1 //===-- lib/Semantics/expression.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Semantics/expression.h" 10 #include "check-call.h" 11 #include "pointer-assignment.h" 12 #include "resolve-names.h" 13 #include "flang/Common/idioms.h" 14 #include "flang/Evaluate/common.h" 15 #include "flang/Evaluate/fold.h" 16 #include "flang/Evaluate/tools.h" 17 #include "flang/Parser/characters.h" 18 #include "flang/Parser/dump-parse-tree.h" 19 #include "flang/Parser/parse-tree-visitor.h" 20 #include "flang/Parser/parse-tree.h" 21 #include "flang/Semantics/scope.h" 22 #include "flang/Semantics/semantics.h" 23 #include "flang/Semantics/symbol.h" 24 #include "flang/Semantics/tools.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <functional> 28 #include <optional> 29 #include <set> 30 31 // Typedef for optional generic expressions (ubiquitous in this file) 32 using MaybeExpr = 33 std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; 34 35 // Much of the code that implements semantic analysis of expressions is 36 // tightly coupled with their typed representations in lib/Evaluate, 37 // and appears here in namespace Fortran::evaluate for convenience. 38 namespace Fortran::evaluate { 39 40 using common::LanguageFeature; 41 using common::NumericOperator; 42 using common::TypeCategory; 43 44 static inline std::string ToUpperCase(const std::string &str) { 45 return parser::ToUpperCaseLetters(str); 46 } 47 48 struct DynamicTypeWithLength : public DynamicType { 49 explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} 50 std::optional<Expr<SubscriptInteger>> LEN() const; 51 std::optional<Expr<SubscriptInteger>> length; 52 }; 53 54 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { 55 if (length) { 56 return length; 57 } 58 if (auto *lengthParam{charLength()}) { 59 if (const auto &len{lengthParam->GetExplicit()}) { 60 return ConvertToType<SubscriptInteger>(common::Clone(*len)); 61 } 62 } 63 return std::nullopt; // assumed or deferred length 64 } 65 66 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( 67 const std::optional<parser::TypeSpec> &spec) { 68 if (spec) { 69 if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { 70 // Name resolution sets TypeSpec::declTypeSpec only when it's valid 71 // (viz., an intrinsic type with valid known kind or a non-polymorphic 72 // & non-ABSTRACT derived type). 73 if (const semantics::IntrinsicTypeSpec * 74 intrinsic{typeSpec->AsIntrinsic()}) { 75 TypeCategory category{intrinsic->category()}; 76 if (auto optKind{ToInt64(intrinsic->kind())}) { 77 int kind{static_cast<int>(*optKind)}; 78 if (category == TypeCategory::Character) { 79 const semantics::CharacterTypeSpec &cts{ 80 typeSpec->characterTypeSpec()}; 81 const semantics::ParamValue &len{cts.length()}; 82 // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & 83 // type guards, but not in array constructors. 84 return DynamicTypeWithLength{DynamicType{kind, len}}; 85 } else { 86 return DynamicTypeWithLength{DynamicType{category, kind}}; 87 } 88 } 89 } else if (const semantics::DerivedTypeSpec * 90 derived{typeSpec->AsDerived()}) { 91 return DynamicTypeWithLength{DynamicType{*derived}}; 92 } 93 } 94 } 95 return std::nullopt; 96 } 97 98 class ArgumentAnalyzer { 99 public: 100 explicit ArgumentAnalyzer(ExpressionAnalyzer &context) 101 : context_{context}, allowAssumedType_{false} {} 102 ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, 103 bool allowAssumedType = false) 104 : context_{context}, source_{source}, allowAssumedType_{ 105 allowAssumedType} {} 106 bool fatalErrors() const { return fatalErrors_; } 107 ActualArguments &&GetActuals() { 108 CHECK(!fatalErrors_); 109 return std::move(actuals_); 110 } 111 const Expr<SomeType> &GetExpr(std::size_t i) const { 112 return DEREF(actuals_.at(i).value().UnwrapExpr()); 113 } 114 Expr<SomeType> &&MoveExpr(std::size_t i) { 115 return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); 116 } 117 void Analyze(const common::Indirection<parser::Expr> &x) { 118 Analyze(x.value()); 119 } 120 void Analyze(const parser::Expr &x) { 121 actuals_.emplace_back(AnalyzeExpr(x)); 122 fatalErrors_ |= !actuals_.back(); 123 } 124 void Analyze(const parser::Variable &); 125 void Analyze(const parser::ActualArgSpec &, bool isSubroutine); 126 127 bool IsIntrinsicRelational(RelationalOperator) const; 128 bool IsIntrinsicLogical() const; 129 bool IsIntrinsicNumeric(NumericOperator) const; 130 bool IsIntrinsicConcat() const; 131 132 // Find and return a user-defined operator or report an error. 133 // The provided message is used if there is no such operator. 134 MaybeExpr TryDefinedOp( 135 const char *, parser::MessageFixedText &&, bool isUserOp = false); 136 template <typename E> 137 MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText &&msg) { 138 return TryDefinedOp( 139 context_.context().languageFeatures().GetNames(opr), std::move(msg)); 140 } 141 // Find and return a user-defined assignment 142 std::optional<ProcedureRef> TryDefinedAssignment(); 143 std::optional<ProcedureRef> GetDefinedAssignmentProc(); 144 void Dump(llvm::raw_ostream &); 145 146 private: 147 MaybeExpr TryDefinedOp( 148 std::vector<const char *>, parser::MessageFixedText &&); 149 MaybeExpr TryBoundOp(const Symbol &, int passIndex); 150 std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); 151 bool AreConformable() const; 152 const Symbol *FindBoundOp(parser::CharBlock, int passIndex); 153 void AddAssignmentConversion( 154 const DynamicType &lhsType, const DynamicType &rhsType); 155 bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); 156 std::optional<DynamicType> GetType(std::size_t) const; 157 int GetRank(std::size_t) const; 158 bool IsBOZLiteral(std::size_t i) const { 159 return std::holds_alternative<BOZLiteralConstant>(GetExpr(i).u); 160 } 161 void SayNoMatch(const std::string &, bool isAssignment = false); 162 std::string TypeAsFortran(std::size_t); 163 bool AnyUntypedOperand(); 164 165 ExpressionAnalyzer &context_; 166 ActualArguments actuals_; 167 parser::CharBlock source_; 168 bool fatalErrors_{false}; 169 const bool allowAssumedType_; 170 const Symbol *sawDefinedOp_{nullptr}; 171 }; 172 173 // Wraps a data reference in a typed Designator<>, and a procedure 174 // or procedure pointer reference in a ProcedureDesignator. 175 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { 176 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 177 if (semantics::IsProcedure(symbol)) { 178 if (auto *component{std::get_if<Component>(&ref.u)}) { 179 return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; 180 } else if (!std::holds_alternative<SymbolRef>(ref.u)) { 181 DIE("unexpected alternative in DataRef"); 182 } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { 183 return Expr<SomeType>{ProcedureDesignator{symbol}}; 184 } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( 185 symbol.name().ToString())}) { 186 SpecificIntrinsic intrinsic{ 187 symbol.name().ToString(), std::move(*interface)}; 188 intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; 189 return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; 190 } else { 191 Say("'%s' is not a specific intrinsic procedure"_err_en_US, 192 symbol.name()); 193 return std::nullopt; 194 } 195 } else if (auto dyType{DynamicType::From(symbol)}) { 196 return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); 197 } 198 return std::nullopt; 199 } 200 201 // Some subscript semantic checks must be deferred until all of the 202 // subscripts are in hand. 203 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { 204 const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; 205 const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 206 int symbolRank{symbol.Rank()}; 207 int subscripts{static_cast<int>(ref.size())}; 208 if (subscripts == 0) { 209 // nothing to check 210 } else if (subscripts != symbolRank) { 211 if (symbolRank != 0) { 212 Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, 213 symbolRank, symbol.name(), subscripts); 214 } 215 return std::nullopt; 216 } else if (Component * component{ref.base().UnwrapComponent()}) { 217 int baseRank{component->base().Rank()}; 218 if (baseRank > 0) { 219 int subscriptRank{0}; 220 for (const auto &expr : ref.subscript()) { 221 subscriptRank += expr.Rank(); 222 } 223 if (subscriptRank > 0) { 224 Say("Subscripts of component '%s' of rank-%d derived type " 225 "array have rank %d but must all be scalar"_err_en_US, 226 symbol.name(), baseRank, subscriptRank); 227 return std::nullopt; 228 } 229 } 230 } else if (object) { 231 // C928 & C1002 232 if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { 233 if (!last->upper() && object->IsAssumedSize()) { 234 Say("Assumed-size array '%s' must have explicit final " 235 "subscript upper bound value"_err_en_US, 236 symbol.name()); 237 return std::nullopt; 238 } 239 } 240 } 241 return Designate(DataRef{std::move(ref)}); 242 } 243 244 // Applies subscripts to a data reference. 245 MaybeExpr ExpressionAnalyzer::ApplySubscripts( 246 DataRef &&dataRef, std::vector<Subscript> &&subscripts) { 247 return std::visit( 248 common::visitors{ 249 [&](SymbolRef &&symbol) { 250 return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); 251 }, 252 [&](Component &&c) { 253 return CompleteSubscripts( 254 ArrayRef{std::move(c), std::move(subscripts)}); 255 }, 256 [&](auto &&) -> MaybeExpr { 257 DIE("bad base for ArrayRef"); 258 return std::nullopt; 259 }, 260 }, 261 std::move(dataRef.u)); 262 } 263 264 // Top-level checks for data references. 265 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { 266 if (Component * component{std::get_if<Component>(&dataRef.u)}) { 267 const Symbol &symbol{component->GetLastSymbol()}; 268 int componentRank{symbol.Rank()}; 269 if (componentRank > 0) { 270 int baseRank{component->base().Rank()}; 271 if (baseRank > 0) { 272 Say("Reference to whole rank-%d component '%%%s' of " 273 "rank-%d array of derived type is not allowed"_err_en_US, 274 componentRank, symbol.name(), baseRank); 275 } 276 } 277 } 278 return Designate(std::move(dataRef)); 279 } 280 281 // Parse tree correction after a substring S(j:k) was misparsed as an 282 // array section. N.B. Fortran substrings have to have a range, not a 283 // single index. 284 static void FixMisparsedSubstring(const parser::Designator &d) { 285 auto &mutate{const_cast<parser::Designator &>(d)}; 286 if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { 287 if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( 288 &dataRef->u)}) { 289 parser::ArrayElement &arrElement{ae->value()}; 290 if (!arrElement.subscripts.empty()) { 291 auto iter{arrElement.subscripts.begin()}; 292 if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { 293 if (!std::get<2>(triplet->t) /* no stride */ && 294 ++iter == arrElement.subscripts.end() /* one subscript */) { 295 if (Symbol * 296 symbol{std::visit( 297 common::visitors{ 298 [](parser::Name &n) { return n.symbol; }, 299 [](common::Indirection<parser::StructureComponent> 300 &sc) { return sc.value().component.symbol; }, 301 [](auto &) -> Symbol * { return nullptr; }, 302 }, 303 arrElement.base.u)}) { 304 const Symbol &ultimate{symbol->GetUltimate()}; 305 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 306 if (!ultimate.IsObjectArray() && 307 type->category() == semantics::DeclTypeSpec::Character) { 308 // The ambiguous S(j:k) was parsed as an array section 309 // reference, but it's now clear that it's a substring. 310 // Fix the parse tree in situ. 311 mutate.u = arrElement.ConvertToSubstring(); 312 } 313 } 314 } 315 } 316 } 317 } 318 } 319 } 320 } 321 322 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { 323 auto restorer{GetContextualMessages().SetLocation(d.source)}; 324 FixMisparsedSubstring(d); 325 // These checks have to be deferred to these "top level" data-refs where 326 // we can be sure that there are no following subscripts (yet). 327 // Substrings have already been run through TopLevelChecks() and 328 // won't be returned by ExtractDataRef(). 329 if (MaybeExpr result{Analyze(d.u)}) { 330 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) { 331 return TopLevelChecks(std::move(*dataRef)); 332 } 333 return result; 334 } 335 return std::nullopt; 336 } 337 338 // A utility subroutine to repackage optional expressions of various levels 339 // of type specificity as fully general MaybeExpr values. 340 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { 341 return AsGenericExpr(std::move(x)); 342 } 343 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { 344 if (x) { 345 return AsMaybeExpr(std::move(*x)); 346 } 347 return std::nullopt; 348 } 349 350 // Type kind parameter values for literal constants. 351 int ExpressionAnalyzer::AnalyzeKindParam( 352 const std::optional<parser::KindParam> &kindParam, int defaultKind) { 353 if (!kindParam) { 354 return defaultKind; 355 } 356 return std::visit( 357 common::visitors{ 358 [](std::uint64_t k) { return static_cast<int>(k); }, 359 [&](const parser::Scalar< 360 parser::Integer<parser::Constant<parser::Name>>> &n) { 361 if (MaybeExpr ie{Analyze(n)}) { 362 if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { 363 int iv = *i64; 364 if (iv == *i64) { 365 return iv; 366 } 367 } 368 } 369 return defaultKind; 370 }, 371 }, 372 kindParam->u); 373 } 374 375 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant 376 struct IntTypeVisitor { 377 using Result = MaybeExpr; 378 using Types = IntegerTypes; 379 template <typename T> Result Test() { 380 if (T::kind >= kind) { 381 const char *p{digits.begin()}; 382 auto value{T::Scalar::Read(p, 10, true /*signed*/)}; 383 if (!value.overflow) { 384 if (T::kind > kind) { 385 if (!isDefaultKind || 386 !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { 387 return std::nullopt; 388 } else if (analyzer.context().ShouldWarn( 389 LanguageFeature::BigIntLiterals)) { 390 analyzer.Say(digits, 391 "Integer literal is too large for default INTEGER(KIND=%d); " 392 "assuming INTEGER(KIND=%d)"_en_US, 393 kind, T::kind); 394 } 395 } 396 return Expr<SomeType>{ 397 Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; 398 } 399 } 400 return std::nullopt; 401 } 402 ExpressionAnalyzer &analyzer; 403 parser::CharBlock digits; 404 int kind; 405 bool isDefaultKind; 406 }; 407 408 template <typename PARSED> 409 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { 410 const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; 411 bool isDefaultKind{!kindParam}; 412 int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; 413 if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { 414 auto digits{std::get<parser::CharBlock>(x.t)}; 415 if (MaybeExpr result{common::SearchTypes( 416 IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { 417 return result; 418 } else if (isDefaultKind) { 419 Say(digits, 420 "Integer literal is too large for any allowable " 421 "kind of INTEGER"_err_en_US); 422 } else { 423 Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, 424 kind); 425 } 426 } 427 return std::nullopt; 428 } 429 430 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { 431 auto restorer{ 432 GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; 433 return IntLiteralConstant(x); 434 } 435 436 MaybeExpr ExpressionAnalyzer::Analyze( 437 const parser::SignedIntLiteralConstant &x) { 438 auto restorer{GetContextualMessages().SetLocation(x.source)}; 439 return IntLiteralConstant(x); 440 } 441 442 template <typename TYPE> 443 Constant<TYPE> ReadRealLiteral( 444 parser::CharBlock source, FoldingContext &context) { 445 const char *p{source.begin()}; 446 auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; 447 CHECK(p == source.end()); 448 RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); 449 auto value{valWithFlags.value}; 450 if (context.flushSubnormalsToZero()) { 451 value = value.FlushSubnormalToZero(); 452 } 453 return {value}; 454 } 455 456 struct RealTypeVisitor { 457 using Result = std::optional<Expr<SomeReal>>; 458 using Types = RealTypes; 459 460 RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) 461 : kind{k}, literal{lit}, context{ctx} {} 462 463 template <typename T> Result Test() { 464 if (kind == T::kind) { 465 return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; 466 } 467 return std::nullopt; 468 } 469 470 int kind; 471 parser::CharBlock literal; 472 FoldingContext &context; 473 }; 474 475 // Reads a real literal constant and encodes it with the right kind. 476 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { 477 // Use a local message context around the real literal for better 478 // provenance on any messages. 479 auto restorer{GetContextualMessages().SetLocation(x.real.source)}; 480 // If a kind parameter appears, it defines the kind of the literal and the 481 // letter used in an exponent part must be 'E' (e.g., the 'E' in 482 // "6.02214E+23"). In the absence of an explicit kind parameter, any 483 // exponent letter determines the kind. Otherwise, defaults apply. 484 auto &defaults{context_.defaultKinds()}; 485 int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; 486 const char *end{x.real.source.end()}; 487 char expoLetter{' '}; 488 std::optional<int> letterKind; 489 for (const char *p{x.real.source.begin()}; p < end; ++p) { 490 if (parser::IsLetter(*p)) { 491 expoLetter = *p; 492 switch (expoLetter) { 493 case 'e': 494 letterKind = defaults.GetDefaultKind(TypeCategory::Real); 495 break; 496 case 'd': 497 letterKind = defaults.doublePrecisionKind(); 498 break; 499 case 'q': 500 letterKind = defaults.quadPrecisionKind(); 501 break; 502 default: 503 Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); 504 } 505 break; 506 } 507 } 508 if (letterKind) { 509 defaultKind = *letterKind; 510 } 511 // C716 requires 'E' as an exponent, but this is more useful 512 auto kind{AnalyzeKindParam(x.kind, defaultKind)}; 513 if (letterKind && kind != *letterKind && expoLetter != 'e') { 514 Say("Explicit kind parameter on real constant disagrees with " 515 "exponent letter '%c'"_en_US, 516 expoLetter); 517 } 518 auto result{common::SearchTypes( 519 RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; 520 if (!result) { // C717 521 Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); 522 } 523 return AsMaybeExpr(std::move(result)); 524 } 525 526 MaybeExpr ExpressionAnalyzer::Analyze( 527 const parser::SignedRealLiteralConstant &x) { 528 if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { 529 auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; 530 if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { 531 if (sign == parser::Sign::Negative) { 532 return AsGenericExpr(-std::move(realExpr)); 533 } 534 } 535 return result; 536 } 537 return std::nullopt; 538 } 539 540 MaybeExpr ExpressionAnalyzer::Analyze( 541 const parser::SignedComplexLiteralConstant &x) { 542 auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; 543 if (!result) { 544 return std::nullopt; 545 } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { 546 return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); 547 } else { 548 return result; 549 } 550 } 551 552 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { 553 return Analyze(x.u); 554 } 555 556 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { 557 return AsMaybeExpr( 558 ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), 559 Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); 560 } 561 562 // CHARACTER literal processing. 563 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { 564 if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { 565 return std::nullopt; 566 } 567 switch (kind) { 568 case 1: 569 return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ 570 parser::DecodeString<std::string, parser::Encoding::LATIN_1>( 571 string, true)}); 572 case 2: 573 return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ 574 parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( 575 string, true)}); 576 case 4: 577 return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ 578 parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( 579 string, true)}); 580 default: 581 CRASH_NO_CASE; 582 } 583 } 584 585 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { 586 int kind{ 587 AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; 588 auto value{std::get<std::string>(x.t)}; 589 return AnalyzeString(std::move(value), kind); 590 } 591 592 MaybeExpr ExpressionAnalyzer::Analyze( 593 const parser::HollerithLiteralConstant &x) { 594 int kind{GetDefaultKind(TypeCategory::Character)}; 595 auto value{x.v}; 596 return AnalyzeString(std::move(value), kind); 597 } 598 599 // .TRUE. and .FALSE. of various kinds 600 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { 601 auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 602 GetDefaultKind(TypeCategory::Logical))}; 603 bool value{std::get<bool>(x.t)}; 604 auto result{common::SearchTypes( 605 TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ 606 kind, std::move(value)})}; 607 if (!result) { 608 Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 609 } 610 return result; 611 } 612 613 // BOZ typeless literals 614 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { 615 const char *p{x.v.c_str()}; 616 std::uint64_t base{16}; 617 switch (*p++) { 618 case 'b': 619 base = 2; 620 break; 621 case 'o': 622 base = 8; 623 break; 624 case 'z': 625 break; 626 case 'x': 627 break; 628 default: 629 CRASH_NO_CASE; 630 } 631 CHECK(*p == '"'); 632 ++p; 633 auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; 634 if (*p != '"') { 635 Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, x.v); 636 return std::nullopt; 637 } 638 if (value.overflow) { 639 Say("BOZ literal '%s' too large"_err_en_US, x.v); 640 return std::nullopt; 641 } 642 return AsGenericExpr(std::move(value.value)); 643 } 644 645 // For use with SearchTypes to create a TypeParamInquiry with the 646 // right integer kind. 647 struct TypeParamInquiryVisitor { 648 using Result = std::optional<Expr<SomeInteger>>; 649 using Types = IntegerTypes; 650 TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol ¶m) 651 : kind{k}, base{std::move(b)}, parameter{param} {} 652 TypeParamInquiryVisitor(int k, const Symbol ¶m) 653 : kind{k}, parameter{param} {} 654 template <typename T> Result Test() { 655 if (kind == T::kind) { 656 return Expr<SomeInteger>{ 657 Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}}; 658 } 659 return std::nullopt; 660 } 661 int kind; 662 std::optional<NamedEntity> base; 663 const Symbol ¶meter; 664 }; 665 666 static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry( 667 const Symbol *symbol) { 668 if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) { 669 if (dyType->category() == TypeCategory::Integer) { 670 return common::SearchTypes( 671 TypeParamInquiryVisitor{dyType->kind(), *symbol}); 672 } 673 } 674 return std::nullopt; 675 } 676 677 // Names and named constants 678 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { 679 if (std::optional<int> kind{IsImpliedDo(n.source)}) { 680 return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( 681 *kind, AsExpr(ImpliedDoIndex{n.source}))); 682 } else if (context_.HasError(n) || !n.symbol) { 683 return std::nullopt; 684 } else { 685 const Symbol &ultimate{n.symbol->GetUltimate()}; 686 if (ultimate.has<semantics::TypeParamDetails>()) { 687 // A bare reference to a derived type parameter (within a parameterized 688 // derived type definition) 689 return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate)); 690 } else { 691 if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { 692 if (const semantics::Scope * 693 pure{semantics::FindPureProcedureContaining( 694 context_.FindScope(n.source))}) { 695 SayAt(n, 696 "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, 697 n.source, DEREF(pure->symbol()).name()); 698 n.symbol->attrs().reset(semantics::Attr::VOLATILE); 699 } 700 } 701 return Designate(DataRef{*n.symbol}); 702 } 703 } 704 } 705 706 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { 707 if (MaybeExpr value{Analyze(n.v)}) { 708 Expr<SomeType> folded{Fold(std::move(*value))}; 709 if (IsConstantExpr(folded)) { 710 return folded; 711 } 712 Say(n.v.source, "must be a constant"_err_en_US); // C718 713 } 714 return std::nullopt; 715 } 716 717 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &x) { 718 return Expr<SomeType>{NullPointer{}}; 719 } 720 721 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { 722 return Analyze(x.value()); 723 } 724 725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { 726 if (const auto &repeat{ 727 std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { 728 x.repetitions = -1; 729 if (MaybeExpr expr{Analyze(repeat->u)}) { 730 Expr<SomeType> folded{Fold(std::move(*expr))}; 731 if (auto value{ToInt64(folded)}) { 732 if (*value >= 0) { // C882 733 x.repetitions = *value; 734 } else { 735 Say(FindSourceLocation(repeat), 736 "Repeat count (%jd) for data value must not be negative"_err_en_US, 737 *value); 738 } 739 } 740 } 741 } 742 return Analyze(std::get<parser::DataStmtConstant>(x.t)); 743 } 744 745 // Substring references 746 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( 747 const std::optional<parser::ScalarIntExpr> &bound) { 748 if (bound) { 749 if (MaybeExpr expr{Analyze(*bound)}) { 750 if (expr->Rank() > 1) { 751 Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); 752 } 753 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 754 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 755 return {std::move(*ssIntExpr)}; 756 } 757 return {Expr<SubscriptInteger>{ 758 Convert<SubscriptInteger, TypeCategory::Integer>{ 759 std::move(*intExpr)}}}; 760 } else { 761 Say("substring bound expression is not INTEGER"_err_en_US); 762 } 763 } 764 } 765 return std::nullopt; 766 } 767 768 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { 769 if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { 770 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { 771 if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { 772 if (std::optional<DataRef> checked{ 773 ExtractDataRef(std::move(*newBaseExpr))}) { 774 const parser::SubstringRange &range{ 775 std::get<parser::SubstringRange>(ss.t)}; 776 std::optional<Expr<SubscriptInteger>> first{ 777 GetSubstringBound(std::get<0>(range.t))}; 778 std::optional<Expr<SubscriptInteger>> last{ 779 GetSubstringBound(std::get<1>(range.t))}; 780 const Symbol &symbol{checked->GetLastSymbol()}; 781 if (std::optional<DynamicType> dynamicType{ 782 DynamicType::From(symbol)}) { 783 if (dynamicType->category() == TypeCategory::Character) { 784 return WrapperHelper<TypeCategory::Character, Designator, 785 Substring>(dynamicType->kind(), 786 Substring{std::move(checked.value()), std::move(first), 787 std::move(last)}); 788 } 789 } 790 Say("substring may apply only to CHARACTER"_err_en_US); 791 } 792 } 793 } 794 } 795 return std::nullopt; 796 } 797 798 // CHARACTER literal substrings 799 MaybeExpr ExpressionAnalyzer::Analyze( 800 const parser::CharLiteralConstantSubstring &x) { 801 const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; 802 std::optional<Expr<SubscriptInteger>> lower{ 803 GetSubstringBound(std::get<0>(range.t))}; 804 std::optional<Expr<SubscriptInteger>> upper{ 805 GetSubstringBound(std::get<1>(range.t))}; 806 if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { 807 if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { 808 Expr<SubscriptInteger> length{ 809 std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, 810 charExpr->u)}; 811 if (!lower) { 812 lower = Expr<SubscriptInteger>{1}; 813 } 814 if (!upper) { 815 upper = Expr<SubscriptInteger>{ 816 static_cast<std::int64_t>(ToInt64(length).value())}; 817 } 818 return std::visit( 819 [&](auto &&ckExpr) -> MaybeExpr { 820 using Result = ResultType<decltype(ckExpr)>; 821 auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; 822 CHECK(DEREF(cp).size() == 1); 823 StaticDataObject::Pointer staticData{StaticDataObject::Create()}; 824 staticData->set_alignment(Result::kind) 825 .set_itemBytes(Result::kind) 826 .Push(cp->GetScalarValue().value()); 827 Substring substring{std::move(staticData), std::move(lower.value()), 828 std::move(upper.value())}; 829 return AsGenericExpr( 830 Expr<Result>{Designator<Result>{std::move(substring)}}); 831 }, 832 std::move(charExpr->u)); 833 } 834 } 835 return std::nullopt; 836 } 837 838 // Subscripted array references 839 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( 840 MaybeExpr &&expr) { 841 if (expr) { 842 if (expr->Rank() > 1) { 843 Say("Subscript expression has rank %d greater than 1"_err_en_US, 844 expr->Rank()); 845 } 846 if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { 847 if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { 848 return std::move(*ssIntExpr); 849 } else { 850 return Expr<SubscriptInteger>{ 851 Convert<SubscriptInteger, TypeCategory::Integer>{ 852 std::move(*intExpr)}}; 853 } 854 } else { 855 Say("Subscript expression is not INTEGER"_err_en_US); 856 } 857 } 858 return std::nullopt; 859 } 860 861 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( 862 const std::optional<parser::Subscript> &s) { 863 if (s) { 864 return AsSubscript(Analyze(*s)); 865 } else { 866 return std::nullopt; 867 } 868 } 869 870 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( 871 const parser::SectionSubscript &ss) { 872 return std::visit(common::visitors{ 873 [&](const parser::SubscriptTriplet &t) { 874 return std::make_optional<Subscript>( 875 Triplet{TripletPart(std::get<0>(t.t)), 876 TripletPart(std::get<1>(t.t)), 877 TripletPart(std::get<2>(t.t))}); 878 }, 879 [&](const auto &s) -> std::optional<Subscript> { 880 if (auto subscriptExpr{AsSubscript(Analyze(s))}) { 881 return Subscript{std::move(*subscriptExpr)}; 882 } else { 883 return std::nullopt; 884 } 885 }, 886 }, 887 ss.u); 888 } 889 890 // Empty result means an error occurred 891 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( 892 const std::list<parser::SectionSubscript> &sss) { 893 bool error{false}; 894 std::vector<Subscript> subscripts; 895 for (const auto &s : sss) { 896 if (auto subscript{AnalyzeSectionSubscript(s)}) { 897 subscripts.emplace_back(std::move(*subscript)); 898 } else { 899 error = true; 900 } 901 } 902 return !error ? subscripts : std::vector<Subscript>{}; 903 } 904 905 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { 906 if (MaybeExpr baseExpr{Analyze(ae.base)}) { 907 if (ae.subscripts.empty()) { 908 // will be converted to function call later or error reported 909 return std::nullopt; 910 } else if (baseExpr->Rank() == 0) { 911 if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) { 912 if (!context_.HasError(symbol)) { 913 Say("'%s' is not an array"_err_en_US, symbol->name()); 914 context_.SetError(const_cast<Symbol &>(*symbol)); 915 } 916 } 917 } else if (std::optional<DataRef> dataRef{ 918 ExtractDataRef(std::move(*baseExpr))}) { 919 return ApplySubscripts( 920 std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); 921 } else { 922 Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); 923 } 924 } 925 // error was reported: analyze subscripts without reporting more errors 926 auto restorer{GetContextualMessages().DiscardMessages()}; 927 AnalyzeSectionSubscripts(ae.subscripts); 928 return std::nullopt; 929 } 930 931 // Type parameter inquiries apply to data references, but don't depend 932 // on any trailing (co)subscripts. 933 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { 934 return std::visit( 935 common::visitors{ 936 [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, 937 [](Component &&component) { 938 return NamedEntity{std::move(component)}; 939 }, 940 [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, 941 [](CoarrayRef &&coarrayRef) { 942 return NamedEntity{coarrayRef.GetLastSymbol()}; 943 }, 944 }, 945 std::move(designator.u)); 946 } 947 948 // Components of parent derived types are explicitly represented as such. 949 static std::optional<Component> CreateComponent( 950 DataRef &&base, const Symbol &component, const semantics::Scope &scope) { 951 if (&component.owner() == &scope) { 952 return Component{std::move(base), component}; 953 } 954 if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { 955 if (const Symbol * parentComponent{parentScope->GetSymbol()}) { 956 return CreateComponent( 957 DataRef{Component{std::move(base), *parentComponent}}, component, 958 *parentScope); 959 } 960 } 961 return std::nullopt; 962 } 963 964 // Derived type component references and type parameter inquiries 965 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { 966 MaybeExpr base{Analyze(sc.base)}; 967 if (!base) { 968 return std::nullopt; 969 } 970 Symbol *sym{sc.component.symbol}; 971 if (context_.HasError(sym)) { 972 return std::nullopt; 973 } 974 const auto &name{sc.component.source}; 975 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 976 const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; 977 if (sym->detailsIf<semantics::TypeParamDetails>()) { 978 if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { 979 if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { 980 if (dyType->category() == TypeCategory::Integer) { 981 return AsMaybeExpr( 982 common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(), 983 IgnoreAnySubscripts(std::move(*designator)), *sym})); 984 } 985 } 986 Say(name, "Type parameter is not INTEGER"_err_en_US); 987 } else { 988 Say(name, 989 "A type parameter inquiry must be applied to " 990 "a designator"_err_en_US); 991 } 992 } else if (!dtSpec || !dtSpec->scope()) { 993 CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); 994 return std::nullopt; 995 } else if (std::optional<DataRef> dataRef{ 996 ExtractDataRef(std::move(*dtExpr))}) { 997 if (auto component{ 998 CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { 999 return Designate(DataRef{std::move(*component)}); 1000 } else { 1001 Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, 1002 dtSpec->typeSymbol().name()); 1003 } 1004 } else { 1005 Say(name, 1006 "Base of component reference must be a data reference"_err_en_US); 1007 } 1008 } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { 1009 // special part-ref: %re, %im, %kind, %len 1010 // Type errors are detected and reported in semantics. 1011 using MiscKind = semantics::MiscDetails::Kind; 1012 MiscKind kind{details->kind()}; 1013 if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { 1014 if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { 1015 if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { 1016 Expr<SomeReal> realExpr{std::visit( 1017 [&](const auto &z) { 1018 using PartType = typename ResultType<decltype(z)>::Part; 1019 auto part{kind == MiscKind::ComplexPartRe 1020 ? ComplexPart::Part::RE 1021 : ComplexPart::Part::IM}; 1022 return AsCategoryExpr(Designator<PartType>{ 1023 ComplexPart{std::move(*dataRef), part}}); 1024 }, 1025 zExpr->u)}; 1026 return AsGenericExpr(std::move(realExpr)); 1027 } 1028 } 1029 } else if (kind == MiscKind::KindParamInquiry || 1030 kind == MiscKind::LenParamInquiry) { 1031 // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) 1032 return MakeFunctionRef( 1033 name, ActualArguments{ActualArgument{std::move(*base)}}); 1034 } else { 1035 DIE("unexpected MiscDetails::Kind"); 1036 } 1037 } else { 1038 Say(name, "derived type required before component reference"_err_en_US); 1039 } 1040 return std::nullopt; 1041 } 1042 1043 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { 1044 if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { 1045 DataRef *dataRef{&*maybeDataRef}; 1046 std::vector<Subscript> subscripts; 1047 SymbolVector reversed; 1048 if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { 1049 subscripts = std::move(aRef->subscript()); 1050 reversed.push_back(aRef->GetLastSymbol()); 1051 if (Component * component{aRef->base().UnwrapComponent()}) { 1052 dataRef = &component->base(); 1053 } else { 1054 dataRef = nullptr; 1055 } 1056 } 1057 if (dataRef) { 1058 while (auto *component{std::get_if<Component>(&dataRef->u)}) { 1059 reversed.push_back(component->GetLastSymbol()); 1060 dataRef = &component->base(); 1061 } 1062 if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { 1063 reversed.push_back(*baseSym); 1064 } else { 1065 Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); 1066 } 1067 } 1068 std::vector<Expr<SubscriptInteger>> cosubscripts; 1069 bool cosubsOk{true}; 1070 for (const auto &cosub : 1071 std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { 1072 MaybeExpr coex{Analyze(cosub)}; 1073 if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { 1074 cosubscripts.push_back( 1075 ConvertToType<SubscriptInteger>(std::move(*intExpr))); 1076 } else { 1077 cosubsOk = false; 1078 } 1079 } 1080 if (cosubsOk && !reversed.empty()) { 1081 int numCosubscripts{static_cast<int>(cosubscripts.size())}; 1082 const Symbol &symbol{reversed.front()}; 1083 if (numCosubscripts != symbol.Corank()) { 1084 Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, 1085 symbol.name(), symbol.Corank(), numCosubscripts); 1086 } 1087 } 1088 for (const auto &imageSelSpec : 1089 std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { 1090 std::visit( 1091 common::visitors{ 1092 [&](const auto &x) { Analyze(x.v); }, 1093 }, 1094 imageSelSpec.u); 1095 } 1096 // Reverse the chain of symbols so that the base is first and coarray 1097 // ultimate component is last. 1098 if (cosubsOk) { 1099 return Designate( 1100 DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, 1101 std::move(subscripts), std::move(cosubscripts)}}); 1102 } 1103 } 1104 return std::nullopt; 1105 } 1106 1107 int ExpressionAnalyzer::IntegerTypeSpecKind( 1108 const parser::IntegerTypeSpec &spec) { 1109 Expr<SubscriptInteger> value{ 1110 AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; 1111 if (auto kind{ToInt64(value)}) { 1112 return static_cast<int>(*kind); 1113 } 1114 SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); 1115 return GetDefaultKind(TypeCategory::Integer); 1116 } 1117 1118 // Array constructors 1119 1120 // Inverts a collection of generic ArrayConstructorValues<SomeType> that 1121 // all happen to have the same actual type T into one ArrayConstructor<T>. 1122 template <typename T> 1123 ArrayConstructorValues<T> MakeSpecific( 1124 ArrayConstructorValues<SomeType> &&from) { 1125 ArrayConstructorValues<T> to; 1126 for (ArrayConstructorValue<SomeType> &x : from) { 1127 std::visit( 1128 common::visitors{ 1129 [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { 1130 auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; 1131 to.Push(std::move(DEREF(typed))); 1132 }, 1133 [&](ImpliedDo<SomeType> &&impliedDo) { 1134 to.Push(ImpliedDo<T>{impliedDo.name(), 1135 std::move(impliedDo.lower()), std::move(impliedDo.upper()), 1136 std::move(impliedDo.stride()), 1137 MakeSpecific<T>(std::move(impliedDo.values()))}); 1138 }, 1139 }, 1140 std::move(x.u)); 1141 } 1142 return to; 1143 } 1144 1145 class ArrayConstructorContext { 1146 public: 1147 ArrayConstructorContext( 1148 ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) 1149 : exprAnalyzer_{c}, type_{std::move(t)} {} 1150 1151 void Add(const parser::AcValue &); 1152 MaybeExpr ToExpr(); 1153 1154 // These interfaces allow *this to be used as a type visitor argument to 1155 // common::SearchTypes() to convert the array constructor to a typed 1156 // expression in ToExpr(). 1157 using Result = MaybeExpr; 1158 using Types = AllTypes; 1159 template <typename T> Result Test() { 1160 if (type_ && type_->category() == T::category) { 1161 if constexpr (T::category == TypeCategory::Derived) { 1162 return AsMaybeExpr(ArrayConstructor<T>{ 1163 type_->GetDerivedTypeSpec(), MakeSpecific<T>(std::move(values_))}); 1164 } else if (type_->kind() == T::kind) { 1165 if constexpr (T::category == TypeCategory::Character) { 1166 if (auto len{type_->LEN()}) { 1167 return AsMaybeExpr(ArrayConstructor<T>{ 1168 *std::move(len), MakeSpecific<T>(std::move(values_))}); 1169 } 1170 } else { 1171 return AsMaybeExpr( 1172 ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))}); 1173 } 1174 } 1175 } 1176 return std::nullopt; 1177 } 1178 1179 private: 1180 void Push(MaybeExpr &&); 1181 1182 template <int KIND, typename A> 1183 std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( 1184 const A &x) { 1185 if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { 1186 Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; 1187 return ConvertToType<Type<TypeCategory::Integer, KIND>>( 1188 std::move(DEREF(intExpr))); 1189 } 1190 return std::nullopt; 1191 } 1192 1193 // Nested array constructors all reference the same ExpressionAnalyzer, 1194 // which represents the nest of active implied DO loop indices. 1195 ExpressionAnalyzer &exprAnalyzer_; 1196 std::optional<DynamicTypeWithLength> type_; 1197 bool explicitType_{type_.has_value()}; 1198 std::optional<std::int64_t> constantLength_; 1199 ArrayConstructorValues<SomeType> values_; 1200 }; 1201 1202 void ArrayConstructorContext::Push(MaybeExpr &&x) { 1203 if (!x) { 1204 return; 1205 } 1206 if (auto dyType{x->GetType()}) { 1207 DynamicTypeWithLength xType{*dyType}; 1208 if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { 1209 CHECK(xType.category() == TypeCategory::Character); 1210 xType.length = 1211 std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); 1212 } 1213 if (!type_) { 1214 // If there is no explicit type-spec in an array constructor, the type 1215 // of the array is the declared type of all of the elements, which must 1216 // be well-defined and all match. 1217 // TODO: Possible language extension: use the most general type of 1218 // the values as the type of a numeric constructed array, convert all 1219 // of the other values to that type. Alternative: let the first value 1220 // determine the type, and convert the others to that type. 1221 CHECK(!explicitType_); 1222 type_ = std::move(xType); 1223 constantLength_ = ToInt64(type_->length); 1224 values_.Push(std::move(*x)); 1225 } else if (!explicitType_) { 1226 if (static_cast<const DynamicType &>(*type_) == 1227 static_cast<const DynamicType &>(xType)) { 1228 values_.Push(std::move(*x)); 1229 if (auto thisLen{ToInt64(xType.LEN())}) { 1230 if (constantLength_) { 1231 if (exprAnalyzer_.context().warnOnNonstandardUsage() && 1232 *thisLen != *constantLength_) { 1233 exprAnalyzer_.Say( 1234 "Character literal in array constructor without explicit " 1235 "type has different length than earlier element"_en_US); 1236 } 1237 if (*thisLen > *constantLength_) { 1238 // Language extension: use the longest literal to determine the 1239 // length of the array constructor's character elements, not the 1240 // first, when there is no explicit type. 1241 *constantLength_ = *thisLen; 1242 type_->length = xType.LEN(); 1243 } 1244 } else { 1245 constantLength_ = *thisLen; 1246 type_->length = xType.LEN(); 1247 } 1248 } 1249 } else { 1250 exprAnalyzer_.Say( 1251 "Values in array constructor must have the same declared type " 1252 "when no explicit type appears"_err_en_US); 1253 } 1254 } else { 1255 if (auto cast{ConvertToType(*type_, std::move(*x))}) { 1256 values_.Push(std::move(*cast)); 1257 } else { 1258 exprAnalyzer_.Say( 1259 "Value in array constructor could not be converted to the type " 1260 "of the array"_err_en_US); 1261 } 1262 } 1263 } 1264 } 1265 1266 void ArrayConstructorContext::Add(const parser::AcValue &x) { 1267 using IntType = ResultType<ImpliedDoIndex>; 1268 std::visit( 1269 common::visitors{ 1270 [&](const parser::AcValue::Triplet &triplet) { 1271 // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' 1272 std::optional<Expr<IntType>> lower{ 1273 GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))}; 1274 std::optional<Expr<IntType>> upper{ 1275 GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))}; 1276 std::optional<Expr<IntType>> stride{ 1277 GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))}; 1278 if (lower && upper) { 1279 if (!stride) { 1280 stride = Expr<IntType>{1}; 1281 } 1282 if (!type_) { 1283 type_ = DynamicTypeWithLength{IntType::GetType()}; 1284 } 1285 auto v{std::move(values_)}; 1286 parser::CharBlock anonymous; 1287 Push(Expr<SomeType>{ 1288 Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{anonymous}}}}); 1289 std::swap(v, values_); 1290 values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), 1291 std::move(*upper), std::move(*stride), std::move(v)}); 1292 } 1293 }, 1294 [&](const common::Indirection<parser::Expr> &expr) { 1295 auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation( 1296 expr.value().source)}; 1297 if (MaybeExpr v{exprAnalyzer_.Analyze(expr.value())}) { 1298 Push(std::move(*v)); 1299 } 1300 }, 1301 [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { 1302 const auto &control{ 1303 std::get<parser::AcImpliedDoControl>(impliedDo.value().t)}; 1304 const auto &bounds{ 1305 std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 1306 exprAnalyzer_.Analyze(bounds.name); 1307 parser::CharBlock name{bounds.name.thing.thing.source}; 1308 const Symbol *symbol{bounds.name.thing.thing.symbol}; 1309 int kind{IntType::kind}; 1310 if (const auto dynamicType{DynamicType::From(symbol)}) { 1311 kind = dynamicType->kind(); 1312 } 1313 if (exprAnalyzer_.AddImpliedDo(name, kind)) { 1314 std::optional<Expr<IntType>> lower{ 1315 GetSpecificIntExpr<IntType::kind>(bounds.lower)}; 1316 std::optional<Expr<IntType>> upper{ 1317 GetSpecificIntExpr<IntType::kind>(bounds.upper)}; 1318 if (lower && upper) { 1319 std::optional<Expr<IntType>> stride{ 1320 GetSpecificIntExpr<IntType::kind>(bounds.step)}; 1321 auto v{std::move(values_)}; 1322 for (const auto &value : 1323 std::get<std::list<parser::AcValue>>(impliedDo.value().t)) { 1324 Add(value); 1325 } 1326 if (!stride) { 1327 stride = Expr<IntType>{1}; 1328 } 1329 std::swap(v, values_); 1330 values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), 1331 std::move(*upper), std::move(*stride), std::move(v)}); 1332 } 1333 exprAnalyzer_.RemoveImpliedDo(name); 1334 } else { 1335 exprAnalyzer_.SayAt(name, 1336 "Implied DO index is active in surrounding implied DO loop " 1337 "and may not have the same name"_err_en_US); 1338 } 1339 }, 1340 }, 1341 x.u); 1342 } 1343 1344 MaybeExpr ArrayConstructorContext::ToExpr() { 1345 return common::SearchTypes(std::move(*this)); 1346 } 1347 1348 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { 1349 const parser::AcSpec &acSpec{array.v}; 1350 ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; 1351 for (const parser::AcValue &value : acSpec.values) { 1352 acContext.Add(value); 1353 } 1354 return acContext.ToExpr(); 1355 } 1356 1357 MaybeExpr ExpressionAnalyzer::Analyze( 1358 const parser::StructureConstructor &structure) { 1359 auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; 1360 parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; 1361 if (!parsedType.derivedTypeSpec) { 1362 return std::nullopt; 1363 } 1364 const auto &spec{*parsedType.derivedTypeSpec}; 1365 const Symbol &typeSymbol{spec.typeSymbol()}; 1366 if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { 1367 return std::nullopt; // error recovery 1368 } 1369 const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; 1370 const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; 1371 1372 if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 1373 AttachDeclaration(Say(typeName, 1374 "ABSTRACT derived type '%s' may not be used in a " 1375 "structure constructor"_err_en_US, 1376 typeName), 1377 typeSymbol); 1378 } 1379 1380 // This iterator traverses all of the components in the derived type and its 1381 // parents. The symbols for whole parent components appear after their 1382 // own components and before the components of the types that extend them. 1383 // E.g., TYPE :: A; REAL X; END TYPE 1384 // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE 1385 // produces the component list X, A, Y. 1386 // The order is important below because a structure constructor can 1387 // initialize X or A by name, but not both. 1388 auto components{semantics::OrderedComponentIterator{spec}}; 1389 auto nextAnonymous{components.begin()}; 1390 1391 std::set<parser::CharBlock> unavailable; 1392 bool anyKeyword{false}; 1393 StructureConstructor result{spec}; 1394 bool checkConflicts{true}; // until we hit one 1395 auto &messages{GetContextualMessages()}; 1396 1397 for (const auto &component : 1398 std::get<std::list<parser::ComponentSpec>>(structure.t)) { 1399 const parser::Expr &expr{ 1400 std::get<parser::ComponentDataSource>(component.t).v.value()}; 1401 parser::CharBlock source{expr.source}; 1402 auto restorer{messages.SetLocation(source)}; 1403 const Symbol *symbol{nullptr}; 1404 MaybeExpr value{Analyze(expr)}; 1405 std::optional<DynamicType> valueType{DynamicType::From(value)}; 1406 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 1407 anyKeyword = true; 1408 source = kw->v.source; 1409 symbol = kw->v.symbol; 1410 if (!symbol) { 1411 auto componentIter{std::find_if(components.begin(), components.end(), 1412 [=](const Symbol &symbol) { return symbol.name() == source; })}; 1413 if (componentIter != components.end()) { 1414 symbol = &*componentIter; 1415 } 1416 } 1417 if (!symbol) { // C7101 1418 Say(source, 1419 "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, 1420 source, typeName); 1421 } 1422 } else { 1423 if (anyKeyword) { // C7100 1424 Say(source, 1425 "Value in structure constructor lacks a component name"_err_en_US); 1426 checkConflicts = false; // stem cascade 1427 } 1428 // Here's a regrettably common extension of the standard: anonymous 1429 // initialization of parent components, e.g., T(PT(1)) rather than 1430 // T(1) or T(PT=PT(1)). 1431 if (nextAnonymous == components.begin() && parentComponent && 1432 valueType == DynamicType::From(*parentComponent) && 1433 context().IsEnabled(LanguageFeature::AnonymousParents)) { 1434 auto iter{ 1435 std::find(components.begin(), components.end(), *parentComponent)}; 1436 if (iter != components.end()) { 1437 symbol = parentComponent; 1438 nextAnonymous = ++iter; 1439 if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { 1440 Say(source, 1441 "Whole parent component '%s' in structure " 1442 "constructor should not be anonymous"_en_US, 1443 symbol->name()); 1444 } 1445 } 1446 } 1447 while (!symbol && nextAnonymous != components.end()) { 1448 const Symbol &next{*nextAnonymous}; 1449 ++nextAnonymous; 1450 if (!next.test(Symbol::Flag::ParentComp)) { 1451 symbol = &next; 1452 } 1453 } 1454 if (!symbol) { 1455 Say(source, "Unexpected value in structure constructor"_err_en_US); 1456 } 1457 } 1458 if (symbol) { 1459 if (const auto *currScope{context_.globalScope().FindScope(source)}) { 1460 if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) { 1461 Say(source, *msg); 1462 } 1463 } 1464 if (checkConflicts) { 1465 auto componentIter{ 1466 std::find(components.begin(), components.end(), *symbol)}; 1467 if (unavailable.find(symbol->name()) != unavailable.cend()) { 1468 // C797, C798 1469 Say(source, 1470 "Component '%s' conflicts with another component earlier in " 1471 "this structure constructor"_err_en_US, 1472 symbol->name()); 1473 } else if (symbol->test(Symbol::Flag::ParentComp)) { 1474 // Make earlier components unavailable once a whole parent appears. 1475 for (auto it{components.begin()}; it != componentIter; ++it) { 1476 unavailable.insert(it->name()); 1477 } 1478 } else { 1479 // Make whole parent components unavailable after any of their 1480 // constituents appear. 1481 for (auto it{componentIter}; it != components.end(); ++it) { 1482 if (it->test(Symbol::Flag::ParentComp)) { 1483 unavailable.insert(it->name()); 1484 } 1485 } 1486 } 1487 } 1488 unavailable.insert(symbol->name()); 1489 if (value) { 1490 if (symbol->has<semantics::ProcEntityDetails>()) { 1491 CHECK(IsPointer(*symbol)); 1492 } else if (symbol->has<semantics::ObjectEntityDetails>()) { 1493 // C1594(4) 1494 const auto &innermost{context_.FindScope(expr.source)}; 1495 if (const auto *pureProc{FindPureProcedureContaining(innermost)}) { 1496 if (const Symbol * pointer{FindPointerComponent(*symbol)}) { 1497 if (const Symbol * 1498 object{FindExternallyVisibleObject(*value, *pureProc)}) { 1499 if (auto *msg{Say(expr.source, 1500 "Externally visible object '%s' may not be " 1501 "associated with pointer component '%s' in a " 1502 "pure procedure"_err_en_US, 1503 object->name(), pointer->name())}) { 1504 msg->Attach(object->name(), "Object declaration"_en_US) 1505 .Attach(pointer->name(), "Pointer declaration"_en_US); 1506 } 1507 } 1508 } 1509 } 1510 } else if (symbol->has<semantics::TypeParamDetails>()) { 1511 Say(expr.source, 1512 "Type parameter '%s' may not appear as a component " 1513 "of a structure constructor"_err_en_US, 1514 symbol->name()); 1515 continue; 1516 } else { 1517 Say(expr.source, 1518 "Component '%s' is neither a procedure pointer " 1519 "nor a data object"_err_en_US, 1520 symbol->name()); 1521 continue; 1522 } 1523 if (IsPointer(*symbol)) { 1524 semantics::CheckPointerAssignment( 1525 GetFoldingContext(), *symbol, *value); // C7104, C7105 1526 result.Add(*symbol, Fold(std::move(*value))); 1527 } else if (MaybeExpr converted{ 1528 ConvertToType(*symbol, std::move(*value))}) { 1529 if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { 1530 if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { 1531 if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { 1532 AttachDeclaration( 1533 Say(expr.source, 1534 "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, 1535 symbol->name()), 1536 *symbol); 1537 } else if (CheckConformance(messages, *componentShape, 1538 *valueShape, "component", "value")) { 1539 if (GetRank(*componentShape) > 0 && GetRank(*valueShape) == 0 && 1540 !IsExpandableScalar(*converted)) { 1541 AttachDeclaration( 1542 Say(expr.source, 1543 "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, 1544 symbol->name()), 1545 *symbol); 1546 } else { 1547 result.Add(*symbol, std::move(*converted)); 1548 } 1549 } 1550 } else { 1551 Say(expr.source, "Shape of value cannot be determined"_err_en_US); 1552 } 1553 } else { 1554 AttachDeclaration( 1555 Say(expr.source, 1556 "Shape of component '%s' cannot be determined"_err_en_US, 1557 symbol->name()), 1558 *symbol); 1559 } 1560 } else if (IsAllocatable(*symbol) && 1561 std::holds_alternative<NullPointer>(value->u)) { 1562 // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE 1563 } else if (auto symType{DynamicType::From(symbol)}) { 1564 if (valueType) { 1565 AttachDeclaration( 1566 Say(expr.source, 1567 "Value in structure constructor of type %s is " 1568 "incompatible with component '%s' of type %s"_err_en_US, 1569 valueType->AsFortran(), symbol->name(), 1570 symType->AsFortran()), 1571 *symbol); 1572 } else { 1573 AttachDeclaration( 1574 Say(expr.source, 1575 "Value in structure constructor is incompatible with " 1576 " component '%s' of type %s"_err_en_US, 1577 symbol->name(), symType->AsFortran()), 1578 *symbol); 1579 } 1580 } 1581 } 1582 } 1583 } 1584 1585 // Ensure that unmentioned component objects have default initializers. 1586 for (const Symbol &symbol : components) { 1587 if (!symbol.test(Symbol::Flag::ParentComp) && 1588 unavailable.find(symbol.name()) == unavailable.cend() && 1589 !IsAllocatable(symbol)) { 1590 if (const auto *details{ 1591 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 1592 if (details->init()) { 1593 result.Add(symbol, common::Clone(*details->init())); 1594 } else { // C799 1595 AttachDeclaration(Say(typeName, 1596 "Structure constructor lacks a value for " 1597 "component '%s'"_err_en_US, 1598 symbol.name()), 1599 symbol); 1600 } 1601 } 1602 } 1603 } 1604 1605 return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); 1606 } 1607 1608 static std::optional<parser::CharBlock> GetPassName( 1609 const semantics::Symbol &proc) { 1610 return std::visit( 1611 [](const auto &details) { 1612 if constexpr (std::is_base_of_v<semantics::WithPassArg, 1613 std::decay_t<decltype(details)>>) { 1614 return details.passName(); 1615 } else { 1616 return std::optional<parser::CharBlock>{}; 1617 } 1618 }, 1619 proc.details()); 1620 } 1621 1622 static int GetPassIndex(const Symbol &proc) { 1623 CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); 1624 std::optional<parser::CharBlock> passName{GetPassName(proc)}; 1625 const auto *interface{semantics::FindInterface(proc)}; 1626 if (!passName || !interface) { 1627 return 0; // first argument is passed-object 1628 } 1629 const auto &subp{interface->get<semantics::SubprogramDetails>()}; 1630 int index{0}; 1631 for (const auto *arg : subp.dummyArgs()) { 1632 if (arg && arg->name() == passName) { 1633 return index; 1634 } 1635 ++index; 1636 } 1637 DIE("PASS argument name not in dummy argument list"); 1638 } 1639 1640 // Injects an expression into an actual argument list as the "passed object" 1641 // for a type-bound procedure reference that is not NOPASS. Adds an 1642 // argument keyword if possible, but not when the passed object goes 1643 // before a positional argument. 1644 // e.g., obj%tbp(x) -> tbp(obj,x). 1645 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, 1646 const Symbol &component, bool isPassedObject = true) { 1647 if (component.attrs().test(semantics::Attr::NOPASS)) { 1648 return; 1649 } 1650 int passIndex{GetPassIndex(component)}; 1651 auto iter{actuals.begin()}; 1652 int at{0}; 1653 while (iter < actuals.end() && at < passIndex) { 1654 if (*iter && (*iter)->keyword()) { 1655 iter = actuals.end(); 1656 break; 1657 } 1658 ++iter; 1659 ++at; 1660 } 1661 ActualArgument passed{AsGenericExpr(common::Clone(expr))}; 1662 passed.set_isPassedObject(isPassedObject); 1663 if (iter == actuals.end()) { 1664 if (auto passName{GetPassName(component)}) { 1665 passed.set_keyword(*passName); 1666 } 1667 } 1668 actuals.emplace(iter, std::move(passed)); 1669 } 1670 1671 // Return the compile-time resolution of a procedure binding, if possible. 1672 static const Symbol *GetBindingResolution( 1673 const std::optional<DynamicType> &baseType, const Symbol &component) { 1674 const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; 1675 if (!binding) { 1676 return nullptr; 1677 } 1678 if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && 1679 (!baseType || baseType->IsPolymorphic())) { 1680 return nullptr; 1681 } 1682 return &binding->symbol(); 1683 } 1684 1685 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( 1686 const parser::ProcComponentRef &pcr, ActualArguments &&arguments) 1687 -> std::optional<CalleeAndArguments> { 1688 const parser::StructureComponent &sc{pcr.v.thing}; 1689 const auto &name{sc.component.source}; 1690 if (MaybeExpr base{Analyze(sc.base)}) { 1691 if (const Symbol * sym{sc.component.symbol}) { 1692 if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { 1693 if (sym->has<semantics::GenericDetails>()) { 1694 AdjustActuals adjustment{ 1695 [&](const Symbol &proc, ActualArguments &actuals) { 1696 if (!proc.attrs().test(semantics::Attr::NOPASS)) { 1697 AddPassArg(actuals, std::move(*dtExpr), proc); 1698 } 1699 return true; 1700 }}; 1701 sym = ResolveGeneric(*sym, arguments, adjustment); 1702 if (!sym) { 1703 EmitGenericResolutionError(*sc.component.symbol); 1704 return std::nullopt; 1705 } 1706 } 1707 if (const Symbol * 1708 resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) { 1709 AddPassArg(arguments, std::move(*dtExpr), *sym, false); 1710 return CalleeAndArguments{ 1711 ProcedureDesignator{*resolution}, std::move(arguments)}; 1712 } else if (std::optional<DataRef> dataRef{ 1713 ExtractDataRef(std::move(*dtExpr))}) { 1714 if (sym->attrs().test(semantics::Attr::NOPASS)) { 1715 return CalleeAndArguments{ 1716 ProcedureDesignator{Component{std::move(*dataRef), *sym}}, 1717 std::move(arguments)}; 1718 } else { 1719 AddPassArg(arguments, 1720 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, 1721 *sym); 1722 return CalleeAndArguments{ 1723 ProcedureDesignator{*sym}, std::move(arguments)}; 1724 } 1725 } 1726 } 1727 Say(name, 1728 "Base of procedure component reference is not a derived-type object"_err_en_US); 1729 } 1730 } 1731 CHECK(!GetContextualMessages().empty()); 1732 return std::nullopt; 1733 } 1734 1735 // Can actual be argument associated with dummy? 1736 static bool CheckCompatibleArgument(bool isElemental, 1737 const ActualArgument &actual, const characteristics::DummyArgument &dummy) { 1738 return std::visit( 1739 common::visitors{ 1740 [&](const characteristics::DummyDataObject &x) { 1741 characteristics::TypeAndShape dummyTypeAndShape{x.type}; 1742 if (!isElemental && actual.Rank() != dummyTypeAndShape.Rank()) { 1743 return false; 1744 } else if (auto actualType{actual.GetType()}) { 1745 return dummyTypeAndShape.type().IsTkCompatibleWith(*actualType); 1746 } else { 1747 return false; 1748 } 1749 }, 1750 [&](const characteristics::DummyProcedure &) { 1751 const auto *expr{actual.UnwrapExpr()}; 1752 return expr && IsProcedurePointer(*expr); 1753 }, 1754 [&](const characteristics::AlternateReturn &) { 1755 return actual.isAlternateReturn(); 1756 }, 1757 }, 1758 dummy.u); 1759 } 1760 1761 // Are the actual arguments compatible with the dummy arguments of procedure? 1762 static bool CheckCompatibleArguments( 1763 const characteristics::Procedure &procedure, 1764 const ActualArguments &actuals) { 1765 bool isElemental{procedure.IsElemental()}; 1766 const auto &dummies{procedure.dummyArguments}; 1767 CHECK(dummies.size() == actuals.size()); 1768 for (std::size_t i{0}; i < dummies.size(); ++i) { 1769 const characteristics::DummyArgument &dummy{dummies[i]}; 1770 const std::optional<ActualArgument> &actual{actuals[i]}; 1771 if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { 1772 return false; 1773 } 1774 } 1775 return true; 1776 } 1777 1778 // Handles a forward reference to a module function from what must 1779 // be a specification expression. Return false if the symbol is 1780 // an invalid forward reference. 1781 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { 1782 if (context_.HasError(symbol)) { 1783 return false; 1784 } 1785 if (const auto *details{ 1786 symbol.detailsIf<semantics::SubprogramNameDetails>()}) { 1787 if (details->kind() == semantics::SubprogramKind::Module) { 1788 // If this symbol is still a SubprogramNameDetails, we must be 1789 // checking a specification expression in a sibling module 1790 // procedure. Resolve its names now so that its interface 1791 // is known. 1792 semantics::ResolveSpecificationParts(context_, symbol); 1793 if (symbol.has<semantics::SubprogramNameDetails>()) { 1794 // When the symbol hasn't had its details updated, we must have 1795 // already been in the process of resolving the function's 1796 // specification part; but recursive function calls are not 1797 // allowed in specification parts (10.1.11 para 5). 1798 Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, 1799 symbol.name()); 1800 context_.SetError(const_cast<Symbol &>(symbol)); 1801 return false; 1802 } 1803 } else { // 10.1.11 para 4 1804 Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, 1805 symbol.name()); 1806 context_.SetError(const_cast<Symbol &>(symbol)); 1807 return false; 1808 } 1809 } 1810 return true; 1811 } 1812 1813 // Resolve a call to a generic procedure with given actual arguments. 1814 // adjustActuals is called on procedure bindings to handle pass arg. 1815 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol, 1816 const ActualArguments &actuals, const AdjustActuals &adjustActuals, 1817 bool mightBeStructureConstructor) { 1818 const Symbol *elemental{nullptr}; // matching elemental specific proc 1819 const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()}; 1820 for (const Symbol &specific : details.specificProcs()) { 1821 if (!ResolveForward(specific)) { 1822 continue; 1823 } 1824 if (std::optional<characteristics::Procedure> procedure{ 1825 characteristics::Procedure::Characterize( 1826 ProcedureDesignator{specific}, context_.intrinsics())}) { 1827 ActualArguments localActuals{actuals}; 1828 if (specific.has<semantics::ProcBindingDetails>()) { 1829 if (!adjustActuals.value()(specific, localActuals)) { 1830 continue; 1831 } 1832 } 1833 if (semantics::CheckInterfaceForGeneric( 1834 *procedure, localActuals, GetFoldingContext())) { 1835 if (CheckCompatibleArguments(*procedure, localActuals)) { 1836 if (!procedure->IsElemental()) { 1837 return &specific; // takes priority over elemental match 1838 } 1839 elemental = &specific; 1840 } 1841 } 1842 } 1843 } 1844 if (elemental) { 1845 return elemental; 1846 } 1847 // Check parent derived type 1848 if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { 1849 if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) { 1850 if (extended->GetUltimate().has<semantics::GenericDetails>()) { 1851 if (const Symbol * 1852 result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) { 1853 return result; 1854 } 1855 } 1856 } 1857 } 1858 if (mightBeStructureConstructor && details.derivedType()) { 1859 return details.derivedType(); 1860 } 1861 return nullptr; 1862 } 1863 1864 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) { 1865 if (semantics::IsGenericDefinedOp(symbol)) { 1866 Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US, 1867 symbol.name()); 1868 } else { 1869 Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US, 1870 symbol.name()); 1871 } 1872 } 1873 1874 auto ExpressionAnalyzer::GetCalleeAndArguments( 1875 const parser::ProcedureDesignator &pd, ActualArguments &&arguments, 1876 bool isSubroutine, bool mightBeStructureConstructor) 1877 -> std::optional<CalleeAndArguments> { 1878 return std::visit( 1879 common::visitors{ 1880 [&](const parser::Name &name) { 1881 return GetCalleeAndArguments(name, std::move(arguments), 1882 isSubroutine, mightBeStructureConstructor); 1883 }, 1884 [&](const parser::ProcComponentRef &pcr) { 1885 return AnalyzeProcedureComponentRef(pcr, std::move(arguments)); 1886 }, 1887 }, 1888 pd.u); 1889 } 1890 1891 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, 1892 ActualArguments &&arguments, bool isSubroutine, 1893 bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { 1894 const Symbol *symbol{name.symbol}; 1895 if (context_.HasError(symbol)) { 1896 return std::nullopt; // also handles null symbol 1897 } 1898 const Symbol &ultimate{DEREF(symbol).GetUltimate()}; 1899 if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { 1900 if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( 1901 CallCharacteristics{ultimate.name().ToString(), isSubroutine}, 1902 arguments, GetFoldingContext())}) { 1903 return CalleeAndArguments{ 1904 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1905 std::move(specificCall->arguments)}; 1906 } 1907 } else { 1908 CheckForBadRecursion(name.source, ultimate); 1909 if (ultimate.has<semantics::GenericDetails>()) { 1910 ExpressionAnalyzer::AdjustActuals noAdjustment; 1911 symbol = ResolveGeneric( 1912 *symbol, arguments, noAdjustment, mightBeStructureConstructor); 1913 } 1914 if (symbol) { 1915 if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) { 1916 if (mightBeStructureConstructor) { 1917 return CalleeAndArguments{ 1918 semantics::SymbolRef{*symbol}, std::move(arguments)}; 1919 } 1920 } else { 1921 return CalleeAndArguments{ 1922 ProcedureDesignator{*symbol}, std::move(arguments)}; 1923 } 1924 } else if (std::optional<SpecificCall> specificCall{ 1925 context_.intrinsics().Probe( 1926 CallCharacteristics{ 1927 ultimate.name().ToString(), isSubroutine}, 1928 arguments, GetFoldingContext())}) { 1929 // Generics can extend intrinsics 1930 return CalleeAndArguments{ 1931 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 1932 std::move(specificCall->arguments)}; 1933 } else { 1934 EmitGenericResolutionError(*name.symbol); 1935 } 1936 } 1937 return std::nullopt; 1938 } 1939 1940 void ExpressionAnalyzer::CheckForBadRecursion( 1941 parser::CharBlock callSite, const semantics::Symbol &proc) { 1942 if (const auto *scope{proc.scope()}) { 1943 if (scope->sourceRange().Contains(callSite)) { 1944 parser::Message *msg{nullptr}; 1945 if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) 1946 msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, 1947 callSite); 1948 } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { 1949 msg = Say( // 15.6.2.1(3) 1950 "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, 1951 callSite); 1952 } 1953 AttachDeclaration(msg, proc); 1954 } 1955 } 1956 } 1957 1958 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { 1959 if (const auto *designator{ 1960 std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { 1961 if (const auto *dataRef{ 1962 std::get_if<parser::DataRef>(&designator->value().u)}) { 1963 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { 1964 if (const Symbol * symbol{name->symbol}) { 1965 if (const auto *type{symbol->GetType()}) { 1966 if (type->category() == semantics::DeclTypeSpec::TypeStar) { 1967 return symbol; 1968 } 1969 } 1970 } 1971 } 1972 } 1973 } 1974 return nullptr; 1975 } 1976 1977 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, 1978 std::optional<parser::StructureConstructor> *structureConstructor) { 1979 const parser::Call &call{funcRef.v}; 1980 auto restorer{GetContextualMessages().SetLocation(call.source)}; 1981 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 1982 for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { 1983 analyzer.Analyze(arg, false /* not subroutine call */); 1984 } 1985 if (analyzer.fatalErrors()) { 1986 return std::nullopt; 1987 } 1988 if (std::optional<CalleeAndArguments> callee{ 1989 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 1990 analyzer.GetActuals(), false /* not subroutine */, 1991 true /* might be structure constructor */)}) { 1992 if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { 1993 return MakeFunctionRef( 1994 call.source, std::move(*proc), std::move(callee->arguments)); 1995 } else if (structureConstructor) { 1996 // Structure constructor misparsed as function reference? 1997 CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); 1998 const Symbol &derivedType{*std::get<semantics::SymbolRef>(callee->u)}; 1999 const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 2000 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 2001 semantics::Scope &scope{context_.FindScope(name->source)}; 2002 const semantics::DeclTypeSpec &type{ 2003 semantics::FindOrInstantiateDerivedType(scope, 2004 semantics::DerivedTypeSpec{ 2005 name->source, derivedType.GetUltimate()}, 2006 context_)}; 2007 auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; 2008 *structureConstructor = 2009 mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); 2010 return Analyze(structureConstructor->value()); 2011 } 2012 } 2013 } 2014 return std::nullopt; 2015 } 2016 2017 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { 2018 const parser::Call &call{callStmt.v}; 2019 auto restorer{GetContextualMessages().SetLocation(call.source)}; 2020 ArgumentAnalyzer analyzer{*this, call.source, true /* allowAssumedType */}; 2021 const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 2022 for (const auto &arg : actualArgList) { 2023 analyzer.Analyze(arg, true /* is subroutine call */); 2024 } 2025 if (!analyzer.fatalErrors()) { 2026 if (std::optional<CalleeAndArguments> callee{ 2027 GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), 2028 analyzer.GetActuals(), true /* subroutine */)}) { 2029 ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; 2030 CHECK(proc); 2031 if (CheckCall(call.source, *proc, callee->arguments)) { 2032 bool hasAlternateReturns{ 2033 callee->arguments.size() < actualArgList.size()}; 2034 callStmt.typedCall.reset(new ProcedureRef{std::move(*proc), 2035 std::move(callee->arguments), hasAlternateReturns}); 2036 } 2037 } 2038 } 2039 } 2040 2041 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { 2042 if (!x.typedAssignment) { 2043 ArgumentAnalyzer analyzer{*this}; 2044 analyzer.Analyze(std::get<parser::Variable>(x.t)); 2045 analyzer.Analyze(std::get<parser::Expr>(x.t)); 2046 if (analyzer.fatalErrors()) { 2047 x.typedAssignment.reset(new GenericAssignmentWrapper{}); 2048 } else { 2049 std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; 2050 Assignment assignment{ 2051 Fold(analyzer.MoveExpr(0)), Fold(analyzer.MoveExpr(1))}; 2052 if (procRef) { 2053 assignment.u = std::move(*procRef); 2054 } 2055 x.typedAssignment.reset( 2056 new GenericAssignmentWrapper{std::move(assignment)}); 2057 } 2058 } 2059 return common::GetPtrFromOptional(x.typedAssignment->v); 2060 } 2061 2062 const Assignment *ExpressionAnalyzer::Analyze( 2063 const parser::PointerAssignmentStmt &x) { 2064 if (!x.typedAssignment) { 2065 MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; 2066 MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))}; 2067 if (!lhs || !rhs) { 2068 x.typedAssignment.reset(new GenericAssignmentWrapper{}); 2069 } else { 2070 Assignment assignment{std::move(*lhs), std::move(*rhs)}; 2071 std::visit(common::visitors{ 2072 [&](const std::list<parser::BoundsRemapping> &list) { 2073 Assignment::BoundsRemapping bounds; 2074 for (const auto &elem : list) { 2075 auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; 2076 auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; 2077 if (lower && upper) { 2078 bounds.emplace_back(Fold(std::move(*lower)), 2079 Fold(std::move(*upper))); 2080 } 2081 } 2082 assignment.u = std::move(bounds); 2083 }, 2084 [&](const std::list<parser::BoundsSpec> &list) { 2085 Assignment::BoundsSpec bounds; 2086 for (const auto &bound : list) { 2087 if (auto lower{AsSubscript(Analyze(bound.v))}) { 2088 bounds.emplace_back(Fold(std::move(*lower))); 2089 } 2090 } 2091 assignment.u = std::move(bounds); 2092 }, 2093 }, 2094 std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); 2095 x.typedAssignment.reset( 2096 new GenericAssignmentWrapper{std::move(assignment)}); 2097 } 2098 } 2099 return common::GetPtrFromOptional(x.typedAssignment->v); 2100 } 2101 2102 static bool IsExternalCalledImplicitly( 2103 parser::CharBlock callSite, const ProcedureDesignator &proc) { 2104 if (const auto *symbol{proc.GetSymbol()}) { 2105 return symbol->has<semantics::SubprogramDetails>() && 2106 symbol->owner().IsGlobal() && 2107 (!symbol->scope() /*ENTRY*/ || 2108 !symbol->scope()->sourceRange().Contains(callSite)); 2109 } else { 2110 return false; 2111 } 2112 } 2113 2114 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( 2115 parser::CharBlock callSite, const ProcedureDesignator &proc, 2116 ActualArguments &arguments) { 2117 auto chars{ 2118 characteristics::Procedure::Characterize(proc, context_.intrinsics())}; 2119 if (chars) { 2120 bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)}; 2121 if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) { 2122 Say(callSite, 2123 "References to the procedure '%s' require an explicit interface"_en_US, 2124 DEREF(proc.GetSymbol()).name()); 2125 } 2126 semantics::CheckArguments(*chars, arguments, GetFoldingContext(), 2127 context_.FindScope(callSite), treatExternalAsImplicit); 2128 const Symbol *procSymbol{proc.GetSymbol()}; 2129 if (procSymbol && !IsPureProcedure(*procSymbol)) { 2130 if (const semantics::Scope * 2131 pure{semantics::FindPureProcedureContaining( 2132 context_.FindScope(callSite))}) { 2133 Say(callSite, 2134 "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, 2135 procSymbol->name(), DEREF(pure->symbol()).name()); 2136 } 2137 } 2138 } 2139 return chars; 2140 } 2141 2142 // Unary operations 2143 2144 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { 2145 if (MaybeExpr operand{Analyze(x.v.value())}) { 2146 if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { 2147 if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { 2148 if (semantics::IsProcedurePointer(*result)) { 2149 Say("A function reference that returns a procedure " 2150 "pointer may not be parenthesized"_err_en_US); // C1003 2151 } 2152 } 2153 } 2154 return Parenthesize(std::move(*operand)); 2155 } 2156 return std::nullopt; 2157 } 2158 2159 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, 2160 NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { 2161 ArgumentAnalyzer analyzer{context}; 2162 analyzer.Analyze(x.v); 2163 if (analyzer.fatalErrors()) { 2164 return std::nullopt; 2165 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2166 if (opr == NumericOperator::Add) { 2167 return analyzer.MoveExpr(0); 2168 } else { 2169 return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); 2170 } 2171 } else { 2172 return analyzer.TryDefinedOp(AsFortran(opr), 2173 "Operand of unary %s must be numeric; have %s"_err_en_US); 2174 } 2175 } 2176 2177 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { 2178 return NumericUnaryHelper(*this, NumericOperator::Add, x); 2179 } 2180 2181 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { 2182 return NumericUnaryHelper(*this, NumericOperator::Subtract, x); 2183 } 2184 2185 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { 2186 ArgumentAnalyzer analyzer{*this}; 2187 analyzer.Analyze(x.v); 2188 if (analyzer.fatalErrors()) { 2189 return std::nullopt; 2190 } else if (analyzer.IsIntrinsicLogical()) { 2191 return AsGenericExpr( 2192 LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); 2193 } else { 2194 return analyzer.TryDefinedOp(LogicalOperator::Not, 2195 "Operand of %s must be LOGICAL; have %s"_err_en_US); 2196 } 2197 } 2198 2199 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { 2200 // Represent %LOC() exactly as if it had been a call to the LOC() extension 2201 // intrinsic function. 2202 // Use the actual source for the name of the call for error reporting. 2203 std::optional<ActualArgument> arg; 2204 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { 2205 arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2206 } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { 2207 arg = ActualArgument{std::move(*argExpr)}; 2208 } else { 2209 return std::nullopt; 2210 } 2211 parser::CharBlock at{GetContextualMessages().at()}; 2212 CHECK(at.size() >= 4); 2213 parser::CharBlock loc{at.begin() + 1, 3}; 2214 CHECK(loc == "loc"); 2215 return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); 2216 } 2217 2218 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { 2219 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2220 ArgumentAnalyzer analyzer{*this, name.source}; 2221 analyzer.Analyze(std::get<1>(x.t)); 2222 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2223 "No operator %s defined for %s"_err_en_US, true); 2224 } 2225 2226 // Binary (dyadic) operations 2227 2228 template <template <typename> class OPR> 2229 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, 2230 const parser::Expr::IntrinsicBinary &x) { 2231 ArgumentAnalyzer analyzer{context}; 2232 analyzer.Analyze(std::get<0>(x.t)); 2233 analyzer.Analyze(std::get<1>(x.t)); 2234 if (analyzer.fatalErrors()) { 2235 return std::nullopt; 2236 } else if (analyzer.IsIntrinsicNumeric(opr)) { 2237 return NumericOperation<OPR>(context.GetContextualMessages(), 2238 analyzer.MoveExpr(0), analyzer.MoveExpr(1), 2239 context.GetDefaultKind(TypeCategory::Real)); 2240 } else { 2241 return analyzer.TryDefinedOp(AsFortran(opr), 2242 "Operands of %s must be numeric; have %s and %s"_err_en_US); 2243 } 2244 } 2245 2246 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { 2247 return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); 2248 } 2249 2250 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { 2251 return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); 2252 } 2253 2254 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { 2255 return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); 2256 } 2257 2258 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { 2259 return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); 2260 } 2261 2262 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { 2263 return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); 2264 } 2265 2266 MaybeExpr ExpressionAnalyzer::Analyze( 2267 const parser::Expr::ComplexConstructor &x) { 2268 auto re{Analyze(std::get<0>(x.t).value())}; 2269 auto im{Analyze(std::get<1>(x.t).value())}; 2270 if (re && im) { 2271 ConformabilityCheck(GetContextualMessages(), *re, *im); 2272 } 2273 return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), 2274 std::move(im), GetDefaultKind(TypeCategory::Real))); 2275 } 2276 2277 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { 2278 ArgumentAnalyzer analyzer{*this}; 2279 analyzer.Analyze(std::get<0>(x.t)); 2280 analyzer.Analyze(std::get<1>(x.t)); 2281 if (analyzer.fatalErrors()) { 2282 return std::nullopt; 2283 } else if (analyzer.IsIntrinsicConcat()) { 2284 return std::visit( 2285 [&](auto &&x, auto &&y) -> MaybeExpr { 2286 using T = ResultType<decltype(x)>; 2287 if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { 2288 return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); 2289 } else { 2290 DIE("different types for intrinsic concat"); 2291 } 2292 }, 2293 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), 2294 std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); 2295 } else { 2296 return analyzer.TryDefinedOp("//", 2297 "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); 2298 } 2299 } 2300 2301 // The Name represents a user-defined intrinsic operator. 2302 // If the actuals match one of the specific procedures, return a function ref. 2303 // Otherwise report the error in messages. 2304 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( 2305 const parser::Name &name, ActualArguments &&actuals) { 2306 if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { 2307 CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); 2308 return MakeFunctionRef(name.source, 2309 std::move(std::get<ProcedureDesignator>(callee->u)), 2310 std::move(callee->arguments)); 2311 } else { 2312 return std::nullopt; 2313 } 2314 } 2315 2316 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, 2317 const parser::Expr::IntrinsicBinary &x) { 2318 ArgumentAnalyzer analyzer{context}; 2319 analyzer.Analyze(std::get<0>(x.t)); 2320 analyzer.Analyze(std::get<1>(x.t)); 2321 if (analyzer.fatalErrors()) { 2322 return std::nullopt; 2323 } else if (analyzer.IsIntrinsicRelational(opr)) { 2324 return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, 2325 analyzer.MoveExpr(0), analyzer.MoveExpr(1))); 2326 } else { 2327 return analyzer.TryDefinedOp(opr, 2328 "Operands of %s must have comparable types; have %s and %s"_err_en_US); 2329 } 2330 } 2331 2332 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { 2333 return RelationHelper(*this, RelationalOperator::LT, x); 2334 } 2335 2336 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { 2337 return RelationHelper(*this, RelationalOperator::LE, x); 2338 } 2339 2340 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { 2341 return RelationHelper(*this, RelationalOperator::EQ, x); 2342 } 2343 2344 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { 2345 return RelationHelper(*this, RelationalOperator::NE, x); 2346 } 2347 2348 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { 2349 return RelationHelper(*this, RelationalOperator::GE, x); 2350 } 2351 2352 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { 2353 return RelationHelper(*this, RelationalOperator::GT, x); 2354 } 2355 2356 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, 2357 const parser::Expr::IntrinsicBinary &x) { 2358 ArgumentAnalyzer analyzer{context}; 2359 analyzer.Analyze(std::get<0>(x.t)); 2360 analyzer.Analyze(std::get<1>(x.t)); 2361 if (analyzer.fatalErrors()) { 2362 return std::nullopt; 2363 } else if (analyzer.IsIntrinsicLogical()) { 2364 return AsGenericExpr(BinaryLogicalOperation(opr, 2365 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), 2366 std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); 2367 } else { 2368 return analyzer.TryDefinedOp( 2369 opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); 2370 } 2371 } 2372 2373 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { 2374 return LogicalBinaryHelper(*this, LogicalOperator::And, x); 2375 } 2376 2377 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { 2378 return LogicalBinaryHelper(*this, LogicalOperator::Or, x); 2379 } 2380 2381 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { 2382 return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); 2383 } 2384 2385 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { 2386 return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); 2387 } 2388 2389 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { 2390 const auto &name{std::get<parser::DefinedOpName>(x.t).v}; 2391 ArgumentAnalyzer analyzer{*this, name.source}; 2392 analyzer.Analyze(std::get<1>(x.t)); 2393 analyzer.Analyze(std::get<2>(x.t)); 2394 return analyzer.TryDefinedOp(name.source.ToString().c_str(), 2395 "No operator %s defined for %s and %s"_err_en_US, true); 2396 } 2397 2398 static void CheckFuncRefToArrayElementRefHasSubscripts( 2399 semantics::SemanticsContext &context, 2400 const parser::FunctionReference &funcRef) { 2401 // Emit message if the function reference fix will end up an array element 2402 // reference with no subscripts because it will not be possible to later tell 2403 // the difference in expressions between empty subscript list due to bad 2404 // subscripts error recovery or because the user did not put any. 2405 if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { 2406 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2407 const auto *name{std::get_if<parser::Name>(&proc.u)}; 2408 if (!name) { 2409 name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; 2410 } 2411 auto &msg{context.Say(funcRef.v.source, 2412 name->symbol && name->symbol->Rank() == 0 2413 ? "'%s' is not a function"_err_en_US 2414 : "Reference to array '%s' with empty subscript list"_err_en_US, 2415 name->source)}; 2416 if (name->symbol) { 2417 if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) { 2418 msg.Attach(name->source, 2419 "A result variable must be declared with RESULT to allow recursive " 2420 "function calls"_en_US); 2421 } else { 2422 AttachDeclaration(&msg, *name->symbol); 2423 } 2424 } 2425 } 2426 } 2427 2428 // Converts, if appropriate, an original misparse of ambiguous syntax like 2429 // A(1) as a function reference into an array reference. 2430 // Misparse structure constructors are detected elsewhere after generic 2431 // function call resolution fails. 2432 template <typename... A> 2433 static void FixMisparsedFunctionReference( 2434 semantics::SemanticsContext &context, const std::variant<A...> &constU) { 2435 // The parse tree is updated in situ when resolving an ambiguous parse. 2436 using uType = std::decay_t<decltype(constU)>; 2437 auto &u{const_cast<uType &>(constU)}; 2438 if (auto *func{ 2439 std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { 2440 parser::FunctionReference &funcRef{func->value()}; 2441 auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; 2442 if (Symbol * 2443 origSymbol{ 2444 std::visit(common::visitors{ 2445 [&](parser::Name &name) { return name.symbol; }, 2446 [&](parser::ProcComponentRef &pcr) { 2447 return pcr.v.thing.component.symbol; 2448 }, 2449 }, 2450 proc.u)}) { 2451 Symbol &symbol{origSymbol->GetUltimate()}; 2452 if (symbol.has<semantics::ObjectEntityDetails>() || 2453 symbol.has<semantics::AssocEntityDetails>()) { 2454 // Note that expression in AssocEntityDetails cannot be a procedure 2455 // pointer as per C1105 so this cannot be a function reference. 2456 if constexpr (common::HasMember<common::Indirection<parser::Designator>, 2457 uType>) { 2458 CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef); 2459 u = common::Indirection{funcRef.ConvertToArrayElementRef()}; 2460 } else { 2461 DIE("can't fix misparsed function as array reference"); 2462 } 2463 } 2464 } 2465 } 2466 } 2467 2468 // Common handling of parse tree node types that retain the 2469 // representation of the analyzed expression. 2470 template <typename PARSED> 2471 MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) { 2472 if (x.typedExpr) { 2473 return x.typedExpr->v; 2474 } 2475 if constexpr (std::is_same_v<PARSED, parser::Expr> || 2476 std::is_same_v<PARSED, parser::Variable>) { 2477 FixMisparsedFunctionReference(context_, x.u); 2478 } 2479 if (AssumedTypeDummy(x)) { // C710 2480 Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2481 } else if (MaybeExpr result{evaluate::Fold(foldingContext_, Analyze(x.u))}) { 2482 SetExpr(x, std::move(*result)); 2483 return x.typedExpr->v; 2484 } 2485 ResetExpr(x); 2486 if (!context_.AnyFatalError()) { 2487 std::string buf; 2488 llvm::raw_string_ostream dump{buf}; 2489 parser::DumpTree(dump, x); 2490 Say("Internal error: Expression analysis failed on: %s"_err_en_US, 2491 dump.str()); 2492 } 2493 fatalErrors_ = true; 2494 return std::nullopt; 2495 } 2496 2497 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { 2498 auto restorer{GetContextualMessages().SetLocation(expr.source)}; 2499 return ExprOrVariable(expr); 2500 } 2501 2502 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { 2503 auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; 2504 return ExprOrVariable(variable); 2505 } 2506 2507 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { 2508 auto restorer{GetContextualMessages().SetLocation(x.source)}; 2509 return ExprOrVariable(x); 2510 } 2511 2512 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( 2513 TypeCategory category, 2514 const std::optional<parser::KindSelector> &selector) { 2515 int defaultKind{GetDefaultKind(category)}; 2516 if (!selector) { 2517 return Expr<SubscriptInteger>{defaultKind}; 2518 } 2519 return std::visit( 2520 common::visitors{ 2521 [&](const parser::ScalarIntConstantExpr &x) { 2522 if (MaybeExpr kind{Analyze(x)}) { 2523 Expr<SomeType> folded{Fold(std::move(*kind))}; 2524 if (std::optional<std::int64_t> code{ToInt64(folded)}) { 2525 if (CheckIntrinsicKind(category, *code)) { 2526 return Expr<SubscriptInteger>{*code}; 2527 } 2528 } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) { 2529 return ConvertToType<SubscriptInteger>(std::move(*intExpr)); 2530 } 2531 } 2532 return Expr<SubscriptInteger>{defaultKind}; 2533 }, 2534 [&](const parser::KindSelector::StarSize &x) { 2535 std::intmax_t size = x.v; 2536 if (!CheckIntrinsicSize(category, size)) { 2537 size = defaultKind; 2538 } else if (category == TypeCategory::Complex) { 2539 size /= 2; 2540 } 2541 return Expr<SubscriptInteger>{size}; 2542 }, 2543 }, 2544 selector->u); 2545 } 2546 2547 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { 2548 return context_.GetDefaultKind(category); 2549 } 2550 2551 DynamicType ExpressionAnalyzer::GetDefaultKindOfType( 2552 common::TypeCategory category) { 2553 return {category, GetDefaultKind(category)}; 2554 } 2555 2556 bool ExpressionAnalyzer::CheckIntrinsicKind( 2557 TypeCategory category, std::int64_t kind) { 2558 if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727 2559 return true; 2560 } else { 2561 Say("%s(KIND=%jd) is not a supported type"_err_en_US, 2562 ToUpperCase(EnumToString(category)), kind); 2563 return false; 2564 } 2565 } 2566 2567 bool ExpressionAnalyzer::CheckIntrinsicSize( 2568 TypeCategory category, std::int64_t size) { 2569 if (category == TypeCategory::Complex) { 2570 // COMPLEX*16 == COMPLEX(KIND=8) 2571 if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { 2572 return true; 2573 } 2574 } else if (IsValidKindOfIntrinsicType(category, size)) { 2575 return true; 2576 } 2577 Say("%s*%jd is not a supported type"_err_en_US, 2578 ToUpperCase(EnumToString(category)), size); 2579 return false; 2580 } 2581 2582 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { 2583 return impliedDos_.insert(std::make_pair(name, kind)).second; 2584 } 2585 2586 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { 2587 auto iter{impliedDos_.find(name)}; 2588 if (iter != impliedDos_.end()) { 2589 impliedDos_.erase(iter); 2590 } 2591 } 2592 2593 std::optional<int> ExpressionAnalyzer::IsImpliedDo( 2594 parser::CharBlock name) const { 2595 auto iter{impliedDos_.find(name)}; 2596 if (iter != impliedDos_.cend()) { 2597 return {iter->second}; 2598 } else { 2599 return std::nullopt; 2600 } 2601 } 2602 2603 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, 2604 const MaybeExpr &result, TypeCategory category, bool defaultKind) { 2605 if (result) { 2606 if (auto type{result->GetType()}) { 2607 if (type->category() != category) { // C885 2608 Say(at, "Must have %s type, but is %s"_err_en_US, 2609 ToUpperCase(EnumToString(category)), 2610 ToUpperCase(type->AsFortran())); 2611 return false; 2612 } else if (defaultKind) { 2613 int kind{context_.GetDefaultKind(category)}; 2614 if (type->kind() != kind) { 2615 Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, 2616 kind, ToUpperCase(EnumToString(category)), 2617 ToUpperCase(type->AsFortran())); 2618 return false; 2619 } 2620 } 2621 } else { 2622 Say(at, "Must have %s type, but is typeless"_err_en_US, 2623 ToUpperCase(EnumToString(category))); 2624 return false; 2625 } 2626 } 2627 return true; 2628 } 2629 2630 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, 2631 ProcedureDesignator &&proc, ActualArguments &&arguments) { 2632 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { 2633 if (intrinsic->name == "null" && arguments.empty()) { 2634 return Expr<SomeType>{NullPointer{}}; 2635 } 2636 } 2637 if (const Symbol * symbol{proc.GetSymbol()}) { 2638 if (!ResolveForward(*symbol)) { 2639 return std::nullopt; 2640 } 2641 } 2642 if (auto chars{CheckCall(callSite, proc, arguments)}) { 2643 if (chars->functionResult) { 2644 const auto &result{*chars->functionResult}; 2645 if (result.IsProcedurePointer()) { 2646 return Expr<SomeType>{ 2647 ProcedureRef{std::move(proc), std::move(arguments)}}; 2648 } else { 2649 // Not a procedure pointer, so type and shape are known. 2650 return TypedWrapper<FunctionRef, ProcedureRef>( 2651 DEREF(result.GetTypeAndShape()).type(), 2652 ProcedureRef{std::move(proc), std::move(arguments)}); 2653 } 2654 } 2655 } 2656 return std::nullopt; 2657 } 2658 2659 MaybeExpr ExpressionAnalyzer::MakeFunctionRef( 2660 parser::CharBlock intrinsic, ActualArguments &&arguments) { 2661 if (std::optional<SpecificCall> specificCall{ 2662 context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, 2663 arguments, context_.foldingContext())}) { 2664 return MakeFunctionRef(intrinsic, 2665 ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, 2666 std::move(specificCall->arguments)); 2667 } else { 2668 return std::nullopt; 2669 } 2670 } 2671 2672 void ArgumentAnalyzer::Analyze(const parser::Variable &x) { 2673 source_.ExtendToCover(x.GetSource()); 2674 if (MaybeExpr expr{context_.Analyze(x)}) { 2675 if (!IsConstantExpr(*expr)) { 2676 actuals_.emplace_back(std::move(*expr)); 2677 return; 2678 } 2679 const Symbol *symbol{GetFirstSymbol(*expr)}; 2680 context_.Say(x.GetSource(), 2681 "Assignment to constant '%s' is not allowed"_err_en_US, 2682 symbol ? symbol->name() : x.GetSource()); 2683 } 2684 fatalErrors_ = true; 2685 } 2686 2687 void ArgumentAnalyzer::Analyze( 2688 const parser::ActualArgSpec &arg, bool isSubroutine) { 2689 // TODO: C1002: Allow a whole assumed-size array to appear if the dummy 2690 // argument would accept it. Handle by special-casing the context 2691 // ActualArg -> Variable -> Designator. 2692 // TODO: Actual arguments that are procedures and procedure pointers need to 2693 // be detected and represented (they're not expressions). 2694 // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. 2695 std::optional<ActualArgument> actual; 2696 bool isAltReturn{false}; 2697 std::visit(common::visitors{ 2698 [&](const common::Indirection<parser::Expr> &x) { 2699 // TODO: Distinguish & handle procedure name and 2700 // proc-component-ref 2701 actual = AnalyzeExpr(x.value()); 2702 }, 2703 [&](const parser::AltReturnSpec &) { 2704 if (!isSubroutine) { 2705 context_.Say( 2706 "alternate return specification may not appear on" 2707 " function reference"_err_en_US); 2708 } 2709 isAltReturn = true; 2710 }, 2711 [&](const parser::ActualArg::PercentRef &) { 2712 context_.Say("TODO: %REF() argument"_err_en_US); 2713 }, 2714 [&](const parser::ActualArg::PercentVal &) { 2715 context_.Say("TODO: %VAL() argument"_err_en_US); 2716 }, 2717 }, 2718 std::get<parser::ActualArg>(arg.t).u); 2719 if (actual) { 2720 if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { 2721 actual->set_keyword(argKW->v.source); 2722 } 2723 actuals_.emplace_back(std::move(*actual)); 2724 } else if (!isAltReturn) { 2725 fatalErrors_ = true; 2726 } 2727 } 2728 2729 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr) const { 2730 CHECK(actuals_.size() == 2); 2731 return semantics::IsIntrinsicRelational( 2732 opr, *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2733 } 2734 2735 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { 2736 std::optional<DynamicType> type0{GetType(0)}; 2737 if (actuals_.size() == 1) { 2738 if (IsBOZLiteral(0)) { 2739 return opr == NumericOperator::Add; 2740 } else { 2741 return type0 && semantics::IsIntrinsicNumeric(*type0); 2742 } 2743 } else { 2744 std::optional<DynamicType> type1{GetType(1)}; 2745 if (IsBOZLiteral(0) && type1) { 2746 auto cat1{type1->category()}; 2747 return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; 2748 } else if (IsBOZLiteral(1) && type0) { // Integer/Real opr BOZ 2749 auto cat0{type0->category()}; 2750 return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; 2751 } else { 2752 return type0 && type1 && 2753 semantics::IsIntrinsicNumeric(*type0, GetRank(0), *type1, GetRank(1)); 2754 } 2755 } 2756 } 2757 2758 bool ArgumentAnalyzer::IsIntrinsicLogical() const { 2759 if (actuals_.size() == 1) { 2760 return semantics::IsIntrinsicLogical(*GetType(0)); 2761 return GetType(0)->category() == TypeCategory::Logical; 2762 } else { 2763 return semantics::IsIntrinsicLogical( 2764 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2765 } 2766 } 2767 2768 bool ArgumentAnalyzer::IsIntrinsicConcat() const { 2769 return semantics::IsIntrinsicConcat( 2770 *GetType(0), GetRank(0), *GetType(1), GetRank(1)); 2771 } 2772 2773 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2774 const char *opr, parser::MessageFixedText &&error, bool isUserOp) { 2775 if (AnyUntypedOperand()) { 2776 context_.Say( 2777 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2778 return std::nullopt; 2779 } 2780 { 2781 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2782 std::string oprNameString{ 2783 isUserOp ? std::string{opr} : "operator("s + opr + ')'}; 2784 parser::CharBlock oprName{oprNameString}; 2785 const auto &scope{context_.context().FindScope(source_)}; 2786 if (Symbol * symbol{scope.FindSymbol(oprName)}) { 2787 parser::Name name{symbol->name(), symbol}; 2788 if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) { 2789 return result; 2790 } 2791 sawDefinedOp_ = symbol; 2792 } 2793 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2794 if (const Symbol * symbol{FindBoundOp(oprName, passIndex)}) { 2795 if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) { 2796 return result; 2797 } 2798 } 2799 } 2800 } 2801 if (sawDefinedOp_) { 2802 SayNoMatch(ToUpperCase(sawDefinedOp_->name().ToString())); 2803 } else if (actuals_.size() == 1 || AreConformable()) { 2804 context_.Say( 2805 std::move(error), ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); 2806 } else { 2807 context_.Say( 2808 "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, 2809 ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); 2810 } 2811 return std::nullopt; 2812 } 2813 2814 MaybeExpr ArgumentAnalyzer::TryDefinedOp( 2815 std::vector<const char *> oprs, parser::MessageFixedText &&error) { 2816 for (std::size_t i{1}; i < oprs.size(); ++i) { 2817 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2818 if (auto result{TryDefinedOp(oprs[i], std::move(error))}) { 2819 return result; 2820 } 2821 } 2822 return TryDefinedOp(oprs[0], std::move(error)); 2823 } 2824 2825 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { 2826 ActualArguments localActuals{actuals_}; 2827 const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; 2828 if (!proc) { 2829 proc = &symbol; 2830 localActuals.at(passIndex).value().set_isPassedObject(); 2831 } 2832 return context_.MakeFunctionRef( 2833 source_, ProcedureDesignator{*proc}, std::move(localActuals)); 2834 } 2835 2836 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { 2837 using semantics::Tristate; 2838 const Expr<SomeType> &lhs{GetExpr(0)}; 2839 const Expr<SomeType> &rhs{GetExpr(1)}; 2840 std::optional<DynamicType> lhsType{lhs.GetType()}; 2841 std::optional<DynamicType> rhsType{rhs.GetType()}; 2842 int lhsRank{lhs.Rank()}; 2843 int rhsRank{rhs.Rank()}; 2844 Tristate isDefined{ 2845 semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; 2846 if (isDefined == Tristate::No) { 2847 if (lhsType && rhsType) { 2848 AddAssignmentConversion(*lhsType, *rhsType); 2849 } 2850 return std::nullopt; // user-defined assignment not allowed for these args 2851 } 2852 auto restorer{context_.GetContextualMessages().SetLocation(source_)}; 2853 if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { 2854 context_.CheckCall(source_, procRef->proc(), procRef->arguments()); 2855 return std::move(*procRef); 2856 } 2857 if (isDefined == Tristate::Yes) { 2858 if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || 2859 !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { 2860 SayNoMatch("ASSIGNMENT(=)", true); 2861 } 2862 } 2863 return std::nullopt; 2864 } 2865 2866 bool ArgumentAnalyzer::OkLogicalIntegerAssignment( 2867 TypeCategory lhs, TypeCategory rhs) { 2868 if (!context_.context().languageFeatures().IsEnabled( 2869 common::LanguageFeature::LogicalIntegerAssignment)) { 2870 return false; 2871 } 2872 std::optional<parser::MessageFixedText> msg; 2873 if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { 2874 // allow assignment to LOGICAL from INTEGER as a legacy extension 2875 msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US; 2876 } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { 2877 // ... and assignment to LOGICAL from INTEGER 2878 msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US; 2879 } else { 2880 return false; 2881 } 2882 if (context_.context().languageFeatures().ShouldWarn( 2883 common::LanguageFeature::LogicalIntegerAssignment)) { 2884 context_.Say(std::move(*msg)); 2885 } 2886 return true; 2887 } 2888 2889 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { 2890 auto restorer{context_.GetContextualMessages().DiscardMessages()}; 2891 std::string oprNameString{"assignment(=)"}; 2892 parser::CharBlock oprName{oprNameString}; 2893 const Symbol *proc{nullptr}; 2894 const auto &scope{context_.context().FindScope(source_)}; 2895 if (const Symbol * symbol{scope.FindSymbol(oprName)}) { 2896 ExpressionAnalyzer::AdjustActuals noAdjustment; 2897 if (const Symbol * 2898 specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) { 2899 proc = specific; 2900 } else { 2901 context_.EmitGenericResolutionError(*symbol); 2902 } 2903 } 2904 for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { 2905 if (const Symbol * specific{FindBoundOp(oprName, passIndex)}) { 2906 proc = specific; 2907 } 2908 } 2909 if (proc) { 2910 ActualArguments actualsCopy{actuals_}; 2911 actualsCopy[1]->Parenthesize(); 2912 return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; 2913 } else { 2914 return std::nullopt; 2915 } 2916 } 2917 2918 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { 2919 os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ 2920 << '\n'; 2921 for (const auto &actual : actuals_) { 2922 if (!actual.has_value()) { 2923 os << "- error\n"; 2924 } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) { 2925 os << "- assumed type: " << symbol->name().ToString() << '\n'; 2926 } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { 2927 expr->AsFortran(os << "- expr: ") << '\n'; 2928 } else { 2929 DIE("bad ActualArgument"); 2930 } 2931 } 2932 } 2933 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( 2934 const parser::Expr &expr) { 2935 source_.ExtendToCover(expr.source); 2936 if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) { 2937 expr.typedExpr.reset(new GenericExprWrapper{}); 2938 if (allowAssumedType_) { 2939 return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; 2940 } else { 2941 context_.SayAt(expr.source, 2942 "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); 2943 return std::nullopt; 2944 } 2945 } else if (MaybeExpr argExpr{context_.Analyze(expr)}) { 2946 return ActualArgument{context_.Fold(std::move(*argExpr))}; 2947 } else { 2948 return std::nullopt; 2949 } 2950 } 2951 2952 bool ArgumentAnalyzer::AreConformable() const { 2953 CHECK(!fatalErrors_ && actuals_.size() == 2); 2954 return evaluate::AreConformable(*actuals_[0], *actuals_[1]); 2955 } 2956 2957 // Look for a type-bound operator in the type of arg number passIndex. 2958 const Symbol *ArgumentAnalyzer::FindBoundOp( 2959 parser::CharBlock oprName, int passIndex) { 2960 const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; 2961 if (!type || !type->scope()) { 2962 return nullptr; 2963 } 2964 const Symbol *symbol{type->scope()->FindComponent(oprName)}; 2965 if (!symbol) { 2966 return nullptr; 2967 } 2968 sawDefinedOp_ = symbol; 2969 ExpressionAnalyzer::AdjustActuals adjustment{ 2970 [&](const Symbol &proc, ActualArguments &) { 2971 return passIndex == GetPassIndex(proc); 2972 }}; 2973 const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)}; 2974 if (!result) { 2975 context_.EmitGenericResolutionError(*symbol); 2976 } 2977 return result; 2978 } 2979 2980 // If there is an implicit conversion between intrinsic types, make it explicit 2981 void ArgumentAnalyzer::AddAssignmentConversion( 2982 const DynamicType &lhsType, const DynamicType &rhsType) { 2983 if (lhsType.category() == rhsType.category() && 2984 lhsType.kind() == rhsType.kind()) { 2985 // no conversion necessary 2986 } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) { 2987 actuals_[1] = ActualArgument{*rhsExpr}; 2988 } else { 2989 actuals_[1] = std::nullopt; 2990 } 2991 } 2992 2993 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { 2994 return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; 2995 } 2996 int ArgumentAnalyzer::GetRank(std::size_t i) const { 2997 return i < actuals_.size() ? actuals_[i].value().Rank() : 0; 2998 } 2999 3000 // Report error resolving opr when there is a user-defined one available 3001 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { 3002 std::string type0{TypeAsFortran(0)}; 3003 auto rank0{actuals_[0]->Rank()}; 3004 if (actuals_.size() == 1) { 3005 if (rank0 > 0) { 3006 context_.Say("No intrinsic or user-defined %s matches " 3007 "rank %d array of %s"_err_en_US, 3008 opr, rank0, type0); 3009 } else { 3010 context_.Say("No intrinsic or user-defined %s matches " 3011 "operand type %s"_err_en_US, 3012 opr, type0); 3013 } 3014 } else { 3015 std::string type1{TypeAsFortran(1)}; 3016 auto rank1{actuals_[1]->Rank()}; 3017 if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { 3018 context_.Say("No intrinsic or user-defined %s matches " 3019 "rank %d array of %s and rank %d array of %s"_err_en_US, 3020 opr, rank0, type0, rank1, type1); 3021 } else if (isAssignment && rank0 != rank1) { 3022 if (rank0 == 0) { 3023 context_.Say("No intrinsic or user-defined %s matches " 3024 "scalar %s and rank %d array of %s"_err_en_US, 3025 opr, type0, rank1, type1); 3026 } else { 3027 context_.Say("No intrinsic or user-defined %s matches " 3028 "rank %d array of %s and scalar %s"_err_en_US, 3029 opr, rank0, type0, type1); 3030 } 3031 } else { 3032 context_.Say("No intrinsic or user-defined %s matches " 3033 "operand types %s and %s"_err_en_US, 3034 opr, type0, type1); 3035 } 3036 } 3037 } 3038 3039 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { 3040 if (std::optional<DynamicType> type{GetType(i)}) { 3041 return type->category() == TypeCategory::Derived 3042 ? "TYPE("s + type->AsFortran() + ')' 3043 : type->category() == TypeCategory::Character 3044 ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' 3045 : ToUpperCase(type->AsFortran()); 3046 } else { 3047 return "untyped"; 3048 } 3049 } 3050 3051 bool ArgumentAnalyzer::AnyUntypedOperand() { 3052 for (const auto &actual : actuals_) { 3053 if (!actual.value().GetType()) { 3054 return true; 3055 } 3056 } 3057 return false; 3058 } 3059 3060 } // namespace Fortran::evaluate 3061 3062 namespace Fortran::semantics { 3063 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( 3064 SemanticsContext &context, common::TypeCategory category, 3065 const std::optional<parser::KindSelector> &selector) { 3066 evaluate::ExpressionAnalyzer analyzer{context}; 3067 auto restorer{ 3068 analyzer.GetContextualMessages().SetLocation(context.location().value())}; 3069 return analyzer.AnalyzeKindSelector(category, selector); 3070 } 3071 3072 void AnalyzeCallStmt(SemanticsContext &context, const parser::CallStmt &call) { 3073 evaluate::ExpressionAnalyzer{context}.Analyze(call); 3074 } 3075 3076 const evaluate::Assignment *AnalyzeAssignmentStmt( 3077 SemanticsContext &context, const parser::AssignmentStmt &stmt) { 3078 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3079 } 3080 const evaluate::Assignment *AnalyzePointerAssignmentStmt( 3081 SemanticsContext &context, const parser::PointerAssignmentStmt &stmt) { 3082 return evaluate::ExpressionAnalyzer{context}.Analyze(stmt); 3083 } 3084 3085 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} 3086 3087 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { 3088 parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); 3089 const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; 3090 auto name{bounds.name.thing.thing}; 3091 int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; 3092 if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { 3093 if (dynamicType->category() == TypeCategory::Integer) { 3094 kind = dynamicType->kind(); 3095 } 3096 } 3097 exprAnalyzer_.AddImpliedDo(name.source, kind); 3098 parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); 3099 exprAnalyzer_.RemoveImpliedDo(name.source); 3100 return false; 3101 } 3102 3103 bool ExprChecker::Walk(const parser::Program &program) { 3104 parser::Walk(program, *this); 3105 return !context_.AnyFatalError(); 3106 } 3107 } // namespace Fortran::semantics 3108