1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } 59 if (auto *lengthParam{charLength()}) { 60 if (const auto &len{lengthParam->GetExplicit()}) { 61 return ConvertToType<SubscriptInteger>(common::Clone(*len)); 62 } 63 } 64 return std::nullopt; // assumed or deferred length 65 } 66 67 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 68 const std::optional<parser::TypeSpec> &spec) { 69 if (spec) { 70 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 71 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 72 // (viz., an intrinsic type with valid known kind or a non-polymorphic 73 // & non-ABSTRACT derived type). 74 if (const semantics::IntrinsicTypeSpec * 75 intrinsic{typeSpec->AsIntrinsic()}) { 76 TypeCategory category{intrinsic->category()}; 77 if (auto optKind{ToInt64(intrinsic->kind())}) { 78 int kind{static_cast<int>(*optKind)}; 79 if (category == TypeCategory::Character) { 80 const semantics::CharacterTypeSpec &cts{ 81 typeSpec->characterTypeSpec()}; 82 const semantics::ParamValue &len{cts.length()}; 83 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 84 // type guards, but not in array constructors. 85 return DynamicTypeWithLength{DynamicType{kind, len}}; 86 } else { 87 return DynamicTypeWithLength{DynamicType{category, kind}}; 88 } 89 } 90 } else if (const semantics::DerivedTypeSpec * 91 derived{typeSpec->AsDerived()}) { 92 return DynamicTypeWithLength{DynamicType{*derived}}; 93 } 94 } 95 } 96 return std::nullopt; 97 } 98 99 class ArgumentAnalyzer { 100 public: 101 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 102 : context_{context}, source_{context.GetContextualMessages().at()}, 103 isProcedureCall_{false} {} 104 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 105 bool isProcedureCall = false) 106 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 107 bool fatalErrors() const { return fatalErrors_; } 108 ActualArguments &&GetActuals() { 109 CHECK(!fatalErrors_); 110 return std::move(actuals_); 111 } 112 const Expr<SomeType> &GetExpr(std::size_t i) const { 113 return DEREF(actuals_.at(i).value().UnwrapExpr()); 114 } 115 Expr<SomeType> &&MoveExpr(std::size_t i) { 116 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 117 } 118 void Analyze(const common::Indirection<parser::Expr> &x) { 119 Analyze(x.value()); 120 } 121 void Analyze(const parser::Expr &x) { 122 actuals_.emplace_back(AnalyzeExpr(x)); 123 fatalErrors_ |= !actuals_.back(); 124 } 125 void Analyze(const parser::Variable &); 126 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 127 void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType); 128 129 bool IsIntrinsicRelational(RelationalOperator) const; 130 bool IsIntrinsicLogical() const; 131 bool IsIntrinsicNumeric(NumericOperator) const; 132 bool IsIntrinsicConcat() const; 133 134 bool CheckConformance() const; 135 136 // Find and return a user-defined operator or report an error. 137 // The provided message is used if there is no such operator. 138 MaybeExpr TryDefinedOp( 139 const char *, parser::MessageFixedText &&, bool isUserOp = false); 140 template <typename E> 141 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 142 return TryDefinedOp( 143 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 144 } 145 // Find and return a user-defined assignment 146 std::optional<ProcedureRef> TryDefinedAssignment(); 147 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 148 std::optional<DynamicType> GetType(std::size_t) const; 149 void Dump(llvm::raw_ostream &); 150 151 private: 152 MaybeExpr TryDefinedOp( 153 std::vector<const char *>, parser::MessageFixedText &&); 154 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 155 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 156 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 157 bool AreConformable() const; 158 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 159 void AddAssignmentConversion( 160 const DynamicType &lhsType, const DynamicType &rhsType); 161 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 162 int GetRank(std::size_t) const; 163 bool IsBOZLiteral(std::size_t i) const { 164 return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u); 165 } 166 void SayNoMatch(const std::string &, bool isAssignment = false); 167 std::string TypeAsFortran(std::size_t); 168 bool AnyUntypedOrMissingOperand(); 169 170 ExpressionAnalyzer &context_; 171 ActualArguments actuals_; 172 parser::CharBlock source_; 173 bool fatalErrors_{false}; 174 const bool isProcedureCall_; // false for user-defined op or assignment 175 const Symbol *sawDefinedOp_{nullptr}; 176 }; 177 178 // Wraps a data reference in a typed Designator<>, and a procedure 179 // or procedure pointer reference in a ProcedureDesignator. 180 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 181 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 182 if (semantics::IsProcedure(symbol)) { 183 if (auto *component{std::get_if<Component>(&ref.u)}) { 184 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 185 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 186 DIE("unexpected alternative in DataRef"); 187 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 188 return Expr<SomeType>{ProcedureDesignator{symbol}}; 189 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 190 symbol.name().ToString())}) { 191 SpecificIntrinsic intrinsic{ 192 symbol.name().ToString(), std::move(*interface)}; 193 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 194 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 195 } else { 196 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 197 symbol.name()); 198 return std::nullopt; 199 } 200 } else if (auto dyType{DynamicType::From(symbol)}) { 201 return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); 202 } 203 return std::nullopt; 204 } 205 206 // Some subscript semantic checks must be deferred until all of the 207 // subscripts are in hand. 208 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 209 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 210 int symbolRank{symbol.Rank()}; 211 int subscripts{static_cast<int>(ref.size())}; 212 if (subscripts == 0) { 213 return std::nullopt; // error recovery 214 } else if (subscripts != symbolRank) { 215 if (symbolRank != 0) { 216 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 217 symbolRank, symbol.name(), subscripts); 218 } 219 return std::nullopt; 220 } else if (Component * component{ref.base().UnwrapComponent()}) { 221 int baseRank{component->base().Rank()}; 222 if (baseRank > 0) { 223 int subscriptRank{0}; 224 for (const auto &expr : ref.subscript()) { 225 subscriptRank += expr.Rank(); 226 } 227 if (subscriptRank > 0) { 228 Say("Subscripts of component '%s' of rank-%d derived type " 229 "array have rank %d but must all be scalar"_err_en_US, 230 symbol.name(), baseRank, subscriptRank); 231 return std::nullopt; 232 } 233 } 234 } else if (const auto *object{ 235 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 236 // C928 & C1002 237 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 238 if (!last->upper() && object->IsAssumedSize()) { 239 Say("Assumed-size array '%s' must have explicit final " 240 "subscript upper bound value"_err_en_US, 241 symbol.name()); 242 return std::nullopt; 243 } 244 } 245 } else { 246 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 247 // which, if not an object, must be a construct entity from 248 // SELECT TYPE/RANK or ASSOCIATE. 249 CHECK(symbol.has<semantics::AssocEntityDetails>()); 250 } 251 return Designate(DataRef{std::move(ref)}); 252 } 253 254 // Applies subscripts to a data reference. 255 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 256 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 257 if (subscripts.empty()) { 258 return std::nullopt; // error recovery 259 } 260 return std::visit( 261 common::visitors{ 262 [&](SymbolRef &&symbol) { 263 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 264 }, 265 [&](Component &&c) { 266 return CompleteSubscripts( 267 ArrayRef{std::move(c), std::move(subscripts)}); 268 }, 269 [&](auto &&) -> MaybeExpr { 270 DIE("bad base for ArrayRef"); 271 return std::nullopt; 272 }, 273 }, 274 std::move(dataRef.u)); 275 } 276 277 // Top-level checks for data references. 278 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 279 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 280 const Symbol &symbol{component->GetLastSymbol()}; 281 int componentRank{symbol.Rank()}; 282 if (componentRank > 0) { 283 int baseRank{component->base().Rank()}; 284 if (baseRank > 0) { 285 Say("Reference to whole rank-%d component '%%%s' of " 286 "rank-%d array of derived type is not allowed"_err_en_US, 287 componentRank, symbol.name(), baseRank); 288 } 289 } 290 } 291 return Designate(std::move(dataRef)); 292 } 293 294 // Parse tree correction after a substring S(j:k) was misparsed as an 295 // array section. N.B. Fortran substrings have to have a range, not a 296 // single index. 297 static void FixMisparsedSubstring(const parser::Designator &d) { 298 auto &mutate{const_cast<parser::Designator &>(d)}; 299 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 300 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 301 &dataRef->u)}) { 302 parser::ArrayElement &arrElement{ae->value()}; 303 if (!arrElement.subscripts.empty()) { 304 auto iter{arrElement.subscripts.begin()}; 305 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 306 if (!std::get<2>(triplet->t) /* no stride */ && 307 ++iter == arrElement.subscripts.end() /* one subscript */) { 308 if (Symbol * 309 symbol{std::visit( 310 common::visitors{ 311 [](parser::Name &n) { return n.symbol; }, 312 [](common::Indirection<parser::StructureComponent> 313 &sc) { return sc.value().component.symbol; }, 314 [](auto &) -> Symbol * { return nullptr; }, 315 }, 316 arrElement.base.u)}) { 317 const Symbol &ultimate{symbol->GetUltimate()}; 318 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 319 if (!ultimate.IsObjectArray() && 320 type->category() == semantics::DeclTypeSpec::Character) { 321 // The ambiguous S(j:k) was parsed as an array section 322 // reference, but it's now clear that it's a substring. 323 // Fix the parse tree in situ. 324 mutate.u = arrElement.ConvertToSubstring(); 325 } 326 } 327 } 328 } 329 } 330 } 331 } 332 } 333 } 334 335 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 336 auto restorer{GetContextualMessages().SetLocation(d.source)}; 337 FixMisparsedSubstring(d); 338 // These checks have to be deferred to these "top level" data-refs where 339 // we can be sure that there are no following subscripts (yet). 340 // Substrings have already been run through TopLevelChecks() and 341 // won't be returned by ExtractDataRef(). 342 if (MaybeExpr result{Analyze(d.u)}) { 343 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 344 return TopLevelChecks(std::move(*dataRef)); 345 } 346 return result; 347 } 348 return std::nullopt; 349 } 350 351 // A utility subroutine to repackage optional expressions of various levels 352 // of type specificity as fully general MaybeExpr values. 353 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 354 return AsGenericExpr(std::move(x)); 355 } 356 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 357 if (x) { 358 return AsMaybeExpr(std::move(*x)); 359 } 360 return std::nullopt; 361 } 362 363 // Type kind parameter values for literal constants. 364 int ExpressionAnalyzer::AnalyzeKindParam( 365 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 366 if (!kindParam) { 367 return defaultKind; 368 } 369 return std::visit( 370 common::visitors{ 371 [](std::uint64_t k) { return static_cast<int>(k); }, 372 [&](const parser::Scalar< 373 parser::Integer<parser::Constant<parser::Name>>> &n) { 374 if (MaybeExpr ie{Analyze(n)}) { 375 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 376 int iv = *i64; 377 if (iv == *i64) { 378 return iv; 379 } 380 } 381 } 382 return defaultKind; 383 }, 384 }, 385 kindParam->u); 386 } 387 388 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 389 struct IntTypeVisitor { 390 using Result = MaybeExpr; 391 using Types = IntegerTypes; 392 template <typename T> Result Test() { 393 if (T::kind >= kind) { 394 const char *p{digits.begin()}; 395 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 396 if (!value.overflow) { 397 if (T::kind > kind) { 398 if (!isDefaultKind || 399 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 400 return std::nullopt; 401 } else if (analyzer.context().ShouldWarn( 402 LanguageFeature::BigIntLiterals)) { 403 analyzer.Say(digits, 404 "Integer literal is too large for default INTEGER(KIND=%d); " 405 "assuming INTEGER(KIND=%d)"_en_US, 406 kind, T::kind); 407 } 408 } 409 return Expr<SomeType>{ 410 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 411 } 412 } 413 return std::nullopt; 414 } 415 ExpressionAnalyzer &analyzer; 416 parser::CharBlock digits; 417 int kind; 418 bool isDefaultKind; 419 }; 420 421 template <typename PARSED> 422 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 423 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 424 bool isDefaultKind{!kindParam}; 425 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 426 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 427 auto digits{std::get<parser::CharBlock>(x.t)}; 428 if (MaybeExpr result{common::SearchTypes( 429 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 430 return result; 431 } else if (isDefaultKind) { 432 Say(digits, 433 "Integer literal is too large for any allowable " 434 "kind of INTEGER"_err_en_US); 435 } else { 436 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 437 kind); 438 } 439 } 440 return std::nullopt; 441 } 442 443 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 444 auto restorer{ 445 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 446 return IntLiteralConstant(x); 447 } 448 449 MaybeExpr ExpressionAnalyzer::Analyze( 450 const parser::SignedIntLiteralConstant &x) { 451 auto restorer{GetContextualMessages().SetLocation(x.source)}; 452 return IntLiteralConstant(x); 453 } 454 455 template <typename TYPE> 456 Constant<TYPE> ReadRealLiteral( 457 parser::CharBlock source, FoldingContext &context) { 458 const char *p{source.begin()}; 459 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 460 CHECK(p == source.end()); 461 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 462 auto value{valWithFlags.value}; 463 if (context.flushSubnormalsToZero()) { 464 value = value.FlushSubnormalToZero(); 465 } 466 return {value}; 467 } 468 469 struct RealTypeVisitor { 470 using Result = std::optional<Expr<SomeReal>>; 471 using Types = RealTypes; 472 473 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 474 : kind{k}, literal{lit}, context{ctx} {} 475 476 template <typename T> Result Test() { 477 if (kind == T::kind) { 478 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 479 } 480 return std::nullopt; 481 } 482 483 int kind; 484 parser::CharBlock literal; 485 FoldingContext &context; 486 }; 487 488 // Reads a real literal constant and encodes it with the right kind. 489 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 490 // Use a local message context around the real literal for better 491 // provenance on any messages. 492 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 493 // If a kind parameter appears, it defines the kind of the literal and the 494 // letter used in an exponent part must be 'E' (e.g., the 'E' in 495 // "6.02214E+23"). In the absence of an explicit kind parameter, any 496 // exponent letter determines the kind. Otherwise, defaults apply. 497 auto &defaults{context_.defaultKinds()}; 498 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 499 const char *end{x.real.source.end()}; 500 char expoLetter{' '}; 501 std::optional<int> letterKind; 502 for (const char *p{x.real.source.begin()}; p < end; ++p) { 503 if (parser::IsLetter(*p)) { 504 expoLetter = *p; 505 switch (expoLetter) { 506 case 'e': 507 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 508 break; 509 case 'd': 510 letterKind = defaults.doublePrecisionKind(); 511 break; 512 case 'q': 513 letterKind = defaults.quadPrecisionKind(); 514 break; 515 default: 516 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 517 } 518 break; 519 } 520 } 521 if (letterKind) { 522 defaultKind = *letterKind; 523 } 524 // C716 requires 'E' as an exponent, but this is more useful 525 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 526 if (letterKind && kind != *letterKind && expoLetter != 'e') { 527 Say("Explicit kind parameter on real constant disagrees with " 528 "exponent letter '%c'"_en_US, 529 expoLetter); 530 } 531 auto result{common::SearchTypes( 532 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 533 if (!result) { // C717 534 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 535 } 536 return AsMaybeExpr(std::move(result)); 537 } 538 539 MaybeExpr ExpressionAnalyzer::Analyze( 540 const parser::SignedRealLiteralConstant &x) { 541 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 542 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 543 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 544 if (sign == parser::Sign::Negative) { 545 return AsGenericExpr(-std::move(realExpr)); 546 } 547 } 548 return result; 549 } 550 return std::nullopt; 551 } 552 553 MaybeExpr ExpressionAnalyzer::Analyze( 554 const parser::SignedComplexLiteralConstant &x) { 555 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 556 if (!result) { 557 return std::nullopt; 558 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 559 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 560 } else { 561 return result; 562 } 563 } 564 565 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 566 return Analyze(x.u); 567 } 568 569 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 570 return AsMaybeExpr( 571 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 572 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 573 } 574 575 // CHARACTER literal processing. 576 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 577 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 578 return std::nullopt; 579 } 580 switch (kind) { 581 case 1: 582 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 583 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 584 string, true)}); 585 case 2: 586 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 587 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 588 string, true)}); 589 case 4: 590 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 591 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 592 string, true)}); 593 default: 594 CRASH_NO_CASE; 595 } 596 } 597 598 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 599 int kind{ 600 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 601 auto value{std::get<std::string>(x.t)}; 602 return AnalyzeString(std::move(value), kind); 603 } 604 605 MaybeExpr ExpressionAnalyzer::Analyze( 606 const parser::HollerithLiteralConstant &x) { 607 int kind{GetDefaultKind(TypeCategory::Character)}; 608 auto value{x.v}; 609 return AnalyzeString(std::move(value), kind); 610 } 611 612 // .TRUE. and .FALSE. of various kinds 613 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 614 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 615 GetDefaultKind(TypeCategory::Logical))}; 616 bool value{std::get<bool>(x.t)}; 617 auto result{common::SearchTypes( 618 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 619 kind, std::move(value)})}; 620 if (!result) { 621 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 622 } 623 return result; 624 } 625 626 // BOZ typeless literals 627 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 628 const char *p{x.v.c_str()}; 629 std::uint64_t base{16}; 630 switch (*p++) { 631 case 'b': 632 base = 2; 633 break; 634 case 'o': 635 base = 8; 636 break; 637 case 'z': 638 break; 639 case 'x': 640 break; 641 default: 642 CRASH_NO_CASE; 643 } 644 CHECK(*p == '"'); 645 ++p; 646 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 647 if (*p != '"') { 648 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 649 x.v); // C7107, C7108 650 return std::nullopt; 651 } 652 if (value.overflow) { 653 Say("BOZ literal '%s' too large"_err_en_US, x.v); 654 return std::nullopt; 655 } 656 return AsGenericExpr(std::move(value.value)); 657 } 658 659 // Names and named constants 660 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 661 auto restorer{GetContextualMessages().SetLocation(n.source)}; 662 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 663 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 664 *kind, AsExpr(ImpliedDoIndex{n.source}))); 665 } else if (context_.HasError(n)) { 666 return std::nullopt; 667 } else if (!n.symbol) { 668 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 669 return std::nullopt; 670 } else { 671 const Symbol &ultimate{n.symbol->GetUltimate()}; 672 if (ultimate.has<semantics::TypeParamDetails>()) { 673 // A bare reference to a derived type parameter (within a parameterized 674 // derived type definition) 675 return Fold(ConvertToType( 676 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 677 } else { 678 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 679 if (const semantics::Scope * 680 pure{semantics::FindPureProcedureContaining( 681 context_.FindScope(n.source))}) { 682 SayAt(n, 683 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 684 n.source, DEREF(pure->symbol()).name()); 685 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 686 } 687 } 688 if (!isWholeAssumedSizeArrayOk_ && 689 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 690 AttachDeclaration( 691 SayAt(n, 692 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 693 n.source), 694 *n.symbol); 695 } 696 return Designate(DataRef{*n.symbol}); 697 } 698 } 699 } 700 701 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 702 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 703 if (MaybeExpr value{Analyze(n.v)}) { 704 Expr<SomeType> folded{Fold(std::move(*value))}; 705 if (IsConstantExpr(folded)) { 706 return folded; 707 } 708 Say(n.v.source, "must be a constant"_err_en_US); // C718 709 } 710 return std::nullopt; 711 } 712 713 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 714 if (MaybeExpr value{Analyze(n.v)}) { 715 // Subtle: when the NullInit is a DataStmtConstant, it might 716 // be a misparse of a structure constructor without parameters 717 // or components (e.g., T()). Checking the result to ensure 718 // that a "=>" data entity initializer actually resolved to 719 // a null pointer has to be done by the caller. 720 return Fold(std::move(*value)); 721 } 722 return std::nullopt; 723 } 724 725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 726 return Analyze(x.value()); 727 } 728 729 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 730 if (const auto &repeat{ 731 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 732 x.repetitions = -1; 733 if (MaybeExpr expr{Analyze(repeat->u)}) { 734 Expr<SomeType> folded{Fold(std::move(*expr))}; 735 if (auto value{ToInt64(folded)}) { 736 if (*value >= 0) { // C882 737 x.repetitions = *value; 738 } else { 739 Say(FindSourceLocation(repeat), 740 "Repeat count (%jd) for data value must not be negative"_err_en_US, 741 *value); 742 } 743 } 744 } 745 } 746 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 747 } 748 749 // Substring references 750 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 751 const std::optional<parser::ScalarIntExpr> &bound) { 752 if (bound) { 753 if (MaybeExpr expr{Analyze(*bound)}) { 754 if (expr->Rank() > 1) { 755 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 756 } 757 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 758 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 759 return {std::move(*ssIntExpr)}; 760 } 761 return {Expr<SubscriptInteger>{ 762 Convert<SubscriptInteger, TypeCategory::Integer>{ 763 std::move(*intExpr)}}}; 764 } else { 765 Say("substring bound expression is not INTEGER"_err_en_US); 766 } 767 } 768 } 769 return std::nullopt; 770 } 771 772 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 773 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 774 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 775 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 776 if (std::optional<DataRef> checked{ 777 ExtractDataRef(std::move(*newBaseExpr))}) { 778 const parser::SubstringRange &range{ 779 std::get<parser::SubstringRange>(ss.t)}; 780 std::optional<Expr<SubscriptInteger>> first{ 781 GetSubstringBound(std::get<0>(range.t))}; 782 std::optional<Expr<SubscriptInteger>> last{ 783 GetSubstringBound(std::get<1>(range.t))}; 784 const Symbol &symbol{checked->GetLastSymbol()}; 785 if (std::optional<DynamicType> dynamicType{ 786 DynamicType::From(symbol)}) { 787 if (dynamicType->category() == TypeCategory::Character) { 788 return WrapperHelper<TypeCategory::Character, Designator, 789 Substring>(dynamicType->kind(), 790 Substring{std::move(checked.value()), std::move(first), 791 std::move(last)}); 792 } 793 } 794 Say("substring may apply only to CHARACTER"_err_en_US); 795 } 796 } 797 } 798 } 799 return std::nullopt; 800 } 801 802 // CHARACTER literal substrings 803 MaybeExpr ExpressionAnalyzer::Analyze( 804 const parser::CharLiteralConstantSubstring &x) { 805 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 806 std::optional<Expr<SubscriptInteger>> lower{ 807 GetSubstringBound(std::get<0>(range.t))}; 808 std::optional<Expr<SubscriptInteger>> upper{ 809 GetSubstringBound(std::get<1>(range.t))}; 810 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 811 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 812 Expr<SubscriptInteger> length{ 813 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 814 charExpr->u)}; 815 if (!lower) { 816 lower = Expr<SubscriptInteger>{1}; 817 } 818 if (!upper) { 819 upper = Expr<SubscriptInteger>{ 820 static_cast<std::int64_t>(ToInt64(length).value())}; 821 } 822 return std::visit( 823 [&](auto &&ckExpr) -> MaybeExpr { 824 using Result = ResultType<decltype(ckExpr)>; 825 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 826 CHECK(DEREF(cp).size() == 1); 827 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 828 staticData->set_alignment(Result::kind) 829 .set_itemBytes(Result::kind) 830 .Push(cp->GetScalarValue().value()); 831 Substring substring{std::move(staticData), std::move(lower.value()), 832 std::move(upper.value())}; 833 return AsGenericExpr( 834 Expr<Result>{Designator<Result>{std::move(substring)}}); 835 }, 836 std::move(charExpr->u)); 837 } 838 } 839 return std::nullopt; 840 } 841 842 // Subscripted array references 843 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 844 MaybeExpr &&expr) { 845 if (expr) { 846 if (expr->Rank() > 1) { 847 Say("Subscript expression has rank %d greater than 1"_err_en_US, 848 expr->Rank()); 849 } 850 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 851 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 852 return std::move(*ssIntExpr); 853 } else { 854 return Expr<SubscriptInteger>{ 855 Convert<SubscriptInteger, TypeCategory::Integer>{ 856 std::move(*intExpr)}}; 857 } 858 } else { 859 Say("Subscript expression is not INTEGER"_err_en_US); 860 } 861 } 862 return std::nullopt; 863 } 864 865 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 866 const std::optional<parser::Subscript> &s) { 867 if (s) { 868 return AsSubscript(Analyze(*s)); 869 } else { 870 return std::nullopt; 871 } 872 } 873 874 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 875 const parser::SectionSubscript &ss) { 876 return std::visit( 877 common::visitors{ 878 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 879 const auto &lower{std::get<0>(t.t)}; 880 const auto &upper{std::get<1>(t.t)}; 881 const auto &stride{std::get<2>(t.t)}; 882 auto result{Triplet{ 883 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 884 if ((lower && !result.lower()) || (upper && !result.upper())) { 885 return std::nullopt; 886 } else { 887 return std::make_optional<Subscript>(result); 888 } 889 }, 890 [&](const auto &s) -> std::optional<Subscript> { 891 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 892 return Subscript{std::move(*subscriptExpr)}; 893 } else { 894 return std::nullopt; 895 } 896 }, 897 }, 898 ss.u); 899 } 900 901 // Empty result means an error occurred 902 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 903 const std::list<parser::SectionSubscript> &sss) { 904 bool error{false}; 905 std::vector<Subscript> subscripts; 906 for (const auto &s : sss) { 907 if (auto subscript{AnalyzeSectionSubscript(s)}) { 908 subscripts.emplace_back(std::move(*subscript)); 909 } else { 910 error = true; 911 } 912 } 913 return !error ? subscripts : std::vector<Subscript>{}; 914 } 915 916 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 917 MaybeExpr baseExpr; 918 { 919 auto restorer{AllowWholeAssumedSizeArray()}; 920 baseExpr = Analyze(ae.base); 921 } 922 if (baseExpr) { 923 if (ae.subscripts.empty()) { 924 // will be converted to function call later or error reported 925 } else if (baseExpr->Rank() == 0) { 926 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 927 if (!context_.HasError(symbol)) { 928 Say("'%s' is not an array"_err_en_US, symbol->name()); 929 context_.SetError(*symbol); 930 } 931 } 932 } else if (std::optional<DataRef> dataRef{ 933 ExtractDataRef(std::move(*baseExpr))}) { 934 return ApplySubscripts( 935 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 936 } else { 937 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 938 } 939 } 940 // error was reported: analyze subscripts without reporting more errors 941 auto restorer{GetContextualMessages().DiscardMessages()}; 942 AnalyzeSectionSubscripts(ae.subscripts); 943 return std::nullopt; 944 } 945 946 // Type parameter inquiries apply to data references, but don't depend 947 // on any trailing (co)subscripts. 948 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 949 return std::visit( 950 common::visitors{ 951 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 952 [](Component &&component) { 953 return NamedEntity{std::move(component)}; 954 }, 955 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 956 [](CoarrayRef &&coarrayRef) { 957 return NamedEntity{coarrayRef.GetLastSymbol()}; 958 }, 959 }, 960 std::move(designator.u)); 961 } 962 963 // Components of parent derived types are explicitly represented as such. 964 static std::optional<Component> CreateComponent( 965 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 966 if (&component.owner() == &scope) { 967 return Component{std::move(base), component}; 968 } 969 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 970 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 971 return CreateComponent( 972 DataRef{Component{std::move(base), *parentComponent}}, component, 973 *parentScope); 974 } 975 } 976 return std::nullopt; 977 } 978 979 // Derived type component references and type parameter inquiries 980 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 981 MaybeExpr base{Analyze(sc.base)}; 982 Symbol *sym{sc.component.symbol}; 983 if (!base || !sym || context_.HasError(sym)) { 984 return std::nullopt; 985 } 986 const auto &name{sc.component.source}; 987 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 988 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 989 if (sym->detailsIf<semantics::TypeParamDetails>()) { 990 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 991 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 992 if (dyType->category() == TypeCategory::Integer) { 993 auto restorer{GetContextualMessages().SetLocation(name)}; 994 return Fold(ConvertToType(*dyType, 995 AsGenericExpr(TypeParamInquiry{ 996 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 997 } 998 } 999 Say(name, "Type parameter is not INTEGER"_err_en_US); 1000 } else { 1001 Say(name, 1002 "A type parameter inquiry must be applied to " 1003 "a designator"_err_en_US); 1004 } 1005 } else if (!dtSpec || !dtSpec->scope()) { 1006 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1007 return std::nullopt; 1008 } else if (std::optional<DataRef> dataRef{ 1009 ExtractDataRef(std::move(*dtExpr))}) { 1010 if (auto component{ 1011 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1012 return Designate(DataRef{std::move(*component)}); 1013 } else { 1014 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1015 dtSpec->typeSymbol().name()); 1016 } 1017 } else { 1018 Say(name, 1019 "Base of component reference must be a data reference"_err_en_US); 1020 } 1021 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1022 // special part-ref: %re, %im, %kind, %len 1023 // Type errors are detected and reported in semantics. 1024 using MiscKind = semantics::MiscDetails::Kind; 1025 MiscKind kind{details->kind()}; 1026 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1027 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1028 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1029 Expr<SomeReal> realExpr{std::visit( 1030 [&](const auto &z) { 1031 using PartType = typename ResultType<decltype(z)>::Part; 1032 auto part{kind == MiscKind::ComplexPartRe 1033 ? ComplexPart::Part::RE 1034 : ComplexPart::Part::IM}; 1035 return AsCategoryExpr(Designator<PartType>{ 1036 ComplexPart{std::move(*dataRef), part}}); 1037 }, 1038 zExpr->u)}; 1039 return AsGenericExpr(std::move(realExpr)); 1040 } 1041 } 1042 } else if (kind == MiscKind::KindParamInquiry || 1043 kind == MiscKind::LenParamInquiry) { 1044 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1045 return MakeFunctionRef( 1046 name, ActualArguments{ActualArgument{std::move(*base)}}); 1047 } else { 1048 DIE("unexpected MiscDetails::Kind"); 1049 } 1050 } else { 1051 Say(name, "derived type required before component reference"_err_en_US); 1052 } 1053 return std::nullopt; 1054 } 1055 1056 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1057 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1058 DataRef *dataRef{&*maybeDataRef}; 1059 std::vector<Subscript> subscripts; 1060 SymbolVector reversed; 1061 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1062 subscripts = std::move(aRef->subscript()); 1063 reversed.push_back(aRef->GetLastSymbol()); 1064 if (Component * component{aRef->base().UnwrapComponent()}) { 1065 dataRef = &component->base(); 1066 } else { 1067 dataRef = nullptr; 1068 } 1069 } 1070 if (dataRef) { 1071 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1072 reversed.push_back(component->GetLastSymbol()); 1073 dataRef = &component->base(); 1074 } 1075 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1076 reversed.push_back(*baseSym); 1077 } else { 1078 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1079 } 1080 } 1081 std::vector<Expr<SubscriptInteger>> cosubscripts; 1082 bool cosubsOk{true}; 1083 for (const auto &cosub : 1084 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1085 MaybeExpr coex{Analyze(cosub)}; 1086 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1087 cosubscripts.push_back( 1088 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1089 } else { 1090 cosubsOk = false; 1091 } 1092 } 1093 if (cosubsOk && !reversed.empty()) { 1094 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1095 const Symbol &symbol{reversed.front()}; 1096 if (numCosubscripts != symbol.Corank()) { 1097 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1098 symbol.name(), symbol.Corank(), numCosubscripts); 1099 } 1100 } 1101 for (const auto &imageSelSpec : 1102 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1103 std::visit( 1104 common::visitors{ 1105 [&](const auto &x) { Analyze(x.v); }, 1106 }, 1107 imageSelSpec.u); 1108 } 1109 // Reverse the chain of symbols so that the base is first and coarray 1110 // ultimate component is last. 1111 if (cosubsOk) { 1112 return Designate( 1113 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1114 std::move(subscripts), std::move(cosubscripts)}}); 1115 } 1116 } 1117 return std::nullopt; 1118 } 1119 1120 int ExpressionAnalyzer::IntegerTypeSpecKind( 1121 const parser::IntegerTypeSpec &spec) { 1122 Expr<SubscriptInteger> value{ 1123 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1124 if (auto kind{ToInt64(value)}) { 1125 return static_cast<int>(*kind); 1126 } 1127 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1128 return GetDefaultKind(TypeCategory::Integer); 1129 } 1130 1131 // Array constructors 1132 1133 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1134 // all happen to have the same actual type T into one ArrayConstructor<T>. 1135 template <typename T> 1136 ArrayConstructorValues<T> MakeSpecific( 1137 ArrayConstructorValues<SomeType> &&from) { 1138 ArrayConstructorValues<T> to; 1139 for (ArrayConstructorValue<SomeType> &x : from) { 1140 std::visit( 1141 common::visitors{ 1142 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1143 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1144 to.Push(std::move(DEREF(typed))); 1145 }, 1146 [&](ImpliedDo<SomeType> &&impliedDo) { 1147 to.Push(ImpliedDo<T>{impliedDo.name(), 1148 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1149 std::move(impliedDo.stride()), 1150 MakeSpecific<T>(std::move(impliedDo.values()))}); 1151 }, 1152 }, 1153 std::move(x.u)); 1154 } 1155 return to; 1156 } 1157 1158 class ArrayConstructorContext { 1159 public: 1160 ArrayConstructorContext( 1161 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1162 : exprAnalyzer_{c}, type_{std::move(t)} {} 1163 1164 void Add(const parser::AcValue &); 1165 MaybeExpr ToExpr(); 1166 1167 // These interfaces allow *this to be used as a type visitor argument to 1168 // common::SearchTypes() to convert the array constructor to a typed 1169 // expression in ToExpr(). 1170 using Result = MaybeExpr; 1171 using Types = AllTypes; 1172 template <typename T> Result Test() { 1173 if (type_ && type_->category() == T::category) { 1174 if constexpr (T::category == TypeCategory::Derived) { 1175 if (type_->IsUnlimitedPolymorphic()) { 1176 return std::nullopt; 1177 } else { 1178 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1179 MakeSpecific<T>(std::move(values_))}); 1180 } 1181 } else if (type_->kind() == T::kind) { 1182 if constexpr (T::category == TypeCategory::Character) { 1183 if (auto len{type_->LEN()}) { 1184 return AsMaybeExpr(ArrayConstructor<T>{ 1185 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1186 } 1187 } else { 1188 return AsMaybeExpr( 1189 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1190 } 1191 } 1192 } 1193 return std::nullopt; 1194 } 1195 1196 private: 1197 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1198 1199 void Push(MaybeExpr &&); 1200 void Add(const parser::AcValue::Triplet &); 1201 void Add(const parser::Expr &); 1202 void Add(const parser::AcImpliedDo &); 1203 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1204 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1205 std::int64_t stride); 1206 1207 template <int KIND, typename A> 1208 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1209 const A &x) { 1210 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1211 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1212 return Fold(exprAnalyzer_.GetFoldingContext(), 1213 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1214 std::move(DEREF(intExpr)))); 1215 } 1216 return std::nullopt; 1217 } 1218 1219 // Nested array constructors all reference the same ExpressionAnalyzer, 1220 // which represents the nest of active implied DO loop indices. 1221 ExpressionAnalyzer &exprAnalyzer_; 1222 std::optional<DynamicTypeWithLength> type_; 1223 bool explicitType_{type_.has_value()}; 1224 std::optional<std::int64_t> constantLength_; 1225 ArrayConstructorValues<SomeType> values_; 1226 std::uint64_t messageDisplayedSet_{0}; 1227 }; 1228 1229 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1230 if (!x) { 1231 return; 1232 } 1233 if (auto dyType{x->GetType()}) { 1234 DynamicTypeWithLength xType{*dyType}; 1235 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1236 CHECK(xType.category() == TypeCategory::Character); 1237 xType.length = 1238 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1239 } 1240 if (!type_) { 1241 // If there is no explicit type-spec in an array constructor, the type 1242 // of the array is the declared type of all of the elements, which must 1243 // be well-defined and all match. 1244 // TODO: Possible language extension: use the most general type of 1245 // the values as the type of a numeric constructed array, convert all 1246 // of the other values to that type. Alternative: let the first value 1247 // determine the type, and convert the others to that type. 1248 CHECK(!explicitType_); 1249 type_ = std::move(xType); 1250 constantLength_ = ToInt64(type_->length); 1251 values_.Push(std::move(*x)); 1252 } else if (!explicitType_) { 1253 if (static_cast<const DynamicType &>(*type_) == 1254 static_cast<const DynamicType &>(xType)) { 1255 values_.Push(std::move(*x)); 1256 if (auto thisLen{ToInt64(xType.LEN())}) { 1257 if (constantLength_) { 1258 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1259 *thisLen != *constantLength_) { 1260 if (!(messageDisplayedSet_ & 1)) { 1261 exprAnalyzer_.Say( 1262 "Character literal in array constructor without explicit " 1263 "type has different length than earlier elements"_en_US); 1264 messageDisplayedSet_ |= 1; 1265 } 1266 } 1267 if (*thisLen > *constantLength_) { 1268 // Language extension: use the longest literal to determine the 1269 // length of the array constructor's character elements, not the 1270 // first, when there is no explicit type. 1271 *constantLength_ = *thisLen; 1272 type_->length = xType.LEN(); 1273 } 1274 } else { 1275 constantLength_ = *thisLen; 1276 type_->length = xType.LEN(); 1277 } 1278 } 1279 } else { 1280 if (!(messageDisplayedSet_ & 2)) { 1281 exprAnalyzer_.Say( 1282 "Values in array constructor must have the same declared type " 1283 "when no explicit type appears"_err_en_US); // C7110 1284 messageDisplayedSet_ |= 2; 1285 } 1286 } 1287 } else { 1288 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1289 values_.Push(std::move(*cast)); 1290 } else if (!(messageDisplayedSet_ & 4)) { 1291 exprAnalyzer_.Say( 1292 "Value in array constructor of type '%s' could not " 1293 "be converted to the type of the array '%s'"_err_en_US, 1294 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1295 messageDisplayedSet_ |= 4; 1296 } 1297 } 1298 } 1299 } 1300 1301 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1302 std::visit( 1303 common::visitors{ 1304 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1305 [&](const common::Indirection<parser::Expr> &expr) { 1306 Add(expr.value()); 1307 }, 1308 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1309 Add(impliedDo.value()); 1310 }, 1311 }, 1312 x.u); 1313 } 1314 1315 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1316 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1317 std::optional<Expr<ImpliedDoIntType>> lower{ 1318 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1319 std::optional<Expr<ImpliedDoIntType>> upper{ 1320 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1321 std::optional<Expr<ImpliedDoIntType>> stride{ 1322 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1323 if (lower && upper) { 1324 if (!stride) { 1325 stride = Expr<ImpliedDoIntType>{1}; 1326 } 1327 if (!type_) { 1328 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1329 } 1330 auto v{std::move(values_)}; 1331 parser::CharBlock anonymous; 1332 Push(Expr<SomeType>{ 1333 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1334 std::swap(v, values_); 1335 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1336 std::move(*upper), std::move(*stride), std::move(v)}); 1337 } 1338 } 1339 1340 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1341 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1342 if (MaybeExpr v{exprAnalyzer_.Analyze(expr)}) { 1343 if (auto exprType{v->GetType()}) { 1344 if (!(messageDisplayedSet_ & 8) && exprType->IsUnlimitedPolymorphic()) { 1345 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1346 "array constructor"_err_en_US); // C7113 1347 messageDisplayedSet_ |= 8; 1348 } 1349 } 1350 Push(std::move(*v)); 1351 } 1352 } 1353 1354 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1355 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1356 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1357 exprAnalyzer_.Analyze(bounds.name); 1358 parser::CharBlock name{bounds.name.thing.thing.source}; 1359 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1360 int kind{ImpliedDoIntType::kind}; 1361 if (const auto dynamicType{DynamicType::From(symbol)}) { 1362 kind = dynamicType->kind(); 1363 } 1364 if (!exprAnalyzer_.AddImpliedDo(name, kind)) { 1365 if (!(messageDisplayedSet_ & 0x20)) { 1366 exprAnalyzer_.SayAt(name, 1367 "Implied DO index is active in surrounding implied DO loop " 1368 "and may not have the same name"_err_en_US); // C7115 1369 messageDisplayedSet_ |= 0x20; 1370 } 1371 return; 1372 } 1373 std::optional<Expr<ImpliedDoIntType>> lower{ 1374 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1375 std::optional<Expr<ImpliedDoIntType>> upper{ 1376 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1377 if (lower && upper) { 1378 std::optional<Expr<ImpliedDoIntType>> stride{ 1379 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1380 if (!stride) { 1381 stride = Expr<ImpliedDoIntType>{1}; 1382 } 1383 // Check for constant bounds; the loop may require complete unrolling 1384 // of the parse tree if all bounds are constant in order to allow the 1385 // implied DO loop index to qualify as a constant expression. 1386 auto cLower{ToInt64(lower)}; 1387 auto cUpper{ToInt64(upper)}; 1388 auto cStride{ToInt64(stride)}; 1389 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1390 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1391 "The stride of an implied DO loop must not be zero"_err_en_US); 1392 messageDisplayedSet_ |= 0x10; 1393 } 1394 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1395 bool isNonemptyConstant{isConstant && 1396 ((*cStride > 0 && *cLower <= *cUpper) || 1397 (*cStride < 0 && *cLower >= *cUpper))}; 1398 bool unrollConstantLoop{false}; 1399 parser::Messages buffer; 1400 auto saveMessagesDisplayed{messageDisplayedSet_}; 1401 { 1402 auto messageRestorer{ 1403 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1404 auto v{std::move(values_)}; 1405 for (const auto &value : 1406 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1407 Add(value); 1408 } 1409 std::swap(v, values_); 1410 if (isNonemptyConstant && buffer.AnyFatalError()) { 1411 unrollConstantLoop = true; 1412 } else { 1413 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1414 std::move(*upper), std::move(*stride), std::move(v)}); 1415 } 1416 } 1417 if (unrollConstantLoop) { 1418 messageDisplayedSet_ = saveMessagesDisplayed; 1419 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1420 } else if (auto *messages{ 1421 exprAnalyzer_.GetContextualMessages().messages()}) { 1422 messages->Annex(std::move(buffer)); 1423 } 1424 } 1425 exprAnalyzer_.RemoveImpliedDo(name); 1426 } 1427 1428 // Fortran considers an implied DO index of an array constructor to be 1429 // a constant expression if the bounds of the implied DO loop are constant. 1430 // Usually this doesn't matter, but if we emitted spurious messages as a 1431 // result of not using constant values for the index while analyzing the 1432 // items, we need to do it again the "hard" way with multiple iterations over 1433 // the parse tree. 1434 void ArrayConstructorContext::UnrollConstantImpliedDo( 1435 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1436 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1437 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1438 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1439 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1440 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1441 at += stride) { 1442 for (const auto &value : 1443 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1444 Add(value); 1445 } 1446 } 1447 foldingContext.EndImpliedDo(name); 1448 } 1449 1450 MaybeExpr ArrayConstructorContext::ToExpr() { 1451 return common::SearchTypes(std::move(*this)); 1452 } 1453 1454 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1455 const parser::AcSpec &acSpec{array.v}; 1456 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1457 for (const parser::AcValue &value : acSpec.values) { 1458 acContext.Add(value); 1459 } 1460 return acContext.ToExpr(); 1461 } 1462 1463 MaybeExpr ExpressionAnalyzer::Analyze( 1464 const parser::StructureConstructor &structure) { 1465 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1466 parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; 1467 if (!parsedType.derivedTypeSpec) { 1468 return std::nullopt; 1469 } 1470 const auto &spec{*parsedType.derivedTypeSpec}; 1471 const Symbol &typeSymbol{spec.typeSymbol()}; 1472 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1473 return std::nullopt; // error recovery 1474 } 1475 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1476 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1477 1478 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1479 AttachDeclaration(Say(typeName, 1480 "ABSTRACT derived type '%s' may not be used in a " 1481 "structure constructor"_err_en_US, 1482 typeName), 1483 typeSymbol); // C7114 1484 } 1485 1486 // This iterator traverses all of the components in the derived type and its 1487 // parents. The symbols for whole parent components appear after their 1488 // own components and before the components of the types that extend them. 1489 // E.g., TYPE :: A; REAL X; END TYPE 1490 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1491 // produces the component list X, A, Y. 1492 // The order is important below because a structure constructor can 1493 // initialize X or A by name, but not both. 1494 auto components{semantics::OrderedComponentIterator{spec}}; 1495 auto nextAnonymous{components.begin()}; 1496 1497 std::set<parser::CharBlock> unavailable; 1498 bool anyKeyword{false}; 1499 StructureConstructor result{spec}; 1500 bool checkConflicts{true}; // until we hit one 1501 auto &messages{GetContextualMessages()}; 1502 1503 for (const auto &component : 1504 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1505 const parser::Expr &expr{ 1506 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1507 parser::CharBlock source{expr.source}; 1508 auto restorer{messages.SetLocation(source)}; 1509 const Symbol *symbol{nullptr}; 1510 MaybeExpr value{Analyze(expr)}; 1511 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1512 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1513 anyKeyword = true; 1514 source = kw->v.source; 1515 symbol = kw->v.symbol; 1516 if (!symbol) { 1517 auto componentIter{std::find_if(components.begin(), components.end(), 1518 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1519 if (componentIter != components.end()) { 1520 symbol = &*componentIter; 1521 } 1522 } 1523 if (!symbol) { // C7101 1524 Say(source, 1525 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1526 source, typeName); 1527 } 1528 } else { 1529 if (anyKeyword) { // C7100 1530 Say(source, 1531 "Value in structure constructor lacks a component name"_err_en_US); 1532 checkConflicts = false; // stem cascade 1533 } 1534 // Here's a regrettably common extension of the standard: anonymous 1535 // initialization of parent components, e.g., T(PT(1)) rather than 1536 // T(1) or T(PT=PT(1)). 1537 if (nextAnonymous == components.begin() && parentComponent && 1538 valueType == DynamicType::From(*parentComponent) && 1539 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1540 auto iter{ 1541 std::find(components.begin(), components.end(), *parentComponent)}; 1542 if (iter != components.end()) { 1543 symbol = parentComponent; 1544 nextAnonymous = ++iter; 1545 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1546 Say(source, 1547 "Whole parent component '%s' in structure " 1548 "constructor should not be anonymous"_en_US, 1549 symbol->name()); 1550 } 1551 } 1552 } 1553 while (!symbol && nextAnonymous != components.end()) { 1554 const Symbol &next{*nextAnonymous}; 1555 ++nextAnonymous; 1556 if (!next.test(Symbol::Flag::ParentComp)) { 1557 symbol = &next; 1558 } 1559 } 1560 if (!symbol) { 1561 Say(source, "Unexpected value in structure constructor"_err_en_US); 1562 } 1563 } 1564 if (symbol) { 1565 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1566 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1567 Say(source, *msg); 1568 } 1569 } 1570 if (checkConflicts) { 1571 auto componentIter{ 1572 std::find(components.begin(), components.end(), *symbol)}; 1573 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1574 // C797, C798 1575 Say(source, 1576 "Component '%s' conflicts with another component earlier in " 1577 "this structure constructor"_err_en_US, 1578 symbol->name()); 1579 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1580 // Make earlier components unavailable once a whole parent appears. 1581 for (auto it{components.begin()}; it != componentIter; ++it) { 1582 unavailable.insert(it->name()); 1583 } 1584 } else { 1585 // Make whole parent components unavailable after any of their 1586 // constituents appear. 1587 for (auto it{componentIter}; it != components.end(); ++it) { 1588 if (it->test(Symbol::Flag::ParentComp)) { 1589 unavailable.insert(it->name()); 1590 } 1591 } 1592 } 1593 } 1594 unavailable.insert(symbol->name()); 1595 if (value) { 1596 if (symbol->has<semantics::ProcEntityDetails>()) { 1597 CHECK(IsPointer(*symbol)); 1598 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1599 // C1594(4) 1600 const auto &innermost{context_.FindScope(expr.source)}; 1601 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1602 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1603 if (const Symbol * 1604 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1605 if (auto *msg{Say(expr.source, 1606 "Externally visible object '%s' may not be " 1607 "associated with pointer component '%s' in a " 1608 "pure procedure"_err_en_US, 1609 object->name(), pointer->name())}) { 1610 msg->Attach(object->name(), "Object declaration"_en_US) 1611 .Attach(pointer->name(), "Pointer declaration"_en_US); 1612 } 1613 } 1614 } 1615 } 1616 } else if (symbol->has<semantics::TypeParamDetails>()) { 1617 Say(expr.source, 1618 "Type parameter '%s' may not appear as a component " 1619 "of a structure constructor"_err_en_US, 1620 symbol->name()); 1621 continue; 1622 } else { 1623 Say(expr.source, 1624 "Component '%s' is neither a procedure pointer " 1625 "nor a data object"_err_en_US, 1626 symbol->name()); 1627 continue; 1628 } 1629 if (IsPointer(*symbol)) { 1630 semantics::CheckPointerAssignment( 1631 GetFoldingContext(), *symbol, *value); // C7104, C7105 1632 result.Add(*symbol, Fold(std::move(*value))); 1633 } else if (MaybeExpr converted{ 1634 ConvertToType(*symbol, std::move(*value))}) { 1635 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1636 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1637 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1638 AttachDeclaration( 1639 Say(expr.source, 1640 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1641 GetRank(*valueShape), symbol->name()), 1642 *symbol); 1643 } else if (CheckConformance(messages, *componentShape, 1644 *valueShape, "component", "value", false, 1645 true /* can expand scalar value */)) { 1646 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 && 1647 !IsExpandableScalar(*converted)) { 1648 AttachDeclaration( 1649 Say(expr.source, 1650 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1651 symbol->name()), 1652 *symbol); 1653 } else { 1654 result.Add(*symbol, std::move(*converted)); 1655 } 1656 } 1657 } else { 1658 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1659 } 1660 } else { 1661 AttachDeclaration( 1662 Say(expr.source, 1663 "Shape of component '%s' cannot be determined"_err_en_US, 1664 symbol->name()), 1665 *symbol); 1666 } 1667 } else if (IsAllocatable(*symbol) && 1668 std::holds_alternative<NullPointer>(value->u)) { 1669 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1670 } else if (auto symType{DynamicType::From(symbol)}) { 1671 if (valueType) { 1672 AttachDeclaration( 1673 Say(expr.source, 1674 "Value in structure constructor of type %s is " 1675 "incompatible with component '%s' of type %s"_err_en_US, 1676 valueType->AsFortran(), symbol->name(), 1677 symType->AsFortran()), 1678 *symbol); 1679 } else { 1680 AttachDeclaration( 1681 Say(expr.source, 1682 "Value in structure constructor is incompatible with " 1683 " component '%s' of type %s"_err_en_US, 1684 symbol->name(), symType->AsFortran()), 1685 *symbol); 1686 } 1687 } 1688 } 1689 } 1690 } 1691 1692 // Ensure that unmentioned component objects have default initializers. 1693 for (const Symbol &symbol : components) { 1694 if (!symbol.test(Symbol::Flag::ParentComp) && 1695 unavailable.find(symbol.name()) == unavailable.cend() && 1696 !IsAllocatable(symbol)) { 1697 if (const auto *details{ 1698 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1699 if (details->init()) { 1700 result.Add(symbol, common::Clone(*details->init())); 1701 } else { // C799 1702 AttachDeclaration(Say(typeName, 1703 "Structure constructor lacks a value for " 1704 "component '%s'"_err_en_US, 1705 symbol.name()), 1706 symbol); 1707 } 1708 } 1709 } 1710 } 1711 1712 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1713 } 1714 1715 static std::optional<parser::CharBlock> GetPassName( 1716 const semantics::Symbol &proc) { 1717 return std::visit( 1718 [](const auto &details) { 1719 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1720 std::decay_t<decltype(details)>>) { 1721 return details.passName(); 1722 } else { 1723 return std::optional<parser::CharBlock>{}; 1724 } 1725 }, 1726 proc.details()); 1727 } 1728 1729 static int GetPassIndex(const Symbol &proc) { 1730 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1731 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1732 const auto *interface{semantics::FindInterface(proc)}; 1733 if (!passName || !interface) { 1734 return 0; // first argument is passed-object 1735 } 1736 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1737 int index{0}; 1738 for (const auto *arg : subp.dummyArgs()) { 1739 if (arg && arg->name() == passName) { 1740 return index; 1741 } 1742 ++index; 1743 } 1744 DIE("PASS argument name not in dummy argument list"); 1745 } 1746 1747 // Injects an expression into an actual argument list as the "passed object" 1748 // for a type-bound procedure reference that is not NOPASS. Adds an 1749 // argument keyword if possible, but not when the passed object goes 1750 // before a positional argument. 1751 // e.g., obj%tbp(x) -> tbp(obj,x). 1752 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1753 const Symbol &component, bool isPassedObject = true) { 1754 if (component.attrs().test(semantics::Attr::NOPASS)) { 1755 return; 1756 } 1757 int passIndex{GetPassIndex(component)}; 1758 auto iter{actuals.begin()}; 1759 int at{0}; 1760 while (iter < actuals.end() && at < passIndex) { 1761 if (*iter && (*iter)->keyword()) { 1762 iter = actuals.end(); 1763 break; 1764 } 1765 ++iter; 1766 ++at; 1767 } 1768 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1769 passed.set_isPassedObject(isPassedObject); 1770 if (iter == actuals.end()) { 1771 if (auto passName{GetPassName(component)}) { 1772 passed.set_keyword(*passName); 1773 } 1774 } 1775 actuals.emplace(iter, std::move(passed)); 1776 } 1777 1778 // Return the compile-time resolution of a procedure binding, if possible. 1779 static const Symbol *GetBindingResolution( 1780 const std::optional<DynamicType> &baseType, const Symbol &component) { 1781 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1782 if (!binding) { 1783 return nullptr; 1784 } 1785 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1786 (!baseType || baseType->IsPolymorphic())) { 1787 return nullptr; 1788 } 1789 return &binding->symbol(); 1790 } 1791 1792 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1793 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1794 -> std::optional<CalleeAndArguments> { 1795 const parser::StructureComponent &sc{pcr.v.thing}; 1796 if (MaybeExpr base{Analyze(sc.base)}) { 1797 if (const Symbol * sym{sc.component.symbol}) { 1798 if (context_.HasError(sym)) { 1799 return std::nullopt; 1800 } 1801 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1802 if (sym->has<semantics::GenericDetails>()) { 1803 AdjustActuals adjustment{ 1804 [&](const Symbol &proc, ActualArguments &actuals) { 1805 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1806 AddPassArg(actuals, std::move(*dtExpr), proc); 1807 } 1808 return true; 1809 }}; 1810 sym = ResolveGeneric(*sym, arguments, adjustment); 1811 if (!sym) { 1812 EmitGenericResolutionError(*sc.component.symbol); 1813 return std::nullopt; 1814 } 1815 } 1816 if (const Symbol * 1817 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1818 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1819 return CalleeAndArguments{ 1820 ProcedureDesignator{*resolution}, std::move(arguments)}; 1821 } else if (std::optional<DataRef> dataRef{ 1822 ExtractDataRef(std::move(*dtExpr))}) { 1823 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1824 return CalleeAndArguments{ 1825 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1826 std::move(arguments)}; 1827 } else { 1828 AddPassArg(arguments, 1829 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1830 *sym); 1831 return CalleeAndArguments{ 1832 ProcedureDesignator{*sym}, std::move(arguments)}; 1833 } 1834 } 1835 } 1836 Say(sc.component.source, 1837 "Base of procedure component reference is not a derived-type object"_err_en_US); 1838 } 1839 } 1840 CHECK(!GetContextualMessages().empty()); 1841 return std::nullopt; 1842 } 1843 1844 // Can actual be argument associated with dummy? 1845 static bool CheckCompatibleArgument(bool isElemental, 1846 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1847 return std::visit( 1848 common::visitors{ 1849 [&](const characteristics::DummyDataObject &x) { 1850 if (!isElemental && actual.Rank() != x.type.Rank() && 1851 !x.type.attrs().test( 1852 characteristics::TypeAndShape::Attr::AssumedRank)) { 1853 return false; 1854 } else if (auto actualType{actual.GetType()}) { 1855 return x.type.type().IsTkCompatibleWith(*actualType); 1856 } else { 1857 return false; 1858 } 1859 }, 1860 [&](const characteristics::DummyProcedure &) { 1861 const auto *expr{actual.UnwrapExpr()}; 1862 return expr && IsProcedurePointerTarget(*expr); 1863 }, 1864 [&](const characteristics::AlternateReturn &) { 1865 return actual.isAlternateReturn(); 1866 }, 1867 }, 1868 dummy.u); 1869 } 1870 1871 // Are the actual arguments compatible with the dummy arguments of procedure? 1872 static bool CheckCompatibleArguments( 1873 const characteristics::Procedure &procedure, 1874 const ActualArguments &actuals) { 1875 bool isElemental{procedure.IsElemental()}; 1876 const auto &dummies{procedure.dummyArguments}; 1877 CHECK(dummies.size() == actuals.size()); 1878 for (std::size_t i{0}; i < dummies.size(); ++i) { 1879 const characteristics::DummyArgument &dummy{dummies[i]}; 1880 const std::optional<ActualArgument> &actual{actuals[i]}; 1881 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1882 return false; 1883 } 1884 } 1885 return true; 1886 } 1887 1888 // Handles a forward reference to a module function from what must 1889 // be a specification expression. Return false if the symbol is 1890 // an invalid forward reference. 1891 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1892 if (context_.HasError(symbol)) { 1893 return false; 1894 } 1895 if (const auto *details{ 1896 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1897 if (details->kind() == semantics::SubprogramKind::Module) { 1898 // If this symbol is still a SubprogramNameDetails, we must be 1899 // checking a specification expression in a sibling module 1900 // procedure. Resolve its names now so that its interface 1901 // is known. 1902 semantics::ResolveSpecificationParts(context_, symbol); 1903 if (symbol.has<semantics::SubprogramNameDetails>()) { 1904 // When the symbol hasn't had its details updated, we must have 1905 // already been in the process of resolving the function's 1906 // specification part; but recursive function calls are not 1907 // allowed in specification parts (10.1.11 para 5). 1908 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1909 symbol.name()); 1910 context_.SetError(symbol); 1911 return false; 1912 } 1913 } else { // 10.1.11 para 4 1914 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1915 symbol.name()); 1916 context_.SetError(symbol); 1917 return false; 1918 } 1919 } 1920 return true; 1921 } 1922 1923 // Resolve a call to a generic procedure with given actual arguments. 1924 // adjustActuals is called on procedure bindings to handle pass arg. 1925 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1926 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1927 bool mightBeStructureConstructor) { 1928 const Symbol *elemental{nullptr}; // matching elemental specific proc 1929 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1930 for (const Symbol &specific : details.specificProcs()) { 1931 if (!ResolveForward(specific)) { 1932 continue; 1933 } 1934 if (std::optional<characteristics::Procedure> procedure{ 1935 characteristics::Procedure::Characterize( 1936 ProcedureDesignator{specific}, context_.foldingContext())}) { 1937 ActualArguments localActuals{actuals}; 1938 if (specific.has<semantics::ProcBindingDetails>()) { 1939 if (!adjustActuals.value()(specific, localActuals)) { 1940 continue; 1941 } 1942 } 1943 if (semantics::CheckInterfaceForGeneric( 1944 *procedure, localActuals, GetFoldingContext())) { 1945 if (CheckCompatibleArguments(*procedure, localActuals)) { 1946 if (!procedure->IsElemental()) { 1947 // takes priority over elemental match 1948 return &AccessSpecific(symbol, specific); 1949 } 1950 elemental = &specific; 1951 } 1952 } 1953 } 1954 } 1955 if (elemental) { 1956 return &AccessSpecific(symbol, *elemental); 1957 } 1958 // Check parent derived type 1959 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 1960 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 1961 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 1962 if (const Symbol * 1963 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 1964 return result; 1965 } 1966 } 1967 } 1968 } 1969 if (mightBeStructureConstructor && details.derivedType()) { 1970 return details.derivedType(); 1971 } 1972 return nullptr; 1973 } 1974 1975 const Symbol &ExpressionAnalyzer::AccessSpecific( 1976 const Symbol &originalGeneric, const Symbol &specific) { 1977 if (const auto *hosted{ 1978 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 1979 return AccessSpecific(hosted->symbol(), specific); 1980 } else if (const auto *used{ 1981 originalGeneric.detailsIf<semantics::UseDetails>()}) { 1982 const auto &scope{originalGeneric.owner()}; 1983 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 1984 if (const auto *useDetails{ 1985 iter->second->detailsIf<semantics::UseDetails>()}) { 1986 const Symbol &usedSymbol{useDetails->symbol()}; 1987 const auto *usedGeneric{ 1988 usedSymbol.detailsIf<semantics::GenericDetails>()}; 1989 if (&usedSymbol == &specific || 1990 (usedGeneric && usedGeneric->specific() == &specific)) { 1991 return specific; 1992 } 1993 } 1994 } 1995 // Create a renaming USE of the specific procedure. 1996 auto rename{context_.SaveTempName( 1997 used->symbol().owner().GetName().value().ToString() + "$" + 1998 specific.name().ToString())}; 1999 return *const_cast<semantics::Scope &>(scope) 2000 .try_emplace(rename, specific.attrs(), 2001 semantics::UseDetails{rename, specific}) 2002 .first->second; 2003 } else { 2004 return specific; 2005 } 2006 } 2007 2008 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 2009 if (semantics::IsGenericDefinedOp(symbol)) { 2010 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 2011 symbol.name()); 2012 } else { 2013 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2014 symbol.name()); 2015 } 2016 } 2017 2018 auto ExpressionAnalyzer::GetCalleeAndArguments( 2019 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2020 bool isSubroutine, bool mightBeStructureConstructor) 2021 -> std::optional<CalleeAndArguments> { 2022 return std::visit( 2023 common::visitors{ 2024 [&](const parser::Name &name) { 2025 return GetCalleeAndArguments(name, std::move(arguments), 2026 isSubroutine, mightBeStructureConstructor); 2027 }, 2028 [&](const parser::ProcComponentRef &pcr) { 2029 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2030 }, 2031 }, 2032 pd.u); 2033 } 2034 2035 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2036 ActualArguments &&arguments, bool isSubroutine, 2037 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2038 const Symbol *symbol{name.symbol}; 2039 if (context_.HasError(symbol)) { 2040 return std::nullopt; // also handles null symbol 2041 } 2042 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2043 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2044 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2045 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2046 arguments, GetFoldingContext())}) { 2047 CheckBadExplicitType(*specificCall, *symbol); 2048 return CalleeAndArguments{ 2049 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2050 std::move(specificCall->arguments)}; 2051 } 2052 } else { 2053 CheckForBadRecursion(name.source, ultimate); 2054 if (ultimate.has<semantics::GenericDetails>()) { 2055 ExpressionAnalyzer::AdjustActuals noAdjustment; 2056 symbol = ResolveGeneric( 2057 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 2058 } 2059 if (symbol) { 2060 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2061 if (mightBeStructureConstructor) { 2062 return CalleeAndArguments{ 2063 semantics::SymbolRef{*symbol}, std::move(arguments)}; 2064 } 2065 } else { 2066 return CalleeAndArguments{ 2067 ProcedureDesignator{*symbol}, std::move(arguments)}; 2068 } 2069 } else if (std::optional<SpecificCall> specificCall{ 2070 context_.intrinsics().Probe( 2071 CallCharacteristics{ 2072 ultimate.name().ToString(), isSubroutine}, 2073 arguments, GetFoldingContext())}) { 2074 // Generics can extend intrinsics 2075 return CalleeAndArguments{ 2076 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2077 std::move(specificCall->arguments)}; 2078 } else { 2079 EmitGenericResolutionError(*name.symbol); 2080 } 2081 } 2082 return std::nullopt; 2083 } 2084 2085 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2086 // generic intrinsic function "has no effect" on the result type of a 2087 // call to that intrinsic. So one can declare "character*8 cos" and 2088 // still get a real result from "cos(1.)". This is a dangerous feature, 2089 // especially since implementations are free to extend their sets of 2090 // intrinsics, and in doing so might clash with a name in a program. 2091 // So we emit a warning in this situation, and perhaps it should be an 2092 // error -- any correctly working program can silence the message by 2093 // simply deleting the pointless type declaration. 2094 void ExpressionAnalyzer::CheckBadExplicitType( 2095 const SpecificCall &call, const Symbol &intrinsic) { 2096 if (intrinsic.GetUltimate().GetType()) { 2097 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2098 if (const auto &result{procedure.functionResult}) { 2099 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2100 if (auto declared{ 2101 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2102 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2103 if (auto *msg{Say( 2104 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US, 2105 typeAndShape->AsFortran(), intrinsic.name(), 2106 declared->AsFortran())}) { 2107 msg->Attach(intrinsic.name(), 2108 "Ignored declaration of intrinsic function '%s'"_en_US, 2109 intrinsic.name()); 2110 } 2111 } 2112 } 2113 } 2114 } 2115 } 2116 } 2117 2118 void ExpressionAnalyzer::CheckForBadRecursion( 2119 parser::CharBlock callSite, const semantics::Symbol &proc) { 2120 if (const auto *scope{proc.scope()}) { 2121 if (scope->sourceRange().Contains(callSite)) { 2122 parser::Message *msg{nullptr}; 2123 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2124 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2125 callSite); 2126 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2127 msg = Say( // 15.6.2.1(3) 2128 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2129 callSite); 2130 } 2131 AttachDeclaration(msg, proc); 2132 } 2133 } 2134 } 2135 2136 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2137 if (const auto *designator{ 2138 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2139 if (const auto *dataRef{ 2140 std::get_if<parser::DataRef>(&designator->value().u)}) { 2141 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2142 return AssumedTypeDummy(*name); 2143 } 2144 } 2145 } 2146 return nullptr; 2147 } 2148 template <> 2149 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2150 if (const Symbol * symbol{name.symbol}) { 2151 if (const auto *type{symbol->GetType()}) { 2152 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2153 return symbol; 2154 } 2155 } 2156 } 2157 return nullptr; 2158 } 2159 template <typename A> 2160 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2161 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2162 // point it is is not guaranteed that it has been checked the object has 2163 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2164 // returned. 2165 return std::visit( 2166 common::visitors{ 2167 [&](const parser::StructureComponent &x) { 2168 return AssumedTypeDummy(x.component); 2169 }, 2170 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2171 }, 2172 object.u); 2173 } 2174 template <> 2175 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2176 const parser::AllocateObject &x) { 2177 return AssumedTypePointerOrAllocatableDummy(x); 2178 } 2179 template <> 2180 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2181 const parser::PointerObject &x) { 2182 return AssumedTypePointerOrAllocatableDummy(x); 2183 } 2184 2185 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2186 std::optional<parser::StructureConstructor> *structureConstructor) { 2187 const parser::Call &call{funcRef.v}; 2188 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2189 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2190 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2191 analyzer.Analyze(arg, false /* not subroutine call */); 2192 } 2193 if (analyzer.fatalErrors()) { 2194 return std::nullopt; 2195 } 2196 if (std::optional<CalleeAndArguments> callee{ 2197 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2198 analyzer.GetActuals(), false /* not subroutine */, 2199 true /* might be structure constructor */)}) { 2200 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2201 return MakeFunctionRef( 2202 call.source, std::move(*proc), std::move(callee->arguments)); 2203 } else if (structureConstructor) { 2204 // Structure constructor misparsed as function reference? 2205 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2206 const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)}; 2207 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2208 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2209 semantics::Scope &scope{context_.FindScope(name->source)}; 2210 semantics::DerivedTypeSpec dtSpec{ 2211 name->source, derivedType.GetUltimate()}; 2212 if (dtSpec.IsForwardReferenced()) { 2213 Say(call.source, 2214 "Cannot construct value for derived type '%s' " 2215 "before it is defined"_err_en_US, 2216 name->source); 2217 return std::nullopt; 2218 } 2219 const semantics::DeclTypeSpec &type{ 2220 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2221 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2222 *structureConstructor = 2223 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2224 return Analyze(structureConstructor->value()); 2225 } 2226 } 2227 } 2228 return std::nullopt; 2229 } 2230 2231 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2232 for (const auto &arg : args) { 2233 if (arg && arg->isAlternateReturn()) { 2234 return true; 2235 } 2236 } 2237 return false; 2238 } 2239 2240 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2241 const parser::Call &call{callStmt.v}; 2242 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2243 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2244 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2245 for (const auto &arg : actualArgList) { 2246 analyzer.Analyze(arg, true /* is subroutine call */); 2247 } 2248 if (!analyzer.fatalErrors()) { 2249 if (std::optional<CalleeAndArguments> callee{ 2250 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2251 analyzer.GetActuals(), true /* subroutine */)}) { 2252 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2253 CHECK(proc); 2254 if (CheckCall(call.source, *proc, callee->arguments)) { 2255 bool hasAlternateReturns{HasAlternateReturns(callee->arguments)}; 2256 callStmt.typedCall.Reset( 2257 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2258 hasAlternateReturns}, 2259 ProcedureRef::Deleter); 2260 } 2261 } 2262 } 2263 } 2264 2265 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2266 if (!x.typedAssignment) { 2267 ArgumentAnalyzer analyzer{*this}; 2268 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2269 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2270 if (analyzer.fatalErrors()) { 2271 x.typedAssignment.Reset( 2272 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2273 } else { 2274 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2275 Assignment assignment{analyzer.MoveExpr(0), analyzer.MoveExpr(1)}; 2276 if (procRef) { 2277 assignment.u = std::move(*procRef); 2278 } 2279 x.typedAssignment.Reset( 2280 new GenericAssignmentWrapper{std::move(assignment)}, 2281 GenericAssignmentWrapper::Deleter); 2282 } 2283 } 2284 return common::GetPtrFromOptional(x.typedAssignment->v); 2285 } 2286 2287 const Assignment *ExpressionAnalyzer::Analyze( 2288 const parser::PointerAssignmentStmt &x) { 2289 if (!x.typedAssignment) { 2290 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2291 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2292 if (!lhs || !rhs) { 2293 x.typedAssignment.Reset( 2294 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2295 } else { 2296 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2297 std::visit(common::visitors{ 2298 [&](const std::list<parser::BoundsRemapping> &list) { 2299 Assignment::BoundsRemapping bounds; 2300 for (const auto &elem : list) { 2301 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2302 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2303 if (lower && upper) { 2304 bounds.emplace_back(Fold(std::move(*lower)), 2305 Fold(std::move(*upper))); 2306 } 2307 } 2308 assignment.u = std::move(bounds); 2309 }, 2310 [&](const std::list<parser::BoundsSpec> &list) { 2311 Assignment::BoundsSpec bounds; 2312 for (const auto &bound : list) { 2313 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2314 bounds.emplace_back(Fold(std::move(*lower))); 2315 } 2316 } 2317 assignment.u = std::move(bounds); 2318 }, 2319 }, 2320 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2321 x.typedAssignment.Reset( 2322 new GenericAssignmentWrapper{std::move(assignment)}, 2323 GenericAssignmentWrapper::Deleter); 2324 } 2325 } 2326 return common::GetPtrFromOptional(x.typedAssignment->v); 2327 } 2328 2329 static bool IsExternalCalledImplicitly( 2330 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2331 if (const auto *symbol{proc.GetSymbol()}) { 2332 return symbol->has<semantics::SubprogramDetails>() && 2333 symbol->owner().IsGlobal() && 2334 (!symbol->scope() /*ENTRY*/ || 2335 !symbol->scope()->sourceRange().Contains(callSite)); 2336 } else { 2337 return false; 2338 } 2339 } 2340 2341 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2342 parser::CharBlock callSite, const ProcedureDesignator &proc, 2343 ActualArguments &arguments) { 2344 auto chars{characteristics::Procedure::Characterize( 2345 proc, context_.foldingContext())}; 2346 if (chars) { 2347 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2348 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2349 Say(callSite, 2350 "References to the procedure '%s' require an explicit interface"_en_US, 2351 DEREF(proc.GetSymbol()).name()); 2352 } 2353 // Checks for ASSOCIATED() are done in intrinsic table processing 2354 bool procIsAssociated{false}; 2355 if (const SpecificIntrinsic * 2356 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2357 if (specificIntrinsic->name == "associated") { 2358 procIsAssociated = true; 2359 } 2360 } 2361 if (!procIsAssociated) { 2362 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2363 context_.FindScope(callSite), treatExternalAsImplicit, 2364 proc.GetSpecificIntrinsic()); 2365 const Symbol *procSymbol{proc.GetSymbol()}; 2366 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2367 if (const semantics::Scope * 2368 pure{semantics::FindPureProcedureContaining( 2369 context_.FindScope(callSite))}) { 2370 Say(callSite, 2371 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2372 procSymbol->name(), DEREF(pure->symbol()).name()); 2373 } 2374 } 2375 } 2376 } 2377 return chars; 2378 } 2379 2380 // Unary operations 2381 2382 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2383 if (MaybeExpr operand{Analyze(x.v.value())}) { 2384 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2385 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2386 if (semantics::IsProcedurePointer(*result)) { 2387 Say("A function reference that returns a procedure " 2388 "pointer may not be parenthesized"_err_en_US); // C1003 2389 } 2390 } 2391 } 2392 return Parenthesize(std::move(*operand)); 2393 } 2394 return std::nullopt; 2395 } 2396 2397 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2398 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2399 ArgumentAnalyzer analyzer{context}; 2400 analyzer.Analyze(x.v); 2401 if (analyzer.fatalErrors()) { 2402 return std::nullopt; 2403 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2404 if (opr == NumericOperator::Add) { 2405 return analyzer.MoveExpr(0); 2406 } else { 2407 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2408 } 2409 } else { 2410 return analyzer.TryDefinedOp(AsFortran(opr), 2411 "Operand of unary %s must be numeric; have %s"_err_en_US); 2412 } 2413 } 2414 2415 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2416 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2417 } 2418 2419 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2420 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2421 } 2422 2423 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2424 ArgumentAnalyzer analyzer{*this}; 2425 analyzer.Analyze(x.v); 2426 if (analyzer.fatalErrors()) { 2427 return std::nullopt; 2428 } else if (analyzer.IsIntrinsicLogical()) { 2429 return AsGenericExpr( 2430 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2431 } else { 2432 return analyzer.TryDefinedOp(LogicalOperator::Not, 2433 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2434 } 2435 } 2436 2437 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2438 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2439 // intrinsic function. 2440 // Use the actual source for the name of the call for error reporting. 2441 std::optional<ActualArgument> arg; 2442 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2443 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2444 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2445 arg = ActualArgument{std::move(*argExpr)}; 2446 } else { 2447 return std::nullopt; 2448 } 2449 parser::CharBlock at{GetContextualMessages().at()}; 2450 CHECK(at.size() >= 4); 2451 parser::CharBlock loc{at.begin() + 1, 3}; 2452 CHECK(loc == "loc"); 2453 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2454 } 2455 2456 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2457 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2458 ArgumentAnalyzer analyzer{*this, name.source}; 2459 analyzer.Analyze(std::get<1>(x.t)); 2460 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2461 "No operator %s defined for %s"_err_en_US, true); 2462 } 2463 2464 // Binary (dyadic) operations 2465 2466 template <template <typename> class OPR> 2467 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2468 const parser::Expr::IntrinsicBinary &x) { 2469 ArgumentAnalyzer analyzer{context}; 2470 analyzer.Analyze(std::get<0>(x.t)); 2471 analyzer.Analyze(std::get<1>(x.t)); 2472 if (analyzer.fatalErrors()) { 2473 return std::nullopt; 2474 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2475 analyzer.CheckConformance(); 2476 return NumericOperation<OPR>(context.GetContextualMessages(), 2477 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2478 context.GetDefaultKind(TypeCategory::Real)); 2479 } else { 2480 return analyzer.TryDefinedOp(AsFortran(opr), 2481 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2482 } 2483 } 2484 2485 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2486 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2487 } 2488 2489 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2490 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2491 } 2492 2493 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2494 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2495 } 2496 2497 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2498 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2499 } 2500 2501 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2502 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2503 } 2504 2505 MaybeExpr ExpressionAnalyzer::Analyze( 2506 const parser::Expr::ComplexConstructor &x) { 2507 auto re{Analyze(std::get<0>(x.t).value())}; 2508 auto im{Analyze(std::get<1>(x.t).value())}; 2509 if (re && im) { 2510 ConformabilityCheck(GetContextualMessages(), *re, *im); 2511 } 2512 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2513 std::move(im), GetDefaultKind(TypeCategory::Real))); 2514 } 2515 2516 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2517 ArgumentAnalyzer analyzer{*this}; 2518 analyzer.Analyze(std::get<0>(x.t)); 2519 analyzer.Analyze(std::get<1>(x.t)); 2520 if (analyzer.fatalErrors()) { 2521 return std::nullopt; 2522 } else if (analyzer.IsIntrinsicConcat()) { 2523 return std::visit( 2524 [&](auto &&x, auto &&y) -> MaybeExpr { 2525 using T = ResultType<decltype(x)>; 2526 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2527 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2528 } else { 2529 DIE("different types for intrinsic concat"); 2530 } 2531 }, 2532 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2533 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2534 } else { 2535 return analyzer.TryDefinedOp("//", 2536 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2537 } 2538 } 2539 2540 // The Name represents a user-defined intrinsic operator. 2541 // If the actuals match one of the specific procedures, return a function ref. 2542 // Otherwise report the error in messages. 2543 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2544 const parser::Name &name, ActualArguments &&actuals) { 2545 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2546 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2547 return MakeFunctionRef(name.source, 2548 std::move(std::get<ProcedureDesignator>(callee->u)), 2549 std::move(callee->arguments)); 2550 } else { 2551 return std::nullopt; 2552 } 2553 } 2554 2555 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2556 const parser::Expr::IntrinsicBinary &x) { 2557 ArgumentAnalyzer analyzer{context}; 2558 analyzer.Analyze(std::get<0>(x.t)); 2559 analyzer.Analyze(std::get<1>(x.t)); 2560 if (analyzer.fatalErrors()) { 2561 return std::nullopt; 2562 } else { 2563 if (IsNullPointer(analyzer.GetExpr(0)) || 2564 IsNullPointer(analyzer.GetExpr(1))) { 2565 context.Say("NULL() not allowed as an operand of a relational " 2566 "operator"_err_en_US); 2567 return std::nullopt; 2568 } 2569 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2570 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2571 analyzer.ConvertBOZ(0, rightType); 2572 analyzer.ConvertBOZ(1, leftType); 2573 if (analyzer.IsIntrinsicRelational(opr)) { 2574 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2575 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2576 } else if (leftType && leftType->category() == TypeCategory::Logical && 2577 rightType && rightType->category() == TypeCategory::Logical) { 2578 context.Say("LOGICAL operands must be compared using .EQV. or " 2579 ".NEQV."_err_en_US); 2580 return std::nullopt; 2581 } else { 2582 return analyzer.TryDefinedOp(opr, 2583 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2584 } 2585 } 2586 } 2587 2588 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2589 return RelationHelper(*this, RelationalOperator::LT, x); 2590 } 2591 2592 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2593 return RelationHelper(*this, RelationalOperator::LE, x); 2594 } 2595 2596 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2597 return RelationHelper(*this, RelationalOperator::EQ, x); 2598 } 2599 2600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2601 return RelationHelper(*this, RelationalOperator::NE, x); 2602 } 2603 2604 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2605 return RelationHelper(*this, RelationalOperator::GE, x); 2606 } 2607 2608 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2609 return RelationHelper(*this, RelationalOperator::GT, x); 2610 } 2611 2612 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2613 const parser::Expr::IntrinsicBinary &x) { 2614 ArgumentAnalyzer analyzer{context}; 2615 analyzer.Analyze(std::get<0>(x.t)); 2616 analyzer.Analyze(std::get<1>(x.t)); 2617 if (analyzer.fatalErrors()) { 2618 return std::nullopt; 2619 } else if (analyzer.IsIntrinsicLogical()) { 2620 return AsGenericExpr(BinaryLogicalOperation(opr, 2621 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2622 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2623 } else { 2624 return analyzer.TryDefinedOp( 2625 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2626 } 2627 } 2628 2629 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2630 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2631 } 2632 2633 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2634 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2635 } 2636 2637 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2638 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2639 } 2640 2641 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2642 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2643 } 2644 2645 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2646 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2647 ArgumentAnalyzer analyzer{*this, name.source}; 2648 analyzer.Analyze(std::get<1>(x.t)); 2649 analyzer.Analyze(std::get<2>(x.t)); 2650 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2651 "No operator %s defined for %s and %s"_err_en_US, true); 2652 } 2653 2654 static void CheckFuncRefToArrayElementRefHasSubscripts( 2655 semantics::SemanticsContext &context, 2656 const parser::FunctionReference &funcRef) { 2657 // Emit message if the function reference fix will end up an array element 2658 // reference with no subscripts because it will not be possible to later tell 2659 // the difference in expressions between empty subscript list due to bad 2660 // subscripts error recovery or because the user did not put any. 2661 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2662 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2663 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2664 if (!name) { 2665 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2666 } 2667 auto &msg{context.Say(funcRef.v.source, 2668 name->symbol && name->symbol->Rank() == 0 2669 ? "'%s' is not a function"_err_en_US 2670 : "Reference to array '%s' with empty subscript list"_err_en_US, 2671 name->source)}; 2672 if (name->symbol) { 2673 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2674 msg.Attach(name->source, 2675 "A result variable must be declared with RESULT to allow recursive " 2676 "function calls"_en_US); 2677 } else { 2678 AttachDeclaration(&msg, *name->symbol); 2679 } 2680 } 2681 } 2682 } 2683 2684 // Converts, if appropriate, an original misparse of ambiguous syntax like 2685 // A(1) as a function reference into an array reference. 2686 // Misparse structure constructors are detected elsewhere after generic 2687 // function call resolution fails. 2688 template <typename... A> 2689 static void FixMisparsedFunctionReference( 2690 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2691 // The parse tree is updated in situ when resolving an ambiguous parse. 2692 using uType = std::decay_t<decltype(constU)>; 2693 auto &u{const_cast<uType &>(constU)}; 2694 if (auto *func{ 2695 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2696 parser::FunctionReference &funcRef{func->value()}; 2697 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2698 if (Symbol * 2699 origSymbol{ 2700 std::visit(common::visitors{ 2701 [&](parser::Name &name) { return name.symbol; }, 2702 [&](parser::ProcComponentRef &pcr) { 2703 return pcr.v.thing.component.symbol; 2704 }, 2705 }, 2706 proc.u)}) { 2707 Symbol &symbol{origSymbol->GetUltimate()}; 2708 if (symbol.has<semantics::ObjectEntityDetails>() || 2709 symbol.has<semantics::AssocEntityDetails>()) { 2710 // Note that expression in AssocEntityDetails cannot be a procedure 2711 // pointer as per C1105 so this cannot be a function reference. 2712 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2713 uType>) { 2714 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2715 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2716 } else { 2717 DIE("can't fix misparsed function as array reference"); 2718 } 2719 } 2720 } 2721 } 2722 } 2723 2724 // Common handling of parse tree node types that retain the 2725 // representation of the analyzed expression. 2726 template <typename PARSED> 2727 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2728 const PARSED &x, parser::CharBlock source) { 2729 if (useSavedTypedExprs_ && x.typedExpr) { 2730 return x.typedExpr->v; 2731 } 2732 auto restorer{GetContextualMessages().SetLocation(source)}; 2733 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2734 std::is_same_v<PARSED, parser::Variable>) { 2735 FixMisparsedFunctionReference(context_, x.u); 2736 } 2737 if (AssumedTypeDummy(x)) { // C710 2738 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2739 } else if (MaybeExpr result{Analyze(x.u)}) { 2740 SetExpr(x, Fold(std::move(*result))); 2741 return x.typedExpr->v; 2742 } 2743 ResetExpr(x); 2744 if (!context_.AnyFatalError()) { 2745 std::string buf; 2746 llvm::raw_string_ostream dump{buf}; 2747 parser::DumpTree(dump, x); 2748 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2749 dump.str()); 2750 } 2751 return std::nullopt; 2752 } 2753 2754 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2755 auto restorer{GetContextualMessages().SetLocation(expr.source)}; 2756 return ExprOrVariable(expr, expr.source); 2757 } 2758 2759 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2760 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; 2761 return ExprOrVariable(variable, variable.GetSource()); 2762 } 2763 2764 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2765 auto restorer{GetContextualMessages().SetLocation(x.source)}; 2766 return ExprOrVariable(x, x.source); 2767 } 2768 2769 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 2770 parser::CharBlock source{parser::FindSourceLocation(x)}; 2771 auto restorer{GetContextualMessages().SetLocation(source)}; 2772 return ExprOrVariable(x, source); 2773 } 2774 2775 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 2776 parser::CharBlock source{parser::FindSourceLocation(x)}; 2777 auto restorer{GetContextualMessages().SetLocation(source)}; 2778 return ExprOrVariable(x, source); 2779 } 2780 2781 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2782 TypeCategory category, 2783 const std::optional<parser::KindSelector> &selector) { 2784 int defaultKind{GetDefaultKind(category)}; 2785 if (!selector) { 2786 return Expr<SubscriptInteger>{defaultKind}; 2787 } 2788 return std::visit( 2789 common::visitors{ 2790 [&](const parser::ScalarIntConstantExpr &x) { 2791 if (MaybeExpr kind{Analyze(x)}) { 2792 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 2793 if (CheckIntrinsicKind(category, *code)) { 2794 return Expr<SubscriptInteger>{*code}; 2795 } 2796 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 2797 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2798 } 2799 } 2800 return Expr<SubscriptInteger>{defaultKind}; 2801 }, 2802 [&](const parser::KindSelector::StarSize &x) { 2803 std::intmax_t size = x.v; 2804 if (!CheckIntrinsicSize(category, size)) { 2805 size = defaultKind; 2806 } else if (category == TypeCategory::Complex) { 2807 size /= 2; 2808 } 2809 return Expr<SubscriptInteger>{size}; 2810 }, 2811 }, 2812 selector->u); 2813 } 2814 2815 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2816 return context_.GetDefaultKind(category); 2817 } 2818 2819 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2820 common::TypeCategory category) { 2821 return {category, GetDefaultKind(category)}; 2822 } 2823 2824 bool ExpressionAnalyzer::CheckIntrinsicKind( 2825 TypeCategory category, std::int64_t kind) { 2826 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2827 return true; 2828 } else { 2829 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2830 ToUpperCase(EnumToString(category)), kind); 2831 return false; 2832 } 2833 } 2834 2835 bool ExpressionAnalyzer::CheckIntrinsicSize( 2836 TypeCategory category, std::int64_t size) { 2837 if (category == TypeCategory::Complex) { 2838 // COMPLEX*16 == COMPLEX(KIND=8) 2839 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2840 return true; 2841 } 2842 } else if (IsValidKindOfIntrinsicType(category, size)) { 2843 return true; 2844 } 2845 Say("%s*%jd is not a supported type"_err_en_US, 2846 ToUpperCase(EnumToString(category)), size); 2847 return false; 2848 } 2849 2850 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 2851 return impliedDos_.insert(std::make_pair(name, kind)).second; 2852 } 2853 2854 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 2855 auto iter{impliedDos_.find(name)}; 2856 if (iter != impliedDos_.end()) { 2857 impliedDos_.erase(iter); 2858 } 2859 } 2860 2861 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 2862 parser::CharBlock name) const { 2863 auto iter{impliedDos_.find(name)}; 2864 if (iter != impliedDos_.cend()) { 2865 return {iter->second}; 2866 } else { 2867 return std::nullopt; 2868 } 2869 } 2870 2871 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 2872 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 2873 if (result) { 2874 if (auto type{result->GetType()}) { 2875 if (type->category() != category) { // C885 2876 Say(at, "Must have %s type, but is %s"_err_en_US, 2877 ToUpperCase(EnumToString(category)), 2878 ToUpperCase(type->AsFortran())); 2879 return false; 2880 } else if (defaultKind) { 2881 int kind{context_.GetDefaultKind(category)}; 2882 if (type->kind() != kind) { 2883 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 2884 kind, ToUpperCase(EnumToString(category)), 2885 ToUpperCase(type->AsFortran())); 2886 return false; 2887 } 2888 } 2889 } else { 2890 Say(at, "Must have %s type, but is typeless"_err_en_US, 2891 ToUpperCase(EnumToString(category))); 2892 return false; 2893 } 2894 } 2895 return true; 2896 } 2897 2898 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 2899 ProcedureDesignator &&proc, ActualArguments &&arguments) { 2900 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 2901 if (intrinsic->name == "null" && arguments.empty()) { 2902 return Expr<SomeType>{NullPointer{}}; 2903 } 2904 } 2905 if (const Symbol * symbol{proc.GetSymbol()}) { 2906 if (!ResolveForward(*symbol)) { 2907 return std::nullopt; 2908 } 2909 } 2910 if (auto chars{CheckCall(callSite, proc, arguments)}) { 2911 if (chars->functionResult) { 2912 const auto &result{*chars->functionResult}; 2913 if (result.IsProcedurePointer()) { 2914 return Expr<SomeType>{ 2915 ProcedureRef{std::move(proc), std::move(arguments)}}; 2916 } else { 2917 // Not a procedure pointer, so type and shape are known. 2918 return TypedWrapper<FunctionRef, ProcedureRef>( 2919 DEREF(result.GetTypeAndShape()).type(), 2920 ProcedureRef{std::move(proc), std::move(arguments)}); 2921 } 2922 } 2923 } 2924 return std::nullopt; 2925 } 2926 2927 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 2928 parser::CharBlock intrinsic, ActualArguments &&arguments) { 2929 if (std::optional<SpecificCall> specificCall{ 2930 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 2931 arguments, context_.foldingContext())}) { 2932 return MakeFunctionRef(intrinsic, 2933 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2934 std::move(specificCall->arguments)); 2935 } else { 2936 return std::nullopt; 2937 } 2938 } 2939 2940 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 2941 source_.ExtendToCover(x.GetSource()); 2942 if (MaybeExpr expr{context_.Analyze(x)}) { 2943 if (!IsConstantExpr(*expr)) { 2944 actuals_.emplace_back(std::move(*expr)); 2945 return; 2946 } 2947 const Symbol *symbol{GetLastSymbol(*expr)}; 2948 if (!symbol) { 2949 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 2950 x.GetSource()); 2951 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 2952 auto *msg{context_.SayAt(x, 2953 "Assignment to subprogram '%s' is not allowed"_err_en_US, 2954 symbol->name())}; 2955 if (subp->isFunction()) { 2956 const auto &result{subp->result().name()}; 2957 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 2958 } 2959 } else { 2960 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 2961 symbol->name()); 2962 } 2963 } 2964 fatalErrors_ = true; 2965 } 2966 2967 void ArgumentAnalyzer::Analyze( 2968 const parser::ActualArgSpec &arg, bool isSubroutine) { 2969 // TODO: Actual arguments that are procedures and procedure pointers need to 2970 // be detected and represented (they're not expressions). 2971 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 2972 std::optional<ActualArgument> actual; 2973 std::visit(common::visitors{ 2974 [&](const common::Indirection<parser::Expr> &x) { 2975 // TODO: Distinguish & handle procedure name and 2976 // proc-component-ref 2977 actual = AnalyzeExpr(x.value()); 2978 }, 2979 [&](const parser::AltReturnSpec &label) { 2980 if (!isSubroutine) { 2981 context_.Say( 2982 "alternate return specification may not appear on" 2983 " function reference"_err_en_US); 2984 } 2985 actual = ActualArgument(label.v); 2986 }, 2987 [&](const parser::ActualArg::PercentRef &) { 2988 context_.Say("TODO: %REF() argument"_err_en_US); 2989 }, 2990 [&](const parser::ActualArg::PercentVal &) { 2991 context_.Say("TODO: %VAL() argument"_err_en_US); 2992 }, 2993 }, 2994 std::get<parser::ActualArg>(arg.t).u); 2995 if (actual) { 2996 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 2997 actual->set_keyword(argKW->v.source); 2998 } 2999 actuals_.emplace_back(std::move(*actual)); 3000 } else { 3001 fatalErrors_ = true; 3002 } 3003 } 3004 3005 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 3006 CHECK(actuals_.size() == 2); 3007 return semantics::IsIntrinsicRelational( 3008 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 3009 } 3010 3011 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3012 std::optional<DynamicType> type0{GetType(0)}; 3013 if (actuals_.size() == 1) { 3014 if (IsBOZLiteral(0)) { 3015 return opr == NumericOperator::Add; 3016 } else { 3017 return type0 && semantics::IsIntrinsicNumeric(*type0); 3018 } 3019 } else { 3020 std::optional<DynamicType> type1{GetType(1)}; 3021 if (IsBOZLiteral(0) && type1) { 3022 auto cat1{type1->category()}; 3023 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3024 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 3025 auto cat0{type0->category()}; 3026 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3027 } else { 3028 return type0 && type1 && 3029 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 3030 } 3031 } 3032 } 3033 3034 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3035 if (actuals_.size() == 1) { 3036 return semantics::IsIntrinsicLogical(*GetType(0)); 3037 return GetType(0)->category() == TypeCategory::Logical; 3038 } else { 3039 return semantics::IsIntrinsicLogical( 3040 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 3041 } 3042 } 3043 3044 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3045 return semantics::IsIntrinsicConcat( 3046 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 3047 } 3048 3049 bool ArgumentAnalyzer::CheckConformance() const { 3050 if (actuals_.size() == 2) { 3051 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3052 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3053 if (lhs && rhs) { 3054 auto &foldingContext{context_.GetFoldingContext()}; 3055 auto lhShape{GetShape(foldingContext, *lhs)}; 3056 auto rhShape{GetShape(foldingContext, *rhs)}; 3057 if (lhShape && rhShape) { 3058 return evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3059 *rhShape, "left operand", "right operand", true, 3060 true /* scalar expansion is allowed */); 3061 } 3062 } 3063 } 3064 return true; // no proven problem 3065 } 3066 3067 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3068 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 3069 if (AnyUntypedOrMissingOperand()) { 3070 context_.Say( 3071 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3072 return std::nullopt; 3073 } 3074 { 3075 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3076 std::string oprNameString{ 3077 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3078 parser::CharBlock oprName{oprNameString}; 3079 const auto &scope{context_.context().FindScope(source_)}; 3080 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3081 parser::Name name{symbol->name(), symbol}; 3082 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3083 return result; 3084 } 3085 sawDefinedOp_ = symbol; 3086 } 3087 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3088 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 3089 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3090 return result; 3091 } 3092 } 3093 } 3094 } 3095 if (sawDefinedOp_) { 3096 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 3097 } else if (actuals_.size() == 1 || AreConformable()) { 3098 context_.Say( 3099 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3100 } else { 3101 context_.Say( 3102 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3103 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3104 } 3105 return std::nullopt; 3106 } 3107 3108 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3109 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 3110 for (std::size_t i{1}; i < oprs.size(); ++i) { 3111 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3112 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 3113 return result; 3114 } 3115 } 3116 return TryDefinedOp(oprs[0], std::move(error)); 3117 } 3118 3119 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3120 ActualArguments localActuals{actuals_}; 3121 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3122 if (!proc) { 3123 proc = &symbol; 3124 localActuals.at(passIndex).value().set_isPassedObject(); 3125 } 3126 CheckConformance(); 3127 return context_.MakeFunctionRef( 3128 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3129 } 3130 3131 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3132 using semantics::Tristate; 3133 const Expr<SomeType> &lhs{GetExpr(0)}; 3134 const Expr<SomeType> &rhs{GetExpr(1)}; 3135 std::optional<DynamicType> lhsType{lhs.GetType()}; 3136 std::optional<DynamicType> rhsType{rhs.GetType()}; 3137 int lhsRank{lhs.Rank()}; 3138 int rhsRank{rhs.Rank()}; 3139 Tristate isDefined{ 3140 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3141 if (isDefined == Tristate::No) { 3142 if (lhsType && rhsType) { 3143 AddAssignmentConversion(*lhsType, *rhsType); 3144 } 3145 return std::nullopt; // user-defined assignment not allowed for these args 3146 } 3147 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3148 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3149 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3150 return std::move(*procRef); 3151 } 3152 if (isDefined == Tristate::Yes) { 3153 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3154 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3155 SayNoMatch("ASSIGNMENT(=)", true); 3156 } 3157 } 3158 return std::nullopt; 3159 } 3160 3161 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3162 TypeCategory lhs, TypeCategory rhs) { 3163 if (!context_.context().languageFeatures().IsEnabled( 3164 common::LanguageFeature::LogicalIntegerAssignment)) { 3165 return false; 3166 } 3167 std::optional<parser::MessageFixedText> msg; 3168 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3169 // allow assignment to LOGICAL from INTEGER as a legacy extension 3170 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 3171 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3172 // ... and assignment to LOGICAL from INTEGER 3173 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 3174 } else { 3175 return false; 3176 } 3177 if (context_.context().languageFeatures().ShouldWarn( 3178 common::LanguageFeature::LogicalIntegerAssignment)) { 3179 context_.Say(std::move(*msg)); 3180 } 3181 return true; 3182 } 3183 3184 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3185 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3186 std::string oprNameString{"assignment(=)"}; 3187 parser::CharBlock oprName{oprNameString}; 3188 const Symbol *proc{nullptr}; 3189 const auto &scope{context_.context().FindScope(source_)}; 3190 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3191 ExpressionAnalyzer::AdjustActuals noAdjustment; 3192 if (const Symbol * 3193 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 3194 proc = specific; 3195 } else { 3196 context_.EmitGenericResolutionError(*symbol); 3197 } 3198 } 3199 int passedObjectIndex{-1}; 3200 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3201 if (const Symbol * specific{FindBoundOp(oprName, i)}) { 3202 if (const Symbol * 3203 resolution{GetBindingResolution(GetType(i), *specific)}) { 3204 proc = resolution; 3205 } else { 3206 proc = specific; 3207 passedObjectIndex = i; 3208 } 3209 } 3210 } 3211 if (!proc) { 3212 return std::nullopt; 3213 } 3214 ActualArguments actualsCopy{actuals_}; 3215 if (passedObjectIndex >= 0) { 3216 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3217 } 3218 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3219 } 3220 3221 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3222 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3223 << '\n'; 3224 for (const auto &actual : actuals_) { 3225 if (!actual.has_value()) { 3226 os << "- error\n"; 3227 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3228 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3229 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3230 expr->AsFortran(os << "- expr: ") << '\n'; 3231 } else { 3232 DIE("bad ActualArgument"); 3233 } 3234 } 3235 } 3236 3237 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3238 const parser::Expr &expr) { 3239 source_.ExtendToCover(expr.source); 3240 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3241 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3242 if (isProcedureCall_) { 3243 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 3244 } 3245 context_.SayAt(expr.source, 3246 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3247 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3248 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3249 return ActualArgument{std::move(*argExpr)}; 3250 } 3251 context_.SayAt(expr.source, 3252 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3253 : "Subroutine name is not allowed here"_err_en_US); 3254 } 3255 return std::nullopt; 3256 } 3257 3258 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3259 const parser::Expr &expr) { 3260 // If an expression's parse tree is a whole assumed-size array: 3261 // Expr -> Designator -> DataRef -> Name 3262 // treat it as a special case for argument passing and bypass 3263 // the C1002/C1014 constraint checking in expression semantics. 3264 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3265 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3266 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3267 return context_.Analyze(expr); 3268 } 3269 } 3270 return context_.Analyze(expr); 3271 } 3272 3273 bool ArgumentAnalyzer::AreConformable() const { 3274 CHECK(!fatalErrors_ && actuals_.size() == 2); 3275 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3276 } 3277 3278 // Look for a type-bound operator in the type of arg number passIndex. 3279 const Symbol *ArgumentAnalyzer::FindBoundOp( 3280 parser::CharBlock oprName, int passIndex) { 3281 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3282 if (!type || !type->scope()) { 3283 return nullptr; 3284 } 3285 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3286 if (!symbol) { 3287 return nullptr; 3288 } 3289 sawDefinedOp_ = symbol; 3290 ExpressionAnalyzer::AdjustActuals adjustment{ 3291 [&](const Symbol &proc, ActualArguments &) { 3292 return passIndex == GetPassIndex(proc); 3293 }}; 3294 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3295 if (!result) { 3296 context_.EmitGenericResolutionError(*symbol); 3297 } 3298 return result; 3299 } 3300 3301 // If there is an implicit conversion between intrinsic types, make it explicit 3302 void ArgumentAnalyzer::AddAssignmentConversion( 3303 const DynamicType &lhsType, const DynamicType &rhsType) { 3304 if (lhsType.category() == rhsType.category() && 3305 lhsType.kind() == rhsType.kind()) { 3306 // no conversion necessary 3307 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3308 actuals_[1] = ActualArgument{*rhsExpr}; 3309 } else { 3310 actuals_[1] = std::nullopt; 3311 } 3312 } 3313 3314 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3315 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3316 } 3317 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3318 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3319 } 3320 3321 // If the argument at index i is a BOZ literal, convert its type to match the 3322 // otherType. It it's REAL convert to REAL, otherwise convert to INTEGER. 3323 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3324 // is not currently supported. 3325 void ArgumentAnalyzer::ConvertBOZ( 3326 std::size_t i, std::optional<DynamicType> otherType) { 3327 if (IsBOZLiteral(i)) { 3328 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3329 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3330 if (otherType && otherType->category() == TypeCategory::Real) { 3331 MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>( 3332 context_.context().GetDefaultKind(TypeCategory::Real), 3333 std::move(*boz))}; 3334 actuals_[i] = std::move(*realExpr); 3335 } else { 3336 MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>( 3337 context_.context().GetDefaultKind(TypeCategory::Integer), 3338 std::move(*boz))}; 3339 actuals_[i] = std::move(*intExpr); 3340 } 3341 } 3342 } 3343 3344 // Report error resolving opr when there is a user-defined one available 3345 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3346 std::string type0{TypeAsFortran(0)}; 3347 auto rank0{actuals_[0]->Rank()}; 3348 if (actuals_.size() == 1) { 3349 if (rank0 > 0) { 3350 context_.Say("No intrinsic or user-defined %s matches " 3351 "rank %d array of %s"_err_en_US, 3352 opr, rank0, type0); 3353 } else { 3354 context_.Say("No intrinsic or user-defined %s matches " 3355 "operand type %s"_err_en_US, 3356 opr, type0); 3357 } 3358 } else { 3359 std::string type1{TypeAsFortran(1)}; 3360 auto rank1{actuals_[1]->Rank()}; 3361 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3362 context_.Say("No intrinsic or user-defined %s matches " 3363 "rank %d array of %s and rank %d array of %s"_err_en_US, 3364 opr, rank0, type0, rank1, type1); 3365 } else if (isAssignment && rank0 != rank1) { 3366 if (rank0 == 0) { 3367 context_.Say("No intrinsic or user-defined %s matches " 3368 "scalar %s and rank %d array of %s"_err_en_US, 3369 opr, type0, rank1, type1); 3370 } else { 3371 context_.Say("No intrinsic or user-defined %s matches " 3372 "rank %d array of %s and scalar %s"_err_en_US, 3373 opr, rank0, type0, type1); 3374 } 3375 } else { 3376 context_.Say("No intrinsic or user-defined %s matches " 3377 "operand types %s and %s"_err_en_US, 3378 opr, type0, type1); 3379 } 3380 } 3381 } 3382 3383 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3384 if (i >= actuals_.size() || !actuals_[i]) { 3385 return "missing argument"; 3386 } else if (std::optional<DynamicType> type{GetType(i)}) { 3387 return type->category() == TypeCategory::Derived 3388 ? "TYPE("s + type->AsFortran() + ')' 3389 : type->category() == TypeCategory::Character 3390 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3391 : ToUpperCase(type->AsFortran()); 3392 } else { 3393 return "untyped"; 3394 } 3395 } 3396 3397 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3398 for (const auto &actual : actuals_) { 3399 if (!actual || !actual->GetType()) { 3400 return true; 3401 } 3402 } 3403 return false; 3404 } 3405 3406 } // namespace Fortran::evaluate 3407 3408 namespace Fortran::semantics { 3409 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3410 SemanticsContext &context, common::TypeCategory category, 3411 const std::optional<parser::KindSelector> &selector) { 3412 evaluate::ExpressionAnalyzer analyzer{context}; 3413 auto restorer{ 3414 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3415 return analyzer.AnalyzeKindSelector(category, selector); 3416 } 3417 3418 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3419 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3420 } 3421 3422 const evaluate::Assignment *AnalyzeAssignmentStmt( 3423 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3424 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3425 } 3426 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3427 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3428 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3429 } 3430 3431 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3432 3433 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3434 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3435 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3436 auto name{bounds.name.thing.thing}; 3437 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3438 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3439 if (dynamicType->category() == TypeCategory::Integer) { 3440 kind = dynamicType->kind(); 3441 } 3442 } 3443 exprAnalyzer_.AddImpliedDo(name.source, kind); 3444 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3445 exprAnalyzer_.RemoveImpliedDo(name.source); 3446 return false; 3447 } 3448 3449 bool ExprChecker::Walk(const parser::Program &program) { 3450 parser::Walk(program, *this); 3451 return !context_.AnyFatalError(); 3452 } 3453 } // namespace Fortran::semantics 3454