lower && upper) {
1247               if (!stride) {
1248                 stride = Expr<IntType>{1};
1249               }
1250               if (!type_) {
1251                 type_ = DynamicTypeWithLength{IntType::GetType()};
1252               }
1253               auto v{std::move(values_)};
1254               parser::CharBlock anonymous;
1255               Push(Expr<SomeType>{
1256                   Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}});
1257               std::swap(v, values_);
1258               values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1259                   std::move(*upper), std::move(*stride), std::move(v)});
1260             }
1261           },
1262           [&](const common::Indirection<parser::Expr> &expr) {
1263             auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(
1264                 expr.value().source)};
1265             if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) {
1266               Push(std::move(*v));
1267             }
1268           },
1269           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1270             const auto &control{
1271                 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)};
1272             const auto &bounds{
1273                 std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1274             exprAnalyzer_.Analyze(bounds.name);
1275             parser::CharBlock name{bounds.name.thing.thing.source};
1276             const Symbol *symbol{bounds.name.thing.thing.symbol};
1277             int kind{IntType::kind};
1278             if (const auto dynamicType{DynamicType::From(symbol)}) {
1279               kind = dynamicType->kind();
1280             }
1281             if (exprAnalyzer_.AddImpliedDo(name, kind)) {
1282               std::optional<Expr<IntType>> lower{
1283                   GetSpecificIntExpr<IntType::kind>(bounds.lower)};
1284               std::optional<Expr<IntType>> upper{
1285                   GetSpecificIntExpr<IntType::kind>(bounds.upper)};
1286               if (lower && upper) {
1287                 std::optional<Expr<IntType>> stride{
1288                     GetSpecificIntExpr<IntType::kind>(bounds.step)};
1289                 auto v{std::move(values_)};
1290                 for (const auto &value :
1291                     std::get<std::list<parser::AcValue>>(impliedDo.value().t)) {
1292                   Add(value);
1293                 }
1294                 if (!stride) {
1295                   stride = Expr<IntType>{1};
1296                 }
1297                 std::swap(v, values_);
1298                 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1299                     std::move(*upper), std::move(*stride), std::move(v)});
1300               }
1301               exprAnalyzer_.RemoveImpliedDo(name);
1302             } else {
1303               exprAnalyzer_.SayAt(name,
1304                   "Implied DO index is active in surrounding implied DO loop "
1305                   "and may not have the same name"_err_en_US);
1306             }
1307           },
1308       },
1309       x.u);
1310 }
1311 
1312 MaybeExpr ArrayConstructorContext::ToExpr() {
1313   return common::SearchTypes(std::move(*this));
1314 }
1315 
1316 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1317   const parser::AcSpec &acSpec{array.v};
1318   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1319   for (const parser::AcValue &value : acSpec.values) {
1320     acContext.Add(value);
1321   }
1322   return acContext.ToExpr();
1323 }
1324 
1325 MaybeExpr ExpressionAnalyzer::Analyze(
1326     const parser::StructureConstructor &structure) {
1327   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1328   parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source};
1329   if (!parsedType.derivedTypeSpec) {
1330     return std::nullopt;
1331   }
1332   const auto &spec{*parsedType.derivedTypeSpec};
1333   const Symbol &typeSymbol{spec.typeSymbol()};
1334   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1335     return std::nullopt; // error recovery
1336   }
1337   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1338   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1339 
1340   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1341     AttachDeclaration(Say(typeName,
1342                           "ABSTRACT derived type '%s' may not be used in a "
1343                           "structure constructor"_err_en_US,
1344                           typeName),
1345         typeSymbol);
1346   }
1347 
1348   // This iterator traverses all of the components in the derived type and its
1349   // parents.  The symbols for whole parent components appear after their
1350   // own components and before the components of the types that extend them.
1351   // E.g., TYPE :: A; REAL X; END TYPE
1352   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1353   // produces the component list X, A, Y.
1354   // The order is important below because a structure constructor can
1355   // initialize X or A by name, but not both.
1356   auto components{semantics::OrderedComponentIterator{spec}};
1357   auto nextAnonymous{components.begin()};
1358 
1359   std::set<parser::CharBlock> unavailable;
1360   bool anyKeyword{false};
1361   StructureConstructor result{spec};
1362   bool checkConflicts{true}; // until we hit one
1363 
1364   for (const auto &component :
1365       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1366     const parser::Expr &expr{
1367         std::get<parser::ComponentDataSource>(component.t).v.value()};
1368     parser::CharBlock source{expr.source};
1369     auto &messages{GetContextualMessages()};
1370     auto restorer{messages.SetLocation(source)};
1371     const Symbol *symbol{nullptr};
1372     MaybeExpr value{Analyze(expr)};
1373     std::optional<DynamicType> valueType{DynamicType::From(value)};
1374     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1375       anyKeyword = true;
1376       source = kw->v.source;
1377       symbol = kw->v.symbol;
1378       if (!symbol) {
1379         auto componentIter{std::find_if(components.begin(), components.end(),
1380             [=](const Symbol &symbol) { return symbol.name() == source; })};
1381         if (componentIter != components.end()) {
1382           symbol = &*componentIter;
1383         }
1384       }
1385       if (!symbol) { // C7101
1386         Say(source,
1387             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1388             source, typeName);
1389       }
1390     } else {
1391       if (anyKeyword) { // C7100
1392         Say(source,
1393             "Value in structure constructor lacks a component name"_err_en_US);
1394         checkConflicts = false; // stem cascade
1395       }
1396       // Here's a regrettably common extension of the standard: anonymous
1397       // initialization of parent components, e.g., T(PT(1)) rather than
1398       // T(1) or T(PT=PT(1)).
1399       if (nextAnonymous == components.begin() && parentComponent &&
1400           valueType == DynamicType::From(*parentComponent) &&
1401           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1402         auto iter{
1403             std::find(components.begin(), components.end(), *parentComponent)};
1404         if (iter != components.end()) {
1405           symbol = parentComponent;
1406           nextAnonymous = ++iter;
1407           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1408             Say(source,
1409                 "Whole parent component '%s' in structure "
1410                 "constructor should not be anonymous"_en_US,
1411                 symbol->name());
1412           }
1413         }
1414       }
1415       while (!symbol && nextAnonymous != components.end()) {
1416         const Symbol &next{*nextAnonymous};
1417         ++nextAnonymous;
1418         if (!next.test(Symbol::Flag::ParentComp)) {
1419           symbol = &next;
1420         }
1421       }
1422       if (!symbol) {
1423         Say(source, "Unexpected value in structure constructor"_err_en_US);
1424       }
1425     }
1426     if (symbol) {
1427       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1428         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1429           Say(source, *msg);
1430         }
1431       }
1432       if (checkConflicts) {
1433         auto componentIter{
1434             std::find(components.begin(), components.end(), *symbol)};
1435         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1436           // C797, C798
1437           Say(source,
1438               "Component '%s' conflicts with another component earlier in "
1439               "this structure constructor"_err_en_US,
1440               symbol->name());
1441         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1442           // Make earlier components unavailable once a whole parent appears.
1443           for (auto it{components.begin()}; it != componentIter; ++it) {
1444             unavailable.insert(it->name());
1445           }
1446         } else {
1447           // Make whole parent components unavailable after any of their
1448           // constituents appear.
1449           for (auto it{componentIter}; it != components.end(); ++it) {
1450             if (it->test(Symbol::Flag::ParentComp)) {
1451               unavailable.insert(it->name());
1452             }
1453           }
1454         }
1455       }
1456       unavailable.insert(symbol->name());
1457       if (value) {
1458         if (symbol->has<semantics::ProcEntityDetails>()) {
1459           CHECK(IsPointer(*symbol));
1460         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1461           // C1594(4)
1462           const auto &innermost{context_.FindScope(expr.source)};
1463           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1464             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1465               if (const Symbol *
1466                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1467                 if (auto *msg{Say(expr.source,
1468                         "Externally visible object '%s' may not be "
1469                         "associated with pointer component '%s' in a "
1470                         "pure procedure"_err_en_US,
1471                         object->name(), pointer->name())}) {
1472                   msg->Attach(object->name(), "Object declaration"_en_US)
1473                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1474                 }
1475               }
1476             }
1477           }
1478         } else if (symbol->has<semantics::TypeParamDetails>()) {
1479           Say(expr.source,
1480               "Type parameter '%s' may not appear as a component "
1481               "of a structure constructor"_err_en_US,
1482               symbol->name());
1483           continue;
1484         } else {
1485           Say(expr.source,
1486               "Component '%s' is neither a procedure pointer "
1487               "nor a data object"_err_en_US,
1488               symbol->name());
1489           continue;
1490         }
1491         if (IsPointer(*symbol)) {
1492           semantics::CheckPointerAssignment(
1493               GetFoldingContext(), *symbol, *value); // C7104, C7105
1494           result.Add(*symbol, Fold(std::move(*value)));
1495         } else if (MaybeExpr converted{
1496                        ConvertToType(*symbol, std::move(*value))}) {
1497           result.Add(*symbol, std::move(*converted));
1498         } else if (IsAllocatable(*symbol) &&
1499             std::holds_alternative<NullPointer>(value->u)) {
1500           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE
1501         } else if (auto symType{DynamicType::From(symbol)}) {
1502           if (valueType) {
1503             AttachDeclaration(
1504                 Say(expr.source,
1505                     "Value in structure constructor of type %s is "
1506                     "incompatible with component '%s' of type %s"_err_en_US,
1507                     valueType->AsFortran(), symbol->name(),
1508                     symType->AsFortran()),
1509                 *symbol);
1510           } else {
1511             AttachDeclaration(
1512                 Say(expr.source,
1513                     "Value in structure constructor is incompatible with "
1514                     " component '%s' of type %s"_err_en_US,
1515                     symbol->name(), symType->AsFortran()),
1516                 *symbol);
1517           }
1518         }
1519       }
1520     }
1521   }
1522 
1523   // Ensure that unmentioned component objects have default initializers.
1524   for (const Symbol &symbol : components) {
1525     if (!symbol.test(Symbol::Flag::ParentComp) &&
1526         unavailable.find(symbol.name()) == unavailable.cend() &&
1527         !IsAllocatable(symbol)) {
1528       if (const auto *details{
1529               symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1530         if (details->init()) {
1531           result.Add(symbol, common::Clone(*details->init()));
1532         } else { // C799
1533           AttachDeclaration(Say(typeName,
1534                                 "Structure constructor lacks a value for "
1535                                 "component '%s'"_err_en_US,
1536                                 symbol.name()),
1537               symbol);
1538         }
1539       }
1540     }
1541   }
1542 
1543   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1544 }
1545 
1546 static std::optional<parser::CharBlock> GetPassName(
1547     const semantics::Symbol &proc) {
1548   return std::visit(
1549       [](const auto &details) {
1550         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1551                           std::decay_t<decltype(details)>>) {
1552           return details.passName();
1553         } else {
1554           return std::optional<parser::CharBlock>{};
1555         }
1556       },
1557       proc.details());
1558 }
1559 
1560 static int GetPassIndex(const Symbol &proc) {
1561   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1562   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1563   const auto *interface{semantics::FindInterface(proc)};
1564   if (!passName || !interface) {
1565     return 0; // first argument is passed-object
1566   }
1567   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1568   int index{0};
1569   for (const auto *arg : subp.dummyArgs()) {
1570     if (arg && arg->name() == passName) {
1571       return index;
1572     }
1573     ++index;
1574   }
1575   DIE("PASS argument name not in dummy argument list");
1576 }
1577 
1578 // Injects an expression into an actual argument list as the "passed object"
1579 // for a type-bound procedure reference that is not NOPASS.  Adds an
1580 // argument keyword if possible, but not when the passed object goes
1581 // before a positional argument.
1582 // e.g., obj%tbp(x) -> tbp(obj,x).
1583 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1584     const Symbol &component, bool isPassedObject = true) {
1585   if (component.attrs().test(semantics::Attr::NOPASS)) {
1586     return;
1587   }
1588   int passIndex{GetPassIndex(component)};
1589   auto iter{actuals.begin()};
1590   int at{0};
1591   while (iter < actuals.end() && at < passIndex) {
1592     if (*iter && (*iter)->keyword()) {
1593       iter = actuals.end();
1594       break;
1595     }
1596     ++iter;
1597     ++at;
1598   }
1599   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1600   passed.set_isPassedObject(isPassedObject);
1601   if (iter == actuals.end()) {
1602     if (auto passName{GetPassName(component)}) {
1603       passed.set_keyword(*passName);
1604     }
1605   }
1606   actuals.emplace(iter, std::move(passed));
1607 }
1608 
1609 // Return the compile-time resolution of a procedure binding, if possible.
1610 static const Symbol *GetBindingResolution(
1611     const std::optional<DynamicType> &baseType, const Symbol &component) {
1612   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1613   if (!binding) {
1614     return nullptr;
1615   }
1616   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1617       (!baseType || baseType->IsPolymorphic())) {
1618     return nullptr;
1619   }
1620   return &binding->symbol();
1621 }
1622 
1623 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1624     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1625     -> std::optional<CalleeAndArguments> {
1626   const parser::StructureComponent &sc{pcr.v.thing};
1627   const auto &name{sc.component.source};
1628   if (MaybeExpr base{Analyze(sc.base)}) {
1629     if (const Symbol * sym{sc.component.symbol}) {
1630       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1631         if (sym->has<semantics::GenericDetails>()) {
1632           AdjustActuals adjustment{
1633               [&](const Symbol &proc, ActualArguments &actuals) {
1634                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1635                   AddPassArg(actuals, std::move(*dtExpr), proc);
1636                 }
1637                 return true;
1638               }};
1639           sym = ResolveGeneric(*sym, arguments, adjustment);
1640           if (!sym) {
1641             EmitGenericResolutionError(*sc.component.symbol);
1642             return std::nullopt;
1643           }
1644         }
1645         if (const Symbol *
1646             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1647           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1648           return CalleeAndArguments{
1649               ProcedureDesignator{*resolution}, std::move(arguments)};
1650         } else if (std::optional<DataRef> dataRef{
1651                        ExtractDataRef(std::move(*dtExpr))}) {
1652           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1653             return CalleeAndArguments{
1654                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1655                 std::move(arguments)};
1656           } else {
1657             AddPassArg(arguments,
1658                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1659                 *sym);
1660             return CalleeAndArguments{
1661                 ProcedureDesignator{*sym}, std::move(arguments)};
1662           }
1663         }
1664       }
1665       Say(name,
1666           "Base of procedure component reference is not a derived-type object"_err_en_US);
1667     }
1668   }
1669   CHECK(!GetContextualMessages().empty());
1670   return std::nullopt;
1671 }
1672 
1673 // Can actual be argument associated with dummy?
1674 static bool CheckCompatibleArgument(bool isElemental,
1675     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1676   return std::visit(
1677       common::visitors{
1678           [&](const characteristics::DummyDataObject &x) {
1679             characteristics::TypeAndShape dummyTypeAndShape{x.type};
1680             if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) {
1681               return false;
1682             } else if (auto actualType{actual.GetType()}) {
1683               return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType);
1684             } else {
1685               return false;
1686             }
1687           },
1688           [&](const characteristics::DummyProcedure &) {
1689             const auto *expr{actual.UnwrapExpr()};
1690             return expr && IsProcedurePointer(*expr);
1691           },
1692           [&](const characteristics::AlternateReturn &) {
1693             return actual.isAlternateReturn();
1694           },
1695       },
1696       dummy.u);
1697 }
1698 
1699 // Are the actual arguments compatible with the dummy arguments of procedure?
1700 static bool CheckCompatibleArguments(
1701     const characteristics::Procedure &procedure,
1702     const ActualArguments &actuals) {
1703   bool isElemental{procedure.IsElemental()};
1704   const auto &dummies{procedure.dummyArguments};
1705   CHECK(dummies.size() == actuals.size());
1706   for (std::size_t i{0}; i < dummies.size(); ++i) {
1707     const characteristics::DummyArgument &dummy{dummies[i]};
1708     const std::optional<ActualArgument> &actual{actuals[i]};
1709     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1710       return false;
1711     }
1712   }
1713   return true;
1714 }
1715 
1716 // Handles a forward reference to a module function from what must
1717 // be a specification expression.  Return false if the symbol is
1718 // an invalid forward reference.
1719 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
1720   if (context_.HasError(symbol)) {
1721     return false;
1722   }
1723   if (const auto *details{
1724           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
1725     if (details->kind() == semantics::SubprogramKind::Module) {
1726       // If this symbol is still a SubprogramNameDetails, we must be
1727       // checking a specification expression in a sibling module
1728       // procedure.  Resolve its names now so that its interface
1729       // is known.
1730       semantics::ResolveSpecificationParts(context_, symbol);
1731       if (symbol.has<semantics::SubprogramNameDetails>()) {
1732         // When the symbol hasn't had its details updated, we must have
1733         // already been in the process of resolving the function's
1734         // specification part; but recursive function calls are not
1735         // allowed in specification parts (10.1.11 para 5).
1736         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
1737             symbol.name());
1738         context_.SetError(const_cast<Symbol &>(symbol));
1739         return false;
1740       }
1741     } else { // 10.1.11 para 4
1742       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
1743           symbol.name());
1744       context_.SetError(const_cast<Symbol &>(symbol));
1745       return false;
1746     }
1747   }
1748   return true;
1749 }
1750 
1751 // Resolve a call to a generic procedure with given actual arguments.
1752 // adjustActuals is called on procedure bindings to handle pass arg.
1753 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol,
1754     const ActualArguments &actuals, const AdjustActuals &adjustActuals,
1755     bool mightBeStructureConstructor) {
1756   const Symbol *elemental{nullptr}; // matching elemental specific proc
1757   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
1758   for (const Symbol &specific : details.specificProcs()) {
1759     if (!ResolveForward(specific)) {
1760       continue;
1761     }
1762     if (std::optional<characteristics::Procedure> procedure{
1763             characteristics::Procedure::Characterize(
1764                 ProcedureDesignator{specific}, context_.intrinsics())}) {
1765       ActualArguments localActuals{actuals};
1766       if (specific.has<semantics::ProcBindingDetails>()) {
1767         if (!adjustActuals.value()(specific, localActuals)) {
1768           continue;
1769         }
1770       }
1771       if (semantics::CheckInterfaceForGeneric(
1772               *procedure, localActuals, GetFoldingContext())) {
1773         if (CheckCompatibleArguments(*procedure, localActuals)) {
1774           if (!procedure->IsElemental()) {
1775             return &specific; // takes priority over elemental match
1776           }
1777           elemental = &specific;
1778         }
1779       }
1780     }
1781   }
1782   if (elemental) {
1783     return elemental;
1784   }
1785   // Check parent derived type
1786   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
1787     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
1788       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
1789         if (const Symbol *
1790             result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) {
1791           return result;
1792         }
1793       }
1794     }
1795   }
1796   if (mightBeStructureConstructor && details.derivedType()) {
1797     return details.derivedType();
1798   }
1799   return nullptr;
1800 }
1801 
1802 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) {
1803   if (semantics::IsGenericDefinedOp(symbol)) {
1804     Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US,
1805         symbol.name());
1806   } else {
1807     Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
1808         symbol.name());
1809   }
1810 }
1811 
1812 auto ExpressionAnalyzer::GetCalleeAndArguments(
1813     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
1814     bool isSubroutine, bool mightBeStructureConstructor)
1815     -> std::optional<CalleeAndArguments> {
1816   return std::visit(
1817       common::visitors{
1818           [&](const parser::Name &name) {
1819             return GetCalleeAndArguments(name, std::move(arguments),
1820                 isSubroutine, mightBeStructureConstructor);
1821           },
1822           [&](const parser::ProcComponentRef &pcr) {
1823             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
1824           },
1825       },
1826       pd.u);
1827 }
1828 
1829 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
1830     ActualArguments &&arguments, bool isSubroutine,
1831     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
1832   const Symbol *symbol{name.symbol};
1833   if (context_.HasError(symbol)) {
1834     return std::nullopt; // also handles null symbol
1835   }
1836   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
1837   if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
1838     if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
1839             CallCharacteristics{ultimate.name().ToString(), isSubroutine},
1840             arguments, GetFoldingContext())}) {
1841       return CalleeAndArguments{
1842           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
1843           std::move(specificCall->arguments)};
1844     }
1845   } else {
1846     CheckForBadRecursion(name.source, ultimate);
1847     if (ultimate.has<semantics::GenericDetails>()) {
1848       ExpressionAnalyzer::AdjustActuals noAdjustment;
1849       symbol = ResolveGeneric(
1850           *symbol, arguments, noAdjustment, mightBeStructureConstructor);
1851     }
1852     if (symbol) {
1853       if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
1854         if (mightBeStructureConstructor) {
1855           return CalleeAndArguments{
1856               semantics::SymbolRef{*symbol}, std::move(arguments)};
1857         }
1858       } else {
1859         return CalleeAndArguments{
1860             ProcedureDesignator{*symbol}, std::move(arguments)};
1861       }
1862     } else if (std::optional<SpecificCall> specificCall{
1863                    context_.intrinsics().Probe(
1864                        CallCharacteristics{
1865                            ultimate.name().ToString(), isSubroutine},
1866                        arguments, GetFoldingContext())}) {
1867       // Generics can extend intrinsics
1868       return CalleeAndArguments{
1869           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
1870           std::move(specificCall->arguments)};
1871     } else {
1872       EmitGenericResolutionError(*name.symbol);
1873     }
1874   }
1875   return std::nullopt;
1876 }
1877 
1878 void ExpressionAnalyzer::CheckForBadRecursion(
1879     parser::CharBlock callSite, const semantics::Symbol &proc) {
1880   if (const auto *scope{proc.scope()}) {
1881     if (scope->sourceRange().Contains(callSite)) {
1882       parser::Message *msg{nullptr};
1883       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
1884         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
1885             callSite);
1886       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
1887         msg = Say( // 15.6.2.1(3)
1888             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
1889             callSite);
1890       }
1891       AttachDeclaration(msg, proc);
1892     }
1893   }
1894 }
1895 
1896 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
1897   if (const auto *designator{
1898           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
1899     if (const auto *dataRef{
1900             std::get_if<parser::DataRef>(&designator->value().u)}) {
1901       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
1902         if (const Symbol * symbol{name->symbol}) {
1903           if (const auto *type{symbol->GetType()}) {
1904             if (type->category() == semantics::DeclTypeSpec::TypeStar) {
1905               return symbol;
1906             }
1907           }
1908         }
1909       }
1910     }
1911   }
1912   return nullptr;
1913 }
1914 
1915 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
1916     std::optional<parser::StructureConstructor> *structureConstructor) {
1917   const parser::Call &call{funcRef.v};
1918   auto restorer{GetContextualMessages().SetLocation(call.source)};
1919   ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */};
1920   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
1921     analyzer.Analyze(arg, false /* not subroutine call */);
1922   }
1923   if (analyzer.fatalErrors()) {
1924     return std::nullopt;
1925   }
1926   if (std::optional<CalleeAndArguments> callee{
1927           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
1928               analyzer.GetActuals(), false /* not subroutine */,
1929               true /* might be structure constructor */)}) {
1930     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
1931       return MakeFunctionRef(
1932           call.source, std::move(*proc), std::move(callee->arguments));
1933     } else if (structureConstructor) {
1934       // Structure constructor misparsed as function reference?
1935       CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
1936       const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)};
1937       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
1938       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
1939         semantics::Scope &scope{context_.FindScope(name->source)};
1940         const semantics::DeclTypeSpec &type{
1941             semantics::FindOrInstantiateDerivedType(scope,
1942                 semantics::DerivedTypeSpec{
1943                     name->source, derivedType.GetUltimate()},
1944                 context_)};
1945         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
1946         *structureConstructor =
1947             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
1948         return Analyze(structureConstructor->value());
1949       }
1950     }
1951   }
1952   return std::nullopt;
1953 }
1954 
1955 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
1956   const parser::Call &call{callStmt.v};
1957   auto restorer{GetContextualMessages().SetLocation(call.source)};
1958   ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */};
1959   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
1960     analyzer.Analyze(arg, true /* is subroutine call */);
1961   }
1962   if (!analyzer.fatalErrors()) {
1963     if (std::optional<CalleeAndArguments> callee{
1964             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
1965                 analyzer.GetActuals(), true /* subroutine */)}) {
1966       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
1967       CHECK(proc);
1968       if (CheckCall(call.source, *proc, callee->arguments)) {
1969         callStmt.typedCall.reset(
1970             new ProcedureRef{std::move(*proc), std::move(callee->arguments)});
1971       }
1972     }
1973   }
1974 }
1975 
1976 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
1977   if (!x.typedAssignment) {
1978     ArgumentAnalyzer analyzer{*this};
1979     analyzer.Analyze(std::get<parser::Variable>(x.t));
1980     analyzer.Analyze(std::get<parser::Expr>(x.t));
1981     if (analyzer.fatalErrors()) {
1982       x.typedAssignment.reset(new GenericAssignmentWrapper{});
1983     } else {
1984       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
1985       Assignment assignment{
1986           Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))};
1987       if (procRef) {
1988         assignment.u = std::move(*procRef);
1989       }
1990       x.typedAssignment.reset(
1991           new GenericAssignmentWrapper{std::move(assignment)});
1992     }
1993   }
1994   return common::GetPtrFromOptional(x.typedAssignment->v);
1995 }
1996 
1997 const Assignment *ExpressionAnalyzer::Analyze(
1998     const parser::PointerAssignmentStmt &x) {
1999   if (!x.typedAssignment) {
2000     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2001     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2002     if (!lhs || !rhs) {
2003       x.typedAssignment.reset(new GenericAssignmentWrapper{});
2004     } else {
2005       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2006       std::visit(common::visitors{
2007                      [&](const std::list<parser::BoundsRemapping> &list) {
2008                        Assignment::BoundsRemapping bounds;
2009                        for (const auto &elem : list) {
2010                          auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2011                          auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2012                          if (lower && upper) {
2013                            bounds.emplace_back(Fold(std::move(*lower)),
2014                                Fold(std::move(*upper)));
2015                          }
2016                        }
2017                        assignment.u = std::move(bounds);
2018                      },
2019                      [&](const std::list<parser::BoundsSpec> &list) {
2020                        Assignment::BoundsSpec bounds;
2021                        for (const auto &bound : list) {
2022                          if (auto lower{AsSubscript(Analyze(bound.v))}) {
2023                            bounds.emplace_back(Fold(std::move(*lower)));
2024                          }
2025                        }
2026                        assignment.u = std::move(bounds);
2027                      },
2028                  },
2029           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2030       x.typedAssignment.reset(
2031           new GenericAssignmentWrapper{std::move(assignment)});
2032     }
2033   }
2034   return common::GetPtrFromOptional(x.typedAssignment->v);
2035 }
2036 
2037 static bool IsExternalCalledImplicitly(
2038     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2039   if (const auto *symbol{proc.GetSymbol()}) {
2040     return symbol->has<semantics::SubprogramDetails>() &&
2041         symbol->owner().IsGlobal() &&
2042         (!symbol->scope() /*ENTRY*/ ||
2043             !symbol->scope()->sourceRange().Contains(callSite));
2044   } else {
2045     return false;
2046   }
2047 }
2048 
2049 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2050     parser::CharBlock callSite, const ProcedureDesignator &proc,
2051     ActualArguments &arguments) {
2052   auto chars{
2053       characteristics::Procedure::Characterize(proc, context_.intrinsics())};
2054   if (chars) {
2055     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2056     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2057       Say(callSite,
2058           "References to the procedure '%s' require an explicit interface"_en_US,
2059           DEREF(proc.GetSymbol()).name());
2060     }
2061     semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2062         context_.FindScope(callSite), treatExternalAsImplicit);
2063     const Symbol *procSymbol{proc.GetSymbol()};
2064     if (procSymbol && !IsPureProcedure(*procSymbol)) {
2065       if (const semantics::Scope *
2066           pure{semantics::FindPureProcedureContaining(
2067               context_.FindScope(callSite))}) {
2068         Say(callSite,
2069             "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2070             procSymbol->name(), DEREF(pure->symbol()).name());
2071       }
2072     }
2073   }
2074   return chars;
2075 }
2076 
2077 // Unary operations
2078 
2079 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2080   if (MaybeExpr operand{Analyze(x.v.value())}) {
2081     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2082       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2083         if (semantics::IsProcedurePointer(*result)) {
2084           Say("A function reference that returns a procedure "
2085               "pointer may not be parenthesized"_err_en_US); // C1003
2086         }
2087       }
2088     }
2089     return Parenthesize(std::move(*operand));
2090   }
2091   return std::nullopt;
2092 }
2093 
2094 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2095     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2096   ArgumentAnalyzer analyzer{context};
2097   analyzer.Analyze(x.v);
2098   if (analyzer.fatalErrors()) {
2099     return std::nullopt;
2100   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2101     if (opr == NumericOperator::Add) {
2102       return analyzer.MoveExpr(0);
2103     } else {
2104       return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2105     }
2106   } else {
2107     return analyzer.TryDefinedOp(AsFortran(opr),
2108         "Operand of unary %s must be numeric; have %s"_err_en_US);
2109   }
2110 }
2111 
2112 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2113   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2114 }
2115 
2116 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2117   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2118 }
2119 
2120 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2121   ArgumentAnalyzer analyzer{*this};
2122   analyzer.Analyze(x.v);
2123   if (analyzer.fatalErrors()) {
2124     return std::nullopt;
2125   } else if (analyzer.IsIntrinsicLogical()) {
2126     return AsGenericExpr(
2127         LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2128   } else {
2129     return analyzer.TryDefinedOp(LogicalOperator::Not,
2130         "Operand of %s must be LOGICAL; have %s"_err_en_US);
2131   }
2132 }
2133 
2134 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2135   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2136   // intrinsic function.
2137   // Use the actual source for the name of the call for error reporting.
2138   std::optional<ActualArgument> arg;
2139   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2140     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2141   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2142     arg = ActualArgument{std::move(*argExpr)};
2143   } else {
2144     return std::nullopt;
2145   }
2146   parser::CharBlock at{GetContextualMessages().at()};
2147   CHECK(at.size() >= 4);
2148   parser::CharBlock loc{at.begin() + 1, 3};
2149   CHECK(loc == "loc");
2150   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2151 }
2152 
2153 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2154   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2155   ArgumentAnalyzer analyzer{*this, name.source};
2156   analyzer.Analyze(std::get<1>(x.t));
2157   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2158       "No operator %s defined for %s"_err_en_US, true);
2159 }
2160 
2161 // Binary (dyadic) operations
2162 
2163 template <template <typename> class OPR>
2164 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2165     const parser::Expr::IntrinsicBinary &x) {
2166   ArgumentAnalyzer analyzer{context};
2167   analyzer.Analyze(std::get<0>(x.t));
2168   analyzer.Analyze(std::get<1>(x.t));
2169   if (analyzer.fatalErrors()) {
2170     return std::nullopt;
2171   } else if (analyzer.IsIntrinsicNumeric(opr)) {
2172     return NumericOperation<OPR>(context.GetContextualMessages(),
2173         analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2174         context.GetDefaultKind(TypeCategory::Real));
2175   } else {
2176     return analyzer.TryDefinedOp(AsFortran(opr),
2177         "Operands of %s must be numeric; have %s and %s"_err_en_US);
2178   }
2179 }
2180 
2181 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2182   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2183 }
2184 
2185 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2186   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2187 }
2188 
2189 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2190   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2191 }
2192 
2193 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2194   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2195 }
2196 
2197 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2198   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2199 }
2200 
2201 MaybeExpr ExpressionAnalyzer::Analyze(
2202     const parser::Expr::ComplexConstructor &x) {
2203   auto re{Analyze(std::get<0>(x.t).value())};
2204   auto im{Analyze(std::get<1>(x.t).value())};
2205   if (re && im) {
2206     ConformabilityCheck(GetContextualMessages(), *re, *im);
2207   }
2208   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2209       std::move(im), GetDefaultKind(TypeCategory::Real)));
2210 }
2211 
2212 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2213   ArgumentAnalyzer analyzer{*this};
2214   analyzer.Analyze(std::get<0>(x.t));
2215   analyzer.Analyze(std::get<1>(x.t));
2216   if (analyzer.fatalErrors()) {
2217     return std::nullopt;
2218   } else if (analyzer.IsIntrinsicConcat()) {
2219     return std::visit(
2220         [&](auto &&x, auto &&y) -> MaybeExpr {
2221           using T = ResultType<decltype(x)>;
2222           if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2223             return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2224           } else {
2225             DIE("different types for intrinsic concat");
2226           }
2227         },
2228         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2229         std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2230   } else {
2231     return analyzer.TryDefinedOp("//",
2232         "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2233   }
2234 }
2235 
2236 // The Name represents a user-defined intrinsic operator.
2237 // If the actuals match one of the specific procedures, return a function ref.
2238 // Otherwise report the error in messages.
2239 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2240     const parser::Name &name, ActualArguments &&actuals) {
2241   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2242     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2243     return MakeFunctionRef(name.source,
2244         std::move(std::get<ProcedureDesignator>(callee->u)),
2245         std::move(callee->arguments));
2246   } else {
2247     return std::nullopt;
2248   }
2249 }
2250 
2251 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2252     const parser::Expr::IntrinsicBinary &x) {
2253   ArgumentAnalyzer analyzer{context};
2254   analyzer.Analyze(std::get<0>(x.t));
2255   analyzer.Analyze(std::get<1>(x.t));
2256   if (analyzer.fatalErrors()) {
2257     return std::nullopt;
2258   } else if (analyzer.IsIntrinsicRelational(opr)) {
2259     return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2260         analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2261   } else {
2262     return analyzer.TryDefinedOp(opr,
2263         "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2264   }
2265 }
2266 
2267 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2268   return RelationHelper(*this, RelationalOperator::LT, x);
2269 }
2270 
2271 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2272   return RelationHelper(*this, RelationalOperator::LE, x);
2273 }
2274 
2275 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2276   return RelationHelper(*this, RelationalOperator::EQ, x);
2277 }
2278 
2279 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2280   return RelationHelper(*this, RelationalOperator::NE, x);
2281 }
2282 
2283 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2284   return RelationHelper(*this, RelationalOperator::GE, x);
2285 }
2286 
2287 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2288   return RelationHelper(*this, RelationalOperator::GT, x);
2289 }
2290 
2291 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2292     const parser::Expr::IntrinsicBinary &x) {
2293   ArgumentAnalyzer analyzer{context};
2294   analyzer.Analyze(std::get<0>(x.t));
2295   analyzer.Analyze(std::get<1>(x.t));
2296   if (analyzer.fatalErrors()) {
2297     return std::nullopt;
2298   } else if (analyzer.IsIntrinsicLogical()) {
2299     return AsGenericExpr(BinaryLogicalOperation(opr,
2300         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2301         std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2302   } else {
2303     return analyzer.TryDefinedOp(
2304         opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2305   }
2306 }
2307 
2308 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2309   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2310 }
2311 
2312 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2313   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2314 }
2315 
2316 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2317   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2318 }
2319 
2320 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2321   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2322 }
2323 
2324 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2325   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2326   ArgumentAnalyzer analyzer{*this, name.source};
2327   analyzer.Analyze(std::get<1>(x.t));
2328   analyzer.Analyze(std::get<2>(x.t));
2329   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2330       "No operator %s defined for %s and %s"_err_en_US, true);
2331 }
2332 
2333 static void CheckFuncRefToArrayElementRefHasSubscripts(
2334     semantics::SemanticsContext &context,
2335     const parser::FunctionReference &funcRef) {
2336   // Emit message if the function reference fix will end up an array element
2337   // reference with no subscripts because it will not be possible to later tell
2338   // the difference in expressions between empty subscript list due to bad
2339   // subscripts error recovery or because the user did not put any.
2340   if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2341     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2342     const auto *name{std::get_if<parser::Name>(&proc.u)};
2343     if (!name) {
2344       name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2345     }
2346     auto &msg{context.Say(funcRef.v.source,
2347         name->symbol && name->symbol->Rank() == 0
2348             ? "'%s' is not a function"_err_en_US
2349             : "Reference to array '%s' with empty subscript list"_err_en_US,
2350         name->source)};
2351     if (name->symbol) {
2352       if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) {
2353         msg.Attach(name->source,
2354             "A result variable must be declared with RESULT to allow recursive "
2355             "function calls"_en_US);
2356       } else {
2357         AttachDeclaration(&msg, *name->symbol);
2358       }
2359     }
2360   }
2361 }
2362 
2363 // Converts, if appropriate, an original misparse of ambiguous syntax like
2364 // A(1) as a function reference into an array reference.
2365 // Misparse structure constructors are detected elsewhere after generic
2366 // function call resolution fails.
2367 template <typename... A>
2368 static void FixMisparsedFunctionReference(
2369     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2370   // The parse tree is updated in situ when resolving an ambiguous parse.
2371   using uType = std::decay_t<decltype(constU)>;
2372   auto &u{const_cast<uType &>(constU)};
2373   if (auto *func{
2374           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2375     parser::FunctionReference &funcRef{func->value()};
2376     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2377     if (Symbol *
2378         origSymbol{
2379             std::visit(common::visitors{
2380                            [&](parser::Name &name) { return name.symbol; },
2381                            [&](parser::ProcComponentRef &pcr) {
2382                              return pcr.v.thing.component.symbol;
2383                            },
2384                        },
2385                 proc.u)}) {
2386       Symbol &symbol{origSymbol->GetUltimate()};
2387       if (symbol.has<semantics::ObjectEntityDetails>() ||
2388           symbol.has<semantics::AssocEntityDetails>()) {
2389         // Note that expression in AssocEntityDetails cannot be a procedure
2390         // pointer as per C1105 so this cannot be a function reference.
2391         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2392                           uType>) {
2393           CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef);
2394           u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2395         } else {
2396           DIE("can't fix misparsed function as array reference");
2397         }
2398       }
2399     }
2400   }
2401 }
2402 
2403 // Common handling of parse tree node types that retain the
2404 // representation of the analyzed expression.
2405 template <typename PARSED>
2406 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) {
2407   if (x.typedExpr) {
2408     return x.typedExpr->v;
2409   }
2410   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2411       std::is_same_v<PARSED, parser::Variable>) {
2412     FixMisparsedFunctionReference(context_, x.u);
2413   }
2414   if (AssumedTypeDummy(x)) { // C710
2415     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2416   } else if (MaybeExpr result{evaluate::Fold(foldingContext_, Analyze(x.u))}) {
2417     SetExpr(x, std::move(*result));
2418     return x.typedExpr->v;
2419   }
2420   ResetExpr(x);
2421   if (!context_.AnyFatalError()) {
2422     std::string buf;
2423     llvm::raw_string_ostream dump{buf};
2424     parser::DumpTree(dump, x);
2425     Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2426         dump.str());
2427   }
2428   fatalErrors_ = true;
2429   return std::nullopt;
2430 }
2431 
2432 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2433   auto restorer{GetContextualMessages().SetLocation(expr.source)};
2434   return ExprOrVariable(expr);
2435 }
2436 
2437 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2438   auto restorer{GetContextualMessages().SetLocation(variable.GetSource())};
2439   return ExprOrVariable(variable);
2440 }
2441 
2442 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
2443   auto restorer{GetContextualMessages().SetLocation(x.source)};
2444   return ExprOrVariable(x);
2445 }
2446 
2447 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
2448     TypeCategory category,
2449     const std::optional<parser::KindSelector> &selector) {
2450   int defaultKind{GetDefaultKind(category)};
2451   if (!selector) {
2452     return Expr<SubscriptInteger>{defaultKind};
2453   }
2454   return std::visit(
2455       common::visitors{
2456           [&](const parser::ScalarIntConstantExpr &x) {
2457             if (MaybeExpr kind{Analyze(x)}) {
2458               Expr<SomeType> folded{Fold(std::move(*kind))};
2459               if (std::optional<std::int64_t> code{ToInt64(folded)}) {
2460                 if (CheckIntrinsicKind(category, *code)) {
2461                   return Expr<SubscriptInteger>{*code};
2462                 }
2463               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) {
2464                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
2465               }
2466             }
2467             return Expr<SubscriptInteger>{defaultKind};
2468           },
2469           [&](const parser::KindSelector::StarSize &x) {
2470             std::intmax_t size = x.v;
2471             if (!CheckIntrinsicSize(category, size)) {
2472               size = defaultKind;
2473             } else if (category == TypeCategory::Complex) {
2474               size /= 2;
2475             }
2476             return Expr<SubscriptInteger>{size};
2477           },
2478       },
2479       selector->u);
2480 }
2481 
2482 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
2483   return context_.GetDefaultKind(category);
2484 }
2485 
2486 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
2487     common::TypeCategory category) {
2488   return {category, GetDefaultKind(category)};
2489 }
2490 
2491 bool ExpressionAnalyzer::CheckIntrinsicKind(
2492     TypeCategory category, std::int64_t kind) {
2493   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
2494     return true;
2495   } else {
2496     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
2497         ToUpperCase(EnumToString(category)), kind);
2498     return false;
2499   }
2500 }
2501 
2502 bool ExpressionAnalyzer::CheckIntrinsicSize(
2503     TypeCategory category, std::int64_t size) {
2504   if (category == TypeCategory::Complex) {
2505     // COMPLEX*16 == COMPLEX(KIND=8)
2506     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
2507       return true;
2508     }
2509   } else if (IsValidKindOfIntrinsicType(category, size)) {
2510     return true;
2511   }
2512   Say("%s*%jd is not a supported type"_err_en_US,
2513       ToUpperCase(EnumToString(category)), size);
2514   return false;
2515 }
2516 
2517 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
2518   return impliedDos_.insert(std::make_pair(name, kind)).second;
2519 }
2520 
2521 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
2522   auto iter{impliedDos_.find(name)};
2523   if (iter != impliedDos_.end()) {
2524     impliedDos_.erase(iter);
2525   }
2526 }
2527 
2528 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
2529     parser::CharBlock name) const {
2530   auto iter{impliedDos_.find(name)};
2531   if (iter != impliedDos_.cend()) {
2532     return {iter->second};
2533   } else {
2534     return std::nullopt;
2535   }
2536 }
2537 
2538 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
2539     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
2540   if (result) {
2541     if (auto type{result->GetType()}) {
2542       if (type->category() != category) { // C885
2543         Say(at, "Must have %s type, but is %s"_err_en_US,
2544             ToUpperCase(EnumToString(category)),
2545             ToUpperCase(type->AsFortran()));
2546         return false;
2547       } else if (defaultKind) {
2548         int kind{context_.GetDefaultKind(category)};
2549         if (type->kind() != kind) {
2550           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
2551               kind, ToUpperCase(EnumToString(category)),
2552               ToUpperCase(type->AsFortran()));
2553           return false;
2554         }
2555       }
2556     } else {
2557       Say(at, "Must have %s type, but is typeless"_err_en_US,
2558           ToUpperCase(EnumToString(category)));
2559       return false;
2560     }
2561   }
2562   return true;
2563 }
2564 
2565 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
2566     ProcedureDesignator &&proc, ActualArguments &&arguments) {
2567   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
2568     if (intrinsic->name == "null" && arguments.empty()) {
2569       return Expr<SomeType>{NullPointer{}};
2570     }
2571   }
2572   if (const Symbol * symbol{proc.GetSymbol()}) {
2573     if (!ResolveForward(*symbol)) {
2574       return std::nullopt;
2575     }
2576   }
2577   if (auto chars{CheckCall(callSite, proc, arguments)}) {
2578     if (chars->functionResult) {
2579       const auto &result{*chars->functionResult};
2580       if (result.IsProcedurePointer()) {
2581         return Expr<SomeType>{
2582             ProcedureRef{std::move(proc), std::move(arguments)}};
2583       } else {
2584         // Not a procedure pointer, so type and shape are known.
2585         return TypedWrapper<FunctionRef, ProcedureRef>(
2586             DEREF(result.GetTypeAndShape()).type(),
2587             ProcedureRef{std::move(proc), std::move(arguments)});
2588       }
2589     }
2590   }
2591   return std::nullopt;
2592 }
2593 
2594 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
2595     parser::CharBlock intrinsic, ActualArguments &&arguments) {
2596   if (std::optional<SpecificCall> specificCall{
2597           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
2598               arguments, context_.foldingContext())}) {
2599     return MakeFunctionRef(intrinsic,
2600         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2601         std::move(specificCall->arguments));
2602   } else {
2603     return std::nullopt;
2604   }
2605 }
2606 
2607 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
2608   source_.ExtendToCover(x.GetSource());
2609   if (MaybeExpr expr{context_.Analyze(x)}) {
2610     if (!IsConstantExpr(*expr)) {
2611       actuals_.emplace_back(std::move(*expr));
2612       return;
2613     }
2614     const Symbol *symbol{GetFirstSymbol(*expr)};
2615     context_.Say(x.GetSource(),
2616         "Assignment to constant '%s' is not allowed"_err_en_US,
2617         symbol ? symbol->name() : x.GetSource());
2618   }
2619   fatalErrors_ = true;
2620 }
2621 
2622 void ArgumentAnalyzer::Analyze(
2623     const parser::ActualArgSpec &arg, bool isSubroutine) {
2624   // TODO: C1002: Allow a whole assumed-size array to appear if the dummy
2625   // argument would accept it.  Handle by special-casing the context
2626   // ActualArg -> Variable -> Designator.
2627   // TODO: Actual arguments that are procedures and procedure pointers need to
2628   // be detected and represented (they're not expressions).
2629   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
2630   std::optional<ActualArgument> actual;
2631   std::visit(common::visitors{
2632                  [&](const common::Indirection<parser::Expr> &x) {
2633                    // TODO: Distinguish & handle procedure name and
2634                    // proc-component-ref
2635                    actual = AnalyzeExpr(x.value());
2636                  },
2637                  [&](const parser::AltReturnSpec &) {
2638                    if (!isSubroutine) {
2639                      context_.Say(
2640                          "alternate return specification may not appear on"
2641                          " function reference"_err_en_US);
2642                    }
2643                  },
2644                  [&](const parser::ActualArg::PercentRef &) {
2645                    context_.Say("TODO: %REF() argument"_err_en_US);
2646                  },
2647                  [&](const parser::ActualArg::PercentVal &) {
2648                    context_.Say("TODO: %VAL() argument"_err_en_US);
2649                  },
2650              },
2651       std::get<parser::ActualArg>(arg.t).u);
2652   if (actual) {
2653     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
2654       actual->set_keyword(argKW->v.source);
2655     }
2656     actuals_.emplace_back(std::move(*actual));
2657   } else {
2658     fatalErrors_ = true;
2659   }
2660 }
2661 
2662 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const {
2663   CHECK(actuals_.size() == 2);
2664   return semantics::IsIntrinsicRelational(
2665       opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2666 }
2667 
2668 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
2669   std::optional<DynamicType> type0{GetType(0)};
2670   if (actuals_.size() == 1) {
2671     if (IsBOZLiteral(0)) {
2672       return opr == NumericOperator::Add;
2673     } else {
2674       return type0 && semantics::IsIntrinsicNumeric(*type0);
2675     }
2676   } else {
2677     std::optional<DynamicType> type1{GetType(1)};
2678     if (IsBOZLiteral(0) && type1) {
2679       auto cat1{type1->category()};
2680       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
2681     } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ
2682       auto cat0{type0->category()};
2683       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
2684     } else {
2685       return type0 && type1 &&
2686           semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1));
2687     }
2688   }
2689 }
2690 
2691 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
2692   if (actuals_.size() == 1) {
2693     return semantics::IsIntrinsicLogical(*GetType(0));
2694     return GetType(0)->category() == TypeCategory::Logical;
2695   } else {
2696     return semantics::IsIntrinsicLogical(
2697         *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2698   }
2699 }
2700 
2701 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
2702   return semantics::IsIntrinsicConcat(
2703       *GetType(0), GetRank(0), *GetType(1), GetRank(1));
2704 }
2705 
2706 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
2707     const char *opr, parser::MessageFixedText &&error, bool isUserOp) {
2708   if (AnyUntypedOperand()) {
2709     context_.Say(
2710         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
2711     return std::nullopt;
2712   }
2713   {
2714     auto restorer{context_.GetContextualMessages().DiscardMessages()};
2715     std::string oprNameString{
2716         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
2717     parser::CharBlock oprName{oprNameString};
2718     const auto &scope{context_.context().FindScope(source_)};
2719     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
2720       parser::Name name{symbol->name(), symbol};
2721       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
2722         return result;
2723       }
2724       sawDefinedOp_ = symbol;
2725     }
2726     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
2727       if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) {
2728         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
2729           return result;
2730         }
2731       }
2732     }
2733   }
2734   if (sawDefinedOp_) {
2735     SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString()));
2736   } else if (actuals_.size() == 1 || AreConformable()) {
2737     context_.Say(
2738         std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
2739   } else {
2740     context_.Say(
2741         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
2742         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
2743   }
2744   return std::nullopt;
2745 }
2746 
2747 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
2748     std::vector<const char *> oprs, parser::MessageFixedText &&error) {
2749   for (std::size_t i{1}; i < oprs.size(); ++i) {
2750     auto restorer{context_.GetContextualMessages().DiscardMessages()};
2751     if (auto result{TryDefinedOp(oprs[i], std::move(error))}) {
2752       return result;
2753     }
2754   }
2755   return TryDefinedOp(oprs[0], std::move(error));
2756 }
2757 
2758 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
2759   ActualArguments localActuals{actuals_};
2760   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
2761   if (!proc) {
2762     proc = &symbol;
2763     localActuals.at(passIndex).value().set_isPassedObject();
2764   }
2765   return context_.MakeFunctionRef(
2766       source_, ProcedureDesignator{*proc}, std::move(localActuals));
2767 }
2768 
2769 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
2770   using semantics::Tristate;
2771   const Expr<SomeType> &lhs{GetExpr(0)};
2772   const Expr<SomeType> &rhs{GetExpr(1)};
2773   std::optional<DynamicType> lhsType{lhs.GetType()};
2774   std::optional<DynamicType> rhsType{rhs.GetType()};
2775   int lhsRank{lhs.Rank()};
2776   int rhsRank{rhs.Rank()};
2777   Tristate isDefined{
2778       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
2779   if (isDefined == Tristate::No) {
2780     if (lhsType && rhsType) {
2781       AddAssignmentConversion(*lhsType, *rhsType);
2782     }
2783     return std::nullopt; // user-defined assignment not allowed for these args
2784   }
2785   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
2786   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
2787     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
2788     return std::move(*procRef);
2789   }
2790   if (isDefined == Tristate::Yes) {
2791     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
2792         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
2793       SayNoMatch("ASSIGNMENT(=)", true);
2794     }
2795   }
2796   return std::nullopt;
2797 }
2798 
2799 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
2800     TypeCategory lhs, TypeCategory rhs) {
2801   if (!context_.context().languageFeatures().IsEnabled(
2802           common::LanguageFeature::LogicalIntegerAssignment)) {
2803     return false;
2804   }
2805   std::optional<parser::MessageFixedText> msg;
2806   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
2807     // allow assignment to LOGICAL from INTEGER as a legacy extension
2808     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US;
2809   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
2810     // ... and assignment to LOGICAL from INTEGER
2811     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US;
2812   } else {
2813     return false;
2814   }
2815   if (context_.context().languageFeatures().ShouldWarn(
2816           common::LanguageFeature::LogicalIntegerAssignment)) {
2817     context_.Say(std::move(*msg));
2818   }
2819   return true;
2820 }
2821 
2822 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
2823   auto restorer{context_.GetContextualMessages().DiscardMessages()};
2824   std::string oprNameString{"assignment(=)"};
2825   parser::CharBlock oprName{oprNameString};
2826   const Symbol *proc{nullptr};
2827   const auto &scope{context_.context().FindScope(source_)};
2828   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
2829     ExpressionAnalyzer::AdjustActuals noAdjustment;
2830     if (const Symbol *
2831         specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) {
2832       proc = specific;
2833     } else {
2834       context_.EmitGenericResolutionError(*symbol);
2835     }
2836   }
2837   for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
2838     if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) {
2839       proc = specific;
2840     }
2841   }
2842   if (proc) {
2843     ActualArguments actualsCopy{actuals_};
2844     actualsCopy[1]->Parenthesize();
2845     return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
2846   } else {
2847     return std::nullopt;
2848   }
2849 }
2850 
2851 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
2852   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
2853      << '\n';
2854   for (const auto &actual : actuals_) {
2855     if (!actual.has_value()) {
2856       os << "- error\n";
2857     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
2858       os << "- assumed type: " << symbol->name().ToString() << '\n';
2859     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
2860       expr->AsFortran(os << "- expr: ") << '\n';
2861     } else {
2862       DIE("bad ActualArgument");
2863     }
2864   }
2865 }
2866 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
2867     const parser::Expr &expr) {
2868   source_.ExtendToCover(expr.source);
2869   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
2870     expr.typedExpr.reset(new GenericExprWrapper{});
2871     if (allowAssumedType_) {
2872       return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2873     } else {
2874       context_.SayAt(expr.source,
2875           "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2876       return std::nullopt;
2877     }
2878   } else if (MaybeExpr argExpr{context_.Analyze(expr)}) {
2879     return ActualArgument{context_.Fold(std::move(*argExpr))};
2880   } else {
2881     return std::nullopt;
2882   }
2883 }
2884 
2885 bool ArgumentAnalyzer::AreConformable() const {
2886   CHECK(!fatalErrors_ && actuals_.size() == 2);
2887   return evaluate::AreConformable(*actuals_[0], *actuals_[1]);
2888 }
2889 
2890 // Look for a type-bound operator in the type of arg number passIndex.
2891 const Symbol *ArgumentAnalyzer::FindBoundOp(
2892     parser::CharBlock oprName, int passIndex) {
2893   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
2894   if (!type || !type->scope()) {
2895     return nullptr;
2896   }
2897   const Symbol *symbol{type->scope()->FindComponent(oprName)};
2898   if (!symbol) {
2899     return nullptr;
2900   }
2901   sawDefinedOp_ = symbol;
2902   ExpressionAnalyzer::AdjustActuals adjustment{
2903       [&](const Symbol &proc, ActualArguments &) {
2904         return passIndex == GetPassIndex(proc);
2905       }};
2906   const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
2907   if (!result) {
2908     context_.EmitGenericResolutionError(*symbol);
2909   }
2910   return result;
2911 }
2912 
2913 // If there is an implicit conversion between intrinsic types, make it explicit
2914 void ArgumentAnalyzer::AddAssignmentConversion(
2915     const DynamicType &lhsType, const DynamicType &rhsType) {
2916   if (lhsType.category() == rhsType.category() &&
2917       lhsType.kind() == rhsType.kind()) {
2918     // no conversion necessary
2919   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
2920     actuals_[1] = ActualArgument{*rhsExpr};
2921   } else {
2922     actuals_[1] = std::nullopt;
2923   }
2924 }
2925 
2926 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
2927   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
2928 }
2929 int ArgumentAnalyzer::GetRank(std::size_t i) const {
2930   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
2931 }
2932 
2933 // Report error resolving opr when there is a user-defined one available
2934 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
2935   std::string type0{TypeAsFortran(0)};
2936   auto rank0{actuals_[0]->Rank()};
2937   if (actuals_.size() == 1) {
2938     if (rank0 > 0) {
2939       context_.Say("No intrinsic or user-defined %s matches "
2940                    "rank %d array of %s"_err_en_US,
2941           opr, rank0, type0);
2942     } else {
2943       context_.Say("No intrinsic or user-defined %s matches "
2944                    "operand type %s"_err_en_US,
2945           opr, type0);
2946     }
2947   } else {
2948     std::string type1{TypeAsFortran(1)};
2949     auto rank1{actuals_[1]->Rank()};
2950     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
2951       context_.Say("No intrinsic or user-defined %s matches "
2952                    "rank %d array of %s and rank %d array of %s"_err_en_US,
2953           opr, rank0, type0, rank1, type1);
2954     } else if (isAssignment && rank0 != rank1) {
2955       if (rank0 == 0) {
2956         context_.Say("No intrinsic or user-defined %s matches "
2957                      "scalar %s and rank %d array of %s"_err_en_US,
2958             opr, type0, rank1, type1);
2959       } else {
2960         context_.Say("No intrinsic or user-defined %s matches "
2961                      "rank %d array of %s and scalar %s"_err_en_US,
2962             opr, rank0, type0, type1);
2963       }
2964     } else {
2965       context_.Say("No intrinsic or user-defined %s matches "
2966                    "operand types %s and %s"_err_en_US,
2967           opr, type0, type1);
2968     }
2969   }
2970 }
2971 
2972 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
2973   if (std::optional<DynamicType> type{GetType(i)}) {
2974     return type->category() == TypeCategory::Derived
2975         ? "TYPE("s + type->AsFortran() + ')'
2976         : type->category() == TypeCategory::Character
2977             ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
2978             : ToUpperCase(type->AsFortran());
2979   } else {
2980     return "untyped";
2981   }
2982 }
2983 
2984 bool ArgumentAnalyzer::AnyUntypedOperand() {
2985   for (const auto &actual : actuals_) {
2986     if (!actual.value().GetType()) {
2987       return true;
2988     }
2989   }
2990   return false;
2991 }
2992 
2993 } // namespace Fortran::evaluate
2994 
2995 namespace Fortran::semantics {
2996 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
2997     SemanticsContext &context, common::TypeCategory category,
2998     const std::optional<parser::KindSelector> &selector) {
2999   evaluate::ExpressionAnalyzer analyzer{context};
3000   auto restorer{
3001       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3002   return analyzer.AnalyzeKindSelector(category, selector);
3003 }
3004 
3005 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) {
3006   evaluate::ExpressionAnalyzer{context}.Analyze(call);
3007 }
3008 
3009 const evaluate::Assignment *AnalyzeAssignmentStmt(
3010     SemanticsContext &context, const parser::AssignmentStmt &stmt) {
3011   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3012 }
3013 const evaluate::Assignment *AnalyzePointerAssignmentStmt(
3014     SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) {
3015   return evaluate::ExpressionAnalyzer{context}.Analyze(stmt);
3016 }
3017 
3018 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3019 
3020 bool ExprChecker::Walk(const parser::Program &program) {
3021   parser::Walk(program, *this);
3022   return !context_.AnyFatalError();
3023 }
3024 } // namespace Fortran::semantics
3025