1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/Fortran.h" 14 #include "flang/Common/idioms.h" 15 #include "flang/Evaluate/common.h" 16 #include "flang/Evaluate/fold.h" 17 #include "flang/Evaluate/tools.h" 18 #include "flang/Parser/characters.h" 19 #include "flang/Parser/dump-parse-tree.h" 20 #include "flang/Parser/parse-tree-visitor.h" 21 #include "flang/Parser/parse-tree.h" 22 #include "flang/Semantics/scope.h" 23 #include "flang/Semantics/semantics.h" 24 #include "flang/Semantics/symbol.h" 25 #include "flang/Semantics/tools.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <functional> 29 #include <optional> 30 #include <set> 31 32 // Typedef for optional generic expressions (ubiquitous in this file) 33 using MaybeExpr = 34 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 35 36 // Much of the code that implements semantic analysis of expressions is 37 // tightly coupled with their typed representations in lib/Evaluate, 38 // and appears here in namespace Fortran::evaluate for convenience. 39 namespace Fortran::evaluate { 40 41 using common::LanguageFeature; 42 using common::NumericOperator; 43 using common::TypeCategory; 44 45 static inline std::string ToUpperCase(const std::string &str) { 46 return parser::ToUpperCaseLetters(str); 47 } 48 49 struct DynamicTypeWithLength : public DynamicType { 50 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 51 std::optional<Expr<SubscriptInteger>> LEN() const; 52 std::optional<Expr<SubscriptInteger>> length; 53 }; 54 55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 56 if (length) { 57 return length; 58 } else { 59 return GetCharLength(); 60 } 61 } 62 63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 64 const std::optional<parser::TypeSpec> &spec) { 65 if (spec) { 66 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 67 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 68 // (viz., an intrinsic type with valid known kind or a non-polymorphic 69 // & non-ABSTRACT derived type). 70 if (const semantics::IntrinsicTypeSpec * 71 intrinsic{typeSpec->AsIntrinsic()}) { 72 TypeCategory category{intrinsic->category()}; 73 if (auto optKind{ToInt64(intrinsic->kind())}) { 74 int kind{static_cast<int>(*optKind)}; 75 if (category == TypeCategory::Character) { 76 const semantics::CharacterTypeSpec &cts{ 77 typeSpec->characterTypeSpec()}; 78 const semantics::ParamValue &len{cts.length()}; 79 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 80 // type guards, but not in array constructors. 81 return DynamicTypeWithLength{DynamicType{kind, len}}; 82 } else { 83 return DynamicTypeWithLength{DynamicType{category, kind}}; 84 } 85 } 86 } else if (const semantics::DerivedTypeSpec * 87 derived{typeSpec->AsDerived()}) { 88 return DynamicTypeWithLength{DynamicType{*derived}}; 89 } 90 } 91 } 92 return std::nullopt; 93 } 94 95 // Utilities to set a source location, if we have one, on an actual argument, 96 // when it is statically present. 97 static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) { 98 x.set_sourceLocation(at); 99 } 100 static void SetArgSourceLocation( 101 std::optional<ActualArgument> &x, parser::CharBlock at) { 102 if (x) { 103 x->set_sourceLocation(at); 104 } 105 } 106 static void SetArgSourceLocation( 107 std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) { 108 if (x && at) { 109 x->set_sourceLocation(*at); 110 } 111 } 112 113 class ArgumentAnalyzer { 114 public: 115 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 116 : context_{context}, source_{context.GetContextualMessages().at()}, 117 isProcedureCall_{false} {} 118 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 119 bool isProcedureCall = false) 120 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 121 bool fatalErrors() const { return fatalErrors_; } 122 ActualArguments &&GetActuals() { 123 CHECK(!fatalErrors_); 124 return std::move(actuals_); 125 } 126 const Expr<SomeType> &GetExpr(std::size_t i) const { 127 return DEREF(actuals_.at(i).value().UnwrapExpr()); 128 } 129 Expr<SomeType> &&MoveExpr(std::size_t i) { 130 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 131 } 132 void Analyze(const common::Indirection<parser::Expr> &x) { 133 Analyze(x.value()); 134 } 135 void Analyze(const parser::Expr &x) { 136 actuals_.emplace_back(AnalyzeExpr(x)); 137 SetArgSourceLocation(actuals_.back(), x.source); 138 fatalErrors_ |= !actuals_.back(); 139 } 140 void Analyze(const parser::Variable &); 141 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 142 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 143 std::optional<DynamicType> otherType); 144 145 bool IsIntrinsicRelational( 146 RelationalOperator, const DynamicType &, const DynamicType &) const; 147 bool IsIntrinsicLogical() const; 148 bool IsIntrinsicNumeric(NumericOperator) const; 149 bool IsIntrinsicConcat() const; 150 151 bool CheckConformance(); 152 bool CheckForNullPointer(const char *where = "as an operand here"); 153 154 // Find and return a user-defined operator or report an error. 155 // The provided message is used if there is no such operator. 156 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 157 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 158 template <typename E> 159 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 160 return TryDefinedOp( 161 context_.context().languageFeatures().GetNames(opr), msg); 162 } 163 // Find and return a user-defined assignment 164 std::optional<ProcedureRef> TryDefinedAssignment(); 165 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 166 std::optional<DynamicType> GetType(std::size_t) const; 167 void Dump(llvm::raw_ostream &); 168 169 private: 170 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 171 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 172 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 173 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 174 bool AreConformable() const; 175 const Symbol *FindBoundOp( 176 parser::CharBlock, int passIndex, const Symbol *&definedOp); 177 void AddAssignmentConversion( 178 const DynamicType &lhsType, const DynamicType &rhsType); 179 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 180 int GetRank(std::size_t) const; 181 bool IsBOZLiteral(std::size_t i) const { 182 return evaluate::IsBOZLiteral(GetExpr(i)); 183 } 184 void SayNoMatch(const std::string &, bool isAssignment = false); 185 std::string TypeAsFortran(std::size_t); 186 bool AnyUntypedOrMissingOperand(); 187 188 ExpressionAnalyzer &context_; 189 ActualArguments actuals_; 190 parser::CharBlock source_; 191 bool fatalErrors_{false}; 192 const bool isProcedureCall_; // false for user-defined op or assignment 193 }; 194 195 // Wraps a data reference in a typed Designator<>, and a procedure 196 // or procedure pointer reference in a ProcedureDesignator. 197 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 198 const Symbol &last{ref.GetLastSymbol()}; 199 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 200 if (semantics::IsProcedure(symbol)) { 201 if (auto *component{std::get_if<Component>(&ref.u)}) { 202 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 203 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 204 DIE("unexpected alternative in DataRef"); 205 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 206 if (symbol.has<semantics::GenericDetails>()) { 207 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 208 } else { 209 return Expr<SomeType>{ProcedureDesignator{symbol}}; 210 } 211 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 212 symbol.name().ToString())}; 213 interface && !interface->isRestrictedSpecific) { 214 SpecificIntrinsic intrinsic{ 215 symbol.name().ToString(), std::move(*interface)}; 216 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 217 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 218 } else { 219 Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, 220 symbol.name()); 221 } 222 return std::nullopt; 223 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 224 return result; 225 } else { 226 if (!context_.HasError(last) && !context_.HasError(symbol)) { 227 AttachDeclaration( 228 Say("'%s' is not an object that can appear in an expression"_err_en_US, 229 last.name()), 230 symbol); 231 context_.SetError(last); 232 } 233 return std::nullopt; 234 } 235 } 236 237 // Some subscript semantic checks must be deferred until all of the 238 // subscripts are in hand. 239 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 240 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 241 int symbolRank{symbol.Rank()}; 242 int subscripts{static_cast<int>(ref.size())}; 243 if (subscripts == 0) { 244 return std::nullopt; // error recovery 245 } else if (subscripts != symbolRank) { 246 if (symbolRank != 0) { 247 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 248 symbolRank, symbol.name(), subscripts); 249 } 250 return std::nullopt; 251 } else if (Component * component{ref.base().UnwrapComponent()}) { 252 int baseRank{component->base().Rank()}; 253 if (baseRank > 0) { 254 int subscriptRank{0}; 255 for (const auto &expr : ref.subscript()) { 256 subscriptRank += expr.Rank(); 257 } 258 if (subscriptRank > 0) { // C919a 259 Say("Subscripts of component '%s' of rank-%d derived type " 260 "array have rank %d but must all be scalar"_err_en_US, 261 symbol.name(), baseRank, subscriptRank); 262 return std::nullopt; 263 } 264 } 265 } else if (const auto *object{ 266 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 267 // C928 & C1002 268 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 269 if (!last->upper() && object->IsAssumedSize()) { 270 Say("Assumed-size array '%s' must have explicit final " 271 "subscript upper bound value"_err_en_US, 272 symbol.name()); 273 return std::nullopt; 274 } 275 } 276 } else { 277 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 278 // which, if not an object, must be a construct entity from 279 // SELECT TYPE/RANK or ASSOCIATE. 280 CHECK(symbol.has<semantics::AssocEntityDetails>()); 281 } 282 return Designate(DataRef{std::move(ref)}); 283 } 284 285 // Applies subscripts to a data reference. 286 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 287 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 288 if (subscripts.empty()) { 289 return std::nullopt; // error recovery 290 } 291 return std::visit( 292 common::visitors{ 293 [&](SymbolRef &&symbol) { 294 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 295 }, 296 [&](Component &&c) { 297 return CompleteSubscripts( 298 ArrayRef{std::move(c), std::move(subscripts)}); 299 }, 300 [&](auto &&) -> MaybeExpr { 301 DIE("bad base for ArrayRef"); 302 return std::nullopt; 303 }, 304 }, 305 std::move(dataRef.u)); 306 } 307 308 // Top-level checks for data references. 309 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 310 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 311 const Symbol &symbol{component->GetLastSymbol()}; 312 int componentRank{symbol.Rank()}; 313 if (componentRank > 0) { 314 int baseRank{component->base().Rank()}; 315 if (baseRank > 0) { // C919a 316 Say("Reference to whole rank-%d component '%%%s' of " 317 "rank-%d array of derived type is not allowed"_err_en_US, 318 componentRank, symbol.name(), baseRank); 319 } 320 } 321 } 322 return Designate(std::move(dataRef)); 323 } 324 325 // Parse tree correction after a substring S(j:k) was misparsed as an 326 // array section. N.B. Fortran substrings have to have a range, not a 327 // single index. 328 static void FixMisparsedSubstring(const parser::Designator &d) { 329 auto &mutate{const_cast<parser::Designator &>(d)}; 330 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 331 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 332 &dataRef->u)}) { 333 parser::ArrayElement &arrElement{ae->value()}; 334 if (!arrElement.subscripts.empty()) { 335 auto iter{arrElement.subscripts.begin()}; 336 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 337 if (!std::get<2>(triplet->t) /* no stride */ && 338 ++iter == arrElement.subscripts.end() /* one subscript */) { 339 if (Symbol * 340 symbol{std::visit( 341 common::visitors{ 342 [](parser::Name &n) { return n.symbol; }, 343 [](common::Indirection<parser::StructureComponent> 344 &sc) { return sc.value().component.symbol; }, 345 [](auto &) -> Symbol * { return nullptr; }, 346 }, 347 arrElement.base.u)}) { 348 const Symbol &ultimate{symbol->GetUltimate()}; 349 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 350 if (!ultimate.IsObjectArray() && 351 type->category() == semantics::DeclTypeSpec::Character) { 352 // The ambiguous S(j:k) was parsed as an array section 353 // reference, but it's now clear that it's a substring. 354 // Fix the parse tree in situ. 355 mutate.u = arrElement.ConvertToSubstring(); 356 } 357 } 358 } 359 } 360 } 361 } 362 } 363 } 364 } 365 366 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 367 auto restorer{GetContextualMessages().SetLocation(d.source)}; 368 FixMisparsedSubstring(d); 369 // These checks have to be deferred to these "top level" data-refs where 370 // we can be sure that there are no following subscripts (yet). 371 // Substrings have already been run through TopLevelChecks() and 372 // won't be returned by ExtractDataRef(). 373 if (MaybeExpr result{Analyze(d.u)}) { 374 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 375 return TopLevelChecks(std::move(*dataRef)); 376 } 377 return result; 378 } 379 return std::nullopt; 380 } 381 382 // A utility subroutine to repackage optional expressions of various levels 383 // of type specificity as fully general MaybeExpr values. 384 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 385 return AsGenericExpr(std::move(x)); 386 } 387 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 388 if (x) { 389 return AsMaybeExpr(std::move(*x)); 390 } 391 return std::nullopt; 392 } 393 394 // Type kind parameter values for literal constants. 395 int ExpressionAnalyzer::AnalyzeKindParam( 396 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 397 if (!kindParam) { 398 return defaultKind; 399 } 400 return std::visit( 401 common::visitors{ 402 [](std::uint64_t k) { return static_cast<int>(k); }, 403 [&](const parser::Scalar< 404 parser::Integer<parser::Constant<parser::Name>>> &n) { 405 if (MaybeExpr ie{Analyze(n)}) { 406 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 407 int iv = *i64; 408 if (iv == *i64) { 409 return iv; 410 } 411 } 412 } 413 return defaultKind; 414 }, 415 }, 416 kindParam->u); 417 } 418 419 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 420 struct IntTypeVisitor { 421 using Result = MaybeExpr; 422 using Types = IntegerTypes; 423 template <typename T> Result Test() { 424 if (T::kind >= kind) { 425 const char *p{digits.begin()}; 426 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 427 if (!value.overflow) { 428 if (T::kind > kind) { 429 if (!isDefaultKind || 430 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 431 return std::nullopt; 432 } else if (analyzer.context().ShouldWarn( 433 LanguageFeature::BigIntLiterals)) { 434 analyzer.Say(digits, 435 "Integer literal is too large for default INTEGER(KIND=%d); " 436 "assuming INTEGER(KIND=%d)"_en_US, 437 kind, T::kind); 438 } 439 } 440 return Expr<SomeType>{ 441 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 442 } 443 } 444 return std::nullopt; 445 } 446 ExpressionAnalyzer &analyzer; 447 parser::CharBlock digits; 448 int kind; 449 bool isDefaultKind; 450 }; 451 452 template <typename PARSED> 453 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 454 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 455 bool isDefaultKind{!kindParam}; 456 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 457 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 458 auto digits{std::get<parser::CharBlock>(x.t)}; 459 if (MaybeExpr result{common::SearchTypes( 460 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 461 return result; 462 } else if (isDefaultKind) { 463 Say(digits, 464 "Integer literal is too large for any allowable " 465 "kind of INTEGER"_err_en_US); 466 } else { 467 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 468 kind); 469 } 470 } 471 return std::nullopt; 472 } 473 474 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 475 auto restorer{ 476 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 477 return IntLiteralConstant(x); 478 } 479 480 MaybeExpr ExpressionAnalyzer::Analyze( 481 const parser::SignedIntLiteralConstant &x) { 482 auto restorer{GetContextualMessages().SetLocation(x.source)}; 483 return IntLiteralConstant(x); 484 } 485 486 template <typename TYPE> 487 Constant<TYPE> ReadRealLiteral( 488 parser::CharBlock source, FoldingContext &context) { 489 const char *p{source.begin()}; 490 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 491 CHECK(p == source.end()); 492 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 493 auto value{valWithFlags.value}; 494 if (context.flushSubnormalsToZero()) { 495 value = value.FlushSubnormalToZero(); 496 } 497 return {value}; 498 } 499 500 struct RealTypeVisitor { 501 using Result = std::optional<Expr<SomeReal>>; 502 using Types = RealTypes; 503 504 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 505 : kind{k}, literal{lit}, context{ctx} {} 506 507 template <typename T> Result Test() { 508 if (kind == T::kind) { 509 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 510 } 511 return std::nullopt; 512 } 513 514 int kind; 515 parser::CharBlock literal; 516 FoldingContext &context; 517 }; 518 519 // Reads a real literal constant and encodes it with the right kind. 520 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 521 // Use a local message context around the real literal for better 522 // provenance on any messages. 523 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 524 // If a kind parameter appears, it defines the kind of the literal and the 525 // letter used in an exponent part must be 'E' (e.g., the 'E' in 526 // "6.02214E+23"). In the absence of an explicit kind parameter, any 527 // exponent letter determines the kind. Otherwise, defaults apply. 528 auto &defaults{context_.defaultKinds()}; 529 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 530 const char *end{x.real.source.end()}; 531 char expoLetter{' '}; 532 std::optional<int> letterKind; 533 for (const char *p{x.real.source.begin()}; p < end; ++p) { 534 if (parser::IsLetter(*p)) { 535 expoLetter = *p; 536 switch (expoLetter) { 537 case 'e': 538 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 539 break; 540 case 'd': 541 letterKind = defaults.doublePrecisionKind(); 542 break; 543 case 'q': 544 letterKind = defaults.quadPrecisionKind(); 545 break; 546 default: 547 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 548 } 549 break; 550 } 551 } 552 if (letterKind) { 553 defaultKind = *letterKind; 554 } 555 // C716 requires 'E' as an exponent, but this is more useful 556 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 557 if (letterKind && kind != *letterKind && expoLetter != 'e') { 558 Say("Explicit kind parameter on real constant disagrees with " 559 "exponent letter '%c'"_en_US, 560 expoLetter); 561 } 562 auto result{common::SearchTypes( 563 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 564 if (!result) { // C717 565 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 566 } 567 return AsMaybeExpr(std::move(result)); 568 } 569 570 MaybeExpr ExpressionAnalyzer::Analyze( 571 const parser::SignedRealLiteralConstant &x) { 572 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 573 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 574 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 575 if (sign == parser::Sign::Negative) { 576 return AsGenericExpr(-std::move(realExpr)); 577 } 578 } 579 return result; 580 } 581 return std::nullopt; 582 } 583 584 MaybeExpr ExpressionAnalyzer::Analyze( 585 const parser::SignedComplexLiteralConstant &x) { 586 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 587 if (!result) { 588 return std::nullopt; 589 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 590 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 591 } else { 592 return result; 593 } 594 } 595 596 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 597 return Analyze(x.u); 598 } 599 600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 601 return AsMaybeExpr( 602 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 603 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 604 } 605 606 // CHARACTER literal processing. 607 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 608 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 609 return std::nullopt; 610 } 611 switch (kind) { 612 case 1: 613 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 614 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 615 string, true)}); 616 case 2: 617 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 618 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 619 string, true)}); 620 case 4: 621 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 622 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 623 string, true)}); 624 default: 625 CRASH_NO_CASE; 626 } 627 } 628 629 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 630 int kind{ 631 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 632 auto value{std::get<std::string>(x.t)}; 633 return AnalyzeString(std::move(value), kind); 634 } 635 636 MaybeExpr ExpressionAnalyzer::Analyze( 637 const parser::HollerithLiteralConstant &x) { 638 int kind{GetDefaultKind(TypeCategory::Character)}; 639 auto value{x.v}; 640 return AnalyzeString(std::move(value), kind); 641 } 642 643 // .TRUE. and .FALSE. of various kinds 644 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 645 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 646 GetDefaultKind(TypeCategory::Logical))}; 647 bool value{std::get<bool>(x.t)}; 648 auto result{common::SearchTypes( 649 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 650 kind, std::move(value)})}; 651 if (!result) { 652 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 653 } 654 return result; 655 } 656 657 // BOZ typeless literals 658 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 659 const char *p{x.v.c_str()}; 660 std::uint64_t base{16}; 661 switch (*p++) { 662 case 'b': 663 base = 2; 664 break; 665 case 'o': 666 base = 8; 667 break; 668 case 'z': 669 break; 670 case 'x': 671 break; 672 default: 673 CRASH_NO_CASE; 674 } 675 CHECK(*p == '"'); 676 ++p; 677 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 678 if (*p != '"') { 679 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 680 x.v); // C7107, C7108 681 return std::nullopt; 682 } 683 if (value.overflow) { 684 Say("BOZ literal '%s' too large"_err_en_US, x.v); 685 return std::nullopt; 686 } 687 return AsGenericExpr(std::move(value.value)); 688 } 689 690 // Names and named constants 691 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 692 auto restorer{GetContextualMessages().SetLocation(n.source)}; 693 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 694 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 695 *kind, AsExpr(ImpliedDoIndex{n.source}))); 696 } else if (context_.HasError(n)) { 697 return std::nullopt; 698 } else if (!n.symbol) { 699 SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source); 700 return std::nullopt; 701 } else { 702 const Symbol &ultimate{n.symbol->GetUltimate()}; 703 if (ultimate.has<semantics::TypeParamDetails>()) { 704 // A bare reference to a derived type parameter (within a parameterized 705 // derived type definition) 706 return Fold(ConvertToType( 707 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 708 } else { 709 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 710 if (const semantics::Scope * 711 pure{semantics::FindPureProcedureContaining( 712 context_.FindScope(n.source))}) { 713 SayAt(n, 714 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 715 n.source, DEREF(pure->symbol()).name()); 716 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 717 } 718 } 719 if (!isWholeAssumedSizeArrayOk_ && 720 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 721 AttachDeclaration( 722 SayAt(n, 723 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 724 n.source), 725 *n.symbol); 726 } 727 return Designate(DataRef{*n.symbol}); 728 } 729 } 730 } 731 732 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 733 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 734 if (MaybeExpr value{Analyze(n.v)}) { 735 Expr<SomeType> folded{Fold(std::move(*value))}; 736 if (IsConstantExpr(folded)) { 737 return folded; 738 } 739 Say(n.v.source, "must be a constant"_err_en_US); // C718 740 } 741 return std::nullopt; 742 } 743 744 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 745 if (MaybeExpr value{Analyze(n.v)}) { 746 // Subtle: when the NullInit is a DataStmtConstant, it might 747 // be a misparse of a structure constructor without parameters 748 // or components (e.g., T()). Checking the result to ensure 749 // that a "=>" data entity initializer actually resolved to 750 // a null pointer has to be done by the caller. 751 return Fold(std::move(*value)); 752 } 753 return std::nullopt; 754 } 755 756 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 757 return Analyze(x.value()); 758 } 759 760 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 761 if (const auto &repeat{ 762 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 763 x.repetitions = -1; 764 if (MaybeExpr expr{Analyze(repeat->u)}) { 765 Expr<SomeType> folded{Fold(std::move(*expr))}; 766 if (auto value{ToInt64(folded)}) { 767 if (*value >= 0) { // C882 768 x.repetitions = *value; 769 } else { 770 Say(FindSourceLocation(repeat), 771 "Repeat count (%jd) for data value must not be negative"_err_en_US, 772 *value); 773 } 774 } 775 } 776 } 777 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 778 } 779 780 // Substring references 781 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 782 const std::optional<parser::ScalarIntExpr> &bound) { 783 if (bound) { 784 if (MaybeExpr expr{Analyze(*bound)}) { 785 if (expr->Rank() > 1) { 786 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 787 } 788 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 789 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 790 return {std::move(*ssIntExpr)}; 791 } 792 return {Expr<SubscriptInteger>{ 793 Convert<SubscriptInteger, TypeCategory::Integer>{ 794 std::move(*intExpr)}}}; 795 } else { 796 Say("substring bound expression is not INTEGER"_err_en_US); 797 } 798 } 799 } 800 return std::nullopt; 801 } 802 803 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 804 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 805 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 806 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 807 if (std::optional<DataRef> checked{ 808 ExtractDataRef(std::move(*newBaseExpr))}) { 809 const parser::SubstringRange &range{ 810 std::get<parser::SubstringRange>(ss.t)}; 811 std::optional<Expr<SubscriptInteger>> first{ 812 GetSubstringBound(std::get<0>(range.t))}; 813 std::optional<Expr<SubscriptInteger>> last{ 814 GetSubstringBound(std::get<1>(range.t))}; 815 const Symbol &symbol{checked->GetLastSymbol()}; 816 if (std::optional<DynamicType> dynamicType{ 817 DynamicType::From(symbol)}) { 818 if (dynamicType->category() == TypeCategory::Character) { 819 return WrapperHelper<TypeCategory::Character, Designator, 820 Substring>(dynamicType->kind(), 821 Substring{std::move(checked.value()), std::move(first), 822 std::move(last)}); 823 } 824 } 825 Say("substring may apply only to CHARACTER"_err_en_US); 826 } 827 } 828 } 829 } 830 return std::nullopt; 831 } 832 833 // CHARACTER literal substrings 834 MaybeExpr ExpressionAnalyzer::Analyze( 835 const parser::CharLiteralConstantSubstring &x) { 836 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 837 std::optional<Expr<SubscriptInteger>> lower{ 838 GetSubstringBound(std::get<0>(range.t))}; 839 std::optional<Expr<SubscriptInteger>> upper{ 840 GetSubstringBound(std::get<1>(range.t))}; 841 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 842 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 843 Expr<SubscriptInteger> length{ 844 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 845 charExpr->u)}; 846 if (!lower) { 847 lower = Expr<SubscriptInteger>{1}; 848 } 849 if (!upper) { 850 upper = Expr<SubscriptInteger>{ 851 static_cast<std::int64_t>(ToInt64(length).value())}; 852 } 853 return std::visit( 854 [&](auto &&ckExpr) -> MaybeExpr { 855 using Result = ResultType<decltype(ckExpr)>; 856 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 857 CHECK(DEREF(cp).size() == 1); 858 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 859 staticData->set_alignment(Result::kind) 860 .set_itemBytes(Result::kind) 861 .Push(cp->GetScalarValue().value()); 862 Substring substring{std::move(staticData), std::move(lower.value()), 863 std::move(upper.value())}; 864 return AsGenericExpr( 865 Expr<Result>{Designator<Result>{std::move(substring)}}); 866 }, 867 std::move(charExpr->u)); 868 } 869 } 870 return std::nullopt; 871 } 872 873 // Subscripted array references 874 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 875 MaybeExpr &&expr) { 876 if (expr) { 877 if (expr->Rank() > 1) { 878 Say("Subscript expression has rank %d greater than 1"_err_en_US, 879 expr->Rank()); 880 } 881 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 882 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 883 return std::move(*ssIntExpr); 884 } else { 885 return Expr<SubscriptInteger>{ 886 Convert<SubscriptInteger, TypeCategory::Integer>{ 887 std::move(*intExpr)}}; 888 } 889 } else { 890 Say("Subscript expression is not INTEGER"_err_en_US); 891 } 892 } 893 return std::nullopt; 894 } 895 896 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 897 const std::optional<parser::Subscript> &s) { 898 if (s) { 899 return AsSubscript(Analyze(*s)); 900 } else { 901 return std::nullopt; 902 } 903 } 904 905 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 906 const parser::SectionSubscript &ss) { 907 return std::visit( 908 common::visitors{ 909 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 910 const auto &lower{std::get<0>(t.t)}; 911 const auto &upper{std::get<1>(t.t)}; 912 const auto &stride{std::get<2>(t.t)}; 913 auto result{Triplet{ 914 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 915 if ((lower && !result.lower()) || (upper && !result.upper())) { 916 return std::nullopt; 917 } else { 918 return std::make_optional<Subscript>(result); 919 } 920 }, 921 [&](const auto &s) -> std::optional<Subscript> { 922 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 923 return Subscript{std::move(*subscriptExpr)}; 924 } else { 925 return std::nullopt; 926 } 927 }, 928 }, 929 ss.u); 930 } 931 932 // Empty result means an error occurred 933 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 934 const std::list<parser::SectionSubscript> &sss) { 935 bool error{false}; 936 std::vector<Subscript> subscripts; 937 for (const auto &s : sss) { 938 if (auto subscript{AnalyzeSectionSubscript(s)}) { 939 subscripts.emplace_back(std::move(*subscript)); 940 } else { 941 error = true; 942 } 943 } 944 return !error ? subscripts : std::vector<Subscript>{}; 945 } 946 947 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 948 MaybeExpr baseExpr; 949 { 950 auto restorer{AllowWholeAssumedSizeArray()}; 951 baseExpr = Analyze(ae.base); 952 } 953 if (baseExpr) { 954 if (ae.subscripts.empty()) { 955 // will be converted to function call later or error reported 956 } else if (baseExpr->Rank() == 0) { 957 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 958 if (!context_.HasError(symbol)) { 959 if (inDataStmtConstant_) { 960 // Better error for NULL(X) with a MOLD= argument 961 Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US, 962 symbol->name()); 963 } else { 964 Say("'%s' is not an array"_err_en_US, symbol->name()); 965 } 966 context_.SetError(*symbol); 967 } 968 } 969 } else if (std::optional<DataRef> dataRef{ 970 ExtractDataRef(std::move(*baseExpr))}) { 971 return ApplySubscripts( 972 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 973 } else { 974 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 975 } 976 } 977 // error was reported: analyze subscripts without reporting more errors 978 auto restorer{GetContextualMessages().DiscardMessages()}; 979 AnalyzeSectionSubscripts(ae.subscripts); 980 return std::nullopt; 981 } 982 983 // Type parameter inquiries apply to data references, but don't depend 984 // on any trailing (co)subscripts. 985 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 986 return std::visit( 987 common::visitors{ 988 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 989 [](Component &&component) { 990 return NamedEntity{std::move(component)}; 991 }, 992 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 993 [](CoarrayRef &&coarrayRef) { 994 return NamedEntity{coarrayRef.GetLastSymbol()}; 995 }, 996 }, 997 std::move(designator.u)); 998 } 999 1000 // Components of parent derived types are explicitly represented as such. 1001 std::optional<Component> ExpressionAnalyzer::CreateComponent( 1002 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 1003 if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b 1004 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); 1005 } 1006 if (&component.owner() == &scope) { 1007 return Component{std::move(base), component}; 1008 } 1009 if (const Symbol * typeSymbol{scope.GetSymbol()}) { 1010 if (const Symbol * 1011 parentComponent{typeSymbol->GetParentComponent(&scope)}) { 1012 if (const auto *object{ 1013 parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) { 1014 if (const auto *parentType{object->type()}) { 1015 if (const semantics::Scope * 1016 parentScope{parentType->derivedTypeSpec().scope()}) { 1017 return CreateComponent( 1018 DataRef{Component{std::move(base), *parentComponent}}, 1019 component, *parentScope); 1020 } 1021 } 1022 } 1023 } 1024 } 1025 return std::nullopt; 1026 } 1027 1028 // Derived type component references and type parameter inquiries 1029 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 1030 MaybeExpr base{Analyze(sc.base)}; 1031 Symbol *sym{sc.component.symbol}; 1032 if (!base || !sym || context_.HasError(sym)) { 1033 return std::nullopt; 1034 } 1035 const auto &name{sc.component.source}; 1036 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1037 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1038 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1039 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1040 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1041 if (dyType->category() == TypeCategory::Integer) { 1042 auto restorer{GetContextualMessages().SetLocation(name)}; 1043 return Fold(ConvertToType(*dyType, 1044 AsGenericExpr(TypeParamInquiry{ 1045 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1046 } 1047 } 1048 Say(name, "Type parameter is not INTEGER"_err_en_US); 1049 } else { 1050 Say(name, 1051 "A type parameter inquiry must be applied to " 1052 "a designator"_err_en_US); 1053 } 1054 } else if (!dtSpec || !dtSpec->scope()) { 1055 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1056 return std::nullopt; 1057 } else if (std::optional<DataRef> dataRef{ 1058 ExtractDataRef(std::move(*dtExpr))}) { 1059 if (auto component{ 1060 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1061 return Designate(DataRef{std::move(*component)}); 1062 } else { 1063 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1064 dtSpec->typeSymbol().name()); 1065 } 1066 } else { 1067 Say(name, 1068 "Base of component reference must be a data reference"_err_en_US); 1069 } 1070 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1071 // special part-ref: %re, %im, %kind, %len 1072 // Type errors are detected and reported in semantics. 1073 using MiscKind = semantics::MiscDetails::Kind; 1074 MiscKind kind{details->kind()}; 1075 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1076 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1077 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1078 Expr<SomeReal> realExpr{std::visit( 1079 [&](const auto &z) { 1080 using PartType = typename ResultType<decltype(z)>::Part; 1081 auto part{kind == MiscKind::ComplexPartRe 1082 ? ComplexPart::Part::RE 1083 : ComplexPart::Part::IM}; 1084 return AsCategoryExpr(Designator<PartType>{ 1085 ComplexPart{std::move(*dataRef), part}}); 1086 }, 1087 zExpr->u)}; 1088 return AsGenericExpr(std::move(realExpr)); 1089 } 1090 } 1091 } else if (kind == MiscKind::KindParamInquiry || 1092 kind == MiscKind::LenParamInquiry) { 1093 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1094 ActualArgument arg{std::move(*base)}; 1095 SetArgSourceLocation(arg, name); 1096 return MakeFunctionRef(name, ActualArguments{std::move(arg)}); 1097 } else { 1098 DIE("unexpected MiscDetails::Kind"); 1099 } 1100 } else { 1101 Say(name, "derived type required before component reference"_err_en_US); 1102 } 1103 return std::nullopt; 1104 } 1105 1106 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1107 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1108 DataRef *dataRef{&*maybeDataRef}; 1109 std::vector<Subscript> subscripts; 1110 SymbolVector reversed; 1111 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1112 subscripts = std::move(aRef->subscript()); 1113 reversed.push_back(aRef->GetLastSymbol()); 1114 if (Component * component{aRef->base().UnwrapComponent()}) { 1115 dataRef = &component->base(); 1116 } else { 1117 dataRef = nullptr; 1118 } 1119 } 1120 if (dataRef) { 1121 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1122 reversed.push_back(component->GetLastSymbol()); 1123 dataRef = &component->base(); 1124 } 1125 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1126 reversed.push_back(*baseSym); 1127 } else { 1128 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1129 } 1130 } 1131 std::vector<Expr<SubscriptInteger>> cosubscripts; 1132 bool cosubsOk{true}; 1133 for (const auto &cosub : 1134 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1135 MaybeExpr coex{Analyze(cosub)}; 1136 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1137 cosubscripts.push_back( 1138 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1139 } else { 1140 cosubsOk = false; 1141 } 1142 } 1143 if (cosubsOk && !reversed.empty()) { 1144 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1145 const Symbol &symbol{reversed.front()}; 1146 if (numCosubscripts != symbol.Corank()) { 1147 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1148 symbol.name(), symbol.Corank(), numCosubscripts); 1149 } 1150 } 1151 for (const auto &imageSelSpec : 1152 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1153 std::visit( 1154 common::visitors{ 1155 [&](const auto &x) { Analyze(x.v); }, 1156 }, 1157 imageSelSpec.u); 1158 } 1159 // Reverse the chain of symbols so that the base is first and coarray 1160 // ultimate component is last. 1161 if (cosubsOk) { 1162 return Designate( 1163 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1164 std::move(subscripts), std::move(cosubscripts)}}); 1165 } 1166 } 1167 return std::nullopt; 1168 } 1169 1170 int ExpressionAnalyzer::IntegerTypeSpecKind( 1171 const parser::IntegerTypeSpec &spec) { 1172 Expr<SubscriptInteger> value{ 1173 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1174 if (auto kind{ToInt64(value)}) { 1175 return static_cast<int>(*kind); 1176 } 1177 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1178 return GetDefaultKind(TypeCategory::Integer); 1179 } 1180 1181 // Array constructors 1182 1183 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1184 // all happen to have the same actual type T into one ArrayConstructor<T>. 1185 template <typename T> 1186 ArrayConstructorValues<T> MakeSpecific( 1187 ArrayConstructorValues<SomeType> &&from) { 1188 ArrayConstructorValues<T> to; 1189 for (ArrayConstructorValue<SomeType> &x : from) { 1190 std::visit( 1191 common::visitors{ 1192 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1193 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1194 to.Push(std::move(DEREF(typed))); 1195 }, 1196 [&](ImpliedDo<SomeType> &&impliedDo) { 1197 to.Push(ImpliedDo<T>{impliedDo.name(), 1198 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1199 std::move(impliedDo.stride()), 1200 MakeSpecific<T>(std::move(impliedDo.values()))}); 1201 }, 1202 }, 1203 std::move(x.u)); 1204 } 1205 return to; 1206 } 1207 1208 class ArrayConstructorContext { 1209 public: 1210 ArrayConstructorContext( 1211 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1212 : exprAnalyzer_{c}, type_{std::move(t)} {} 1213 1214 void Add(const parser::AcValue &); 1215 MaybeExpr ToExpr(); 1216 1217 // These interfaces allow *this to be used as a type visitor argument to 1218 // common::SearchTypes() to convert the array constructor to a typed 1219 // expression in ToExpr(). 1220 using Result = MaybeExpr; 1221 using Types = AllTypes; 1222 template <typename T> Result Test() { 1223 if (type_ && type_->category() == T::category) { 1224 if constexpr (T::category == TypeCategory::Derived) { 1225 if (!type_->IsUnlimitedPolymorphic()) { 1226 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1227 MakeSpecific<T>(std::move(values_))}); 1228 } 1229 } else if (type_->kind() == T::kind) { 1230 if constexpr (T::category == TypeCategory::Character) { 1231 if (auto len{type_->LEN()}) { 1232 return AsMaybeExpr(ArrayConstructor<T>{ 1233 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1234 } 1235 } else { 1236 return AsMaybeExpr( 1237 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1238 } 1239 } 1240 } 1241 return std::nullopt; 1242 } 1243 1244 private: 1245 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1246 1247 void Push(MaybeExpr &&); 1248 void Add(const parser::AcValue::Triplet &); 1249 void Add(const parser::Expr &); 1250 void Add(const parser::AcImpliedDo &); 1251 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1252 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1253 std::int64_t stride); 1254 1255 template <int KIND, typename A> 1256 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1257 const A &x) { 1258 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1259 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1260 return Fold(exprAnalyzer_.GetFoldingContext(), 1261 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1262 std::move(DEREF(intExpr)))); 1263 } 1264 return std::nullopt; 1265 } 1266 1267 // Nested array constructors all reference the same ExpressionAnalyzer, 1268 // which represents the nest of active implied DO loop indices. 1269 ExpressionAnalyzer &exprAnalyzer_; 1270 std::optional<DynamicTypeWithLength> type_; 1271 bool explicitType_{type_.has_value()}; 1272 std::optional<std::int64_t> constantLength_; 1273 ArrayConstructorValues<SomeType> values_; 1274 std::uint64_t messageDisplayedSet_{0}; 1275 }; 1276 1277 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1278 if (!x) { 1279 return; 1280 } 1281 if (!type_) { 1282 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1283 // Treat an array constructor of BOZ as if default integer. 1284 if (exprAnalyzer_.context().ShouldWarn( 1285 common::LanguageFeature::BOZAsDefaultInteger)) { 1286 exprAnalyzer_.Say( 1287 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1288 } 1289 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1290 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1291 std::move(*boz))); 1292 } 1293 } 1294 std::optional<DynamicType> dyType{x->GetType()}; 1295 if (!dyType) { 1296 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1297 if (!type_) { 1298 // Treat an array constructor of BOZ as if default integer. 1299 if (exprAnalyzer_.context().ShouldWarn( 1300 common::LanguageFeature::BOZAsDefaultInteger)) { 1301 exprAnalyzer_.Say( 1302 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US); 1303 } 1304 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1305 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1306 std::move(*boz))); 1307 dyType = x.value().GetType(); 1308 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1309 x = std::move(cast); 1310 dyType = *type_; 1311 } else { 1312 if (!(messageDisplayedSet_ & 0x80)) { 1313 exprAnalyzer_.Say( 1314 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1315 messageDisplayedSet_ |= 0x80; 1316 } 1317 return; 1318 } 1319 } else { // procedure name, &c. 1320 if (!(messageDisplayedSet_ & 0x40)) { 1321 exprAnalyzer_.Say( 1322 "Item is not suitable for use in an array constructor"_err_en_US); 1323 messageDisplayedSet_ |= 0x40; 1324 } 1325 return; 1326 } 1327 } else if (dyType->IsUnlimitedPolymorphic()) { 1328 if (!(messageDisplayedSet_ & 8)) { 1329 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1330 "array constructor"_err_en_US); // C7113 1331 messageDisplayedSet_ |= 8; 1332 } 1333 return; 1334 } 1335 DynamicTypeWithLength xType{dyType.value()}; 1336 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1337 CHECK(xType.category() == TypeCategory::Character); 1338 xType.length = 1339 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1340 } 1341 if (!type_) { 1342 // If there is no explicit type-spec in an array constructor, the type 1343 // of the array is the declared type of all of the elements, which must 1344 // be well-defined and all match. 1345 // TODO: Possible language extension: use the most general type of 1346 // the values as the type of a numeric constructed array, convert all 1347 // of the other values to that type. Alternative: let the first value 1348 // determine the type, and convert the others to that type. 1349 CHECK(!explicitType_); 1350 type_ = std::move(xType); 1351 constantLength_ = ToInt64(type_->length); 1352 values_.Push(std::move(*x)); 1353 } else if (!explicitType_) { 1354 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1355 values_.Push(std::move(*x)); 1356 if (auto thisLen{ToInt64(xType.LEN())}) { 1357 if (constantLength_) { 1358 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1359 *thisLen != *constantLength_) { 1360 if (!(messageDisplayedSet_ & 1)) { 1361 exprAnalyzer_.Say( 1362 "Character literal in array constructor without explicit " 1363 "type has different length than earlier elements"_en_US); 1364 messageDisplayedSet_ |= 1; 1365 } 1366 } 1367 if (*thisLen > *constantLength_) { 1368 // Language extension: use the longest literal to determine the 1369 // length of the array constructor's character elements, not the 1370 // first, when there is no explicit type. 1371 *constantLength_ = *thisLen; 1372 type_->length = xType.LEN(); 1373 } 1374 } else { 1375 constantLength_ = *thisLen; 1376 type_->length = xType.LEN(); 1377 } 1378 } 1379 } else { 1380 if (!(messageDisplayedSet_ & 2)) { 1381 exprAnalyzer_.Say( 1382 "Values in array constructor must have the same declared type " 1383 "when no explicit type appears"_err_en_US); // C7110 1384 messageDisplayedSet_ |= 2; 1385 } 1386 } 1387 } else { 1388 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1389 values_.Push(std::move(*cast)); 1390 } else if (!(messageDisplayedSet_ & 4)) { 1391 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1392 "be converted to the type of the array '%s'"_err_en_US, 1393 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1394 messageDisplayedSet_ |= 4; 1395 } 1396 } 1397 } 1398 1399 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1400 std::visit( 1401 common::visitors{ 1402 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1403 [&](const common::Indirection<parser::Expr> &expr) { 1404 Add(expr.value()); 1405 }, 1406 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1407 Add(impliedDo.value()); 1408 }, 1409 }, 1410 x.u); 1411 } 1412 1413 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1414 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1415 std::optional<Expr<ImpliedDoIntType>> lower{ 1416 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1417 std::optional<Expr<ImpliedDoIntType>> upper{ 1418 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1419 std::optional<Expr<ImpliedDoIntType>> stride{ 1420 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1421 if (lower && upper) { 1422 if (!stride) { 1423 stride = Expr<ImpliedDoIntType>{1}; 1424 } 1425 if (!type_) { 1426 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1427 } 1428 auto v{std::move(values_)}; 1429 parser::CharBlock anonymous; 1430 Push(Expr<SomeType>{ 1431 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1432 std::swap(v, values_); 1433 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1434 std::move(*upper), std::move(*stride), std::move(v)}); 1435 } 1436 } 1437 1438 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1439 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1440 Push(exprAnalyzer_.Analyze(expr)); 1441 } 1442 1443 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1444 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1445 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1446 exprAnalyzer_.Analyze(bounds.name); 1447 parser::CharBlock name{bounds.name.thing.thing.source}; 1448 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1449 int kind{ImpliedDoIntType::kind}; 1450 if (const auto dynamicType{DynamicType::From(symbol)}) { 1451 kind = dynamicType->kind(); 1452 } 1453 std::optional<Expr<ImpliedDoIntType>> lower{ 1454 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1455 std::optional<Expr<ImpliedDoIntType>> upper{ 1456 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1457 if (lower && upper) { 1458 std::optional<Expr<ImpliedDoIntType>> stride{ 1459 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1460 if (!stride) { 1461 stride = Expr<ImpliedDoIntType>{1}; 1462 } 1463 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1464 // Check for constant bounds; the loop may require complete unrolling 1465 // of the parse tree if all bounds are constant in order to allow the 1466 // implied DO loop index to qualify as a constant expression. 1467 auto cLower{ToInt64(lower)}; 1468 auto cUpper{ToInt64(upper)}; 1469 auto cStride{ToInt64(stride)}; 1470 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1471 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1472 "The stride of an implied DO loop must not be zero"_err_en_US); 1473 messageDisplayedSet_ |= 0x10; 1474 } 1475 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1476 bool isNonemptyConstant{isConstant && 1477 ((*cStride > 0 && *cLower <= *cUpper) || 1478 (*cStride < 0 && *cLower >= *cUpper))}; 1479 bool unrollConstantLoop{false}; 1480 parser::Messages buffer; 1481 auto saveMessagesDisplayed{messageDisplayedSet_}; 1482 { 1483 auto messageRestorer{ 1484 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1485 auto v{std::move(values_)}; 1486 for (const auto &value : 1487 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1488 Add(value); 1489 } 1490 std::swap(v, values_); 1491 if (isNonemptyConstant && buffer.AnyFatalError()) { 1492 unrollConstantLoop = true; 1493 } else { 1494 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1495 std::move(*upper), std::move(*stride), std::move(v)}); 1496 } 1497 } 1498 if (unrollConstantLoop) { 1499 messageDisplayedSet_ = saveMessagesDisplayed; 1500 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1501 } else if (auto *messages{ 1502 exprAnalyzer_.GetContextualMessages().messages()}) { 1503 messages->Annex(std::move(buffer)); 1504 } 1505 exprAnalyzer_.RemoveImpliedDo(name); 1506 } else if (!(messageDisplayedSet_ & 0x20)) { 1507 exprAnalyzer_.SayAt(name, 1508 "Implied DO index '%s' is active in a surrounding implied DO loop " 1509 "and may not have the same name"_err_en_US, 1510 name); // C7115 1511 messageDisplayedSet_ |= 0x20; 1512 } 1513 } 1514 } 1515 1516 // Fortran considers an implied DO index of an array constructor to be 1517 // a constant expression if the bounds of the implied DO loop are constant. 1518 // Usually this doesn't matter, but if we emitted spurious messages as a 1519 // result of not using constant values for the index while analyzing the 1520 // items, we need to do it again the "hard" way with multiple iterations over 1521 // the parse tree. 1522 void ArrayConstructorContext::UnrollConstantImpliedDo( 1523 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1524 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1525 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1526 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1527 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1528 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1529 at += stride) { 1530 for (const auto &value : 1531 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1532 Add(value); 1533 } 1534 } 1535 foldingContext.EndImpliedDo(name); 1536 } 1537 1538 MaybeExpr ArrayConstructorContext::ToExpr() { 1539 return common::SearchTypes(std::move(*this)); 1540 } 1541 1542 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1543 const parser::AcSpec &acSpec{array.v}; 1544 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1545 for (const parser::AcValue &value : acSpec.values) { 1546 acContext.Add(value); 1547 } 1548 return acContext.ToExpr(); 1549 } 1550 1551 MaybeExpr ExpressionAnalyzer::Analyze( 1552 const parser::StructureConstructor &structure) { 1553 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1554 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1555 parser::CharBlock &typeName{structureType.source}; 1556 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1557 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1558 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1559 if (!CheckIsValidForwardReference(dtSpec)) { 1560 return std::nullopt; 1561 } 1562 } 1563 } 1564 if (!parsedType.derivedTypeSpec) { 1565 return std::nullopt; 1566 } 1567 const auto &spec{*parsedType.derivedTypeSpec}; 1568 const Symbol &typeSymbol{spec.typeSymbol()}; 1569 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1570 return std::nullopt; // error recovery 1571 } 1572 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1573 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1574 1575 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1576 AttachDeclaration(Say(typeName, 1577 "ABSTRACT derived type '%s' may not be used in a " 1578 "structure constructor"_err_en_US, 1579 typeName), 1580 typeSymbol); // C7114 1581 } 1582 1583 // This iterator traverses all of the components in the derived type and its 1584 // parents. The symbols for whole parent components appear after their 1585 // own components and before the components of the types that extend them. 1586 // E.g., TYPE :: A; REAL X; END TYPE 1587 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1588 // produces the component list X, A, Y. 1589 // The order is important below because a structure constructor can 1590 // initialize X or A by name, but not both. 1591 auto components{semantics::OrderedComponentIterator{spec}}; 1592 auto nextAnonymous{components.begin()}; 1593 1594 std::set<parser::CharBlock> unavailable; 1595 bool anyKeyword{false}; 1596 StructureConstructor result{spec}; 1597 bool checkConflicts{true}; // until we hit one 1598 auto &messages{GetContextualMessages()}; 1599 1600 for (const auto &component : 1601 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1602 const parser::Expr &expr{ 1603 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1604 parser::CharBlock source{expr.source}; 1605 auto restorer{messages.SetLocation(source)}; 1606 const Symbol *symbol{nullptr}; 1607 MaybeExpr value{Analyze(expr)}; 1608 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1609 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1610 anyKeyword = true; 1611 source = kw->v.source; 1612 symbol = kw->v.symbol; 1613 if (!symbol) { 1614 auto componentIter{std::find_if(components.begin(), components.end(), 1615 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1616 if (componentIter != components.end()) { 1617 symbol = &*componentIter; 1618 } 1619 } 1620 if (!symbol) { // C7101 1621 Say(source, 1622 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1623 source, typeName); 1624 } 1625 } else { 1626 if (anyKeyword) { // C7100 1627 Say(source, 1628 "Value in structure constructor lacks a component name"_err_en_US); 1629 checkConflicts = false; // stem cascade 1630 } 1631 // Here's a regrettably common extension of the standard: anonymous 1632 // initialization of parent components, e.g., T(PT(1)) rather than 1633 // T(1) or T(PT=PT(1)). 1634 if (nextAnonymous == components.begin() && parentComponent && 1635 valueType == DynamicType::From(*parentComponent) && 1636 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1637 auto iter{ 1638 std::find(components.begin(), components.end(), *parentComponent)}; 1639 if (iter != components.end()) { 1640 symbol = parentComponent; 1641 nextAnonymous = ++iter; 1642 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1643 Say(source, 1644 "Whole parent component '%s' in structure " 1645 "constructor should not be anonymous"_en_US, 1646 symbol->name()); 1647 } 1648 } 1649 } 1650 while (!symbol && nextAnonymous != components.end()) { 1651 const Symbol &next{*nextAnonymous}; 1652 ++nextAnonymous; 1653 if (!next.test(Symbol::Flag::ParentComp)) { 1654 symbol = &next; 1655 } 1656 } 1657 if (!symbol) { 1658 Say(source, "Unexpected value in structure constructor"_err_en_US); 1659 } 1660 } 1661 if (symbol) { 1662 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1663 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1664 Say(source, *msg); 1665 } 1666 } 1667 if (checkConflicts) { 1668 auto componentIter{ 1669 std::find(components.begin(), components.end(), *symbol)}; 1670 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1671 // C797, C798 1672 Say(source, 1673 "Component '%s' conflicts with another component earlier in " 1674 "this structure constructor"_err_en_US, 1675 symbol->name()); 1676 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1677 // Make earlier components unavailable once a whole parent appears. 1678 for (auto it{components.begin()}; it != componentIter; ++it) { 1679 unavailable.insert(it->name()); 1680 } 1681 } else { 1682 // Make whole parent components unavailable after any of their 1683 // constituents appear. 1684 for (auto it{componentIter}; it != components.end(); ++it) { 1685 if (it->test(Symbol::Flag::ParentComp)) { 1686 unavailable.insert(it->name()); 1687 } 1688 } 1689 } 1690 } 1691 unavailable.insert(symbol->name()); 1692 if (value) { 1693 if (symbol->has<semantics::ProcEntityDetails>()) { 1694 CHECK(IsPointer(*symbol)); 1695 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1696 // C1594(4) 1697 const auto &innermost{context_.FindScope(expr.source)}; 1698 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1699 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1700 if (const Symbol * 1701 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1702 if (auto *msg{Say(expr.source, 1703 "Externally visible object '%s' may not be " 1704 "associated with pointer component '%s' in a " 1705 "pure procedure"_err_en_US, 1706 object->name(), pointer->name())}) { 1707 msg->Attach(object->name(), "Object declaration"_en_US) 1708 .Attach(pointer->name(), "Pointer declaration"_en_US); 1709 } 1710 } 1711 } 1712 } 1713 } else if (symbol->has<semantics::TypeParamDetails>()) { 1714 Say(expr.source, 1715 "Type parameter '%s' may not appear as a component " 1716 "of a structure constructor"_err_en_US, 1717 symbol->name()); 1718 continue; 1719 } else { 1720 Say(expr.source, 1721 "Component '%s' is neither a procedure pointer " 1722 "nor a data object"_err_en_US, 1723 symbol->name()); 1724 continue; 1725 } 1726 if (IsPointer(*symbol)) { 1727 semantics::CheckPointerAssignment( 1728 GetFoldingContext(), *symbol, *value); // C7104, C7105 1729 result.Add(*symbol, Fold(std::move(*value))); 1730 } else if (MaybeExpr converted{ 1731 ConvertToType(*symbol, std::move(*value))}) { 1732 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1733 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1734 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1735 AttachDeclaration( 1736 Say(expr.source, 1737 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1738 GetRank(*valueShape), symbol->name()), 1739 *symbol); 1740 } else { 1741 auto checked{ 1742 CheckConformance(messages, *componentShape, *valueShape, 1743 CheckConformanceFlags::RightIsExpandableDeferred, 1744 "component", "value")}; 1745 if (checked && *checked && GetRank(*componentShape) > 0 && 1746 GetRank(*valueShape) == 0 && 1747 !IsExpandableScalar(*converted)) { 1748 AttachDeclaration( 1749 Say(expr.source, 1750 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1751 symbol->name()), 1752 *symbol); 1753 } 1754 if (checked.value_or(true)) { 1755 result.Add(*symbol, std::move(*converted)); 1756 } 1757 } 1758 } else { 1759 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1760 } 1761 } else { 1762 AttachDeclaration( 1763 Say(expr.source, 1764 "Shape of component '%s' cannot be determined"_err_en_US, 1765 symbol->name()), 1766 *symbol); 1767 } 1768 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1769 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1770 } else if (auto symType{DynamicType::From(symbol)}) { 1771 if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() && 1772 valueType) { 1773 // ok 1774 } else if (valueType) { 1775 AttachDeclaration( 1776 Say(expr.source, 1777 "Value in structure constructor of type '%s' is " 1778 "incompatible with component '%s' of type '%s'"_err_en_US, 1779 valueType->AsFortran(), symbol->name(), 1780 symType->AsFortran()), 1781 *symbol); 1782 } else { 1783 AttachDeclaration( 1784 Say(expr.source, 1785 "Value in structure constructor is incompatible with " 1786 "component '%s' of type %s"_err_en_US, 1787 symbol->name(), symType->AsFortran()), 1788 *symbol); 1789 } 1790 } 1791 } 1792 } 1793 } 1794 1795 // Ensure that unmentioned component objects have default initializers. 1796 for (const Symbol &symbol : components) { 1797 if (!symbol.test(Symbol::Flag::ParentComp) && 1798 unavailable.find(symbol.name()) == unavailable.cend() && 1799 !IsAllocatable(symbol)) { 1800 if (const auto *details{ 1801 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1802 if (details->init()) { 1803 result.Add(symbol, common::Clone(*details->init())); 1804 } else { // C799 1805 AttachDeclaration(Say(typeName, 1806 "Structure constructor lacks a value for " 1807 "component '%s'"_err_en_US, 1808 symbol.name()), 1809 symbol); 1810 } 1811 } 1812 } 1813 } 1814 1815 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1816 } 1817 1818 static std::optional<parser::CharBlock> GetPassName( 1819 const semantics::Symbol &proc) { 1820 return std::visit( 1821 [](const auto &details) { 1822 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1823 std::decay_t<decltype(details)>>) { 1824 return details.passName(); 1825 } else { 1826 return std::optional<parser::CharBlock>{}; 1827 } 1828 }, 1829 proc.details()); 1830 } 1831 1832 static int GetPassIndex(const Symbol &proc) { 1833 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1834 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1835 const auto *interface{semantics::FindInterface(proc)}; 1836 if (!passName || !interface) { 1837 return 0; // first argument is passed-object 1838 } 1839 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1840 int index{0}; 1841 for (const auto *arg : subp.dummyArgs()) { 1842 if (arg && arg->name() == passName) { 1843 return index; 1844 } 1845 ++index; 1846 } 1847 DIE("PASS argument name not in dummy argument list"); 1848 } 1849 1850 // Injects an expression into an actual argument list as the "passed object" 1851 // for a type-bound procedure reference that is not NOPASS. Adds an 1852 // argument keyword if possible, but not when the passed object goes 1853 // before a positional argument. 1854 // e.g., obj%tbp(x) -> tbp(obj,x). 1855 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1856 const Symbol &component, bool isPassedObject = true) { 1857 if (component.attrs().test(semantics::Attr::NOPASS)) { 1858 return; 1859 } 1860 int passIndex{GetPassIndex(component)}; 1861 auto iter{actuals.begin()}; 1862 int at{0}; 1863 while (iter < actuals.end() && at < passIndex) { 1864 if (*iter && (*iter)->keyword()) { 1865 iter = actuals.end(); 1866 break; 1867 } 1868 ++iter; 1869 ++at; 1870 } 1871 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1872 passed.set_isPassedObject(isPassedObject); 1873 if (iter == actuals.end()) { 1874 if (auto passName{GetPassName(component)}) { 1875 passed.set_keyword(*passName); 1876 } 1877 } 1878 actuals.emplace(iter, std::move(passed)); 1879 } 1880 1881 // Return the compile-time resolution of a procedure binding, if possible. 1882 static const Symbol *GetBindingResolution( 1883 const std::optional<DynamicType> &baseType, const Symbol &component) { 1884 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1885 if (!binding) { 1886 return nullptr; 1887 } 1888 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1889 (!baseType || baseType->IsPolymorphic())) { 1890 return nullptr; 1891 } 1892 return &binding->symbol(); 1893 } 1894 1895 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1896 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1897 -> std::optional<CalleeAndArguments> { 1898 const parser::StructureComponent &sc{pcr.v.thing}; 1899 if (MaybeExpr base{Analyze(sc.base)}) { 1900 if (const Symbol * sym{sc.component.symbol}) { 1901 if (context_.HasError(sym)) { 1902 return std::nullopt; 1903 } 1904 if (!IsProcedure(*sym)) { 1905 AttachDeclaration( 1906 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1907 sc.component.source), 1908 *sym); 1909 return std::nullopt; 1910 } 1911 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1912 if (sym->has<semantics::GenericDetails>()) { 1913 AdjustActuals adjustment{ 1914 [&](const Symbol &proc, ActualArguments &actuals) { 1915 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1916 AddPassArg(actuals, std::move(*dtExpr), proc); 1917 } 1918 return true; 1919 }}; 1920 auto pair{ResolveGeneric(*sym, arguments, adjustment)}; 1921 sym = pair.first; 1922 if (!sym) { 1923 EmitGenericResolutionError(*sc.component.symbol, pair.second); 1924 return std::nullopt; 1925 } 1926 } 1927 if (const Symbol * 1928 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1929 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1930 return CalleeAndArguments{ 1931 ProcedureDesignator{*resolution}, std::move(arguments)}; 1932 } else if (std::optional<DataRef> dataRef{ 1933 ExtractDataRef(std::move(*dtExpr))}) { 1934 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1935 return CalleeAndArguments{ 1936 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1937 std::move(arguments)}; 1938 } else { 1939 AddPassArg(arguments, 1940 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1941 *sym); 1942 return CalleeAndArguments{ 1943 ProcedureDesignator{*sym}, std::move(arguments)}; 1944 } 1945 } 1946 } 1947 Say(sc.component.source, 1948 "Base of procedure component reference is not a derived-type object"_err_en_US); 1949 } 1950 } 1951 CHECK(context_.AnyFatalError()); 1952 return std::nullopt; 1953 } 1954 1955 // Can actual be argument associated with dummy? 1956 static bool CheckCompatibleArgument(bool isElemental, 1957 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1958 const auto *expr{actual.UnwrapExpr()}; 1959 return std::visit( 1960 common::visitors{ 1961 [&](const characteristics::DummyDataObject &x) { 1962 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 1963 IsBareNullPointer(expr)) { 1964 // NULL() without MOLD= is compatible with any dummy data pointer 1965 // but cannot be allowed to lead to ambiguity. 1966 return true; 1967 } else if (!isElemental && actual.Rank() != x.type.Rank() && 1968 !x.type.attrs().test( 1969 characteristics::TypeAndShape::Attr::AssumedRank)) { 1970 return false; 1971 } else if (auto actualType{actual.GetType()}) { 1972 return x.type.type().IsTkCompatibleWith(*actualType); 1973 } 1974 return false; 1975 }, 1976 [&](const characteristics::DummyProcedure &) { 1977 return expr && IsProcedurePointerTarget(*expr); 1978 }, 1979 [&](const characteristics::AlternateReturn &) { 1980 return actual.isAlternateReturn(); 1981 }, 1982 }, 1983 dummy.u); 1984 } 1985 1986 // Are the actual arguments compatible with the dummy arguments of procedure? 1987 static bool CheckCompatibleArguments( 1988 const characteristics::Procedure &procedure, 1989 const ActualArguments &actuals) { 1990 bool isElemental{procedure.IsElemental()}; 1991 const auto &dummies{procedure.dummyArguments}; 1992 CHECK(dummies.size() == actuals.size()); 1993 for (std::size_t i{0}; i < dummies.size(); ++i) { 1994 const characteristics::DummyArgument &dummy{dummies[i]}; 1995 const std::optional<ActualArgument> &actual{actuals[i]}; 1996 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1997 return false; 1998 } 1999 } 2000 return true; 2001 } 2002 2003 // Handles a forward reference to a module function from what must 2004 // be a specification expression. Return false if the symbol is 2005 // an invalid forward reference. 2006 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 2007 if (context_.HasError(symbol)) { 2008 return false; 2009 } 2010 if (const auto *details{ 2011 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 2012 if (details->kind() == semantics::SubprogramKind::Module) { 2013 // If this symbol is still a SubprogramNameDetails, we must be 2014 // checking a specification expression in a sibling module 2015 // procedure. Resolve its names now so that its interface 2016 // is known. 2017 semantics::ResolveSpecificationParts(context_, symbol); 2018 if (symbol.has<semantics::SubprogramNameDetails>()) { 2019 // When the symbol hasn't had its details updated, we must have 2020 // already been in the process of resolving the function's 2021 // specification part; but recursive function calls are not 2022 // allowed in specification parts (10.1.11 para 5). 2023 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 2024 symbol.name()); 2025 context_.SetError(symbol); 2026 return false; 2027 } 2028 } else { // 10.1.11 para 4 2029 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 2030 symbol.name()); 2031 context_.SetError(symbol); 2032 return false; 2033 } 2034 } 2035 return true; 2036 } 2037 2038 // Resolve a call to a generic procedure with given actual arguments. 2039 // adjustActuals is called on procedure bindings to handle pass arg. 2040 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 2041 const Symbol &symbol, const ActualArguments &actuals, 2042 const AdjustActuals &adjustActuals, bool mightBeStructureConstructor) { 2043 const Symbol *elemental{nullptr}; // matching elemental specific proc 2044 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2045 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 2046 bool anyBareNullActual{ 2047 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2048 return IsBareNullPointer(iter->UnwrapExpr()); 2049 }) != actuals.end()}; 2050 for (const Symbol &specific : details.specificProcs()) { 2051 if (!ResolveForward(specific)) { 2052 continue; 2053 } 2054 if (std::optional<characteristics::Procedure> procedure{ 2055 characteristics::Procedure::Characterize( 2056 ProcedureDesignator{specific}, context_.foldingContext())}) { 2057 ActualArguments localActuals{actuals}; 2058 if (specific.has<semantics::ProcBindingDetails>()) { 2059 if (!adjustActuals.value()(specific, localActuals)) { 2060 continue; 2061 } 2062 } 2063 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, 2064 GetFoldingContext(), false /* no integer conversions */) && 2065 CheckCompatibleArguments(*procedure, localActuals)) { 2066 if ((procedure->IsElemental() && elemental) || 2067 (!procedure->IsElemental() && nonElemental)) { 2068 // 16.9.144(6): a bare NULL() is not allowed as an actual 2069 // argument to a generic procedure if the specific procedure 2070 // cannot be unambiguously distinguished 2071 return {nullptr, true /* due to NULL actuals */}; 2072 } 2073 if (!procedure->IsElemental()) { 2074 // takes priority over elemental match 2075 nonElemental = &specific; 2076 if (!anyBareNullActual) { 2077 break; // unambiguous case 2078 } 2079 } else { 2080 elemental = &specific; 2081 } 2082 } 2083 } 2084 } 2085 if (nonElemental) { 2086 return {&AccessSpecific(symbol, *nonElemental), false}; 2087 } else if (elemental) { 2088 return {&AccessSpecific(symbol, *elemental), false}; 2089 } 2090 // Check parent derived type 2091 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2092 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2093 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 2094 auto pair{ResolveGeneric(*extended, actuals, adjustActuals, false)}; 2095 if (pair.first) { 2096 return pair; 2097 } 2098 } 2099 } 2100 } 2101 if (mightBeStructureConstructor && details.derivedType()) { 2102 return {details.derivedType(), false}; 2103 } 2104 return {nullptr, false}; 2105 } 2106 2107 const Symbol &ExpressionAnalyzer::AccessSpecific( 2108 const Symbol &originalGeneric, const Symbol &specific) { 2109 if (const auto *hosted{ 2110 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2111 return AccessSpecific(hosted->symbol(), specific); 2112 } else if (const auto *used{ 2113 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2114 const auto &scope{originalGeneric.owner()}; 2115 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2116 if (const auto *useDetails{ 2117 iter->second->detailsIf<semantics::UseDetails>()}) { 2118 const Symbol &usedSymbol{useDetails->symbol()}; 2119 const auto *usedGeneric{ 2120 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2121 if (&usedSymbol == &specific || 2122 (usedGeneric && usedGeneric->specific() == &specific)) { 2123 return specific; 2124 } 2125 } 2126 } 2127 // Create a renaming USE of the specific procedure. 2128 auto rename{context_.SaveTempName( 2129 used->symbol().owner().GetName().value().ToString() + "$" + 2130 specific.name().ToString())}; 2131 return *const_cast<semantics::Scope &>(scope) 2132 .try_emplace(rename, specific.attrs(), 2133 semantics::UseDetails{rename, specific}) 2134 .first->second; 2135 } else { 2136 return specific; 2137 } 2138 } 2139 2140 void ExpressionAnalyzer::EmitGenericResolutionError( 2141 const Symbol &symbol, bool dueToNullActuals) { 2142 Say(dueToNullActuals 2143 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2144 : semantics::IsGenericDefinedOp(symbol) 2145 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2146 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2147 symbol.name()); 2148 } 2149 2150 auto ExpressionAnalyzer::GetCalleeAndArguments( 2151 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2152 bool isSubroutine, bool mightBeStructureConstructor) 2153 -> std::optional<CalleeAndArguments> { 2154 return std::visit( 2155 common::visitors{ 2156 [&](const parser::Name &name) { 2157 return GetCalleeAndArguments(name, std::move(arguments), 2158 isSubroutine, mightBeStructureConstructor); 2159 }, 2160 [&](const parser::ProcComponentRef &pcr) { 2161 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 2162 }, 2163 }, 2164 pd.u); 2165 } 2166 2167 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2168 ActualArguments &&arguments, bool isSubroutine, 2169 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2170 const Symbol *symbol{name.symbol}; 2171 if (context_.HasError(symbol)) { 2172 return std::nullopt; // also handles null symbol 2173 } 2174 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2175 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2176 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2177 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2178 arguments, GetFoldingContext())}) { 2179 CheckBadExplicitType(*specificCall, *symbol); 2180 return CalleeAndArguments{ 2181 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2182 std::move(specificCall->arguments)}; 2183 } 2184 } else { 2185 CheckForBadRecursion(name.source, ultimate); 2186 bool dueToNullActual{false}; 2187 if (ultimate.has<semantics::GenericDetails>()) { 2188 ExpressionAnalyzer::AdjustActuals noAdjustment; 2189 auto pair{ResolveGeneric( 2190 *symbol, arguments, noAdjustment, mightBeStructureConstructor)}; 2191 symbol = pair.first; 2192 dueToNullActual = pair.second; 2193 } 2194 if (symbol) { 2195 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2196 if (mightBeStructureConstructor) { 2197 return CalleeAndArguments{ 2198 semantics::SymbolRef{*symbol}, std::move(arguments)}; 2199 } 2200 } else if (IsProcedure(*symbol)) { 2201 return CalleeAndArguments{ 2202 ProcedureDesignator{*symbol}, std::move(arguments)}; 2203 } 2204 if (!context_.HasError(*symbol)) { 2205 AttachDeclaration( 2206 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2207 name.source), 2208 *symbol); 2209 } 2210 } else if (std::optional<SpecificCall> specificCall{ 2211 context_.intrinsics().Probe( 2212 CallCharacteristics{ 2213 ultimate.name().ToString(), isSubroutine}, 2214 arguments, GetFoldingContext())}) { 2215 // Generics can extend intrinsics 2216 return CalleeAndArguments{ 2217 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2218 std::move(specificCall->arguments)}; 2219 } else { 2220 EmitGenericResolutionError(*name.symbol, dueToNullActual); 2221 } 2222 } 2223 return std::nullopt; 2224 } 2225 2226 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2227 // generic intrinsic function "has no effect" on the result type of a 2228 // call to that intrinsic. So one can declare "character*8 cos" and 2229 // still get a real result from "cos(1.)". This is a dangerous feature, 2230 // especially since implementations are free to extend their sets of 2231 // intrinsics, and in doing so might clash with a name in a program. 2232 // So we emit a warning in this situation, and perhaps it should be an 2233 // error -- any correctly working program can silence the message by 2234 // simply deleting the pointless type declaration. 2235 void ExpressionAnalyzer::CheckBadExplicitType( 2236 const SpecificCall &call, const Symbol &intrinsic) { 2237 if (intrinsic.GetUltimate().GetType()) { 2238 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2239 if (const auto &result{procedure.functionResult}) { 2240 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2241 if (auto declared{ 2242 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2243 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2244 if (auto *msg{Say( 2245 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US, 2246 typeAndShape->AsFortran(), intrinsic.name(), 2247 declared->AsFortran())}) { 2248 msg->Attach(intrinsic.name(), 2249 "Ignored declaration of intrinsic function '%s'"_en_US, 2250 intrinsic.name()); 2251 } 2252 } 2253 } 2254 } 2255 } 2256 } 2257 } 2258 2259 void ExpressionAnalyzer::CheckForBadRecursion( 2260 parser::CharBlock callSite, const semantics::Symbol &proc) { 2261 if (const auto *scope{proc.scope()}) { 2262 if (scope->sourceRange().Contains(callSite)) { 2263 parser::Message *msg{nullptr}; 2264 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2265 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2266 callSite); 2267 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2268 msg = Say( // 15.6.2.1(3) 2269 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2270 callSite); 2271 } 2272 AttachDeclaration(msg, proc); 2273 } 2274 } 2275 } 2276 2277 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2278 if (const auto *designator{ 2279 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2280 if (const auto *dataRef{ 2281 std::get_if<parser::DataRef>(&designator->value().u)}) { 2282 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2283 return AssumedTypeDummy(*name); 2284 } 2285 } 2286 } 2287 return nullptr; 2288 } 2289 template <> 2290 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2291 if (const Symbol * symbol{name.symbol}) { 2292 if (const auto *type{symbol->GetType()}) { 2293 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2294 return symbol; 2295 } 2296 } 2297 } 2298 return nullptr; 2299 } 2300 template <typename A> 2301 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2302 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2303 // point it is is not guaranteed that it has been checked the object has 2304 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2305 // returned. 2306 return std::visit( 2307 common::visitors{ 2308 [&](const parser::StructureComponent &x) { 2309 return AssumedTypeDummy(x.component); 2310 }, 2311 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2312 }, 2313 object.u); 2314 } 2315 template <> 2316 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2317 const parser::AllocateObject &x) { 2318 return AssumedTypePointerOrAllocatableDummy(x); 2319 } 2320 template <> 2321 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2322 const parser::PointerObject &x) { 2323 return AssumedTypePointerOrAllocatableDummy(x); 2324 } 2325 2326 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2327 const semantics::DerivedTypeSpec &dtSpec) { 2328 if (dtSpec.IsForwardReferenced()) { 2329 Say("Cannot construct value for derived type '%s' " 2330 "before it is defined"_err_en_US, 2331 dtSpec.name()); 2332 return false; 2333 } 2334 return true; 2335 } 2336 2337 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2338 std::optional<parser::StructureConstructor> *structureConstructor) { 2339 const parser::Call &call{funcRef.v}; 2340 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2341 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2342 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2343 analyzer.Analyze(arg, false /* not subroutine call */); 2344 } 2345 if (analyzer.fatalErrors()) { 2346 return std::nullopt; 2347 } 2348 if (std::optional<CalleeAndArguments> callee{ 2349 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2350 analyzer.GetActuals(), false /* not subroutine */, 2351 true /* might be structure constructor */)}) { 2352 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2353 return MakeFunctionRef( 2354 call.source, std::move(*proc), std::move(callee->arguments)); 2355 } 2356 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2357 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2358 if (structureConstructor) { 2359 // Structure constructor misparsed as function reference? 2360 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2361 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2362 semantics::Scope &scope{context_.FindScope(name->source)}; 2363 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2364 if (!CheckIsValidForwardReference(dtSpec)) { 2365 return std::nullopt; 2366 } 2367 const semantics::DeclTypeSpec &type{ 2368 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2369 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2370 *structureConstructor = 2371 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2372 return Analyze(structureConstructor->value()); 2373 } 2374 } 2375 if (!context_.HasError(symbol)) { 2376 AttachDeclaration( 2377 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2378 symbol.name()), 2379 symbol); 2380 context_.SetError(symbol); 2381 } 2382 } 2383 return std::nullopt; 2384 } 2385 2386 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2387 for (const auto &arg : args) { 2388 if (arg && arg->isAlternateReturn()) { 2389 return true; 2390 } 2391 } 2392 return false; 2393 } 2394 2395 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2396 const parser::Call &call{callStmt.v}; 2397 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2398 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2399 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2400 for (const auto &arg : actualArgList) { 2401 analyzer.Analyze(arg, true /* is subroutine call */); 2402 } 2403 if (!analyzer.fatalErrors()) { 2404 if (std::optional<CalleeAndArguments> callee{ 2405 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2406 analyzer.GetActuals(), true /* subroutine */)}) { 2407 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2408 CHECK(proc); 2409 if (CheckCall(call.source, *proc, callee->arguments)) { 2410 callStmt.typedCall.Reset( 2411 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2412 HasAlternateReturns(callee->arguments)}, 2413 ProcedureRef::Deleter); 2414 return; 2415 } 2416 } 2417 if (!context_.AnyFatalError()) { 2418 std::string buf; 2419 llvm::raw_string_ostream dump{buf}; 2420 parser::DumpTree(dump, callStmt); 2421 Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US, 2422 dump.str()); 2423 } 2424 } 2425 } 2426 2427 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2428 if (!x.typedAssignment) { 2429 ArgumentAnalyzer analyzer{*this}; 2430 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2431 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2432 std::optional<Assignment> assignment; 2433 if (!analyzer.fatalErrors()) { 2434 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2435 if (!procRef) { 2436 analyzer.CheckForNullPointer( 2437 "in a non-pointer intrinsic assignment statement"); 2438 } 2439 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2440 if (procRef) { 2441 assignment->u = std::move(*procRef); 2442 } 2443 } 2444 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2445 GenericAssignmentWrapper::Deleter); 2446 } 2447 return common::GetPtrFromOptional(x.typedAssignment->v); 2448 } 2449 2450 const Assignment *ExpressionAnalyzer::Analyze( 2451 const parser::PointerAssignmentStmt &x) { 2452 if (!x.typedAssignment) { 2453 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2454 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2455 if (!lhs || !rhs) { 2456 x.typedAssignment.Reset( 2457 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2458 } else { 2459 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2460 std::visit(common::visitors{ 2461 [&](const std::list<parser::BoundsRemapping> &list) { 2462 Assignment::BoundsRemapping bounds; 2463 for (const auto &elem : list) { 2464 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2465 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2466 if (lower && upper) { 2467 bounds.emplace_back(Fold(std::move(*lower)), 2468 Fold(std::move(*upper))); 2469 } 2470 } 2471 assignment.u = std::move(bounds); 2472 }, 2473 [&](const std::list<parser::BoundsSpec> &list) { 2474 Assignment::BoundsSpec bounds; 2475 for (const auto &bound : list) { 2476 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2477 bounds.emplace_back(Fold(std::move(*lower))); 2478 } 2479 } 2480 assignment.u = std::move(bounds); 2481 }, 2482 }, 2483 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2484 x.typedAssignment.Reset( 2485 new GenericAssignmentWrapper{std::move(assignment)}, 2486 GenericAssignmentWrapper::Deleter); 2487 } 2488 } 2489 return common::GetPtrFromOptional(x.typedAssignment->v); 2490 } 2491 2492 static bool IsExternalCalledImplicitly( 2493 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2494 if (const auto *symbol{proc.GetSymbol()}) { 2495 return symbol->has<semantics::SubprogramDetails>() && 2496 symbol->owner().IsGlobal() && 2497 (!symbol->scope() /*ENTRY*/ || 2498 !symbol->scope()->sourceRange().Contains(callSite)); 2499 } else { 2500 return false; 2501 } 2502 } 2503 2504 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2505 parser::CharBlock callSite, const ProcedureDesignator &proc, 2506 ActualArguments &arguments) { 2507 auto chars{characteristics::Procedure::Characterize( 2508 proc, context_.foldingContext())}; 2509 if (chars) { 2510 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2511 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2512 Say(callSite, 2513 "References to the procedure '%s' require an explicit interface"_err_en_US, 2514 DEREF(proc.GetSymbol()).name()); 2515 } 2516 // Checks for ASSOCIATED() are done in intrinsic table processing 2517 bool procIsAssociated{false}; 2518 if (const SpecificIntrinsic * 2519 specificIntrinsic{proc.GetSpecificIntrinsic()}) { 2520 if (specificIntrinsic->name == "associated") { 2521 procIsAssociated = true; 2522 } 2523 } 2524 if (!procIsAssociated) { 2525 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2526 context_.FindScope(callSite), treatExternalAsImplicit, 2527 proc.GetSpecificIntrinsic()); 2528 const Symbol *procSymbol{proc.GetSymbol()}; 2529 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2530 if (const semantics::Scope * 2531 pure{semantics::FindPureProcedureContaining( 2532 context_.FindScope(callSite))}) { 2533 Say(callSite, 2534 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2535 procSymbol->name(), DEREF(pure->symbol()).name()); 2536 } 2537 } 2538 } 2539 } 2540 return chars; 2541 } 2542 2543 // Unary operations 2544 2545 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2546 if (MaybeExpr operand{Analyze(x.v.value())}) { 2547 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2548 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2549 if (semantics::IsProcedurePointer(*result)) { 2550 Say("A function reference that returns a procedure " 2551 "pointer may not be parenthesized"_err_en_US); // C1003 2552 } 2553 } 2554 } 2555 return Parenthesize(std::move(*operand)); 2556 } 2557 return std::nullopt; 2558 } 2559 2560 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2561 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2562 ArgumentAnalyzer analyzer{context}; 2563 analyzer.Analyze(x.v); 2564 if (!analyzer.fatalErrors()) { 2565 if (analyzer.IsIntrinsicNumeric(opr)) { 2566 analyzer.CheckForNullPointer(); 2567 if (opr == NumericOperator::Add) { 2568 return analyzer.MoveExpr(0); 2569 } else { 2570 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2571 } 2572 } else { 2573 return analyzer.TryDefinedOp(AsFortran(opr), 2574 "Operand of unary %s must be numeric; have %s"_err_en_US); 2575 } 2576 } 2577 return std::nullopt; 2578 } 2579 2580 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2581 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2582 } 2583 2584 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2585 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2586 } 2587 2588 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2589 ArgumentAnalyzer analyzer{*this}; 2590 analyzer.Analyze(x.v); 2591 if (!analyzer.fatalErrors()) { 2592 if (analyzer.IsIntrinsicLogical()) { 2593 analyzer.CheckForNullPointer(); 2594 return AsGenericExpr( 2595 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2596 } else { 2597 return analyzer.TryDefinedOp(LogicalOperator::Not, 2598 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2599 } 2600 } 2601 return std::nullopt; 2602 } 2603 2604 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2605 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2606 // intrinsic function. 2607 // Use the actual source for the name of the call for error reporting. 2608 std::optional<ActualArgument> arg; 2609 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2610 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2611 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2612 arg = ActualArgument{std::move(*argExpr)}; 2613 } else { 2614 return std::nullopt; 2615 } 2616 parser::CharBlock at{GetContextualMessages().at()}; 2617 CHECK(at.size() >= 4); 2618 parser::CharBlock loc{at.begin() + 1, 3}; 2619 CHECK(loc == "loc"); 2620 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2621 } 2622 2623 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2624 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2625 ArgumentAnalyzer analyzer{*this, name.source}; 2626 analyzer.Analyze(std::get<1>(x.t)); 2627 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2628 "No operator %s defined for %s"_err_en_US, nullptr, true); 2629 } 2630 2631 // Binary (dyadic) operations 2632 2633 template <template <typename> class OPR> 2634 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2635 const parser::Expr::IntrinsicBinary &x) { 2636 ArgumentAnalyzer analyzer{context}; 2637 analyzer.Analyze(std::get<0>(x.t)); 2638 analyzer.Analyze(std::get<1>(x.t)); 2639 if (!analyzer.fatalErrors()) { 2640 if (analyzer.IsIntrinsicNumeric(opr)) { 2641 analyzer.CheckForNullPointer(); 2642 analyzer.CheckConformance(); 2643 return NumericOperation<OPR>(context.GetContextualMessages(), 2644 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2645 context.GetDefaultKind(TypeCategory::Real)); 2646 } else { 2647 return analyzer.TryDefinedOp(AsFortran(opr), 2648 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2649 } 2650 } 2651 return std::nullopt; 2652 } 2653 2654 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2655 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2656 } 2657 2658 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2659 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2660 } 2661 2662 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2663 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2664 } 2665 2666 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2667 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2668 } 2669 2670 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2671 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2672 } 2673 2674 MaybeExpr ExpressionAnalyzer::Analyze( 2675 const parser::Expr::ComplexConstructor &x) { 2676 auto re{Analyze(std::get<0>(x.t).value())}; 2677 auto im{Analyze(std::get<1>(x.t).value())}; 2678 if (re && im) { 2679 ConformabilityCheck(GetContextualMessages(), *re, *im); 2680 } 2681 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2682 std::move(im), GetDefaultKind(TypeCategory::Real))); 2683 } 2684 2685 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2686 ArgumentAnalyzer analyzer{*this}; 2687 analyzer.Analyze(std::get<0>(x.t)); 2688 analyzer.Analyze(std::get<1>(x.t)); 2689 if (!analyzer.fatalErrors()) { 2690 if (analyzer.IsIntrinsicConcat()) { 2691 analyzer.CheckForNullPointer(); 2692 return std::visit( 2693 [&](auto &&x, auto &&y) -> MaybeExpr { 2694 using T = ResultType<decltype(x)>; 2695 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2696 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2697 } else { 2698 DIE("different types for intrinsic concat"); 2699 } 2700 }, 2701 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2702 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2703 } else { 2704 return analyzer.TryDefinedOp("//", 2705 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2706 } 2707 } 2708 return std::nullopt; 2709 } 2710 2711 // The Name represents a user-defined intrinsic operator. 2712 // If the actuals match one of the specific procedures, return a function ref. 2713 // Otherwise report the error in messages. 2714 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2715 const parser::Name &name, ActualArguments &&actuals) { 2716 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2717 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2718 return MakeFunctionRef(name.source, 2719 std::move(std::get<ProcedureDesignator>(callee->u)), 2720 std::move(callee->arguments)); 2721 } else { 2722 return std::nullopt; 2723 } 2724 } 2725 2726 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2727 const parser::Expr::IntrinsicBinary &x) { 2728 ArgumentAnalyzer analyzer{context}; 2729 analyzer.Analyze(std::get<0>(x.t)); 2730 analyzer.Analyze(std::get<1>(x.t)); 2731 if (!analyzer.fatalErrors()) { 2732 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2733 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2734 analyzer.ConvertBOZ(leftType, 0, rightType); 2735 analyzer.ConvertBOZ(rightType, 1, leftType); 2736 if (leftType && rightType && 2737 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2738 analyzer.CheckForNullPointer("as a relational operand"); 2739 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2740 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2741 } else { 2742 return analyzer.TryDefinedOp(opr, 2743 leftType && leftType->category() == TypeCategory::Logical && 2744 rightType && rightType->category() == TypeCategory::Logical 2745 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2746 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2747 } 2748 } 2749 return std::nullopt; 2750 } 2751 2752 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2753 return RelationHelper(*this, RelationalOperator::LT, x); 2754 } 2755 2756 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2757 return RelationHelper(*this, RelationalOperator::LE, x); 2758 } 2759 2760 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2761 return RelationHelper(*this, RelationalOperator::EQ, x); 2762 } 2763 2764 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2765 return RelationHelper(*this, RelationalOperator::NE, x); 2766 } 2767 2768 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2769 return RelationHelper(*this, RelationalOperator::GE, x); 2770 } 2771 2772 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2773 return RelationHelper(*this, RelationalOperator::GT, x); 2774 } 2775 2776 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2777 const parser::Expr::IntrinsicBinary &x) { 2778 ArgumentAnalyzer analyzer{context}; 2779 analyzer.Analyze(std::get<0>(x.t)); 2780 analyzer.Analyze(std::get<1>(x.t)); 2781 if (!analyzer.fatalErrors()) { 2782 if (analyzer.IsIntrinsicLogical()) { 2783 analyzer.CheckForNullPointer("as a logical operand"); 2784 return AsGenericExpr(BinaryLogicalOperation(opr, 2785 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2786 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2787 } else { 2788 return analyzer.TryDefinedOp( 2789 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2790 } 2791 } 2792 return std::nullopt; 2793 } 2794 2795 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2796 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2797 } 2798 2799 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2800 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2801 } 2802 2803 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2804 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2805 } 2806 2807 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2808 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2809 } 2810 2811 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2812 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2813 ArgumentAnalyzer analyzer{*this, name.source}; 2814 analyzer.Analyze(std::get<1>(x.t)); 2815 analyzer.Analyze(std::get<2>(x.t)); 2816 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2817 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2818 } 2819 2820 // Returns true if a parsed function reference should be converted 2821 // into an array element reference. 2822 static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context, 2823 const parser::FunctionReference &funcRef) { 2824 // Emit message if the function reference fix will end up an array element 2825 // reference with no subscripts, or subscripts on a scalar, because it will 2826 // not be possible to later distinguish in expressions between an empty 2827 // subscript list due to bad subscripts error recovery or because the 2828 // user did not put any. 2829 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2830 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2831 if (!name) { 2832 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2833 } 2834 if (!name->symbol) { 2835 return false; 2836 } else if (name->symbol->Rank() == 0) { 2837 if (const Symbol * 2838 function{ 2839 semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) { 2840 auto &msg{context.Say(funcRef.v.source, 2841 "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US, 2842 name->source)}; 2843 AttachDeclaration(&msg, *function); 2844 name->symbol = const_cast<Symbol *>(function); 2845 } 2846 return false; 2847 } else { 2848 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2849 auto &msg{context.Say(funcRef.v.source, 2850 "Reference to array '%s' with empty subscript list"_err_en_US, 2851 name->source)}; 2852 if (name->symbol) { 2853 AttachDeclaration(&msg, *name->symbol); 2854 } 2855 } 2856 return true; 2857 } 2858 } 2859 2860 // Converts, if appropriate, an original misparse of ambiguous syntax like 2861 // A(1) as a function reference into an array reference. 2862 // Misparsed structure constructors are detected elsewhere after generic 2863 // function call resolution fails. 2864 template <typename... A> 2865 static void FixMisparsedFunctionReference( 2866 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2867 // The parse tree is updated in situ when resolving an ambiguous parse. 2868 using uType = std::decay_t<decltype(constU)>; 2869 auto &u{const_cast<uType &>(constU)}; 2870 if (auto *func{ 2871 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2872 parser::FunctionReference &funcRef{func->value()}; 2873 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2874 if (Symbol * 2875 origSymbol{ 2876 std::visit(common::visitors{ 2877 [&](parser::Name &name) { return name.symbol; }, 2878 [&](parser::ProcComponentRef &pcr) { 2879 return pcr.v.thing.component.symbol; 2880 }, 2881 }, 2882 proc.u)}) { 2883 Symbol &symbol{origSymbol->GetUltimate()}; 2884 if (symbol.has<semantics::ObjectEntityDetails>() || 2885 symbol.has<semantics::AssocEntityDetails>()) { 2886 // Note that expression in AssocEntityDetails cannot be a procedure 2887 // pointer as per C1105 so this cannot be a function reference. 2888 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2889 uType>) { 2890 if (CheckFuncRefToArrayElement(context, funcRef)) { 2891 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2892 } 2893 } else { 2894 DIE("can't fix misparsed function as array reference"); 2895 } 2896 } 2897 } 2898 } 2899 } 2900 2901 // Common handling of parse tree node types that retain the 2902 // representation of the analyzed expression. 2903 template <typename PARSED> 2904 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 2905 const PARSED &x, parser::CharBlock source) { 2906 if (useSavedTypedExprs_ && x.typedExpr) { 2907 return x.typedExpr->v; 2908 } 2909 auto restorer{GetContextualMessages().SetLocation(source)}; 2910 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2911 std::is_same_v<PARSED, parser::Variable>) { 2912 FixMisparsedFunctionReference(context_, x.u); 2913 } 2914 if (AssumedTypeDummy(x)) { // C710 2915 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2916 ResetExpr(x); 2917 return std::nullopt; 2918 } 2919 MaybeExpr result; 2920 if constexpr (common::HasMember<parser::StructureConstructor, 2921 std::decay_t<decltype(x.u)>> && 2922 common::HasMember<common::Indirection<parser::FunctionReference>, 2923 std::decay_t<decltype(x.u)>>) { 2924 if (const auto *funcRef{ 2925 std::get_if<common::Indirection<parser::FunctionReference>>( 2926 &x.u)}) { 2927 // Function references in Exprs might turn out to be misparsed structure 2928 // constructors; we have to try generic procedure resolution 2929 // first to be sure. 2930 std::optional<parser::StructureConstructor> ctor; 2931 result = Analyze(funcRef->value(), &ctor); 2932 if (result && ctor) { 2933 // A misparsed function reference is really a structure 2934 // constructor. Repair the parse tree in situ. 2935 const_cast<PARSED &>(x).u = std::move(*ctor); 2936 } 2937 } else { 2938 result = Analyze(x.u); 2939 } 2940 } else { 2941 result = Analyze(x.u); 2942 } 2943 if (result) { 2944 SetExpr(x, Fold(std::move(*result))); 2945 return x.typedExpr->v; 2946 } else { 2947 ResetExpr(x); 2948 if (!context_.AnyFatalError()) { 2949 std::string buf; 2950 llvm::raw_string_ostream dump{buf}; 2951 parser::DumpTree(dump, x); 2952 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2953 dump.str()); 2954 } 2955 return std::nullopt; 2956 } 2957 } 2958 2959 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2960 return ExprOrVariable(expr, expr.source); 2961 } 2962 2963 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2964 return ExprOrVariable(variable, variable.GetSource()); 2965 } 2966 2967 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 2968 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 2969 if (!useSavedTypedExprs_ || !var->typedExpr) { 2970 parser::CharBlock source{var->GetSource()}; 2971 auto restorer{GetContextualMessages().SetLocation(source)}; 2972 FixMisparsedFunctionReference(context_, var->u); 2973 if (const auto *funcRef{ 2974 std::get_if<common::Indirection<parser::FunctionReference>>( 2975 &var->u)}) { 2976 // A Selector that parsed as a Variable might turn out during analysis 2977 // to actually be a structure constructor. In that case, repair the 2978 // Variable parse tree node into an Expr 2979 std::optional<parser::StructureConstructor> ctor; 2980 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 2981 if (ctor) { 2982 auto &writable{const_cast<parser::Selector &>(selector)}; 2983 writable.u = parser::Expr{std::move(*ctor)}; 2984 auto &expr{std::get<parser::Expr>(writable.u)}; 2985 expr.source = source; 2986 SetExpr(expr, Fold(std::move(*result))); 2987 return expr.typedExpr->v; 2988 } else { 2989 SetExpr(*var, Fold(std::move(*result))); 2990 return var->typedExpr->v; 2991 } 2992 } else { 2993 ResetExpr(*var); 2994 if (context_.AnyFatalError()) { 2995 return std::nullopt; 2996 } 2997 } 2998 } 2999 } 3000 } 3001 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 3002 return Analyze(selector.u); 3003 } 3004 3005 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 3006 auto restorer{common::ScopedSet(inDataStmtConstant_, true)}; 3007 return ExprOrVariable(x, x.source); 3008 } 3009 3010 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 3011 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3012 } 3013 3014 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 3015 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3016 } 3017 3018 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 3019 TypeCategory category, 3020 const std::optional<parser::KindSelector> &selector) { 3021 int defaultKind{GetDefaultKind(category)}; 3022 if (!selector) { 3023 return Expr<SubscriptInteger>{defaultKind}; 3024 } 3025 return std::visit( 3026 common::visitors{ 3027 [&](const parser::ScalarIntConstantExpr &x) { 3028 if (MaybeExpr kind{Analyze(x)}) { 3029 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 3030 if (CheckIntrinsicKind(category, *code)) { 3031 return Expr<SubscriptInteger>{*code}; 3032 } 3033 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 3034 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 3035 } 3036 } 3037 return Expr<SubscriptInteger>{defaultKind}; 3038 }, 3039 [&](const parser::KindSelector::StarSize &x) { 3040 std::intmax_t size = x.v; 3041 if (!CheckIntrinsicSize(category, size)) { 3042 size = defaultKind; 3043 } else if (category == TypeCategory::Complex) { 3044 size /= 2; 3045 } 3046 return Expr<SubscriptInteger>{size}; 3047 }, 3048 }, 3049 selector->u); 3050 } 3051 3052 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 3053 return context_.GetDefaultKind(category); 3054 } 3055 3056 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 3057 common::TypeCategory category) { 3058 return {category, GetDefaultKind(category)}; 3059 } 3060 3061 bool ExpressionAnalyzer::CheckIntrinsicKind( 3062 TypeCategory category, std::int64_t kind) { 3063 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 3064 return true; 3065 } else { 3066 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3067 ToUpperCase(EnumToString(category)), kind); 3068 return false; 3069 } 3070 } 3071 3072 bool ExpressionAnalyzer::CheckIntrinsicSize( 3073 TypeCategory category, std::int64_t size) { 3074 if (category == TypeCategory::Complex) { 3075 // COMPLEX*16 == COMPLEX(KIND=8) 3076 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 3077 return true; 3078 } 3079 } else if (IsValidKindOfIntrinsicType(category, size)) { 3080 return true; 3081 } 3082 Say("%s*%jd is not a supported type"_err_en_US, 3083 ToUpperCase(EnumToString(category)), size); 3084 return false; 3085 } 3086 3087 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3088 return impliedDos_.insert(std::make_pair(name, kind)).second; 3089 } 3090 3091 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3092 auto iter{impliedDos_.find(name)}; 3093 if (iter != impliedDos_.end()) { 3094 impliedDos_.erase(iter); 3095 } 3096 } 3097 3098 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3099 parser::CharBlock name) const { 3100 auto iter{impliedDos_.find(name)}; 3101 if (iter != impliedDos_.cend()) { 3102 return {iter->second}; 3103 } else { 3104 return std::nullopt; 3105 } 3106 } 3107 3108 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3109 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3110 if (result) { 3111 if (auto type{result->GetType()}) { 3112 if (type->category() != category) { // C885 3113 Say(at, "Must have %s type, but is %s"_err_en_US, 3114 ToUpperCase(EnumToString(category)), 3115 ToUpperCase(type->AsFortran())); 3116 return false; 3117 } else if (defaultKind) { 3118 int kind{context_.GetDefaultKind(category)}; 3119 if (type->kind() != kind) { 3120 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3121 kind, ToUpperCase(EnumToString(category)), 3122 ToUpperCase(type->AsFortran())); 3123 return false; 3124 } 3125 } 3126 } else { 3127 Say(at, "Must have %s type, but is typeless"_err_en_US, 3128 ToUpperCase(EnumToString(category))); 3129 return false; 3130 } 3131 } 3132 return true; 3133 } 3134 3135 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3136 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3137 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3138 if (intrinsic->characteristics.value().attrs.test( 3139 characteristics::Procedure::Attr::NullPointer) && 3140 arguments.empty()) { 3141 return Expr<SomeType>{NullPointer{}}; 3142 } 3143 } 3144 if (const Symbol * symbol{proc.GetSymbol()}) { 3145 if (!ResolveForward(*symbol)) { 3146 return std::nullopt; 3147 } 3148 } 3149 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3150 if (chars->functionResult) { 3151 const auto &result{*chars->functionResult}; 3152 if (result.IsProcedurePointer()) { 3153 return Expr<SomeType>{ 3154 ProcedureRef{std::move(proc), std::move(arguments)}}; 3155 } else { 3156 // Not a procedure pointer, so type and shape are known. 3157 return TypedWrapper<FunctionRef, ProcedureRef>( 3158 DEREF(result.GetTypeAndShape()).type(), 3159 ProcedureRef{std::move(proc), std::move(arguments)}); 3160 } 3161 } else { 3162 Say("Function result characteristics are not known"_err_en_US); 3163 } 3164 } 3165 return std::nullopt; 3166 } 3167 3168 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3169 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3170 if (std::optional<SpecificCall> specificCall{ 3171 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3172 arguments, GetFoldingContext())}) { 3173 return MakeFunctionRef(intrinsic, 3174 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3175 std::move(specificCall->arguments)); 3176 } else { 3177 return std::nullopt; 3178 } 3179 } 3180 3181 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3182 source_.ExtendToCover(x.GetSource()); 3183 if (MaybeExpr expr{context_.Analyze(x)}) { 3184 if (!IsConstantExpr(*expr)) { 3185 actuals_.emplace_back(std::move(*expr)); 3186 SetArgSourceLocation(actuals_.back(), x.GetSource()); 3187 return; 3188 } 3189 const Symbol *symbol{GetLastSymbol(*expr)}; 3190 if (!symbol) { 3191 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3192 x.GetSource()); 3193 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3194 auto *msg{context_.SayAt(x, 3195 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3196 symbol->name())}; 3197 if (subp->isFunction()) { 3198 const auto &result{subp->result().name()}; 3199 msg->Attach(result, "Function result is '%s'"_err_en_US, result); 3200 } 3201 } else { 3202 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3203 symbol->name()); 3204 } 3205 } 3206 fatalErrors_ = true; 3207 } 3208 3209 void ArgumentAnalyzer::Analyze( 3210 const parser::ActualArgSpec &arg, bool isSubroutine) { 3211 // TODO: Actual arguments that are procedures and procedure pointers need to 3212 // be detected and represented (they're not expressions). 3213 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3214 std::optional<ActualArgument> actual; 3215 std::visit(common::visitors{ 3216 [&](const common::Indirection<parser::Expr> &x) { 3217 actual = AnalyzeExpr(x.value()); 3218 SetArgSourceLocation(actual, x.value().source); 3219 }, 3220 [&](const parser::AltReturnSpec &label) { 3221 if (!isSubroutine) { 3222 context_.Say( 3223 "alternate return specification may not appear on" 3224 " function reference"_err_en_US); 3225 } 3226 actual = ActualArgument(label.v); 3227 }, 3228 [&](const parser::ActualArg::PercentRef &) { 3229 context_.Say("TODO: %REF() argument"_err_en_US); 3230 }, 3231 [&](const parser::ActualArg::PercentVal &) { 3232 context_.Say("TODO: %VAL() argument"_err_en_US); 3233 }, 3234 }, 3235 std::get<parser::ActualArg>(arg.t).u); 3236 if (actual) { 3237 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3238 actual->set_keyword(argKW->v.source); 3239 } 3240 actuals_.emplace_back(std::move(*actual)); 3241 } else { 3242 fatalErrors_ = true; 3243 } 3244 } 3245 3246 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3247 const DynamicType &leftType, const DynamicType &rightType) const { 3248 CHECK(actuals_.size() == 2); 3249 return semantics::IsIntrinsicRelational( 3250 opr, leftType, GetRank(0), rightType, GetRank(1)); 3251 } 3252 3253 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3254 std::optional<DynamicType> leftType{GetType(0)}; 3255 if (actuals_.size() == 1) { 3256 if (IsBOZLiteral(0)) { 3257 return opr == NumericOperator::Add; // unary '+' 3258 } else { 3259 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3260 } 3261 } else { 3262 std::optional<DynamicType> rightType{GetType(1)}; 3263 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3264 auto cat1{rightType->category()}; 3265 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3266 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3267 auto cat0{leftType->category()}; 3268 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3269 } else { 3270 return leftType && rightType && 3271 semantics::IsIntrinsicNumeric( 3272 *leftType, GetRank(0), *rightType, GetRank(1)); 3273 } 3274 } 3275 } 3276 3277 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3278 if (std::optional<DynamicType> leftType{GetType(0)}) { 3279 if (actuals_.size() == 1) { 3280 return semantics::IsIntrinsicLogical(*leftType); 3281 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3282 return semantics::IsIntrinsicLogical( 3283 *leftType, GetRank(0), *rightType, GetRank(1)); 3284 } 3285 } 3286 return false; 3287 } 3288 3289 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3290 if (std::optional<DynamicType> leftType{GetType(0)}) { 3291 if (std::optional<DynamicType> rightType{GetType(1)}) { 3292 return semantics::IsIntrinsicConcat( 3293 *leftType, GetRank(0), *rightType, GetRank(1)); 3294 } 3295 } 3296 return false; 3297 } 3298 3299 bool ArgumentAnalyzer::CheckConformance() { 3300 if (actuals_.size() == 2) { 3301 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3302 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3303 if (lhs && rhs) { 3304 auto &foldingContext{context_.GetFoldingContext()}; 3305 auto lhShape{GetShape(foldingContext, *lhs)}; 3306 auto rhShape{GetShape(foldingContext, *rhs)}; 3307 if (lhShape && rhShape) { 3308 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3309 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3310 "left operand", "right operand") 3311 .value_or(false /*fail when conformance is not known now*/)) { 3312 fatalErrors_ = true; 3313 return false; 3314 } 3315 } 3316 } 3317 } 3318 return true; // no proven problem 3319 } 3320 3321 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3322 for (const std::optional<ActualArgument> &arg : actuals_) { 3323 if (arg) { 3324 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3325 if (IsNullPointer(*expr)) { 3326 context_.Say( 3327 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3328 fatalErrors_ = true; 3329 return false; 3330 } 3331 } 3332 } 3333 } 3334 return true; 3335 } 3336 3337 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3338 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3339 bool isUserOp) { 3340 if (AnyUntypedOrMissingOperand()) { 3341 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3342 return std::nullopt; 3343 } 3344 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3345 if (!definedOpSymbolPtr) { 3346 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3347 } 3348 { 3349 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3350 std::string oprNameString{ 3351 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3352 parser::CharBlock oprName{oprNameString}; 3353 const auto &scope{context_.context().FindScope(source_)}; 3354 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3355 *definedOpSymbolPtr = symbol; 3356 parser::Name name{symbol->name(), symbol}; 3357 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3358 return result; 3359 } 3360 } 3361 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3362 if (const Symbol * 3363 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3364 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3365 return result; 3366 } 3367 } 3368 } 3369 } 3370 if (*definedOpSymbolPtr) { 3371 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3372 } else if (actuals_.size() == 1 || AreConformable()) { 3373 if (CheckForNullPointer()) { 3374 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3375 } 3376 } else { 3377 context_.Say( 3378 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3379 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3380 } 3381 return std::nullopt; 3382 } 3383 3384 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3385 std::vector<const char *> oprs, parser::MessageFixedText error) { 3386 const Symbol *definedOpSymbolPtr{nullptr}; 3387 for (std::size_t i{1}; i < oprs.size(); ++i) { 3388 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3389 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3390 return result; 3391 } 3392 } 3393 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3394 } 3395 3396 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3397 ActualArguments localActuals{actuals_}; 3398 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3399 if (!proc) { 3400 proc = &symbol; 3401 localActuals.at(passIndex).value().set_isPassedObject(); 3402 } 3403 CheckConformance(); 3404 return context_.MakeFunctionRef( 3405 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3406 } 3407 3408 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3409 using semantics::Tristate; 3410 const Expr<SomeType> &lhs{GetExpr(0)}; 3411 const Expr<SomeType> &rhs{GetExpr(1)}; 3412 std::optional<DynamicType> lhsType{lhs.GetType()}; 3413 std::optional<DynamicType> rhsType{rhs.GetType()}; 3414 int lhsRank{lhs.Rank()}; 3415 int rhsRank{rhs.Rank()}; 3416 Tristate isDefined{ 3417 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3418 if (isDefined == Tristate::No) { 3419 if (lhsType && rhsType) { 3420 AddAssignmentConversion(*lhsType, *rhsType); 3421 } 3422 return std::nullopt; // user-defined assignment not allowed for these args 3423 } 3424 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3425 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3426 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3427 context_.Say( 3428 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3429 DEREF(procRef->proc().GetSymbol()).name()); 3430 } 3431 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3432 return std::move(*procRef); 3433 } 3434 if (isDefined == Tristate::Yes) { 3435 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3436 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3437 SayNoMatch("ASSIGNMENT(=)", true); 3438 } 3439 } 3440 return std::nullopt; 3441 } 3442 3443 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3444 TypeCategory lhs, TypeCategory rhs) { 3445 if (!context_.context().languageFeatures().IsEnabled( 3446 common::LanguageFeature::LogicalIntegerAssignment)) { 3447 return false; 3448 } 3449 std::optional<parser::MessageFixedText> msg; 3450 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3451 // allow assignment to LOGICAL from INTEGER as a legacy extension 3452 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 3453 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3454 // ... and assignment to LOGICAL from INTEGER 3455 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 3456 } else { 3457 return false; 3458 } 3459 if (context_.context().languageFeatures().ShouldWarn( 3460 common::LanguageFeature::LogicalIntegerAssignment)) { 3461 context_.Say(std::move(*msg)); 3462 } 3463 return true; 3464 } 3465 3466 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3467 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3468 std::string oprNameString{"assignment(=)"}; 3469 parser::CharBlock oprName{oprNameString}; 3470 const Symbol *proc{nullptr}; 3471 const auto &scope{context_.context().FindScope(source_)}; 3472 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3473 ExpressionAnalyzer::AdjustActuals noAdjustment; 3474 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}; 3475 if (pair.first) { 3476 proc = pair.first; 3477 } else { 3478 context_.EmitGenericResolutionError(*symbol, pair.second); 3479 } 3480 } 3481 int passedObjectIndex{-1}; 3482 const Symbol *definedOpSymbol{nullptr}; 3483 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3484 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3485 if (const Symbol * 3486 resolution{GetBindingResolution(GetType(i), *specific)}) { 3487 proc = resolution; 3488 } else { 3489 proc = specific; 3490 passedObjectIndex = i; 3491 } 3492 } 3493 } 3494 if (!proc) { 3495 return std::nullopt; 3496 } 3497 ActualArguments actualsCopy{actuals_}; 3498 if (passedObjectIndex >= 0) { 3499 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3500 } 3501 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3502 } 3503 3504 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3505 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3506 << '\n'; 3507 for (const auto &actual : actuals_) { 3508 if (!actual.has_value()) { 3509 os << "- error\n"; 3510 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3511 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3512 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3513 expr->AsFortran(os << "- expr: ") << '\n'; 3514 } else { 3515 DIE("bad ActualArgument"); 3516 } 3517 } 3518 } 3519 3520 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3521 const parser::Expr &expr) { 3522 source_.ExtendToCover(expr.source); 3523 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3524 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3525 if (isProcedureCall_) { 3526 ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}}; 3527 SetArgSourceLocation(arg, expr.source); 3528 return std::move(arg); 3529 } 3530 context_.SayAt(expr.source, 3531 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3532 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3533 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3534 ActualArgument arg{std::move(*argExpr)}; 3535 SetArgSourceLocation(arg, expr.source); 3536 return std::move(arg); 3537 } 3538 context_.SayAt(expr.source, 3539 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3540 : "Subroutine name is not allowed here"_err_en_US); 3541 } 3542 return std::nullopt; 3543 } 3544 3545 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3546 const parser::Expr &expr) { 3547 // If an expression's parse tree is a whole assumed-size array: 3548 // Expr -> Designator -> DataRef -> Name 3549 // treat it as a special case for argument passing and bypass 3550 // the C1002/C1014 constraint checking in expression semantics. 3551 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3552 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3553 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3554 return context_.Analyze(expr); 3555 } 3556 } 3557 return context_.Analyze(expr); 3558 } 3559 3560 bool ArgumentAnalyzer::AreConformable() const { 3561 CHECK(actuals_.size() == 2); 3562 return actuals_[0] && actuals_[1] && 3563 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3564 } 3565 3566 // Look for a type-bound operator in the type of arg number passIndex. 3567 const Symbol *ArgumentAnalyzer::FindBoundOp( 3568 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3569 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3570 if (!type || !type->scope()) { 3571 return nullptr; 3572 } 3573 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3574 if (!symbol) { 3575 return nullptr; 3576 } 3577 definedOp = symbol; 3578 ExpressionAnalyzer::AdjustActuals adjustment{ 3579 [&](const Symbol &proc, ActualArguments &) { 3580 return passIndex == GetPassIndex(proc); 3581 }}; 3582 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 3583 if (!pair.first) { 3584 context_.EmitGenericResolutionError(*symbol, pair.second); 3585 } 3586 return pair.first; 3587 } 3588 3589 // If there is an implicit conversion between intrinsic types, make it explicit 3590 void ArgumentAnalyzer::AddAssignmentConversion( 3591 const DynamicType &lhsType, const DynamicType &rhsType) { 3592 if (lhsType.category() == rhsType.category() && 3593 lhsType.kind() == rhsType.kind()) { 3594 // no conversion necessary 3595 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3596 std::optional<parser::CharBlock> source; 3597 if (actuals_[1]) { 3598 source = actuals_[1]->sourceLocation(); 3599 } 3600 actuals_[1] = ActualArgument{*rhsExpr}; 3601 SetArgSourceLocation(actuals_[1], source); 3602 } else { 3603 actuals_[1] = std::nullopt; 3604 } 3605 } 3606 3607 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3608 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3609 } 3610 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3611 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3612 } 3613 3614 // If the argument at index i is a BOZ literal, convert its type to match the 3615 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3616 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3617 // is not currently supported. 3618 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3619 std::size_t i, std::optional<DynamicType> otherType) { 3620 if (IsBOZLiteral(i)) { 3621 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3622 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3623 if (otherType && otherType->category() == TypeCategory::Real) { 3624 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3625 MaybeExpr realExpr{ 3626 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3627 actuals_[i] = std::move(*realExpr); 3628 thisType.emplace(TypeCategory::Real, kind); 3629 } else { 3630 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3631 MaybeExpr intExpr{ 3632 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3633 actuals_[i] = std::move(*intExpr); 3634 thisType.emplace(TypeCategory::Integer, kind); 3635 } 3636 } 3637 } 3638 3639 // Report error resolving opr when there is a user-defined one available 3640 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3641 std::string type0{TypeAsFortran(0)}; 3642 auto rank0{actuals_[0]->Rank()}; 3643 if (actuals_.size() == 1) { 3644 if (rank0 > 0) { 3645 context_.Say("No intrinsic or user-defined %s matches " 3646 "rank %d array of %s"_err_en_US, 3647 opr, rank0, type0); 3648 } else { 3649 context_.Say("No intrinsic or user-defined %s matches " 3650 "operand type %s"_err_en_US, 3651 opr, type0); 3652 } 3653 } else { 3654 std::string type1{TypeAsFortran(1)}; 3655 auto rank1{actuals_[1]->Rank()}; 3656 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3657 context_.Say("No intrinsic or user-defined %s matches " 3658 "rank %d array of %s and rank %d array of %s"_err_en_US, 3659 opr, rank0, type0, rank1, type1); 3660 } else if (isAssignment && rank0 != rank1) { 3661 if (rank0 == 0) { 3662 context_.Say("No intrinsic or user-defined %s matches " 3663 "scalar %s and rank %d array of %s"_err_en_US, 3664 opr, type0, rank1, type1); 3665 } else { 3666 context_.Say("No intrinsic or user-defined %s matches " 3667 "rank %d array of %s and scalar %s"_err_en_US, 3668 opr, rank0, type0, type1); 3669 } 3670 } else { 3671 context_.Say("No intrinsic or user-defined %s matches " 3672 "operand types %s and %s"_err_en_US, 3673 opr, type0, type1); 3674 } 3675 } 3676 } 3677 3678 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3679 if (i >= actuals_.size() || !actuals_[i]) { 3680 return "missing argument"; 3681 } else if (std::optional<DynamicType> type{GetType(i)}) { 3682 return type->category() == TypeCategory::Derived 3683 ? "TYPE("s + type->AsFortran() + ')' 3684 : type->category() == TypeCategory::Character 3685 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3686 : ToUpperCase(type->AsFortran()); 3687 } else { 3688 return "untyped"; 3689 } 3690 } 3691 3692 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3693 for (const auto &actual : actuals_) { 3694 if (!actual || 3695 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3696 return true; 3697 } 3698 } 3699 return false; 3700 } 3701 } // namespace Fortran::evaluate 3702 3703 namespace Fortran::semantics { 3704 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3705 SemanticsContext &context, common::TypeCategory category, 3706 const std::optional<parser::KindSelector> &selector) { 3707 evaluate::ExpressionAnalyzer analyzer{context}; 3708 auto restorer{ 3709 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3710 return analyzer.AnalyzeKindSelector(category, selector); 3711 } 3712 3713 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3714 3715 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3716 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3717 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3718 auto name{bounds.name.thing.thing}; 3719 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3720 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3721 if (dynamicType->category() == TypeCategory::Integer) { 3722 kind = dynamicType->kind(); 3723 } 3724 } 3725 exprAnalyzer_.AddImpliedDo(name.source, kind); 3726 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3727 exprAnalyzer_.RemoveImpliedDo(name.source); 3728 return false; 3729 } 3730 3731 bool ExprChecker::Walk(const parser::Program &program) { 3732 parser::Walk(program, *this); 3733 return !context_.AnyFatalError(); 3734 } 3735 } // namespace Fortran::semantics 3736