1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names-utils.h" 13 #include "resolve-names.h" 14 #include "flang/Common/Fortran.h" 15 #include "flang/Common/idioms.h" 16 #include "flang/Evaluate/common.h" 17 #include "flang/Evaluate/fold.h" 18 #include "flang/Evaluate/tools.h" 19 #include "flang/Parser/characters.h" 20 #include "flang/Parser/dump-parse-tree.h" 21 #include "flang/Parser/parse-tree-visitor.h" 22 #include "flang/Parser/parse-tree.h" 23 #include "flang/Semantics/scope.h" 24 #include "flang/Semantics/semantics.h" 25 #include "flang/Semantics/symbol.h" 26 #include "flang/Semantics/tools.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> 29 #include <functional> 30 #include <optional> 31 #include <set> 32 33 // Typedef for optional generic expressions (ubiquitous in this file) 34 using MaybeExpr = 35 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 36 37 // Much of the code that implements semantic analysis of expressions is 38 // tightly coupled with their typed representations in lib/Evaluate, 39 // and appears here in namespace Fortran::evaluate for convenience. 40 namespace Fortran::evaluate { 41 42 using common::LanguageFeature; 43 using common::NumericOperator; 44 using common::TypeCategory; 45 46 static inline std::string ToUpperCase(const std::string &str) { 47 return parser::ToUpperCaseLetters(str); 48 } 49 50 struct DynamicTypeWithLength : public DynamicType { 51 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 52 std::optional<Expr<SubscriptInteger>> LEN() const; 53 std::optional<Expr<SubscriptInteger>> length; 54 }; 55 56 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 57 if (length) { 58 return length; 59 } else { 60 return GetCharLength(); 61 } 62 } 63 64 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 65 const std::optional<parser::TypeSpec> &spec) { 66 if (spec) { 67 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 68 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 69 // (viz., an intrinsic type with valid known kind or a non-polymorphic 70 // & non-ABSTRACT derived type). 71 if (const semantics::IntrinsicTypeSpec * 72 intrinsic{typeSpec->AsIntrinsic()}) { 73 TypeCategory category{intrinsic->category()}; 74 if (auto optKind{ToInt64(intrinsic->kind())}) { 75 int kind{static_cast<int>(*optKind)}; 76 if (category == TypeCategory::Character) { 77 const semantics::CharacterTypeSpec &cts{ 78 typeSpec->characterTypeSpec()}; 79 const semantics::ParamValue &len{cts.length()}; 80 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 81 // type guards, but not in array constructors. 82 return DynamicTypeWithLength{DynamicType{kind, len}}; 83 } else { 84 return DynamicTypeWithLength{DynamicType{category, kind}}; 85 } 86 } 87 } else if (const semantics::DerivedTypeSpec * 88 derived{typeSpec->AsDerived()}) { 89 return DynamicTypeWithLength{DynamicType{*derived}}; 90 } 91 } 92 } 93 return std::nullopt; 94 } 95 96 // Utilities to set a source location, if we have one, on an actual argument, 97 // when it is statically present. 98 static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) { 99 x.set_sourceLocation(at); 100 } 101 static void SetArgSourceLocation( 102 std::optional<ActualArgument> &x, parser::CharBlock at) { 103 if (x) { 104 x->set_sourceLocation(at); 105 } 106 } 107 static void SetArgSourceLocation( 108 std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) { 109 if (x && at) { 110 x->set_sourceLocation(*at); 111 } 112 } 113 114 class ArgumentAnalyzer { 115 public: 116 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 117 : context_{context}, source_{context.GetContextualMessages().at()}, 118 isProcedureCall_{false} {} 119 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 120 bool isProcedureCall = false) 121 : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} 122 bool fatalErrors() const { return fatalErrors_; } 123 ActualArguments &&GetActuals() { 124 CHECK(!fatalErrors_); 125 return std::move(actuals_); 126 } 127 const Expr<SomeType> &GetExpr(std::size_t i) const { 128 return DEREF(actuals_.at(i).value().UnwrapExpr()); 129 } 130 Expr<SomeType> &&MoveExpr(std::size_t i) { 131 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 132 } 133 void Analyze(const common::Indirection<parser::Expr> &x) { 134 Analyze(x.value()); 135 } 136 void Analyze(const parser::Expr &x) { 137 actuals_.emplace_back(AnalyzeExpr(x)); 138 SetArgSourceLocation(actuals_.back(), x.source); 139 fatalErrors_ |= !actuals_.back(); 140 } 141 void Analyze(const parser::Variable &); 142 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 143 void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, 144 std::optional<DynamicType> otherType); 145 146 bool IsIntrinsicRelational( 147 RelationalOperator, const DynamicType &, const DynamicType &) const; 148 bool IsIntrinsicLogical() const; 149 bool IsIntrinsicNumeric(NumericOperator) const; 150 bool IsIntrinsicConcat() const; 151 152 bool CheckConformance(); 153 bool CheckForNullPointer(const char *where = "as an operand here"); 154 155 // Find and return a user-defined operator or report an error. 156 // The provided message is used if there is no such operator. 157 MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText, 158 const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false); 159 template <typename E> 160 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { 161 return TryDefinedOp( 162 context_.context().languageFeatures().GetNames(opr), msg); 163 } 164 // Find and return a user-defined assignment 165 std::optional<ProcedureRef> TryDefinedAssignment(); 166 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 167 std::optional<DynamicType> GetType(std::size_t) const; 168 void Dump(llvm::raw_ostream &); 169 170 private: 171 MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); 172 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 173 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 174 MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); 175 bool AreConformable() const; 176 const Symbol *FindBoundOp( 177 parser::CharBlock, int passIndex, const Symbol *&definedOp); 178 void AddAssignmentConversion( 179 const DynamicType &lhsType, const DynamicType &rhsType); 180 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 181 int GetRank(std::size_t) const; 182 bool IsBOZLiteral(std::size_t i) const { 183 return evaluate::IsBOZLiteral(GetExpr(i)); 184 } 185 void SayNoMatch(const std::string &, bool isAssignment = false); 186 std::string TypeAsFortran(std::size_t); 187 bool AnyUntypedOrMissingOperand(); 188 189 ExpressionAnalyzer &context_; 190 ActualArguments actuals_; 191 parser::CharBlock source_; 192 bool fatalErrors_{false}; 193 const bool isProcedureCall_; // false for user-defined op or assignment 194 }; 195 196 // Wraps a data reference in a typed Designator<>, and a procedure 197 // or procedure pointer reference in a ProcedureDesignator. 198 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 199 const Symbol &last{ref.GetLastSymbol()}; 200 const Symbol &symbol{BypassGeneric(last).GetUltimate()}; 201 if (semantics::IsProcedure(symbol)) { 202 if (auto *component{std::get_if<Component>(&ref.u)}) { 203 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 204 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 205 DIE("unexpected alternative in DataRef"); 206 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 207 if (symbol.has<semantics::GenericDetails>()) { 208 Say("'%s' is not a specific procedure"_err_en_US, symbol.name()); 209 } else { 210 return Expr<SomeType>{ProcedureDesignator{symbol}}; 211 } 212 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 213 symbol.name().ToString())}; 214 interface && !interface->isRestrictedSpecific) { 215 SpecificIntrinsic intrinsic{ 216 symbol.name().ToString(), std::move(*interface)}; 217 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 218 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 219 } else { 220 Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, 221 symbol.name()); 222 } 223 return std::nullopt; 224 } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { 225 return result; 226 } else { 227 if (!context_.HasError(last) && !context_.HasError(symbol)) { 228 AttachDeclaration( 229 Say("'%s' is not an object that can appear in an expression"_err_en_US, 230 last.name()), 231 symbol); 232 context_.SetError(last); 233 } 234 return std::nullopt; 235 } 236 } 237 238 // Some subscript semantic checks must be deferred until all of the 239 // subscripts are in hand. 240 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 241 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 242 int symbolRank{symbol.Rank()}; 243 int subscripts{static_cast<int>(ref.size())}; 244 if (subscripts == 0) { 245 return std::nullopt; // error recovery 246 } else if (subscripts != symbolRank) { 247 if (symbolRank != 0) { 248 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 249 symbolRank, symbol.name(), subscripts); 250 } 251 return std::nullopt; 252 } else if (const auto *object{ 253 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 254 // C928 & C1002 255 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 256 if (!last->upper() && object->IsAssumedSize()) { 257 Say("Assumed-size array '%s' must have explicit final " 258 "subscript upper bound value"_err_en_US, 259 symbol.name()); 260 return std::nullopt; 261 } 262 } 263 } else { 264 // Shouldn't get here from Analyze(ArrayElement) without a valid base, 265 // which, if not an object, must be a construct entity from 266 // SELECT TYPE/RANK or ASSOCIATE. 267 CHECK(symbol.has<semantics::AssocEntityDetails>()); 268 } 269 return Designate(DataRef{std::move(ref)}); 270 } 271 272 // Applies subscripts to a data reference. 273 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 274 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 275 if (subscripts.empty()) { 276 return std::nullopt; // error recovery 277 } 278 return common::visit( 279 common::visitors{ 280 [&](SymbolRef &&symbol) { 281 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 282 }, 283 [&](Component &&c) { 284 return CompleteSubscripts( 285 ArrayRef{std::move(c), std::move(subscripts)}); 286 }, 287 [&](auto &&) -> MaybeExpr { 288 DIE("bad base for ArrayRef"); 289 return std::nullopt; 290 }, 291 }, 292 std::move(dataRef.u)); 293 } 294 295 // C919a - only one part-ref of a data-ref may have rank > 0 296 bool ExpressionAnalyzer::CheckRanks(const DataRef &dataRef) { 297 return common::visit( 298 common::visitors{ 299 [this](const Component &component) { 300 const Symbol &symbol{component.GetLastSymbol()}; 301 if (int componentRank{symbol.Rank()}; componentRank > 0) { 302 if (int baseRank{component.base().Rank()}; baseRank > 0) { 303 Say("Reference to whole rank-%d component '%s' of rank-%d array of derived type is not allowed"_err_en_US, 304 componentRank, symbol.name(), baseRank); 305 return false; 306 } 307 } else { 308 return CheckRanks(component.base()); 309 } 310 return true; 311 }, 312 [this](const ArrayRef &arrayRef) { 313 if (const auto *component{arrayRef.base().UnwrapComponent()}) { 314 int subscriptRank{0}; 315 for (const Subscript &subscript : arrayRef.subscript()) { 316 subscriptRank += subscript.Rank(); 317 } 318 if (subscriptRank > 0) { 319 if (int componentBaseRank{component->base().Rank()}; 320 componentBaseRank > 0) { 321 Say("Subscripts of component '%s' of rank-%d derived type array have rank %d but must all be scalar"_err_en_US, 322 component->GetLastSymbol().name(), componentBaseRank, 323 subscriptRank); 324 return false; 325 } 326 } else { 327 return CheckRanks(component->base()); 328 } 329 } 330 return true; 331 }, 332 [](const SymbolRef &) { return true; }, 333 [](const CoarrayRef &) { return true; }, 334 }, 335 dataRef.u); 336 } 337 338 // Parse tree correction after a substring S(j:k) was misparsed as an 339 // array section. Fortran substrings must have a range, not a 340 // single index. 341 static std::optional<parser::Substring> FixMisparsedSubstringDataRef( 342 parser::DataRef &dataRef) { 343 if (auto *ae{ 344 std::get_if<common::Indirection<parser::ArrayElement>>(&dataRef.u)}) { 345 // ...%a(j:k) and "a" is a character scalar 346 parser::ArrayElement &arrElement{ae->value()}; 347 if (arrElement.subscripts.size() == 1) { 348 if (auto *triplet{std::get_if<parser::SubscriptTriplet>( 349 &arrElement.subscripts.front().u)}) { 350 if (!std::get<2 /*stride*/>(triplet->t).has_value()) { 351 if (const Symbol * 352 symbol{parser::GetLastName(arrElement.base).symbol}) { 353 const Symbol &ultimate{symbol->GetUltimate()}; 354 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 355 if (!ultimate.IsObjectArray() && 356 type->category() == semantics::DeclTypeSpec::Character) { 357 // The ambiguous S(j:k) was parsed as an array section 358 // reference, but it's now clear that it's a substring. 359 // Fix the parse tree in situ. 360 return arrElement.ConvertToSubstring(); 361 } 362 } 363 } 364 } 365 } 366 } 367 } 368 return std::nullopt; 369 } 370 371 // When a designator is a misparsed type-param-inquiry of a misparsed 372 // substring -- it looks like a structure component reference of an array 373 // slice -- fix the substring and then convert to an intrinsic function 374 // call to KIND() or LEN(). And when the designator is a misparsed 375 // substring, convert it into a substring reference in place. 376 MaybeExpr ExpressionAnalyzer::FixMisparsedSubstring( 377 const parser::Designator &d) { 378 auto &mutate{const_cast<parser::Designator &>(d)}; 379 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 380 if (auto *sc{std::get_if<common::Indirection<parser::StructureComponent>>( 381 &dataRef->u)}) { 382 parser::StructureComponent &structComponent{sc->value()}; 383 parser::CharBlock which{structComponent.component.source}; 384 if (which == "kind" || which == "len") { 385 if (auto substring{ 386 FixMisparsedSubstringDataRef(structComponent.base)}) { 387 // ...%a(j:k)%kind or %len and "a" is a character scalar 388 mutate.u = std::move(*substring); 389 if (MaybeExpr substringExpr{Analyze(d)}) { 390 return MakeFunctionRef(which, 391 ActualArguments{ActualArgument{std::move(*substringExpr)}}); 392 } 393 } 394 } 395 } else if (auto substring{FixMisparsedSubstringDataRef(*dataRef)}) { 396 mutate.u = std::move(*substring); 397 } 398 } 399 return std::nullopt; 400 } 401 402 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 403 auto restorer{GetContextualMessages().SetLocation(d.source)}; 404 if (auto substringInquiry{FixMisparsedSubstring(d)}) { 405 return substringInquiry; 406 } 407 // These checks have to be deferred to these "top level" data-refs where 408 // we can be sure that there are no following subscripts (yet). 409 if (MaybeExpr result{Analyze(d.u)}) { 410 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 411 if (!CheckRanks(std::move(*dataRef))) { 412 return std::nullopt; 413 } 414 return Designate(std::move(*dataRef)); 415 } else if (std::optional<DataRef> dataRef{ 416 ExtractDataRef(std::move(result), /*intoSubstring=*/true)}) { 417 if (!CheckRanks(std::move(*dataRef))) { 418 return std::nullopt; 419 } 420 } else if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result), 421 /*intoSubstring=*/false, /*intoComplexPart=*/true)}) { 422 if (!CheckRanks(std::move(*dataRef))) { 423 return std::nullopt; 424 } 425 } 426 return result; 427 } 428 return std::nullopt; 429 } 430 431 // A utility subroutine to repackage optional expressions of various levels 432 // of type specificity as fully general MaybeExpr values. 433 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 434 return AsGenericExpr(std::move(x)); 435 } 436 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 437 if (x) { 438 return AsMaybeExpr(std::move(*x)); 439 } 440 return std::nullopt; 441 } 442 443 // Type kind parameter values for literal constants. 444 int ExpressionAnalyzer::AnalyzeKindParam( 445 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 446 if (!kindParam) { 447 return defaultKind; 448 } 449 return common::visit( 450 common::visitors{ 451 [](std::uint64_t k) { return static_cast<int>(k); }, 452 [&](const parser::Scalar< 453 parser::Integer<parser::Constant<parser::Name>>> &n) { 454 if (MaybeExpr ie{Analyze(n)}) { 455 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 456 int iv = *i64; 457 if (iv == *i64) { 458 return iv; 459 } 460 } 461 } 462 return defaultKind; 463 }, 464 }, 465 kindParam->u); 466 } 467 468 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 469 struct IntTypeVisitor { 470 using Result = MaybeExpr; 471 using Types = IntegerTypes; 472 template <typename T> Result Test() { 473 if (T::kind >= kind) { 474 const char *p{digits.begin()}; 475 using Int = typename T::Scalar; 476 typename Int::ValueWithOverflow num{0, false}; 477 if (isNegated) { 478 auto unsignedNum{Int::Read(p, 10, false /*unsigned*/)}; 479 num.value = unsignedNum.value.Negate().value; 480 num.overflow = unsignedNum.overflow || num.value > Int{0}; 481 if (!num.overflow && num.value.Negate().overflow && 482 !analyzer.context().IsInModuleFile(digits)) { 483 analyzer.Say(digits, 484 "negated maximum INTEGER(KIND=%d) literal"_port_en_US, T::kind); 485 } 486 } else { 487 num = Int::Read(p, 10, true /*signed*/); 488 } 489 if (!num.overflow) { 490 if (T::kind > kind) { 491 if (!isDefaultKind || 492 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 493 return std::nullopt; 494 } else if (analyzer.context().ShouldWarn( 495 LanguageFeature::BigIntLiterals)) { 496 analyzer.Say(digits, 497 "Integer literal is too large for default INTEGER(KIND=%d); " 498 "assuming INTEGER(KIND=%d)"_port_en_US, 499 kind, T::kind); 500 } 501 } 502 return Expr<SomeType>{ 503 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(num.value)}}}}; 504 } 505 } 506 return std::nullopt; 507 } 508 ExpressionAnalyzer &analyzer; 509 parser::CharBlock digits; 510 int kind; 511 bool isDefaultKind; 512 bool isNegated; 513 }; 514 515 template <typename PARSED> 516 MaybeExpr ExpressionAnalyzer::IntLiteralConstant( 517 const PARSED &x, bool isNegated) { 518 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 519 bool isDefaultKind{!kindParam}; 520 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 521 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 522 auto digits{std::get<parser::CharBlock>(x.t)}; 523 if (MaybeExpr result{common::SearchTypes( 524 IntTypeVisitor{*this, digits, kind, isDefaultKind, isNegated})}) { 525 return result; 526 } else if (isDefaultKind) { 527 Say(digits, 528 "Integer literal is too large for any allowable " 529 "kind of INTEGER"_err_en_US); 530 } else { 531 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 532 kind); 533 } 534 } 535 return std::nullopt; 536 } 537 538 MaybeExpr ExpressionAnalyzer::Analyze( 539 const parser::IntLiteralConstant &x, bool isNegated) { 540 auto restorer{ 541 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 542 return IntLiteralConstant(x, isNegated); 543 } 544 545 MaybeExpr ExpressionAnalyzer::Analyze( 546 const parser::SignedIntLiteralConstant &x) { 547 auto restorer{GetContextualMessages().SetLocation(x.source)}; 548 return IntLiteralConstant(x); 549 } 550 551 template <typename TYPE> 552 Constant<TYPE> ReadRealLiteral( 553 parser::CharBlock source, FoldingContext &context) { 554 const char *p{source.begin()}; 555 auto valWithFlags{ 556 Scalar<TYPE>::Read(p, context.targetCharacteristics().roundingMode())}; 557 CHECK(p == source.end()); 558 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 559 auto value{valWithFlags.value}; 560 if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { 561 value = value.FlushSubnormalToZero(); 562 } 563 return {value}; 564 } 565 566 struct RealTypeVisitor { 567 using Result = std::optional<Expr<SomeReal>>; 568 using Types = RealTypes; 569 570 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 571 : kind{k}, literal{lit}, context{ctx} {} 572 573 template <typename T> Result Test() { 574 if (kind == T::kind) { 575 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 576 } 577 return std::nullopt; 578 } 579 580 int kind; 581 parser::CharBlock literal; 582 FoldingContext &context; 583 }; 584 585 // Reads a real literal constant and encodes it with the right kind. 586 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 587 // Use a local message context around the real literal for better 588 // provenance on any messages. 589 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 590 // If a kind parameter appears, it defines the kind of the literal and the 591 // letter used in an exponent part must be 'E' (e.g., the 'E' in 592 // "6.02214E+23"). In the absence of an explicit kind parameter, any 593 // exponent letter determines the kind. Otherwise, defaults apply. 594 auto &defaults{context_.defaultKinds()}; 595 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 596 const char *end{x.real.source.end()}; 597 char expoLetter{' '}; 598 std::optional<int> letterKind; 599 for (const char *p{x.real.source.begin()}; p < end; ++p) { 600 if (parser::IsLetter(*p)) { 601 expoLetter = *p; 602 switch (expoLetter) { 603 case 'e': 604 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 605 break; 606 case 'd': 607 letterKind = defaults.doublePrecisionKind(); 608 break; 609 case 'q': 610 letterKind = defaults.quadPrecisionKind(); 611 break; 612 default: 613 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 614 } 615 break; 616 } 617 } 618 if (letterKind) { 619 defaultKind = *letterKind; 620 } 621 // C716 requires 'E' as an exponent. 622 // Extension: allow exponent-letter matching the kind-param. 623 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 624 if (letterKind && expoLetter != 'e') { 625 if (kind != *letterKind) { 626 Say("Explicit kind parameter on real constant disagrees with " 627 "exponent letter '%c'"_warn_en_US, 628 expoLetter); 629 } else if (x.kind && 630 context_.ShouldWarn( 631 common::LanguageFeature::ExponentMatchingKindParam)) { 632 Say("Explicit kind parameter together with non-'E' exponent letter " 633 "is not standard"_port_en_US); 634 } 635 } 636 auto result{common::SearchTypes( 637 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 638 if (!result) { // C717 639 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 640 } 641 return AsMaybeExpr(std::move(result)); 642 } 643 644 MaybeExpr ExpressionAnalyzer::Analyze( 645 const parser::SignedRealLiteralConstant &x) { 646 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 647 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 648 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 649 if (sign == parser::Sign::Negative) { 650 return AsGenericExpr(-std::move(realExpr)); 651 } 652 } 653 return result; 654 } 655 return std::nullopt; 656 } 657 658 MaybeExpr ExpressionAnalyzer::Analyze( 659 const parser::SignedComplexLiteralConstant &x) { 660 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 661 if (!result) { 662 return std::nullopt; 663 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 664 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 665 } else { 666 return result; 667 } 668 } 669 670 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 671 return Analyze(x.u); 672 } 673 674 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 675 return AsMaybeExpr( 676 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 677 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 678 } 679 680 // CHARACTER literal processing. 681 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 682 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 683 return std::nullopt; 684 } 685 switch (kind) { 686 case 1: 687 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 688 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 689 string, true)}); 690 case 2: 691 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 692 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 693 string, true)}); 694 case 4: 695 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 696 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 697 string, true)}); 698 default: 699 CRASH_NO_CASE; 700 } 701 } 702 703 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 704 int kind{ 705 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 706 auto value{std::get<std::string>(x.t)}; 707 return AnalyzeString(std::move(value), kind); 708 } 709 710 MaybeExpr ExpressionAnalyzer::Analyze( 711 const parser::HollerithLiteralConstant &x) { 712 int kind{GetDefaultKind(TypeCategory::Character)}; 713 auto value{x.v}; 714 return AnalyzeString(std::move(value), kind); 715 } 716 717 // .TRUE. and .FALSE. of various kinds 718 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 719 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 720 GetDefaultKind(TypeCategory::Logical))}; 721 bool value{std::get<bool>(x.t)}; 722 auto result{common::SearchTypes( 723 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 724 kind, std::move(value)})}; 725 if (!result) { 726 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 727 } 728 return result; 729 } 730 731 // BOZ typeless literals 732 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 733 const char *p{x.v.c_str()}; 734 std::uint64_t base{16}; 735 switch (*p++) { 736 case 'b': 737 base = 2; 738 break; 739 case 'o': 740 base = 8; 741 break; 742 case 'z': 743 break; 744 case 'x': 745 break; 746 default: 747 CRASH_NO_CASE; 748 } 749 CHECK(*p == '"'); 750 ++p; 751 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 752 if (*p != '"') { 753 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, 754 x.v); // C7107, C7108 755 return std::nullopt; 756 } 757 if (value.overflow) { 758 Say("BOZ literal '%s' too large"_err_en_US, x.v); 759 return std::nullopt; 760 } 761 return AsGenericExpr(std::move(value.value)); 762 } 763 764 // Names and named constants 765 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 766 auto restorer{GetContextualMessages().SetLocation(n.source)}; 767 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 768 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 769 *kind, AsExpr(ImpliedDoIndex{n.source}))); 770 } 771 if (context_.HasError(n.symbol)) { // includes case of no symbol 772 return std::nullopt; 773 } else { 774 const Symbol &ultimate{n.symbol->GetUltimate()}; 775 if (ultimate.has<semantics::TypeParamDetails>()) { 776 // A bare reference to a derived type parameter (within a parameterized 777 // derived type definition) 778 return Fold(ConvertToType( 779 ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); 780 } else { 781 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 782 if (const semantics::Scope * 783 pure{semantics::FindPureProcedureContaining( 784 context_.FindScope(n.source))}) { 785 SayAt(n, 786 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 787 n.source, DEREF(pure->symbol()).name()); 788 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 789 } 790 } 791 if (!isWholeAssumedSizeArrayOk_ && 792 semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231 793 AttachDeclaration( 794 SayAt(n, 795 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, 796 n.source), 797 *n.symbol); 798 } 799 return Designate(DataRef{*n.symbol}); 800 } 801 } 802 } 803 804 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 805 auto restorer{GetContextualMessages().SetLocation(n.v.source)}; 806 if (MaybeExpr value{Analyze(n.v)}) { 807 Expr<SomeType> folded{Fold(std::move(*value))}; 808 if (IsConstantExpr(folded)) { 809 return folded; 810 } 811 Say(n.v.source, "must be a constant"_err_en_US); // C718 812 } 813 return std::nullopt; 814 } 815 816 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { 817 if (MaybeExpr value{Analyze(n.v)}) { 818 // Subtle: when the NullInit is a DataStmtConstant, it might 819 // be a misparse of a structure constructor without parameters 820 // or components (e.g., T()). Checking the result to ensure 821 // that a "=>" data entity initializer actually resolved to 822 // a null pointer has to be done by the caller. 823 return Fold(std::move(*value)); 824 } 825 return std::nullopt; 826 } 827 828 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 829 return Analyze(x.value()); 830 } 831 832 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 833 if (const auto &repeat{ 834 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 835 x.repetitions = -1; 836 if (MaybeExpr expr{Analyze(repeat->u)}) { 837 Expr<SomeType> folded{Fold(std::move(*expr))}; 838 if (auto value{ToInt64(folded)}) { 839 if (*value >= 0) { // C882 840 x.repetitions = *value; 841 } else { 842 Say(FindSourceLocation(repeat), 843 "Repeat count (%jd) for data value must not be negative"_err_en_US, 844 *value); 845 } 846 } 847 } 848 } 849 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 850 } 851 852 // Substring references 853 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 854 const std::optional<parser::ScalarIntExpr> &bound) { 855 if (bound) { 856 if (MaybeExpr expr{Analyze(*bound)}) { 857 if (expr->Rank() > 1) { 858 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 859 } 860 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 861 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 862 return {std::move(*ssIntExpr)}; 863 } 864 return {Expr<SubscriptInteger>{ 865 Convert<SubscriptInteger, TypeCategory::Integer>{ 866 std::move(*intExpr)}}}; 867 } else { 868 Say("substring bound expression is not INTEGER"_err_en_US); 869 } 870 } 871 } 872 return std::nullopt; 873 } 874 875 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 876 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 877 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 878 if (MaybeExpr newBaseExpr{Designate(std::move(*dataRef))}) { 879 if (std::optional<DataRef> checked{ 880 ExtractDataRef(std::move(*newBaseExpr))}) { 881 const parser::SubstringRange &range{ 882 std::get<parser::SubstringRange>(ss.t)}; 883 std::optional<Expr<SubscriptInteger>> first{ 884 GetSubstringBound(std::get<0>(range.t))}; 885 std::optional<Expr<SubscriptInteger>> last{ 886 GetSubstringBound(std::get<1>(range.t))}; 887 const Symbol &symbol{checked->GetLastSymbol()}; 888 if (std::optional<DynamicType> dynamicType{ 889 DynamicType::From(symbol)}) { 890 if (dynamicType->category() == TypeCategory::Character) { 891 return WrapperHelper<TypeCategory::Character, Designator, 892 Substring>(dynamicType->kind(), 893 Substring{std::move(checked.value()), std::move(first), 894 std::move(last)}); 895 } 896 } 897 Say("substring may apply only to CHARACTER"_err_en_US); 898 } 899 } 900 } 901 } 902 return std::nullopt; 903 } 904 905 // CHARACTER literal substrings 906 MaybeExpr ExpressionAnalyzer::Analyze( 907 const parser::CharLiteralConstantSubstring &x) { 908 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 909 std::optional<Expr<SubscriptInteger>> lower{ 910 GetSubstringBound(std::get<0>(range.t))}; 911 std::optional<Expr<SubscriptInteger>> upper{ 912 GetSubstringBound(std::get<1>(range.t))}; 913 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 914 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 915 Expr<SubscriptInteger> length{ 916 common::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 917 charExpr->u)}; 918 if (!lower) { 919 lower = Expr<SubscriptInteger>{1}; 920 } 921 if (!upper) { 922 upper = Expr<SubscriptInteger>{ 923 static_cast<std::int64_t>(ToInt64(length).value())}; 924 } 925 return common::visit( 926 [&](auto &&ckExpr) -> MaybeExpr { 927 using Result = ResultType<decltype(ckExpr)>; 928 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 929 CHECK(DEREF(cp).size() == 1); 930 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 931 staticData->set_alignment(Result::kind) 932 .set_itemBytes(Result::kind) 933 .Push(cp->GetScalarValue().value(), 934 foldingContext_.targetCharacteristics().isBigEndian()); 935 Substring substring{std::move(staticData), std::move(lower.value()), 936 std::move(upper.value())}; 937 return AsGenericExpr( 938 Expr<Result>{Designator<Result>{std::move(substring)}}); 939 }, 940 std::move(charExpr->u)); 941 } 942 } 943 return std::nullopt; 944 } 945 946 // substring%KIND/LEN 947 MaybeExpr ExpressionAnalyzer::Analyze(const parser::SubstringInquiry &x) { 948 if (MaybeExpr substring{Analyze(x.v)}) { 949 CHECK(x.source.size() >= 8); 950 int nameLen{x.source.end()[-1] == 'n' ? 3 /*LEN*/ : 4 /*KIND*/}; 951 parser::CharBlock name{ 952 x.source.end() - nameLen, static_cast<std::size_t>(nameLen)}; 953 CHECK(name == "len" || name == "kind"); 954 return MakeFunctionRef( 955 name, ActualArguments{ActualArgument{std::move(*substring)}}); 956 } else { 957 return std::nullopt; 958 } 959 } 960 961 // Subscripted array references 962 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 963 MaybeExpr &&expr) { 964 if (expr) { 965 if (expr->Rank() > 1) { 966 Say("Subscript expression has rank %d greater than 1"_err_en_US, 967 expr->Rank()); 968 } 969 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 970 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 971 return std::move(*ssIntExpr); 972 } else { 973 return Expr<SubscriptInteger>{ 974 Convert<SubscriptInteger, TypeCategory::Integer>{ 975 std::move(*intExpr)}}; 976 } 977 } else { 978 Say("Subscript expression is not INTEGER"_err_en_US); 979 } 980 } 981 return std::nullopt; 982 } 983 984 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 985 const std::optional<parser::Subscript> &s) { 986 if (s) { 987 return AsSubscript(Analyze(*s)); 988 } else { 989 return std::nullopt; 990 } 991 } 992 993 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 994 const parser::SectionSubscript &ss) { 995 return common::visit( 996 common::visitors{ 997 [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { 998 const auto &lower{std::get<0>(t.t)}; 999 const auto &upper{std::get<1>(t.t)}; 1000 const auto &stride{std::get<2>(t.t)}; 1001 auto result{Triplet{ 1002 TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; 1003 if ((lower && !result.lower()) || (upper && !result.upper())) { 1004 return std::nullopt; 1005 } else { 1006 return std::make_optional<Subscript>(result); 1007 } 1008 }, 1009 [&](const auto &s) -> std::optional<Subscript> { 1010 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 1011 return Subscript{std::move(*subscriptExpr)}; 1012 } else { 1013 return std::nullopt; 1014 } 1015 }, 1016 }, 1017 ss.u); 1018 } 1019 1020 // Empty result means an error occurred 1021 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 1022 const std::list<parser::SectionSubscript> &sss) { 1023 bool error{false}; 1024 std::vector<Subscript> subscripts; 1025 for (const auto &s : sss) { 1026 if (auto subscript{AnalyzeSectionSubscript(s)}) { 1027 subscripts.emplace_back(std::move(*subscript)); 1028 } else { 1029 error = true; 1030 } 1031 } 1032 return !error ? subscripts : std::vector<Subscript>{}; 1033 } 1034 1035 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 1036 MaybeExpr baseExpr; 1037 { 1038 auto restorer{AllowWholeAssumedSizeArray()}; 1039 baseExpr = Analyze(ae.base); 1040 } 1041 if (baseExpr) { 1042 if (ae.subscripts.empty()) { 1043 // will be converted to function call later or error reported 1044 } else if (baseExpr->Rank() == 0) { 1045 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 1046 if (!context_.HasError(symbol)) { 1047 if (inDataStmtConstant_) { 1048 // Better error for NULL(X) with a MOLD= argument 1049 Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US, 1050 symbol->name()); 1051 } else { 1052 Say("'%s' is not an array"_err_en_US, symbol->name()); 1053 } 1054 context_.SetError(*symbol); 1055 } 1056 } 1057 } else if (std::optional<DataRef> dataRef{ 1058 ExtractDataRef(std::move(*baseExpr))}) { 1059 return ApplySubscripts( 1060 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 1061 } else { 1062 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 1063 } 1064 } 1065 // error was reported: analyze subscripts without reporting more errors 1066 auto restorer{GetContextualMessages().DiscardMessages()}; 1067 AnalyzeSectionSubscripts(ae.subscripts); 1068 return std::nullopt; 1069 } 1070 1071 // Type parameter inquiries apply to data references, but don't depend 1072 // on any trailing (co)subscripts. 1073 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 1074 return common::visit( 1075 common::visitors{ 1076 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 1077 [](Component &&component) { 1078 return NamedEntity{std::move(component)}; 1079 }, 1080 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 1081 [](CoarrayRef &&coarrayRef) { 1082 return NamedEntity{coarrayRef.GetLastSymbol()}; 1083 }, 1084 }, 1085 std::move(designator.u)); 1086 } 1087 1088 // Components of parent derived types are explicitly represented as such. 1089 std::optional<Component> ExpressionAnalyzer::CreateComponent( 1090 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 1091 if (IsAllocatableOrPointer(component) && base.Rank() > 0) { // C919b 1092 Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); 1093 } 1094 if (&component.owner() == &scope) { 1095 return Component{std::move(base), component}; 1096 } 1097 if (const Symbol * typeSymbol{scope.GetSymbol()}) { 1098 if (const Symbol * 1099 parentComponent{typeSymbol->GetParentComponent(&scope)}) { 1100 if (const auto *object{ 1101 parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) { 1102 if (const auto *parentType{object->type()}) { 1103 if (const semantics::Scope * 1104 parentScope{parentType->derivedTypeSpec().scope()}) { 1105 return CreateComponent( 1106 DataRef{Component{std::move(base), *parentComponent}}, 1107 component, *parentScope); 1108 } 1109 } 1110 } 1111 } 1112 } 1113 return std::nullopt; 1114 } 1115 1116 // Derived type component references and type parameter inquiries 1117 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 1118 MaybeExpr base{Analyze(sc.base)}; 1119 Symbol *sym{sc.component.symbol}; 1120 if (!base || !sym || context_.HasError(sym)) { 1121 return std::nullopt; 1122 } 1123 const auto &name{sc.component.source}; 1124 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1125 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 1126 if (sym->detailsIf<semantics::TypeParamDetails>()) { 1127 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 1128 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 1129 if (dyType->category() == TypeCategory::Integer) { 1130 auto restorer{GetContextualMessages().SetLocation(name)}; 1131 return Fold(ConvertToType(*dyType, 1132 AsGenericExpr(TypeParamInquiry{ 1133 IgnoreAnySubscripts(std::move(*designator)), *sym}))); 1134 } 1135 } 1136 Say(name, "Type parameter is not INTEGER"_err_en_US); 1137 } else { 1138 Say(name, 1139 "A type parameter inquiry must be applied to " 1140 "a designator"_err_en_US); 1141 } 1142 } else if (!dtSpec || !dtSpec->scope()) { 1143 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 1144 return std::nullopt; 1145 } else if (std::optional<DataRef> dataRef{ 1146 ExtractDataRef(std::move(*dtExpr))}) { 1147 if (auto component{ 1148 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 1149 return Designate(DataRef{std::move(*component)}); 1150 } else { 1151 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1152 dtSpec->typeSymbol().name()); 1153 } 1154 } else { 1155 Say(name, 1156 "Base of component reference must be a data reference"_err_en_US); 1157 } 1158 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1159 // special part-ref: %re, %im, %kind, %len 1160 // Type errors on the base of %re/%im/%len are detected and 1161 // reported in name resolution. 1162 using MiscKind = semantics::MiscDetails::Kind; 1163 MiscKind kind{details->kind()}; 1164 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1165 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1166 if (std::optional<DataRef> dataRef{ExtractDataRef(*zExpr)}) { 1167 // Represent %RE/%IM as a designator 1168 Expr<SomeReal> realExpr{common::visit( 1169 [&](const auto &z) { 1170 using PartType = typename ResultType<decltype(z)>::Part; 1171 auto part{kind == MiscKind::ComplexPartRe 1172 ? ComplexPart::Part::RE 1173 : ComplexPart::Part::IM}; 1174 return AsCategoryExpr(Designator<PartType>{ 1175 ComplexPart{std::move(*dataRef), part}}); 1176 }, 1177 zExpr->u)}; 1178 return AsGenericExpr(std::move(realExpr)); 1179 } 1180 } 1181 } else if (kind == MiscKind::KindParamInquiry || 1182 kind == MiscKind::LenParamInquiry) { 1183 ActualArgument arg{std::move(*base)}; 1184 SetArgSourceLocation(arg, name); 1185 return MakeFunctionRef(name, ActualArguments{std::move(arg)}); 1186 } else { 1187 DIE("unexpected MiscDetails::Kind"); 1188 } 1189 } else { 1190 Say(name, "derived type required before component reference"_err_en_US); 1191 } 1192 return std::nullopt; 1193 } 1194 1195 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1196 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1197 DataRef *dataRef{&*maybeDataRef}; 1198 std::vector<Subscript> subscripts; 1199 SymbolVector reversed; 1200 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1201 subscripts = std::move(aRef->subscript()); 1202 reversed.push_back(aRef->GetLastSymbol()); 1203 if (Component * component{aRef->base().UnwrapComponent()}) { 1204 dataRef = &component->base(); 1205 } else { 1206 dataRef = nullptr; 1207 } 1208 } 1209 if (dataRef) { 1210 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1211 reversed.push_back(component->GetLastSymbol()); 1212 dataRef = &component->base(); 1213 } 1214 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1215 reversed.push_back(*baseSym); 1216 } else { 1217 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1218 } 1219 } 1220 std::vector<Expr<SubscriptInteger>> cosubscripts; 1221 bool cosubsOk{true}; 1222 for (const auto &cosub : 1223 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1224 MaybeExpr coex{Analyze(cosub)}; 1225 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1226 cosubscripts.push_back( 1227 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1228 } else { 1229 cosubsOk = false; 1230 } 1231 } 1232 if (cosubsOk && !reversed.empty()) { 1233 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1234 const Symbol &symbol{reversed.front()}; 1235 if (numCosubscripts != symbol.Corank()) { 1236 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1237 symbol.name(), symbol.Corank(), numCosubscripts); 1238 } 1239 } 1240 for (const auto &imageSelSpec : 1241 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1242 common::visit( 1243 common::visitors{ 1244 [&](const auto &x) { Analyze(x.v); }, 1245 }, 1246 imageSelSpec.u); 1247 } 1248 // Reverse the chain of symbols so that the base is first and coarray 1249 // ultimate component is last. 1250 if (cosubsOk) { 1251 return Designate( 1252 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1253 std::move(subscripts), std::move(cosubscripts)}}); 1254 } 1255 } 1256 return std::nullopt; 1257 } 1258 1259 int ExpressionAnalyzer::IntegerTypeSpecKind( 1260 const parser::IntegerTypeSpec &spec) { 1261 Expr<SubscriptInteger> value{ 1262 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1263 if (auto kind{ToInt64(value)}) { 1264 return static_cast<int>(*kind); 1265 } 1266 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1267 return GetDefaultKind(TypeCategory::Integer); 1268 } 1269 1270 // Array constructors 1271 1272 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1273 // all happen to have the same actual type T into one ArrayConstructor<T>. 1274 template <typename T> 1275 ArrayConstructorValues<T> MakeSpecific( 1276 ArrayConstructorValues<SomeType> &&from) { 1277 ArrayConstructorValues<T> to; 1278 for (ArrayConstructorValue<SomeType> &x : from) { 1279 common::visit( 1280 common::visitors{ 1281 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1282 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1283 to.Push(std::move(DEREF(typed))); 1284 }, 1285 [&](ImpliedDo<SomeType> &&impliedDo) { 1286 to.Push(ImpliedDo<T>{impliedDo.name(), 1287 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1288 std::move(impliedDo.stride()), 1289 MakeSpecific<T>(std::move(impliedDo.values()))}); 1290 }, 1291 }, 1292 std::move(x.u)); 1293 } 1294 return to; 1295 } 1296 1297 class ArrayConstructorContext { 1298 public: 1299 ArrayConstructorContext( 1300 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1301 : exprAnalyzer_{c}, type_{std::move(t)} {} 1302 1303 void Add(const parser::AcValue &); 1304 MaybeExpr ToExpr(); 1305 1306 // These interfaces allow *this to be used as a type visitor argument to 1307 // common::SearchTypes() to convert the array constructor to a typed 1308 // expression in ToExpr(). 1309 using Result = MaybeExpr; 1310 using Types = AllTypes; 1311 template <typename T> Result Test() { 1312 if (type_ && type_->category() == T::category) { 1313 if constexpr (T::category == TypeCategory::Derived) { 1314 if (!type_->IsUnlimitedPolymorphic()) { 1315 return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), 1316 MakeSpecific<T>(std::move(values_))}); 1317 } 1318 } else if (type_->kind() == T::kind) { 1319 if constexpr (T::category == TypeCategory::Character) { 1320 if (auto len{type_->LEN()}) { 1321 return AsMaybeExpr(ArrayConstructor<T>{ 1322 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1323 } 1324 } else { 1325 return AsMaybeExpr( 1326 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1327 } 1328 } 1329 } 1330 return std::nullopt; 1331 } 1332 1333 private: 1334 using ImpliedDoIntType = ResultType<ImpliedDoIndex>; 1335 1336 void Push(MaybeExpr &&); 1337 void Add(const parser::AcValue::Triplet &); 1338 void Add(const parser::Expr &); 1339 void Add(const parser::AcImpliedDo &); 1340 void UnrollConstantImpliedDo(const parser::AcImpliedDo &, 1341 parser::CharBlock name, std::int64_t lower, std::int64_t upper, 1342 std::int64_t stride); 1343 1344 template <int KIND, typename A> 1345 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1346 const A &x) { 1347 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1348 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1349 return Fold(exprAnalyzer_.GetFoldingContext(), 1350 ConvertToType<Type<TypeCategory::Integer, KIND>>( 1351 std::move(DEREF(intExpr)))); 1352 } 1353 return std::nullopt; 1354 } 1355 1356 // Nested array constructors all reference the same ExpressionAnalyzer, 1357 // which represents the nest of active implied DO loop indices. 1358 ExpressionAnalyzer &exprAnalyzer_; 1359 std::optional<DynamicTypeWithLength> type_; 1360 bool explicitType_{type_.has_value()}; 1361 std::optional<std::int64_t> constantLength_; 1362 ArrayConstructorValues<SomeType> values_; 1363 std::uint64_t messageDisplayedSet_{0}; 1364 }; 1365 1366 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1367 if (!x) { 1368 return; 1369 } 1370 if (!type_) { 1371 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1372 // Treat an array constructor of BOZ as if default integer. 1373 if (exprAnalyzer_.context().ShouldWarn( 1374 common::LanguageFeature::BOZAsDefaultInteger)) { 1375 exprAnalyzer_.Say( 1376 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1377 } 1378 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1379 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1380 std::move(*boz))); 1381 } 1382 } 1383 std::optional<DynamicType> dyType{x->GetType()}; 1384 if (!dyType) { 1385 if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { 1386 if (!type_) { 1387 // Treat an array constructor of BOZ as if default integer. 1388 if (exprAnalyzer_.context().ShouldWarn( 1389 common::LanguageFeature::BOZAsDefaultInteger)) { 1390 exprAnalyzer_.Say( 1391 "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); 1392 } 1393 x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( 1394 exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), 1395 std::move(*boz))); 1396 dyType = x.value().GetType(); 1397 } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1398 x = std::move(cast); 1399 dyType = *type_; 1400 } else { 1401 if (!(messageDisplayedSet_ & 0x80)) { 1402 exprAnalyzer_.Say( 1403 "BOZ literal is not suitable for use in this array constructor"_err_en_US); 1404 messageDisplayedSet_ |= 0x80; 1405 } 1406 return; 1407 } 1408 } else { // procedure name, &c. 1409 if (!(messageDisplayedSet_ & 0x40)) { 1410 exprAnalyzer_.Say( 1411 "Item is not suitable for use in an array constructor"_err_en_US); 1412 messageDisplayedSet_ |= 0x40; 1413 } 1414 return; 1415 } 1416 } else if (dyType->IsUnlimitedPolymorphic()) { 1417 if (!(messageDisplayedSet_ & 8)) { 1418 exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " 1419 "array constructor"_err_en_US); // C7113 1420 messageDisplayedSet_ |= 8; 1421 } 1422 return; 1423 } 1424 DynamicTypeWithLength xType{dyType.value()}; 1425 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1426 CHECK(xType.category() == TypeCategory::Character); 1427 xType.length = 1428 common::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1429 } 1430 if (!type_) { 1431 // If there is no explicit type-spec in an array constructor, the type 1432 // of the array is the declared type of all of the elements, which must 1433 // be well-defined and all match. 1434 // TODO: Possible language extension: use the most general type of 1435 // the values as the type of a numeric constructed array, convert all 1436 // of the other values to that type. Alternative: let the first value 1437 // determine the type, and convert the others to that type. 1438 CHECK(!explicitType_); 1439 type_ = std::move(xType); 1440 constantLength_ = ToInt64(type_->length); 1441 values_.Push(std::move(*x)); 1442 } else if (!explicitType_) { 1443 if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { 1444 values_.Push(std::move(*x)); 1445 if (auto thisLen{ToInt64(xType.LEN())}) { 1446 if (constantLength_) { 1447 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1448 *thisLen != *constantLength_) { 1449 if (!(messageDisplayedSet_ & 1)) { 1450 exprAnalyzer_.Say( 1451 "Character literal in array constructor without explicit " 1452 "type has different length than earlier elements"_port_en_US); 1453 messageDisplayedSet_ |= 1; 1454 } 1455 } 1456 if (*thisLen > *constantLength_) { 1457 // Language extension: use the longest literal to determine the 1458 // length of the array constructor's character elements, not the 1459 // first, when there is no explicit type. 1460 *constantLength_ = *thisLen; 1461 type_->length = xType.LEN(); 1462 } 1463 } else { 1464 constantLength_ = *thisLen; 1465 type_->length = xType.LEN(); 1466 } 1467 } 1468 } else { 1469 if (!(messageDisplayedSet_ & 2)) { 1470 exprAnalyzer_.Say( 1471 "Values in array constructor must have the same declared type " 1472 "when no explicit type appears"_err_en_US); // C7110 1473 messageDisplayedSet_ |= 2; 1474 } 1475 } 1476 } else { 1477 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1478 values_.Push(std::move(*cast)); 1479 } else if (!(messageDisplayedSet_ & 4)) { 1480 exprAnalyzer_.Say("Value in array constructor of type '%s' could not " 1481 "be converted to the type of the array '%s'"_err_en_US, 1482 x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 1483 messageDisplayedSet_ |= 4; 1484 } 1485 } 1486 } 1487 1488 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1489 common::visit( 1490 common::visitors{ 1491 [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, 1492 [&](const common::Indirection<parser::Expr> &expr) { 1493 Add(expr.value()); 1494 }, 1495 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1496 Add(impliedDo.value()); 1497 }, 1498 }, 1499 x.u); 1500 } 1501 1502 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1503 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { 1504 std::optional<Expr<ImpliedDoIntType>> lower{ 1505 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; 1506 std::optional<Expr<ImpliedDoIntType>> upper{ 1507 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; 1508 std::optional<Expr<ImpliedDoIntType>> stride{ 1509 GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; 1510 if (lower && upper) { 1511 if (!stride) { 1512 stride = Expr<ImpliedDoIntType>{1}; 1513 } 1514 if (!type_) { 1515 type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; 1516 } 1517 auto v{std::move(values_)}; 1518 parser::CharBlock anonymous; 1519 Push(Expr<SomeType>{ 1520 Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); 1521 std::swap(v, values_); 1522 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1523 std::move(*upper), std::move(*stride), std::move(v)}); 1524 } 1525 } 1526 1527 void ArrayConstructorContext::Add(const parser::Expr &expr) { 1528 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; 1529 Push(exprAnalyzer_.Analyze(expr)); 1530 } 1531 1532 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { 1533 const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; 1534 const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1535 exprAnalyzer_.Analyze(bounds.name); 1536 parser::CharBlock name{bounds.name.thing.thing.source}; 1537 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1538 int kind{ImpliedDoIntType::kind}; 1539 if (const auto dynamicType{DynamicType::From(symbol)}) { 1540 kind = dynamicType->kind(); 1541 } 1542 std::optional<Expr<ImpliedDoIntType>> lower{ 1543 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; 1544 std::optional<Expr<ImpliedDoIntType>> upper{ 1545 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; 1546 if (lower && upper) { 1547 std::optional<Expr<ImpliedDoIntType>> stride{ 1548 GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; 1549 if (!stride) { 1550 stride = Expr<ImpliedDoIntType>{1}; 1551 } 1552 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1553 // Check for constant bounds; the loop may require complete unrolling 1554 // of the parse tree if all bounds are constant in order to allow the 1555 // implied DO loop index to qualify as a constant expression. 1556 auto cLower{ToInt64(lower)}; 1557 auto cUpper{ToInt64(upper)}; 1558 auto cStride{ToInt64(stride)}; 1559 if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { 1560 exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, 1561 "The stride of an implied DO loop must not be zero"_err_en_US); 1562 messageDisplayedSet_ |= 0x10; 1563 } 1564 bool isConstant{cLower && cUpper && cStride && *cStride != 0}; 1565 bool isNonemptyConstant{isConstant && 1566 ((*cStride > 0 && *cLower <= *cUpper) || 1567 (*cStride < 0 && *cLower >= *cUpper))}; 1568 bool unrollConstantLoop{false}; 1569 parser::Messages buffer; 1570 auto saveMessagesDisplayed{messageDisplayedSet_}; 1571 { 1572 auto messageRestorer{ 1573 exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; 1574 auto v{std::move(values_)}; 1575 for (const auto &value : 1576 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1577 Add(value); 1578 } 1579 std::swap(v, values_); 1580 if (isNonemptyConstant && buffer.AnyFatalError()) { 1581 unrollConstantLoop = true; 1582 } else { 1583 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1584 std::move(*upper), std::move(*stride), std::move(v)}); 1585 } 1586 } 1587 if (unrollConstantLoop) { 1588 messageDisplayedSet_ = saveMessagesDisplayed; 1589 UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); 1590 } else if (auto *messages{ 1591 exprAnalyzer_.GetContextualMessages().messages()}) { 1592 messages->Annex(std::move(buffer)); 1593 } 1594 exprAnalyzer_.RemoveImpliedDo(name); 1595 } else if (!(messageDisplayedSet_ & 0x20)) { 1596 exprAnalyzer_.SayAt(name, 1597 "Implied DO index '%s' is active in a surrounding implied DO loop " 1598 "and may not have the same name"_err_en_US, 1599 name); // C7115 1600 messageDisplayedSet_ |= 0x20; 1601 } 1602 } 1603 } 1604 1605 // Fortran considers an implied DO index of an array constructor to be 1606 // a constant expression if the bounds of the implied DO loop are constant. 1607 // Usually this doesn't matter, but if we emitted spurious messages as a 1608 // result of not using constant values for the index while analyzing the 1609 // items, we need to do it again the "hard" way with multiple iterations over 1610 // the parse tree. 1611 void ArrayConstructorContext::UnrollConstantImpliedDo( 1612 const parser::AcImpliedDo &impliedDo, parser::CharBlock name, 1613 std::int64_t lower, std::int64_t upper, std::int64_t stride) { 1614 auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; 1615 auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; 1616 for (auto &at{foldingContext.StartImpliedDo(name, lower)}; 1617 (stride > 0 && at <= upper) || (stride < 0 && at >= upper); 1618 at += stride) { 1619 for (const auto &value : 1620 std::get<std::list<parser::AcValue>>(impliedDo.t)) { 1621 Add(value); 1622 } 1623 } 1624 foldingContext.EndImpliedDo(name); 1625 } 1626 1627 MaybeExpr ArrayConstructorContext::ToExpr() { 1628 return common::SearchTypes(std::move(*this)); 1629 } 1630 1631 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1632 const parser::AcSpec &acSpec{array.v}; 1633 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1634 for (const parser::AcValue &value : acSpec.values) { 1635 acContext.Add(value); 1636 } 1637 return acContext.ToExpr(); 1638 } 1639 1640 MaybeExpr ExpressionAnalyzer::Analyze( 1641 const parser::StructureConstructor &structure) { 1642 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1643 parser::Name structureType{std::get<parser::Name>(parsedType.t)}; 1644 parser::CharBlock &typeName{structureType.source}; 1645 if (semantics::Symbol * typeSymbol{structureType.symbol}) { 1646 if (typeSymbol->has<semantics::DerivedTypeDetails>()) { 1647 semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; 1648 if (!CheckIsValidForwardReference(dtSpec)) { 1649 return std::nullopt; 1650 } 1651 } 1652 } 1653 if (!parsedType.derivedTypeSpec) { 1654 return std::nullopt; 1655 } 1656 const auto &spec{*parsedType.derivedTypeSpec}; 1657 const Symbol &typeSymbol{spec.typeSymbol()}; 1658 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1659 return std::nullopt; // error recovery 1660 } 1661 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1662 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1663 1664 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1665 AttachDeclaration(Say(typeName, 1666 "ABSTRACT derived type '%s' may not be used in a " 1667 "structure constructor"_err_en_US, 1668 typeName), 1669 typeSymbol); // C7114 1670 } 1671 1672 // This iterator traverses all of the components in the derived type and its 1673 // parents. The symbols for whole parent components appear after their 1674 // own components and before the components of the types that extend them. 1675 // E.g., TYPE :: A; REAL X; END TYPE 1676 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1677 // produces the component list X, A, Y. 1678 // The order is important below because a structure constructor can 1679 // initialize X or A by name, but not both. 1680 auto components{semantics::OrderedComponentIterator{spec}}; 1681 auto nextAnonymous{components.begin()}; 1682 1683 std::set<parser::CharBlock> unavailable; 1684 bool anyKeyword{false}; 1685 StructureConstructor result{spec}; 1686 bool checkConflicts{true}; // until we hit one 1687 auto &messages{GetContextualMessages()}; 1688 1689 for (const auto &component : 1690 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1691 const parser::Expr &expr{ 1692 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1693 parser::CharBlock source{expr.source}; 1694 auto restorer{messages.SetLocation(source)}; 1695 const Symbol *symbol{nullptr}; 1696 MaybeExpr value{Analyze(expr)}; 1697 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1698 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1699 anyKeyword = true; 1700 source = kw->v.source; 1701 symbol = kw->v.symbol; 1702 if (!symbol) { 1703 auto componentIter{std::find_if(components.begin(), components.end(), 1704 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1705 if (componentIter != components.end()) { 1706 symbol = &*componentIter; 1707 } 1708 } 1709 if (!symbol) { // C7101 1710 Say(source, 1711 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1712 source, typeName); 1713 } 1714 } else { 1715 if (anyKeyword) { // C7100 1716 Say(source, 1717 "Value in structure constructor lacks a component name"_err_en_US); 1718 checkConflicts = false; // stem cascade 1719 } 1720 // Here's a regrettably common extension of the standard: anonymous 1721 // initialization of parent components, e.g., T(PT(1)) rather than 1722 // T(1) or T(PT=PT(1)). 1723 if (nextAnonymous == components.begin() && parentComponent && 1724 valueType == DynamicType::From(*parentComponent) && 1725 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1726 auto iter{ 1727 std::find(components.begin(), components.end(), *parentComponent)}; 1728 if (iter != components.end()) { 1729 symbol = parentComponent; 1730 nextAnonymous = ++iter; 1731 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1732 Say(source, 1733 "Whole parent component '%s' in structure " 1734 "constructor should not be anonymous"_port_en_US, 1735 symbol->name()); 1736 } 1737 } 1738 } 1739 while (!symbol && nextAnonymous != components.end()) { 1740 const Symbol &next{*nextAnonymous}; 1741 ++nextAnonymous; 1742 if (!next.test(Symbol::Flag::ParentComp)) { 1743 symbol = &next; 1744 } 1745 } 1746 if (!symbol) { 1747 Say(source, "Unexpected value in structure constructor"_err_en_US); 1748 } 1749 } 1750 if (symbol) { 1751 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1752 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1753 Say(source, *msg); 1754 } 1755 } 1756 if (checkConflicts) { 1757 auto componentIter{ 1758 std::find(components.begin(), components.end(), *symbol)}; 1759 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1760 // C797, C798 1761 Say(source, 1762 "Component '%s' conflicts with another component earlier in " 1763 "this structure constructor"_err_en_US, 1764 symbol->name()); 1765 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1766 // Make earlier components unavailable once a whole parent appears. 1767 for (auto it{components.begin()}; it != componentIter; ++it) { 1768 unavailable.insert(it->name()); 1769 } 1770 } else { 1771 // Make whole parent components unavailable after any of their 1772 // constituents appear. 1773 for (auto it{componentIter}; it != components.end(); ++it) { 1774 if (it->test(Symbol::Flag::ParentComp)) { 1775 unavailable.insert(it->name()); 1776 } 1777 } 1778 } 1779 } 1780 unavailable.insert(symbol->name()); 1781 if (value) { 1782 if (symbol->has<semantics::ProcEntityDetails>()) { 1783 CHECK(IsPointer(*symbol)); 1784 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1785 // C1594(4) 1786 const auto &innermost{context_.FindScope(expr.source)}; 1787 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1788 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1789 if (const Symbol * 1790 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1791 if (auto *msg{Say(expr.source, 1792 "Externally visible object '%s' may not be " 1793 "associated with pointer component '%s' in a " 1794 "pure procedure"_err_en_US, 1795 object->name(), pointer->name())}) { 1796 msg->Attach(object->name(), "Object declaration"_en_US) 1797 .Attach(pointer->name(), "Pointer declaration"_en_US); 1798 } 1799 } 1800 } 1801 } 1802 } else if (symbol->has<semantics::TypeParamDetails>()) { 1803 Say(expr.source, 1804 "Type parameter '%s' may not appear as a component " 1805 "of a structure constructor"_err_en_US, 1806 symbol->name()); 1807 continue; 1808 } else { 1809 Say(expr.source, 1810 "Component '%s' is neither a procedure pointer " 1811 "nor a data object"_err_en_US, 1812 symbol->name()); 1813 continue; 1814 } 1815 if (IsPointer(*symbol)) { 1816 semantics::CheckPointerAssignment( 1817 GetFoldingContext(), *symbol, *value); // C7104, C7105 1818 result.Add(*symbol, Fold(std::move(*value))); 1819 } else if (MaybeExpr converted{ 1820 ConvertToType(*symbol, std::move(*value))}) { 1821 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1822 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1823 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1824 AttachDeclaration( 1825 Say(expr.source, 1826 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1827 GetRank(*valueShape), symbol->name()), 1828 *symbol); 1829 } else { 1830 auto checked{ 1831 CheckConformance(messages, *componentShape, *valueShape, 1832 CheckConformanceFlags::RightIsExpandableDeferred, 1833 "component", "value")}; 1834 if (checked && *checked && GetRank(*componentShape) > 0 && 1835 GetRank(*valueShape) == 0 && 1836 !IsExpandableScalar(*converted)) { 1837 AttachDeclaration( 1838 Say(expr.source, 1839 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1840 symbol->name()), 1841 *symbol); 1842 } 1843 if (checked.value_or(true)) { 1844 result.Add(*symbol, std::move(*converted)); 1845 } 1846 } 1847 } else { 1848 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1849 } 1850 } else { 1851 AttachDeclaration( 1852 Say(expr.source, 1853 "Shape of component '%s' cannot be determined"_err_en_US, 1854 symbol->name()), 1855 *symbol); 1856 } 1857 } else if (IsAllocatable(*symbol) && IsBareNullPointer(&*value)) { 1858 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE. 1859 result.Add(*symbol, Expr<SomeType>{NullPointer{}}); 1860 } else if (auto symType{DynamicType::From(symbol)}) { 1861 if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() && 1862 valueType) { 1863 // ok 1864 } else if (valueType) { 1865 AttachDeclaration( 1866 Say(expr.source, 1867 "Value in structure constructor of type '%s' is " 1868 "incompatible with component '%s' of type '%s'"_err_en_US, 1869 valueType->AsFortran(), symbol->name(), 1870 symType->AsFortran()), 1871 *symbol); 1872 } else { 1873 AttachDeclaration( 1874 Say(expr.source, 1875 "Value in structure constructor is incompatible with " 1876 "component '%s' of type %s"_err_en_US, 1877 symbol->name(), symType->AsFortran()), 1878 *symbol); 1879 } 1880 } 1881 } 1882 } 1883 } 1884 1885 // Ensure that unmentioned component objects have default initializers. 1886 for (const Symbol &symbol : components) { 1887 if (!symbol.test(Symbol::Flag::ParentComp) && 1888 unavailable.find(symbol.name()) == unavailable.cend()) { 1889 if (IsAllocatable(symbol)) { 1890 // Set all remaining allocatables to explicit NULL() 1891 result.Add(symbol, Expr<SomeType>{NullPointer{}}); 1892 } else if (const auto *details{ 1893 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1894 if (details->init()) { 1895 result.Add(symbol, common::Clone(*details->init())); 1896 } else { // C799 1897 AttachDeclaration(Say(typeName, 1898 "Structure constructor lacks a value for " 1899 "component '%s'"_err_en_US, 1900 symbol.name()), 1901 symbol); 1902 } 1903 } 1904 } 1905 } 1906 1907 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1908 } 1909 1910 static std::optional<parser::CharBlock> GetPassName( 1911 const semantics::Symbol &proc) { 1912 return common::visit( 1913 [](const auto &details) { 1914 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1915 std::decay_t<decltype(details)>>) { 1916 return details.passName(); 1917 } else { 1918 return std::optional<parser::CharBlock>{}; 1919 } 1920 }, 1921 proc.details()); 1922 } 1923 1924 static int GetPassIndex(const Symbol &proc) { 1925 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1926 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1927 const auto *interface { semantics::FindInterface(proc) }; 1928 if (!passName || !interface) { 1929 return 0; // first argument is passed-object 1930 } 1931 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1932 int index{0}; 1933 for (const auto *arg : subp.dummyArgs()) { 1934 if (arg && arg->name() == passName) { 1935 return index; 1936 } 1937 ++index; 1938 } 1939 DIE("PASS argument name not in dummy argument list"); 1940 } 1941 1942 // Injects an expression into an actual argument list as the "passed object" 1943 // for a type-bound procedure reference that is not NOPASS. Adds an 1944 // argument keyword if possible, but not when the passed object goes 1945 // before a positional argument. 1946 // e.g., obj%tbp(x) -> tbp(obj,x). 1947 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1948 const Symbol &component, bool isPassedObject = true) { 1949 if (component.attrs().test(semantics::Attr::NOPASS)) { 1950 return; 1951 } 1952 int passIndex{GetPassIndex(component)}; 1953 auto iter{actuals.begin()}; 1954 int at{0}; 1955 while (iter < actuals.end() && at < passIndex) { 1956 if (*iter && (*iter)->keyword()) { 1957 iter = actuals.end(); 1958 break; 1959 } 1960 ++iter; 1961 ++at; 1962 } 1963 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1964 passed.set_isPassedObject(isPassedObject); 1965 if (iter == actuals.end()) { 1966 if (auto passName{GetPassName(component)}) { 1967 passed.set_keyword(*passName); 1968 } 1969 } 1970 actuals.emplace(iter, std::move(passed)); 1971 } 1972 1973 // Return the compile-time resolution of a procedure binding, if possible. 1974 static const Symbol *GetBindingResolution( 1975 const std::optional<DynamicType> &baseType, const Symbol &component) { 1976 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1977 if (!binding) { 1978 return nullptr; 1979 } 1980 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1981 (!baseType || baseType->IsPolymorphic())) { 1982 return nullptr; 1983 } 1984 return &binding->symbol(); 1985 } 1986 1987 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1988 const parser::ProcComponentRef &pcr, ActualArguments &&arguments, 1989 bool isSubroutine) -> std::optional<CalleeAndArguments> { 1990 const parser::StructureComponent &sc{pcr.v.thing}; 1991 if (MaybeExpr base{Analyze(sc.base)}) { 1992 if (const Symbol * sym{sc.component.symbol}) { 1993 if (context_.HasError(sym)) { 1994 return std::nullopt; 1995 } 1996 if (!IsProcedure(*sym)) { 1997 AttachDeclaration( 1998 Say(sc.component.source, "'%s' is not a procedure"_err_en_US, 1999 sc.component.source), 2000 *sym); 2001 return std::nullopt; 2002 } 2003 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 2004 if (sym->has<semantics::GenericDetails>()) { 2005 AdjustActuals adjustment{ 2006 [&](const Symbol &proc, ActualArguments &actuals) { 2007 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 2008 AddPassArg(actuals, std::move(*dtExpr), proc); 2009 } 2010 return true; 2011 }}; 2012 auto pair{ResolveGeneric(*sym, arguments, adjustment, isSubroutine)}; 2013 sym = pair.first; 2014 if (sym) { 2015 // re-resolve the name to the specific binding 2016 sc.component.symbol = const_cast<Symbol *>(sym); 2017 } else { 2018 EmitGenericResolutionError(*sc.component.symbol, pair.second); 2019 return std::nullopt; 2020 } 2021 } 2022 std::optional<DataRef> dataRef{ExtractDataRef(std::move(*dtExpr))}; 2023 if (dataRef.has_value() && !CheckRanks(std::move(*dataRef))) { 2024 return std::nullopt; 2025 } 2026 if (const Symbol * 2027 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 2028 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 2029 return CalleeAndArguments{ 2030 ProcedureDesignator{*resolution}, std::move(arguments)}; 2031 } else if (dataRef.has_value()) { 2032 if (sym->attrs().test(semantics::Attr::NOPASS)) { 2033 return CalleeAndArguments{ 2034 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 2035 std::move(arguments)}; 2036 } else { 2037 AddPassArg(arguments, 2038 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 2039 *sym); 2040 return CalleeAndArguments{ 2041 ProcedureDesignator{*sym}, std::move(arguments)}; 2042 } 2043 } 2044 } 2045 Say(sc.component.source, 2046 "Base of procedure component reference is not a derived-type object"_err_en_US); 2047 } 2048 } 2049 CHECK(context_.AnyFatalError()); 2050 return std::nullopt; 2051 } 2052 2053 // Can actual be argument associated with dummy? 2054 static bool CheckCompatibleArgument(bool isElemental, 2055 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 2056 const auto *expr{actual.UnwrapExpr()}; 2057 return common::visit( 2058 common::visitors{ 2059 [&](const characteristics::DummyDataObject &x) { 2060 if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && 2061 IsBareNullPointer(expr)) { 2062 // NULL() without MOLD= is compatible with any dummy data pointer 2063 // but cannot be allowed to lead to ambiguity. 2064 return true; 2065 } else if (!isElemental && actual.Rank() != x.type.Rank() && 2066 !x.type.attrs().test( 2067 characteristics::TypeAndShape::Attr::AssumedRank)) { 2068 return false; 2069 } else if (auto actualType{actual.GetType()}) { 2070 return x.type.type().IsTkCompatibleWith(*actualType); 2071 } 2072 return false; 2073 }, 2074 [&](const characteristics::DummyProcedure &) { 2075 return expr && IsProcedurePointerTarget(*expr); 2076 }, 2077 [&](const characteristics::AlternateReturn &) { 2078 return actual.isAlternateReturn(); 2079 }, 2080 }, 2081 dummy.u); 2082 } 2083 2084 // Are the actual arguments compatible with the dummy arguments of procedure? 2085 static bool CheckCompatibleArguments( 2086 const characteristics::Procedure &procedure, 2087 const ActualArguments &actuals) { 2088 bool isElemental{procedure.IsElemental()}; 2089 const auto &dummies{procedure.dummyArguments}; 2090 CHECK(dummies.size() == actuals.size()); 2091 for (std::size_t i{0}; i < dummies.size(); ++i) { 2092 const characteristics::DummyArgument &dummy{dummies[i]}; 2093 const std::optional<ActualArgument> &actual{actuals[i]}; 2094 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 2095 return false; 2096 } 2097 } 2098 return true; 2099 } 2100 2101 // Handles a forward reference to a module function from what must 2102 // be a specification expression. Return false if the symbol is 2103 // an invalid forward reference. 2104 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 2105 if (context_.HasError(symbol)) { 2106 return false; 2107 } 2108 if (const auto *details{ 2109 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 2110 if (details->kind() == semantics::SubprogramKind::Module) { 2111 // If this symbol is still a SubprogramNameDetails, we must be 2112 // checking a specification expression in a sibling module 2113 // procedure. Resolve its names now so that its interface 2114 // is known. 2115 semantics::ResolveSpecificationParts(context_, symbol); 2116 if (symbol.has<semantics::SubprogramNameDetails>()) { 2117 // When the symbol hasn't had its details updated, we must have 2118 // already been in the process of resolving the function's 2119 // specification part; but recursive function calls are not 2120 // allowed in specification parts (10.1.11 para 5). 2121 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 2122 symbol.name()); 2123 context_.SetError(symbol); 2124 return false; 2125 } 2126 } else { // 10.1.11 para 4 2127 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 2128 symbol.name()); 2129 context_.SetError(symbol); 2130 return false; 2131 } 2132 } 2133 return true; 2134 } 2135 2136 // Resolve a call to a generic procedure with given actual arguments. 2137 // adjustActuals is called on procedure bindings to handle pass arg. 2138 std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( 2139 const Symbol &symbol, const ActualArguments &actuals, 2140 const AdjustActuals &adjustActuals, bool isSubroutine, 2141 bool mightBeStructureConstructor) { 2142 const Symbol *elemental{nullptr}; // matching elemental specific proc 2143 const Symbol *nonElemental{nullptr}; // matching non-elemental specific 2144 const Symbol &ultimate{symbol.GetUltimate()}; 2145 // Check for a match with an explicit INTRINSIC 2146 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 2147 parser::Messages buffer; 2148 auto restorer{foldingContext_.messages().SetMessages(buffer)}; 2149 ActualArguments localActuals{actuals}; 2150 if (context_.intrinsics().Probe( 2151 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2152 localActuals, foldingContext_) && 2153 !buffer.AnyFatalError()) { 2154 return {&ultimate, false}; 2155 } 2156 } 2157 if (const auto *details{ultimate.detailsIf<semantics::GenericDetails>()}) { 2158 bool anyBareNullActual{ 2159 std::find_if(actuals.begin(), actuals.end(), [](auto iter) { 2160 return IsBareNullPointer(iter->UnwrapExpr()); 2161 }) != actuals.end()}; 2162 for (const Symbol &specific : details->specificProcs()) { 2163 if (!ResolveForward(specific)) { 2164 continue; 2165 } 2166 if (std::optional<characteristics::Procedure> procedure{ 2167 characteristics::Procedure::Characterize( 2168 ProcedureDesignator{specific}, context_.foldingContext())}) { 2169 ActualArguments localActuals{actuals}; 2170 if (specific.has<semantics::ProcBindingDetails>()) { 2171 if (!adjustActuals.value()(specific, localActuals)) { 2172 continue; 2173 } 2174 } 2175 if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, 2176 GetFoldingContext(), false /* no integer conversions */) && 2177 CheckCompatibleArguments(*procedure, localActuals)) { 2178 if ((procedure->IsElemental() && elemental) || 2179 (!procedure->IsElemental() && nonElemental)) { 2180 // 16.9.144(6): a bare NULL() is not allowed as an actual 2181 // argument to a generic procedure if the specific procedure 2182 // cannot be unambiguously distinguished 2183 return {nullptr, true /* due to NULL actuals */}; 2184 } 2185 if (!procedure->IsElemental()) { 2186 // takes priority over elemental match 2187 nonElemental = &specific; 2188 if (!anyBareNullActual) { 2189 break; // unambiguous case 2190 } 2191 } else { 2192 elemental = &specific; 2193 } 2194 } 2195 } 2196 } 2197 if (nonElemental) { 2198 return {&AccessSpecific(symbol, *nonElemental), false}; 2199 } else if (elemental) { 2200 return {&AccessSpecific(symbol, *elemental), false}; 2201 } 2202 // Check parent derived type 2203 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 2204 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 2205 auto pair{ResolveGeneric( 2206 *extended, actuals, adjustActuals, isSubroutine, false)}; 2207 if (pair.first) { 2208 return pair; 2209 } 2210 } 2211 } 2212 if (mightBeStructureConstructor && details->derivedType()) { 2213 return {details->derivedType(), false}; 2214 } 2215 } 2216 // Check for generic or explicit INTRINSIC of the same name in outer scopes. 2217 // See 15.5.5.2 for details. 2218 if (!symbol.owner().IsGlobal() && !symbol.owner().IsDerivedType()) { 2219 for (const std::string &n : GetAllNames(context_, symbol.name())) { 2220 if (const Symbol * outer{symbol.owner().parent().FindSymbol(n)}) { 2221 auto pair{ResolveGeneric(*outer, actuals, adjustActuals, isSubroutine, 2222 mightBeStructureConstructor)}; 2223 if (pair.first) { 2224 return pair; 2225 } 2226 } 2227 } 2228 } 2229 return {nullptr, false}; 2230 } 2231 2232 const Symbol &ExpressionAnalyzer::AccessSpecific( 2233 const Symbol &originalGeneric, const Symbol &specific) { 2234 if (const auto *hosted{ 2235 originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { 2236 return AccessSpecific(hosted->symbol(), specific); 2237 } else if (const auto *used{ 2238 originalGeneric.detailsIf<semantics::UseDetails>()}) { 2239 const auto &scope{originalGeneric.owner()}; 2240 if (auto iter{scope.find(specific.name())}; iter != scope.end()) { 2241 if (const auto *useDetails{ 2242 iter->second->detailsIf<semantics::UseDetails>()}) { 2243 const Symbol &usedSymbol{useDetails->symbol()}; 2244 const auto *usedGeneric{ 2245 usedSymbol.detailsIf<semantics::GenericDetails>()}; 2246 if (&usedSymbol == &specific || 2247 (usedGeneric && usedGeneric->specific() == &specific)) { 2248 return specific; 2249 } 2250 } 2251 } 2252 // Create a renaming USE of the specific procedure. 2253 auto rename{context_.SaveTempName( 2254 used->symbol().owner().GetName().value().ToString() + "$" + 2255 specific.owner().GetName().value().ToString() + "$" + 2256 specific.name().ToString())}; 2257 return *const_cast<semantics::Scope &>(scope) 2258 .try_emplace(rename, specific.attrs(), 2259 semantics::UseDetails{rename, specific}) 2260 .first->second; 2261 } else { 2262 return specific; 2263 } 2264 } 2265 2266 void ExpressionAnalyzer::EmitGenericResolutionError( 2267 const Symbol &symbol, bool dueToNullActuals) { 2268 Say(dueToNullActuals 2269 ? "One or more NULL() actual arguments to the generic procedure '%s' requires a MOLD= for disambiguation"_err_en_US 2270 : semantics::IsGenericDefinedOp(symbol) 2271 ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US 2272 : "No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 2273 symbol.name()); 2274 } 2275 2276 auto ExpressionAnalyzer::GetCalleeAndArguments( 2277 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 2278 bool isSubroutine, bool mightBeStructureConstructor) 2279 -> std::optional<CalleeAndArguments> { 2280 return common::visit( 2281 common::visitors{ 2282 [&](const parser::Name &name) { 2283 return GetCalleeAndArguments(name, std::move(arguments), 2284 isSubroutine, mightBeStructureConstructor); 2285 }, 2286 [&](const parser::ProcComponentRef &pcr) { 2287 return AnalyzeProcedureComponentRef( 2288 pcr, std::move(arguments), isSubroutine); 2289 }, 2290 }, 2291 pd.u); 2292 } 2293 2294 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 2295 ActualArguments &&arguments, bool isSubroutine, 2296 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 2297 const Symbol *symbol{name.symbol}; 2298 if (context_.HasError(symbol)) { 2299 return std::nullopt; // also handles null symbol 2300 } 2301 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 2302 CheckForBadRecursion(name.source, ultimate); 2303 bool dueToNullActual{false}; 2304 bool isGenericInterface{ultimate.has<semantics::GenericDetails>()}; 2305 bool isExplicitIntrinsic{ultimate.attrs().test(semantics::Attr::INTRINSIC)}; 2306 const Symbol *resolution{nullptr}; 2307 if (isGenericInterface || isExplicitIntrinsic) { 2308 ExpressionAnalyzer::AdjustActuals noAdjustment; 2309 auto pair{ResolveGeneric(*symbol, arguments, noAdjustment, isSubroutine, 2310 mightBeStructureConstructor)}; 2311 resolution = pair.first; 2312 dueToNullActual = pair.second; 2313 if (resolution) { 2314 // re-resolve name to the specific procedure 2315 name.symbol = const_cast<Symbol *>(resolution); 2316 } 2317 } else { 2318 resolution = symbol; 2319 } 2320 if (!resolution || resolution->attrs().test(semantics::Attr::INTRINSIC)) { 2321 // Not generic, or no resolution; may be intrinsic 2322 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 2323 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 2324 arguments, GetFoldingContext())}) { 2325 CheckBadExplicitType(*specificCall, *symbol); 2326 return CalleeAndArguments{ 2327 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2328 std::move(specificCall->arguments)}; 2329 } else { 2330 if (isGenericInterface) { 2331 EmitGenericResolutionError(*symbol, dueToNullActual); 2332 } 2333 return std::nullopt; 2334 } 2335 } 2336 if (resolution->GetUltimate().has<semantics::DerivedTypeDetails>()) { 2337 if (mightBeStructureConstructor) { 2338 return CalleeAndArguments{ 2339 semantics::SymbolRef{*resolution}, std::move(arguments)}; 2340 } 2341 } else if (IsProcedure(*resolution)) { 2342 return CalleeAndArguments{ 2343 ProcedureDesignator{*resolution}, std::move(arguments)}; 2344 } 2345 if (!context_.HasError(*resolution)) { 2346 AttachDeclaration( 2347 Say(name.source, "'%s' is not a callable procedure"_err_en_US, 2348 name.source), 2349 *resolution); 2350 } 2351 return std::nullopt; 2352 } 2353 2354 // Fortran 2018 expressly states (8.2 p3) that any declared type for a 2355 // generic intrinsic function "has no effect" on the result type of a 2356 // call to that intrinsic. So one can declare "character*8 cos" and 2357 // still get a real result from "cos(1.)". This is a dangerous feature, 2358 // especially since implementations are free to extend their sets of 2359 // intrinsics, and in doing so might clash with a name in a program. 2360 // So we emit a warning in this situation, and perhaps it should be an 2361 // error -- any correctly working program can silence the message by 2362 // simply deleting the pointless type declaration. 2363 void ExpressionAnalyzer::CheckBadExplicitType( 2364 const SpecificCall &call, const Symbol &intrinsic) { 2365 if (intrinsic.GetUltimate().GetType()) { 2366 const auto &procedure{call.specificIntrinsic.characteristics.value()}; 2367 if (const auto &result{procedure.functionResult}) { 2368 if (const auto *typeAndShape{result->GetTypeAndShape()}) { 2369 if (auto declared{ 2370 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { 2371 if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { 2372 if (auto *msg{Say( 2373 "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_warn_en_US, 2374 typeAndShape->AsFortran(), intrinsic.name(), 2375 declared->AsFortran())}) { 2376 msg->Attach(intrinsic.name(), 2377 "Ignored declaration of intrinsic function '%s'"_en_US, 2378 intrinsic.name()); 2379 } 2380 } 2381 } 2382 } 2383 } 2384 } 2385 } 2386 2387 void ExpressionAnalyzer::CheckForBadRecursion( 2388 parser::CharBlock callSite, const semantics::Symbol &proc) { 2389 if (const auto *scope{proc.scope()}) { 2390 if (scope->sourceRange().Contains(callSite)) { 2391 parser::Message *msg{nullptr}; 2392 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 2393 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 2394 callSite); 2395 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 2396 // TODO: Also catch assumed PDT type parameters 2397 msg = Say( // 15.6.2.1(3) 2398 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 2399 callSite); 2400 } 2401 AttachDeclaration(msg, proc); 2402 } 2403 } 2404 } 2405 2406 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 2407 if (const auto *designator{ 2408 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 2409 if (const auto *dataRef{ 2410 std::get_if<parser::DataRef>(&designator->value().u)}) { 2411 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 2412 return AssumedTypeDummy(*name); 2413 } 2414 } 2415 } 2416 return nullptr; 2417 } 2418 template <> 2419 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { 2420 if (const Symbol * symbol{name.symbol}) { 2421 if (const auto *type{symbol->GetType()}) { 2422 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 2423 return symbol; 2424 } 2425 } 2426 } 2427 return nullptr; 2428 } 2429 template <typename A> 2430 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { 2431 // It is illegal for allocatable of pointer objects to be TYPE(*), but at that 2432 // point it is is not guaranteed that it has been checked the object has 2433 // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly 2434 // returned. 2435 return common::visit( 2436 common::visitors{ 2437 [&](const parser::StructureComponent &x) { 2438 return AssumedTypeDummy(x.component); 2439 }, 2440 [&](const parser::Name &x) { return AssumedTypeDummy(x); }, 2441 }, 2442 object.u); 2443 } 2444 template <> 2445 const Symbol *AssumedTypeDummy<parser::AllocateObject>( 2446 const parser::AllocateObject &x) { 2447 return AssumedTypePointerOrAllocatableDummy(x); 2448 } 2449 template <> 2450 const Symbol *AssumedTypeDummy<parser::PointerObject>( 2451 const parser::PointerObject &x) { 2452 return AssumedTypePointerOrAllocatableDummy(x); 2453 } 2454 2455 bool ExpressionAnalyzer::CheckIsValidForwardReference( 2456 const semantics::DerivedTypeSpec &dtSpec) { 2457 if (dtSpec.IsForwardReferenced()) { 2458 Say("Cannot construct value for derived type '%s' " 2459 "before it is defined"_err_en_US, 2460 dtSpec.name()); 2461 return false; 2462 } 2463 return true; 2464 } 2465 2466 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 2467 std::optional<parser::StructureConstructor> *structureConstructor) { 2468 const parser::Call &call{funcRef.v}; 2469 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2470 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2471 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 2472 analyzer.Analyze(arg, false /* not subroutine call */); 2473 } 2474 if (analyzer.fatalErrors()) { 2475 return std::nullopt; 2476 } 2477 if (std::optional<CalleeAndArguments> callee{ 2478 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2479 analyzer.GetActuals(), false /* not subroutine */, 2480 true /* might be structure constructor */)}) { 2481 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 2482 return MakeFunctionRef( 2483 call.source, std::move(*proc), std::move(callee->arguments)); 2484 } 2485 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 2486 const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; 2487 if (structureConstructor) { 2488 // Structure constructor misparsed as function reference? 2489 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2490 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2491 semantics::Scope &scope{context_.FindScope(name->source)}; 2492 semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; 2493 if (!CheckIsValidForwardReference(dtSpec)) { 2494 return std::nullopt; 2495 } 2496 const semantics::DeclTypeSpec &type{ 2497 semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; 2498 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2499 *structureConstructor = 2500 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2501 return Analyze(structureConstructor->value()); 2502 } 2503 } 2504 if (!context_.HasError(symbol)) { 2505 AttachDeclaration( 2506 Say("'%s' is called like a function but is not a procedure"_err_en_US, 2507 symbol.name()), 2508 symbol); 2509 context_.SetError(symbol); 2510 } 2511 } 2512 return std::nullopt; 2513 } 2514 2515 static bool HasAlternateReturns(const evaluate::ActualArguments &args) { 2516 for (const auto &arg : args) { 2517 if (arg && arg->isAlternateReturn()) { 2518 return true; 2519 } 2520 } 2521 return false; 2522 } 2523 2524 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2525 const parser::Call &call{callStmt.v}; 2526 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2527 ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */}; 2528 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2529 for (const auto &arg : actualArgList) { 2530 analyzer.Analyze(arg, true /* is subroutine call */); 2531 } 2532 if (!analyzer.fatalErrors()) { 2533 if (std::optional<CalleeAndArguments> callee{ 2534 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2535 analyzer.GetActuals(), true /* subroutine */)}) { 2536 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2537 CHECK(proc); 2538 if (CheckCall(call.source, *proc, callee->arguments)) { 2539 callStmt.typedCall.Reset( 2540 new ProcedureRef{std::move(*proc), std::move(callee->arguments), 2541 HasAlternateReturns(callee->arguments)}, 2542 ProcedureRef::Deleter); 2543 return; 2544 } 2545 } 2546 if (!context_.AnyFatalError()) { 2547 std::string buf; 2548 llvm::raw_string_ostream dump{buf}; 2549 parser::DumpTree(dump, callStmt); 2550 Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US, 2551 dump.str()); 2552 } 2553 } 2554 } 2555 2556 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2557 if (!x.typedAssignment) { 2558 ArgumentAnalyzer analyzer{*this}; 2559 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2560 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2561 std::optional<Assignment> assignment; 2562 if (!analyzer.fatalErrors()) { 2563 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2564 if (!procRef) { 2565 analyzer.CheckForNullPointer( 2566 "in a non-pointer intrinsic assignment statement"); 2567 } 2568 assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); 2569 if (procRef) { 2570 assignment->u = std::move(*procRef); 2571 } 2572 } 2573 x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, 2574 GenericAssignmentWrapper::Deleter); 2575 } 2576 return common::GetPtrFromOptional(x.typedAssignment->v); 2577 } 2578 2579 const Assignment *ExpressionAnalyzer::Analyze( 2580 const parser::PointerAssignmentStmt &x) { 2581 if (!x.typedAssignment) { 2582 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2583 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2584 if (!lhs || !rhs) { 2585 x.typedAssignment.Reset( 2586 new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); 2587 } else { 2588 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2589 common::visit( 2590 common::visitors{ 2591 [&](const std::list<parser::BoundsRemapping> &list) { 2592 Assignment::BoundsRemapping bounds; 2593 for (const auto &elem : list) { 2594 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2595 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2596 if (lower && upper) { 2597 bounds.emplace_back( 2598 Fold(std::move(*lower)), Fold(std::move(*upper))); 2599 } 2600 } 2601 assignment.u = std::move(bounds); 2602 }, 2603 [&](const std::list<parser::BoundsSpec> &list) { 2604 Assignment::BoundsSpec bounds; 2605 for (const auto &bound : list) { 2606 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2607 bounds.emplace_back(Fold(std::move(*lower))); 2608 } 2609 } 2610 assignment.u = std::move(bounds); 2611 }, 2612 }, 2613 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2614 x.typedAssignment.Reset( 2615 new GenericAssignmentWrapper{std::move(assignment)}, 2616 GenericAssignmentWrapper::Deleter); 2617 } 2618 } 2619 return common::GetPtrFromOptional(x.typedAssignment->v); 2620 } 2621 2622 static bool IsExternalCalledImplicitly( 2623 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2624 if (const auto *symbol{proc.GetSymbol()}) { 2625 return symbol->has<semantics::SubprogramDetails>() && 2626 symbol->owner().IsGlobal() && 2627 (!symbol->scope() /*ENTRY*/ || 2628 !symbol->scope()->sourceRange().Contains(callSite)); 2629 } else { 2630 return false; 2631 } 2632 } 2633 2634 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2635 parser::CharBlock callSite, const ProcedureDesignator &proc, 2636 ActualArguments &arguments) { 2637 auto chars{characteristics::Procedure::Characterize( 2638 proc, context_.foldingContext())}; 2639 if (chars) { 2640 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2641 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2642 Say(callSite, 2643 "References to the procedure '%s' require an explicit interface"_err_en_US, 2644 DEREF(proc.GetSymbol()).name()); 2645 } 2646 // Checks for ASSOCIATED() are done in intrinsic table processing 2647 const SpecificIntrinsic *specificIntrinsic{proc.GetSpecificIntrinsic()}; 2648 bool procIsAssociated{ 2649 specificIntrinsic && specificIntrinsic->name == "associated"}; 2650 if (!procIsAssociated) { 2651 const Symbol *procSymbol{proc.GetSymbol()}; 2652 bool procIsDummy{procSymbol && IsDummy(*procSymbol)}; 2653 if (chars->functionResult && 2654 chars->functionResult->IsAssumedLengthCharacter() && 2655 !specificIntrinsic && !procIsDummy) { 2656 Say(callSite, 2657 "Assumed-length character function must be defined with a length to be called"_err_en_US); 2658 } 2659 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2660 context_.FindScope(callSite), treatExternalAsImplicit, 2661 specificIntrinsic); 2662 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2663 if (const semantics::Scope * 2664 pure{semantics::FindPureProcedureContaining( 2665 context_.FindScope(callSite))}) { 2666 Say(callSite, 2667 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2668 procSymbol->name(), DEREF(pure->symbol()).name()); 2669 } 2670 } 2671 } 2672 } 2673 return chars; 2674 } 2675 2676 // Unary operations 2677 2678 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2679 if (MaybeExpr operand{Analyze(x.v.value())}) { 2680 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2681 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2682 if (semantics::IsProcedurePointer(*result)) { 2683 Say("A function reference that returns a procedure " 2684 "pointer may not be parenthesized"_err_en_US); // C1003 2685 } 2686 } 2687 } 2688 return Parenthesize(std::move(*operand)); 2689 } 2690 return std::nullopt; 2691 } 2692 2693 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2694 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2695 ArgumentAnalyzer analyzer{context}; 2696 analyzer.Analyze(x.v); 2697 if (!analyzer.fatalErrors()) { 2698 if (analyzer.IsIntrinsicNumeric(opr)) { 2699 analyzer.CheckForNullPointer(); 2700 if (opr == NumericOperator::Add) { 2701 return analyzer.MoveExpr(0); 2702 } else { 2703 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2704 } 2705 } else { 2706 return analyzer.TryDefinedOp(AsFortran(opr), 2707 "Operand of unary %s must be numeric; have %s"_err_en_US); 2708 } 2709 } 2710 return std::nullopt; 2711 } 2712 2713 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2714 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2715 } 2716 2717 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2718 if (const auto *litConst{ 2719 std::get_if<parser::LiteralConstant>(&x.v.value().u)}) { 2720 if (const auto *intConst{ 2721 std::get_if<parser::IntLiteralConstant>(&litConst->u)}) { 2722 return Analyze(*intConst, true); 2723 } 2724 } 2725 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2726 } 2727 2728 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2729 ArgumentAnalyzer analyzer{*this}; 2730 analyzer.Analyze(x.v); 2731 if (!analyzer.fatalErrors()) { 2732 if (analyzer.IsIntrinsicLogical()) { 2733 analyzer.CheckForNullPointer(); 2734 return AsGenericExpr( 2735 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2736 } else { 2737 return analyzer.TryDefinedOp(LogicalOperator::Not, 2738 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2739 } 2740 } 2741 return std::nullopt; 2742 } 2743 2744 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2745 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2746 // intrinsic function. 2747 // Use the actual source for the name of the call for error reporting. 2748 std::optional<ActualArgument> arg; 2749 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2750 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2751 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2752 arg = ActualArgument{std::move(*argExpr)}; 2753 } else { 2754 return std::nullopt; 2755 } 2756 parser::CharBlock at{GetContextualMessages().at()}; 2757 CHECK(at.size() >= 4); 2758 parser::CharBlock loc{at.begin() + 1, 3}; 2759 CHECK(loc == "loc"); 2760 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2761 } 2762 2763 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2764 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2765 ArgumentAnalyzer analyzer{*this, name.source}; 2766 analyzer.Analyze(std::get<1>(x.t)); 2767 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2768 "No operator %s defined for %s"_err_en_US, nullptr, true); 2769 } 2770 2771 // Binary (dyadic) operations 2772 2773 template <template <typename> class OPR> 2774 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2775 const parser::Expr::IntrinsicBinary &x) { 2776 ArgumentAnalyzer analyzer{context}; 2777 analyzer.Analyze(std::get<0>(x.t)); 2778 analyzer.Analyze(std::get<1>(x.t)); 2779 if (!analyzer.fatalErrors()) { 2780 if (analyzer.IsIntrinsicNumeric(opr)) { 2781 analyzer.CheckForNullPointer(); 2782 analyzer.CheckConformance(); 2783 return NumericOperation<OPR>(context.GetContextualMessages(), 2784 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2785 context.GetDefaultKind(TypeCategory::Real)); 2786 } else { 2787 return analyzer.TryDefinedOp(AsFortran(opr), 2788 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2789 } 2790 } 2791 return std::nullopt; 2792 } 2793 2794 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2795 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2796 } 2797 2798 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2799 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2800 } 2801 2802 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2803 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2804 } 2805 2806 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2807 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2808 } 2809 2810 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2811 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2812 } 2813 2814 MaybeExpr ExpressionAnalyzer::Analyze( 2815 const parser::Expr::ComplexConstructor &x) { 2816 auto re{Analyze(std::get<0>(x.t).value())}; 2817 auto im{Analyze(std::get<1>(x.t).value())}; 2818 if (re && im) { 2819 ConformabilityCheck(GetContextualMessages(), *re, *im); 2820 } 2821 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2822 std::move(im), GetDefaultKind(TypeCategory::Real))); 2823 } 2824 2825 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2826 ArgumentAnalyzer analyzer{*this}; 2827 analyzer.Analyze(std::get<0>(x.t)); 2828 analyzer.Analyze(std::get<1>(x.t)); 2829 if (!analyzer.fatalErrors()) { 2830 if (analyzer.IsIntrinsicConcat()) { 2831 analyzer.CheckForNullPointer(); 2832 return common::visit( 2833 [&](auto &&x, auto &&y) -> MaybeExpr { 2834 using T = ResultType<decltype(x)>; 2835 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2836 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2837 } else { 2838 DIE("different types for intrinsic concat"); 2839 } 2840 }, 2841 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2842 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2843 } else { 2844 return analyzer.TryDefinedOp("//", 2845 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2846 } 2847 } 2848 return std::nullopt; 2849 } 2850 2851 // The Name represents a user-defined intrinsic operator. 2852 // If the actuals match one of the specific procedures, return a function ref. 2853 // Otherwise report the error in messages. 2854 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2855 const parser::Name &name, ActualArguments &&actuals) { 2856 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2857 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2858 return MakeFunctionRef(name.source, 2859 std::move(std::get<ProcedureDesignator>(callee->u)), 2860 std::move(callee->arguments)); 2861 } else { 2862 return std::nullopt; 2863 } 2864 } 2865 2866 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2867 const parser::Expr::IntrinsicBinary &x) { 2868 ArgumentAnalyzer analyzer{context}; 2869 analyzer.Analyze(std::get<0>(x.t)); 2870 analyzer.Analyze(std::get<1>(x.t)); 2871 if (!analyzer.fatalErrors()) { 2872 std::optional<DynamicType> leftType{analyzer.GetType(0)}; 2873 std::optional<DynamicType> rightType{analyzer.GetType(1)}; 2874 analyzer.ConvertBOZ(leftType, 0, rightType); 2875 analyzer.ConvertBOZ(rightType, 1, leftType); 2876 if (leftType && rightType && 2877 analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { 2878 analyzer.CheckForNullPointer("as a relational operand"); 2879 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2880 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2881 } else { 2882 return analyzer.TryDefinedOp(opr, 2883 leftType && leftType->category() == TypeCategory::Logical && 2884 rightType && rightType->category() == TypeCategory::Logical 2885 ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US 2886 : "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2887 } 2888 } 2889 return std::nullopt; 2890 } 2891 2892 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2893 return RelationHelper(*this, RelationalOperator::LT, x); 2894 } 2895 2896 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2897 return RelationHelper(*this, RelationalOperator::LE, x); 2898 } 2899 2900 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2901 return RelationHelper(*this, RelationalOperator::EQ, x); 2902 } 2903 2904 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2905 return RelationHelper(*this, RelationalOperator::NE, x); 2906 } 2907 2908 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2909 return RelationHelper(*this, RelationalOperator::GE, x); 2910 } 2911 2912 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2913 return RelationHelper(*this, RelationalOperator::GT, x); 2914 } 2915 2916 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2917 const parser::Expr::IntrinsicBinary &x) { 2918 ArgumentAnalyzer analyzer{context}; 2919 analyzer.Analyze(std::get<0>(x.t)); 2920 analyzer.Analyze(std::get<1>(x.t)); 2921 if (!analyzer.fatalErrors()) { 2922 if (analyzer.IsIntrinsicLogical()) { 2923 analyzer.CheckForNullPointer("as a logical operand"); 2924 return AsGenericExpr(BinaryLogicalOperation(opr, 2925 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2926 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2927 } else { 2928 return analyzer.TryDefinedOp( 2929 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2930 } 2931 } 2932 return std::nullopt; 2933 } 2934 2935 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2936 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2937 } 2938 2939 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2940 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2941 } 2942 2943 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2944 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2945 } 2946 2947 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2948 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2949 } 2950 2951 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2952 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2953 ArgumentAnalyzer analyzer{*this, name.source}; 2954 analyzer.Analyze(std::get<1>(x.t)); 2955 analyzer.Analyze(std::get<2>(x.t)); 2956 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2957 "No operator %s defined for %s and %s"_err_en_US, nullptr, true); 2958 } 2959 2960 // Returns true if a parsed function reference should be converted 2961 // into an array element reference. 2962 static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context, 2963 const parser::FunctionReference &funcRef) { 2964 // Emit message if the function reference fix will end up an array element 2965 // reference with no subscripts, or subscripts on a scalar, because it will 2966 // not be possible to later distinguish in expressions between an empty 2967 // subscript list due to bad subscripts error recovery or because the 2968 // user did not put any. 2969 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2970 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2971 if (!name) { 2972 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2973 } 2974 if (!name->symbol) { 2975 return false; 2976 } else if (name->symbol->Rank() == 0) { 2977 if (const Symbol * 2978 function{ 2979 semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) { 2980 auto &msg{context.Say(funcRef.v.source, 2981 "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US, 2982 name->source)}; 2983 AttachDeclaration(&msg, *function); 2984 name->symbol = const_cast<Symbol *>(function); 2985 } 2986 return false; 2987 } else { 2988 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2989 auto &msg{context.Say(funcRef.v.source, 2990 "Reference to array '%s' with empty subscript list"_err_en_US, 2991 name->source)}; 2992 if (name->symbol) { 2993 AttachDeclaration(&msg, *name->symbol); 2994 } 2995 } 2996 return true; 2997 } 2998 } 2999 3000 // Converts, if appropriate, an original misparse of ambiguous syntax like 3001 // A(1) as a function reference into an array reference. 3002 // Misparsed structure constructors are detected elsewhere after generic 3003 // function call resolution fails. 3004 template <typename... A> 3005 static void FixMisparsedFunctionReference( 3006 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 3007 // The parse tree is updated in situ when resolving an ambiguous parse. 3008 using uType = std::decay_t<decltype(constU)>; 3009 auto &u{const_cast<uType &>(constU)}; 3010 if (auto *func{ 3011 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 3012 parser::FunctionReference &funcRef{func->value()}; 3013 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 3014 if (Symbol * 3015 origSymbol{ 3016 common::visit(common::visitors{ 3017 [&](parser::Name &name) { return name.symbol; }, 3018 [&](parser::ProcComponentRef &pcr) { 3019 return pcr.v.thing.component.symbol; 3020 }, 3021 }, 3022 proc.u)}) { 3023 Symbol &symbol{origSymbol->GetUltimate()}; 3024 if (symbol.has<semantics::ObjectEntityDetails>() || 3025 symbol.has<semantics::AssocEntityDetails>()) { 3026 // Note that expression in AssocEntityDetails cannot be a procedure 3027 // pointer as per C1105 so this cannot be a function reference. 3028 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 3029 uType>) { 3030 if (CheckFuncRefToArrayElement(context, funcRef)) { 3031 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 3032 } 3033 } else { 3034 DIE("can't fix misparsed function as array reference"); 3035 } 3036 } 3037 } 3038 } 3039 } 3040 3041 // Common handling of parse tree node types that retain the 3042 // representation of the analyzed expression. 3043 template <typename PARSED> 3044 MaybeExpr ExpressionAnalyzer::ExprOrVariable( 3045 const PARSED &x, parser::CharBlock source) { 3046 if (useSavedTypedExprs_ && x.typedExpr) { 3047 return x.typedExpr->v; 3048 } 3049 auto restorer{GetContextualMessages().SetLocation(source)}; 3050 if constexpr (std::is_same_v<PARSED, parser::Expr> || 3051 std::is_same_v<PARSED, parser::Variable>) { 3052 FixMisparsedFunctionReference(context_, x.u); 3053 } 3054 if (AssumedTypeDummy(x)) { // C710 3055 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3056 ResetExpr(x); 3057 return std::nullopt; 3058 } 3059 MaybeExpr result; 3060 if constexpr (common::HasMember<parser::StructureConstructor, 3061 std::decay_t<decltype(x.u)>> && 3062 common::HasMember<common::Indirection<parser::FunctionReference>, 3063 std::decay_t<decltype(x.u)>>) { 3064 if (const auto *funcRef{ 3065 std::get_if<common::Indirection<parser::FunctionReference>>( 3066 &x.u)}) { 3067 // Function references in Exprs might turn out to be misparsed structure 3068 // constructors; we have to try generic procedure resolution 3069 // first to be sure. 3070 std::optional<parser::StructureConstructor> ctor; 3071 result = Analyze(funcRef->value(), &ctor); 3072 if (result && ctor) { 3073 // A misparsed function reference is really a structure 3074 // constructor. Repair the parse tree in situ. 3075 const_cast<PARSED &>(x).u = std::move(*ctor); 3076 } 3077 } else { 3078 result = Analyze(x.u); 3079 } 3080 } else { 3081 result = Analyze(x.u); 3082 } 3083 if (result) { 3084 SetExpr(x, Fold(std::move(*result))); 3085 return x.typedExpr->v; 3086 } else { 3087 ResetExpr(x); 3088 if (!context_.AnyFatalError()) { 3089 std::string buf; 3090 llvm::raw_string_ostream dump{buf}; 3091 parser::DumpTree(dump, x); 3092 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 3093 dump.str()); 3094 } 3095 return std::nullopt; 3096 } 3097 } 3098 3099 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 3100 return ExprOrVariable(expr, expr.source); 3101 } 3102 3103 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 3104 return ExprOrVariable(variable, variable.GetSource()); 3105 } 3106 3107 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { 3108 if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { 3109 if (!useSavedTypedExprs_ || !var->typedExpr) { 3110 parser::CharBlock source{var->GetSource()}; 3111 auto restorer{GetContextualMessages().SetLocation(source)}; 3112 FixMisparsedFunctionReference(context_, var->u); 3113 if (const auto *funcRef{ 3114 std::get_if<common::Indirection<parser::FunctionReference>>( 3115 &var->u)}) { 3116 // A Selector that parsed as a Variable might turn out during analysis 3117 // to actually be a structure constructor. In that case, repair the 3118 // Variable parse tree node into an Expr 3119 std::optional<parser::StructureConstructor> ctor; 3120 if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { 3121 if (ctor) { 3122 auto &writable{const_cast<parser::Selector &>(selector)}; 3123 writable.u = parser::Expr{std::move(*ctor)}; 3124 auto &expr{std::get<parser::Expr>(writable.u)}; 3125 expr.source = source; 3126 SetExpr(expr, Fold(std::move(*result))); 3127 return expr.typedExpr->v; 3128 } else { 3129 SetExpr(*var, Fold(std::move(*result))); 3130 return var->typedExpr->v; 3131 } 3132 } else { 3133 ResetExpr(*var); 3134 if (context_.AnyFatalError()) { 3135 return std::nullopt; 3136 } 3137 } 3138 } 3139 } 3140 } 3141 // Not a Variable -> FunctionReference; handle normally as Variable or Expr 3142 return Analyze(selector.u); 3143 } 3144 3145 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 3146 auto restorer{common::ScopedSet(inDataStmtConstant_, true)}; 3147 return ExprOrVariable(x, x.source); 3148 } 3149 3150 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { 3151 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3152 } 3153 3154 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { 3155 return ExprOrVariable(x, parser::FindSourceLocation(x)); 3156 } 3157 3158 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 3159 TypeCategory category, 3160 const std::optional<parser::KindSelector> &selector) { 3161 int defaultKind{GetDefaultKind(category)}; 3162 if (!selector) { 3163 return Expr<SubscriptInteger>{defaultKind}; 3164 } 3165 return common::visit( 3166 common::visitors{ 3167 [&](const parser::ScalarIntConstantExpr &x) { 3168 if (MaybeExpr kind{Analyze(x)}) { 3169 if (std::optional<std::int64_t> code{ToInt64(*kind)}) { 3170 if (CheckIntrinsicKind(category, *code)) { 3171 return Expr<SubscriptInteger>{*code}; 3172 } 3173 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { 3174 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 3175 } 3176 } 3177 return Expr<SubscriptInteger>{defaultKind}; 3178 }, 3179 [&](const parser::KindSelector::StarSize &x) { 3180 std::intmax_t size = x.v; 3181 if (!CheckIntrinsicSize(category, size)) { 3182 size = defaultKind; 3183 } else if (category == TypeCategory::Complex) { 3184 size /= 2; 3185 } 3186 return Expr<SubscriptInteger>{size}; 3187 }, 3188 }, 3189 selector->u); 3190 } 3191 3192 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 3193 return context_.GetDefaultKind(category); 3194 } 3195 3196 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 3197 common::TypeCategory category) { 3198 return {category, GetDefaultKind(category)}; 3199 } 3200 3201 bool ExpressionAnalyzer::CheckIntrinsicKind( 3202 TypeCategory category, std::int64_t kind) { 3203 if (foldingContext_.targetCharacteristics().IsTypeEnabled( 3204 category, kind)) { // C712, C714, C715, C727 3205 return true; 3206 } else if (foldingContext_.targetCharacteristics().CanSupportType( 3207 category, kind)) { 3208 Say("%s(KIND=%jd) is not an enabled type for this targe"_warn_en_US, 3209 ToUpperCase(EnumToString(category)), kind); 3210 return true; 3211 } else { 3212 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 3213 ToUpperCase(EnumToString(category)), kind); 3214 return false; 3215 } 3216 } 3217 3218 bool ExpressionAnalyzer::CheckIntrinsicSize( 3219 TypeCategory category, std::int64_t size) { 3220 std::int64_t kind{size}; 3221 if (category == TypeCategory::Complex) { 3222 // COMPLEX*16 == COMPLEX(KIND=8) 3223 if (size % 2 == 0) { 3224 kind = size / 2; 3225 } else { 3226 Say("COMPLEX*%jd is not a supported type"_err_en_US, size); 3227 return false; 3228 } 3229 } 3230 if (foldingContext_.targetCharacteristics().IsTypeEnabled( 3231 category, kind)) { // C712, C714, C715, C727 3232 return true; 3233 } else if (foldingContext_.targetCharacteristics().CanSupportType( 3234 category, kind)) { 3235 Say("%s*%jd is not an enabled type for this target"_warn_en_US, 3236 ToUpperCase(EnumToString(category)), size); 3237 return true; 3238 } else { 3239 Say("%s*%jd is not a supported type"_err_en_US, 3240 ToUpperCase(EnumToString(category)), size); 3241 return false; 3242 } 3243 } 3244 3245 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 3246 return impliedDos_.insert(std::make_pair(name, kind)).second; 3247 } 3248 3249 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 3250 auto iter{impliedDos_.find(name)}; 3251 if (iter != impliedDos_.end()) { 3252 impliedDos_.erase(iter); 3253 } 3254 } 3255 3256 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 3257 parser::CharBlock name) const { 3258 auto iter{impliedDos_.find(name)}; 3259 if (iter != impliedDos_.cend()) { 3260 return {iter->second}; 3261 } else { 3262 return std::nullopt; 3263 } 3264 } 3265 3266 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 3267 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 3268 if (result) { 3269 if (auto type{result->GetType()}) { 3270 if (type->category() != category) { // C885 3271 Say(at, "Must have %s type, but is %s"_err_en_US, 3272 ToUpperCase(EnumToString(category)), 3273 ToUpperCase(type->AsFortran())); 3274 return false; 3275 } else if (defaultKind) { 3276 int kind{context_.GetDefaultKind(category)}; 3277 if (type->kind() != kind) { 3278 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 3279 kind, ToUpperCase(EnumToString(category)), 3280 ToUpperCase(type->AsFortran())); 3281 return false; 3282 } 3283 } 3284 } else { 3285 Say(at, "Must have %s type, but is typeless"_err_en_US, 3286 ToUpperCase(EnumToString(category))); 3287 return false; 3288 } 3289 } 3290 return true; 3291 } 3292 3293 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 3294 ProcedureDesignator &&proc, ActualArguments &&arguments) { 3295 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 3296 if (intrinsic->characteristics.value().attrs.test( 3297 characteristics::Procedure::Attr::NullPointer) && 3298 arguments.empty()) { 3299 return Expr<SomeType>{NullPointer{}}; 3300 } 3301 } 3302 if (const Symbol * symbol{proc.GetSymbol()}) { 3303 if (!ResolveForward(*symbol)) { 3304 return std::nullopt; 3305 } 3306 } 3307 if (auto chars{CheckCall(callSite, proc, arguments)}) { 3308 if (chars->functionResult) { 3309 const auto &result{*chars->functionResult}; 3310 if (result.IsProcedurePointer()) { 3311 return Expr<SomeType>{ 3312 ProcedureRef{std::move(proc), std::move(arguments)}}; 3313 } else { 3314 // Not a procedure pointer, so type and shape are known. 3315 return TypedWrapper<FunctionRef, ProcedureRef>( 3316 DEREF(result.GetTypeAndShape()).type(), 3317 ProcedureRef{std::move(proc), std::move(arguments)}); 3318 } 3319 } else { 3320 Say("Function result characteristics are not known"_err_en_US); 3321 } 3322 } 3323 return std::nullopt; 3324 } 3325 3326 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 3327 parser::CharBlock intrinsic, ActualArguments &&arguments) { 3328 if (std::optional<SpecificCall> specificCall{ 3329 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 3330 arguments, GetFoldingContext())}) { 3331 return MakeFunctionRef(intrinsic, 3332 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 3333 std::move(specificCall->arguments)); 3334 } else { 3335 return std::nullopt; 3336 } 3337 } 3338 3339 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 3340 source_.ExtendToCover(x.GetSource()); 3341 if (MaybeExpr expr{context_.Analyze(x)}) { 3342 if (!IsConstantExpr(*expr)) { 3343 actuals_.emplace_back(std::move(*expr)); 3344 SetArgSourceLocation(actuals_.back(), x.GetSource()); 3345 return; 3346 } 3347 const Symbol *symbol{GetLastSymbol(*expr)}; 3348 if (!symbol) { 3349 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3350 x.GetSource()); 3351 } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { 3352 auto *msg{context_.SayAt(x, 3353 "Assignment to subprogram '%s' is not allowed"_err_en_US, 3354 symbol->name())}; 3355 if (subp->isFunction()) { 3356 const auto &result{subp->result().name()}; 3357 msg->Attach(result, "Function result is '%s'"_en_US, result); 3358 } 3359 } else { 3360 context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, 3361 symbol->name()); 3362 } 3363 } 3364 fatalErrors_ = true; 3365 } 3366 3367 void ArgumentAnalyzer::Analyze( 3368 const parser::ActualArgSpec &arg, bool isSubroutine) { 3369 // TODO: Actual arguments that are procedures and procedure pointers need to 3370 // be detected and represented (they're not expressions). 3371 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 3372 std::optional<ActualArgument> actual; 3373 common::visit( 3374 common::visitors{ 3375 [&](const common::Indirection<parser::Expr> &x) { 3376 actual = AnalyzeExpr(x.value()); 3377 SetArgSourceLocation(actual, x.value().source); 3378 }, 3379 [&](const parser::AltReturnSpec &label) { 3380 if (!isSubroutine) { 3381 context_.Say("alternate return specification may not appear on" 3382 " function reference"_err_en_US); 3383 } 3384 actual = ActualArgument(label.v); 3385 }, 3386 [&](const parser::ActualArg::PercentRef &) { 3387 context_.Say("%REF() intrinsic for arguments"_todo_en_US); 3388 }, 3389 [&](const parser::ActualArg::PercentVal &) { 3390 context_.Say("%VAL() intrinsic for arguments"_todo_en_US); 3391 }, 3392 }, 3393 std::get<parser::ActualArg>(arg.t).u); 3394 if (actual) { 3395 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 3396 actual->set_keyword(argKW->v.source); 3397 } 3398 actuals_.emplace_back(std::move(*actual)); 3399 } else { 3400 fatalErrors_ = true; 3401 } 3402 } 3403 3404 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, 3405 const DynamicType &leftType, const DynamicType &rightType) const { 3406 CHECK(actuals_.size() == 2); 3407 return semantics::IsIntrinsicRelational( 3408 opr, leftType, GetRank(0), rightType, GetRank(1)); 3409 } 3410 3411 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 3412 std::optional<DynamicType> leftType{GetType(0)}; 3413 if (actuals_.size() == 1) { 3414 if (IsBOZLiteral(0)) { 3415 return opr == NumericOperator::Add; // unary '+' 3416 } else { 3417 return leftType && semantics::IsIntrinsicNumeric(*leftType); 3418 } 3419 } else { 3420 std::optional<DynamicType> rightType{GetType(1)}; 3421 if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real 3422 auto cat1{rightType->category()}; 3423 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 3424 } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ 3425 auto cat0{leftType->category()}; 3426 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 3427 } else { 3428 return leftType && rightType && 3429 semantics::IsIntrinsicNumeric( 3430 *leftType, GetRank(0), *rightType, GetRank(1)); 3431 } 3432 } 3433 } 3434 3435 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 3436 if (std::optional<DynamicType> leftType{GetType(0)}) { 3437 if (actuals_.size() == 1) { 3438 return semantics::IsIntrinsicLogical(*leftType); 3439 } else if (std::optional<DynamicType> rightType{GetType(1)}) { 3440 return semantics::IsIntrinsicLogical( 3441 *leftType, GetRank(0), *rightType, GetRank(1)); 3442 } 3443 } 3444 return false; 3445 } 3446 3447 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 3448 if (std::optional<DynamicType> leftType{GetType(0)}) { 3449 if (std::optional<DynamicType> rightType{GetType(1)}) { 3450 return semantics::IsIntrinsicConcat( 3451 *leftType, GetRank(0), *rightType, GetRank(1)); 3452 } 3453 } 3454 return false; 3455 } 3456 3457 bool ArgumentAnalyzer::CheckConformance() { 3458 if (actuals_.size() == 2) { 3459 const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; 3460 const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; 3461 if (lhs && rhs) { 3462 auto &foldingContext{context_.GetFoldingContext()}; 3463 auto lhShape{GetShape(foldingContext, *lhs)}; 3464 auto rhShape{GetShape(foldingContext, *rhs)}; 3465 if (lhShape && rhShape) { 3466 if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, 3467 *rhShape, CheckConformanceFlags::EitherScalarExpandable, 3468 "left operand", "right operand") 3469 .value_or(false /*fail when conformance is not known now*/)) { 3470 fatalErrors_ = true; 3471 return false; 3472 } 3473 } 3474 } 3475 } 3476 return true; // no proven problem 3477 } 3478 3479 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { 3480 for (const std::optional<ActualArgument> &arg : actuals_) { 3481 if (arg) { 3482 if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { 3483 if (IsNullPointer(*expr)) { 3484 context_.Say( 3485 source_, "A NULL() pointer is not allowed %s"_err_en_US, where); 3486 fatalErrors_ = true; 3487 return false; 3488 } 3489 } 3490 } 3491 } 3492 return true; 3493 } 3494 3495 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr, 3496 parser::MessageFixedText error, const Symbol **definedOpSymbolPtr, 3497 bool isUserOp) { 3498 if (AnyUntypedOrMissingOperand()) { 3499 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3500 return std::nullopt; 3501 } 3502 const Symbol *localDefinedOpSymbolPtr{nullptr}; 3503 if (!definedOpSymbolPtr) { 3504 definedOpSymbolPtr = &localDefinedOpSymbolPtr; 3505 } 3506 { 3507 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3508 std::string oprNameString{ 3509 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 3510 parser::CharBlock oprName{oprNameString}; 3511 const auto &scope{context_.context().FindScope(source_)}; 3512 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 3513 *definedOpSymbolPtr = symbol; 3514 parser::Name name{symbol->name(), symbol}; 3515 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 3516 return result; 3517 } 3518 } 3519 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 3520 if (const Symbol * 3521 symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) { 3522 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 3523 return result; 3524 } 3525 } 3526 } 3527 } 3528 if (*definedOpSymbolPtr) { 3529 SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString())); 3530 } else if (actuals_.size() == 1 || AreConformable()) { 3531 if (CheckForNullPointer()) { 3532 context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 3533 } 3534 } else { 3535 context_.Say( 3536 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 3537 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 3538 } 3539 return std::nullopt; 3540 } 3541 3542 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 3543 std::vector<const char *> oprs, parser::MessageFixedText error) { 3544 const Symbol *definedOpSymbolPtr{nullptr}; 3545 for (std::size_t i{1}; i < oprs.size(); ++i) { 3546 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3547 if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) { 3548 return result; 3549 } 3550 } 3551 return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr); 3552 } 3553 3554 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 3555 ActualArguments localActuals{actuals_}; 3556 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 3557 if (!proc) { 3558 proc = &symbol; 3559 localActuals.at(passIndex).value().set_isPassedObject(); 3560 } 3561 CheckConformance(); 3562 return context_.MakeFunctionRef( 3563 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 3564 } 3565 3566 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 3567 using semantics::Tristate; 3568 const Expr<SomeType> &lhs{GetExpr(0)}; 3569 const Expr<SomeType> &rhs{GetExpr(1)}; 3570 std::optional<DynamicType> lhsType{lhs.GetType()}; 3571 std::optional<DynamicType> rhsType{rhs.GetType()}; 3572 int lhsRank{lhs.Rank()}; 3573 int rhsRank{rhs.Rank()}; 3574 Tristate isDefined{ 3575 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 3576 if (isDefined == Tristate::No) { 3577 if (lhsType && rhsType) { 3578 AddAssignmentConversion(*lhsType, *rhsType); 3579 } 3580 return std::nullopt; // user-defined assignment not allowed for these args 3581 } 3582 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 3583 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 3584 if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 3585 context_.Say( 3586 "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, 3587 DEREF(procRef->proc().GetSymbol()).name()); 3588 } 3589 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 3590 return std::move(*procRef); 3591 } 3592 if (isDefined == Tristate::Yes) { 3593 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 3594 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 3595 SayNoMatch("ASSIGNMENT(=)", true); 3596 } 3597 } 3598 return std::nullopt; 3599 } 3600 3601 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 3602 TypeCategory lhs, TypeCategory rhs) { 3603 if (!context_.context().languageFeatures().IsEnabled( 3604 common::LanguageFeature::LogicalIntegerAssignment)) { 3605 return false; 3606 } 3607 std::optional<parser::MessageFixedText> msg; 3608 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 3609 // allow assignment to LOGICAL from INTEGER as a legacy extension 3610 msg = "assignment of LOGICAL to INTEGER"_port_en_US; 3611 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 3612 // ... and assignment to LOGICAL from INTEGER 3613 msg = "assignment of INTEGER to LOGICAL"_port_en_US; 3614 } else { 3615 return false; 3616 } 3617 if (context_.context().languageFeatures().ShouldWarn( 3618 common::LanguageFeature::LogicalIntegerAssignment)) { 3619 context_.Say(std::move(*msg)); 3620 } 3621 return true; 3622 } 3623 3624 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 3625 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 3626 std::string oprNameString{"assignment(=)"}; 3627 parser::CharBlock oprName{oprNameString}; 3628 const Symbol *proc{nullptr}; 3629 const auto &scope{context_.context().FindScope(source_)}; 3630 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 3631 ExpressionAnalyzer::AdjustActuals noAdjustment; 3632 auto pair{context_.ResolveGeneric(*symbol, actuals_, noAdjustment, true)}; 3633 if (pair.first) { 3634 proc = pair.first; 3635 } else { 3636 context_.EmitGenericResolutionError(*symbol, pair.second); 3637 } 3638 } 3639 int passedObjectIndex{-1}; 3640 const Symbol *definedOpSymbol{nullptr}; 3641 for (std::size_t i{0}; i < actuals_.size(); ++i) { 3642 if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) { 3643 if (const Symbol * 3644 resolution{GetBindingResolution(GetType(i), *specific)}) { 3645 proc = resolution; 3646 } else { 3647 proc = specific; 3648 passedObjectIndex = i; 3649 } 3650 } 3651 } 3652 if (!proc) { 3653 return std::nullopt; 3654 } 3655 ActualArguments actualsCopy{actuals_}; 3656 if (passedObjectIndex >= 0) { 3657 actualsCopy[passedObjectIndex]->set_isPassedObject(); 3658 } 3659 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 3660 } 3661 3662 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 3663 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 3664 << '\n'; 3665 for (const auto &actual : actuals_) { 3666 if (!actual.has_value()) { 3667 os << "- error\n"; 3668 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 3669 os << "- assumed type: " << symbol->name().ToString() << '\n'; 3670 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 3671 expr->AsFortran(os << "- expr: ") << '\n'; 3672 } else { 3673 DIE("bad ActualArgument"); 3674 } 3675 } 3676 } 3677 3678 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 3679 const parser::Expr &expr) { 3680 source_.ExtendToCover(expr.source); 3681 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 3682 expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter); 3683 if (isProcedureCall_) { 3684 ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}}; 3685 SetArgSourceLocation(arg, expr.source); 3686 return std::move(arg); 3687 } 3688 context_.SayAt(expr.source, 3689 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 3690 } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { 3691 if (isProcedureCall_ || !IsProcedure(*argExpr)) { 3692 ActualArgument arg{std::move(*argExpr)}; 3693 SetArgSourceLocation(arg, expr.source); 3694 return std::move(arg); 3695 } 3696 context_.SayAt(expr.source, 3697 IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US 3698 : "Subroutine name is not allowed here"_err_en_US); 3699 } 3700 return std::nullopt; 3701 } 3702 3703 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( 3704 const parser::Expr &expr) { 3705 // If an expression's parse tree is a whole assumed-size array: 3706 // Expr -> Designator -> DataRef -> Name 3707 // treat it as a special case for argument passing and bypass 3708 // the C1002/C1014 constraint checking in expression semantics. 3709 if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { 3710 if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { 3711 auto restorer{context_.AllowWholeAssumedSizeArray()}; 3712 return context_.Analyze(expr); 3713 } 3714 } 3715 return context_.Analyze(expr); 3716 } 3717 3718 bool ArgumentAnalyzer::AreConformable() const { 3719 CHECK(actuals_.size() == 2); 3720 return actuals_[0] && actuals_[1] && 3721 evaluate::AreConformable(*actuals_[0], *actuals_[1]); 3722 } 3723 3724 // Look for a type-bound operator in the type of arg number passIndex. 3725 const Symbol *ArgumentAnalyzer::FindBoundOp( 3726 parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) { 3727 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 3728 if (!type || !type->scope()) { 3729 return nullptr; 3730 } 3731 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 3732 if (!symbol) { 3733 return nullptr; 3734 } 3735 definedOp = symbol; 3736 ExpressionAnalyzer::AdjustActuals adjustment{ 3737 [&](const Symbol &proc, ActualArguments &) { 3738 return passIndex == GetPassIndex(proc); 3739 }}; 3740 auto pair{context_.ResolveGeneric(*symbol, actuals_, adjustment, false)}; 3741 if (!pair.first) { 3742 context_.EmitGenericResolutionError(*symbol, pair.second); 3743 } 3744 return pair.first; 3745 } 3746 3747 // If there is an implicit conversion between intrinsic types, make it explicit 3748 void ArgumentAnalyzer::AddAssignmentConversion( 3749 const DynamicType &lhsType, const DynamicType &rhsType) { 3750 if (lhsType.category() == rhsType.category() && 3751 (lhsType.category() == TypeCategory::Derived || 3752 lhsType.kind() == rhsType.kind())) { 3753 // no conversion necessary 3754 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 3755 std::optional<parser::CharBlock> source; 3756 if (actuals_[1]) { 3757 source = actuals_[1]->sourceLocation(); 3758 } 3759 actuals_[1] = ActualArgument{*rhsExpr}; 3760 SetArgSourceLocation(actuals_[1], source); 3761 } else { 3762 actuals_[1] = std::nullopt; 3763 } 3764 } 3765 3766 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 3767 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 3768 } 3769 int ArgumentAnalyzer::GetRank(std::size_t i) const { 3770 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 3771 } 3772 3773 // If the argument at index i is a BOZ literal, convert its type to match the 3774 // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. 3775 // Note that IBM supports comparing BOZ literals to CHARACTER operands. That 3776 // is not currently supported. 3777 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, 3778 std::size_t i, std::optional<DynamicType> otherType) { 3779 if (IsBOZLiteral(i)) { 3780 Expr<SomeType> &&argExpr{MoveExpr(i)}; 3781 auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; 3782 if (otherType && otherType->category() == TypeCategory::Real) { 3783 int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; 3784 MaybeExpr realExpr{ 3785 ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; 3786 actuals_[i] = std::move(*realExpr); 3787 thisType.emplace(TypeCategory::Real, kind); 3788 } else { 3789 int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; 3790 MaybeExpr intExpr{ 3791 ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; 3792 actuals_[i] = std::move(*intExpr); 3793 thisType.emplace(TypeCategory::Integer, kind); 3794 } 3795 } 3796 } 3797 3798 // Report error resolving opr when there is a user-defined one available 3799 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3800 std::string type0{TypeAsFortran(0)}; 3801 auto rank0{actuals_[0]->Rank()}; 3802 if (actuals_.size() == 1) { 3803 if (rank0 > 0) { 3804 context_.Say("No intrinsic or user-defined %s matches " 3805 "rank %d array of %s"_err_en_US, 3806 opr, rank0, type0); 3807 } else { 3808 context_.Say("No intrinsic or user-defined %s matches " 3809 "operand type %s"_err_en_US, 3810 opr, type0); 3811 } 3812 } else { 3813 std::string type1{TypeAsFortran(1)}; 3814 auto rank1{actuals_[1]->Rank()}; 3815 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3816 context_.Say("No intrinsic or user-defined %s matches " 3817 "rank %d array of %s and rank %d array of %s"_err_en_US, 3818 opr, rank0, type0, rank1, type1); 3819 } else if (isAssignment && rank0 != rank1) { 3820 if (rank0 == 0) { 3821 context_.Say("No intrinsic or user-defined %s matches " 3822 "scalar %s and rank %d array of %s"_err_en_US, 3823 opr, type0, rank1, type1); 3824 } else { 3825 context_.Say("No intrinsic or user-defined %s matches " 3826 "rank %d array of %s and scalar %s"_err_en_US, 3827 opr, rank0, type0, type1); 3828 } 3829 } else { 3830 context_.Say("No intrinsic or user-defined %s matches " 3831 "operand types %s and %s"_err_en_US, 3832 opr, type0, type1); 3833 } 3834 } 3835 } 3836 3837 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3838 if (i >= actuals_.size() || !actuals_[i]) { 3839 return "missing argument"; 3840 } else if (std::optional<DynamicType> type{GetType(i)}) { 3841 return type->IsAssumedType() ? "TYPE(*)"s 3842 : type->IsUnlimitedPolymorphic() ? "CLASS(*)"s 3843 : type->IsPolymorphic() ? "CLASS("s + type->AsFortran() + ')' 3844 : type->category() == TypeCategory::Derived 3845 ? "TYPE("s + type->AsFortran() + ')' 3846 : type->category() == TypeCategory::Character 3847 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3848 : ToUpperCase(type->AsFortran()); 3849 } else { 3850 return "untyped"; 3851 } 3852 } 3853 3854 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { 3855 for (const auto &actual : actuals_) { 3856 if (!actual || 3857 (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { 3858 return true; 3859 } 3860 } 3861 return false; 3862 } 3863 } // namespace Fortran::evaluate 3864 3865 namespace Fortran::semantics { 3866 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3867 SemanticsContext &context, common::TypeCategory category, 3868 const std::optional<parser::KindSelector> &selector) { 3869 evaluate::ExpressionAnalyzer analyzer{context}; 3870 auto restorer{ 3871 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3872 return analyzer.AnalyzeKindSelector(category, selector); 3873 } 3874 3875 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3876 3877 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3878 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3879 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3880 auto name{bounds.name.thing.thing}; 3881 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3882 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3883 if (dynamicType->category() == TypeCategory::Integer) { 3884 kind = dynamicType->kind(); 3885 } 3886 } 3887 exprAnalyzer_.AddImpliedDo(name.source, kind); 3888 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3889 exprAnalyzer_.RemoveImpliedDo(name.source); 3890 return false; 3891 } 3892 3893 bool ExprChecker::Walk(const parser::Program &program) { 3894 parser::Walk(program, *this); 3895 return !context_.AnyFatalError(); 3896 } 3897 } // namespace Fortran::semantics 3898