1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/idioms.h" 14 #include "flang/Evaluate/common.h" 15 #include "flang/Evaluate/fold.h" 16 #include "flang/Evaluate/tools.h" 17 #include "flang/Parser/characters.h" 18 #include "flang/Parser/dump-parse-tree.h" 19 #include "flang/Parser/parse-tree-visitor.h" 20 #include "flang/Parser/parse-tree.h" 21 #include "flang/Semantics/scope.h" 22 #include "flang/Semantics/semantics.h" 23 #include "flang/Semantics/symbol.h" 24 #include "flang/Semantics/tools.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <functional> 28 #include <optional> 29 #include <set> 30 31 // Typedef for optional generic expressions (ubiquitous in this file) 32 using MaybeExpr = 33 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 34 35 // Much of the code that implements semantic analysis of expressions is 36 // tightly coupled with their typed representations in lib/Evaluate, 37 // and appears here in namespace Fortran::evaluate for convenience. 38 namespace Fortran::evaluate { 39 40 using common::LanguageFeature; 41 using common::NumericOperator; 42 using common::TypeCategory; 43 44 static inline std::string ToUpperCase(const std::string &str) { 45 return parser::ToUpperCaseLetters(str); 46 } 47 48 struct DynamicTypeWithLength : public DynamicType { 49 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 50 std::optional<Expr<SubscriptInteger>> LEN() const; 51 std::optional<Expr<SubscriptInteger>> length; 52 }; 53 54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 55 if (length) { 56 return length; 57 } 58 if (auto *lengthParam{charLength()}) { 59 if (const auto &len{lengthParam->GetExplicit()}) { 60 return ConvertToType<SubscriptInteger>(common::Clone(*len)); 61 } 62 } 63 return std::nullopt; // assumed or deferred length 64 } 65 66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 67 const std::optional<parser::TypeSpec> &spec) { 68 if (spec) { 69 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 70 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 71 // (viz., an intrinsic type with valid known kind or a non-polymorphic 72 // & non-ABSTRACT derived type). 73 if (const semantics::IntrinsicTypeSpec * 74 intrinsic{typeSpec->AsIntrinsic()}) { 75 TypeCategory category{intrinsic->category()}; 76 if (auto optKind{ToInt64(intrinsic->kind())}) { 77 int kind{static_cast<int>(*optKind)}; 78 if (category == TypeCategory::Character) { 79 const semantics::CharacterTypeSpec &cts{ 80 typeSpec->characterTypeSpec()}; 81 const semantics::ParamValue &len{cts.length()}; 82 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 83 // type guards, but not in array constructors. 84 return DynamicTypeWithLength{DynamicType{kind, len}}; 85 } else { 86 return DynamicTypeWithLength{DynamicType{category, kind}}; 87 } 88 } 89 } else if (const semantics::DerivedTypeSpec * 90 derived{typeSpec->AsDerived()}) { 91 return DynamicTypeWithLength{DynamicType{*derived}}; 92 } 93 } 94 } 95 return std::nullopt; 96 } 97 98 class ArgumentAnalyzer { 99 public: 100 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 101 : context_{context}, allowAssumedType_{false} {} 102 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 103 bool allowAssumedType = false) 104 : context_{context}, source_{source}, allowAssumedType_{ 105 allowAssumedType} {} 106 bool fatalErrors() const { return fatalErrors_; } 107 ActualArguments &&GetActuals() { 108 CHECK(!fatalErrors_); 109 return std::move(actuals_); 110 } 111 const Expr<SomeType> &GetExpr(std::size_t i) const { 112 return DEREF(actuals_.at(i).value().UnwrapExpr()); 113 } 114 Expr<SomeType> &&MoveExpr(std::size_t i) { 115 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 116 } 117 void Analyze(const common::Indirection<parser::Expr> &x) { 118 Analyze(x.value()); 119 } 120 void Analyze(const parser::Expr &x) { 121 actuals_.emplace_back(AnalyzeExpr(x)); 122 fatalErrors_ |= !actuals_.back(); 123 } 124 void Analyze(const parser::Variable &); 125 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 126 void ConvertBOZ(std::size_t i, std::optional<DynamicType> otherType); 127 128 bool IsIntrinsicRelational(RelationalOperator) const; 129 bool IsIntrinsicLogical() const; 130 bool IsIntrinsicNumeric(NumericOperator) const; 131 bool IsIntrinsicConcat() const; 132 133 // Find and return a user-defined operator or report an error. 134 // The provided message is used if there is no such operator. 135 MaybeExpr TryDefinedOp( 136 const char *, parser::MessageFixedText &&, bool isUserOp = false); 137 template <typename E> 138 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 139 return TryDefinedOp( 140 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 141 } 142 // Find and return a user-defined assignment 143 std::optional<ProcedureRef> TryDefinedAssignment(); 144 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 145 std::optional<DynamicType> GetType(std::size_t) const; 146 void Dump(llvm::raw_ostream &); 147 148 private: 149 MaybeExpr TryDefinedOp( 150 std::vector<const char *>, parser::MessageFixedText &&); 151 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 152 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 153 bool AreConformable() const; 154 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 155 void AddAssignmentConversion( 156 const DynamicType &lhsType, const DynamicType &rhsType); 157 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 158 int GetRank(std::size_t) const; 159 bool IsBOZLiteral(std::size_t i) const { 160 return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u); 161 } 162 void SayNoMatch(const std::string &, bool isAssignment = false); 163 std::string TypeAsFortran(std::size_t); 164 bool AnyUntypedOperand(); 165 166 ExpressionAnalyzer &context_; 167 ActualArguments actuals_; 168 parser::CharBlock source_; 169 bool fatalErrors_{false}; 170 const bool allowAssumedType_; 171 const Symbol *sawDefinedOp_{nullptr}; 172 }; 173 174 // Wraps a data reference in a typed Designator<>, and a procedure 175 // or procedure pointer reference in a ProcedureDesignator. 176 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 177 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 178 if (semantics::IsProcedure(symbol)) { 179 if (auto *component{std::get_if<Component>(&ref.u)}) { 180 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 181 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 182 DIE("unexpected alternative in DataRef"); 183 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 184 return Expr<SomeType>{ProcedureDesignator{symbol}}; 185 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 186 symbol.name().ToString())}) { 187 SpecificIntrinsic intrinsic{ 188 symbol.name().ToString(), std::move(*interface)}; 189 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 190 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 191 } else { 192 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 193 symbol.name()); 194 return std::nullopt; 195 } 196 } else if (auto dyType{DynamicType::From(symbol)}) { 197 return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); 198 } 199 return std::nullopt; 200 } 201 202 // Some subscript semantic checks must be deferred until all of the 203 // subscripts are in hand. 204 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 205 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 206 const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 207 int symbolRank{symbol.Rank()}; 208 int subscripts{static_cast<int>(ref.size())}; 209 if (subscripts == 0) { 210 // nothing to check 211 } else if (subscripts != symbolRank) { 212 if (symbolRank != 0) { 213 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 214 symbolRank, symbol.name(), subscripts); 215 } 216 return std::nullopt; 217 } else if (Component * component{ref.base().UnwrapComponent()}) { 218 int baseRank{component->base().Rank()}; 219 if (baseRank > 0) { 220 int subscriptRank{0}; 221 for (const auto &expr : ref.subscript()) { 222 subscriptRank += expr.Rank(); 223 } 224 if (subscriptRank > 0) { 225 Say("Subscripts of component '%s' of rank-%d derived type " 226 "array have rank %d but must all be scalar"_err_en_US, 227 symbol.name(), baseRank, subscriptRank); 228 return std::nullopt; 229 } 230 } 231 } else if (object) { 232 // C928 & C1002 233 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 234 if (!last->upper() && object->IsAssumedSize()) { 235 Say("Assumed-size array '%s' must have explicit final " 236 "subscript upper bound value"_err_en_US, 237 symbol.name()); 238 return std::nullopt; 239 } 240 } 241 } 242 return Designate(DataRef{std::move(ref)}); 243 } 244 245 // Applies subscripts to a data reference. 246 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 247 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 248 return std::visit( 249 common::visitors{ 250 [&](SymbolRef &&symbol) { 251 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 252 }, 253 [&](Component &&c) { 254 return CompleteSubscripts( 255 ArrayRef{std::move(c), std::move(subscripts)}); 256 }, 257 [&](auto &&) -> MaybeExpr { 258 DIE("bad base for ArrayRef"); 259 return std::nullopt; 260 }, 261 }, 262 std::move(dataRef.u)); 263 } 264 265 // Top-level checks for data references. 266 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 267 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 268 const Symbol &symbol{component->GetLastSymbol()}; 269 int componentRank{symbol.Rank()}; 270 if (componentRank > 0) { 271 int baseRank{component->base().Rank()}; 272 if (baseRank > 0) { 273 Say("Reference to whole rank-%d component '%%%s' of " 274 "rank-%d array of derived type is not allowed"_err_en_US, 275 componentRank, symbol.name(), baseRank); 276 } 277 } 278 } 279 return Designate(std::move(dataRef)); 280 } 281 282 // Parse tree correction after a substring S(j:k) was misparsed as an 283 // array section. N.B. Fortran substrings have to have a range, not a 284 // single index. 285 static void FixMisparsedSubstring(const parser::Designator &d) { 286 auto &mutate{const_cast<parser::Designator &>(d)}; 287 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 288 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 289 &dataRef->u)}) { 290 parser::ArrayElement &arrElement{ae->value()}; 291 if (!arrElement.subscripts.empty()) { 292 auto iter{arrElement.subscripts.begin()}; 293 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 294 if (!std::get<2>(triplet->t) /* no stride */ && 295 ++iter == arrElement.subscripts.end() /* one subscript */) { 296 if (Symbol * 297 symbol{std::visit( 298 common::visitors{ 299 [](parser::Name &n) { return n.symbol; }, 300 [](common::Indirection<parser::StructureComponent> 301 &sc) { return sc.value().component.symbol; }, 302 [](auto &) -> Symbol * { return nullptr; }, 303 }, 304 arrElement.base.u)}) { 305 const Symbol &ultimate{symbol->GetUltimate()}; 306 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 307 if (!ultimate.IsObjectArray() && 308 type->category() == semantics::DeclTypeSpec::Character) { 309 // The ambiguous S(j:k) was parsed as an array section 310 // reference, but it's now clear that it's a substring. 311 // Fix the parse tree in situ. 312 mutate.u = arrElement.ConvertToSubstring(); 313 } 314 } 315 } 316 } 317 } 318 } 319 } 320 } 321 } 322 323 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 324 auto restorer{GetContextualMessages().SetLocation(d.source)}; 325 FixMisparsedSubstring(d); 326 // These checks have to be deferred to these "top level" data-refs where 327 // we can be sure that there are no following subscripts (yet). 328 // Substrings have already been run through TopLevelChecks() and 329 // won't be returned by ExtractDataRef(). 330 if (MaybeExpr result{Analyze(d.u)}) { 331 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 332 return TopLevelChecks(std::move(*dataRef)); 333 } 334 return result; 335 } 336 return std::nullopt; 337 } 338 339 // A utility subroutine to repackage optional expressions of various levels 340 // of type specificity as fully general MaybeExpr values. 341 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 342 return AsGenericExpr(std::move(x)); 343 } 344 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 345 if (x) { 346 return AsMaybeExpr(std::move(*x)); 347 } 348 return std::nullopt; 349 } 350 351 // Type kind parameter values for literal constants. 352 int ExpressionAnalyzer::AnalyzeKindParam( 353 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 354 if (!kindParam) { 355 return defaultKind; 356 } 357 return std::visit( 358 common::visitors{ 359 [](std::uint64_t k) { return static_cast<int>(k); }, 360 [&](const parser::Scalar< 361 parser::Integer<parser::Constant<parser::Name>>> &n) { 362 if (MaybeExpr ie{Analyze(n)}) { 363 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 364 int iv = *i64; 365 if (iv == *i64) { 366 return iv; 367 } 368 } 369 } 370 return defaultKind; 371 }, 372 }, 373 kindParam->u); 374 } 375 376 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 377 struct IntTypeVisitor { 378 using Result = MaybeExpr; 379 using Types = IntegerTypes; 380 template <typename T> Result Test() { 381 if (T::kind >= kind) { 382 const char *p{digits.begin()}; 383 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 384 if (!value.overflow) { 385 if (T::kind > kind) { 386 if (!isDefaultKind || 387 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 388 return std::nullopt; 389 } else if (analyzer.context().ShouldWarn( 390 LanguageFeature::BigIntLiterals)) { 391 analyzer.Say(digits, 392 "Integer literal is too large for default INTEGER(KIND=%d); " 393 "assuming INTEGER(KIND=%d)"_en_US, 394 kind, T::kind); 395 } 396 } 397 return Expr<SomeType>{ 398 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 399 } 400 } 401 return std::nullopt; 402 } 403 ExpressionAnalyzer &analyzer; 404 parser::CharBlock digits; 405 int kind; 406 bool isDefaultKind; 407 }; 408 409 template <typename PARSED> 410 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 411 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 412 bool isDefaultKind{!kindParam}; 413 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 414 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 415 auto digits{std::get<parser::CharBlock>(x.t)}; 416 if (MaybeExpr result{common::SearchTypes( 417 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 418 return result; 419 } else if (isDefaultKind) { 420 Say(digits, 421 "Integer literal is too large for any allowable " 422 "kind of INTEGER"_err_en_US); 423 } else { 424 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 425 kind); 426 } 427 } 428 return std::nullopt; 429 } 430 431 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 432 auto restorer{ 433 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 434 return IntLiteralConstant(x); 435 } 436 437 MaybeExpr ExpressionAnalyzer::Analyze( 438 const parser::SignedIntLiteralConstant &x) { 439 auto restorer{GetContextualMessages().SetLocation(x.source)}; 440 return IntLiteralConstant(x); 441 } 442 443 template <typename TYPE> 444 Constant<TYPE> ReadRealLiteral( 445 parser::CharBlock source, FoldingContext &context) { 446 const char *p{source.begin()}; 447 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 448 CHECK(p == source.end()); 449 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 450 auto value{valWithFlags.value}; 451 if (context.flushSubnormalsToZero()) { 452 value = value.FlushSubnormalToZero(); 453 } 454 return {value}; 455 } 456 457 struct RealTypeVisitor { 458 using Result = std::optional<Expr<SomeReal>>; 459 using Types = RealTypes; 460 461 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 462 : kind{k}, literal{lit}, context{ctx} {} 463 464 template <typename T> Result Test() { 465 if (kind == T::kind) { 466 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 467 } 468 return std::nullopt; 469 } 470 471 int kind; 472 parser::CharBlock literal; 473 FoldingContext &context; 474 }; 475 476 // Reads a real literal constant and encodes it with the right kind. 477 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 478 // Use a local message context around the real literal for better 479 // provenance on any messages. 480 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 481 // If a kind parameter appears, it defines the kind of the literal and the 482 // letter used in an exponent part must be 'E' (e.g., the 'E' in 483 // "6.02214E+23"). In the absence of an explicit kind parameter, any 484 // exponent letter determines the kind. Otherwise, defaults apply. 485 auto &defaults{context_.defaultKinds()}; 486 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 487 const char *end{x.real.source.end()}; 488 char expoLetter{' '}; 489 std::optional<int> letterKind; 490 for (const char *p{x.real.source.begin()}; p < end; ++p) { 491 if (parser::IsLetter(*p)) { 492 expoLetter = *p; 493 switch (expoLetter) { 494 case 'e': 495 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 496 break; 497 case 'd': 498 letterKind = defaults.doublePrecisionKind(); 499 break; 500 case 'q': 501 letterKind = defaults.quadPrecisionKind(); 502 break; 503 default: 504 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 505 } 506 break; 507 } 508 } 509 if (letterKind) { 510 defaultKind = *letterKind; 511 } 512 // C716 requires 'E' as an exponent, but this is more useful 513 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 514 if (letterKind && kind != *letterKind && expoLetter != 'e') { 515 Say("Explicit kind parameter on real constant disagrees with " 516 "exponent letter '%c'"_en_US, 517 expoLetter); 518 } 519 auto result{common::SearchTypes( 520 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 521 if (!result) { // C717 522 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 523 } 524 return AsMaybeExpr(std::move(result)); 525 } 526 527 MaybeExpr ExpressionAnalyzer::Analyze( 528 const parser::SignedRealLiteralConstant &x) { 529 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 530 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 531 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 532 if (sign == parser::Sign::Negative) { 533 return AsGenericExpr(-std::move(realExpr)); 534 } 535 } 536 return result; 537 } 538 return std::nullopt; 539 } 540 541 MaybeExpr ExpressionAnalyzer::Analyze( 542 const parser::SignedComplexLiteralConstant &x) { 543 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 544 if (!result) { 545 return std::nullopt; 546 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 547 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 548 } else { 549 return result; 550 } 551 } 552 553 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 554 return Analyze(x.u); 555 } 556 557 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 558 return AsMaybeExpr( 559 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 560 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 561 } 562 563 // CHARACTER literal processing. 564 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 565 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 566 return std::nullopt; 567 } 568 switch (kind) { 569 case 1: 570 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 571 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 572 string, true)}); 573 case 2: 574 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 575 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 576 string, true)}); 577 case 4: 578 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 579 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 580 string, true)}); 581 default: 582 CRASH_NO_CASE; 583 } 584 } 585 586 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 587 int kind{ 588 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 589 auto value{std::get<std::string>(x.t)}; 590 return AnalyzeString(std::move(value), kind); 591 } 592 593 MaybeExpr ExpressionAnalyzer::Analyze( 594 const parser::HollerithLiteralConstant &x) { 595 int kind{GetDefaultKind(TypeCategory::Character)}; 596 auto value{x.v}; 597 return AnalyzeString(std::move(value), kind); 598 } 599 600 // .TRUE. and .FALSE. of various kinds 601 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 602 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 603 GetDefaultKind(TypeCategory::Logical))}; 604 bool value{std::get<bool>(x.t)}; 605 auto result{common::SearchTypes( 606 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 607 kind, std::move(value)})}; 608 if (!result) { 609 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 610 } 611 return result; 612 } 613 614 // BOZ typeless literals 615 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 616 const char *p{x.v.c_str()}; 617 std::uint64_t base{16}; 618 switch (*p++) { 619 case 'b': 620 base = 2; 621 break; 622 case 'o': 623 base = 8; 624 break; 625 case 'z': 626 break; 627 case 'x': 628 break; 629 default: 630 CRASH_NO_CASE; 631 } 632 CHECK(*p == '"'); 633 ++p; 634 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 635 if (*p != '"') { 636 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 637 x.v); // C7107, C7108 638 return std::nullopt; 639 } 640 if (value.overflow) { 641 Say("BOZ literal '%s' too large"_err_en_US, x.v); 642 return std::nullopt; 643 } 644 return AsGenericExpr(std::move(value.value)); 645 } 646 647 // For use with SearchTypes to create a TypeParamInquiry with the 648 // right integer kind. 649 struct TypeParamInquiryVisitor { 650 using Result = std::optional<Expr<SomeInteger>>; 651 using Types = IntegerTypes; 652 TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol ¶m) 653 : kind{k}, base{std::move(b)}, parameter{param} {} 654 TypeParamInquiryVisitor(int k, const Symbol ¶m) 655 : kind{k}, parameter{param} {} 656 template <typename T> Result Test() { 657 if (kind == T::kind) { 658 return Expr<SomeInteger>{ 659 Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}}; 660 } 661 return std::nullopt; 662 } 663 int kind; 664 std::optional<NamedEntity> base; 665 const Symbol ¶meter; 666 }; 667 668 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry( 669 const Symbol *symbol) { 670 if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) { 671 if (dyType->category() == TypeCategory::Integer) { 672 return common::SearchTypes( 673 TypeParamInquiryVisitor{dyType->kind(), *symbol}); 674 } 675 } 676 return std::nullopt; 677 } 678 679 // Names and named constants 680 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 681 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 682 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 683 *kind, AsExpr(ImpliedDoIndex{n.source}))); 684 } else if (context_.HasError(n) || !n.symbol) { 685 return std::nullopt; 686 } else { 687 const Symbol &ultimate{n.symbol->GetUltimate()}; 688 if (ultimate.has<semantics::TypeParamDetails>()) { 689 // A bare reference to a derived type parameter (within a parameterized 690 // derived type definition) 691 return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate)); 692 } else { 693 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 694 if (const semantics::Scope * 695 pure{semantics::FindPureProcedureContaining( 696 context_.FindScope(n.source))}) { 697 SayAt(n, 698 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 699 n.source, DEREF(pure->symbol()).name()); 700 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 701 } 702 } 703 return Designate(DataRef{*n.symbol}); 704 } 705 } 706 } 707 708 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 709 if (MaybeExpr value{Analyze(n.v)}) { 710 Expr<SomeType> folded{Fold(std::move(*value))}; 711 if (IsConstantExpr(folded)) { 712 return folded; 713 } 714 Say(n.v.source, "must be a constant"_err_en_US); // C718 715 } 716 return std::nullopt; 717 } 718 719 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) { 720 return Expr<SomeType>{NullPointer{}}; 721 } 722 723 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 724 return Analyze(x.value()); 725 } 726 727 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 728 if (const auto &repeat{ 729 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 730 x.repetitions = -1; 731 if (MaybeExpr expr{Analyze(repeat->u)}) { 732 Expr<SomeType> folded{Fold(std::move(*expr))}; 733 if (auto value{ToInt64(folded)}) { 734 if (*value >= 0) { // C882 735 x.repetitions = *value; 736 } else { 737 Say(FindSourceLocation(repeat), 738 "Repeat count (%jd) for data value must not be negative"_err_en_US, 739 *value); 740 } 741 } 742 } 743 } 744 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 745 } 746 747 // Substring references 748 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 749 const std::optional<parser::ScalarIntExpr> &bound) { 750 if (bound) { 751 if (MaybeExpr expr{Analyze(*bound)}) { 752 if (expr->Rank() > 1) { 753 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 754 } 755 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 756 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 757 return {std::move(*ssIntExpr)}; 758 } 759 return {Expr<SubscriptInteger>{ 760 Convert<SubscriptInteger, TypeCategory::Integer>{ 761 std::move(*intExpr)}}}; 762 } else { 763 Say("substring bound expression is not INTEGER"_err_en_US); 764 } 765 } 766 } 767 return std::nullopt; 768 } 769 770 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 771 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 772 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 773 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 774 if (std::optional<DataRef> checked{ 775 ExtractDataRef(std::move(*newBaseExpr))}) { 776 const parser::SubstringRange &range{ 777 std::get<parser::SubstringRange>(ss.t)}; 778 std::optional<Expr<SubscriptInteger>> first{ 779 GetSubstringBound(std::get<0>(range.t))}; 780 std::optional<Expr<SubscriptInteger>> last{ 781 GetSubstringBound(std::get<1>(range.t))}; 782 const Symbol &symbol{checked->GetLastSymbol()}; 783 if (std::optional<DynamicType> dynamicType{ 784 DynamicType::From(symbol)}) { 785 if (dynamicType->category() == TypeCategory::Character) { 786 return WrapperHelper<TypeCategory::Character, Designator, 787 Substring>(dynamicType->kind(), 788 Substring{std::move(checked.value()), std::move(first), 789 std::move(last)}); 790 } 791 } 792 Say("substring may apply only to CHARACTER"_err_en_US); 793 } 794 } 795 } 796 } 797 return std::nullopt; 798 } 799 800 // CHARACTER literal substrings 801 MaybeExpr ExpressionAnalyzer::Analyze( 802 const parser::CharLiteralConstantSubstring &x) { 803 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 804 std::optional<Expr<SubscriptInteger>> lower{ 805 GetSubstringBound(std::get<0>(range.t))}; 806 std::optional<Expr<SubscriptInteger>> upper{ 807 GetSubstringBound(std::get<1>(range.t))}; 808 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 809 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 810 Expr<SubscriptInteger> length{ 811 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 812 charExpr->u)}; 813 if (!lower) { 814 lower = Expr<SubscriptInteger>{1}; 815 } 816 if (!upper) { 817 upper = Expr<SubscriptInteger>{ 818 static_cast<std::int64_t>(ToInt64(length).value())}; 819 } 820 return std::visit( 821 [&](auto &&ckExpr) -> MaybeExpr { 822 using Result = ResultType<decltype(ckExpr)>; 823 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 824 CHECK(DEREF(cp).size() == 1); 825 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 826 staticData->set_alignment(Result::kind) 827 .set_itemBytes(Result::kind) 828 .Push(cp->GetScalarValue().value()); 829 Substring substring{std::move(staticData), std::move(lower.value()), 830 std::move(upper.value())}; 831 return AsGenericExpr( 832 Expr<Result>{Designator<Result>{std::move(substring)}}); 833 }, 834 std::move(charExpr->u)); 835 } 836 } 837 return std::nullopt; 838 } 839 840 // Subscripted array references 841 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 842 MaybeExpr &&expr) { 843 if (expr) { 844 if (expr->Rank() > 1) { 845 Say("Subscript expression has rank %d greater than 1"_err_en_US, 846 expr->Rank()); 847 } 848 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 849 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 850 return std::move(*ssIntExpr); 851 } else { 852 return Expr<SubscriptInteger>{ 853 Convert<SubscriptInteger, TypeCategory::Integer>{ 854 std::move(*intExpr)}}; 855 } 856 } else { 857 Say("Subscript expression is not INTEGER"_err_en_US); 858 } 859 } 860 return std::nullopt; 861 } 862 863 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 864 const std::optional<parser::Subscript> &s) { 865 if (s) { 866 return AsSubscript(Analyze(*s)); 867 } else { 868 return std::nullopt; 869 } 870 } 871 872 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 873 const parser::SectionSubscript &ss) { 874 return std::visit( 875 common::visitors{ 876 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 877 const auto &lower{std::get<0>(t.t)}; 878 const auto &upper{std::get<1>(t.t)}; 879 const auto &stride{std::get<2>(t.t)}; 880 auto result{Triplet{ 881 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 882 if ((lower && !result.lower()) || (upper && !result.upper())) { 883 return std::nullopt; 884 } else { 885 return std::make_optional<Subscript>(result); 886 } 887 }, 888 [&](const auto &s) -> std::optional<Subscript> { 889 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 890 return Subscript{std::move(*subscriptExpr)}; 891 } else { 892 return std::nullopt; 893 } 894 }, 895 }, 896 ss.u); 897 } 898 899 // Empty result means an error occurred 900 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 901 const std::list<parser::SectionSubscript> &sss) { 902 bool error{false}; 903 std::vector<Subscript> subscripts; 904 for (const auto &s : sss) { 905 if (auto subscript{AnalyzeSectionSubscript(s)}) { 906 subscripts.emplace_back(std::move(*subscript)); 907 } else { 908 error = true; 909 } 910 } 911 return !error ? subscripts : std::vector<Subscript>{}; 912 } 913 914 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 915 if (MaybeExpr baseExpr{Analyze(ae.base)}) { 916 if (ae.subscripts.empty()) { 917 // will be converted to function call later or error reported 918 return std::nullopt; 919 } else if (baseExpr->Rank() == 0) { 920 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 921 if (!context_.HasError(symbol)) { 922 Say("'%s' is not an array"_err_en_US, symbol->name()); 923 context_.SetError(const_cast<Symbol &>(*symbol)); 924 } 925 } 926 } else if (std::optional<DataRef> dataRef{ 927 ExtractDataRef(std::move(*baseExpr))}) { 928 return ApplySubscripts( 929 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 930 } else { 931 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 932 } 933 } 934 // error was reported: analyze subscripts without reporting more errors 935 auto restorer{GetContextualMessages().DiscardMessages()}; 936 AnalyzeSectionSubscripts(ae.subscripts); 937 return std::nullopt; 938 } 939 940 // Type parameter inquiries apply to data references, but don't depend 941 // on any trailing (co)subscripts. 942 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 943 return std::visit( 944 common::visitors{ 945 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 946 [](Component &&component) { 947 return NamedEntity{std::move(component)}; 948 }, 949 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 950 [](CoarrayRef &&coarrayRef) { 951 return NamedEntity{coarrayRef.GetLastSymbol()}; 952 }, 953 }, 954 std::move(designator.u)); 955 } 956 957 // Components of parent derived types are explicitly represented as such. 958 static std::optional<Component> CreateComponent( 959 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 960 if (&component.owner() == &scope) { 961 return Component{std::move(base), component}; 962 } 963 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 964 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 965 return CreateComponent( 966 DataRef{Component{std::move(base), *parentComponent}}, component, 967 *parentScope); 968 } 969 } 970 return std::nullopt; 971 } 972 973 // Derived type component references and type parameter inquiries 974 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 975 MaybeExpr base{Analyze(sc.base)}; 976 if (!base) { 977 return std::nullopt; 978 } 979 Symbol *sym{sc.component.symbol}; 980 if (context_.HasError(sym)) { 981 return std::nullopt; 982 } 983 const auto &name{sc.component.source}; 984 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 985 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 986 if (sym->detailsIf<semantics::TypeParamDetails>()) { 987 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 988 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 989 if (dyType->category() == TypeCategory::Integer) { 990 return AsMaybeExpr( 991 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(), 992 IgnoreAnySubscripts(std::move(*designator)), *sym})); 993 } 994 } 995 Say(name, "Type parameter is not INTEGER"_err_en_US); 996 } else { 997 Say(name, 998 "A type parameter inquiry must be applied to " 999 "a designator"_err_en_US); 1000 } 1001 } else if (!dtSpec || !dtSpec->scope()) { 1002 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1003 return std::nullopt; 1004 } else if (std::optional<DataRef> dataRef{ 1005 ExtractDataRef(std::move(*dtExpr))}) { 1006 if (auto component{ 1007 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1008 return Designate(DataRef{std::move(*component)}); 1009 } else { 1010 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1011 dtSpec->typeSymbol().name()); 1012 } 1013 } else { 1014 Say(name, 1015 "Base of component reference must be a data reference"_err_en_US); 1016 } 1017 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1018 // special part-ref: %re, %im, %kind, %len 1019 // Type errors are detected and reported in semantics. 1020 using MiscKind = semantics::MiscDetails::Kind; 1021 MiscKind kind{details->kind()}; 1022 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1023 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1024 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1025 Expr<SomeReal> realExpr{std::visit( 1026 [&](const auto &z) { 1027 using PartType = typename ResultType<decltype(z)>::Part; 1028 auto part{kind == MiscKind::ComplexPartRe 1029 ? ComplexPart::Part::RE 1030 : ComplexPart::Part::IM}; 1031 return AsCategoryExpr(Designator<PartType>{ 1032 ComplexPart{std::move(*dataRef), part}}); 1033 }, 1034 zExpr->u)}; 1035 return AsGenericExpr(std::move(realExpr)); 1036 } 1037 } 1038 } else if (kind == MiscKind::KindParamInquiry || 1039 kind == MiscKind::LenParamInquiry) { 1040 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1041 return MakeFunctionRef( 1042 name, ActualArguments{ActualArgument{std::move(*base)}}); 1043 } else { 1044 DIE("unexpected MiscDetails::Kind"); 1045 } 1046 } else { 1047 Say(name, "derived type required before component reference"_err_en_US); 1048 } 1049 return std::nullopt; 1050 } 1051 1052 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1053 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1054 DataRef *dataRef{&*maybeDataRef}; 1055 std::vector<Subscript> subscripts; 1056 SymbolVector reversed; 1057 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1058 subscripts = std::move(aRef->subscript()); 1059 reversed.push_back(aRef->GetLastSymbol()); 1060 if (Component * component{aRef->base().UnwrapComponent()}) { 1061 dataRef = &component->base(); 1062 } else { 1063 dataRef = nullptr; 1064 } 1065 } 1066 if (dataRef) { 1067 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1068 reversed.push_back(component->GetLastSymbol()); 1069 dataRef = &component->base(); 1070 } 1071 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1072 reversed.push_back(*baseSym); 1073 } else { 1074 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1075 } 1076 } 1077 std::vector<Expr<SubscriptInteger>> cosubscripts; 1078 bool cosubsOk{true}; 1079 for (const auto &cosub : 1080 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1081 MaybeExpr coex{Analyze(cosub)}; 1082 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1083 cosubscripts.push_back( 1084 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1085 } else { 1086 cosubsOk = false; 1087 } 1088 } 1089 if (cosubsOk && !reversed.empty()) { 1090 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1091 const Symbol &symbol{reversed.front()}; 1092 if (numCosubscripts != symbol.Corank()) { 1093 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1094 symbol.name(), symbol.Corank(), numCosubscripts); 1095 } 1096 } 1097 for (const auto &imageSelSpec : 1098 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1099 std::visit( 1100 common::visitors{ 1101 [&](const auto &x) { Analyze(x.v); }, 1102 }, 1103 imageSelSpec.u); 1104 } 1105 // Reverse the chain of symbols so that the base is first and coarray 1106 // ultimate component is last. 1107 if (cosubsOk) { 1108 return Designate( 1109 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1110 std::move(subscripts), std::move(cosubscripts)}}); 1111 } 1112 } 1113 return std::nullopt; 1114 } 1115 1116 int ExpressionAnalyzer::IntegerTypeSpecKind( 1117 const parser::IntegerTypeSpec &spec) { 1118 Expr<SubscriptInteger> value{ 1119 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1120 if (auto kind{ToInt64(value)}) { 1121 return static_cast<int>(*kind); 1122 } 1123 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1124 return GetDefaultKind(TypeCategory::Integer); 1125 } 1126 1127 // Array constructors 1128 1129 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1130 // all happen to have the same actual type T into one ArrayConstructor<T>. 1131 template <typename T> 1132 ArrayConstructorValues<T> MakeSpecific( 1133 ArrayConstructorValues<SomeType> &&from) { 1134 ArrayConstructorValues<T> to; 1135 for (ArrayConstructorValue<SomeType> &x : from) { 1136 std::visit( 1137 common::visitors{ 1138 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1139 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1140 to.Push(std::move(DEREF(typed))); 1141 }, 1142 [&](ImpliedDo<SomeType> &&impliedDo) { 1143 to.Push(ImpliedDo<T>{impliedDo.name(), 1144 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1145 std::move(impliedDo.stride()), 1146 MakeSpecific<T>(std::move(impliedDo.values()))}); 1147 }, 1148 }, 1149 std::move(x.u)); 1150 } 1151 return to; 1152 } 1153 1154 class ArrayConstructorContext { 1155 public: 1156 ArrayConstructorContext( 1157 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1158 : exprAnalyzer_{c}, type_{std::move(t)} {} 1159 1160 void Add(const parser::AcValue &); 1161 MaybeExpr ToExpr(); 1162 1163 // These interfaces allow *this to be used as a type visitor argument to 1164 // common::SearchTypes() to convert the array constructor to a typed 1165 // expression in ToExpr(). 1166 using Result = MaybeExpr; 1167 using Types = AllTypes; 1168 template <typename T> Result Test() { 1169 if (type_ && type_->category() == T::category) { 1170 if constexpr (T::category == TypeCategory::Derived) { 1171 if (type_->IsUnlimitedPolymorphic()) { 1172 return std::nullopt; 1173 } else { 1174 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1175 MakeSpecific<T>(std::move(values_))}); 1176 } 1177 } else if (type_->kind() == T::kind) { 1178 if constexpr (T::category == TypeCategory::Character) { 1179 if (auto len{type_->LEN()}) { 1180 return AsMaybeExpr(ArrayConstructor<T>{ 1181 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1182 } 1183 } else { 1184 return AsMaybeExpr( 1185 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1186 } 1187 } 1188 } 1189 return std::nullopt; 1190 } 1191 1192 private: 1193 void Push(MaybeExpr &&); 1194 1195 template <int KIND, typename A> 1196 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1197 const A &x) { 1198 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1199 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1200 return ConvertToType<Type<TypeCategory::Integer, KIND>>( 1201 std::move(DEREF(intExpr))); 1202 } 1203 return std::nullopt; 1204 } 1205 1206 // Nested array constructors all reference the same ExpressionAnalyzer, 1207 // which represents the nest of active implied DO loop indices. 1208 ExpressionAnalyzer &exprAnalyzer_; 1209 std::optional<DynamicTypeWithLength> type_; 1210 bool explicitType_{type_.has_value()}; 1211 std::optional<std::int64_t> constantLength_; 1212 ArrayConstructorValues<SomeType> values_; 1213 bool messageDisplayedOnce{false}; 1214 }; 1215 1216 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1217 if (!x) { 1218 return; 1219 } 1220 if (auto dyType{x->GetType()}) { 1221 DynamicTypeWithLength xType{*dyType}; 1222 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1223 CHECK(xType.category() == TypeCategory::Character); 1224 xType.length = 1225 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1226 } 1227 if (!type_) { 1228 // If there is no explicit type-spec in an array constructor, the type 1229 // of the array is the declared type of all of the elements, which must 1230 // be well-defined and all match. 1231 // TODO: Possible language extension: use the most general type of 1232 // the values as the type of a numeric constructed array, convert all 1233 // of the other values to that type. Alternative: let the first value 1234 // determine the type, and convert the others to that type. 1235 CHECK(!explicitType_); 1236 type_ = std::move(xType); 1237 constantLength_ = ToInt64(type_->length); 1238 values_.Push(std::move(*x)); 1239 } else if (!explicitType_) { 1240 if (static_cast<const DynamicType &>(*type_) == 1241 static_cast<const DynamicType &>(xType)) { 1242 values_.Push(std::move(*x)); 1243 if (auto thisLen{ToInt64(xType.LEN())}) { 1244 if (constantLength_) { 1245 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1246 *thisLen != *constantLength_) { 1247 exprAnalyzer_.Say( 1248 "Character literal in array constructor without explicit " 1249 "type has different length than earlier element"_en_US); 1250 } 1251 if (*thisLen > *constantLength_) { 1252 // Language extension: use the longest literal to determine the 1253 // length of the array constructor's character elements, not the 1254 // first, when there is no explicit type. 1255 *constantLength_ = *thisLen; 1256 type_->length = xType.LEN(); 1257 } 1258 } else { 1259 constantLength_ = *thisLen; 1260 type_->length = xType.LEN(); 1261 } 1262 } 1263 } else { 1264 if (!messageDisplayedOnce) { 1265 exprAnalyzer_.Say( 1266 "Values in array constructor must have the same declared type " 1267 "when no explicit type appears"_err_en_US); // C7110 1268 messageDisplayedOnce = true; 1269 } 1270 } 1271 } else { 1272 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1273 values_.Push(std::move(*cast)); 1274 } else { 1275 exprAnalyzer_.Say( 1276 "Value in array constructor of type '%s' could not " 1277 "be converted to the type of the array '%s'"_err_en_US, 1278 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1279 } 1280 } 1281 } 1282 } 1283 1284 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1285 using IntType = ResultType<ImpliedDoIndex>; 1286 std::visit( 1287 common::visitors{ 1288 [&](const parser::AcValue::Triplet &triplet) { 1289 // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1290 std::optional<Expr<IntType>> lower{ 1291 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))}; 1292 std::optional<Expr<IntType>> upper{ 1293 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))}; 1294 std::optional<Expr<IntType>> stride{ 1295 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))}; 1296 if (lower && upper) { 1297 if (!stride) { 1298 stride = Expr<IntType>{1}; 1299 } 1300 if (!type_) { 1301 type_ = DynamicTypeWithLength{IntType::GetType()}; 1302 } 1303 auto v{std::move(values_)}; 1304 parser::CharBlock anonymous; 1305 Push(Expr<SomeType>{ 1306 Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}}); 1307 std::swap(v, values_); 1308 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1309 std::move(*upper), std::move(*stride), std::move(v)}); 1310 } 1311 }, 1312 [&](const common::Indirection<parser::Expr> &expr) { 1313 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation( 1314 expr.value().source)}; 1315 if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) { 1316 if (auto exprType{v->GetType()}) { 1317 if (exprType->IsUnlimitedPolymorphic()) { 1318 exprAnalyzer_.Say( 1319 "Cannot have an unlimited polymorphic value in an " 1320 "array constructor"_err_en_US); // C7113 1321 } 1322 } 1323 Push(std::move(*v)); 1324 } 1325 }, 1326 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1327 const auto &control{ 1328 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)}; 1329 const auto &bounds{ 1330 std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1331 exprAnalyzer_.Analyze(bounds.name); 1332 parser::CharBlock name{bounds.name.thing.thing.source}; 1333 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1334 int kind{IntType::kind}; 1335 if (const auto dynamicType{DynamicType::From(symbol)}) { 1336 kind = dynamicType->kind(); 1337 } 1338 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1339 std::optional<Expr<IntType>> lower{ 1340 GetSpecificIntExpr<IntType::kind>(bounds.lower)}; 1341 std::optional<Expr<IntType>> upper{ 1342 GetSpecificIntExpr<IntType::kind>(bounds.upper)}; 1343 if (lower && upper) { 1344 std::optional<Expr<IntType>> stride{ 1345 GetSpecificIntExpr<IntType::kind>(bounds.step)}; 1346 auto v{std::move(values_)}; 1347 for (const auto &value : 1348 std::get<std::list<parser::AcValue>>(impliedDo.value().t)) { 1349 Add(value); 1350 } 1351 if (!stride) { 1352 stride = Expr<IntType>{1}; 1353 } 1354 std::swap(v, values_); 1355 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1356 std::move(*upper), std::move(*stride), std::move(v)}); 1357 } 1358 exprAnalyzer_.RemoveImpliedDo(name); 1359 } else { 1360 exprAnalyzer_.SayAt(name, 1361 "Implied DO index is active in surrounding implied DO loop " 1362 "and may not have the same name"_err_en_US); // C7115 1363 } 1364 }, 1365 }, 1366 x.u); 1367 } 1368 1369 MaybeExpr ArrayConstructorContext::ToExpr() { 1370 return common::SearchTypes(std::move(*this)); 1371 } 1372 1373 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1374 const parser::AcSpec &acSpec{array.v}; 1375 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1376 for (const parser::AcValue &value : acSpec.values) { 1377 acContext.Add(value); 1378 } 1379 return acContext.ToExpr(); 1380 } 1381 1382 MaybeExpr ExpressionAnalyzer::Analyze( 1383 const parser::StructureConstructor &structure) { 1384 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1385 parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; 1386 if (!parsedType.derivedTypeSpec) { 1387 return std::nullopt; 1388 } 1389 const auto &spec{*parsedType.derivedTypeSpec}; 1390 const Symbol &typeSymbol{spec.typeSymbol()}; 1391 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1392 return std::nullopt; // error recovery 1393 } 1394 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1395 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1396 1397 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1398 AttachDeclaration(Say(typeName, 1399 "ABSTRACT derived type '%s' may not be used in a " 1400 "structure constructor"_err_en_US, 1401 typeName), 1402 typeSymbol); // C7114 1403 } 1404 1405 // This iterator traverses all of the components in the derived type and its 1406 // parents. The symbols for whole parent components appear after their 1407 // own components and before the components of the types that extend them. 1408 // E.g., TYPE :: A; REAL X; END TYPE 1409 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1410 // produces the component list X, A, Y. 1411 // The order is important below because a structure constructor can 1412 // initialize X or A by name, but not both. 1413 auto components{semantics::OrderedComponentIterator{spec}}; 1414 auto nextAnonymous{components.begin()}; 1415 1416 std::set<parser::CharBlock> unavailable; 1417 bool anyKeyword{false}; 1418 StructureConstructor result{spec}; 1419 bool checkConflicts{true}; // until we hit one 1420 auto &messages{GetContextualMessages()}; 1421 1422 for (const auto &component : 1423 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1424 const parser::Expr &expr{ 1425 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1426 parser::CharBlock source{expr.source}; 1427 auto restorer{messages.SetLocation(source)}; 1428 const Symbol *symbol{nullptr}; 1429 MaybeExpr value{Analyze(expr)}; 1430 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1431 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1432 anyKeyword = true; 1433 source = kw->v.source; 1434 symbol = kw->v.symbol; 1435 if (!symbol) { 1436 auto componentIter{std::find_if(components.begin(), components.end(), 1437 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1438 if (componentIter != components.end()) { 1439 symbol = &*componentIter; 1440 } 1441 } 1442 if (!symbol) { // C7101 1443 Say(source, 1444 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1445 source, typeName); 1446 } 1447 } else { 1448 if (anyKeyword) { // C7100 1449 Say(source, 1450 "Value in structure constructor lacks a component name"_err_en_US); 1451 checkConflicts = false; // stem cascade 1452 } 1453 // Here's a regrettably common extension of the standard: anonymous 1454 // initialization of parent components, e.g., T(PT(1)) rather than 1455 // T(1) or T(PT=PT(1)). 1456 if (nextAnonymous == components.begin() && parentComponent && 1457 valueType == DynamicType::From(*parentComponent) && 1458 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1459 auto iter{ 1460 std::find(components.begin(), components.end(), *parentComponent)}; 1461 if (iter != components.end()) { 1462 symbol = parentComponent; 1463 nextAnonymous = ++iter; 1464 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1465 Say(source, 1466 "Whole parent component '%s' in structure " 1467 "constructor should not be anonymous"_en_US, 1468 symbol->name()); 1469 } 1470 } 1471 } 1472 while (!symbol && nextAnonymous != components.end()) { 1473 const Symbol &next{*nextAnonymous}; 1474 ++nextAnonymous; 1475 if (!next.test(Symbol::Flag::ParentComp)) { 1476 symbol = &next; 1477 } 1478 } 1479 if (!symbol) { 1480 Say(source, "Unexpected value in structure constructor"_err_en_US); 1481 } 1482 } 1483 if (symbol) { 1484 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1485 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1486 Say(source, *msg); 1487 } 1488 } 1489 if (checkConflicts) { 1490 auto componentIter{ 1491 std::find(components.begin(), components.end(), *symbol)}; 1492 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1493 // C797, C798 1494 Say(source, 1495 "Component '%s' conflicts with another component earlier in " 1496 "this structure constructor"_err_en_US, 1497 symbol->name()); 1498 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1499 // Make earlier components unavailable once a whole parent appears. 1500 for (auto it{components.begin()}; it != componentIter; ++it) { 1501 unavailable.insert(it->name()); 1502 } 1503 } else { 1504 // Make whole parent components unavailable after any of their 1505 // constituents appear. 1506 for (auto it{componentIter}; it != components.end(); ++it) { 1507 if (it->test(Symbol::Flag::ParentComp)) { 1508 unavailable.insert(it->name()); 1509 } 1510 } 1511 } 1512 } 1513 unavailable.insert(symbol->name()); 1514 if (value) { 1515 if (symbol->has<semantics::ProcEntityDetails>()) { 1516 CHECK(IsPointer(*symbol)); 1517 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1518 // C1594(4) 1519 const auto &innermost{context_.FindScope(expr.source)}; 1520 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1521 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1522 if (const Symbol * 1523 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1524 if (auto *msg{Say(expr.source, 1525 "Externally visible object '%s' may not be " 1526 "associated with pointer component '%s' in a " 1527 "pure procedure"_err_en_US, 1528 object->name(), pointer->name())}) { 1529 msg->Attach(object->name(), "Object declaration"_en_US) 1530 .Attach(pointer->name(), "Pointer declaration"_en_US); 1531 } 1532 } 1533 } 1534 } 1535 } else if (symbol->has<semantics::TypeParamDetails>()) { 1536 Say(expr.source, 1537 "Type parameter '%s' may not appear as a component " 1538 "of a structure constructor"_err_en_US, 1539 symbol->name()); 1540 continue; 1541 } else { 1542 Say(expr.source, 1543 "Component '%s' is neither a procedure pointer " 1544 "nor a data object"_err_en_US, 1545 symbol->name()); 1546 continue; 1547 } 1548 if (IsPointer(*symbol)) { 1549 semantics::CheckPointerAssignment( 1550 GetFoldingContext(), *symbol, *value); // C7104, C7105 1551 result.Add(*symbol, Fold(std::move(*value))); 1552 } else if (MaybeExpr converted{ 1553 ConvertToType(*symbol, std::move(*value))}) { 1554 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1555 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1556 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1557 AttachDeclaration( 1558 Say(expr.source, 1559 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1560 symbol->name()), 1561 *symbol); 1562 } else if (CheckConformance(messages, *componentShape, 1563 *valueShape, "component", "value")) { 1564 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 && 1565 !IsExpandableScalar(*converted)) { 1566 AttachDeclaration( 1567 Say(expr.source, 1568 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1569 symbol->name()), 1570 *symbol); 1571 } else { 1572 result.Add(*symbol, std::move(*converted)); 1573 } 1574 } 1575 } else { 1576 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1577 } 1578 } else { 1579 AttachDeclaration( 1580 Say(expr.source, 1581 "Shape of component '%s' cannot be determined"_err_en_US, 1582 symbol->name()), 1583 *symbol); 1584 } 1585 } else if (IsAllocatable(*symbol) && 1586 std::holds_alternative<NullPointer>(value->u)) { 1587 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1588 } else if (auto symType{DynamicType::From(symbol)}) { 1589 if (valueType) { 1590 AttachDeclaration( 1591 Say(expr.source, 1592 "Value in structure constructor of type %s is " 1593 "incompatible with component '%s' of type %s"_err_en_US, 1594 valueType->AsFortran(), symbol->name(), 1595 symType->AsFortran()), 1596 *symbol); 1597 } else { 1598 AttachDeclaration( 1599 Say(expr.source, 1600 "Value in structure constructor is incompatible with " 1601 " component '%s' of type %s"_err_en_US, 1602 symbol->name(), symType->AsFortran()), 1603 *symbol); 1604 } 1605 } 1606 } 1607 } 1608 } 1609 1610 // Ensure that unmentioned component objects have default initializers. 1611 for (const Symbol &symbol : components) { 1612 if (!symbol.test(Symbol::Flag::ParentComp) && 1613 unavailable.find(symbol.name()) == unavailable.cend() && 1614 !IsAllocatable(symbol)) { 1615 if (const auto *details{ 1616 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1617 if (details->init()) { 1618 result.Add(symbol, common::Clone(*details->init())); 1619 } else { // C799 1620 AttachDeclaration(Say(typeName, 1621 "Structure constructor lacks a value for " 1622 "component '%s'"_err_en_US, 1623 symbol.name()), 1624 symbol); 1625 } 1626 } 1627 } 1628 } 1629 1630 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1631 } 1632 1633 static std::optional<parser::CharBlock> GetPassName( 1634 const semantics::Symbol &proc) { 1635 return std::visit( 1636 [](const auto &details) { 1637 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1638 std::decay_t<decltype(details)>>) { 1639 return details.passName(); 1640 } else { 1641 return std::optional<parser::CharBlock>{}; 1642 } 1643 }, 1644 proc.details()); 1645 } 1646 1647 static int GetPassIndex(const Symbol &proc) { 1648 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1649 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1650 const auto *interface{semantics::FindInterface(proc)}; 1651 if (!passName || !interface) { 1652 return 0; // first argument is passed-object 1653 } 1654 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1655 int index{0}; 1656 for (const auto *arg : subp.dummyArgs()) { 1657 if (arg && arg->name() == passName) { 1658 return index; 1659 } 1660 ++index; 1661 } 1662 DIE("PASS argument name not in dummy argument list"); 1663 } 1664 1665 // Injects an expression into an actual argument list as the "passed object" 1666 // for a type-bound procedure reference that is not NOPASS. Adds an 1667 // argument keyword if possible, but not when the passed object goes 1668 // before a positional argument. 1669 // e.g., obj%tbp(x) -> tbp(obj,x). 1670 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1671 const Symbol &component, bool isPassedObject = true) { 1672 if (component.attrs().test(semantics::Attr::NOPASS)) { 1673 return; 1674 } 1675 int passIndex{GetPassIndex(component)}; 1676 auto iter{actuals.begin()}; 1677 int at{0}; 1678 while (iter < actuals.end() && at < passIndex) { 1679 if (*iter && (*iter)->keyword()) { 1680 iter = actuals.end(); 1681 break; 1682 } 1683 ++iter; 1684 ++at; 1685 } 1686 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1687 passed.set_isPassedObject(isPassedObject); 1688 if (iter == actuals.end()) { 1689 if (auto passName{GetPassName(component)}) { 1690 passed.set_keyword(*passName); 1691 } 1692 } 1693 actuals.emplace(iter, std::move(passed)); 1694 } 1695 1696 // Return the compile-time resolution of a procedure binding, if possible. 1697 static const Symbol *GetBindingResolution( 1698 const std::optional<DynamicType> &baseType, const Symbol &component) { 1699 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1700 if (!binding) { 1701 return nullptr; 1702 } 1703 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1704 (!baseType || baseType->IsPolymorphic())) { 1705 return nullptr; 1706 } 1707 return &binding->symbol(); 1708 } 1709 1710 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1711 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1712 -> std::optional<CalleeAndArguments> { 1713 const parser::StructureComponent &sc{pcr.v.thing}; 1714 const auto &name{sc.component.source}; 1715 if (MaybeExpr base{Analyze(sc.base)}) { 1716 if (const Symbol * sym{sc.component.symbol}) { 1717 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1718 if (sym->has<semantics::GenericDetails>()) { 1719 AdjustActuals adjustment{ 1720 [&](const Symbol &proc, ActualArguments &actuals) { 1721 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1722 AddPassArg(actuals, std::move(*dtExpr), proc); 1723 } 1724 return true; 1725 }}; 1726 sym = ResolveGeneric(*sym, arguments, adjustment); 1727 if (!sym) { 1728 EmitGenericResolutionError(*sc.component.symbol); 1729 return std::nullopt; 1730 } 1731 } 1732 if (const Symbol * 1733 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1734 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1735 return CalleeAndArguments{ 1736 ProcedureDesignator{*resolution}, std::move(arguments)}; 1737 } else if (std::optional<DataRef> dataRef{ 1738 ExtractDataRef(std::move(*dtExpr))}) { 1739 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1740 return CalleeAndArguments{ 1741 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1742 std::move(arguments)}; 1743 } else { 1744 AddPassArg(arguments, 1745 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1746 *sym); 1747 return CalleeAndArguments{ 1748 ProcedureDesignator{*sym}, std::move(arguments)}; 1749 } 1750 } 1751 } 1752 Say(name, 1753 "Base of procedure component reference is not a derived-type object"_err_en_US); 1754 } 1755 } 1756 CHECK(!GetContextualMessages().empty()); 1757 return std::nullopt; 1758 } 1759 1760 // Can actual be argument associated with dummy? 1761 static bool CheckCompatibleArgument(bool isElemental, 1762 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1763 return std::visit( 1764 common::visitors{ 1765 [&](const characteristics::DummyDataObject &x) { 1766 characteristics::TypeAndShape dummyTypeAndShape{x.type}; 1767 if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) { 1768 return false; 1769 } else if (auto actualType{actual.GetType()}) { 1770 return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType); 1771 } else { 1772 return false; 1773 } 1774 }, 1775 [&](const characteristics::DummyProcedure &) { 1776 const auto *expr{actual.UnwrapExpr()}; 1777 return expr && IsProcedurePointer(*expr); 1778 }, 1779 [&](const characteristics::AlternateReturn &) { 1780 return actual.isAlternateReturn(); 1781 }, 1782 }, 1783 dummy.u); 1784 } 1785 1786 // Are the actual arguments compatible with the dummy arguments of procedure? 1787 static bool CheckCompatibleArguments( 1788 const characteristics::Procedure &procedure, 1789 const ActualArguments &actuals) { 1790 bool isElemental{procedure.IsElemental()}; 1791 const auto &dummies{procedure.dummyArguments}; 1792 CHECK(dummies.size() == actuals.size()); 1793 for (std::size_t i{0}; i < dummies.size(); ++i) { 1794 const characteristics::DummyArgument &dummy{dummies[i]}; 1795 const std::optional<ActualArgument> &actual{actuals[i]}; 1796 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1797 return false; 1798 } 1799 } 1800 return true; 1801 } 1802 1803 // Handles a forward reference to a module function from what must 1804 // be a specification expression. Return false if the symbol is 1805 // an invalid forward reference. 1806 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1807 if (context_.HasError(symbol)) { 1808 return false; 1809 } 1810 if (const auto *details{ 1811 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1812 if (details->kind() == semantics::SubprogramKind::Module) { 1813 // If this symbol is still a SubprogramNameDetails, we must be 1814 // checking a specification expression in a sibling module 1815 // procedure. Resolve its names now so that its interface 1816 // is known. 1817 semantics::ResolveSpecificationParts(context_, symbol); 1818 if (symbol.has<semantics::SubprogramNameDetails>()) { 1819 // When the symbol hasn't had its details updated, we must have 1820 // already been in the process of resolving the function's 1821 // specification part; but recursive function calls are not 1822 // allowed in specification parts (10.1.11 para 5). 1823 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1824 symbol.name()); 1825 context_.SetError(const_cast<Symbol &>(symbol)); 1826 return false; 1827 } 1828 } else { // 10.1.11 para 4 1829 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1830 symbol.name()); 1831 context_.SetError(const_cast<Symbol &>(symbol)); 1832 return false; 1833 } 1834 } 1835 return true; 1836 } 1837 1838 // Resolve a call to a generic procedure with given actual arguments. 1839 // adjustActuals is called on procedure bindings to handle pass arg. 1840 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1841 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1842 bool mightBeStructureConstructor) { 1843 const Symbol *elemental{nullptr}; // matching elemental specific proc 1844 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1845 for (const Symbol &specific : details.specificProcs()) { 1846 if (!ResolveForward(specific)) { 1847 continue; 1848 } 1849 if (std::optional<characteristics::Procedure> procedure{ 1850 characteristics::Procedure::Characterize( 1851 ProcedureDesignator{specific}, context_.intrinsics())}) { 1852 ActualArguments localActuals{actuals}; 1853 if (specific.has<semantics::ProcBindingDetails>()) { 1854 if (!adjustActuals.value()(specific, localActuals)) { 1855 continue; 1856 } 1857 } 1858 if (semantics::CheckInterfaceForGeneric( 1859 *procedure, localActuals, GetFoldingContext())) { 1860 if (CheckCompatibleArguments(*procedure, localActuals)) { 1861 if (!procedure->IsElemental()) { 1862 return &specific; // takes priority over elemental match 1863 } 1864 elemental = &specific; 1865 } 1866 } 1867 } 1868 } 1869 if (elemental) { 1870 return elemental; 1871 } 1872 // Check parent derived type 1873 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 1874 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 1875 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 1876 if (const Symbol * 1877 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 1878 return result; 1879 } 1880 } 1881 } 1882 } 1883 if (mightBeStructureConstructor && details.derivedType()) { 1884 return details.derivedType(); 1885 } 1886 return nullptr; 1887 } 1888 1889 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 1890 if (semantics::IsGenericDefinedOp(symbol)) { 1891 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 1892 symbol.name()); 1893 } else { 1894 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 1895 symbol.name()); 1896 } 1897 } 1898 1899 auto ExpressionAnalyzer::GetCalleeAndArguments( 1900 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 1901 bool isSubroutine, bool mightBeStructureConstructor) 1902 -> std::optional<CalleeAndArguments> { 1903 return std::visit( 1904 common::visitors{ 1905 [&](const parser::Name &name) { 1906 return GetCalleeAndArguments(name, std::move(arguments), 1907 isSubroutine, mightBeStructureConstructor); 1908 }, 1909 [&](const parser::ProcComponentRef &pcr) { 1910 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 1911 }, 1912 }, 1913 pd.u); 1914 } 1915 1916 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 1917 ActualArguments &&arguments, bool isSubroutine, 1918 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 1919 const Symbol *symbol{name.symbol}; 1920 if (context_.HasError(symbol)) { 1921 return std::nullopt; // also handles null symbol 1922 } 1923 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 1924 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 1925 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 1926 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 1927 arguments, GetFoldingContext())}) { 1928 return CalleeAndArguments{ 1929 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1930 std::move(specificCall->arguments)}; 1931 } 1932 } else { 1933 CheckForBadRecursion(name.source, ultimate); 1934 if (ultimate.has<semantics::GenericDetails>()) { 1935 ExpressionAnalyzer::AdjustActuals noAdjustment; 1936 symbol = ResolveGeneric( 1937 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 1938 } 1939 if (symbol) { 1940 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 1941 if (mightBeStructureConstructor) { 1942 return CalleeAndArguments{ 1943 semantics::SymbolRef{*symbol}, std::move(arguments)}; 1944 } 1945 } else { 1946 return CalleeAndArguments{ 1947 ProcedureDesignator{*symbol}, std::move(arguments)}; 1948 } 1949 } else if (std::optional<SpecificCall> specificCall{ 1950 context_.intrinsics().Probe( 1951 CallCharacteristics{ 1952 ultimate.name().ToString(), isSubroutine}, 1953 arguments, GetFoldingContext())}) { 1954 // Generics can extend intrinsics 1955 return CalleeAndArguments{ 1956 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1957 std::move(specificCall->arguments)}; 1958 } else { 1959 EmitGenericResolutionError(*name.symbol); 1960 } 1961 } 1962 return std::nullopt; 1963 } 1964 1965 void ExpressionAnalyzer::CheckForBadRecursion( 1966 parser::CharBlock callSite, const semantics::Symbol &proc) { 1967 if (const auto *scope{proc.scope()}) { 1968 if (scope->sourceRange().Contains(callSite)) { 1969 parser::Message *msg{nullptr}; 1970 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 1971 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 1972 callSite); 1973 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 1974 msg = Say( // 15.6.2.1(3) 1975 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 1976 callSite); 1977 } 1978 AttachDeclaration(msg, proc); 1979 } 1980 } 1981 } 1982 1983 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 1984 if (const auto *designator{ 1985 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 1986 if (const auto *dataRef{ 1987 std::get_if<parser::DataRef>(&designator->value().u)}) { 1988 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 1989 if (const Symbol * symbol{name->symbol}) { 1990 if (const auto *type{symbol->GetType()}) { 1991 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 1992 return symbol; 1993 } 1994 } 1995 } 1996 } 1997 } 1998 } 1999 return nullptr; 2000 } 2001 2002 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2003 std::optional<parser::StructureConstructor> *structureConstructor) { 2004 const parser::Call &call{funcRef.v}; 2005 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2006 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 2007 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2008 analyzer.Analyze(arg, false /* not subroutine call */); 2009 } 2010 if (analyzer.fatalErrors()) { 2011 return std::nullopt; 2012 } 2013 if (std::optional<CalleeAndArguments> callee{ 2014 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2015 analyzer.GetActuals(), false /* not subroutine */, 2016 true /* might be structure constructor */)}) { 2017 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2018 return MakeFunctionRef( 2019 call.source, std::move(*proc), std::move(callee->arguments)); 2020 } else if (structureConstructor) { 2021 // Structure constructor misparsed as function reference? 2022 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2023 const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)}; 2024 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2025 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2026 semantics::Scope &scope{context_.FindScope(name->source)}; 2027 const semantics::DeclTypeSpec &type{ 2028 semantics::FindOrInstantiateDerivedType(scope, 2029 semantics::DerivedTypeSpec{ 2030 name->source, derivedType.GetUltimate()}, 2031 context_)}; 2032 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2033 *structureConstructor = 2034 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2035 return Analyze(structureConstructor->value()); 2036 } 2037 } 2038 } 2039 return std::nullopt; 2040 } 2041 2042 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2043 const parser::Call &call{callStmt.v}; 2044 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2045 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 2046 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2047 for (const auto &arg : actualArgList) { 2048 analyzer.Analyze(arg, true /* is subroutine call */); 2049 } 2050 if (!analyzer.fatalErrors()) { 2051 if (std::optional<CalleeAndArguments> callee{ 2052 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2053 analyzer.GetActuals(), true /* subroutine */)}) { 2054 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2055 CHECK(proc); 2056 if (CheckCall(call.source, *proc, callee->arguments)) { 2057 bool hasAlternateReturns{ 2058 callee->arguments.size() < actualArgList.size()}; 2059 callStmt.typedCall.Reset( 2060 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2061 hasAlternateReturns}, 2062 ProcedureRef::Deleter); 2063 } 2064 } 2065 } 2066 } 2067 2068 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2069 if (!x.typedAssignment) { 2070 ArgumentAnalyzer analyzer{*this}; 2071 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2072 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2073 if (analyzer.fatalErrors()) { 2074 x.typedAssignment.Reset( 2075 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2076 } else { 2077 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2078 Assignment assignment{ 2079 Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))}; 2080 if (procRef) { 2081 assignment.u = std::move(*procRef); 2082 } 2083 x.typedAssignment.Reset( 2084 new GenericAssignmentWrapper{std::move(assignment)}, 2085 GenericAssignmentWrapper::Deleter); 2086 } 2087 } 2088 return common::GetPtrFromOptional(x.typedAssignment->v); 2089 } 2090 2091 const Assignment *ExpressionAnalyzer::Analyze( 2092 const parser::PointerAssignmentStmt &x) { 2093 if (!x.typedAssignment) { 2094 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2095 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2096 if (!lhs || !rhs) { 2097 x.typedAssignment.Reset( 2098 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2099 } else { 2100 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2101 std::visit(common::visitors{ 2102 [&](const std::list<parser::BoundsRemapping> &list) { 2103 Assignment::BoundsRemapping bounds; 2104 for (const auto &elem : list) { 2105 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2106 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2107 if (lower && upper) { 2108 bounds.emplace_back(Fold(std::move(*lower)), 2109 Fold(std::move(*upper))); 2110 } 2111 } 2112 assignment.u = std::move(bounds); 2113 }, 2114 [&](const std::list<parser::BoundsSpec> &list) { 2115 Assignment::BoundsSpec bounds; 2116 for (const auto &bound : list) { 2117 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2118 bounds.emplace_back(Fold(std::move(*lower))); 2119 } 2120 } 2121 assignment.u = std::move(bounds); 2122 }, 2123 }, 2124 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2125 x.typedAssignment.Reset( 2126 new GenericAssignmentWrapper{std::move(assignment)}, 2127 GenericAssignmentWrapper::Deleter); 2128 } 2129 } 2130 return common::GetPtrFromOptional(x.typedAssignment->v); 2131 } 2132 2133 static bool IsExternalCalledImplicitly( 2134 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2135 if (const auto *symbol{proc.GetSymbol()}) { 2136 return symbol->has<semantics::SubprogramDetails>() && 2137 symbol->owner().IsGlobal() && 2138 (!symbol->scope() /*ENTRY*/ || 2139 !symbol->scope()->sourceRange().Contains(callSite)); 2140 } else { 2141 return false; 2142 } 2143 } 2144 2145 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2146 parser::CharBlock callSite, const ProcedureDesignator &proc, 2147 ActualArguments &arguments) { 2148 auto chars{ 2149 characteristics::Procedure::Characterize(proc, context_.intrinsics())}; 2150 if (chars) { 2151 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2152 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2153 Say(callSite, 2154 "References to the procedure '%s' require an explicit interface"_en_US, 2155 DEREF(proc.GetSymbol()).name()); 2156 } 2157 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2158 context_.FindScope(callSite), treatExternalAsImplicit); 2159 const Symbol *procSymbol{proc.GetSymbol()}; 2160 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2161 if (const semantics::Scope * 2162 pure{semantics::FindPureProcedureContaining( 2163 context_.FindScope(callSite))}) { 2164 Say(callSite, 2165 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2166 procSymbol->name(), DEREF(pure->symbol()).name()); 2167 } 2168 } 2169 } 2170 return chars; 2171 } 2172 2173 // Unary operations 2174 2175 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2176 if (MaybeExpr operand{Analyze(x.v.value())}) { 2177 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2178 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2179 if (semantics::IsProcedurePointer(*result)) { 2180 Say("A function reference that returns a procedure " 2181 "pointer may not be parenthesized"_err_en_US); // C1003 2182 } 2183 } 2184 } 2185 return Parenthesize(std::move(*operand)); 2186 } 2187 return std::nullopt; 2188 } 2189 2190 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2191 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2192 ArgumentAnalyzer analyzer{context}; 2193 analyzer.Analyze(x.v); 2194 if (analyzer.fatalErrors()) { 2195 return std::nullopt; 2196 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2197 if (opr == NumericOperator::Add) { 2198 return analyzer.MoveExpr(0); 2199 } else { 2200 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2201 } 2202 } else { 2203 return analyzer.TryDefinedOp(AsFortran(opr), 2204 "Operand of unary %s must be numeric; have %s"_err_en_US); 2205 } 2206 } 2207 2208 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2209 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2210 } 2211 2212 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2213 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2214 } 2215 2216 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2217 ArgumentAnalyzer analyzer{*this}; 2218 analyzer.Analyze(x.v); 2219 if (analyzer.fatalErrors()) { 2220 return std::nullopt; 2221 } else if (analyzer.IsIntrinsicLogical()) { 2222 return AsGenericExpr( 2223 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2224 } else { 2225 return analyzer.TryDefinedOp(LogicalOperator::Not, 2226 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2227 } 2228 } 2229 2230 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2231 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2232 // intrinsic function. 2233 // Use the actual source for the name of the call for error reporting. 2234 std::optional<ActualArgument> arg; 2235 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2236 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2237 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2238 arg = ActualArgument{std::move(*argExpr)}; 2239 } else { 2240 return std::nullopt; 2241 } 2242 parser::CharBlock at{GetContextualMessages().at()}; 2243 CHECK(at.size() >= 4); 2244 parser::CharBlock loc{at.begin() + 1, 3}; 2245 CHECK(loc == "loc"); 2246 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2247 } 2248 2249 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2250 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2251 ArgumentAnalyzer analyzer{*this, name.source}; 2252 analyzer.Analyze(std::get<1>(x.t)); 2253 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2254 "No operator %s defined for %s"_err_en_US, true); 2255 } 2256 2257 // Binary (dyadic) operations 2258 2259 template <template <typename> class OPR> 2260 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2261 const parser::Expr::IntrinsicBinary &x) { 2262 ArgumentAnalyzer analyzer{context}; 2263 analyzer.Analyze(std::get<0>(x.t)); 2264 analyzer.Analyze(std::get<1>(x.t)); 2265 if (analyzer.fatalErrors()) { 2266 return std::nullopt; 2267 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2268 return NumericOperation<OPR>(context.GetContextualMessages(), 2269 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2270 context.GetDefaultKind(TypeCategory::Real)); 2271 } else { 2272 return analyzer.TryDefinedOp(AsFortran(opr), 2273 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2274 } 2275 } 2276 2277 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2278 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2279 } 2280 2281 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2282 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2283 } 2284 2285 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2286 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2287 } 2288 2289 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2290 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2291 } 2292 2293 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2294 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2295 } 2296 2297 MaybeExpr ExpressionAnalyzer::Analyze( 2298 const parser::Expr::ComplexConstructor &x) { 2299 auto re{Analyze(std::get<0>(x.t).value())}; 2300 auto im{Analyze(std::get<1>(x.t).value())}; 2301 if (re && im) { 2302 ConformabilityCheck(GetContextualMessages(), *re, *im); 2303 } 2304 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2305 std::move(im), GetDefaultKind(TypeCategory::Real))); 2306 } 2307 2308 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2309 ArgumentAnalyzer analyzer{*this}; 2310 analyzer.Analyze(std::get<0>(x.t)); 2311 analyzer.Analyze(std::get<1>(x.t)); 2312 if (analyzer.fatalErrors()) { 2313 return std::nullopt; 2314 } else if (analyzer.IsIntrinsicConcat()) { 2315 return std::visit( 2316 [&](auto &&x, auto &&y) -> MaybeExpr { 2317 using T = ResultType<decltype(x)>; 2318 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2319 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2320 } else { 2321 DIE("different types for intrinsic concat"); 2322 } 2323 }, 2324 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2325 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2326 } else { 2327 return analyzer.TryDefinedOp("//", 2328 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2329 } 2330 } 2331 2332 // The Name represents a user-defined intrinsic operator. 2333 // If the actuals match one of the specific procedures, return a function ref. 2334 // Otherwise report the error in messages. 2335 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2336 const parser::Name &name, ActualArguments &&actuals) { 2337 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2338 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2339 return MakeFunctionRef(name.source, 2340 std::move(std::get<ProcedureDesignator>(callee->u)), 2341 std::move(callee->arguments)); 2342 } else { 2343 return std::nullopt; 2344 } 2345 } 2346 2347 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2348 const parser::Expr::IntrinsicBinary &x) { 2349 ArgumentAnalyzer analyzer{context}; 2350 analyzer.Analyze(std::get<0>(x.t)); 2351 analyzer.Analyze(std::get<1>(x.t)); 2352 if (analyzer.fatalErrors()) { 2353 return std::nullopt; 2354 } else { 2355 analyzer.ConvertBOZ(0, analyzer.GetType(1)); 2356 analyzer.ConvertBOZ(1, analyzer.GetType(0)); 2357 if (analyzer.IsIntrinsicRelational(opr)) { 2358 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2359 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2360 } else { 2361 return analyzer.TryDefinedOp(opr, 2362 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2363 } 2364 } 2365 } 2366 2367 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2368 return RelationHelper(*this, RelationalOperator::LT, x); 2369 } 2370 2371 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2372 return RelationHelper(*this, RelationalOperator::LE, x); 2373 } 2374 2375 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2376 return RelationHelper(*this, RelationalOperator::EQ, x); 2377 } 2378 2379 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2380 return RelationHelper(*this, RelationalOperator::NE, x); 2381 } 2382 2383 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2384 return RelationHelper(*this, RelationalOperator::GE, x); 2385 } 2386 2387 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2388 return RelationHelper(*this, RelationalOperator::GT, x); 2389 } 2390 2391 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2392 const parser::Expr::IntrinsicBinary &x) { 2393 ArgumentAnalyzer analyzer{context}; 2394 analyzer.Analyze(std::get<0>(x.t)); 2395 analyzer.Analyze(std::get<1>(x.t)); 2396 if (analyzer.fatalErrors()) { 2397 return std::nullopt; 2398 } else if (analyzer.IsIntrinsicLogical()) { 2399 return AsGenericExpr(BinaryLogicalOperation(opr, 2400 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2401 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2402 } else { 2403 return analyzer.TryDefinedOp( 2404 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2405 } 2406 } 2407 2408 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2409 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2410 } 2411 2412 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2413 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2414 } 2415 2416 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2417 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2418 } 2419 2420 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2421 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2422 } 2423 2424 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2425 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2426 ArgumentAnalyzer analyzer{*this, name.source}; 2427 analyzer.Analyze(std::get<1>(x.t)); 2428 analyzer.Analyze(std::get<2>(x.t)); 2429 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2430 "No operator %s defined for %s and %s"_err_en_US, true); 2431 } 2432 2433 static void CheckFuncRefToArrayElementRefHasSubscripts( 2434 semantics::SemanticsContext &context, 2435 const parser::FunctionReference &funcRef) { 2436 // Emit message if the function reference fix will end up an array element 2437 // reference with no subscripts because it will not be possible to later tell 2438 // the difference in expressions between empty subscript list due to bad 2439 // subscripts error recovery or because the user did not put any. 2440 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2441 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2442 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2443 if (!name) { 2444 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2445 } 2446 auto &msg{context.Say(funcRef.v.source, 2447 name->symbol && name->symbol->Rank() == 0 2448 ? "'%s' is not a function"_err_en_US 2449 : "Reference to array '%s' with empty subscript list"_err_en_US, 2450 name->source)}; 2451 if (name->symbol) { 2452 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2453 msg.Attach(name->source, 2454 "A result variable must be declared with RESULT to allow recursive " 2455 "function calls"_en_US); 2456 } else { 2457 AttachDeclaration(&msg, *name->symbol); 2458 } 2459 } 2460 } 2461 } 2462 2463 // Converts, if appropriate, an original misparse of ambiguous syntax like 2464 // A(1) as a function reference into an array reference. 2465 // Misparse structure constructors are detected elsewhere after generic 2466 // function call resolution fails. 2467 template <typename... A> 2468 static void FixMisparsedFunctionReference( 2469 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2470 // The parse tree is updated in situ when resolving an ambiguous parse. 2471 using uType = std::decay_t<decltype(constU)>; 2472 auto &u{const_cast<uType &>(constU)}; 2473 if (auto *func{ 2474 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2475 parser::FunctionReference &funcRef{func->value()}; 2476 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2477 if (Symbol * 2478 origSymbol{ 2479 std::visit(common::visitors{ 2480 [&](parser::Name &name) { return name.symbol; }, 2481 [&](parser::ProcComponentRef &pcr) { 2482 return pcr.v.thing.component.symbol; 2483 }, 2484 }, 2485 proc.u)}) { 2486 Symbol &symbol{origSymbol->GetUltimate()}; 2487 if (symbol.has<semantics::ObjectEntityDetails>() || 2488 symbol.has<semantics::AssocEntityDetails>()) { 2489 // Note that expression in AssocEntityDetails cannot be a procedure 2490 // pointer as per C1105 so this cannot be a function reference. 2491 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2492 uType>) { 2493 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2494 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2495 } else { 2496 DIE("can't fix misparsed function as array reference"); 2497 } 2498 } 2499 } 2500 } 2501 } 2502 2503 // Common handling of parse tree node types that retain the 2504 // representation of the analyzed expression. 2505 template <typename PARSED> 2506 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) { 2507 if (x.typedExpr) { 2508 return x.typedExpr->v; 2509 } 2510 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2511 std::is_same_v<PARSED, parser::Variable>) { 2512 FixMisparsedFunctionReference(context_, x.u); 2513 } 2514 if (AssumedTypeDummy(x)) { // C710 2515 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2516 } else if (MaybeExpr result{evaluate::Fold(foldingContext_, Analyze(x.u))}) { 2517 SetExpr(x, std::move(*result)); 2518 return x.typedExpr->v; 2519 } 2520 ResetExpr(x); 2521 if (!context_.AnyFatalError()) { 2522 std::string buf; 2523 llvm::raw_string_ostream dump{buf}; 2524 parser::DumpTree(dump, x); 2525 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2526 dump.str()); 2527 } 2528 fatalErrors_ = true; 2529 return std::nullopt; 2530 } 2531 2532 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2533 auto restorer{GetContextualMessages().SetLocation(expr.source)}; 2534 return ExprOrVariable(expr); 2535 } 2536 2537 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2538 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; 2539 return ExprOrVariable(variable); 2540 } 2541 2542 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2543 auto restorer{GetContextualMessages().SetLocation(x.source)}; 2544 return ExprOrVariable(x); 2545 } 2546 2547 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2548 TypeCategory category, 2549 const std::optional<parser::KindSelector> &selector) { 2550 int defaultKind{GetDefaultKind(category)}; 2551 if (!selector) { 2552 return Expr<SubscriptInteger>{defaultKind}; 2553 } 2554 return std::visit( 2555 common::visitors{ 2556 [&](const parser::ScalarIntConstantExpr &x) { 2557 if (MaybeExpr kind{Analyze(x)}) { 2558 Expr<SomeType> folded{Fold(std::move(*kind))}; 2559 if (std::optional<std::int64_t> code{ToInt64(folded)}) { 2560 if (CheckIntrinsicKind(category, *code)) { 2561 return Expr<SubscriptInteger>{*code}; 2562 } 2563 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) { 2564 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2565 } 2566 } 2567 return Expr<SubscriptInteger>{defaultKind}; 2568 }, 2569 [&](const parser::KindSelector::StarSize &x) { 2570 std::intmax_t size = x.v; 2571 if (!CheckIntrinsicSize(category, size)) { 2572 size = defaultKind; 2573 } else if (category == TypeCategory::Complex) { 2574 size /= 2; 2575 } 2576 return Expr<SubscriptInteger>{size}; 2577 }, 2578 }, 2579 selector->u); 2580 } 2581 2582 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2583 return context_.GetDefaultKind(category); 2584 } 2585 2586 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2587 common::TypeCategory category) { 2588 return {category, GetDefaultKind(category)}; 2589 } 2590 2591 bool ExpressionAnalyzer::CheckIntrinsicKind( 2592 TypeCategory category, std::int64_t kind) { 2593 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2594 return true; 2595 } else { 2596 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2597 ToUpperCase(EnumToString(category)), kind); 2598 return false; 2599 } 2600 } 2601 2602 bool ExpressionAnalyzer::CheckIntrinsicSize( 2603 TypeCategory category, std::int64_t size) { 2604 if (category == TypeCategory::Complex) { 2605 // COMPLEX*16 == COMPLEX(KIND=8) 2606 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2607 return true; 2608 } 2609 } else if (IsValidKindOfIntrinsicType(category, size)) { 2610 return true; 2611 } 2612 Say("%s*%jd is not a supported type"_err_en_US, 2613 ToUpperCase(EnumToString(category)), size); 2614 return false; 2615 } 2616 2617 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 2618 return impliedDos_.insert(std::make_pair(name, kind)).second; 2619 } 2620 2621 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 2622 auto iter{impliedDos_.find(name)}; 2623 if (iter != impliedDos_.end()) { 2624 impliedDos_.erase(iter); 2625 } 2626 } 2627 2628 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 2629 parser::CharBlock name) const { 2630 auto iter{impliedDos_.find(name)}; 2631 if (iter != impliedDos_.cend()) { 2632 return {iter->second}; 2633 } else { 2634 return std::nullopt; 2635 } 2636 } 2637 2638 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 2639 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 2640 if (result) { 2641 if (auto type{result->GetType()}) { 2642 if (type->category() != category) { // C885 2643 Say(at, "Must have %s type, but is %s"_err_en_US, 2644 ToUpperCase(EnumToString(category)), 2645 ToUpperCase(type->AsFortran())); 2646 return false; 2647 } else if (defaultKind) { 2648 int kind{context_.GetDefaultKind(category)}; 2649 if (type->kind() != kind) { 2650 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 2651 kind, ToUpperCase(EnumToString(category)), 2652 ToUpperCase(type->AsFortran())); 2653 return false; 2654 } 2655 } 2656 } else { 2657 Say(at, "Must have %s type, but is typeless"_err_en_US, 2658 ToUpperCase(EnumToString(category))); 2659 return false; 2660 } 2661 } 2662 return true; 2663 } 2664 2665 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 2666 ProcedureDesignator &&proc, ActualArguments &&arguments) { 2667 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 2668 if (intrinsic->name == "null" && arguments.empty()) { 2669 return Expr<SomeType>{NullPointer{}}; 2670 } 2671 } 2672 if (const Symbol * symbol{proc.GetSymbol()}) { 2673 if (!ResolveForward(*symbol)) { 2674 return std::nullopt; 2675 } 2676 } 2677 if (auto chars{CheckCall(callSite, proc, arguments)}) { 2678 if (chars->functionResult) { 2679 const auto &result{*chars->functionResult}; 2680 if (result.IsProcedurePointer()) { 2681 return Expr<SomeType>{ 2682 ProcedureRef{std::move(proc), std::move(arguments)}}; 2683 } else { 2684 // Not a procedure pointer, so type and shape are known. 2685 return TypedWrapper<FunctionRef, ProcedureRef>( 2686 DEREF(result.GetTypeAndShape()).type(), 2687 ProcedureRef{std::move(proc), std::move(arguments)}); 2688 } 2689 } 2690 } 2691 return std::nullopt; 2692 } 2693 2694 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 2695 parser::CharBlock intrinsic, ActualArguments &&arguments) { 2696 if (std::optional<SpecificCall> specificCall{ 2697 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 2698 arguments, context_.foldingContext())}) { 2699 return MakeFunctionRef(intrinsic, 2700 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2701 std::move(specificCall->arguments)); 2702 } else { 2703 return std::nullopt; 2704 } 2705 } 2706 2707 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 2708 source_.ExtendToCover(x.GetSource()); 2709 if (MaybeExpr expr{context_.Analyze(x)}) { 2710 if (!IsConstantExpr(*expr)) { 2711 actuals_.emplace_back(std::move(*expr)); 2712 return; 2713 } 2714 const Symbol *symbol{GetLastSymbol(*expr)}; 2715 if (!symbol) { 2716 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 2717 x.GetSource()); 2718 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 2719 auto *msg{context_.SayAt(x, 2720 "Assignment to subprogram '%s' is not allowed"_err_en_US, 2721 symbol->name())}; 2722 if (subp->isFunction()) { 2723 const auto &result{subp->result().name()}; 2724 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 2725 } 2726 } else { 2727 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 2728 symbol->name()); 2729 } 2730 } 2731 fatalErrors_ = true; 2732 } 2733 2734 void ArgumentAnalyzer::Analyze( 2735 const parser::ActualArgSpec &arg, bool isSubroutine) { 2736 // TODO: C1002: Allow a whole assumed-size array to appear if the dummy 2737 // argument would accept it. Handle by special-casing the context 2738 // ActualArg -> Variable -> Designator. 2739 // TODO: Actual arguments that are procedures and procedure pointers need to 2740 // be detected and represented (they're not expressions). 2741 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 2742 std::optional<ActualArgument> actual; 2743 bool isAltReturn{false}; 2744 std::visit(common::visitors{ 2745 [&](const common::Indirection<parser::Expr> &x) { 2746 // TODO: Distinguish & handle procedure name and 2747 // proc-component-ref 2748 actual = AnalyzeExpr(x.value()); 2749 }, 2750 [&](const parser::AltReturnSpec &) { 2751 if (!isSubroutine) { 2752 context_.Say( 2753 "alternate return specification may not appear on" 2754 " function reference"_err_en_US); 2755 } 2756 isAltReturn = true; 2757 }, 2758 [&](const parser::ActualArg::PercentRef &) { 2759 context_.Say("TODO: %REF() argument"_err_en_US); 2760 }, 2761 [&](const parser::ActualArg::PercentVal &) { 2762 context_.Say("TODO: %VAL() argument"_err_en_US); 2763 }, 2764 }, 2765 std::get<parser::ActualArg>(arg.t).u); 2766 if (actual) { 2767 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 2768 actual->set_keyword(argKW->v.source); 2769 } 2770 actuals_.emplace_back(std::move(*actual)); 2771 } else if (!isAltReturn) { 2772 fatalErrors_ = true; 2773 } 2774 } 2775 2776 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 2777 CHECK(actuals_.size() == 2); 2778 return semantics::IsIntrinsicRelational( 2779 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2780 } 2781 2782 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 2783 std::optional<DynamicType> type0{GetType(0)}; 2784 if (actuals_.size() == 1) { 2785 if (IsBOZLiteral(0)) { 2786 return opr == NumericOperator::Add; 2787 } else { 2788 return type0 && semantics::IsIntrinsicNumeric(*type0); 2789 } 2790 } else { 2791 std::optional<DynamicType> type1{GetType(1)}; 2792 if (IsBOZLiteral(0) && type1) { 2793 auto cat1{type1->category()}; 2794 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 2795 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 2796 auto cat0{type0->category()}; 2797 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 2798 } else { 2799 return type0 && type1 && 2800 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 2801 } 2802 } 2803 } 2804 2805 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 2806 if (actuals_.size() == 1) { 2807 return semantics::IsIntrinsicLogical(*GetType(0)); 2808 return GetType(0)->category() == TypeCategory::Logical; 2809 } else { 2810 return semantics::IsIntrinsicLogical( 2811 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2812 } 2813 } 2814 2815 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 2816 return semantics::IsIntrinsicConcat( 2817 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2818 } 2819 2820 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2821 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 2822 if (AnyUntypedOperand()) { 2823 context_.Say( 2824 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2825 return std::nullopt; 2826 } 2827 { 2828 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2829 std::string oprNameString{ 2830 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 2831 parser::CharBlock oprName{oprNameString}; 2832 const auto &scope{context_.context().FindScope(source_)}; 2833 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 2834 parser::Name name{symbol->name(), symbol}; 2835 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 2836 return result; 2837 } 2838 sawDefinedOp_ = symbol; 2839 } 2840 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2841 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 2842 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 2843 return result; 2844 } 2845 } 2846 } 2847 } 2848 if (sawDefinedOp_) { 2849 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 2850 } else if (actuals_.size() == 1 || AreConformable()) { 2851 context_.Say( 2852 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2853 } else { 2854 context_.Say( 2855 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 2856 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 2857 } 2858 return std::nullopt; 2859 } 2860 2861 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2862 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 2863 for (std::size_t i{1}; i < oprs.size(); ++i) { 2864 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2865 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 2866 return result; 2867 } 2868 } 2869 return TryDefinedOp(oprs[0], std::move(error)); 2870 } 2871 2872 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 2873 ActualArguments localActuals{actuals_}; 2874 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 2875 if (!proc) { 2876 proc = &symbol; 2877 localActuals.at(passIndex).value().set_isPassedObject(); 2878 } 2879 return context_.MakeFunctionRef( 2880 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 2881 } 2882 2883 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 2884 using semantics::Tristate; 2885 const Expr<SomeType> &lhs{GetExpr(0)}; 2886 const Expr<SomeType> &rhs{GetExpr(1)}; 2887 std::optional<DynamicType> lhsType{lhs.GetType()}; 2888 std::optional<DynamicType> rhsType{rhs.GetType()}; 2889 int lhsRank{lhs.Rank()}; 2890 int rhsRank{rhs.Rank()}; 2891 Tristate isDefined{ 2892 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 2893 if (isDefined == Tristate::No) { 2894 if (lhsType && rhsType) { 2895 AddAssignmentConversion(*lhsType, *rhsType); 2896 } 2897 return std::nullopt; // user-defined assignment not allowed for these args 2898 } 2899 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 2900 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 2901 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 2902 return std::move(*procRef); 2903 } 2904 if (isDefined == Tristate::Yes) { 2905 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 2906 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 2907 SayNoMatch("ASSIGNMENT(=)", true); 2908 } 2909 } 2910 return std::nullopt; 2911 } 2912 2913 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 2914 TypeCategory lhs, TypeCategory rhs) { 2915 if (!context_.context().languageFeatures().IsEnabled( 2916 common::LanguageFeature::LogicalIntegerAssignment)) { 2917 return false; 2918 } 2919 std::optional<parser::MessageFixedText> msg; 2920 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 2921 // allow assignment to LOGICAL from INTEGER as a legacy extension 2922 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 2923 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 2924 // ... and assignment to LOGICAL from INTEGER 2925 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 2926 } else { 2927 return false; 2928 } 2929 if (context_.context().languageFeatures().ShouldWarn( 2930 common::LanguageFeature::LogicalIntegerAssignment)) { 2931 context_.Say(std::move(*msg)); 2932 } 2933 return true; 2934 } 2935 2936 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 2937 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2938 std::string oprNameString{"assignment(=)"}; 2939 parser::CharBlock oprName{oprNameString}; 2940 const Symbol *proc{nullptr}; 2941 const auto &scope{context_.context().FindScope(source_)}; 2942 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 2943 ExpressionAnalyzer::AdjustActuals noAdjustment; 2944 if (const Symbol * 2945 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 2946 proc = specific; 2947 } else { 2948 context_.EmitGenericResolutionError(*symbol); 2949 } 2950 } 2951 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2952 if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) { 2953 proc = specific; 2954 } 2955 } 2956 if (proc) { 2957 ActualArguments actualsCopy{actuals_}; 2958 actualsCopy[1]->Parenthesize(); 2959 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 2960 } else { 2961 return std::nullopt; 2962 } 2963 } 2964 2965 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 2966 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 2967 << '\n'; 2968 for (const auto &actual : actuals_) { 2969 if (!actual.has_value()) { 2970 os << "- error\n"; 2971 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 2972 os << "- assumed type: " << symbol->name().ToString() << '\n'; 2973 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 2974 expr->AsFortran(os << "- expr: ") << '\n'; 2975 } else { 2976 DIE("bad ActualArgument"); 2977 } 2978 } 2979 } 2980 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 2981 const parser::Expr &expr) { 2982 source_.ExtendToCover(expr.source); 2983 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 2984 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 2985 if (allowAssumedType_) { 2986 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2987 } else { 2988 context_.SayAt(expr.source, 2989 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2990 return std::nullopt; 2991 } 2992 } else if (MaybeExpr argExpr{context_.Analyze(expr)}) { 2993 return ActualArgument{context_.Fold(std::move(*argExpr))}; 2994 } else { 2995 return std::nullopt; 2996 } 2997 } 2998 2999 bool ArgumentAnalyzer::AreConformable() const { 3000 CHECK(!fatalErrors_ && actuals_.size() == 2); 3001 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3002 } 3003 3004 // Look for a type-bound operator in the type of arg number passIndex. 3005 const Symbol *ArgumentAnalyzer::FindBoundOp( 3006 parser::CharBlock oprName, int passIndex) { 3007 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3008 if (!type || !type->scope()) { 3009 return nullptr; 3010 } 3011 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3012 if (!symbol) { 3013 return nullptr; 3014 } 3015 sawDefinedOp_ = symbol; 3016 ExpressionAnalyzer::AdjustActuals adjustment{ 3017 [&](const Symbol &proc, ActualArguments &) { 3018 return passIndex == GetPassIndex(proc); 3019 }}; 3020 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3021 if (!result) { 3022 context_.EmitGenericResolutionError(*symbol); 3023 } 3024 return result; 3025 } 3026 3027 // If there is an implicit conversion between intrinsic types, make it explicit 3028 void ArgumentAnalyzer::AddAssignmentConversion( 3029 const DynamicType &lhsType, const DynamicType &rhsType) { 3030 if (lhsType.category() == rhsType.category() && 3031 lhsType.kind() == rhsType.kind()) { 3032 // no conversion necessary 3033 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3034 actuals_[1] = ActualArgument{*rhsExpr}; 3035 } else { 3036 actuals_[1] = std::nullopt; 3037 } 3038 } 3039 3040 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3041 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3042 } 3043 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3044 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3045 } 3046 3047 // If the argument at index i is a BOZ literal, convert its type to match the 3048 // otherType. It it's REAL convert to REAL, otherwise convert to INTEGER. 3049 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3050 // is not currently supported. 3051 void ArgumentAnalyzer::ConvertBOZ( 3052 std::size_t i, std::optional<DynamicType> otherType) { 3053 if (IsBOZLiteral(i)) { 3054 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3055 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3056 if (otherType && otherType->category() == TypeCategory::Real) { 3057 MaybeExpr realExpr{ConvertToKind<TypeCategory::Real>( 3058 context_.context().GetDefaultKind(TypeCategory::Real), 3059 std::move(*boz))}; 3060 actuals_[i] = std::move(*realExpr); 3061 } else { 3062 MaybeExpr intExpr{ConvertToKind<TypeCategory::Integer>( 3063 context_.context().GetDefaultKind(TypeCategory::Integer), 3064 std::move(*boz))}; 3065 actuals_[i] = std::move(*intExpr); 3066 } 3067 } 3068 } 3069 3070 // Report error resolving opr when there is a user-defined one available 3071 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3072 std::string type0{TypeAsFortran(0)}; 3073 auto rank0{actuals_[0]->Rank()}; 3074 if (actuals_.size() == 1) { 3075 if (rank0 > 0) { 3076 context_.Say("No intrinsic or user-defined %s matches " 3077 "rank %d array of %s"_err_en_US, 3078 opr, rank0, type0); 3079 } else { 3080 context_.Say("No intrinsic or user-defined %s matches " 3081 "operand type %s"_err_en_US, 3082 opr, type0); 3083 } 3084 } else { 3085 std::string type1{TypeAsFortran(1)}; 3086 auto rank1{actuals_[1]->Rank()}; 3087 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3088 context_.Say("No intrinsic or user-defined %s matches " 3089 "rank %d array of %s and rank %d array of %s"_err_en_US, 3090 opr, rank0, type0, rank1, type1); 3091 } else if (isAssignment && rank0 != rank1) { 3092 if (rank0 == 0) { 3093 context_.Say("No intrinsic or user-defined %s matches " 3094 "scalar %s and rank %d array of %s"_err_en_US, 3095 opr, type0, rank1, type1); 3096 } else { 3097 context_.Say("No intrinsic or user-defined %s matches " 3098 "rank %d array of %s and scalar %s"_err_en_US, 3099 opr, rank0, type0, type1); 3100 } 3101 } else { 3102 context_.Say("No intrinsic or user-defined %s matches " 3103 "operand types %s and %s"_err_en_US, 3104 opr, type0, type1); 3105 } 3106 } 3107 } 3108 3109 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3110 if (std::optional<DynamicType> type{GetType(i)}) { 3111 return type->category() == TypeCategory::Derived 3112 ? "TYPE("s + type->AsFortran() + ')' 3113 : type->category() == TypeCategory::Character 3114 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3115 : ToUpperCase(type->AsFortran()); 3116 } else { 3117 return "untyped"; 3118 } 3119 } 3120 3121 bool ArgumentAnalyzer::AnyUntypedOperand() { 3122 for (const auto &actual : actuals_) { 3123 if (!actual.value().GetType()) { 3124 return true; 3125 } 3126 } 3127 return false; 3128 } 3129 3130 } // namespace Fortran::evaluate 3131 3132 namespace Fortran::semantics { 3133 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3134 SemanticsContext &context, common::TypeCategory category, 3135 const std::optional<parser::KindSelector> &selector) { 3136 evaluate::ExpressionAnalyzer analyzer{context}; 3137 auto restorer{ 3138 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3139 return analyzer.AnalyzeKindSelector(category, selector); 3140 } 3141 3142 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3143 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3144 } 3145 3146 const evaluate::Assignment *AnalyzeAssignmentStmt( 3147 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3148 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3149 } 3150 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3151 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3152 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3153 } 3154 3155 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3156 3157 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3158 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3159 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3160 auto name{bounds.name.thing.thing}; 3161 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3162 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3163 if (dynamicType->category() == TypeCategory::Integer) { 3164 kind = dynamicType->kind(); 3165 } 3166 } 3167 exprAnalyzer_.AddImpliedDo(name.source, kind); 3168 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3169 exprAnalyzer_.RemoveImpliedDo(name.source); 3170 return false; 3171 } 3172 3173 bool ExprChecker::Walk(const parser::Program &program) { 3174 parser::Walk(program, *this); 3175 return !context_.AnyFatalError(); 3176 } 3177 } // namespace Fortran::semantics 3178